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CHAPTER I

Growing Up in a Steel Town: Early-Life Pollution Exposure

and Later-Life Mortality1

1.1 Introduction

Scientists have conducted thousands of studies evaluating the health impacts of air pollution.

This concentrated research effort is not surprising; evidence suggests that pollution from a variety

of sources—e.g., trucks and automobiles (Finkelstein et al., 2004), energy generation (Lave and

Freeburg, 1973), and industrial processes such as steel production (Pope, 1989)—can have important

detrimental effects for human morbidity and mortality. Careful studies that document the effects of

pollution are crucial for the formulation of appropriate policy responses.

A prevailing theory is that exposure to pollutants is damaging for physical development—with

the natural implication that such health deficits could subsequently lead to increased mortality long

after an individual is no longer being exposed to pollution. There are well founded concerns that

poor early-life conditions might have a “long reach,” affecting health in important ways in later-life.2

For example, in her well-known book, When Smoke Ran Like Water, Davis (2002) presents forceful

arguments for the proposition that childhood exposure to steel production in towns like Donora had

profound negative consequences for the later-life health of individuals.3

1This research was supported in part by an NIA training grant to the Population Studies Center at the University of
Michigan (T32 AG000221). I am also grateful for use of the services and facilities of the Population Studies Center at
the University of Michigan, funded by NICHD Center Grant R24 HD041028. I thank Professor Seth Sanders of Duke
University for providing me with access to the Duke SSA/Medicare data set, and also for helpful discussions. I would
also like to thank Martha Bailey, Dan Black, David Card, Yan Chen, Ryan Kellogg, Yusufcan Masatlioglu, Stephen
Salant, Mel Stephens, Evan Taylor, and Lowell Taylor for additional feedback. Any and all errors or misunderstandings
in my paper are my own.

2The “long reach” idea is linked closely to the work of Barker (1995), and plays an important role in work by Fogel
(2004). A recent relevant study on the “Barker hypothesis” is Almond (2006). Among the other papers that study
the childhood origins of health are Case, et al. (2002), Case, et al. (2005), and Hayward and Gorman (2004).

3Donora was the location of the infamous “killing fog of 1948.” From October 26 to October 31 an air inversion
trapped particulate matter from local metal production facilities in Donora, leading to a dramatic spike in mortality
(Davis, 2002).
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As Davis (2002) indicates, there are good reasons to believe that early-life exposure to pollution

may cause long-lasting health deficiencies. For example, childhood exposure to particulate matter

(PM) has been shown to lead to deficits in lung functioning (Gauderman et al., 2004). Still, most

of the literature on the health impacts of air pollution focuses on the contemporaneous relationship

between pollution exposure and health outcomes for individuals (e.g., Chay and Greenstone, 2003b,

and Currie and Walker, 2011). There is little work that seeks to establish a link between early-life

pollution exposure and health problems that develop over a lifetime or present in later-life. This is

a potentially significant gap in the literature. Efforts to explore long reach effects are important for

developing a more complete scientific understanding of the impact of pollution. Findings about the

lifetime impacts might also be important to policy makers, who need to be able to appropriately

evaluate the costs of pollution.

The lack of research exploring the long reach impact is likely due to the difficulties of assembling

data that have measures of early-life pollution exposure and sufficiently long time periods to examine

post-exposure health impacts leading to early mortality.4 I undertake the first such large-scale study,

focusing on early-life exposure to pollution from steel production in small cities in Pennsylvania in

the early twentieth century.5 I find that later-life mortality is impacted negatively by early-life

exposure to steel production emissions; evidence on the conditions that may affect the amount of

exposure further support the “long reach” hypothesis.

The key to this study lies in the history of the Pennsylvania steel industry. At the beginning of

the twentieth century, a large share of U.S. steel production was in Pennsylvania, some of which came

from steel production facilities located in towns throughout the Commonwealth. (There were also,

of course, thousands of towns that had no steel mills.) Steel production in relatively small cities was

still commonplace in the early 1930s. During World War II, there was a vast increase in U.S. steel

production with the increase in international demand; this coincided with a substantial concentration

of production in large integrated facilities in Pittsburgh and other major steel-producing locations,

like Clairton and Donora.6 Plant closures occurred in smaller and less efficient facilities, such as those

in small towns (DiFrancesco, et al., 2010). Indeed, records from 1954 show that most small-town

steel plants that operated in the early 1930s were closed down by that year.7

4While there appears to be no studies linking early-life pollution exposure to older-age mortality, there is research in
economics that links early-life conditions to later-life health outcomes. One example is Almond’s (2006) examination
of in utero exposure to the 1918 influenza pandemic for later-life health outcomes. A second example is Maccini and
Yang’s (2009) study of the relationship between rainfall in the year of birth to later-life outcomes for individuals born
in Indonesia.

5“Small cities” (also termed “towns” in this paper) are those with below-median birth populations in study cohorts.
6By 1940, the Pittsburgh area had 42% of U.S. steel production capacity (Warren, 1973).
7Although steel production in Pennsylvania towns was minimal by 1954, there was continued production in a small

number of locations (American Iron and Steel Institute, 1954).
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My focus is on a large sample of individuals who were born in towns in Pennsylvania from 1916

through 1927. Note that these cohorts were aged 27 to 38 in 1954, at which time most small-town

steel production had ceased (American Iron and Steel Institute, 1954). The goal of the study is to

see if individuals born in steel towns—who were exposed to pollutants from coal combustion and

metallic exhaust as children and possibly into young adulthood—had higher levels of mortality in

older age than individuals who were born in non-steel towns. In order to conduct this analysis,

it is necessary to have a plausible comparison set; individuals born in steel towns are compared

to individuals born in “neighboring” non-steel towns, i.e., to individuals born in non-steel towns

in the same county. Because the research design looks at within county variation, the analysis

focuses exclusively on towns, rather than cities. The reason is that there are very few counties in

Pennsylvania that had more than one larger city.

The analysis relies on unique data, the Duke Medicare/SSA Data Set. The starting point of these

data is the administrative files of the Medicare Part B program, which include date of birth (used for

Medicare eligibility determination) and date of death (used for the purpose of terminating benefits)

for people aged 65 and older in the United States. These data do not include place of birth, but

they were matched to the Numerical Identification Files of the Social Security Administration, which

have “town or county of birth” for most individuals. As described below, the data are reasonably

complete for the cohorts I study, 1916–1927. The data include only individuals aged 65 and older,

as 65 is the age of eligibility for Part B benefits.

The elements of the dataset are place of birth, zip code of residence in older age or death (among

those who are deceased), gender, and race. I merged these records to additional data. First, I used

Pennsylvania historical records to determine the town-level location of steel production facilities

in the early twentieth century. Second, I matched the older-age residence zip code to the median

income in the zip code to form a crude proxy of lifetime prosperity for individuals in my sample. I

thereby assembled complete records for more than 780,000 white individuals born in Pennsylvania,

1916–1927. Of this sample, approximately 390,000 were born in “towns”—steel towns and non-steel

towns. Below I show that these two comparison groups are highly comparable along observable

dimensions.

I find that among individuals in my sample, those who were born (and potentially continued

living) in steel towns have significantly higher mortality rates than those born in non-steel towns.

The higher mortality is particularly pronounced for individuals who were born in steel towns that had

relatively high levels of steel production capacity in the early 1930s. Also, the detrimental long-run

impacts of pollution appear to be larger for people born in low-elevation locations, perhaps because
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pollution exposure was more severe in valleys than in high-elevation towns. Key relationships pertain

for born women and men.

Of course, a major concern with my empirical work is the potential for omitted variable bias,

as discussed in Chay, Dobkin, and Greenstone (2003). An example is the possibility that localities

with metal production tended to be more prosperous than other locations, which could have led

to increased labor-force participation, higher wages, and possibly better health care and education.

These are factors which would typically improve lifetime well-being and in turn, health outcomes. I

discuss this issue when interpreting my findings.

The paper proceeds in three additional sections:

In Section 2 I provide a brief critical review of existing work on the health impacts of TSPs (Total

Suspended Particulates), and fine and coarse PM, a particularly dangerous subset of “traditional”

TSPs.8 The primary point that emerges from this review is the absence of papers that evaluate the

consequence of early-life exposure to later-life mortality.

In Section 3 I provide a historical overview of the steel industry. I discuss the process by which

steel was manufactured and the potentially harmful chemicals that were released during production.

In Section 4 I turn to statistical evidence on the association between early-life exposure to steel

pollutants and later-life mortality.

Section 5 concludes.

1.2 Literature

The approaches to studying health impacts of pollution are varied—reflecting differences in

expertise and methodology across disciplines. Much of the relevant work falls within the following

three overlapping strands of literature:

First, there are many studies in the broad area of public health and environmental sciences

that establish associations between exposure to pollutants and morbidity or mortality. A promi-

nent example is the pioneering Harvard Six Cities study (Dockery, et al., 1993), which shows a

strong and robust association between city-level air pollution and mortality (caused by cancer and

cardiopulmonary disease).

Second, researchers in medicine and epidemiology seek to establish pathophysiological links be-

tween pollution and health outcomes. There is experimental work involving animals, and there is

8Traditionally TSPs are defined as airborne particles or aerosols that are less than 100 micrometers. In 1987, as a
new health standard, the U.S. EPA replaced the TSP with an indicator for only coarse particulate matter, PM10—that
is, 10 micrometers or less. Again, in 1997, a stricter standard for particles less than 2.5 micrometers was established,
holding fine particulate matter, PM2.5, as the dangerous particle of interest (Fierro, 2000).
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research exploring physiological impacts through natural means—examining the health of surround-

ing animal populations or vegetation.9 Other research focuses on epidemiological evidence regarding

pollution and specific hypothesized physiological deficits among humans. Among fascinating work

in this field is research demonstrating an association between exposure to fine PM and deficits in

lung function development among children (Gauderman, et al., 2004).

Third, economists have made a distinctive contribution by focusing on potential threats to the

validity of causal inferences drawn from statistical associations between pollution and health out-

comes. Economists often implement novel identification strategies that aim to plausibly establish

causality. An example is an analysis by Chay and Greenstone (2003a). These authors motivate

their work by arguing that pollution is not randomly assigned to individuals, hence the need to find

quasi-random variation for estimating the impact of pollution on health. They proceed by using

such variation—generated by the 1981-1982 recession—and find that a reduction in location-specific

TSPs generates a substantial decline in the infant mortality rate.

1.2.1 Approaches and Challenges for Studying Health Effects of Particulate Air Pol-

lution

As noted above, a vast literature is concerned with the health consequences of TSP emissions,

as examples: those released into the environment as the result of industrial processes, traffic, or

other sources. Pope and Dockery (2006) provide an extensive and enlightening review of the extant

literature on the health consequences of pollution. In the Pope-Dockery taxonomy, most studies fall

into three categories:

First, there are many studies that focus of short-term pollution exposure and mortality. These

studies include analyses of severe pollution episodes such as the famous October 1948 “killing fog”

in Donora, Pennsylvania (see Davis, 2002, and references therein). While these events are dramatic,

systematic analysis is difficult. It is especially difficult to evaluate the extent to which excess mortal-

ity is the consequence of harvesting, whereby most mortality is among individuals who would have

died soon in any case. For my purposes—the study of early-life pollution exposure and later-life

health—such events are unlikely to be useful unless they are truly dramatic.10

Second, there are many prominent studies that focus on long-term particulate exposure. These

9For instance, Somers, et al. (2004) examine the impact of air pollution on heritable mutation rates in birds and
rodents, while Wellenius, et al. (2003) examine the impact of pollution on myocardial ischemia in dogs.

10Thus, it will surely be worthwhile to conduct long-term health studies for individuals who were exposed to
radioactive iodine in the aftermath of the 1986 Chernobyl nuclear reactor explosion. (For work examining shorter-
term impacts among children, see Almond, Edlund, and Palme, 2009.) Similarly, perhaps exposure to volcanic
magmatic gases could be studied for the purposes of determining the long-term impacts of exposure to such elements
as aluminum and rubidium (Durand, et al., 2004).
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studies include the famous Harvard Six Cities study (Dockery, et al., 1993) and the American Cancer

Society (ACS) prospective cohort studies (Pope, et al., 1995). There have been many follow-up

papers and re-analyses of the data collected for these studies. This research stream is particularly

notable because the follow-up time is impressive (over 16 years in some cases). Still, it is worth

noting that the time frame is not nearly long enough to capture “long reach” effects sufficient to

investigate any association between exposure in the early stages of life and older-age mortality.

Third, there are studies for which the “time scale” of exposure varies. In some instances such

variation might be reasonably thought of as quasi-random. An example is a 13-month shutdown of

a steel mill in Utah Valley, which occurred because of a labor dispute (Pope, et al., 1992). Again,

though, none of the studies reviewed by Pope and Dockery (2006) evaluate such variation as “long-

run effects.”

It is finally worth noting that most of the studies mentioned here do not account for the fact

that pollution exposure is not randomly assigned. This is a major concern, as emphasized by Chay

and Greenstone (2003a). Other researchers, using this careful insightful, have produced meaningful

results heeding the advice of Chay and Greenstone, for example, Currie and Walker (2011).11 Beyond

the desire to use quasi-random variation, one must assess how to deal with variables which make a

difference for outcomes (such as lifetime well-being) that cannot be directly observed. I discuss such

challenges in my empirical section.

1.3 The Steel Industry

To set up the empirical analysis below, it helps to briefly consider the history of iron and steel

production, such as early twentieth century integration of production facilities (both in terms of

technology and business). Furthermore, an assessment of the technologies used in these plants gives

insight into chemical emission.

1.3.1 Technologies and Production Process

The process of making steel, at the most basic level, involves inputs of energy and iron ore. By

the early 20th century, the basic process was standard: iron ore was transformed into pig iron, and

then refined into steel. Some facilities existed separately for the purpose of melting and reshaping,

such as rolling mills, which produce plates or quality flat and long products (Beer, et al., 1998).

In their study of energy-efficient steel making, Beer, et al. (1998) produce a thorough survey of

11This paper is also a good source for referencing additional efforts along these lines.
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the history of the steel and iron industry. In the young market, charcoal was the source fuel. Coke

(made from coal) was introduced to the iron market in 1718, and by 1790 it made up 90% of pig

iron production (Beer, et al., 1998).

As Beer, et al., describe, several processes had emerged by 1900—perhaps the most famous of

which was was the Bessemer Process, patented by Bessemer in 1855. In this process, the metal is

melted by the heat of the oxidation of the carbon and the other impurities in the refining process.

Cold air is blown through a refractory acid-lined vessel in the Bessemer converter. No additional

fuel was required other than the initial 1 ton coal per 1 ton steel consumed. The Bessemer Process

was used widely in early twentieth century plants, including those in Pennsylvania.12 In addition,

there was widespread use of the open hearth furnace, which was developed in France (Beer, et al.,

1998).

Warren (1973) notes that at the end of the 1800s, the steel industry consisted of a large number

of relatively small firms that would buy raw materials on the open market. Pig iron was purchased

by production facilities that were only capable of refining from the secondary product. Iron ore and

coke, much of which came from Connellsville (Warren, 2001), was procured by pig iron furnaces. In

1903, for efficiency reasons, steel companies began to build by-product coke ovens in the production

facilities for integrated production of pig iron and steel, beginning in Pennsylvania in the Pittsburgh

area. Warren (1973) suggests that this change in coking was particularly beneficial to Pittsburgh as

they could send coking coal down the Monongahela. However, the establishment of linkages between

sites in the Commonwealth was slow and it wasn’t until 1918 when great headway was made toward

integration—when U.S. Steel put up the world’s largest by-product coke oven on a site north of

Clairton Works, a supply of coal was barged daily down the Monongahela to Pittsburgh (and also

gas to Edgar Thomas, Homestead, Duquesne, and Clairton Works).

Pittsburgh and concentrated plants along the confluence of the rivers had a clear advantage in

the steel market. However, many production facilities, including those in small towns, survived until

the early 1930s. Warren (1973) suggests that with changes in the industry, the market tended to

weed out poorly located or inefficient mills and furnaces. By 1954, there was a substantial decline

in production at non-central, non-integrated mills located in the small towns of Pennsylvania.

12Note here that the“Bessemer Process” could also include the adapted Thomas process or the basic Bessemer
Process, which used only basic refractory lining in the Bessemer converter.
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1.3.2 Exposure to Pollution from Steel Production

The dangers from exposure to steel and iron production have been widely studied. Coal burning

in iron and steel production leads to the release of CO2, and the process of iron smelting releases CO

(Climate Leaders, 2003). Among other symptoms, exposure to CO2 can lead to asthma and increased

rates of cancer (Jacobson, 2008). Exposure to CO can lead to wide-ranging clinical symptoms from

cardiovascular to respiratory and neurobehavioral effects at even low concentrations; unconsciousness

and death can result after prolonged or acute exposure to high concentrations (Fierro, et al., 2001).

Fierro (2000) notes that additional metallic and gaseous emissions are produced through smelting

and steel mills, emitting the most common size of particulate matter, PM10 and PM2.5. Coarse

particulate matter is released in the form of solids as a product of coal burning; fine particulate

matter, gaseous particles, are derived from coal combustion and additional chemical reactions from

metal processing in these plants. These fine particulates can embed themselves deep in the upper

respiratory tract and possibly present harm to organs. PM10 has been associated with increased

hospital admissions for COPD, asthma, and lower respiratory tract infections, including bronchitis

and pneumonia, in elderly patients (Fierro, 2000). Fierro (2000) also points to the strong association

between PM2.5 and cardiac disease.

Researchers are obtaining a more thorough understanding of how specific compounds in emissions

from these integrated steel mills and other coal-burning facilities, such as separate blast iron furnaces

and steel mills, affect health through compiled medical studies. A recent report on the toxicological

properties of coal emissions showed that coal-burning power plants produce hazardous air pollutants

which cause irritation and tissue damage to the eyes, skin, and breathing passages at high levels of

exposure (Billing, 2011). Billing additionally suggests that exposure to these pollutants can cause

latent diseases that can develop over many years and may be a contributing factor to such fatal

conditions as heart disease and brain impairments. In a 1989 report on steel mills prepared by

the Radian Corporation for the EPA, it is noted that substances of concern to public health not

only include coke oven emissions from coal-burning, but also heavy metal emissions (e.g., copper,

cadmium, and chromium). Chromium, for example, has been shown to cause damage to nasal

passages and, in long run studies (lending support to the long reach hypothesis), has been linked to

lung cancer (Radian Corporation, 1989).

One of the most important studies that provides direct evidence about this issue is the Utah

Valley “natural experiment” (Pope, 1989). The study shows that during the closure of the steel

mill, children’s hospital admissions were substantially lower than when the mill was operating. This

8



was particularly true for bronchitis and asthma. Similar findings pertained for adults, though the

relationship was not as strong. Pope (1989) also gives links to other literature on pollution from

steel. I do not discuss that literature further here, other than to note, again, the literature does not

focus on the long-reaching effects of exposure to coal-burning pollution.

1.4 Early-Life Exposure to Pollution from Steel

Production and Older-Age Mortality

I address the “long reach” hypothesis—that exposure to pollution at young ages has a negative

impact on mortality in later-life. As discussed above, research such as Gauderman, et al. (2004),

suggests that health deficits to lung functioning can occur at young ages—potentially leading to

higher morbidity and mortality at older ages. Pope and Dockery (2006) note that that air pollution

exposure likely causes increased cardiopulmonary morbidity, which could appear as higher mortal-

ity in older age. This backdrop motivates the question proposed for empirical investigation: “Do

individuals who likely had higher levels of exposure to steel production emissions early in life have

relatively higher levels of old-age mortality?” My data allow for investigation of this question for

mortality post age 65.

1.4.1 Data.

The key to providing evidence about this research question is unique data, the “Duke SSA/Medicare”

data, which match complete Medicare Part B records with Social Security records via the Numerical

Identification Files (NUMIDENT) of the Social Security Administration. Black et al. (2012) indicate

that for cohorts born in 1916 and after, these data cover approximately 85% of the population.13

Location of birth is supplied at the county or town level; Black et al. (2012) find that approximately

80% of records are at the town level. I use only data that include location of birth at the town level.

The data also include location by zip code at age 65 or date of death (for those who are deceased),

and they include gender and race. The records extend through 2002, so it is possible to analyze

rates of mortality for people aged 65-75 for cohorts born 1916 through 1927. The relevant variable

for “survival” is the rate of living to 75 given the individual has lived to 65.14

I merge the Duke SSA/Medicare data to historical records that provide locations of pollution

sources. Data on steel production in Pennsylvania comes from two primary sources. The first source

13Black, et al., (2012) provide additional details of data construction.
14In addition, one could in principle study the incidence of disability for anyone enrolled prior to age 65, though

the data have not yet been used for that purpose.
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is from the Secretary of Internal Affairs of the Commonwealth of Pennsylvania (1903).15 The second

source is from an independent historical source published by the American Iron and Steel Institute

(1930). This later source is especially valuable for my purposes. It gives the location of all steel

production plants in Pennsylvania as of 1930, a year in which individuals in my study sample were

aged 3–14. By comparing the locations of small-city steel production in 1903 and 1930, I find that

nearly all steel production that occurred in 1930 was in towns that also produced steel in 1903.

Thus, individuals who were born in steel towns from 1916-1927 (and who remained in those towns

through childhood) would have been exposed to pollution from birth through at least 1930. On

the other hand, as mentioned above, many smaller steel production facilities shut down as the steel

industry consolidated during the 1930s.16

The analysis below examines the relationship between later-life mortality and birth in a steel

town. Growing up in a steel town could potentially affect old age health due to the long-reach

consequences of pollution exposure, but it could have a negative impact on health for other reasons

as well. For example, steel towns might differ from non-steel towns in terms of early-life disease

exposure due to differences in geography (e.g., being on a river and population density). As a

second example, the closure of steel production facilities surely led to job loss, and as Sullivan and

von Wachter (2009) show, job displacement generally leads to increased mortality among men. In

turn, this may have adversely affected the long-term health outcomes for steel workers’ children.

Given these issues, one approach for trying to identify the impact of steel production pollution

exposure on long-term health is to look at the elevation of towns. Many steel towns in Pennsylvania

were in valley towns. At a minimum it is important to control for elevation as a way of being sure

that any possible negative long-term health consequences to being born in a low-elevation city is not

falsely attributed to pollution from steel production. Furthermore, pollution from steel production

was likely to be particularly harmful in low-elevation valley towns, in which air inversions may have

caused pollution to become trapped for extended periods.

A second approach focuses on the level of steel production in the town. An important advantage

of 1930 data is that they include not only the location of steel production facilities, but also measures

of the steel production capacity. This measure is the sum of 1000s of tons of steel production capacity

for each plant in operation in the town. Thus I can also see if individuals who are born in steel

towns with relatively high levels of production, and thus relatively high levels of pollution, also tend

15Unfortunately, it appears that Pennsylvania did not publish such records in the Annual Report of Industrial
Statistics for years after 1903.

16Using American Iron and Steel Institute reports from 1954, for example, I find that virtually all of the small-town
steel production facilities that operated in 1930 were no longer in operation as of 1954, when the individuals in my
study sample were in their 20s and 30s.
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to have disproportionately lower survival in old age.17

I also match the older-age residence zip code to the median income in the zip code to form a

crude proxy of prosperity in later life. This variable serves as a control variable in many of my

regression analyses below.

Table 1 provides a set of summary statistics for my sample: white individuals, with complete

data records, for the birth cohorts 1916–1927 born in Pennsylvania. Among those who are excluded

from the sample are individuals for whom it was not possible to match birth place to a “populated

place” as given by the U.S. Geological Survey. Typically this happened if a county and city had the

same name. The most important example is Philadelphia. Thus my starting sample excludes those

individuals. In total the sample is quite large—over 780,000.

As noted in the introduction, I split the sample according to the size of birthplaces, my analysis

focuses on people born in towns. Table 1 thus summarizes key variables according to the size of

individuals’ birthplaces. First are “Cities,” corresponding to city sizes above the median (a birthplace

reported to have over 2534 individuals in the SSA/Medicare data set). “Towns” are birthplaces with

2534 or fewer individuals (i.e., the median and below).

The first row on Table 1 shows that in larger cities, well over half of people were born in places

with a steel mill. Indeed, steel production was especially concentrated in the largest cities; in 1930

there were steel mills in all but two of the 13 largest cities represented in this group (Wilkes-Barre

and Hazelton). The second row shows that survival to age 75, conditional on being alive at 65, is

approximately 80 percent and does not vary much across the size of one’s birthplace. Finally, the

lifetime income proxy—median zip code level income in the older-age residence—is somewhat higher

for those born in larger cities than in smaller cities.

I conduct within county analyses of the association between mortality and birth in a steel town.

The goal is to compare mortality for individuals who were born in steel towns to similarly-sized

neighboring non-steel towns. As discussed in more detail below, very few counties have more than

one large city, so within county analysis is viable only for towns. Thus, in Table 2, I focus on sample

characteristics for the sample of more than 390,000 individuals born in these locations.

The first row of Table 2 shows that probability of surviving to age 75, conditional on being

alive at age 65, is slightly lower for those born steel towns than in non-steel towns. As for other

characteristics, a slightly higher fraction of those born in steel towns than non-steel towns reside

17In future work I also intend to pursue an additional strategy. At present I do not exploit the timing of the
shutdown of steel production facilities across towns. By determining the dates of shutdowns it should be possible to
form rough estimates of years of likely lifetime exposure for cohorts within towns, and this should further help with
the empirical strategy.
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in Pennsylvania in old age. Interestingly, people who migrate out of Pennsylvania tend to be more

prosperous (according to the Income Proxy) than those who do not.18 Both the means and standard

deviations of the Income Proxy are very similar for those born in steel towns and non-steel towns.

Finally, steel towns tend to have lower elevation than non-steel towns.

1.4.2 Research Design

The goal is to see if early-life exposure to high-polluting steel production is associated with older-

age mortality. This entails conducting a multivariate analysis in which I compare individuals born

in steel towns to individuals born in non-steel towns.

To highlight the challenges that lie ahead, consider the following regression model of survival:

Si = β0 + β1Ii +
∑
t

βtZ
t
i + γXi + εi (1.1)

where Si is an outcome “survival” variable equal to 1 if individual i survives to age 75 and 0 if

she or he dies (conditional on survival to age 65); Ii is 1 if the individual was born in a town with

steel production in 1930 and 0 otherwise, and is meant to capture effects of early-life exposure to

pollutants from steel production; Zti is an indicator variable equal to 1 if the individual belongs to

the specified birth cohort × gender cell (e.g., men born in 1927); and Xi is a vector of all other

relevant factors that affect old-age survival.

Unfortunately, while the data include reasonably good measures for Si, Ii, and Zti , there are

virtually no data for Xi. In regressions below, these omitted variables are subsumed in the error

term, which of course is a problem if they are correlated with Ii.

To deal with this issue, in most of the analyses below I proceed by conducting within county

comparisons using similarly-sized cities. The idea is that many of the early-life factors that might

affect later-life health (i.e., variables in the vector Xi) are likely to be comparable in similarly-

sized towns within the same county. To implement this idea, I include county fixed effects in most

regressions reported below. There are 67 counties in Pennsylvania, of which 21 contain at least one

steel town.

This strategy means that it is not especially credible to proceed with the “cities” in my analysis.

The problem is that among the 67 counties in Pennsylvania, only seven have more than three cities.

Beyond those counties, the presence of larger cities is very sparse within counties; there are four

18This means that if income and mortality are related, it might be that those who migrate out of Pennsylvania
also have lower mortality. As noted below, an important advantage of the Duke/SSA Medicare data is that includes
individuals who remain in their home towns and also those who move away.
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counties with three cities, 11 counties with two cities, and 20 counties with only one city.19

Even for the small number of counties for which within-county comparisons among larger cities

is technically feasible, it is probably not compelling. Consider, for example, Allegheny County.

The largest city in that county is Pittsburgh. In 1930 Pittsburgh had a very large steel-production

capacity, and many people born in Pittsburgh from 1916–1927 likely had high levels of air pollution

exposure due to the steel production. However, while there were other “cities” in Allegheny County,

it is difficult to argue that those cities would be otherwise comparable to Pittsburgh.20 For this

reason, I restrict all of the analysis below to towns, i.e., those with a population at or below the

median in my data.

Beyond the use of county fixed effects, I have one additional control—the average income by

zipcode at age 65 (“income proxy”) variable. The inclusion of this variable is intended to help with

the following issue: Suppose that steel production plants bring prosperity to a community, so that

steel towns tend to have higher incomes. A large literature establishes a positive relationship between

higher income levels and survival.21 Below I find that inclusion of an income proxy variable does

not alter the key results in the analyses; this provides some evidence that any correlation between

town-level steel production and prosperity is not driving results.

With this research design in mind, again consider Table 2. Among the more than 390,000

individuals born in small towns, over 21,000 were born in steel towns. These individuals likely had

on average much higher exposure to air pollutants when they were young than did those born in

towns without steel production.

A key concern for the research design is that the data do not include the age at which individuals

migrated out of their home town. Ideally, for the purposes of the study, migration rates would be very

low at young ages—so that most of those born in steel towns do indeed get exposure to pollution

at least throughout childhood and youth. While age of migration is not known (so duration of

pollution exposure cannot be directly measured), it is possible to provide some indirect evidence

on the issue. Figure 1 shows estimates of residence, by age, for individuals born in Pennsylvania,

19Even for counties with more than one city, there are cases where it is not possible to compare people born in
steel and non-steel cities (conditional on being born in a city). To pick one example, Dauphin County has two cities,
Harrisburg and Steelton. Both had steel production facilities in the early twentieth century.

20For instance, McKeesport and McKees Rocks are the two largest cities in Allegheny County aside from Pittsburgh
(according to my population measure and based on population counts in 1920). While both cities are “cities” in my
data, McKeesport has a population that is only approximately 1/9 as large as Pittsburgh, and McKees Rocks is only
approximately 1/14 the size of Pittsburgh. (Making matters worse, both of those cities also had steel production
facilities.)

21Grossman (1972) provides theoretical ideas on the topic. Empirical work shows strong associations between
income and mortality, at the country level and at the individual level within countries. See, for example, Preston
(2007), Preston and Elo (1995), Elo and Preston (1996), Cutler, et al. (2006), and Cutler and Lleras-Muney (2006,
2010).
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1916-1927, calculated using 1920–2000 public-use Census samples. As it turns out, migration in

early childhood was quite uncommon; fewer than 8 percent of Pennsylvanians migrated to another

state by age 15 and only approximately 16 percent migrated by age 22. To the extent that these

individuals did not get full early-life exposure to pollution, inclusion of these individuals in the

sample leads to an under-estimation of the old-age mortality effects of pollution. As for those who

remained in their home towns, pollution exposure would in all cases be through at least 1930, as

noted above, and in a relatively small number of cases might have extended beyond 1954.22 In the

regression analyses below, samples include both those who remain in Pennsylvania and those who

moved outside of Pennsylvania by old age.23

1.4.3 Results

The paper’s first results are given in Table 3. Column (1) shows that in a regression in with

a steel-town indicator variable and gender × cohort effects, there is a negative coefficient on Birth

in a Steel City. People born in steel towns have lower old-age survival rates than those born in

non-steel towns, and this association is statistically significant. Age × cohort effects (not reported

in the Table) are as follows: The omitted category was men in birth cohort 1916. Then for men

in other cohorts, estimated effects are generally quite small, with a bit of an upward drift for later

cohorts. For women estimated cohort effects are very large, typically on the order of 0.09.24

Column (2) shows that inclusion of the income proxy does not much alter the key inference in

column (1). As for the income proxy variable, as expected, the coefficient on this variable is positive

and statistically significant; people who live in higher-income communities also live longer. More

importantly, columns (3) and (4) show that the key inference is very similar for a specification that

includes county fixed effects. This is a primary result in my analysis: within counties, people who

were born in small steel-producing cities have lower survival rates than people born in small non-steel

producing cities.25

To put this result into perspective, recall that the overall mortality rate for ages 65 to 75 is

approximately 20 percent (see Table 1). Individuals born in steel towns have mortality that is

22In addition, some men born in steel towns might have moved to other steel-producing towns to get jobs in steel
production.

23It is possible that migration out of Pennsylvania is selective. For instance, Halliday and Kimmitt (2008) show
that in the U.S., people who are healthier tend to be more mobile. If I were to exclude migrants, this might lead to
bias in my estimates of impact of pollution on older-age mortality.

24Among older individuals born in small town in Pennsylvania, 1916-1927, as in most populations, women survive
at higher rates than do men.

25I estimated all regressions also including a population measure—the log of the number of people in the sample
born in that location. This variable was not statistically significant, and there was virtually no change to other
coefficients. In addition, I ran regressions in columns (1) and (3) using only those 21 counties which contained at least
one town with steel production. Again, the coefficients do not change with this specification.
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approximately 0.75 percentage points higher than comparable individuals born in non-steel towns.

Thus mortality is approximately 4% higher for those born in steel towns.26

Columns (4) and (5) provide analyses separately for women and men. For both women and men,

the coefficient on Born in Steel City is negative, though the coefficient is statistically significant only

for women.

As mentioned above, it is possible that even within counties, steel cities and non-steel cities differ

along unobserved dimensions that affect old-age mortality beyond any effects of air pollution. To give

an example, suppose all steel towns were along major rivers while many non-steel towns were not,

and suppose further that river towns were more susceptible to water-born diseases. Then it might

be incorrect to attribute lower survival rates among those born in steel towns to pollution generated

by the steel mills. To address that problem, I took the sample of steel towns and divided them

into towns that in 1930 had steel production capacity that was lower than the median and higher

than the median (using data from American Iron and Steel Institute, 1930). Results, presented in

Table 4, suggest that low survival rates for individuals born in steel cities is not due to being born in

a steel city per se but instead is the consequence of relatively high levels of steel production.27 The

results are consistent with the idea that reduced old-age survival associated with exposure to steel

production is due primarily to high levels of exposure. Mortality from ages 65 to 75 is approximately

one percentage higher for those born in steel cities with above-median steel production capacity than

for those born in non-steel towns within the same county.

Columns (2) and (3) of Table 4 show similar patterns for women and men. This is interesting

because, it may be presumed, some men born in steel towns may have worked as steel workers

in adulthood, in which case being born in a steel city might affect older-age health via any lasting

effects of working in that industry. The same is much less likely for women of this era. This evidence

is consistent with an interpretation that attributes a role for early-life exposure to pollution for

generating excess mortality among people born in steel towns.

The final piece of evidence concerns a potential role for elevation in shaping my findings. Among

individuals born in mill towns, it seems likely that exposure to PM would have been worse for

those born in low-elevation steel towns, i.e., towns that were in valleys, which would have typically

accumulated higher concentrations of PM due to atmospheric inversions. A simple way of evaluating

that idea is to see if there is a correlation between survival probabilities and the elevation of the mill

26This analysis was replicated using an alternate definition of steel-town indicator—towns are designated to be steel
towns only if they appear in both of two historical sources, Secretary of Internal Affairs (1903) and American Iron
and Steel Institute (1930). Results are virtually unchanged when I use that definition.

27Note that capacity, i.e., amount of steel produced, is proportional to the amount of coal input.
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town (which was determined using Geographical Analysis Tools, 2012).

In Table 5, I report the results of an analysis that incorporates elevation. First I take the

basic regressions from Table 4 but add “Elevation” (measured in 1000s of meters). Results are

reported in column (1). Elevation does not have a statistically significant impact on survival in the

regression. The specification reported in column (2) also includes two interaction terms: first, an

interaction between Elevation and “Born in Town with Below-Median Steel Production Capacity”

and, second, an interaction between Elevation and “Born in a Town with Above-Median Steel

Production Capacity.” Finally, column (3) reports this same specification but with county fixed

effects. In this last regression, the main effects of being born in either type of steel town are

negative, and the coefficient on “Born in Town with Above-Median Capacity” is sizable (−0.025)

and is highly statistically significant. Importantly, the main effect of “Elevation” is close to 0. This

suggests that any relationship between birth in a steel town and old-age survival is not due to an

omission of elevation in my regressions. Coefficients on the interaction terms are positive, but neither

is statistically significant in the specification with county fixed effects.

Figure 2 illustrates the estimated relationship for those born in small steel cities with above-

median production using the coefficients estimated in the specification with county fixed effects,

column (3).28 For those born in towns near sea level (elevation 0), survival is −0.025 lower than

in the reference group (small cities with no steel production).29 The negative impact on survival

associated with being born in an above-median capacity steel steel town becomes more moderate at

higher elevations. To put this in perspective, note that the estimated impact on survival of being

born in a steel town with above-median capacity is 0 at an elevation of approximately 380 meters,

as −0.025 + (0.059× 0.380) ≈ 0. In my sample, among those born in towns with above-median steel

production, more than 98% were born in places with elevation below 380 meters.

1.5 Conclusion and Directions for Future Research

Looking at a sample of over 390,000 individuals born in small cities in Pennsylvania, 1916–1927,

I find that individuals who were born in steel towns have significantly higher rates of mortality post-

age 65 than those born in comparable towns that did not have steel production facilities. There

are three potentially important features of this association. First, the relationship holds for people

born in neighboring towns, i.e., within the same county. Second, the relationship between old-age

28The coefficient on the interaction of elevation and being born in a town with above-median capacity is statistically
significant in the specification without county fixed effects, but not the one with the county fixed effects. I nonetheless
focus on the specification with county fixed effects since my research design relies on the fixed-effects approach.

29In fact, the lowest elevation points in Pennsylvania are 0. These are locations along the Delaware River.
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mortality and birth in a steel town is stronger in towns that had relatively higher levels of steel

production. Third, there is some evidence that old-age mortality is especially high for individuals

born in places with relatively high levels of steel production and relatively low elevation. This last

finding is consistent with the possibility that low-elevation locations were subject to atmospheric

inversions that tended to trap air pollution, thereby increasing pollution exposure.

This evidence is consistent with an important idea in the literature—that exposure to air pollution

at young ages can lead to latent disease processes that affect morbidity and mortality later in life.

To my knowledge, my paper is the first to provide evidence that growing up in high-pollution town

is associated with higher mortality in old age. This finding is a potentially useful contribution

because most of the available evidence on health impacts of air pollution focus on contemporaneous

relationships; very little work examines the “long reach” effects of pollution on health.

Of course, caution should be exercised in interpreting the results reported here. It could be that

the adverse health impacts associated with birth in a steel town are not due to air pollution, but

rather to other health threats that are especially prevalent in steel towns. To give just one example,

infectious disease exposure might have been higher in steel towns. It is important that future work

continues to explore possible mechanisms that lead the observed associations between place of birth

and older-age mortality.30

There are several important directions for future work. For example, having access to data which

indicates timing of plant closures would be helpful for determining length of exposure. Perhaps the

most important additional analysis would focus on “cause of death;” it would be extremely valuable

to see if there are differences in patterns of disease processes for individuals who grew up in steel

towns compared to those who did not. For future research, I am hopeful that for a subset of my

sample, records can be matched to cause of death or other data on health outcomes from Medicare

records.

30On infectious disease specifically, I did check to see if the cohort born during the 1918 influenza pandemic had a
disproportionate impact on results. (See, e.g., Almond, 2006, who shows that being born in that year may have had
lasting detrimental health impacts.) Regression are very similar when that cohort is dropped from the sample. Also,
it is worth noting that if nearby towns were subject to similar infectious disease exposure, then the within-county
design would help deal with this issue. Still, further data collection and analysis is surely important.
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Figure 1.1: Fraction of the Population In Pennsylvania and Outside of Pennsylvania by Age, Cohorts
Born 1916-1927

Source: Calculations from U.S. Census data, public-use samples, 1930–2000.
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Figure 1.2: Estimated Relationship Between Elevation and Survival, Individuals Born in Towns with
Above-Median Steel Production

Source: Graph based on estimated coefficients from regression (1) in Table 5.
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Table 1.1: Sample Characteristics, Individuals Born in Pennsylvania, 1916–1927
(1) Cities (2) Towns

(Above Median) (Below Median)

Proportion Born in Steel City 0.555 0.055
(0.497) (0.228)

Prop. Surviving to Age 75 0.800 0.802
Given Survival to 65 (0.400) (0.398)

Income Proxy (in $1000s) 42.3 41.7
(14.9) (13.4)

Number of Municipalities 92 5,520

Sample Size 389,747 391,851

Note: Author’s calculations using the Duke SSA/Medicare Data Set. “Cities” are birth-
places with more than 2534 individuals in the data (which is the median) and “Towns” are
birthplaces with with 2534 or fewer individuals in the data (the median and below). The
income proxy variable is the median annual income (in 2000 dollars) in the zip code where
the individual resides post age 65. Statistics are presented for a sample that includes
whites only, for those for whom data are complete. The sample excludes Philadelphia (see
text). Standard deviations are in parentheses.
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Table 1.2: Sample Characteristics for Individuals Born in Pennsylvania Towns, 1916-1927
(1) Steel Towns (2) Non-Steel Towns

Proproption Surviving to Age 75 0.795 0.802
Given Survival to 65 (0.404) (0.400)

Proportion Residing in PA 0.684 0.666
post Age 65 (0.465) (0.471)

Income Proxy (in $1000s)

Residing in PA post Age 65 38.7 39.4
(10.6) (11.1)

Not Residing in PA post Age 65 46.2 46.2
(16.4) (16.4)

All 41.1 41.7
(13.2) (13.5)

1930 Steel Production Capacity 362.4 –
(1062.6)

Elevation of Birthplace (Meters) 241.1 284.7
(86.9) (135.8)

Number of Towns 45 4575

Sample Size 21,459 370,392

Note: Author’s calculations using the Duke SSA/Medicare Data Set matched to histori-
cal records on the location of steel production. “Towns” are as defined in Table 1. Steel
Production Capacity is measured in 1000s of tons per years (as of 1930).
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Table 1.3: Survival to Age 75 and Birth in a Steel Town, Individuals Born in Pennsylvania Towns,
1916–1927

(1) (2) (3) (4) (5) (6)
All All All All Women Men

Born in Steel −0.0075∗∗ −0.0068∗∗ −0.0087∗∗∗ −0.0074∗∗ −0.0089∗∗ -0.0054
Town (0.0030) (0.0030) (0.0031 ) (0.0031) (0.0037) (0.0052)

Income Proxy – 0.0012∗∗∗ – 0.0012∗∗∗ 0.0011∗∗∗ 0.0014∗∗∗

(0.000049) (0.00049) (0.000060) (0.000083)

Cohort × Gen- yes yes yes yes – –
der F.E.?

Cohort – – – – yes yes
F.E.?

County – – yes yes yes yes
F.E.

Sample Size 391,851 391,851 391,851 391,851 220,176 171,675

Note: Author’s calculations using the Duke SSA/Medicare Data Set matched to historical records on the
location of steel production. Dependent Variable is “Survival to Age 75” is conditional on survival at
age 65. The sample includes only those who are born in populated places in Pennsylvania, in towns (see
Table 1 for definition). There are 67 counties in Pennsylvania, of which 21 contain at least one steel town.
Standard errors, clustered at the town level for (1) and (2), are in parentheses. Significance: ∗0.10, ∗∗0.05,
∗∗∗0.01.
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Table 1.4: Survival to Age 75 and Birth in Towns with Low Steel Production Capacity and High
Steel Production Capacity

(1) All (2) Women (3) Men

Born in Town with Below- -0.0022 -0.00071 -0.0043
Median Capacity (0.0033) (0.0040) (0.0054)

Born in Town with Above- −0.011∗∗∗ −0.011∗∗∗ −0.010∗

Median Capacity (0.0033) (0.0040) (0.0055)

Income Proxy 0.0012∗∗∗ 0.0011∗∗∗ 0.0014∗∗∗

(0.000049) (0.000060) (0.000083)

Cohort × Gender F.E.? yes – –

Cohort F.E.? – yes yes

County F.E.? yes yes yes

Sample Size 391,851 220,176 171,675

Note: Author’s calculations using the Duke SSA/Medicare Data Set matched to histor-
ical records on the location of steel production. Dependent Variable is “Survival to Age
75” is conditional on survival at age 65. The sample includes only those who are born
in populated places in Pennsylvania, in towns (see Table 1 for definition). Standard
errors, clustered at the town level for (1), are in parentheses. Significance: ∗0.10, ∗∗0.05,
∗∗∗0.01.
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Table 1.5: Survival to Age 75, Birth in a Steel Town and the Role of Elevation
(1) (2) (3)

Born in Town with Below- 0.00096 −0.012 -0.0061
Median Capacity (0.0036) (0.0088) (0.0087)

Born in Town with Above- −0.0091∗∗∗ −0.028∗∗∗ −0.025∗∗∗

Median Capacity (0.0028) (0.010) (0.0095)

Elevation (Kilometers) 0.0073 0.0048 -0.0019
(0.0059) (0.0060) (0.0094)

Elev. × Born in Town with – 0.063 0.018
Below-Median Capacity (0.043) (0.039)

Elev. × Born in Town with – 0.079∗∗ 0.059
Above-Median Capacity (0.040) (0.037)

Income Proxy 0.0012∗∗∗ 0.0012∗∗∗ 0.0012∗∗∗

(0.000049) (0.000049) (0.000049)

Cohort × Gender Effects? yes yes yes

County Fixed Effects? – – yes

Sample Size 391,851 391,851 391,851

Note: Author’s calculations using the Duke SSA/Medicare Data Set matched to
historical records on the location of steel production. Dependent Variable is “Survival
to Age 75” is conditional on survival at age 65. Elevation is in 1000s of meters. The
sample includes only those who are born in populated places in Pennsylvania, in
small cities (see Table 1 for definition). Standard errors, clustered at the town level
for (1), are in parentheses. Significance: ∗0.10, ∗∗0.05, ∗∗∗0.01.
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CHAPTER II

“Tell All the Truth, but Tell it Slant”: Testing Models of

Media Bias 1

2.1 Introduction

Social and behavioral scientists across several disciplines, including economics, psychology, and

political science, are interested in the causes and consequences of media bias. News content can have

significant effects on beliefs, actions and outcomes. However, it can often be difficult to assess the

existence and impact of bias. First, most measures of bias are by necessity comparative. It can be

difficult to ascertain whether the New York Times’ political reporting is liberally biased relative to

the truth, but much easier to ascertain whether it is liberally biased relative to Fox News. Second,

bias may be caused by individuals’ beliefs about likely outcomes, but biased media reports can also

lead to changes in outcomes. For example, if the media is biased towards reporting an Obama

victory, this may in fact make an Obama victory more likely. Sorting out these complications is a

potentially important undertaking; many people believe that media bias can have significant welfare

effects, causing rising polarization and mistrust in the media.

Of course, addressing if, and to what extent, consumers are harmed by bias requires a theory of

media bias as well as an empirical assessment of key predictions generated by the theory. Moreover,

many models of media bias can predict a variety of types of bias depending on the parameters of

the models, and so it is necessary to test not just the direction of bias but also how bias changes

with the environment. Therefore it is important to find data where there is exogenous variation in

the environment in order to test the comparative static predictions of models of media bias.

1The first line of the title is due to a poem of Emily Dickinson, who incidentally often wrote in slant verse.
We would like to thank Yan Chen, Stefano DellaVigna, Rachel Kranton, Yusufcan Masatlioglu, Stephen Salant,
Daniel Silverman, Mel Stephens, and Lowell Taylor for helpful comments, as well as seminar participants at the
Midwest Economics Association Annual Meeting (2012) and Oxford. Any and all errors are ours alone. Emails:
collin.raymond@economics.ox.ac.uk and setay@umich.edu
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In this paper, we develop models of news provision and test predictions using novel data, which

allow us to identify possible driving mechanisms behind media bias. Such analysis gives further

insight into the welfare impact of bias. We document bias in a very simple setting — historical

weather reports by the New York Times. In the late 1800s Manhattan was home to a professional

baseball team, the New York Giants. Before June 16, 1896 the New York Times used government-

produced weather predictions. On June 16, 1896 the New York Times switched to producing in-house

weather reports. Our focus is the time frame, June 16, 1896 through the end of the century. For

this period, we find an interesting form of bias: the Times was more accurate at predicting sunny

weather and less accurate at predicting rainy weather on days when the Giants played home games,

relative to non-home game days.

Our research design has several benefits. First, it features a regime shift in the weather reporting

by the New York Times from the use of Weather Bureau reports to in-house weather reporting.

Second, there is a clear exogeneity in realized outcomes — changes in the Times’ weather predictions

do not cause the realized weather to change. Third, we can observe both the predictions and the

realized weather, meaning we can develop a measure of absolute bias, not simply comparative bias.

Fourth, the type of bias we observe should lead to different posteriors on the part of the consumers,

if they are aware of it. This is in contrast to many other papers, which study how different media

outlets report the same event using different terms, leading to difficulty in assessing how individual

beliefs should respond to biased information. Fifth, we can easily observe how bias changes with the

parameters of the model. Last, but not least, the actual environment closely aligns with a tractable

model.

A theory of media bias that encompasses all the important facets of the phenomena would be

quite extensive. In this paper we set for ourselves a much simpler goal: We seek to identify possible

driving mechanisms behind media bias in a stylized setting in which the media provides predictions

about two potential states of the weather (“rainy” or “fair”). Given preferences, and constraints on

how accurate weather reports can be, we then generate predictions and comparative statics regarding

consumer-induced preferences for accuracies. In turn, we develop equilibrium predictions regarding

how news-providing firms will respond to such consumer preference — in particular whether firms

will provide differently biased news when consumer’s actions, priors and payoffs change. We show

how the environment and preferences can interact to generate biased signals; different mechanisms

yield different predictions regarding the observed bias in news reports.

As we have noted, we test our predictions by evaluating the daily weather reports in the New

York Times during the late nineteenth century. In the 1890s the New York Times published a daily
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weather report in its morning edition which was extremely simple, typically offering either a rather

straightforward prediction for fair weather or for rain. This makes the reports easy to interpret for

the purpose of statistical analysis. From 1890 through mid-1986 the New York Times used weather

reports produced by the U.S. Weather Bureau in Washington D.C., and its predecessor, the Signal

Service.2 These forecasts were not very accurate (see Nekeber, 1995), but they were produced by

a trusted independent source; it seems unlikely that they were slanted so as to please New York

baseball fans. On June 16, 1896, the New York Times began producing the daily forecast in-house.3

Since weather reports continued to be inaccurate (as meteorological technology was in its infancy),

forecasters could easily accommodate a moderate amount of bias without greatly reducing overall

accuracy.

The baseline test is to see if the Times was more likely to provide biased weather predictions

on days when the New York Giants were scheduled to play a baseball game in their home park, the

Manhattan Polo Grounds. We look for bias in the Times weather reports on home game days after

the switch to in-house forecasting. We observe that reports are indeed biased for the subsample of

home game days after June 16, 1896, and that correct reports for fair weather increase while correct

reports of rainy weather decrease, i.e., weather reports are “optimistic” about the probability of fair

weather on home game days.

We run additional tests to understand how the bias changes as the environment changes —

in particular what occurs when the priors held by consumers or the payoff of attending a game

change. We find that as months have a higher ex-ante probability of rain, the amount of bias grows.

Noting that the Giants held various positions in the National League rankings in the years after the

switch to in-house forecasting, we also examine how the bias changes with the yearly ranking of the

baseball team. It appears that the amount of bias grows as the baseball team does better. These

comparative static results are inconsistent with the predictions of our rational models of media bias.

In particular, we find that the evidence does not support the bias being driven by consumers’ desire

to better match their action to the state, by the New York Times trying to increase attendance at

Giants’ games, nor by reputational concerns (as in Gentzkow and Shapiro, 2006).

Our paper contributes to a burgeoning literature in economics examining media bias. There

are several existing models of media bias, including Mullainathan and Shleifer (2005), Suen (2004),

2Newspaper forecasts were the primary avenue by which people learned about the weather, since radio did not
become popular until decades later. In fact, the first radio broadcast for entertainment purposes was not transmitted
until 1919.

3Evidence for such change comes from the fact that the New York Times always cited the Weather Bureau before
June 16, 1896. On and after this date, the Times did not cite the Weather Bureau. As an additional point, during
the period of in-house forecasting, the New York Times predictions diverged from the Wall Street Journal (as we
discuss in more detail below), which sometimes cites the Weather Bureau as a source.
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Gentzkow and Shapiro (2006), and Baron (2006). In Mullainathan and Shleifer (2005) bias in news

reporting arises because readers have a form of confirmation bias; they generally hold views that

differ from the true state of the world and get disutility from reading news that is inconsistent with

those views. Gentzkow and Shapiro (2006) present a model of news bias with Bayesian consumers

who value accuracy in news, and infer the accuracy of reports based on priors. In this setting, news

outlets bias toward reader priors as a way of boosting inferred quality. Gentzkow and Shapiro (2008)

discuss various mechanisms for bias and show how competition can either enhance or ameliorate bias.

Our theoretical model is also closely related to Gentzkow and Kamenica (2011), who look at how a

principal can persuade Bayesian agents by utilizing different information structures.

There has also been a great interest in identifying bias in the media. Many papers have focused

on determining the extent and causes of media bias. Most of these papers, including Groseclose

and Milyo (2005), Gentzkow and Shapiro (2004, 2010, 2011), Gentzkow, Shapiro and Sinkinson

(2012), Gentzkow, Petek, Shapiro and Sinkinson (2012), and Durante and Knight (2012) focus on

the causes of bias in the context of political ideology. In contrast, DellaVigna and Kaplan (2007) and

Gentzkow, Shapiro and Sinkinson (2012) examine the impact of media bias on behavior, again in a

political context. DellaVigna and Gentzkow (2010) survey the evidence on persuasion in markets,

and consider different forces that could drive persuasion. In a related vein of work, Oster, et al. (2011)

also provides a behavioral framework for understanding the motivation behind preference for news.

The rest of the paper is organized as follows. Section 2 develops a model of the market for

news and presents the implications for consumer demand and equilibrium provision of information.

Section 3 details the data and presents results of the empirical tests. Section 4 concludes.

2.2 Models of Information Provision

In this section we present two possible models of information provision. Our setting is stylized;

we consider a world with two payoff relevant states and binary signals. Individuals have two actions

— a safe action, where the payoff is invariant to the state, and a risky action, in which the payoff

depends on the state. Despite this simplicity, we believe it captures the essential details of the

empirical work that follows.

In line with the literature, we distinguish between multiple sources of bias; we consider the

implications of “supply driven” and “demand driven” bias. If bias is supply driven, firms receive

a payoff that varies with the decision maker’s action. If bias is demand driven, consumers have

preferences over informational structures, and a profit maximizing firm provides signals in line with
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those preferences. We focus on a setting with a monopolistic provider of information.4 The firm

chooses the information structure to provide, but does not vary the price once a structure is chosen

(similar to the fact that we do not observe variation across game days and non-game days in the

price of the New York Times). Below, we consider the predictions of models where individuals

behave according to expected utility, i.e., we consider “neoclassical” models. In our conclusion we

discuss the implications of models where consumers have intrinsic preferences over information.

2.2.1 Environment

We assume that there are two states of the world, A (good weather) and B (bad weather). A

decision maker takes one of two actions a (attend a game) and b (stay at home). Payoffs to the

decision maker depend on action i and state j, and are denoted u(i, j). Action a is the risky action,

u(a,A) > u(a,B), while b is safe, u(b, A) = u(b, B).5 Neither action dominates, and so it is better

to match action to state: u(a,A) > u(b, A) > u(a,B). We normalize the payoff of staying at home

u(b, A) = u(b, B) = 0, and denote the relatively high payoff of going to the game in good weather

u(a,A) = H > 0 and the lower payoff of going to the game in bad weather as u(a,B) = L < 0.

There is also a news provider which has access to a set of prediction technologies. We characterize

a prediction technology as an information structure with two accuracies: If it will be good weather, it

generates a signal that indicates fair with probability p. If the day will be bad weather, it indicates

rainy with probability q. Throughout the paper we will assume that both firms and consumers

know the chosen technology’s values of p and q. In the case of demand-driven bias, since firms

are responding to consumer’s preferences, consumers have to realize at some level that p and q are

changing. Otherwise, firms have no incentive to change p and q. In the case of supply-driven bias,

the comparative statics will be exactly the same if consumers are naive and do not realize that the

firm is manipulating p and q.

Given a prior 0 < ρ < 1 on state A (fair weather), along with a particular information structure

(p, q), we can easily find a pair of posteriors for a decision maker. After observing a fair signal the

posterior for A is

ψF =
ρp

ρp+ (1− ρ)(1− q)
. (2.1)

4Focusing on a single firm makes the model more transparent. Moreover, the monopolistic information provided
in our model of demand-driven bias provides the consumer an optimal information structure, a finding that would be
replicated under competition. Therefore the comparative statics will be equivalent. In the case of supply-driven bias,
if all firms receive a benefit from consumers attending the game, then again we would expect to see the exact same
comparative statics. If on the other hand some firms do not receive a benefit from consumer actions, then we would
not expect to see supply-driven bias in the marketplace at all.

5The results below can easily be generalized to accommodate the case where action b is also risky, so long as the
difference in payoffs across states given action b is smaller than the difference in payoffs across states given action a.
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After observing a rainy signal the posterior is

ψR =
ρ(1− p)

ρ(1− p) + (1− ρ)q
. (2.2)

We structure our model so that a fair weather prediction increases beliefs about the weather

being good, while a bad weather prediction decreases them. This implies that p + q ≥ 1, which is

without loss of generality within the space of all signals, (p, q) ∈ [0, 1]× [0, 1]. We show these results,

and provide an additional observation in the following lemma.6

Lemma 1 The set {(p, q)|(p, q) ∈ [0, 1]× [0, 1] and p+ q ≥ 1} satisfies three properties:

1. Observing a fair signal increases the posterior on state A relative to the prior, and observing

a rainy signal decreases the posterior on state A relative to the prior.

2. For any signal structure (p′, q′) ∈ [0, 1] × [0, 1], there exists a (p, q) ∈ {(p, q)|(p, q) ∈ [0, 1] ×

[0, 1] and p+ q ≥ 1} that generates the same posteriors with the same probabilities as (p′, q′).

3. For any strict subset S of {(p, q)|(p, q) ∈ [0, 1] × [0, 1] and p + q ≥ 1}, there exists a point

(p′, q′) ∈ [0, 1]× [0, 1] such that there is no element of S that generates the same posteriors as

(p′, q′).

The first point of the lemma shows that our convention of considering only p + q ≥ 1 leads

to the desired natural interpretation of the “accuracy” probabilities, p and q. The second point

establishes our claim about generality. The third point provides a helpful backdrop as we turn to

our specification of weather prediction technology.

Our approach to the prediction technology is to assume an inherent tradeoff between the accuracy

of predicting fair weather, p, and the accuracy of predicting rain, q. In order to increase accuracy

in one state, a news provider must reduce it in the other. To model this, we define a convex set

of feasible signals Φ(p, q).7 We define the production frontier of the feasible set using φ(p) — the

maximal value of q given p. Therefore Φ(p, q) = {(p, q)|q ≤ φ(p) and p+ q ≥ 1}. Of course ∂φ(p)
∂p is

negative, and we assume that the absolute value of the tradeoff between p and q is increasing in p,

so that p < p′ if and only if ∂φ(p)
∂p > ∂φ(p′)

∂p (this is equivalent to ∂2φ
∂p2 being negative).

Figure 1 shows an example in which the technology set is symmetric around the reflection line

p = q (a condition we will continue to adopt).8 For this case it is natural to define an information

6All proofs are presented in Appendix B.
7Because our empirical application entails looking at weather prediction over a relatively short time period, we do

not consider changes in the set of feasible signals due to technological advancement.
8The symmetry assumption, however, is not necessary for the comparative statics we develop below.
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structure’s bias as B = p− q. Here, when p = q, bias is zero, and the signal structure is designated

neutral. The news provider can alternatively choose a signal structures for which p > q, in which

case we have positive bias, which might also be called optimistic (since fair predictions now occur

relatively more often than rainy predictions given equal realizations of weather). Signal structures

where q > p are pessimistic. Notice that in Figure 1, in line with the previous paragraphs, signals

below p + q = 1 are not feasible (since they are equivalent to signals above that line), and signals

above {(p, q)|q ≤ φ(p)} are not available. In the figure, the example shown, (p∗, q∗), is a neutral

case.

This set up corresponds in a natural way to our empirical work below. We look at bias B for a

particular subset of days, say subset I, and then see if bias is different on an alternative subset J , i.e.,

we evaluate “differential bias” or “excess bias,” in set I relative to J . ∆I,J = BI − BJ . Evaluating

excess bias is an important excercise when empirically testing the model. This is because there might

be exogenous reasons why there might be bias — e.g., sunny weather might be easier to predict than

rainy weather. However, these exogenous reasons should not vary across sets I and J . Thus, for

example, we look to see if the New York Times weather reports exhibit different biases on home

game days than on non-game days.

Intuitively, consumers who use weather predictions to condition decisions will prefer predic-

tions that are more accurate; among structures in the feasible set, they will prefer structures on

the boundary of the feasible set (as in the example shown in Figure 1). This idea — about the

“informativeness” of the signal structure — is formalized in the following lemma:

Lemma 2 Assume p and q jointly satisfy p + q ≥ 1. Then (p′, q′) is Blackwell sufficient/more

informative for (p, q) if and only if p′ ≥ p
1−q −

p
1−q q

′ and p′ ≥ 1− q′ 1−pq .

If (p′, q′) is more Blackwell informative than (p, q) then the posteriors under (p′, q′) are a mean

preserving spread of the posteriors under (p, q) — a result that follows from the law of iterated

expectations. Clearly, this will be true if p′ > p and q′ > q, but Lemma 2 shows it can also be true

under less stringent conditions. Figure 2 illustrates using an example in which (p, q) = (0.6, 0.6).

With all this in mind, we turn to the time line in our environment. In period 1 the decision-

maker and news-provider share a prior ρ on the probability of a future state, in period 3, being A. A

monopoly news provider picks an information structure and sets the price of the news. Consumers,

knowing the information structure, and the price for information, choose whether to purchase in-

formation or not. In period 2, the news-provider receives a signal, and passes it along to their

customers who purchases the information structure. Consumers choose an action. In period 3, the
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state is realized and consumers receive payoffs that depend on their actions and the realized state.

Our restriction on the timing of actions is substantive, and we attempt to test this in data. We

make this substantive restriction in order to provide the best case possible for a rational explanation

of media bias.9

2.2.2 Preferences over Information Structures

Because no material payoffs occur before period 3, we model the decision-maker’s environment

as a compound (2-stage) lottery. Each set of payoffs (H,L, 0), prior probability ρ, and an infor-

mation structure (p, q) together generate a unique compound lottery. The technology constraint,

along with the payoffs and prior, define a feasible set of compound lotteries. The information struc-

ture that leads to the highest expected utility for the decision-maker, given parameters, is denoted

(p∗(H,L, ρ), q∗(H,L, ρ)). (We will typically suppress the dependence on the other parameter values

to simplify notation.)

Expected utility maximizers receive no flow utility in periods 1 and 2, and so simply try to

maximize the expected utility received in period 3. As noted above, if the agent takes action a, and

the realized state is A, the payoff is H; if she takes action a and the realized state is B, the payoff

is L; and if she takes action b, the payoff is 0 regardless of the realized state. Figure 3 demonstrates

expected payoffs from each of the agent’s action in terms of beliefs and utility. The horizontal axis

represents the agent’s belief in the probability of state A (fair weather). The vertical axis shows the

expected payoff from actions conditional on those beliefs.

Using Figure 3 as an example, if the consumer has a prior ρ = 1
2 and she receives no other

information, her optimal action is a, i.e., she goes go to the game (since the average of L and H is

greater than 0). (In the figure, her expected utility is designated “u| no information”). Now suppose

she receives weather predictions using signal structure S, given by (p, q) = (1, 12 ). Using (1) and (2)

it is easy to confirm that ψR = 0 and ψF = 2
3 , given a rainy or fair prediction, respectively. The

consumer now conditions her action on the weather prediction, and this allows her to achieve an

higher level of utility than in the absence of news.

Not all signal structures increase expected utility for the consumer. To see this, continue with the

example from Figure 3, but consider the signal structure S′ given by (p, q) = ( 1
2 , 1). Now posteriors

9Instead of using the assumption of “full commitment,” where an agent has to choose an action in period 2, and
so information is instrumentally valuable, we could make use of an alternative assumption that the agent makes
her choice in period 3, after observing the realization of the state. In this latter case, information obviously has
no instrumental value (i.e., it cannot help in decision making). Therefore neoclassical consumers have no value of
information. Bias would result only from intrinsic preferences over beliefs and information. These two situations are
obviously limiting cases of a more general model where the agent must make decisions in period 2 which are costly
(either explicitly or implicitly) to realization in period 3.
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generated are ψR = 1
3 for a rainy signal and ψF = 1 for a fair signal. Here, regardless of which signal

she observes, she will still go to the game. Therefore, her expected payoff from this information

structure is the same as with no information. Clearly, then, our consumer prefers information

structure S to S′, since the former signal structure allows her to condition her actions and thereby

increase the expected payoff. We now formalize these intuitions.

To explore circumstances under which a consumer will condition actions on signals, we observe,

first of all, that expected utility for a consumer who conditions is

u = ρpH + (1− ρ)(1− q)L. (2.3)

Next notice that if the consumer does not condition, then her expected utility will be either (i)

ρH+(1−ρ)L (if she always goes to the game), or it will be (ii) 0 (if she never goes to the game). So

the consumer will want to condition behavior if expected utility (3) is greater than both object (i)

and object (ii). This gives us two “conditioning constraints,” only one of which is typically binding.

Constraints (i) and (ii) can be characterized, respectively, as follows: in (p, q) space, signals must

be above the lines,

q = − ρH

(1− ρ)L
+

ρH

(1− ρ)L
p, (2.4)

and

q = 1 +
ρH

(1− ρ)L
p. (2.5)

Notice that the first of the conditioning constraints passes through the point (1,0) while the second

conditioning constraint passes through the point (0,1). Also observe that the constraints have the

same slope (which is negative, as L < 0 < H), i.e., they are parallel. Thus, as noted, only one of

the constraints is typically binding.

As long as there exists an information structure in the feasible set Φ(p, q) that meets the condi-

tioning constraints, the consumer will have higher utility if she uses that information to condition

her behavior. In this case, using (3), the agent has indifference curves defined over (p, q) pairs that

satisfy

q =
(1− ρ)L− ū

(1− ρ)L
+

ρH

(1− ρ)L
p (2.6)

for various levels of ū. The slope of an indifference curve is negative. Indeed, the slope of an

indifference curve is the same as the slope of each conditioning constraint.

Figure 4 illustrates. In this example, the point of tangency of the indifference curve and the
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technology boundary is an optimum if the conditioning constraints are met. It is easy to see that

this point, (p∗, q∗), lies to the right of the outermost conditioning constraint (which is this example

is the constraint that passes through (1,0)). Thus we do indeed have an optimal outcome for the

consumer, in which she conditions her behavior on information.

Notice that the slope of the indifference curve becomes steeper as H, L, or ρ increase. The

following proposition summarizes the resulting comparative statics.

Proposition 1 If the decision-maker strictly prefers at least one signal structure to another, then

p∗ is increasing in H, L, and ρ, and q∗ is decreasing in H, L, and ρ.

2.2.3 Demand-Driven Bias

In order to examine information provision in equilibrium for our environment, suppose that on

non-game days consumers have a preference for a neutral (i.e., p = q) information structure. On

game days, consumers have the action set described in the previous subsections available to them.

For the sake of simplicity we will consider a single representative consumer.

A monopolist firm can choose any feasible information structure on a given day (and the chosen

information structure can vary by day), which it then sells at price r to consumers. The firm’s profits

are equal to r if it sells information and 0 if it does not (since the cost of of producing information is

0). Because the firm profits by selling the consumer her optimal signal, the firm will always provide

the structure (p∗, q∗) discussed in the previous subsection.

The following proposition summarizes the fact that the information structure will generally

be biased on game days (in the sense that only one particular set of parameter values generates

a preference for unbiased signals). Furthermore, observed bias will change with the underlying

parameters of the model in predictable ways: bias B = p∗ − q∗ is increasing in H, L, and ρ.

Proposition 2 If any information is purchased on non-game days, the information structure pro-

duced will exhibit no bias. On game days, if any information is purchased, the information structure

will generically be biased, and the bias will be increasing in H, L, and ρ.

2.2.4 Supply-Driven Bias

In this section, we model bias as being driven by supply-side considerations, i.e., the firm has an

incentive to alter consumers’ beliefs. For example, a newspaper may be paid by a sports team to

increase consumers’ beliefs about the likelihood of fair weather. In this case, the newspaper would

benefit the higher ρp+(1−q)(1−ρ) is. We consider a more general benefit function, b(p, 1−q, L,H, ρ),

40



where bi ≥ 0 for all i ∈ {p, 1 − q, L,H, ρ}, bij ≤ 0 for all i, j ∈ {p, 1 − q, L,H, ρ}, and b is concave.

The negative cross partials, and overall concavity capture two things: first, the fact that individuals

with the lowest willingness to pay require the highest values of (p, q, L,H, ρ) to attend the game;

and, second, that the baseball team (and so the firm) would only benefit to the extent that the

stadium is not already selling out.10 The firm also faces a cost of biasing information, c(p − q),

where c is convex in the amount of bias, and has a minimum at 0. This captures the fact that there

are likely consumers who would prefer that the news not be biased.

The firm’s marginal benefits are falling in the current amount of bias. Moreover, the marginal

benefits to bias are also falling in ρ, H and L. Because the marginal costs are rising in the amount

of bias, there will be less bias when ρ, H or L increase. This is true for any optimum of the firm.

Proposition 3 When bias is supply-driven bias, if information is purchased on non-game days, the

information structure produced will exhibit no bias. On game days, if any information is purchased,

the information structure will always be positively biased and the bias will be decreasing in H, L, and

ρ.

2.2.5 Welfare

The impact of media bias on welfare can be ambiguous. Bias in and of itself does not harm

consumers payoffs. If distortions are occurring for supply-side reasons, then consumers are worse

off; they would prefer less bias. But, if distortions are generated on the demand side, then the bias

is in fact optimal.

2.2.6 Testable Implications

The two models in this section have predictions not only about the direction of bias, but also

about how the bias is affected by changes in the parameters. We will use these predictions to test

the models in in the next section. The following table summarizes our theoretical results.11

10In the attendance records we have available, we find the stadium occasionally sells out.
11The insights of the particular models presented here are in fact more general. For example, any model that

predicts that the information provider wants to encourage attendance at the game will generate comparative static
predictions similar to our model of supply driven bias.
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Model Direction of Bias Change in Bias Change in Bias Change in Bias

as H Increases as L Increases as ρ Increases

Demand- Either positive Increases Increases Increases

Driven Bias or negative

Supply- Always positive Decreases Decreases Decreases

Driven Bias

In the empirical section we will also consider the predictions of other models of media bias, such

as Gentzkow and Shapiro (2006) and Mullainathan and Shleifer (2005).

2.3 An Empirical Test: Weather Reporting

by the New York Times, 1890–1899

In order to test predictions about media bias we use a novel data source — the daily weather

reports given in the New York Times during the late nineteenth century. We test whether the

Times was more likely to provide biased weather predictions on days when the New York Giants,

the local professional baseball team, were scheduled to play a baseball game in the Manhattan Polo

Grounds. To establish the plausibility of such bias, we begin with some observations about the

historical context.

First, weather reporting, although improving, was still in a relative poor state. By the 1890s the

practice of using almanacs and astrology to make weather predictions had practically disappeared,

and the telegraph had made synoptic meteorology, or weather maps, a tractable method for making

weather prediction. This new technique in weather forecasting heightened the usefulness and pop-

ularity of weather predictions in newspapers (Nebeker, 1995). Still, weather reporting was a highly

subjective practice that relied on rough empirical rules, with a limited understanding of scientific

facts and mathematical modeling. Nebeker indicates that even at the beginning of the 20th century,

weather reporting was more of “an art rather than a science.”

Second, during this period, the New York Times was a relatively small player in the the New

York media market. There were over 10 newspapers competing for readers using morning, afternoon

and evening editions, with prices for weekday editions typically less than three cents. The largest
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newspaper had a circulation of around 300,000 during the late 1800s.

During the period of analysis, 1890–1899, the New York Times, a morning newspaper, was in a

transitional phase. In the spring of 1896, Adolph Ochs took over as owner (from Henry Raymond)

of what was, at the time, a struggling and politically motivated newspaper. He instituted major

changes, among them the change in weather reporting. He also coined the phrase “All the News

That’s Fit to Print.” Ochs lowered the price of the paper from 3 cents to 1 cent, which perhaps

was one reason for an increase in the circulation of the Times, which tripled within two years from

26,000 to 76,000.12 Although we have some information about yearly average circulation, we do not

have daily numbers, and so do not use circulation data in our analysis. The growth in circulation

would also lead us to suspect a weakening in the motives to bias weather, as the circulation would

grow beyond the local Manhattan market (where the Giants were located).13

As mentioned, under Ochs’ new administration changes were made to weather reporting. Every

morning the Times would provide the weather report for the rest of the day. Prior to June 16, 1896

the weather report quoted local weather predictions from the U.S. Weather Bureau. Although the

Bureau was based in in Washington D.C., the Bureau had an office in Manhattan, and produced

weather predictions for most major cities. After June 16, 1896 the Times switched its editorial

policy and began producing in-house morning weather reports, as is indicated by the introduction

of a separate column “Probabilities for the Day” on the front page of the paper. After the switch,

forecasts no longer cited the Bureau as a source. We verified that the reports were in general not

the same as other New York newspapers. The predictions by the Times during this period were

simple. There was generally either a prediction of fair weather, or rain of some type (e.g., “showers”

or “rain”). No probabilities were given, nor any anticipated amount of precipitation, nor typically

any information about the timing of precipitation.

During the late nineteenth century, the Times had a sports section that provided extensive cov-

erage of the National League and particularly the New York Giants, a major league baseball team

that played in the Polo Grounds, in upper Manhattan. This was a period of rapidly growing popu-

larity of baseball. New York had two major league teams, the Giants and the Brooklyn Bridegrooms

(which later became the Dodgers), that were part of the National League, a 12 team league at the

time. There were no other professional sports teams in the New York area at the time. The Times

apparently catered to a Manhattan readership, as they provided extensive coverage of the Giants.

12The new weekday price of 1 cent is approximately 25 cents in today’s terms. The Sunday edition was more
expensive.

13In fact, bias does indeed empirically disappear. We collected data for 1910 and found no statistically significant
evidence for bias in weather reporting associated with home game days.
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The New York Giants were owned by businessmen Andrew Freeman and John Brush. Although we

do not have data on price variation across years and games for tickets, we do know that a ticket

price was 50 cents at the beginning of the time period we consider.14 We cannot find any formal

association between the New York Times and the Giants, nor association between their owners.

2.3.1 Data

To test the comparative statics and level of bias, we use a dataset constructed as follows: First,

we coded home games during National League play for the Giants (typically late April to early

October) for the 1890 through 1899 seasons.15 The coding system is binary, with a 1 indicating

a home game for the Giants and a 0 representing a non-home game (which includes away games).

These records were taken from Baseball Reference, which has extensive coverage of historical records,

including rankings and win-loss records.

Another part of the dataset is gathered weather reports from the Times during the period

mentioned above. The Times weather report, indicating weather for the day, was published in the

morning paper. We recorded an indicator variable — 1 for a fair prediction and 0 for a prediction

which mentioned rain. As noted previously, weather reports were sufficiently simple so that there

was a clear indication of how to code the data. Consider, as an example, the following weather

forecast, given on the 17th of July, 1896:

Such a report is recorded in the data as a “fair” prediction. We were able to collect these data for

all but four of the 1701 days in our study period.

The actual weather outcome was determined from records of the National Climate Data Center

of the National Center for Atmospheric Research, which holds historical data from the Weather

Bureau. We have daily precipitation levels at the Manhattan reporting station. The day was coded

as “fair” if there was no rainfall (again, with 1 as an indicator), and “rainy” if precipitation was

recorded (with 0 as the indicator).16 We have data for all but two days.

For a relatively small number of days we were able to find attendance data from the New York

Times sports page. The Times had a column the day after each home game summarizing the results,

14Approximately 10 dollars in today’s terms.
15The first game of the season was between April 15 and 28, while the last day was between September 26 and

October 15.
16The reporting station was at Central Park in Manhattan, very close to the Polo Grounds and also the the offices

of the New York Times.
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sometimes listing attendance. Attendance seems to be rounded to the nearest 500. We also collect

the ranking of the New York Giants for each season, again using records from Baseball Reference.

2.3.2 Empirical Strategy and Results

Given the historical context, the goal is to test the models discussed in the previous section.

After we discuss the results of our analysis, we relate them back to the predictions of the models.

Doing so involves two steps. First, we ask whether the model can generate the direction of bias

consistent with that observed in the data (e.g., positive bias). If so, we then evaluate comparative

static predictions from the model. For instance, we look for correlations in the observed bias and

variation in payoffs to attending a game or in priors in the likelihood of rain.

Before we turn to our primary analysis, we provide some summary statistics regarding two

empirical objects of interest: weather realizations (as recorded by the Weather Bureau) and weather

predictions (from the New York Times).

We begin with a description of weather realizations in Table 1. The top row gives statistics for

the full sample (baseball seasons from 1890 to 1899), showing the proportion of days for which the

realized weather was fair for each of the following subsets of days: first, all days; second, days when

the Giants played a home game (“home game days”); third, days when there was not a home game

(“non-home game days”); and, fourth, for completeness sake, for games played when the Giants

were away (“away games”). As we have emphasized, our analysis focuses on the impact of policy

changes in weather reporting at the New York Times on June 16, 1894. So, here we show how

realized weather varied before and after that date.

As Table 1 shows, the weather is nicer on days with home games than on days that don’t have

home games. This is true in both the before period and the after period. There are two possible

reasons for this. First, there were rainouts; these days, with no home game played, obviously would

be exclusively rainy days. Second, it may be the case that the National League tended to schedule

relatively fewer home games for the Giants in traditionally rainy months and relatively more games

in fair months. In order to account for this fact, we will attempt to control for differences in priors

across different days as a robustness check.

As for weather predictions from the New York Times, Table 2 provides summary statistics. Over

the full sample (baseball seasons, 1890–1899), the proportion of Times weather reports predicting

fair weather was 0.631, slightly lower than the corresponding realizations for fair weather realizations

in Table 1. Given that the realized weather was fairer on home game days than on non-home game

days, it is not surprising that predictions were on average fairer on home game days than on non-
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home game days. Below, we will be assessing bias by asking if, in the period after June 16, 1896,

the Times tended to over-predict fair weather on days with a home game relative to days with no

home game. Thus, it is interesting to note here that in the after period, fair weather predictions

occurred with a substantially higher probability on home game days than on non-home game days.

We continue to summarize characteristics of our data by considering patterns of autocorrelation in

weather outcomes and weather predictions. We do so in three regressions, reported in Table 3. First,

Panel A examines possible autocorrelation between realized weather today and realized weather

yesterday. This can be important as consumers might base their beliefs about fair weather on their

observations about recent weather (i.e., beliefs might be formed using information beyond what

the weather report predicts). We note that fair weather yesterday is associated with a significant

increase (16 percentage points) in the probability of fair weather today. Panel B considers the same

type of autocorrelation but looking at the predicted weather by the New York Times. Here we

find a lower level of autocorrelation, just as we would expect if the weather predictions are a noisy

guess about realized weather. Finally, Panel C provides information about the informativeness of

the weather predictions above and beyond yesterday’s weather realization. Put another way, if an

individual observed yesterday’s weather, would she still learn something from reading the New York

Times? We find that both yesterday’s weather and the weather prediction are informative about

today’s weather.

With these characteristics of the realized weather and predicted weather in mind, we now turn

to our primary analyses, in which we evaluate the accuracy of predicted weather, conditional on the

realized weather. Our goal here is to estimate the accuracy of New York Times weather predictions

within the framework of the theory posited above. Thus we are interested in an empirical assessment

of the probability of correctly predicting fair weather when in fact the weather will be fair (p), and

the probability of correctly predicting rainy weather given the weather will be rainy (q).

Table 4 presents the observed values of p and q for various subsets of days. We note three features

of the data. First, over the entire sample, the accuracy of predicting fair weather is somewhat higher

than the accuracy of predicting rainy weather (0.754 compared to 0.624). This is true before the

change to in-house weather predictions, on June 16, 1896, as well as after, as can be seen by

comparing the second and fifth rows of the Table 4. Second, in the before period, when the Weather

Bureau was producing weather reports, predicting accuracies p and q were quite similar on non-home

game days and game days. Third, in contrast, in the after period p and q follow a pattern that is

strikingly consistent with our model of optimistic bias on home game days relative to non-home

game days. Thus p is higher on home game days than on non-home game days, and the converse is

46



true for q. We note, in addition, that on non-home game days the Times used a somewhat different

weather prediction policy (i.e., with lower p and higher q) than the Weather Bureau used in the

before period.17

Figure 5 shows the information structures we observe: “before home” and “before non-home”

(i.e., home game days and non-home game days before June 16, 1896) information structures look

similar, while the corresponding “after home” and “after non-home” structures look very different.

Consistent with the observations we have just made, this figure shows that although the before period

weather reports for home game days were more Blackwell informative than the before period non-

home game days reports, these differences were very slight. Moreover, no other rankings by Blackwell

informativeness exist. It does not seem to be the case that the New York Times was receiving more

Blackwell informative signals and then garbling them in two different ways on different days after

the switch. Also, there appears to be a clear trade-off between p and q; high values of one accuracy

are associated with lower values of the other accuracy. Finally, the figure shows that in the after

period, weather reports on home game days are more optimistic than on non-home game days.

We now turn to a statistical test of our theory. Our primary question is: When the New York

Times produced its own weather reports, was there “excess bias” on home game days relative to

non-home game days, i.e., is ∆After;Home,Non−Home = BHome − BNon−Home = (pHome − qHome) −

(pNon−Home − qNon−Home) positive? Using estimates from Table 4 we find

∆After;Home,Non−Home = 0.291. (2.7)

The standard error for this estimate of 0.087.18 The t statistic is 3.48. We reject that ∆After;Home,Non−Home =

0 at the 0.001 level. Thus we have clear evidence of excess bias in the after period. In terms of

our model, the game-day bias is optimistic; the Times tended to over-predict fair weather on home

game days.

Next we try a counter-factual analysis. A potential concern with our finding of excess game-day

bias in the after period is that it is being driven the fact that weather on home game days generally

differed somewhat from weather on non-home game days (a fact documented in Table 1 for both

17We are not certain why the Times tended to adopt a more pessimistic weather reporting policy on non-home
game days than the Weather Bureau. Our theory focuses only on how the Times might adopt differing prediction
policies on home game days compared to non-home game days, and that also is the focus of our empirical work below.

18Given that outcomes shown in Table 4 are binomial, the standard error is calculated as follows: Sample sizes to
estimate pHome, qHome, pNon−Home, and qNon−Home, respectively, are 185, 58, 233, and 155. So the standard error is√

0.800(1 − 0.800)

185
+

0.500(1 − 0.500)

58
+

0.674(1 − 0.674)

233
+

0.665(1 − 0.665)

155
= 0.087.

47



the before and after period). This concern would be ameliorated if excess bias does not appear in

the before period, when the Times’ weather predictions came from the Weather Bureau.19 In fact,

we find that

∆Before;Home,Non−Home = −0.002. (2.8)

Excess home game bias is estimated to be very close to zero. This estimate is reasonably precise;

the standard error is 0.065 (using the same approach as in footnote 17).

We can shed further light on our main results with regression analyses. Our baseline regressions,

presented in the first column of Table 5 follows a differences-in-differences approach. Specifically,

we estimate

DPredictCorrect = β0 + β1DFair + β2DHome + β3DFair,Home + ε. (2.9)

In this regression, D are dummy variables. The dependent variable, DPredictCorrect, is 1 if the pre-

dicted weather was correct and 0 otherwise. DFair is 1 if the day was fair and 0 otherwise; DHome is 1

if the Giants were playing at home, 0 otherwise; and DFair,Home is 1 for a fair day with a home game

and 0 otherwise. The estimated coefficients in this regression are related to the p and q estimates

given in Table 4: β0 is an estimate of qNon−Home, β0 + β1 is an estimate of pNon−Home, and so forth.

It can be shown that β3 = (pHome − qHome) − (pNon−Home − qNon−Home); coefficient estimates of

β3 for the after and before periods correspond with estimates of excess bias given in (7) and (8)

respectively.

Column (2) of Table 5 shows coefficient estimates of these same regressions also including year,

month, and weekend fixed effects. The year effects allow for the possibility that accuracy varies

over time. We have seen that the probability of fair weather varies by month, so we include month

fixed effects in case this affects results. The inclusion of weekend indicator variables allows for the

possibility that the bias was primarily for weekends and not home games more generally. Panel B

shows that our key inference about excess bias in the after period is unchanged when we include

these fixed effects; estimated excess bias (the coefficient on DFair,Home) is about the same as in our

baseline regression. For completeness sake, Panel A shows the result of this same regression in the

before period — showing that inclusion of fixed effects does not alter our basic inference that there

is no excess bias in the before period.20

19To be clear, we believe our theory potentially pertains when the Times makes in-house predictions, but make no
claims one way or another about it’s applicability in the before period.

20Finally, we estimated our baseline regression, reported in column (1) of Table 5, Panel B, but use a definition
of “home” that includes only home games that were scheduled at the beginning of the season. (National League
schedules were typically released in February or March prior to the season, and were published in the New York
Times and other newspapers.) This definition thus includes home games that were rained out and excludes home
games that were make-up games due to rain-outs. The basic inference is quite similar as with games actually played:
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We next try an alternative approach, in which we specify a regression in which the dependent

variable is the Time’s weather prediction for a given day — 1 for fair and 0 for rain. We continue

to use a differences-in-differences design:

DPredictFair = α0 + α1DFair + α2DHome + α3DFair,Home + ε. (2.10)

Again, regression coefficients correspond to p and q for various subsets of days (as reported in

Table 4), although the relationship is different than in our previous regression. Here α0 estimates

the probability that the Times predicts fair weather on a non-home day that is rainy, so α0 =

1−qNon−Home. Similarly, α0 +α1 = pNon−Home, α0 +α2 = 1−qHome, and α0 +α1 +α2 +α3 = pHome.

It can be shown that excess bias is estimated by 2α2 + α3. Column (1) of Panel B of Table 6 gives

our baseline results; as expected we estimate 2α̂2 + α̂3 = 0.291 (and as indicated by the F statistic

reported in the note to Table 6, we reject the hypothesis that excess bias is 0).

Our reason for estimating regression (10) is that it allows us to ask what happens to our inference

when we attempt to control for individuals’ prior beliefs about the probability of fair weather on

any given day. To do so, we first form estimates of individuals’ prior beliefs by estimating a probit

regression, in which the dependent variable is the weather realization, fair (1) or rainy (0) for a given

day, and the independent variables are the amount of precipitation each of the previous five days.

We then use results from this equation to generate the prior probability of fair weather, denoted

Daily Prior for Fair Weather, using the information that would have been available to individuals

before reading the weather report. One plausible theory of bias would be that there is an issue with

prediction technology such that it forces p higher and q lower as the prior increases. This could

account for the bias we observe. So we include this estimated prior as a control in regression (10).

Table 6 shows the coefficients from the probit specification used to construct priors. Column (1)

is our basic specification. Column (2) adds week fixed effects for the baseball season, as a flexible

way of picking up a possible persistent seasonal pattern in rain from late Spring through early Fall.21

Finally, as a simple check, in column (3) we add a dummy variable for a game being scheduled that

day, and discover that it is not statistically significant. We also notice that estimated coefficients on

lagged daily rainfall are extremely similar across the specifications. The first of our specifications is

the simplest, and it has the advantage that it is formed strictly with information that was available

The estimated coefficient on DFair,Home in the after period is 0.240 with a standard error of 0.079. In contrast, in the
before period the estimated coefficient on DFair,Home is 0.005 with a standard error of 0.060.

21Specifically, we formed 26 dummy variables: for April 15-21, April 22-28, and so forth, up through the second
week of October.
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before individuals would be forming priors about a given day’s weather.22

Estimates of regression (10) with and without the priors are reported in Table 7. Panel A gives

results for the before period, simply as a counter-factual. Our key interest is Panel B, which gives

analysis for the after period. We see that coefficients in our regression change very little across the

two columns (other than the intercept) when we include the prior. When we include the prior in the

regression, estimated excess bias is 2α̂2 + α̂3 = 0.248 (and we reject the hypothesis that excess bias

is 0). In short, it seems that our key inferences about Times weather reporting biases are not driven

by differences in daily priors about the weather. As for Panel A—the counter-factual analysis for

the before period—in both specifications we fail to reject the hypothesis that 2α2 + α3 = 0.23

We can use our constructed prior to address two additional questions: First, whether weather

predictions were informative beyond priors. Second, whether the game schedulers had information

in excess of that of consumers regarding the weather, and if this could account for the fact that

home game days were sunnier on average than non-home game days. (Alternatively, it may be

the case that the National League tended to schedule relatively fewer home games for the Giants

in traditionally rainy months and relatively more games in fair months.) Given our constructed

daily priors for fair weather, we ran a regression estimating whether there is additional information

provided by weather predictions, and the fact that a home game may be scheduled, in addition

to the daily prior. We regressed the realized weather on the prior, the weather prediction, and

dummy variables to indicate whether or not there was a home game scheduled. We find that the

coefficients on the daily prior, 0.564 (s.e. = 0.164), and the weather prediction, 0.332 (s.e. = 0.028),

are significant, indicating that both provide information regarding weather realizations. However,

the coefficient on scheduled games is insignificant, indicating that knowing whether it was a home

game day or not would not have further changed individuals’ beliefs.

As a final robustness check, we undertake an additional counterfactual analysis, using weather

reports from a different New York newspaper, the Wall Street Journal.24 In the late nineteenth

century, the Journal primarily covered financial topics, including American and international busi-

ness and economic news; the paper’s claim to fame was the construction and reporting of the Dow

Jones “Average,” one of the first index measures of stock prices on the New York Exchange. The

22In contrast, in the other two specifications, priors are formed using weather outcomes that have not yet occurred.
23Finally, we tried our analysis but with priors formed with the other two specifications given in Table 6. When we

use the specification from column (2) to construct our prior we estimate bias to 0.226, and F (1, 611) = 7.14. When
we use the specification from column (3) estimated bias is 0.190 and F (1, 611) = 4.52. In both specifications we reject
the null hypothesis of no bias.

24This paper was established in 1882 by reporters Charles Dow, Edward Jones and Charles Bergstresser as a letter
that provided financial news, and was converted by Dow Jones and Company into the Wall Street Journal, which
distributed it’s first issue in 1889.
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paper did not typically cover sports, and so probably did not attract readers who wanted to learn

news about the New York Giants. Like the Times, the Wall Street Journal provided a rudimentary

weather forecast.

With this in mind, we coded the weather forecasts from the Wall Street Journal in the same

fashion as for the New York Times. Our assumption is that the typical reader did not read the

weather reports with the intention of using the information to attend games. Thus we would not

expect that the Journal’s reports to exhibit the same bias as the Times.

The Journal was an afternoon paper, which produced forecasts covering the next day; this was

taken into account when analyzing predictions. We assembled data for the baseball seasons during

the after period, 1896–1899. We collected Journal data for a total of 236 predictions; this is all that

is available in digitized records, and certainly doesn’t include the entire after period. For those 236

dates, one observation is missing in the Times records. We drop this day to focus only on dates

when both papers made predictions, leaving a sample of 235 days.25 For these dates we find that

the Times produced excess bias of ∆ = 0.365 (which is not too different than for the entire sample),

while the Journal had excess bias ∆ = 0.017, which is close to 0, as we would have expected.26

We next turn to some of the other predictions from our theory. Recall that our theory provides

some reason to think that the bias will depend on the prior for fair weather (ρ) in the model.27 We

can look for such a relationship by looking at month-to-month variation in the prior. We start by

using the realized weather in the sample to construct the probability of fair weather in any given

month (as in Table 1). We denote these monthly priors P̂Fair,Month. (We drop April and October

for the purpose of constructing these priors as those months have few observations.) Figure 6 shows

that for the post-June 1896 period, there is a clear negative relationship between these priors and

the average excess game day bias in that month, ∆AfterHome,AfterNon−Home,Month.
28 In Figure 6 the

25The two papers agree on 166 observations (70.6% of the 235).
26These estimates of the Times’ excess bias and Journal’s excess bias are not statistically different at the 0.05 level.

(The sample size is small, so the test is under-powered.)
27If individuals’ beliefs are rational, we would expect a one percent increase in beliefs about the probability of fair

weather to lead to a one percent increase in the probability of fair weather being realized. To be clear, these beliefs
would be individuals’ priors and posteriors, not the weather predictions themselves (although posteriors would be
constructed using priors and the weather predictions). We conduct such a test, first regressing realized weather on
our constructed daily priors, and second regressing realized weather on a constructed measure of a daily posterior,
which we create by applying Bayes Rule, using the prior and weather predictions, allowing for different values of p and
q across different subsets of days (the interaction of before, after, home and not home). Both regression coefficients
are tightly estimated to be 1, in line with the rational expectations literature.

28One might be concerned that individuals’ priors for game days and for non-game days within a month differed.
Instead of lumping game days and non-game days within a month together, one could instead compute priors for
game days and non-game days for each month separately, and then estimate the effects of priors on excess bias. Such
an analysis again indicates that excess bias is falling (at a significant level) in the prior.
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relationship appears to be roughly linear; we thus fit a line to these observations,

∆AfterHome,AfterNon−Home,Month = β0 + β1P̂Fair,Month + ε,

where ∆AfterHome,AfterNon−Home,Month is, for a given month, the difference in bias between home

game days and non-home game days. Note that this regression is not simply picking up effects of

summer relative to non-summer months, nor months early in the season relative to late in season

(since fair weather is not perfectly correlated with either of these). We estimate β1 to be −3.68

(with a standard error of 1.02), which is a statistically significant relationship at the 0.05 level.

Next recall that our theory suggests that bias will be related to the value fans place on being

at a game when the weather is fair (H) and on loss from attending a game when it is rainy (L).

Intuitively, these values might be related to the relative success of the team. As seen in Figure 7, in

fact relative bias was highest in 1897, when the Giants had a relatively good season; was lower in

1898 and 1896, when the Giants finished 5th (of the 12 teams in the league); and was lower yet in

1899 when the team finished near the bottom of the standings.29

2.3.3 Further Analysis: Attendance

In order to get a better sense of how predicted and realized weather might affect the actions of

readers and fans, we analyze the effects of weather predictions and realizations on the New York

Giant’s home game attendance. It also seems plausible that the performance of the team should

affect attendance of the game when the team is doing well, and so we also look at the impact of

team ranking on attendance. We estimate the following regression for the period June 16, 1896 and

after:

A = β0 + β1DPredictFair + β2DFair +
∑
i

βiDRank + ε,

where A is the game attendance, DRank are dummy variables for the ranking of the team (either

rank 3, 5, or 10 depending on the year) and the rest of the variables are as described previously.

Recall that we only have a relatively small subset of games with attendance records, and as such take

these results as preliminary.30 Table 8 reports the results of this regression (with rank 5 being the

29The difference in estimated excess bias for the year with the team finished 3rd (1897) and year it finished 10th
(1899) is statistically significant at the 0.05 level. (No other differences between years were statistically significant.)
Of course the year-to-year differences in excess bias may have had little to do with the ranking. Our only point here
is that this evidence is not what we would have predicted with our model.

3042.0% of the attendance records are complete. The Times provided a report the day after every home game, only
some of which included attendance records. Efforts are being made to collect more data.
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omitted category). Surprisingly, predicted weather is not a significant predictor of attendance. Even

more surprisingly, realized weather is not correlated with attendance either. The only significant

variable is the yearly rank of the New York Giants.

2.3.4 Relating Evidence and Theory

In the previous section we derived some testable implications of two models of media bias. We

revisit them here:31

Model Direction of Bias Change in Bias Change in Bias Change in Bias

as H Increases as L Increases as ρ Increases

Demand- Either positive Increases Increases Increases

Driven Bias or negative

Supply- Always positive Decreases Decreases Decreases

Driven Bias

We believe that it is reasonable to use the monthly average probability of a rainy day as a proxy

for consumer’s priors about fair weather in a given month. Furthermore, we believe that if the New

York Giants were doing better, it represented an increase to H (i.e., it is better to watch a good

baseball team rather than a bad baseball team when the weather is sunny).

Given these interpretations, recall that we found that as the prior increases the bias shrinks.

This is consistent with supply-driven bias, but not with demand-driven bias. In contrast, we also

found that as the team did better, the bias grew, which is inconsistent with supply-driven bias, but

is consistent with demand-driven bias. In fact, neither of the models correctly predict both observed

comparative statics.

Casting further doubt on both the demand- and supply-driven stories is our evidence that the

predicted weather does not influence attendance. For example, if the team was paying the newspaper

to bias the weather reports in hopes of boosting attendance, they would have presumably quickly

31One interesting alternative model, which we thank David Gill for mentioning, is that on game days the information
is meant to better predict the weather only at the baseball game. On a non-game day, rain would be the prediction if
it rained at all, but on a game day, rain would only be the prediction if it rained during the game. This could generate
positive bias as we observe in the data. However, if days were particularly rainy, then the bias should shrink relative
to non-game days, as it is more likely that on the rainiest days, it is also raining during the game. We observe the
opposite relationship in the data.
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learned that this was not effective.

Of course, there are also other existing models of media bias. Gentzkow and Shapiro (2006)

develop a model where firms bias news for reputational reasons, i.e., in order to appear informed.

Their intuition would predict that in our setting, as consumer’s priors increase, the bias should grow.

In fact, we observe the opposite. Mullainathan and Shleifer (2005) have a model of media bias where

bias is driven by consumers’ desires to see their beliefs confirmed. Although their model is not easy

to put into our setting, their results suggest again that as consumer’s priors increase, the bias should

grow, which is opposite to what we observe.

Of course, we have made two assumptions in deriving the results of the models. First, individuals

will condition their actions on the predictions if optimal. Second, individuals know (at some level)

the values of p and q on non-home game days and home game days, and change their updating rules

accordingly. Violating the first assumption would eliminate the prediction of bias in the two models

we derive in this paper, not changing our overall conclusions. Violating the second assumption

would immediately imply that there would be no benefit for the New York Times to biasing their

information in order to improve consumers’ ability to condition their actions, and so we would not

expect to see bias on game days. Furthermore, violating the second assumption would not change

the comparative static results in the case of supply-driven bias. Therefore, our conclusions would

also not be changed by violating the second assumption.

2.4 Conclusion

Our data, consisting of local weather predictions from the New York Times and realized weather

in Manhattan during the years 1890-1899, provide a new setting to try to understand media bias.

We find evidence that the New York Times biased its weather reports on home baseball game days

relative to non-home baseball game days when it produced its own weather reports. We find that

the excess bias on home game days may fall when the ex-ante probability of sunny weather grows.

We also find that the excess bias on home game days may be higher when the baseball team does

better. These comparative statics are inconsistent with the rational models of media bias that we

set out in our paper. Moreover, in the limited subset of data for which we have attendance data, it

does not appear that predicted weather influences attendance, which would indicate that individuals

do not condition their actions on the information provided by the weather prediction.

The data has several advantageous features. First of all, because we know both the weather

prediction and weather realization, we can construct a measure of absolute (rather than comparative)
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bias. Second, the realized weather is unaffected by the weather report, and so there are no issues

with endogeneity. Third, our data allow us to measure how individuals’ posteriors should change as

the bias grows or falls.

Of course, other mechanisms can also generate media bias, including models where consumers

have preferences over beliefs or changes in beliefs. Examples include:

• Brunnermeier and Parker (2005) develop a model in which agents can choose their priors. They

receive current flow utility from having high beliefs (which are based off their priors) about

future flow payoffs. However, agents may take sub-optimal actions based on incorrect beliefs

(since their beliefs are based on their chosen priors, not on true priors). Ex-ante, decision

makers choose priors to maximize the weighted sum of the flow consumption utility and flow

belief-based utility. However, if information has no instrumental value, then Brunnermeier and

Parker would predict no need for biased information.

• Koszegi and Rabin (2009) derive a model where decision-makers receive both flow utility from

consumption and also gain-loss utility that results from changes in beliefs about current and

future flow consumption utility. Furthermore, in order to capture loss-aversion, individuals

experience losses more strongly than they feel gains.

• In a similar vein, Artstein-Avidan and Dillenberger (2010) extend Gul’s (1991) model of dis-

appointment aversion to a dynamic setting.

• Kreps-Porteus (1978) preferences, and the parametrization considered by Epstein and Zin

(1989) capture consumers who have a preference for early versus late resolution of information.

However, not all models which incorporate beliefs can capture the observed data. We have

found some parameterizations of Koszegi and Rabin (2009) that can accommodate the data, and we

are currently engaged in ongoing work to understand the generality of such results. However, the

predictions generated by any of these preferences can change depending on several key assumptions.

For example, in models in this paper we assumed that information held instrumental value for

consumers, i.e., consumers want to condition their actions on the weather report they observe.

Testing the validity of this assumption is difficult. But, importantly, in the subset of days for which

we had attendance data, we found that that weather predictions did not affect attendance. This

lends support for the idea that consumers likely have non-expected utility preferences. Of course,

whether or not consumers do condition their actions on the signals also has implications for the

predictions of models in which consumers have non-expected utility preferences.
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We also assumed that individuals know the values of p and q on non-home game days and home

game days, and so will have different posteriors (given the same starting prior) from a fair weather

signal depending on what kind of day it is. One could instead assume that the consumers think that

all days are governed by the same p and q. Unfortunately, testing this assumption is very difficult,

and there is nothing in our research design that could shed light on the answer.

Although we attempt to test the predictions of some models of media bias, we caution that

it is not clear how far the intuitions and results in this paper extend. Our environment features

information about outcomes that are easily verifiable within a short span of time. In many situations

outcomes will not be verified by individuals receiving information (for example, information about

climate change). There are many other situations where the information is about causal claims that

involve a stochastic data generating process (for example, that smoking causes lung cancer). In both

cases, it is easier for individuals to hold distorted beliefs. In these situations other motivations for

media bias may dominate.

We would like to conclude by reflecting on the welfare implications of media bias. If individuals

were conditioning their actions on the weather prediction, bias on game days could be welfare

improving for individuals who may want to attend the game. In contrast, if media bias was being

driven by the New York Times wanting to increase attendance, then bias could reduce welfare for

fans. Of course, we do not find support for either of these models. In contrast, in those models

where individuals receive utility directly from beliefs or changes in beliefs, such as those which can

potentially rationalize our data, bias can be welfare improving (or harming) even if individuals do

not condition their actions on the signal realizations. Furthermore, bias could be welfare improving

even if it causes individuals to take actions that lead to worse material payoffs.
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Figure 2.1: The Feasible Set of Information Structures
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Figure 2.2: Signals that are Blackwell More Informative than (0.6,0.6)
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Figure 2.3: Expected Utility Payoffs with and without Information
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Figure 2.4: An Example of a Utility-Maximizing News Structure
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Figure 2.5: Empirically Observed Information Structures
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Figure 2.6: Relationship Between Monthly Priors for Fair Weather and Excess Bias ∆
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Figure 2.7: Relationship Between Team Ranking and Excess Bias ∆
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Table 2.1: Summary Statistics: Realized Fair Weather

Days with Days with No Days with

All Days Home Game Home Game Away Game

Full Sample, 1890 to 1899 0.676 0.755 0.626 0.678

Number of Days (n) (1695) (650) (1045) (642)

Dates before June 16, 1896 0.683 0.752 0.641 0.700

(n) (1064) (407) (657) (406)

June 16, 1896 and After 0.662 0.761 0.601 0.640

(n) (631) (243) (388) (236)

By Month:

April 0.732 0.775 0.711 0.864

(n) (123) (40) (83) (44)

May 0.612 0.678 0.586 0.608

(n) (309) (87) (222) (143)

June 0.692 0.772 0.603 0.667

(n) (299) (158) (141) (81)

July 0.643 0.756 0.612 0.627

(n) (308) (82) (226) (150)

August 0.650 0.692 0.614 0.673

(n) (309) (143) (166) (104)

September 0.752 0.845 0.684 0.763

(n) (294) (123) (171) (97)

October 0.736 0.824 0.694 0.783

(n) (53) (17) (36) (23)

Note: Authors’ calculations, data collected from the National Climate Data Center of the National

Center for Atmospheric Research for the baseball season, 1890–1899.
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Table 2.2: Summary Statistics: Predicted Fair Weather

Days with Days with No Days with

All Days Home Game Home Game Away Game

Full Sample 0.631 0.695 0.591 0.615

(n) (1695) (650) (1045) (642)

Before June 16, 1896 0.643 0.676 0.623 0.643

(n) (1064) (407) (657) (406)

June 16, 1896 and After 0.612 0.728 0.539 0.568

(n) (631) (243) (388) (236)

Note: Authors’ calculations, data collected from the New York Times for the baseball season,

1890–1899. **significance = 0.01. *significance = 0.05.
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Table 2.3: Regression Results: Relationships Between Realized Weather, Past Weather, and Pre-

dicted Weather

A. Dependent Variable: Realized Fair

Weather (1 if Fair, 0 Else)

Constant 0.564**

(0.020)

Realized Fair Weather Yesterday 0.164**

(0.024)

n 1685

B. Dependent Variable: Predicted Fair

Weather (1 if Fair, 0 Else)

Constant 0.555**

(0.019)

Predicted Fair Weather Yesterday 0.119**

(0.024)

n 1685

C. Dependent Variable: Realized Fair

Weather (1 if Fair, 0 Else)

Constant 0.385**

(0.026)

Realized Fair Weather Yesterday 0.116**

(0.035)

Predicted Fair Weather 0.327**

× Realized Fair Weather Yesterday (0.028)

Predicted Fair Weather 0.358**

× Realized Rainy Weather Yesterday (0.037)

n 1685

Note: Authors’ calculations, data collected from the National Climate Data Center of the National

Center for Atmospheric Research for the baseball season, 1890–1899 for Panels A, and also from

the New York Times for Panels B and C. **significance = 0.01. *significance = 0.05.
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Table 2.4: Summary Statistics: Times Accuracy of Weather Reports

p q

Total 0.754 0.624

(1145) (550)

Before June 16, 1896

All Days 0.768 0.626

(727) (337)

Non-Home Games 0.758 0.619

(421) (236)

Home Games 0.781 0.644

(306) (101)

June 16, 1896 and After

All Days 0.730 0.620

(418) (213)

Non-Home Games 0.674 0.665

(233) (155)

Home Games 0.800 0.500

(185) (58)

Note: Authors’ calculations, data collected from Baseball Reference, New York

Times, and the National Climate Data Center of the National Center for Atmo-

spheric Research for the baseball season, 1890–1899.
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Table 2.5: Regression Results: Times Correct Weather Prediction

A. Before June 16, 1896 (1) No Fixed Effects (2) With Fixed Effects

Constant 0.619** —

(0.029)

Fair 0.139** 0.142**

(0.036) (0.036)

Home 0.025 0.034

(0.053) (0.054)

Fair × Home -0.002 -0.006

(0.063) (0.063)

Year, Month, Weekend F.E.? no yes

n 1064 1064

R2 0.022 0.038

B. June 16, 1896 and After (1) No Fixed Effects (2) With Fixed Effects

Constant 0.664** —

(0.037)

Fair 0.009 0.006

(0.047) (0.047)

Home -0.165* -0.200**

(0.070) (0.071)

Fair × Home 0.291** 0.294**

(0.083) (0.083)

Year, Month, Weekend F.E.? no yes

n 631 631

R2 0.033 0.060

Note: Authors’ calculations, data collected from Baseball Reference, New York Times, and

the National Climate Data Center of the National Center for Atmospheric Research for the

baseball season, 1890–1899. **significance = 0.01. *significance = 0.05.
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Table 2.6: Probit Regression Results: Construction of Daily Priors for Fair Weather

(1) Without Week (2) With Week (3) With Week

Fixed Effects Fixed Effects Fixed Effects

Constant 0.468 – –

(0.041)

Rain in Day t− 1 -0.443** -0.424** -0.420**

(0.097) (0.099) (0.099)

Rain in Day t− 2 0.206 0.218* 0.222*

(0.109) (0.111) (0.111)

Rain in Day t− 3 0.008 0.014 0.020

(0.102) (0.104) (0.104)

Rain in Day t− 4 0.140 0.140 0.147

(0.107) (0.110) (0.110)

Rain in Day t− 5 -0.011 -0.027 -0.025

(0.099) (0.101) (0.101)

Home Game Scheduled – – 0.131

(0.072)

n 1635 1635 1635

Pseudo R2 0.012 0.030 0.031

Note: Author’s calculations, data collected from New York Times (for the scheduled home

games), and the National Climate Data Center of the National Center for Atmospheric

Research for the baseball season, 1890–1899. 26 week fixed effects are included in regression

(2). **significance = 0.01. *significance = 0.05.
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Table 2.7: Regression Results: Times Predict Fair Weather

A. Before June 16, 1896 (1) Without Prior (2) With Prior

Constant -0.025** -0.440**

(0.053) (0.167)

Fair 0.376** 0.353**

(0.036) (0.037)

Home −0.025† −0.040‡

(0.053) (0.053)

Fair × Home 0.048† 0.070‡

(0.062) (0.063)

Daily Prior for Fair Weather – 1.241**

(0.250)

n 1064 1019

R2 0.129 0.150

B. June 16, 1896 and After (1) Without Prior (2) With Prior

Constant 0.335** -0.277

(0.037) (0.192)

Fair 0.338** 0.320**

(0.047) (0.048)

Home 0.165∗†† 0.121‡‡

(0.070) (0.071)

Fair × Home −0.038†† 0.006‡‡

(0.083) (0.083)

Daily Prior for Fair Weather – 0.933**

(0.285)

n 631 616

R2 0.129 0.150

Note: Author’s calculations, data collected from Baseball Reference, New York Times,

and the National Climate Data Center of the National Center for Atmospheric Research

for the baseball season, 1890–1899. **significance = 0.01. *significance = 0.05. Hypothesis

test, 2α2 + α3 = 0: †F (1, 1060) = 0.00 (sig. = 0.98), ‡F (1, 1052) = 0.03 (sig. = 0.87),

††F (1, 627) = 12.22 (sig. = 0.0005), and ‡‡F (1, 623) = 8.77 (sig. = 0.003).
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Table 2.8: Regression Results: Attendance, for the Period after June 16, 1896

Constant 4711.43**

(1239.50)

Predict Fair Weather 341.68

(1068.31)

Realized Fair Weather -463.36

(1026.86)

Year when the Rank was 3 2289.51*

(1003.01)

Year when the Rank was 10 -1015.84

(1238.75)

n 102

R2 0.102

Note: Authors’ calculations, data collected from Baseball Reference, New York Times,

and the National Climate Data Center of the National Center for Atmospheric Research

for the baseball season from June 16, 1896 through 1899. **significance = 0.01. *signifi-

cance = 0.05.
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Lemma 1 The set {(p, q)|(p, q) ∈ [0, 1]× [0, 1] and p+ q ≥ 1} satisfies three properties:

1. Observing a fair signal increases the posterior on state A relative to the prior, and observing

a rainy signal decreases the posterior on state A relative to the prior.

2. For any signal structure (p′, q′) ∈ [0, 1] × [0, 1], there exists a (p, q) ∈ {(p, q)|(p, q) ∈ [0, 1] ×

[0, 1] and p+ q ≥ 1} that generates the same posteriors with the same probabilities as (p′, q′).

3. For any strict subset S of {(p, q)|(p, q) ∈ [0, 1] × [0, 1] and p + q ≥ 1}, there exists a point

(p′, q′) ∈ [0, 1]× [0, 1] such that there is no element of S that generates the same posteriors as

(p′, q′).

Proof We will prove each part of the Lemma in turn. First we prove the first part. Recall that for

a given prior 0 < ρ < 1 on state A (fair weather) and information structure (p, q), the posterior for

A given the fair signal is

ψF =
ρp

ρp+ (1− ρ)(1− q)
.

Now ψF > ρ if and only if

ψF =
ρp

ρp+ (1− ρ)(1− q)
> ρ,

which holds if and only if

(1− ρ)p > (1− ρ)− (1− ρ)q,

which is the same as

p+ q > 1.

An analogous series of steps establishes the result for the posterior after observing a rainy signal,

ψR =
ρ(1− p)

ρ(1− p) + (1− ρ)q
.

To prove the second part, assume that p+ q ≤ 1. In this case, denote p′ = 1− p and q′ = 1− q.

We will simply work with likelihood ratios. Under (p, q), likelihood ratio p
1−q occurs with probability

ρp+ (1− ρ)(1− q) and likelihood ratio 1−p
q occurs with probability ρ(1− p) + (1− ρ)q.

Under (p′, q′) likelihood ratio 1−p′
q′ = p

1−q occurs with probability ρ(1−p′)+(1−ρ)q′ = ρp+(1−

ρ)(1−q). Likelihood ratio p′

1−q′ = 1−p
q occurs with probability ρp′+(1−ρ)(1−q′) = ρ(1−p)+(1−ρ)q.

Therefore (p′, q′) generates the same posterior distribution as (p, q). Moreover, p′ + q′ = (1 − p) +

(1− q) = 2−p− q ≥ 1 since p+ q ≤ 1. So therefore, instead of considering some (p, q) we can always

instead consider the corresponding p′ = 1− p, q′ = 1− q. This proves the second part.
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To prove the third part, observe that in order for two signal structures (p, q) and (p′, q′) to

generate the same posteriors (so that for both signal structures, a fair weather prediction increases

the posterior relative to the prior and a rainy weather prediction decreases it) it must be the case

that p′

1−q′ = p
1−q and 1−p′

q′ = 1−p
q .

Therefore p′ − p′q = p − pq′ and q − p′q = q′ − pq′, which is equivalent to q = −p+pq′+p′
p′ and

q = q′−pq′
1−p′ . Simplifying, we have −p+pq

′+p′

p′ = q′−pq′
1−p′ , or p′q′−pq′p′ = −p+pq′+p′+pp′−pp′q′−p′2.

This implies that p′q′ = −p+pq′+p′+pp′−p′2, and so p(1−q′−p′) = −p′q′+p′−p′2 = p′(1−q′−p′),

which holds only if and only if p = p′. This proves the third part.

�

Lemma 2 Assume p and q jointly satisfy q ≥ 1 − p. Then (p′, q′) is Blackwell sufficient/more

informative for (p, q) if and only if p′ ≥ p
1−q −

p
1−q q

′ and p′ ≥ 1− q′ 1−pq .

Proof Recall that one signal structure (p′, q′) is Blackwell more informative than another (p, q)

if and only if the distribution of posteriors induced by (p′, q′) is a mean preserving spread of the

distribution induced by (p, q). By the law of iterated expectations, the expected posterior under

(p′, q′) and (p, q) must be the same — the prior. Because there are only 2 signals, there will be only

2 posteriors. So we just have to show that the posteriors under (p′, q′) are more extreme (in the

sense that they are farther from the prior) than the posteriors under (p, q). In order to simplify the

proofs, we will show an equivalent result — that the likelihood ratios under (p′, q′) are more extreme

(farther from 1) than the likelihood ratios under (p, q).

The likelihood ratios after observing a fair signal under (p′, q′) and (p, q) are (respectively) p′

1−q′

and p
1−q while the likelihood ratios after observing a rainy signal are 1−p′

q′ and 1−p
q .

In order for the ratios under (p′, q′) to be farther from 1 than (p, q), then p′

1−q′ ≥
p

1−q and

1−p′
q′ ≤

1−p
q . This is equivalent to p′ ≥ p

1−q −
p

1−q q
′ and p′ ≥ 1− q′ 1−pq .

�

Proposition 1 If the decision-maker strictly prefers at least one signal structure to another, then

p∗ is increasing in H, L, and ρ and q∗ is decreasing in H, L, and ρ.

Proof Because any feasible signal structure is Blackwell dominated by a signal structure on the

technology constraint, the agent will always want to choose an information structure along the

technology constraint, if any signal feasible signal structure allows her to condition her action. If the

agent finds it optimal to condition, then she must be getting a higher payoff than by not conditioning.

First we deal with cases in which the consumer conditions her actions. This occurs when neither

conditioning constraint, (4) or (5), is binding. Recall that indifference curves have slope ρH
(1−ρ)L .
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This slope is negative (because L < 0), and is decreasing in H, L, and ρ. If the agent conditions

her actions, and chooses an interior solution (p∗, q∗) at the point of tangency to the boundary of

the technologically-feasible set (as in Figure 4), then standard comparative statics lead to the result

that p∗ is increasing in H, L, and ρ, while q∗ is decreasing in H, L and ρ.

Next, we consider cases that lead the consumer to not condition her actions. As discussed in

the text, this happens when one of the two conditioning constraints, (4) or (5), holds with equality

(i.e., is binding). Notice that the slope of the conditioning constraints is the same as the slope

of the indifference curves for a consumer who conditions her actions, and recall that the binding

conditioning constraint passes either through (p, q) = (1, 0) or (p, q) = (0, 1). So if the consumer

is not conditioning her actions, she must be at one of these two corners; either the consumer’s

indifference curve is so steep that her optimal signal structure, among feasible signals, is (1, 0), or

so flat that her optimal signal structure is (0, 1). Either way, the conditioning constraint holds with

equality, so the consumer places zero value on any information structure available in the feasible set.

Such a consumer is thus trivially indifferent over signal structures.

�

Proposition 2 On non-game days the information structure produced will exhibit no bias. On game

days, if any information is purchased, the information structure will generically be biased, and the

bias will be increasing in H, L, and ρ.

Proof By construction, on non-home game days, the consumer has a preference for unbiased signals,

and so if information is provided it will be unbiased.

Recall that our measure of bias is B = p−q. On game days, if the consumer is willing to purchase

a signal for positive amounts, then the firm will provide her the optimal feasible signal structure

(p∗, q∗) because this maximizes the price at which the information can be sold, and will charge

willingness to pay, r = p∗ρH + (1− q∗)(1− ρ)L− ū. In general the optimal signal structure differs

on game days because payoffs to actions (e.g., H and L) differ. So we expect game-day bias, and

comparative statics from Proposition 1 pertain. Thus, an increase in H, in L, or in ρ, leads to an

increase in p∗ and a decrease in q∗, and thus to an increase in B = p∗ − q∗.

�

Proposition 3 When bias is supply-driven bias, if information is purchased on non-game days, the

information structure produced will exhibit no bias. On game days, if any information is purchased,

the information structure will always be positively biased and the bias will be decreasing in H, L, and

ρ.
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Proof As in Proposition 2, by construction, on non-home game days the consumer has a preference

for unbiased signals, and so if information is provided it will be unbiased.

As for game days, the firm’s problem is to maximize it’s payoff. We can write this maximization

problem as

max
p,q
{b(p, 1− q,H,L, ρ)− c(p− q)}, (2.11)

subject to the technology constraint,

q ≤ φ(p). (2.12)

If the technology constraint is binding, the following first order conditions characterize the re-

sulting optimal signal structure, (p∗, q∗) :

b1(p∗, 1− q∗, H, L, ρ)− c′(p∗ − q∗) + λφ′(p∗) = 0

and

−b2(p∗, 1− q∗, H, L, ρ) + c′(p∗ − q∗)− λ = 0.

In turn, these first order conditions imply that

b1(p∗, 1− q∗, H, L, ρ)− c′(p∗ − q∗) = φ′(p∗)[b2(p∗, 1− q∗, H, L, ρ)− c′(p∗ − q∗)],

which in turn can be rewritten,

b1(p∗, 1− q∗, H, L, ρ)− φ′(p∗)b2(p∗, 1− q∗, H, L, ρ) = [1− φ′(p∗)]c′(p∗ − q∗). (2.13)

Note that in this last equation each of these terms is positive: b1(p∗, 1 − q∗, H, L, ρ), −φ′(p∗),

b2(p∗, 1− q∗, H, L, ρ), [1− φ′(p∗)], and c′(p∗ − q∗).

Now we turn to properties of the maximum.

The first property concerns positive bias. From inspection of the firm’s payoff (7), it is clear that

the firm will always choose a positively-biased signal structure, i.e., set p ≥ q. To see this, consider

some signal structure that is not positively biased. If p < q then the firm could instead choose an

alternative structure, p′ = q and q′ = p, and c(p − q) would be the same, but b(p, 1 − q,H,L, ρ)

would be strictly larger.

Next, we need to consider two possibilities for the maximum — the optimum is on the the interior

of the feasible set, Φ(p, q), or on boundary. We start with the latter case.
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Suppose the maximum is on a boundary. It cannot be on the lower boundary (p+q = 1) because

if it is, it has the same properties, from the consumer’s perspective, as p = q = 0.5 (as is clear from

posteriors, (1) and (2) in the text). But as we have seen, it is always optimal for the firm to introduce

a small amount of bias. Thus, an optimum on the boundary of Φ(p, q) must lie on the technology

constraint, so (8) is binding. We have already seen that solution in this case is characterized by (9).

The comparative statics exercises are standard. Consider, for example, an increase in H. Since

we are on a boundary, we substitute q∗ = φ(p∗) into (9), and then evaluate that expression using

the implicit function theorem. This gives

∂p∗

∂H
= −b11 − φ

′(p∗)b12 − φ′′(p∗)b2 − φ′(p∗)b21 + φ′(p∗)2b22 + φ′′(p∗)c′(·)− [1− φ′(p∗)]2c′′(·)
b13 − φ′(p∗)b23

,

which is negative (given assumptions about the signs of cross partials and the convexity of c(·).

Similar exercises lead to the conclusions,

∂p∗

∂H
< 0,

∂p∗

∂L
< 0, and

∂p∗

∂ρ
< 0, (2.14)

and q∗ must in each case move the opposite direction. This gives us the desired results concerning

bias, B = p∗ − q∗.

Given our assumptions, second order conditions pertain, and the optimum on the technology

constraint must be unique. We note, for completeness sake, that there cannot be a corner solution

on the technology constraint given our assumptions that both φ′(p) and φ′′(p) are strictly negative.

Suppose that instead the the optimum is in the interior of the feasible set. In this instance first

order conditions for (7) simplify to

b1(p∗, 1− q∗, H, L, ρ)− c′(p∗ − q∗) = 0,

and

−b2(p∗, 1− q∗, H, L, ρ) + c′(p∗ − q∗) = 0.

Here, comparative static exercises analogous to those just presented lead us to the same conclusion

just presented.

�
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CHAPTER III

Behavioral Mechanism Design: Evidence from the Modified

First-Price Auctions1

3.1 Introduction

Mechanism design is the modern economic analysis of institutions and markets. It has changed

the way economists think about optimal institutions when governments are unaware of individual

preferences. In the mechanism design literature, the focus is on designing optimal mechanisms

(Jackson 2001; Jackson 2003). For example, designing the optimal mechanism is an extremely

important problem in the auction literature, where the objective is to increase efficiency by ensuring

the object goes to the bidder with the highest value. Experimental research has been helpful in

testing whether constructed mechanisms generate the predicted outcomes (Chen and Ledyard 2008;

McFadden 2009).2

The aim of this paper is to investigate whether seemingly equivalent mechanisms generate the

same outcomes in a laboratory setting. Discovering of this issue is crucial, since the mechanism

design theory is a standard toolkit for many economists and has affected virtually all areas of policy

including regulation, auctions, and environmental policy. An important finding in this literature

is that theoretically outcome-equivalent mechanisms do not necessarily lead to the same outcome

(Kagel 1995; Kagel and Levin 2011). Indeed, the auction literature provided remarkable evidence

1We are indebted to Andrew Schotter for his guidance and help throughout the project. This project would
never been possible without his wisdom and support. We also thank Alberto Bisin, Yan Chen, Benjamin Chiao,
Syngjoo Choi, James C. Cox, Matthew Embrey, Guillaume R. Frechette, Basak Gunes, Charles Holt, Eric S. Maskin,
Daisuke Nakajima, Erkut Ozbay, Charles R. Plott, Debraj Ray, Alejandro Solis and Viktor Tsyrennikov for very
helpful comments. This research was supported by the C.V. Starr Center for Applied Economics and the Center for
Experimental Social Science of NYU and Department of Economics at University of Michigan. Any remaining errors
are ours. Emails: yusufcan@umich.edu, neslihan@umich.edu, setay@umich.edu

2In particular, experiments were helpful in testing auctions (Kagel 1995; List 2003; Filiz-Ozbay and Ozbay 2007;
Kagel and Levin 2009), optimal contracting (Healy, Ledyard, Noussair, Thronson, Ulrich and Varsi 2007), prediction
markets (Healy, Ledyard, Linardi, and Lowery 2010), matching (Niederle, Roth and Sonmez 2008) and public goods
(Attiyeh, Franciosi, Isaac and James 2000; Kawagoe and Mori 2001; Chen 2004; Healy 2006).
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that even strategically equivalent mechanisms do not generate equal revenues: the first-price sealed-

bid and Dutch auctions perform differently in the laboratory settings (Coppinger, Smith and Titus

1980; Cox, Roberson and Smith 1982; Turocy, Watson and Battalio 2007; Katok and Kwasnica

2008).3 Note that strategic equivalence is stronger than outcome-equivalence since for every strategy

in the Dutch auction, there is another strategy in the first-price auction which results in the same

outcome; hence one could be tempted to conclude that both auction formats are identical.

While these results are initially striking, one might argue that these are fundamentally different

institutions. They differ in the way that they are implemented: the Dutch auction is progressive and

open, while the first-price auction is static and sealed (Vickrey 1961; Krishna 2002). Indeed, these

procedural differences are vital for an agent whose risk preference is outside of the standard expected

utility model. Even though these institutions are strategically-equivalent, the revenue equivalence

result holds only when the agents are expected utility maximizers (Karni 1988).4

The novelty of this paper is to design and experimentally contrast mechanisms that share exactly

the same structure/procedure and are strategically-equivalent. In contrast to earlier studies, the risk

preferences of agents are not important in this class of mechanisms. We consider an auction envi-

ronment with a single indivisible object and buyers with independent private values. We introduce

a class of mechanisms, so called Mechanism (α), that generalizes the standard first-price sealed bid

auction. In Mechanism (α), buyers are asked to submit a value which will then be multiplied by

α to calculate the bids in the auction. As in the first-price sealed-bid auction, the buyer with the

highest bid gets the good and pays her/his bid. Note that, in equilibrium, the “calculated bids”

in the Mechanism (α) are identical for any α. In addition, Mechanism (α) has the same structure

under different α’s with a small change in how the outcome function translates the values to the

bids. Therefore, this family of mechanisms are outcome-equivalent without the need for particular

assumptions, such as on risk preferences.

We use the first-price sealed-bid auction as our base mechanism. There are two reasons for this

choice. First, the first-price sealed-bid auction is commonly used both in the mechanism design

literature and in the real world. Second, we can construct an environment with exactly the same

structure across auctions. As a further control to keep the environment same, we provide a “bid cal-

culator” to the subjects so that in all mechanisms calculating the bids (transformations of submitted

values to bids) does not create any additional complexity to the auctions than would be inherited

by the standard first-price auction. This is in line with Jackson (2001) who argues that complexity

3Lucking-Reiley (1999) shows that these auctions are not revenue equivalent in a field setting.
4For both the first-price and Dutch auctions, Nakajima (2011) characterizes an equilibrium when bidders have

non-expected utility preferences, particularly exhibiting the Allais paradox.
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may explain why some outcome-equivalent mechanisms do not perform the same way.

In order to address the question of whether individuals behave equivalently in these strategically-

equivalent mechanisms, we run an experiment considering three treatments: Mechanism (0.9), Mech-

anism (1), and Mechanism (1.1), where Mechanism (1) corresponds to the standard first-price sealed-

bid auction. We pick α’s close to 1 on purpose to keep the mechanisms as similar as possible. In

addition, we pick α’s symmetrically around 1 so that the behavioral differences will not be attributed

to the distance from the standard first-price auction.

In contrast with what theory predicts, we do not observe outcome-equivalence. We establish the

following conclusions: (i) we find that the subjects bidding behavior differed most notably between

Mechanism (0.9) and Mechanism (1), where those participating in Mechanism (0.9) shaved their bids

by approximately 5%, and (ii) the revenue equivalence does not hold; the standard first-price auction

generated higher revenue than the Mechanism (0.9)–subjects who participated in Mechanism (0.9)

earned approximately 20% more compared to Mechanism (1).

Our findings provide new challenges for the auction theory as well as the mechanism design

theory in general. In order to design optimal mechanisms, one needs to consider the behavioral

aspects of mechanisms. The behavioral anomalies might then be taken into account to provide

better theories and more efficient mechanisms. The next section describes the Mechanisms (α) and

shows the correspondence between the first-price sealed-bid auction. In Section 3, experimental

design and procedures are explained. Section 4 presents the data analysis. Section 5 concludes.

3.2 Mechanism (α)

There is a single indivisible good for sale and there are N bidders with private valuations, vi.

The private values are distributed uniformly over the range V = [0, 100]. In Mechanism (α), each

potential buyer is asked to submit a sealed-value si instead of a sealed-bid. The submitted-values

are multiplied by α to calculate the bids in the auction. The potential buyer with the highest

calculated-bid gets the good and pays her calculated-bid.

It is easy to see that this family of mechanisms are identical and outcome-equivalent independent

of bidders’ risk preferences. Assume that there exists an equilibrium in the standard first-price

auction (α = 1). For any α > 0, 1
α times the original strategy will generate an equilibrium with the

same outcome in Mechanism (α). In other words, if there is no incentive to unilaterally deviate from

the equilibrium when α = 1, then no one would gain by deviating unilaterally from the described

equilibrium in Mechanism (α).
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Now, for the illustration purposes, we derive the unique symmetric equilibrium strategy when

bidders are assumed to have the same von-Neumann-Morgenstern utility function u(.) with u(0) = 0,

u
′
> 0 and u

′′ ≤ 0.5 Given α > 0, assume all other players j 6= i follow symmetric, increasing and

differentiable equilibrium strategy Sα : V → V . Bidder i is facing a trade off between the winning

probability and the gain of winning. Bidder i’s maximization problem is:

max
s

u(vi − αs)
[
S−1α (s)

100

]N−1

At a symmetric equilibrium, s = Sα(vi). Together with the first order condition, this gives

(N − 1)
u(vi − αSα(vi))

u′(vi − αSα(vi))
= αS′α(vi)vi (3.1)

where Sα(0) = 0.

If agents have Constant Relative Risk Aversion (CRRA) utility functions with risk aversion

coefficient equal to 1− r, the unique symmetric equilibrium strategy is:

Sα(vi) =
N − 1

α(N − 1 + r)
vi. (3.2)

In equilibrium, the submitted-value function, given by equation (crravalue), multiplied with α

gives the calculated-bid function. Therefore, it is easy to see that the bids are no longer a function

of α and therefore, Mechanism (α) generates the same bid function regardless of the α. That is,

αSα(vi) =
N − 1

(N − 1 + r)
vi.

In addition, note that, α = 1 corresponds to the standard first-price sealed-bid auction.

3.3 Experimental Procedure

The experiments were performed in the RCGD experimental lab at the Institute for Social

Research at the University of Michigan during September 2011.6 Subjects were recruited from the

students of the university (through the ORSEE recruitment program which sends an E-mail to all

university students who are enrolled to the program).

The experiment consisted of three treatments, each consisting of three sessions. In each session,

5Homogeneity assumption simplifies the illustration of the model, however, our results are independent of it, as
shown in Appendix B.

6Pilot experiments were run at New York University at the CESS Laboratory.
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there were 8 to 16 subjects and 20 rounds. In each round, groups of 4 subjects were formed randomly.

Each subject participated in only one of the sessions. The sessions took approximately one hour.

Subjects earned laboratory currency (points) which was then converted into cash at the end of the

session. A conversion rate of .30 cents per point earned was used.

The treatments are shown in the table below.

# subjects
# subjects

in each auction
# rounds α

Mechanism (1) 36 4 20 1.0

Mechanism (0.9) 32 4 20 0.9

Mechanism (1.1) 36 4 20 1.1

Table 3.1: Experimental Design

In the three treatments, we chose mechanisms with different α’s corresponding to the different

treatments. Notice that the Mechanism (1) is simply a first-price sealed-bid auction. Mechanism

(0.9) and Mechanism (1.1) are both theoretically equivalent to Mechanism (1), but we would like to

see whether they are behaviorally equivalent as well.

In our experiment, participants were seated individually in visually isolated cubicles with com-

puters in front of them. Then, they received instructions on the computer screen (see Appendix A).

Instructions were also read aloud in order to make sure that the information was common knowledge.

We follow a between subjects design, so each subject participate in only one of the treatments. Sub-

jects were told that there would be 20 rounds and each period, they would be randomly re-grouped

with 3 other people in the room without knowing the identities of these people. In each period

the value of the object for each subject was determined by a random number generator program

in front of them. The values were between 1 and 100 where every number of two decimal places

was equally likely.7 At each period, subjects viewed a screen that showed their value and contained

three sections: a “bid calculator” for testing submitted values,8 a “value submission” section where

submitted values were to be entered, and a history sheet indicating results from previous rounds.

The subject with the highest calculated bid, which was equal to the submitted value multiplied with

the α corresponding to that treatment, won the object in his/her group. The profit of the winner

was determined by the difference between his/her value and the calculated bid. In all treatments,

the winner was determined randomly with equal probability in case of a tie. At the end of each

round, subjects could view the outcome of the auction (whether they won and their profit in points)

7We allowed them to enter decimal places to enable a continuous strategy space.
8A bid calculator calculates what would be the bid of the subject for a given submitted value.
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and review their submitted value and calculated bid.

The main aim of this paper is to see if there is any behavioral difference between these theoret-

ically equivalent mechanisms. We designed the experiment in such a way that the mechanisms are

not complicated. Some may argue that any behavioral difference may be attributed to the difference

in the complexity of the mechanisms, i.e., the reason for different outcomes could be simply because

the subjects failed to recognize the equilibrium of the new game due to its complexity; however,

complications of this sort are prevented with the use of the “bid calculator.” Also, notice that the

Mechanisms (0.9) and (1.1) are not complicated in the sense that if one can solve the equilibrium

in the first-price sealed-bid auction then one can solve it in these mechanisms as well.9

3.4 Results

As we have demonstrated earlier, for any α1 and α2 not equal to zero, the Mechanisms (α1) and

(α2) are theoretically equivalent. However, if the mechanisms are not behaviorally equivalent, then

this may open up a new dimension for designing mechanisms.

3.4.1 Bidding Behavior in the Mechanisms

If individuals have CRRA utility functions with risk aversion coefficient equal to 1− r, equation

(3.2) implies linear bidding behavior. In order to test for linearity, we run the following regression

for each treatment:10

Bidi = β0 + β1valuei + β2value
2
i + ui.

We cannot reject the null hypothesis that β2 equals to zero in all treatments at 5% level, which

provides support for linearity of the bid function.11

Next, for each mechanism, we regress bids on values and a constant term (see Table 2); we find

that the slope (robust standard error) of the estimated bid function of the Mechanism (1) is 0.886

(0.016). Constant term (robust standard error) is equal to -0.225 (0.513). However, the constant

term is not significant at the 5% level. If we repeat the regression without a constant term, the slope

coefficient (robust standard error) is 0.882 (0.008).

9We do not expect Mechanisms (0.9) and (1.1) to have different levels of complexity even if one argues Mechanism
(1) has less cognitive load.

10Throughout the paper we cluster observations at the session level.
11The associated p-value for β2 is 0.277 for Mechanism (1), 0.223 for Mechanism (0.9), and 0.202 for Mechanism

(1.1).
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We observe that subjects are shaving their bids approximately 5% more in Mechanism (0.9).

Indeed, we find that, in the Mechanism (0.9), the coefficient (robust standard error) of the estimated

bid function is 0.829 (0.011). For Mechanism (1.1), the observed behavior is similar to Mechanism

(1). The coefficient (robust standard error) of the estimated bid function is 0.874 (0.010). To make

the comparisons easier, Table 2 summarizes the estimated bid functions, both with and without

constants.

With constant Without constant No. of
constant value value observations

Mechanism (1) -0.225 0.886*** 0.882*** 720
(0.513) (0.016) (0.008)

Mechanism (0.9) 0.215 0.829*** 0.832*** 640
(0.539) (0.011) (0.006)

Mechanism (1.1) -0.615 0.874*** 0.865*** 720
(0.475) (0.010) (0.006)

Standard errors are in parenthesis, *** 1% significance level.

Table 3.2: Estimated Bid Functions

3.4.2 Are differences significant?

Although the Mechanism (0.9) and the Mechanism (1) are TOE, our data suggests that there

is a behavioral difference between mechanisms. In order to test for the equivalence of the two bid

functions, we have used the dummy variable approach. We run the following regression:

Bidi = β0 + β1Di + β2valuei + β3valuei ∗Di + ui

where Di is equal to 1 if data point is coming from the Mechanism (0.9), 0 otherwise. We reject

that the two bid functions have the same slope coefficients at 5% level ( p − value = 0.022). We

also repeat the same regression without a constant and we still conclude that the interaction term

is significantly different than zero (p-value=0.008). Therefore, we reject the null hypothesis that the

estimated bid functions are the same.

Pair-wise comparisons of the regressions show that the estimated bid function of the Mechanism

(1.1) is significantly different (at the 5% significance level) than the Mechanism (0.9), but is not

significantly different from the Mechanism (1.0). Table 3 documents these findings.

The most dramatic difference across the mechanisms is seen in the earnings made by those

subjects participating in Mechanism (0.9) compared to Mechanism (1). Those who participated in
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With constant Without constant No. of
β1 β3 β3 observations

Mechanism (1) to (0.9) 0.441 -0.057** -0.050*** 1360
(0.666) (0.017) (0.009)

Mechanism (1) to (1.1) -0.390 -0.012 -0.018 1440
(0.626) (0.017) (0.009)

Mechanism (0.9) to (1.1) -0.830 0.045** 0.032*** 1360
(0.643) (0.014) (0.008)

Standard errors are in parenthesis, ***1% significance level and **5% significance level.

Table 3.3: Pair-wise Comparison of Estimated Bid Functions

the former treatment made approximately 20% more in earnings, as seen by comparing the average

earnings in points of 39.73 in the Mechanism (0.9) to 32.47 in the Mechanism (1).12 Of course,

this intriguing difference indicates a revenue difference across the mechanisms where one would have

expected equivalence; this empirical anomaly suggests that one should be careful in picking the

optimal mechanism even among the theoretically equivalent class of mechanisms.

3.4.3 Time Trends

Testing for adjustments in bidding over time for each mechanism is not only interesting but

also necessary in order to conclude that these mechanisms differ. It may be the case that bidding

behavior in Mechanism (0.9) is getting similar to the bidding behavior in the other mechanisms over

time. We therefore repeat our regression analysis by adding one more explanatory variable, “iro,”

which is equal to the inverse of round. A nonlinear adjustment process is preferred over a linear

adjustment process, since this allows for a rapid learning in the first rounds.13 In any case, results

do not depend on this specification. We get the same results if we instead add “round.”

Table 3 reports the coefficients of the regressions. The time trend coefficient is not significant in

the Mechanism (1.1). In the Mechanism (0.9) and (1.0), the time trend coefficient is negative and

significant at the 5% significance level. The negative time trend coefficient suggests higher bidding

over time. However, we see that even if bids are increasing in Mechanism (0.9), subjects do not bid

as aggressively as in Mechanism (1).14

12The average earnings of the Mechanism (1.1) was 35.22, which is in line with the fact that the estimated bid
function for subjects participating in this treatment was slightly less than those participating in Mechanism (1) but
higher than those participating in Mechanism (0.9).

13See Kagel (1995, pages 521-523) for a discussion on this issue.
14To see this compare the coefficients of value in the regressions: 0.909 with 0.859.
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No. of
Value Iro observations

Mechanism (1) 0.909*** -10.632** 720
(0.007) (1.100)

Mechanism (0.9) 0.859*** -9.536** 640
(0.009) (1.026)

Mechanism (1.1) 0.886*** -8.046 720
(0.005) (2.839)

Standard errors are in parenthesis, *** 1% significance level.

Table 3.4: Time Trends

3.4.4 Can Heterogeneity be an Explanation?

As we have already shown, CRRA model itself is not enough to explain the different bids in

different mechanisms. The risk aversion coefficient implied by Mechanism (1.0), 1− r = 0.60, is not

consistent with the risk preferences observed in the other two treatments where 1 − r = 0.39 for

α = 0.9 and 1− r = 0.53 for α = 1.1.

Bidding theory has been extended to agents with heterogeneous risk preferences (see Cox, Smith

and Walker (1982, 1983, 1985, 1988)). The heterogeneous constant relative risk aversion model

(CRRAM) assumes that each bidder has a different risk aversion coefficient which is drawn from some

distribution Φ on (0,1]. Each bidder is assumed to know only his/her own risk aversion parameter and

that other bidders’ risk aversion parameters are randomly drawn from the distribution Φ. CRRAM

model can explain the overbidding behavior observed in the first-price sealed-bid auctions and the

heterogeneity between the agents.

In Appendix B, we show that, for any α, each individual i should bid the same way under each

Mechanism (α). However, CRRAM model allows for different bid functions for different αs if there

are systematic differences in risk preferences across treatments. Therefore, if subject pools are driven

from the same population, then Mechanism (α) generates the same bid function for any α. Therefore,

in this section, we would like to test whether there is any evidence of systematic differences in risk

preferences across treatments. If subjects in the Mechanism (0.9) are systematically less risk averse,

then CRRAM model would explain the differences in the bidding behavior.

In part 2 of our experiment, we elicit individuals’ risk preferences. The subjects were presented

with 15 situations, each of which introduced the choice between a fixed payoff of a specific amount

(the “safe choice”) or a 50-50 lottery between a payoff of $4.00 and of $0.00. When the subjects

submitted all of their choices, the computer randomly selected a situation for each subject, and they
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received the payoff from whichever option they selected from that situation. The average number of

safe choices (robust standard deviation) for each treatment is 5.694 (2.571), 5.688 (2.431) and 5.444

(2.567) out of 15 possible choices for Mechanisms 1.0, 0.9 and 1.1, respectively.

We use the non-parametric Mann-Whitney (Wilcoxon Rank Sum) test for each possible pair of

treatments in order to test the hypothesis that the number of safe choices are the same against the

alternative hypothesis that one treatment has systematically larger values. Table 4 presents the

results. Since we cannot reject the hypothesis that the number of safe choices are the same across

any pairwise comparisons, we can conclude that the behavioral differences cannot be consistently

explained by the CRRAM model.15

Nonparametric Regression Results

Mechanism (1) to (0.9) -0.299
(0.765)

Mechanism (1) to (1.1) 0.591
(0.555)

Mechanism (0.9) to (1.1) 0.209
(0.835)

Note: Mann-Whitney U-test (one-tail) based on ranks is used. The null hypothesis is that two sets of coefficients come

from the same distribution. The numbers in the cells are the z-statistics and the p-values are given in the brackets.

Table 3.5: Pair-wise Comparison of Risk Aversion Coefficients

3.5 Conclusion

We study the behavioral difference between strategically-equivalent mechanisms that share the

exact same environment. In order to do this, we construct the Mechanism (α), where the bid

functions are identical across different α’s. In general, we observe differences across the mechanisms

in terms of estimated bid functions: Mechanism (0.9) differs significantly compared to Mechanism

(1) and to Mechanism (1.1). Therefore we also see that revenue equivalence between the mechanisms

does not hold.

While we cannot pin down what might cause this significant difference, we conjecture that this

might be explained by anchoring and adjustment heuristic (Slovic and Lichtenstein 1971; Tversky

and Kahneman 1974).16 We observe that, for α = 0.9, individuals do not adjust their bids sufficiently.

15A Kruskal-Wallis test also confirms the same result (p − value = 0.848). In addition, we checked whether the
composition of subjects in different treatments differ in terms of age, gender, participating in an auction before and
the frequency of gambling, which may all affect how individuals bid in auctions, and we do not find any significant
differences (Kruskal-Wallis tests; p-values are 0.288, 0.164, 0.574, and 0.220, respectively).

16Anchoring and adjustment is defined as different starting points yielding different actions, since adjustments are
typically insufficient.
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In our experiment, on average, individuals submit 88% of their values in Mechanism (1). If they

also submit the 88% of their values in Mechanism (0.9), this corresponds to a bid function with a

slope of 0.79. Instead we see that individuals bid 83% of their values. Clearly, individuals make

an adjustment but the adjustment is not enough. The reason we do not see a similar insufficient

adjustment in Mechanism (1.1), which would imply a higher bid function, might simply be due to

the small margin of earnings in that region. Individuals realize insufficient adjustment corresponds

to very little earnings, so the adjustment is complete. We see this to our advantage since this shows

that mechanisms are not different in their complexity, i.e., subjects are able to make full adjustments.

These findings open up a new research agenda for the mechanism design theory. We provide

strong evidence that the behavior of individuals is different even under strategically-equivalent mech-

anisms that are also procedurally the same. This is suggestive that while searching for the optimal

mechanism, theory should incorporate the behavioral aspects of mechanisms. As such, these findings

have overriding consequences for the parts of theory which relate to implementation and equivalence,

including the Revelation Principle.
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3.6 Instructions for the Mechanism (0.9)

Instructions

Thank you for agreeing to participate in this experiment. Please make sure your mobile phones

are turned off to avoid interruptions during the meeting. This is an experiment in the economics of

decision making. Your participation in this experiment is voluntary but we hope that you will also

find the experiment interesting. You will be compensated for your participation. You will be given

$7 for showing up. You can earn an additional amount of cash which will be distributed at the end

of the experiment. The instructions are simple and you will benefit from following them carefully.

Part 1

In the first part of the experiment there will be a series of auctions. In each round you will

participate in an auction with three other participants, for a total of 4 people. Between rounds

the people in your group will change randomly. However, you will not know the identities of these

people. There will be 20 rounds. In each round, your earnings will depend of your choice and the

choices made by the 3 other people in your group. We use points to reward you. At the end of the

experiment we will pay you 30 cents for each point you won.

In each round, a fictitious good will be auctioned and each of you will have different values for

this good. Each round, your value for the good will be determined by a random number generator.

The number will be between 1 and 100 where every number (of two decimal places) is equally likely.

At the beginning of Round 1 you will be shown your value for the good. You will participate

in an auction for the good, where your final earnings will be the difference between your value and

your bid if you win the auction. However, in this auction you will not directly submit a bid. Instead,

you will be asked to enter a “submitted value” for the good and a bid will then be calculated for

you. You are allowed to enter a “submitted value” that is different from your actual value. The

server will collect each participants “submitted value” from Round 1, and your “submitted values”

will be multiplied by .9 to determine your calculated bid. For example, say your submitted value

is 60, then a calculated bid of .9*60 = 54 will be submitted for you. Please note that each round

a bid-calculator will be provided for you so you may test out different submitted values before you

make your final decision.

The computer randomly forms groups of four participants. Within each group, the calculated bids

will be compared. The results of Round 1 will then be displayed. You will be informed whether or

not you held the highest calculated bid in your group. Only those of you with the highest calculated

bid in their group will get the good, and his/her earnings will be equal to the difference between
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his/her value and calculated bid. In the case of a tie, the winner will be determined randomly with

equal probability. If you are the winner, your earnings will be:

Earnings = Your value for the good - .9 * your submitted value

If the highest calculated bid is not yours (or if you lose in the case of a tie), then you earn nothing

in the auction. So, your earnings will be:

Earnings = 0

That will end Round 1, and then Round 2 will begin. The same procedure will be used for all

20 Rounds. After each round you will be able to see whether you have won the auction and your

earnings in that round on your computer screen. Your final earnings at the end of the experiment

will be the sum of earnings over the 20 rounds. Remember that at the end of the experiment you

will receive the show-up fee and your total points/earnings will be multiplied by 30 cents to calculate

your final payment.

Part 2

You will now be presented with several Situations. Each Situation will present you with the

choice between a Fixed Payoff of a specific amount, or a 50-50 Lottery between a payoff of $4.00 and

of $0.00. When you have made all of your choices, the computer will randomly select a Situation,

and you will receive the payoff from whichever option you selected. You will then be asked to answer

questions from a quick and confidential survey.

Table 3.6: Situations for Risk Elicitation
Situation Lottery Fixed Payoff
1 50% chance of $4.00 and 50% chance of $0.00 $0.25
2 50% chance of $4.00 and 50% chance of $0.00 $0.50
3 50% chance of $4.00 and 50% chance of $0.00 $0.75
4 50% chance of $4.00 and 50% chance of $0.00 $1.00
5 50% chance of $4.00 and 50% chance of $0.00 $1.25
6 50% chance of $4.00 and 50% chance of $0.00 $1.50
7 50% chance of $4.00 and 50% chance of $0.00 $1.75
8 50% chance of $4.00 and 50% chance of $0.00 $2.00
9 50% chance of $4.00 and 50% chance of $0.00 $2.25
10 50% chance of $4.00 and 50% chance of $0.00 $2.50
11 50% chance of $4.00 and 50% chance of $0.00 $2.75
12 50% chance of $4.00 and 50% chance of $0.00 $3.00
13 50% chance of $4.00 and 50% chance of $0.00 $3.25
14 50% chance of $4.00 and 50% chance of $0.00 $3.50
15 50% chance of $4.00 and 50% chance of $0.00 $3.75

Survey Questions

Please answer ALL of the questions in this brief survey as accurately as you can. All answers are

confidential, and in fact your answers are linked only to your participant ID for today’s experiment,
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and not your name or student ID.

1. What is you age in years? (Enter: Integer.)

2. What is your gender? (Enter: Male, Female.)

3. What is you major? (Enter: String.)

4. What strategy did you use in the auctions? (Enter: String.)

5. Have you ever participated in an auction before? (Enter: Yes, No.)

6. How often have you gambled or purchased lottery tickets in the past year? (Enter: Very frequently,

Frequently, Sometimes, Rarely, Never.)

3.7 Can heterogeneity be an explanation?

We now adopt the CRRAM model presented in Cox, Smith and Walker (1988) to include the

possibility of heterogeneous risk averse bidders, in which the homogeneous constant relative risk

aversion model is a special case. For simplicity, we first solve the bid function for Mechanism (1).

There is a single good for sale and there are N bidders with private valuations, vi. Each bidder has

von-Neumann-Morgenstern utility function u(vi−bi, ri), where risk preference ri is randomly drawn

from some distribution function Φ on (0,1] and bi denotes the bid of agent i. Assume that u(x, r)

is twice continuously differentiable and strictly increasing with respect to the first component and

u(0, r) = 0, for all r ∈ (0, 1]. Also, assume that u(x, r) is strictly log-concave in r, for each r ∈ (0, 1].

Assume that each bidder believes that his/her rivals will use the bid function b(v, r), which is

strictly increasing in v and b(0, r) = 0 for all r ∈ (0, 1]. If the bid function has a v-inverse function

π(b, r), that is differentiable and strictly increasing in b, then the probability of all n − 1 rivals of

bidder i will bid amounts less than or equal to b is

G(b) = [

∫
r

H(π(b, r))dΦ(r)]n−1 (3.3)

where H is the uniform distribution on [0,100].

Therefore, the expected utility of bidding bi to bidder i is

G(bi)u(vi − bi, ri) (3.4)

The first order condition with respect to bi is
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G′(bi)u(vi − bi, ri)−G(bi)u1(vi − bi, ri) = 0 (3.5)

If π(b, r) is the v-inverse of an equilibrium bid function, then it must be a best response for

bidder i and, therefore, should satisfy the first order condition.

G′(bi)u(π(bi, ri)− bi, ri)−G(bi)u1(π(bi, ri)− bi, ri) = 0 (3.6)

This implies

d(G(bi)u(π(bi, ri)− bi, ri))
dbi

= G(bi)u1(π(bi, ri)− bi, ri)π1(bi, ri) (3.7)

Integrating (3.7) yields

G(bi)u(π(bi, ri)− bi, ri) =

bi∫
0

G(y)u1(π(y, ri)− y, ri)π1(y, ri) (3.8)

Cox et al. (1988) show that bi maximizes bidder i’s expected utility, when his/her value is

π(bi, ri), for any bi > 0 in the domain of π(., ri). Hence, π(b, r) given by (3.8) is the v-inverse of an

equilibrium bid function. Next, they show that (bi, π(bi, ri)) yields a global maximum of (3.4).

We will now show that, for any α, Mechanism (α) implies the same bid function even when we

allow for the possibility of heterogeneous agents. Assume that each bidder believes that his/her

rivals will use a submitted value function s(v, r), with v-inverse function p(s, r). The probability

that all n− 1 rivals of bidder i will submit values less than or equal to s is

K(s) = [

∫
r

H(p(s, r))dΦ(r)]n−1 (3.9)

And, the expected utility of reporting a value si equals

K(si)u(vi − αsi, ri) (3.10)
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The first order condition is

K ′(si)u(vi − αsi, ri)− αK(si)u1(vi − αsi, ri) = 0 (3.11)

Now, it is easy to see s(vi, ri) = b(vi,ri)
α satisfies equation (3.11). First, note that, p( b(vi,ri)α , ri) =

π(bi, ri) if s(v, r) is the equilibrium submitted value function and, therefore, K( b(vi,ri)α ) = G(bi) and

1
αK
′( b(vi,ri)α ) = G′(bi). Therefore, for each individual i, the bid function of the Mechanism (1) and

the bid functions of the Mechanism (α) are the same.
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