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ABSTRACT

Sublinear Time Algorithms for the Sparse Recovery Problem

by

Yi Li

Chair: Martin Strauss

In the sparse recovery problem, we have a signal x ∈ RN that is sparse; i.e., it consists

of k significant entries (‘heavy hitters’) while the rest of the entries are essentially

negligible. Let x[k] ∈ RN consist of the k largest coefficients (in magnitude, i.e.,

absolute value) of x, zeroing out all other entries. We want to recover x[k], the

positions and values of only the heavy hitters, as the rest of the signal is not of interest.

Mathematically, we wish to design an m-by-N measurement matrix Φ and a recovery

algorithm R, such that for signal x ∈ RN with which we acquire measurements

y = Φx, the recovery algorithm produces an approximation x̂ = R(y), which satisfies

that

‖x− x̂‖p ≤ (1 + ε)
∥∥x− x[k]

∥∥
p
. (0.1)

for some norm ‖ · ‖p in RN . We would also usually require that | supp x̂| = O(k).

Our key goal is to minimize m and achieve a sub-linear runtime for R, ideally,

O(k polylogN) time. Two classical choices of p are p = 1 and 2. The problem with

p = 1 is called the `1/`1 problem and the problem with p = 2 the `2/`2 problem. In

general, we would like to have the measurement matrix Φ and the decoding algorithm

such that (0.1) holds for all x. This guarantee will be called the for-all guarantee.

Unfortunately, it is known that the `2/`2 problem would require m = Ω(N), which

extinguishes our hope for anything substantially better than the trivial algorithm by

tracking the whole vector x. Nevertheless, in many applications, a weaker for-each

guarantee works also well: suppose that Φ is drawn from some probability distribution

D such that

Pr
Φ∼D

{
‖x− x̂‖p ≤ C

∥∥x− x[k]

∥∥
q

}
≥ 3

4
,
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that is, the guarantee (0.1) holds with probability at least 3/4 for each x. This

weaker guarantee allows us to use significantly fewer measurements, m � N . We

shall consider the `2/`2 problem in for-each setting and the `1/`1 problem in for-all

setting.

In Chapter 2, we shall show an algorithm for the for-each `2/`2 problem which uses

the optimal number of measurementsO(k/ε log(N/k)) and runs in timeO(k/ε polylogN).

In Chapter 3 we shall show an algorithm for the for-all `1/`1 problem which uses

O(k/ε2 log(N/k)) measurements, matching the best measurement complexity among

all superlinear time algorithms, and runs in time O(k1+β poly(logN, 1/ε)) for any

β > 0 under a mild assumption ε . (log k/ logN)γ for any γ > 0. This is the first

sublinear time algorithm whose runtime is not a polynomial of N .

It is known that the same ideas and techniques apply to the discrete Fourier case

where the frequencies lie on a grid
{

0, 1
N
, 2
N
, . . . , 1− 1

N

}
and the problem is to recover

the signal by taking samples (in the time domain) much fewer than prescribed by

the Nyquist rate. In Chapter 4, we shall the sublinear-time techniques to the off-grid

case, i.e., the frequencies are real numbers in [0, 1].

ix



CHAPTER 1

Introduction1

1.1 Problem Description

Tracking heavy hitters in high-volume, high-speed data streams [CCFC02], mon-

itoring changes in data streams [CM03], designing pooling schemes for biological

tests [ECG+09] (e.g., high throughput sequencing, testing for genetic markers), lo-

calizing sources in sensor networks [ZBSG05, ZPB06], and combinatorial pattern

matching [CP07] are all quite different technological challenges, yet they can all be

expressed in the same mathematical formulation, called the sparse recovery problem.

This problem has further application to telecommunications [PAW07] and medical

imaging processing [DDT+08, LDP07]. See more at the extensive web-page [Ric] of

the compressive sensing group at Rice University.

In the sparse recovery problem, we have a signal x of length N that is sparse or

highly compressible; i.e., it consists of k significant entries (“heavy hitters”) while the

rest of the entries are essentially negligible. We wish to acquire a small amount of

information (approximately commensurate with the sparsity) about this signal in a

linear, non-adaptive fashion, and then use that information to recover the significant

entries quickly. In a data stream setting, our signal is the distribution of items seen,

while in biological group testing, the signal is proportional to the binding affinity

of each drug compound (or the expression level of a gene in a particular organism).

We want to recover the positions and values of only the heavy hitters, as the rest of

the signal is not of interest. Mathematically, let x[k] ∈ RN consist of the k largest

coefficients (in magnitude, i.e., absolute value) of x, zeroing out all other entries. We

wish to design an m-by-N measurement matrix Φ and a recovery algorithm R, such

that for signal x ∈ RN with which we acquire measurements y = Φx, the recovery

1This chapter contains part of [GLPS12] and [BCG+12], in compliance with the copyright policy
of SIAM and Springer.

1



algorithm produces an approximation x̂ = R(y), which satisfies that

‖x− x̂‖p ≤ C
∥∥x− x[k]

∥∥
q
. (1.1)

for some norm ‖ · ‖p and ‖ · ‖q in RN . A key goal is to minimize m, i.e., to use least

possible measurements, because measurements correspond to physical resources (e.g.,

memory in data stream monitoring devices, number of screens in biological applica-

tions) or, more seriously, in medical imaging, the radiation that a patient receives in

a CT scan, thus reducing the number of necessary measurements is critical for these

problems. It is also natural to minimize the runtime of the recovery algorithm, which

is crucial to network traffic monitoring and data streaming applications. Ideally we

want O(k polylogN) time, which is sublinear in N .

There are three typical settings of p, q and C as follows.

1. p = q = 2, C = 1 + ε;

2. p = 2, q = 1, C = ε/
√
k;

3. p = q = 1, C = 1 + ε,

where ε > 0 is a parameter of the problem. The problem with parameters p and

q will be referred to as the `p/`q problem. When p, q belongs to one of the three

cases above, the C should be automatically understood as described above in the

corresponding case unless otherwise specified. The `2/`1 problem is also called the

mixed-norm problem, which is widely considered in signal processing.

It is known that the `2/`2 problem is harder than the `2/`1 problem, in the sense

that if we can solve the `2/`2 problem we can use the recovery system (consisting of

the measurement matrix Φ and the recovery algorithm R) to construct a recovery

system to the `2/`1 problem (with ε and k different by at most a constant factor). It

is also known that `2/`1 problem is harder than the `1/`1 problem in the same sense.

In general, we would like to have the measurement matrix Φ and the decoding

algorithm such that (1.1) holds for all x. This guarantee will be called the for-all

guarantee. Unfortunately, it is proved in [CDD09] that the `2/`2 problem would

require m = Ω(N), which extinguishes our hope for anything substantially better

than the trivial algorithm which tracks the whole vector x. Nevertheless, in many

applications, a weaker for-each guarantee works also well: suppose that Φ is drawn

from some probability distribution D such that

Pr
Φ∼D

{
‖x− x̂‖p ≤ C

∥∥x− x[k]

∥∥
q

}
≥ 1− δ

2



for some δ > 0, that is, the guarantee (1.1) holds with probability ≥ 1 − δ for each

x. This weaker guarantee allows us to use significantly fewer measurements, m� N .

Our aim is to solve the `2/`2 problem in for-each setting and the `2/`1 problem in for-

all setting. For the `2/`2 problem, the ideal solution is to have m = O(k/ε log(N/k))

and runtime O(k/ε polylogN); for the `2/`1 problem, the ideal solution is to have

m = O(k/ε2 log(N/k)) and runtime O(k/ε2 poly logN).

In several of the applications, such as high throughput screening and other physical

measurement systems, it is also important that the result be robust to the corruption

of the measurements by an arbitrary noise vector ν2. (It is less critical for digital

measurement systems that monitor data streams in which measurement corruption

is less likely.) In this case, the measurements y = Φx + ν2, and the error guarantee

would be dependent on ν2 naturally.

Our problem assumes that k is a given parameter; i.e., the value of k is known or

estimated a priori. If the parameter k is set to be smaller than the actual number of

heavy hitters, the algorithm will miss some of them. However, the error guarantee will

remain satisfied, as the right hand of (1.1) depends on the inevitable error ‖x−x[k]‖,
which will contain some heavy hitters and thus be large if the heavy hitters are. If all

the heavy hitters have about the same magnitude, then finding arbitrary k of them

suffices. If the heavy hitters have varying magnitudes, of which the larger magnitudes

(if there are at most k of them) are at least (1+ ε) times larger than the smaller ones,

then the heavy ones will be recovered for the error guarantee to be satisfied.

1.2 Algorithm Overview

Table 1.1 summarizes the known sparse recovery algorithms. The algorithms of

sparse recovery generally fall into two categories: geometric algorithms and combina-

torial algorithms.

Geometric algorithms. These algorithms usually solve an optimization problem

and thus run in poly(N) time, e.g., the notable `1 minimization algorithm [CRT06,

Don06]. Specifically, when there is no post-measurement noise, the solution

x̂ = arg min
x′

‖x′‖1 s.t. Φx′ = y

3
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solves the `2/`1 problem. In particular, the recovered signal x̂ satisfies

‖x− x̂‖2 ≤
c√
k
‖x− x[k]‖1

for some constant c > 0, provided that Φ is an O(k)-RIP matrix (defined below)

with restricted isometry constant small enough. The constant c above depends on

the restricted isometry constant only. Replacing k with k/ε2 solves our formulation

of `2/`1 problem with dependence on ε.

Definition 1.1 (Restricted isometry property). An m×n matrix A is said to satisfy

the s-restricted isometry property (s-RIP) with restricted isometry constant δs, if it

holds that

(1− δs)‖y‖2 ≤ ‖Ay‖2 ≤ (1 + δs)‖y‖2

for all n-dimensional vector y such that | supp y| ≤ s.

Various constructions of RIP matrices have been found. Some important examples

are

1. Gaussian/Bernoulli random matrix: Entries of A are independently identically

distributed (i.i.d.) N(0, 1) or ±1 for m = O(k log(N/k)), then 1√
m
A satisfies

O(k)-RIP property with high probability. This is also an optimal construction,

as it is proved in [CDD09] that m = Ω(k log(N/k)) is the lower bound.

2. Fourier random matrix: A consists of m random rows of the discrete Fourier

transform matrix, where m = O(k log3 k logN), then 1√
m
A satisfies O(k)-RIP

property with high probability. See [RV08, CGV13]. There is ongoing effort to

reduce m further down to O(k logN).

3. Deterministic constructions: Current best result is m = O(k2−γ) for γ > 0 suffi-

ciently small, see [BDF+11]. There is ongoing effort towardsm = O(k polylogN).

In the presence of post-measurement noise ν2 that is bounded, say, ‖ν2‖2 ≤ η, the

solution to

x̂ = arg min
x′

‖x′‖1 s.t. ‖Φx′ − y‖2 ≤ η

obeys

‖x− x̂‖2 ≤
C1√
k
‖x− x[k]‖1 + C2η,

for all x, where C1, C2 > 0 are constants that depend on the restricted isometry

constant of Φ only.
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Combinatorial algorithms. All results in Table 1.1 except for [Don06, CRT06,

BGI+08] fall in this category. These algorithms are usually faster and typically iter-

ative. In each round, a combinatorial algorithm would first identify a set I ⊆ [N ] :=

{1, . . . , N}, called candidate set, which is expected to contain many heavy hitters

(though not necessarily all), and then estimate the values of the signal at each index

in I with a good accuracy. According to the values recovered, together with the old

recovered signal, the algorithm produces a new recovered signal. It then subtracts

off the recovered signal and enters the next round, until some halting criterion is

satisfied. See Algorithm 1.1 for the general framework.

Algorithm 1.1 General framework of the sparse recovery problem

Input: x,Φ,Φx, k
Output: x̂, the appropriate representation of x

y← Φx
t← 0
a(0) ← 0
while the halting criterion is not satisfied do

I ← Identify(Φ,y,a(t))
b← Estimate(Φ,y, I)
a(t+1) ←Merge(a(t), b)
y← y −Φa(t+1)

t← t+ 1
end while
return x̂← a(t)

We remark that the candidate sets may contain the recovered heavy hitters po-

sitions in all previous rounds so each (previously recovered) heavy hitter would be

re-estimated to a better accuracy. The halting criterion varies among the algorithms

and is closely related to the loop invariant which the algorithm maintains. Two

typical loop invariants are

1. the number of remaining heavy hitters: The algorithm reduces the number of

remaining heavy hitters by half in each round, hence it needs only log k rounds,

and the halting criterion would simply be t > log k;

2. the norm of the residual ‖x − a(t)‖: A typical loop invariant of this kind is to

reduce the norm of residual by half in each round, in which case, the number

of rounds, and thus the runtime, will depend on the norm of the input signal,

‖x‖, and the halting criterion would be t > log ‖x‖.

There is plenty of room to play with the second kind of invariant, see the analysis

of the CoSaMP algorithm [NT09], for example. Despite the fact that combinatorial
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algorithms can be designed to run faster, it is difficult to compress the number of

measurements to be as close to optimal as in the geometric algorithms (which run in

superlinear time).

1.3 Basic Techniques

We review some basic tricks used in sublinear algorithms in this section, primarily

from Count-Sketch [CCFC02], one of the earliest sublinear time algorithms, which

solves the for-each `2/`2 problem. First we consider the case k = 1 and then reduce

the general k to the case k = 1.

1.3.1 One-sparse signals

In this subsection, we assume that the signal consists of a single heavy hitter at

index i0. Following the outline in Algorithm 1.1, we need to solve two problems: find

the value of i0 (identification) and then estimate xi0 , the value of the heavy hitter.

Let ν denote the noise, i.e., νi = xi for all i 6= i0 and νi0 = 0.

We first describe the estimation, assuming that we have obtained the value of

I. The easiest way is to take the inner product of the signal with an all-one vector

(1, 1, . . . , 1)T , equivalent to summing all entries in the vector. An alternative way,

which is more sophisticated and necessary for the `2/`q problem, is to take the inner

product of the signal with a random ±1 vector (each coordinate is a random ±1

variable and the coordinates are pairwise independent) to cancel the noise. Formally,

let s1, . . . , sM be independent random ±1 vectors defined above. Our estimator is

ξ = median
1≤j≤M

sj,i0〈sj,x〉. (1.2)

Each sj,i0〈sj,x〉 is an unbiased estimator, since the expectation

E(sj,i0〈sj,x〉) = E

(
xi0 +

∑
i 6=i0

sj,i0sj,ixi

)
= xi0 .

The second moment

E(sj,i0〈sj,x〉)2 = E〈sj,x〉2 = ‖x‖2
2 +

∑
i1 6=i2

E(sj,i1sj,i2)xixj = ‖x‖2
2
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and thus the variance

Var(sj,i0〈sj,x〉) ≤ ‖x‖2
2 − x2

i0
= ‖ν‖2

2.

Therefore by Chebyshev inequality

Pr {|sj,i0〈sj,x〉 − xi0 | ≥ 2‖ν‖2} ≤
1

4

and then by Chernoff bound

Pr {|ξ − xi0| ≥ 2‖ν‖2} ≤ e−cM

for some absolute constant c > 0. We obtain a fairly accurate estimate of xi0 in this

way.

Now we consider identification, i.e., finding the value of i0. Consider the following

matrix M , called a bit-tester, assuming that N is a power of 2. The columns of the

matrix are the binary representations of the numbers 0 to N − 1. The following is an

example of N = 8.

Mx =

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1





0

0

0

7

0

0

0

0


=

0

7

7

 .

We can then convert the measurements Mx = (0, 7, 7)T back to a {0, 1}-vector

(0, 1, 1)T , and we see that it is exactly the binary representation of the position of

the heavy hitter, which equals 3 in our case assuming that the index starts from 0.

The same trick works in the presence of noise provided that the noise is small enough

so it does not affect the conversion to a {0, 1}-vector. In the `2/`2 problem, we also

multiply each row of the bit tester by a random ±1 vector entrywise, hoping to cancel

the noise in each measurement. Using a similar estimator to (1.2),

ξ′ = median
1≤j≤M

〈sj,x〉,
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we are able to recover |xi0| with accuracy 2‖ν‖2 (note that we do not recover the

sign of xi0 because we do not know the actual value of i0). Hence we can first obtain

an estimate ξ′ of |xi0| as above, then use |ξ′|/2 as the threshold to convert Mx to a

{0, 1}-vector, namely by letting

vi =

1, |(Mx)i| ≥ |ξ′|/2;

0, |(Mx)i| < |ξ′|/2.

It is clear that if ‖ν‖2 < |xi0|/4, with high probability, v will be the binary represen-

tation of i0 and we shall locate the heavy hitter correctly.

1.3.2 General sparse signals

Now we consider the general case where k > 1. The trick is to hash all N positions

of the signal into B buckets at random, forming B subsignals. Choosing B = Θ(k),

we hope that many of the subsignals contain only one of the k heavy hitters, reducing

the problem to the case of one-sparse signal. Also, the noise in each subsignal is

reduced to ‖x− xk‖2/
√
B = Θ(‖x− x[k]‖2/

√
k), in expectation. From the discussion

in the preceding subsection, we expect to recover a heavy hitter of magnitude at least

Ω(‖x − x[k]‖2/
√
k) up to accuracy O(‖ν‖2/

√
k). In the ideal case, x̂ contains only

the k heavy hitters, each is accurate up to O(‖x− x[k]‖2/
√
k) and thus

‖x− x̂‖2 ≤

√
k ·O

(
‖x− x[k]‖2

2

k

)
= O(‖x− x[k]‖2

2).

Based upon these ideas, we shall present an optimal algorithm [GLPS12] for the (for-

each) `2/`2 problem in Chapter 2. More sophisticated techniques are necessary for

the (for-all) `1/`1 problem, which we shall present in Chapter 3.

1.4 Case of Fourier Basis

So far we have been considering the situation in which the signal x is sparse under

the canonical basis of Euclidean space RN and we take the measurements in the same

domain. However, in many real applications, the signal has a sparse representation

in a different domain and we cannot take samples in that domain, for instance, AM,

FM, and other communication signals could be sparse in frequency domain whilst we

can only take samples in the space domain. Mathematically, a signal y ∈ RN has
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a sparse representation as y = Ψx in a basis Ψ ∈ RN×N when k � N coefficients

of x can represent the signal y. We can pose the same problem as before: design a

measurement matrix Φ, with fewest possible rows, so that we can recover y from the

sketch ΦΨx in sublinear time.

There has been considerable effort to develop sublinear algorithms within the

theoretical computer science community for recovering signals with a few signifi-

cant discrete Fourier components, beginning with Kushilevitz and Mansour [KM93],

including [GGI+02, GMS05, Iwe09], and continuing through in the recent work of

Hassanieh, et al. [HIKP12b, HIKP12a]. All of these algorithms are predicated upon

treating the vector y as periodic and the discrete Fourier transform of a vector x

being approximately k-sparse [BCW10, GI10].

The idea in the off-grid case is similar. The discrete Fourier transform x = Fy

is sparse and we want to realize identification and estimation in the Fourier domain.

First we want to hash N possible frequencies (indexed from 0 to N−1) into B buckets,

for which we choose random a and b such that gcd(a,N) = 1 and take the B buckets

to be

Bj = {a`+ b}jN/B+N/(2B)
`=jN/B−N/(2B) , j = 0, . . . , B − 1.

The next question is how to obtain the bucket value. For each Bj, the bucket value

analogous to the case of the canonical basis would be

bj =
∑
i∈Bj

xi =

jN
B

+ N
2B∑

`= jN
B
− N

2B

xa`+b =

jN
B

+ N
2B∑

`= jN
B
− N

2B

(Fy)a`+b =

jN
B

+ N
2B∑

`= jN
B
− N

2B

(Fz)`, (1.3)

where zj = e−2πia−1bjya−1j. We rewrite (1.3) as

bj = (Fz ∗ χS)

(
j
N

B

)
,

where χS is the characteristic function of set S = {−N/(2B), . . . , N/(2B)} (we iden-

tify the notation of a function f : ZN → C and a vector f ∈ CN). The question is

how to compute bj by sampling y. Take a kernel K such that FK = χS, then the

bucket value can be written as

bj = (Fz ∗FK)

(
j
N

B

)
= (F (z�K))

(
j
N

B

)
,

where x � y denotes the componentwise product of two vectors x and y. Now we
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observe that

b =
(
b0 b1 · · · bB−1

)
is exactly the discrete Fourier transform of(

(z�K)(0) (z�K)(1) · · · (z�K)(B − 1)
)
,

which can be computed in O(B logB) time using the Fast Fourier Transform if z�K
is known. The trouble is that our choice K has | suppK| = N so it would take Ω(N)

time to compute b, which is prohibitive. The remedy is to use a kernel K with small

support, say, of size Θ(B) or Θ(B logN), such that FK is approximately χS, thus we

can obtain an approximate b in time O(B logN+B logB) = O(k logN) for B = Θ(k)

by sampling z and thus y at O(k logN) positions. This would be enough provided

that FK is a sufficiently good approximation to χS. The idea for trivial bit-testing

is similar, using different kernels to read off different bits. A more sophisticated

approach is adopted by [HIKP12a] to bring down the number of measurements and

the runtime.

The problem can be reformulated as follows. We have a signal of k major frequen-

cies,
k∑
j=1

ynje
2πiωj + noise,

where ωj = nj/N and {nj} are the indices of the k largest coordinates in x = Fy.

The problem is to find ωj and the associated coefficient. Here ωj ∈ [0, 1) and is an

integer multiple of 1/N . Extending ωj’s to real values in [0, 1] will be the topic in

Chapter 4.
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CHAPTER 2

Sparse Recovery in `2/`2 Error Metric

2.1 Problem Description

In this chapter, we consider the `2/`2 problem with post-measurement noise.1 We

give a sublinear time recovery algorithm and a distribution over normalized measure-

ment matrices that meet the lower bound (up to constant factors) in terms of the

number of measurements and are within logO(1)N factors of optimal in the running

time and log2 k in the sparsity of the measurement matrix. In this chapter, we write

the signal x = x[k] + ν1 and the measurements y = Φx + ν2, where ν1 is called

pre-measurement noise and ν2 is the post-measurement noise.

Theorem 2.1. There is an algorithm and distribution on matrices Φ satisfying

sup
‖x‖2=1

E ‖Φx‖2 = 1

such that, given Φx+ν2, the parameters, and a concise description of Φ, the algorithm

returns x̂ with approximation error

‖x− x̂‖2
2 ≤ (1 + ε) ‖ν1‖2

2 + ε ‖ν2‖2
2

with probability at least 3/4. The algorithm runs in time O
(
k/ε logO(1)N

)
and Φ

has O
(
k/ε log(N/k)

)
rows. In expectation, there are O(log2(k) log(N/k)) non-zeros

in each column of Φ.

The approximation x̂ may have more than k terms. It is known from previous

1This chapter is mostly reproduced from [GLPS12], in compliance with the copyright policy of
SIAM.
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work (e.g. [GSTV07]) that, if

‖x− x̂‖2
2 ≤ (1 + ε2)

∥∥x− x[k]

∥∥2

2
+ ε2 ‖ν2‖2

2 ,

then the truncation x̂k of x̂ to k terms satisfies

‖x− x̂k‖2
2 ≤ (1 + Θ(ε))

∥∥x− x[k]

∥∥2

2
+ ε ‖ν2‖2

2 .

So an approximation with exactly k terms is possible, but with cost 1/ε2 versus 1/ε

for the general case.

2.1.1 Related work

Previous sublinear time algorithms, whether in the for-each model [CCFC02,

CM06] or in the for-all model [GSTV07], however, used several additional factors

of log(N) measurements. We summarize some previous algorithms in Table 2.1. The

column sparsity denotes how many 1s there are per column of the measurement matrix

and determines both the decoding and measurement update time and, for readability,

we suppress O(·). The noise column denotes whether the algorithm tolerates post-

measurement noise ν2. The approximation error signifies the metric we use to evalu-

ate the output; `p ≤ C`q(+`r) is shorthand for ‖x− x̂‖p ≤ C
∥∥x− x[k]

∥∥
q

(+C ‖ν2‖r).
(Some previous results that did not directly claim stability with respect to ν2 can

be modified easily to accommodate non-zero ν2.) For the (for-each) `2/`2 prob-

lem, the optimality of the number of measurements in our result—O(k/ε log(N/k))

measurements—is proved by Price and Woodruff [PW11].

2.1.2 Techniques

We build upon the Count-Sketch design but incorporate the following algo-

rithmic innovations to ensure an optimal number of measurements:

• With a random assignment of N signal positions to O(k) subsignals, we need

to encode only O(N/k) positions, rather than N as in the previous approaches.

Thus we can reduce the domain size which we encode.

• We use a good error-correcting code (rather than the trivial identity code of the

bit tester).

• Our algorithm is an iterative algorithm but maintains a compound invariant: in

our algorithm, the number of undiscovered heavy hitters decreases at each iter-
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ation while, simultaneously, the required error tolerance and failure probability

become more stringent. Because there are fewer heavy hitters to find at each

stage, we can use more measurements to meet more stringent guarantees.

We believe we are the first to consider a for-each algorithm with post-measurement

noise, ν2. As we discuss below, we need to give a new definition of the appropriate

metric under which to normalize Φ.

In Section 2.2 we detail the matrix algebra we use to describe the measurement

matrix distribution which we cover in Section 2.3, along with the decoding algorithm.

In Section 2.4, we analyse the foregoing recovery system.

2.2 Notations

In order to construct the overall measurement matrix, we form a number of dif-

ferent types of combinations of constituent matrices and to facilitate our description,

we summarize our matrix operations in Table 2.2. The matrices that result from all

of our matrix operations have N columns and, with the exception of the semi-direct

product of two matrices nr, all operations are performed on matrices A and B with

N columns. The full description of the matrix algebra defined in Table 2.2 is as

follows.

• Row direct sum. The row direct sum A⊕rB is a matrix with N columns

that is the vertical concatenation of A and B.

• Element-wise product. If A and B are both r × N matrices, then A�B
is also an r × N matrix whose (i, j) entry is given by the product of the (i, j)

entries in A and B.

• Semi-direct product. Suppose A is a matrix of r1 rows (and N columns)

in which each row has exactly h non-zeros and B is a matrix of r2 rows and

h columns. Then BnrA is the matrix with r1r2 rows, in which each non-zero

entry a of A is replaced by a times the j’th column of B, where a is the j’th

non-zero in its row.

This definition can be modified for our purposes in a straightforward fashion

when A has fewer than h non-zeros per row.
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2.3 Sparse Recovery System

In this section, we specify the measurement matrix and detail the decoding algo-

rithm.

2.3.1 Measurement matrix

The overall measurement matrix, Φ, is multi-layered. At the highest level, Φ

consists of a random permutation matrix P left-multiplying the row direct sum of

O(log(k)) summands, Φ(j), each of which is used in a separate iteration of the decoding

algorithm. Each summand Φ(j) is the row direct sum of two separate matrices, an

identification matrix, D(j), and an estimation matrix, E(j).

Φ = P


Φ(1)

Φ(2)

...

Φ(log(k))

 where Φ(j) = E(j)⊕rD
(j).

In iteration j, the identification matrix D(j) consists of the row direct sum of

O(j) matrices, all chosen independently from the same distribution. We construct

that distribution,
2−Θ(j)√
log(N/k)

(C(j)nrH
(j))�S(j),

as follows.

• For j = 1, 2, . . . , log k, the matrix H(j) is a hashing matrix with dimensions

kcj ×N , where c in the range 1/2 < c < 1 will be specified later. Each column

has exactly one nonzero, a one, in a uniformly random row. The columns are

pairwise independent.

• The matrix C(j) is an encoding of positions by an error-correcting code with

constant rate and relative distance, together with several 1s. That is, fix an

error-correcting code and encoding and decoding algorithms that encode mes-

sages of Θ(log logN) bits into longer codewords, also of length Θ(log logN),

and can correct a constant fraction of errors. Let E(·) be its encoding function.

The i’th column of C(j) is the direct sum of Θ(log logN) copies of 1 with the

direct sum of E(i1), E(i2), . . . , where i1, i2, . . . are blocks of O(log logN) bits

each, whose concatenation is the binary expansion of i. The number of columns

in C(j) is the same as the maximum number of non-zeros in H(j), which is
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approximately the expected number, Θ (cjN/k), where c < 1. The number of

rows in C(j) is the logarithm of the number of columns, since the process of

breaking the binary expansion of index i into blocks has rate 1 and encoding

by E(·) has constant rate.

The existence of such an error correcting code can be shown by a simple counting

argument. Given a codeword of length c2n and a fraction r < 1/4, there is a

ball of radius 2rc2n about it with volume
(
c2n

2rc2n

)
22rc2n. If no other codeword

is in that ball, nearest-neighbor decoding will recover the correct codeword.

Assuming that q codewords have disjoint balls about them, the size of their

union is at most q
(
c2n

2rc2n

)
22rc2n. As long as this volume is less than the total

number of strings of length c2n (i.e., 2c2n), there are more potential codewords

we can use. If there are 2c1n messages (each of length c1n), each of which needs

a codeword, it is possible to find enough decodable codewords as long as

2c1n
(
c2n

2rc2n

)
22rc2n ≤ 2c2n.

This relationship holds for appropriately chosen c1, c2 and large n.

Note that error correcting encoding often is accomplished by a matrix-vector

product, but we are not encoding a linear error-correcting code by the usual

generator matrix process. Rather, our matrix explicitly lists all the codewords.

The code may be non-linear.

• The matrix S(j) is a pseudo-random sign-flip matrix. Each row is a pairwise

independent family of uniform ±1-valued random variables. The sequence of

seeds for the rows is a fully independent family. The size of S(j) matches the

size of C(j)nrH
(j).

Below, to achieve our claimed runtime, we will construct C(j) and H(j) together.

See Figure 2.3.1 and Section 2.4.2.2.

In summary, the identification matrix at iteration j is of the form

D(j) =
2−Θ(j)√
log(N/k)


[
(C(j)nrH

(j))�S(j)
]

1
...[

(C(j)nrH
(j))�S(j)

]
Θ(j)

 .

In iteration j, the estimation matrix E(j) consists of the direct sum of O(j+log 1
ε
)

18



matrices, all chosen independently from the same distribution, 2−Θ(j)√
log(N/k)

H ′(j)�S′(j),

so that the estimation matrix at iteration j is of the form

E(j) =
2−Θ(j)√
log(N/k)


[
H ′(j)�S′(j)

]
1

...[
H ′(j)�S′(j)

]
Θ(j+log(1/ε))

 .
The construction of the distribution is similar to that of the identification matrix, but

omits the error-correcting code and uses different constant factors for the number of

rows, etc., compared with the analogues in the identification matrix.

• The matrix H ′(j) is a hashing matrix with dimensions O(kcj)×N , for appropri-

ate c, 1/2 < c < 1. Each column has exactly one nonzero, a one, in a uniformly

random row. The columns are pairwise independent.

• The matrix S′(j) is a pseudo-random sign-flip matrix of the same dimension as

H ′(j). Each row of S′(j) is a pairwise independent family of uniform ±1-valued

random variables. The sequence of seeds for the rows is fully independent.

2.3.2 Measurements

The overall form of the measurements mirrors the structure of the measurement

matrices. We do not, however, use all of the measurements in the same fashion. Upon

receiving Φx + ν2, the algorithm first applies the permutation P−1. In iteration j of

the algorithm, we use the measurements y(j) = Φ(j)x + (P−1ν2)(j). As the matrix

Φ(j) = E(j)⊕rD
(j), we have a portion of the measurements w(j) = D(j)x+(P−1ν2)D(j)

that we use for identification and a portion z(j) = E(j)x + (P−1ν2)E(j) that we use

for estimation. The w(j) portion is further decomposed into measurements [v(j),u(j)]

corresponding to the run of O(log logN) 1’s in C(j) and measurements corresponding

to each of the blocks in the error-correcting code. There are Θ(j) i.i.d. repetitions in

the identification part and Θ(j + log(1/ε)) repetitions in the estimation part.

2.3.3 Decoding

The decoding algorithm is shown in Algorithm 2.1.
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H =

1 0 0 1 0 0 1 0 1 0 0
0 1 0 0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 0 0 0 1

 , C =


1 1 1 1
1 1 1 1
0 0 1 1
0 0 1 1
0 1 0 1
0 1 0 1


The matrix H is formed from hash function h which maps 〈8, 0, 3, 6〉 to 〈0, 1, 2, 3〉. If
ρ is the top row of H and S arbitrary, then

(Cnrρ)� S =


−1 0 0 1 0 0 −1 0 −1 0 0
1 0 0 −1 0 0 1 0 1 0 0
0 0 0 −1 0 0 −1 0 0 0 0
0 0 0 1 0 0 −1 0 0 0 0
1 0 0 0 0 0 −1 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0


Figure 2.1: Example measurement matrix for identification. Here N = 11, k = 3,

and, in the hashing h : i 7→ a + bi mod N , we have a = 1 and b =
4, so that the sequence i = 〈0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉 is mapped to
〈1, 5, 9, 2, 6, 10, 3, 7, 0, 4, 8〉. The three buckets are {i : 0 ≤ a + bi <
4}, {i : 4 ≤ a + bi < 8}, and {i : 8 ≤ a + bi < 11}. We number starting
from 0, so 0 ≤ i < 11. The first bucket is therefore 〈8, 0, 3, 6〉, in the same
order as 〈h−1(0), h−1(1), h−1(2), h−1(3)〉, corresponding to the first rows
of H . In this example, we use two rows of ones and the double repetition
code instead of a good code. To demonstrate how to calculate Cnrρ, let
us look at the fifth row of Cnrρ. The fifth row of C is (0 1 0 1), so we
multiply the first element in the first bucket by 0, the second by 1, the
third by 0 and the fourth by 1. Note that the first element in the bucket
is at the 8-th coordinate, the second element at the 0-th coordinate, and
so on. Hence the fifth row of Cnrρ will have 0 at the 8-th coordinate, 1
at the 0-th coordinate, and so on.
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Algorithm 2.1 The overall recovery algorithm for the `2/`2 problem

Output: x̂ is the approximate representation of x
1: function Main(Φ,y)
2: y← P−1y
3: a(0) = 0
4: for j ← 0 to O(log k) do
5: y = y − P−1Φa(j)

6: split y(j) = w(j)⊕rz
(j) . Recall that y = (y(1), . . . ,y(O(log k)))

7: Λ← Identify(D(j),w(j))
8: b(j) ← Estimate(E(j), z(j),Λ)
9: a(j+1) ← a(j) + b(j)

10: end for
11: return x̂ = a(j)

12: end function

Output: Λ is the list of candidate positions
1: function Identify(D(j), w(j))
2: Λ← ∅
3: Divide w(j) into sections [v,u] of size O(log(cj(N/k)))
4: for each section do
5: u← median(|v`|)
6: for each ` do . threshold measurements
7: u` = H(|u`| − u/2) . H(u) = 1 if u > 0, H(u) = 0 otherwise
8: Divide u into blocks bi of size O(log logN)
9: for each bi do
10: βi ← Decode(bi) . using error-correcting code
11: λ← Integer(β1, β2, . . .) . integer represented by bits β1, β2, . . .
12: λ← Convert(λ) . convert bucket index to signal index
13: Λ← Λ ∪ {λ}
14: end for
15: end function

Output: b is the vector of positions and values
1: function Estimate(E(j), z(j), Λ)
2: b← ∅
3: for each λ ∈ Λ do
4: bλ ← median

` s.t.H
(j)
`,λ=1

(z
(j)
` S

(j)
`,λ)

5: for each λ ∈ Λ do
6: if |bλ| is not among top Θ(k/2j) then
7: bλ ← 0
8: end function
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2.4 Analysis

The overall structure of our algorithm is greedy, similar to other algorithms in

the literature. At each iteration, the algorithm recovers some of the signal, but

introduces errors both through many coefficient estimates that are approximately

but not perfectly correct, and also through a small number of terms that can be

arbitrarily bad. The result is called a residual signal.

The measurement and runtime costs of first iteration dominates the combined

cost of all the others. In it, we reduce a bound on the number of heavy hitters to

recover from k to k/2, while increasing the noise energy from 1 to 1 + ε/4, using

O((k/ε) log(N/k)) measurements. In subsequent iterations, the number of heavy

hitters is reduced to k/2j, which reduces the leading cost factor from k/ε to 2−jk/ε.

This gives the algorithm 2j times more resources. In particular, the algorithm can

tighten the approximation constant from 1+ε/4 to 1+(ε/4)cj, for appropriate c in the

range 1/2 < c < 1, at cost factor (1/c)j < 2j, which is more than paid for by the 2−j <

1 savings in the leading factor. Similarly, the algorithm can simultaneously afford to

have a smaller failure probability at iteration j. With the tightened approximation

constant, the algorithm can tolerate additional ν2 noise in later iterations, which, as

we show below, saves resources.

To prove our result formally, we state a loop invariant maintained by our algorithm

and prove that this invariant holds in the the Loop-Invariant Maintenance Lemma, or

LIM lemma. We demonstrate how it characterizes a single iteration of the algorithm:

(i) how many measurements are used, (ii) how many non-zeros there are in each

column of the measurement matrix, (iii) the runtime, and (iv) the properties of the

residual. To prove the LIM lemma, we proceed as follows.

• In Claim 2.4, we explain, structurally, how the conclusions of the lemma are

met—what are the sources of errors, etc.

• We then examine the three subroutines in the algorithm: (i) isolating heavy

hitters, (ii) identifying them, and (iii) estimating coefficients.

• Finally, we show that the number of measurements used, the sparsity of the

measurement matrix, the running time, and the effect of post-measurement

noise are all as claimed in the Lemma.

Finally, we discuss normalization of Φ and show that it is, indeed, normalized. We

conclude by analysing the correctness and efficiency of the overall algorithm, using

our results about each iteration.
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2.4.1 Correctness

Without loss of generality, assume ‖ν1‖2 = ‖ν2‖2 = 1, since our analysis can scale

the signal (the algorithm does not need to know the scaling) and, if ν1 and ν2 have

different energies, we can increase the weaker of the two. Formally, we maintain the

following invariant.

Claim 2.2 (Loop Invariant). At the beginning of iteration j, the residual signal has

the form r(j) = σ(j) + ν
(j)
1 with

∥∥σ(j)
∥∥

0
≤ k

2j
and

∥∥∥ν(j)
1

∥∥∥2

2
≤ 1 + ε

(
1−

(3

4

)j)
except with probability 1

4
(1 − (1

2
)j), where ‖·‖0 is the number of non-zero entries.

Furthermore, the algorithm has computed (the sparse partial representation) x̂(j) =

x− r(j).

Clearly, the invariant holds at the start and maintaining the invariant is sufficient

to prove the overall result. In order to show that the algorithm maintains the loop

invariant, we demonstrate the following lemma, which, after proper instantiation of

the lemma’s variables, can be used to show the invariant is maintained.

2.4.1.1 Loop Invariant Maintenance

Lemma 2.3 (Loop Invariant Maintenance). Fix numerical parameters N , `, δ, and

η, with δ > 0, and η > 1/N . Let a be a vector of length N that can be written

as a = σ + ν1, with ‖σ‖0 ≤ `. Let Φ be of the form of O(log(1/δ)) repetitions of

(CnrH)�S in row direct sum with O(log 1/(δη)) repetitions of H ′�S′ described in

Section 2.3.1, where H and H ′ have O(`/η) rows. Let ν2 be a noise vector, where

each component has magnitude at most 4√
m
‖ν2‖2, where m is the length of ν2.

Then, except with probability δ, given Φ, y = Φa+ν2, and appropriate parameters,

the inner loop of the Recover algorithm in Algorithm 2.1 recovers b that can be

written as b = σ′ + ν ′1, with ‖σ′‖0 ≤ `/2 and ‖ν ′1‖
2
2 ≤ (1 + η) ‖ν1‖2

2 + 16η
γ
‖ν2‖2

2, where

γ is the common expected number of non-zeros in each column of Φ. Furthermore,

• The number of rows in Φ is O(`/η) log(N/`) log(1/δ).

• The computation time is (`/η) logO(1)(N/(`δη)).

• The expected number γ of non-zeros in each column of Φ is O((logN/`) log(1/δ)).
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Proof. Much of the algorithm and analysis is similar to previous work (e.g. [CCFC02]),

so we sketch the proof, focusing on changes versus previous work. We first address

the case ν2 = 0.

Recall that Φ works by giving each element of the signal a random sign flip, hash-

ing each item pairwise independently at random to each measurement, and encoding

each index by an error-correcting code. We have:

Claim 2.4. Except with probability δ/3,

• The vector b contains all but at most `/4 terms of σ, with ‘good’ estimates.

• The vector b contains at most `/4 terms with ‘bad’ estimates, i.e., with square

error greater than proportional to η/` · ‖ν1‖2
2.

• The total sum square error over all ‘good’ estimates is at most η/4.

Proof. To simplify notation, let T be the set of terms of a that are both among the

top ` and have energy at least η
8`
‖ν1‖2

2. We know that |T | ≤ O(`). We call the

elements in T heavy hitters. The proof proceeds in three steps.

Step 1. Isolate heavy hitters with little noise. Consider the action of a hashing

and sign-flip matrix H�S with O(`/η) rows. From previous work [CCFC02, AMS99],

it follows that, if constant factors parametrizing the matrices are chosen properly,

Lemma 2.5. For each t ∈ T , the following holds with probability 1−O(δη):

(a) The term t is hashed by at least one row ρ in H.

(b) There are O(ηN/`) total positions (out of N) hashed by ρ.

(c) The dot product (ρ�s)a is stat ±O
(√

η
`
‖ν1‖2

)
, where s is a sign-flip vector.

(d) Every t′ ∈ T \ {t} is not hashed by ρ.

Proof. (Sketch) For intuition, note that the estimator st(ρ�s)a is a random vari-

able with mean at and variance ‖ν1‖2
2. Then the claims in the Lemma assert that

the expected behavior happens, up to constant factors, with probability Ω(1). The

O(log 1/(δη)) repetitions of H�S bring the failure probability down to O(δη).

In the favorable case, into each row of H is hashed exactly one term of T that

dominates the other ηN/` terms hashed into that row.
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Call a row ρ that satisfies the conditions in Lemma 2.5 a good row.

Step 2. Identify heavy hitters with little noise. Next, we show how to identify

the heavy hitter t in a good row. Since there are ηN/` different positions hashed

by H , we need to learn the O(log(ηN/`)) bits describing t in this context. Previous

sublinear algorithms [CM06, GSTV07] used a trivial error correcting code, in which

the t’th column was simply the binary expansion of t in direct sum with a single 1, for

the matrix C in semi-direct product with H . Thus, if the signal x consists of xt in

the t’th position and zeros elsewhere, the vector (CnrH)x would include xt and xt

times the binary expansion of t (the latter interpreted as a string of 0’s and 1’s as real

numbers). These algorithms require strict control on the failure probability of each

measurement in order to use such a trivial encoding. In our case, each measurement

succeeds only with probability Ω(1) and, generally, fails with probability Ω(1). So

we need to use a more powerful error correcting code and a more reliable estimate of

|xt|.
Recall that we have a portion w of the measurements that are used for identifi-

cation and that these are further decomposed into the pieces [v,u] that correspond

to the parallel repetition of Θ(log logN) 1s and to the error-correcting code blocks,

respectively. We use the block v of b = Θ(log logN) independent measurements of

|xt| to obtain an estimate u of |xt| that we use to threshold the subsequent measure-

ments u to 0/1 values that correspond to the bits in the encoding of t. Let p denote

the success probability of each individual measurement in v. We can arrange that

p > 1 − r (recall that r is the relative distance of the error correcting code). Then,

we expect the fraction p to be approximately correct estimates of |xt|, we achieve

close to this expected fraction, and the median u over the Θ(log logN) estimates is

approximately correct with high probability.

Next, we use the median u to threshold the remaining measurements u to 0/1

values. Let us consider these bit estimates. In a single error-correcting code block

of b = Θ(log logN) measurements, we will get close to the expected number, bp,

of successful measurements, except with probability 1/ log(N), using the Chernoff

bound. In the favorable case, we get a number of failures less than the (properly

chosen) distance of the error-correcting code and we can recover the block using

standard nearest-neighbor decoding. The number of error-correcting code blocks

associated with t is O(log(ηN/`)/ log logN) ≤ O(logN), so we can take a union

bound over all blocks and conclude that we recover t with probability Ω(1). Because

the algorithm takes O(log(1/δ)) parallel independent repetitions, we guarantee that
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the failure probability is δ for each t ∈ T and we expect δ|T | = O(δ`) failures, overall.

The probability of getting more than `/4 failures is at most O(δ).

Step 3. Estimate heavy hitters.

Many of the details in this step are similar to those in Lemma 2.5 (as well as to

previous work as the function Estimate is essentially the same as Count Sketch),

so we give only a brief summary.

The error-correcting code is not necessary for estimating the coefficient values and

we use a separate set of measurements z that do not include the coding overhead. As

above, random sign flips and hashing into O(`/η) buckets suffices to isolate a term t

so that the remaining terms hashed to t’s bucket have expected energy O(η/`) and

realize energy O(η/`) with constant probability. Another factor log 1/(δη) repetitions

suffices to make the failure probability δη, so that, except with probability δ, we have

O(η|Λ|) = O(`) failures overall among the |Λ| = Θ(`/η) candidates whose coefficients

we estimate.

This concludes the proof of the claim.

Number of measurements. We now consider the number of measurements in the

matrix. The hashing matrix H contributes O(`/η) rows. The constant-rate error-

correcting code matrix C contributes an additional factor of O(log ηN/`), to identify

one index out of ηN/`. The O(log 1/δ) repetitions contribute that additional factor

to drive down the overall failure probability of identification from 1−Ω(1) to δ. The

S matrix does not contribute to the number of rows. This gives a product of

O((`/η)(log(ηN/`) log 1/δ))

for identification.

Similarly, for estimation, we have O(`/η) rows for hashing. Since we are estimating

coefficients for O(`/η) candidates and can only afford O(`) errors except with prob-

ability δ, the Markov inequality requires that each estimate fail with probability at

most ηδ, which contributes the factor O(log 1/(ηδ)). Thus we get O((`/η) log 1/(ηδ))

for estimation, and

O((`/η)(log(ηN/`) log 1/δ + log 1/(ηδ)),

overall. Note that we may assume η > `/N , since, otherwise, we may use `/η > N
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measurements to recover trivially. Thus the overall number of measurements is

O((`/η)(log(N/`) log 1/δ)).

Number of non-zeros. The expected number of non-zeros in each column of the

identification part of Φ is O(1) from hashing, times the factor O(log ηN/`) from the

general (dense) error-correcting code, times O(log 1/δ) for repetition. Analysis of the

estimation part is similar. We get O(log(N/`) log 1/δ) non-zeros altogether.

Post-measurement noise. Finally, consider the effect of ν2. Suppose there are m

rows in Φ. A careful inspection of the above proof indicates that ν1 enters only

through the expected energy in each bucket, which is Θ((η/`) ‖ν1‖2
2); the error-

correcting code and parallel repetitions lead to energy Θ((η/`) ‖ν1‖2
2) = Θ((γ/m) ‖ν1‖2

2)

in each component of Φa. The error (1 + η) ‖ν1‖2
2 represents the ‘inevitable’ error

‖ν1‖2
2 due to terms outside the top O(`) that are not recovered by the algorithm, plus

‘excess’ error η ‖ν1‖2
2, which is introduced through many small coefficient approxima-

tion errors. Since ν2 does not affect the inevitable error, we can replace (γ/m) ‖ν1‖2
2

with (γ/m) ‖ν1‖2
2 + (16/m) ‖ν2‖2

2 when figuring the excess error, giving the claimed

result. (Below we will see that γ can be viewed as a normalization factor for Φ, that

makes Φν1 and ν2 comparable.)

The computation time is straightforward. This concludes the proof of Lemma 2.3,

the Loop Invariant Maintenance Lemma.

2.4.1.2 Normalization of the Measurement Matrix

Next we consider the normalization of the overall matrix Φ from Section 2.3.1.

As has been observed [BIPW10], Φ should be normalized in the setting of ν2 6= 0.

Otherwise, the matrix Φ can be scaled up by an arbitrary constant factor c > 1

which can be undone by the decoding algorithm: Let D′ be a new decoding algorithm

that calls the old decoding algorithm D as D′(y) = D(1
c
y), so that D′(cΦx + ν2) =

D(Φx + 1
c
ν2). Thus we would be able to reduce the effect of ν2 by an arbitrary factor

c > 1. In our ‘for each, `2 ≤ C`2’ model, an appropriate way to normalize Φ is as

follows.

Definition 2.6. The ‖Φ‖2 2 norm of a randomly constructed matrix Φ is

max
x6=0

E
[
‖Φx‖2

‖x‖2

]
.
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Note that the usual 2-operator norm,

‖Φ‖2 = max
x 6=0

[
‖Φx‖2

‖x‖2

]
is typically much larger than ‖Φ‖2 2, which would lead to a much weaker result. But

it corresponds to an adversary choosing x and ν2 knowing the outcome Φ, which is

counter to the spirit of the ‘for each’ model in previous work. Here we assume the

adversary knows the distribution on Φ, but not the outcome, when choosing x and

ν2.

Now we bound ‖Φ‖2 2 for our Φ. It is straightforward to see that this is the

maximum expected column `2 norm. In the j’th iteration, there are at most j logN/k

non-zero entries, each of magnitude
√

cj

logN/k
for some c in the range 1/2 < c < 1. It

follows that

‖Φ‖2
2 2 ≤

∑
j

jcj = O(1),

if constants are chosen properly.

2.4.1.3 Invariant

Now we show that the invariant is satisfied, using the LIM lemma. That is all

that remains to prove our main theorem:

Theorem 2.1. There is an algorithm and distribution on matrices Φ satisfying

max
x 6=0

E
[
‖Φx‖2

‖x‖2

]
= 1

such that, given Φx, the parameters, and a concise description of Φ, the algorithm

returns x̂ with approximation error

‖x− x̂‖2
2 ≤ (1 + ε) ‖ν1‖2

2 + ε ‖ν2‖2
2

with probability 3/4. The algorithm runs in time O
(
(k/ε) logO(1) N

)
and Φ has

O
(
(k/ε) log(N/k)

)
rows. In expectation, there are O(log2(k) log(N/k)) non-zeros in

each column of Φ.

Proof. Note that the matrices described in Section 2.3.1 have two additional features,

compared with the matrices in the LIM lemma. First, there is a single random

permutation matrix P that multiplies all the error-correcting code, hashing, and
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sign-flip matrices, and, second, the matrices in iteration j are multiplied by cj/2,

where c is an appropriate constant in the range 1/2 < c < 1. Also note that ν2 is not

a priori guaranteed to be symmetric, as stipulated by the LIM lemma.

Consider the effect of ν2. We would like to argue that the noise vector ν2 is

‘distributed at random’ by the permutation and each measurement is corrupted by

‖ν2‖2
2 /m, approximately its fair share of ‖ν2‖2

2, where m is the number of measure-

ments. Unfortunately, the contributions of ν2 to the various measurements are not

independent as ν2 is permuted, so we cannot use such a simple analysis. Nevertheless,

they are negatively correlated and thus the Chernoff bound still applies [DP96].

For a more complete analysis, set I =
{
i : (P−1ν2)i ≥ 4√

m
‖ν2‖2

}
, so |I| ≤

m
16

. We say row i in the measurement matrix is heavily corrupted if i ∈ I. The

measurement matrix is decomposed into B blocks (in the sense of error-correcting

codes) of rows, these blocks are used to identify a heavy hitter or to estimate a signal

position value. For identification, we have a block size of O(log logN) and an explicit

encoding/decoding procedure, while for estimation, we have a block size of O(logN)

and a trivial encoding/decoding procedure. If some of the blocks are corrupted by the

measurement noise, we may still be able to decode accurately. In order to ascertain

how many blocks are heavily corrupted and what influence this has on the decoding

procedure, we must analyze how the random permutation disperses I over the blocks.

Let Xi = 1{i∈I} and Λ1, . . . ,ΛB be the set of indices of the blocks. Define Yk =∑
i∈Λk

Xi (1 ≤ k ≤ B), to be the number of corrupted measurements in block k.

The most desirable situation is that, as in LIM Lemma, Yk ≤ |Λk|
16

for all k, which is,

however, extremely unlikely to happen. We could only expect something weaker. It

follows from Chernoff bound that

Pr

{
|Yk| ≥

|Λk|
6

}
≤ e−0.05|Λk|.

Since |Λk| = Ω(log logN) in the encoding portion of the identification matrix D,

the probability above is 1

logΩ(1)N
. Furthermore, there are O(logN) rows in a block

of the hashing portion of D, thus the union bound gives o(1) failure probability of

|Yk| ≤ |Λk|
6

for all k corresponding to a specific row in the hashing matrix.

Suppose there are g good hashing rows, g =
∑
gt, where gt = Ω(j) (recall that

the identification matrix D has Θ(j) layers) is the number of good rows containing

heavy hitter t. From the negative association, the probability that 4
5
gt good rows

are heavily corrupted is at most o(1)gt = O(c−j) for some constant c, in which case

we say the heavy hitter t is ruined. By the Markov inequality, only a small fraction
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of heavy hitters are ruined except with small probability O(c−j), which is sufficient

for recovery in the j-th iteration. Similar arguments work for the estimation matrix,

where heavy hitters and non-heavy hitters are discussed separately. Summing the

failure probability over j, we conclude that except with probability o(1), the post-

measurement noise ν2 will be dispersed favorably, i.e., the blocks corresponding to

most heavy hitters have at most 1/6 of the measurements being heavily corrupted.

Next, we claim that with the measurement noise dispersed favorably, we only need

an increase of a constant factor in the number of measurements to accommodate the

noise. Let {Xi}mi=1 be i.i.d. Bernoulli random variables with parameter p that denote

the failure of measurement i (in which case Xi = 1). Let λ > p be the thresholding

constant. The Chernoff bound tells us that the failure probability of a fraction λm

of all the measurements is

Pr

{
m∑
i=1

Xi ≥ mλ

}
≤ e−C(δ)mp,

where δ = λ
p
− 1 and C(δ) is a constant depending on δ. With post-measurement

noise, a fraction θ of Xi’s are corrupted and not usable, where θ is sufficiently small

such that θ+p < λ. (For instance, following the above constants, we have that θ = 1
6

and we can adjust p and λ in the arguments of the case ν2 = 0 such that θ + p < λ.)

The threshold becomes m(λ− θ) instead of mλ, and thus

Pr

{
m∑
i=1

Xi ≥ m(λ− θ)

}
≤ e−C(ζ)mp,

where ζ = λ−θ
p
−1. It is now clear that m needs to increase by only a constant factor,

namely C(δ)
C(ζ)

, to keep the probability bound unchanged. Henceforth, we may assume

ν2 corrupts each measurement in Φx by at most 16‖ν2‖2/m.

We turn now to the complete proof of the invariant (Claim 2.2) with post-

measurement noise. With assumed normalization ‖ν1‖2 = ‖ν2‖2 = 1, we have that∥∥∥ν(0)
1

∥∥∥
2

= 1.

In iteration j, we make ` of the LIM lemma equal to k/2j, η of the LIM lemma is

Θ(εβj), and δ = 2−j, for β < 1 to be specified below. It is straightforward to confirm

that
∥∥σ(j+1)

∥∥
0
≤ k/2j+1, provided the invariant held at the previous iteration. We

now turn to
∥∥∥ν(j+1)

1

∥∥∥
2
.
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At the beginning of the j’th iteration,∥∥∥ν(j)
1

∥∥∥2

2
≤ 1 + ε

(
1−

(3

4

)j)
.

This means that 1 ≤
∥∥∥ν(j)

1

∥∥∥2

2
≤ 2 remains unchanged up to the factor 2. By the LIM

lemma and the discussion at the beginning of Section 2.4.1.2, each repetition gives,

with high probability, an estimate with∥∥∥ν(j+1)
1

∥∥∥2

2
−
∥∥∥ν(j)

1

∥∥∥2

2
at most εβj

(∥∥∥ν(j)
1

∥∥∥2

2
+ 16c−j ‖ν2‖2

2

)
.

It follows that the median over repetitions of this estimate satisfies the same bound

with high probability. Since 1� c−j, it follows that 1 + c−j ≈ c−j. If we put β ≈ 5/8

and c ≈ 5/6, the invariant is satisfied.

We have proved that the algorithm returns x̂ with approximation error

‖x− x̂‖2
2 ≤ (1 + ε) ‖ν1‖2

2 + 16ε ‖ν2‖2
2 .

Now, replace 16ε by ε to achieve the desired form of error bound while introducing

only a constant to the time cost.

2.4.2 Efficiency

2.4.2.1 Number of Measurements

The number of measurements in iteration j is computed as follows. There are

log(1/δ) = O(j) parallel repetitions in iteration j. They each consist ofO(k/(εβj2j) log(N/k))

measurements, where β = 5/8. That is, the number of measurements is

Θ

(
jk

ε

(
4

5

)j
log

N

k

)
=
k

ε
log

N

k

(
4

5
+ o(1)

)j
.

Thus we have a sequence bounded by a geometric sequence with ratio less than 1.

The sum, over j, is bounded by O((k/ε) log(N/k)).

Note that the dimension of the random permutation matrix P matches the number

of rows, O((k/ε) log(N/k)).
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2.4.2.2 Encoding, Decoding, and Update Time

The encoding time is bounded by N times the number of non-zeros in each col-

umn of the measurement matrix. This was analysed above in Section 2.4.1; there

are log(j) log(N/k) non-zeros per column in iteration j, for j ≤ O(log(k)), so the

total is log2(k) log(N/k) non-zeros per column. This is suboptimal by the factor

log2(k). By comparison, however, some proposed methods use dense matrices, which

are suboptimal by the exponentially-larger factor k.

When constructing the matrix for measuring the original signal or some interme-

diate representation, our algorithm will need to find, quickly, the bucket to which an

index i is hashed and a codeword for i, where i is in the range 1 ≤ i ≤ N . Note

that it is crucial that we use O(log(N/B)) bits for the codeword to meet the sketch

length lower bound O(k log(N/k)) (instead of O(k logN)), where B is the number of

buckets, and not log(N) bits. This means we need to find codewords for just the i’s

hashed to a particular bucket. Upon decoding, we need to be able to find i from its

codeword, quickly.

We can use a pseudorandom number generator that hashes i to a bucket j if

jN/B ≤ ai+b mod N < (j+1)N/B for random a and b. Then encode i by E(ai+b−
jN/B), assuming quick encoding for numbers in the contiguous range 0 to N/B − 1.

To decode, knowing j, we first recover ai + b − jN/B, whence we easily recover

ai + b and subsequently i. Define hash function f(i) = ai + b on ZN . The non-

zeroes at positions i1, . . . , ih in a row of the hashing matrix are ordered such that

f(i1) < f(i2) < · · · < f(ih). An example is given in Figure 2.3.1.

Another issue is the time to find and to encode and to decode the error-correcting

code. Observe that the length of the code is O(log logN). We can afford time

exponential in the length, i.e., time logO(1)N , for finding, encoding, and decoding the

code. These tasks are straightforward in that much time. Alternatively, we can use

a lookup table of size polylog(N) to decode a code in O(1) time.
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CHAPTER 3

Sparse Recovery in `1/`1 Error Metric

3.1 Introduction

The first sublinear-time algorithm for the (for-all) `1/`1 sparse recovery problem

was given in [PS12], though that algorithm had limitations, namely

• The runtime, while sublinear, was
√
kN or, more generally, of the form k1−αNα

for any constant α > 0. That algorithm did not achieve runtime polynomial in

k log(N)/ε.

• [PS12] required a precomputed table of size Nk0.2.

• [PS12] was far from optimal in its dependence of the number of measurements

on ε.

In this work, we rectify the above limitations, assuming the (modest) restriction that

ε < log k/ logN . See the theorems for precise statement, in which the restriction is

slightly weaker.

We also make the measurement dependence on ε optimal. The best known lower

bound for the `1/`1 for-all problem is Ω(k/ε2 + (k/ε) log(εN/k)) [NNW12], which

is also the best known lower bound for the `2/`1 for-all problem. Our algorithm

can be viewed as using O((k/ε) log(N/k)((logN/ log k)α+1/ε)) measurements (when

ε < (log k/ logN)α it becomes O(k/ε2 log(N/k))), which is suboptimal only in a

logarithmic factor. Note that the dependence on ε is ε−2, which is optimal.

Overview of Techniques. Our overall approach is as follows, building on [PS12]

and [GNP+13]. The matrix Φ implements a two-stage hashing process, in which the

original indices [N ] are first hashed into B buckets. We then sum the items in each
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bucket, getting a new signal of length B, in which a heavy hitter xi in the original

signal is likely to dominate its bucket. Then, in time about B, search the buckets to

find the heavy buckets. Finally, determine which element in the found heavy bucket

is the original heavy hitter. All this suffices for a weak system, that identifies all but

k/2 of the heavy hitters. We then repeat with smaller (easier) sparsity parameter

k/2 < k and smaller (harder) distortion parameter (3/4)ε < ε, giving a number of

measurements with leading cost factor (k/2)(4/3ε)2 = (8/9)k/ε2 < k/ε2. Summing

the geometric progression gives the result we need.

The main difficulty is identification, i.e., to determine which element in the found

heavy bucket is the original heavy hitter. To overcome this, we assign to each position

i in [N ] a message mi that describes its position, such that given mi we can identify i.

Based on mi, we build chunks {mi,j}j such that given a large fraction of the chunks

we can recover mi via an error correcting code. In particular,

• We show that we can encode a message of log(N/k) bits for each i ∈ [N ] into the

matrix Φ so that, intuitively, the messages corresponding to the large-magnitude

entries of x are decoded properly when x̂ is produced. In our algorithm, with

its two-stage hashing, we will only be able to encode fewer bits at a time. The

message we encode as mi,j in each chunk is some the log(N) bits of i together

with some pointer information that helps us to cluster all the necessary bits of

i. This substitutes for the full-space look-up table in [PS12] and leads to better

runtime than [GNP+13].

• To decode the message mi from the chunks, we use a construction similar to

network coding. Our work is not the first to consider list recovery; [INR10]

introduces the idea in the context of combinatorial group testing. Like [INR10],

we consider weak list recovery, that is, we need only to decode a good fraction

of the mi’s corresponding to heavy hitters. The idea of list recovery is also used

in [GNP+13], where the list decoding, however, would affect the hashing and

the hashing was thus required to be sufficiently random. In our algorithm, the

messages {mi} are independent of the hashing, which enables us to obtain a

better result.

In addition, instead of presenting the algorithm as a hashing algorithm, however,

we use randomness to build an unbalanced expander (with additional properties).

Then we show that our algorithm works (deterministically) with any unbalanced

expander having the appropriate properties.
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Our contributions. Our contributions are as follows.

• We give an algorithm for sparse recovery in the for-all setting, under a modest

restriction on the distortion factor ε, having the number of measurements that

matches the best upper bound (which was attained by super-linear algorithms,

e.g., [IR08]), and optimal in runtime up to a power.

• We hope our algorithm can be extended from the 1-norm to the mixed norm

guarantee and that the restriction on ε can be weakened or eliminated. Thus

our algorithm may be a stepping stone to the final algorithm.

• Our techniques may be useful in other contexts for soft-decoding or network

coding.

Organization. We build the algorithm in a bottom-up approach, first building the

weak system and then the overall algorithm based on the weak system. In Section 3.2

we review some properties of expanders, then we set out to build our weak system in

the next three sections. In Section 3.3, we show that provided with good identification

results, unbalanced expanders with appropriate properties will give a weak system.

In Section 3.4, we show that the required properties are satisfied by our two-stage

hashing structure. Our construction of weak system culminates in Section 3.5, where

we shall show how to achieve good identification via message encoding and decoding.

Then we build the overall algorithm on the weak system in Section 3.6. Finally we

close with open problems in Section 3.7.

3.2 Preliminaries

Our main algorithm will be built on regular graph expanders and unbalanced

bipartite expanders. In this section we review some properties of expanders. Let

n,m, d, ` be positive integers and ε, κ be positive reals. The following two definitions

are adapted from [GUV09].

Definition 3.1 (expander). An (n, `, κ)-expander is a graph G(V,E), where |V | = n,

such that for any set S ⊆ V with |S| ≤ ` it holds that |Γ(S)| ≥ κ|S|.

When n is clear from the context, we abbreviate the expander as (`, κ)-expander.

Definition 3.2 (bipartite expander). An (n,m, d, `, ε)-bipartite expander is a d-left-

regular bipartite graph G(L ∪ R,E) where |L| = n and |R| = m such that for any
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S ⊆ L with |S| ≤ ` it holds that |Γ(S)| ≥ (1− ε)d|S|, where Γ(S) is the neighbour of

S (in R).

When n and m are clear from the context, we abbreviate the expander as (`, d, ε)-

bipartite expander. When d is also clear from the context, we simply write (`, ε)-

bipartite expander.

Consider the adjacency matrix AG of an d-regular expander G. It always holds

that the biggest eigenvalue of AG is d. Let λ(G) denote the largest absolute value of

any other eigenvalue. The following theorem is now well-known.

Theorem 3.3 ([FKS89]). For all sufficiently large n and even d, there exists a d-

regular expander G such that |V (G)| = n and λ(G) ≤ C
√
d for some absolute constant

C > 0.

Remark 3.4. The Alon-Boppana bound states that λ(G) ≥ 2
√
d− 1 − o(1) [Alo86],

which implies that the theorem above is optimal up to a constant factor.

Next we present a result due to Upfal [Upf92], implicitly contained in the proof of

Lemma 1 and 2 therein. It states that there exists a expander graph of n nodes and

constant degree, such that after removing a constant fraction of nodes the remaining

subgraph contains an expander of size Ω(n).

Theorem 3.5 ([Upf92]). Let G be a δ-regular expander of n nodes such that λ(G) ≤
C
√
δ, where δ is a (sufficiently large) constant. There exist absolute constants α, ζ > 0

and κ > 1 such that after removing an arbitrary set T of nodes with |T | ≤ ζn from

G, the remaining graph contains a subgraph G′ such that |V (G′)| ≥ αn and G′ is a

(|V (G′)|, n/2, κ) graph expander.

Remark 3.6. A closer examination of the proof reveals that the assumption in the

theorem could be weakened to λ(G) ≤ cδ for some small constant c > 0. This would

enable the use of graphs G with larger λ(G), which are easier to construct.

The following definitions concern hashing, in which the parametersN,B1, B2, d1, d2

are positive integers. We also adopt the conventional notation that [m] = {1, 2, . . . ,m}.

Definition 3.7 (one-layer hashing scheme). The (N,B, d) (one layer) hashing scheme

is the uniform distribution on the set of all functions f : [N ]→ [B]d.

Each instance of such a hashing scheme induces a d-left-regular bipartite graph of

Bd right nodes. When N is clear from the context, we simply write (B, d) hashing

scheme.
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Definition 3.8 (two-layer hashing scheme). An (N,B1, d1, B2, d2) (two-layer) hash-

ing scheme is a distribution µ on the set of all functions f : [N ]→ [B2]d1d2 defined as

follows. Let g be a random function subject to the (N,B1, d1) hashing scheme and

{hi,j}i∈[d1],j∈[d2] be a family of independent functions subject to the (B1, B2, d2) hash-

ing scheme which are also independent of g. Then µ is defined to be the distribution

induced by the mapping

x 7→ (h1,1(g1(x)), . . . , h1,d2(g1(x)), h2,1(g2(x)), . . . , h2,d2(g2(x)), . . . ,

hd1,1(gd1(x)), . . . , hd1,d2(gd1(x))) .

Each instance of such hashing scheme gives a d1d2-left-regular bipartite graph of

B2d1d2 right nodes. When N is clear from the context, we simply write (B1, d1, B2, d2)

hashing scheme. Conceptually we hash N elements into B1 buckets and repeat d1

times, those buckets will be referred to as first-layer buckets; in each of the d1 repe-

titions, we hash B1 elements into B2 buckets and repeat d2 times, those buckets will

be referred to as second-layer buckets.

Related to hashing, we introduce an isolation property on bipartite graphs.

Definition 3.9. Let G = (L ∪R,E) be a bipartite graph and S, T ⊆ L. Define

US(T ) = {y ∈ R : (x, y) ∈ E for some x ∈ T while (z, y) 6∈ E for all z ∈ T, z 6= x}.

Definition 3.10 (isolation property). An (n,m, d, `, ε) bipartite expander G is said

to satisfy the (L, η, ζ)-isolation property if for any set S ⊂ L(G), |S| ≤ L, there exists

S ′ ⊂ S, |S ′| ≥ (1− η)|S| such that |US({x})| ≥ (1− ζ)d for all x ∈ S ′.

3.3 Weak System

Usually we decompose a signal x into two parts of disjoint support, say, x = y+z,

where y has small support and z has small norm. Loosely speaking, we call y the head

and z the tail. To simplify the language we may also use head to refer to supp y. We

aim to recover the head items, i.e., the elements in y. Introduced in [PS12], a weak

system takes an additional input, some set I of indices (called the candidate set),

and tries to estimate xi for i ∈ I, hoping to recover some head items with estimate

error dependent on ‖z‖1. It is shown in [PS12] that when I contains the entire head,

we can always recover a good fraction of the head. In this paper we make a slight

modification on the definition of weak system as below. We only need I to contain a
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good fraction of the head instead of the entire head.

Definition 3.11 (Weak system). A Weak system consists of parameters N, s, η, ζ,

an m-by-N measurement matrix Φ, and a decoding algorithm D, that satisfy the

following property:

For any x ∈ RN that can be written as x = y + z, where | supp y| ≤ s and

‖z‖1 ≤ 3/2, given the measurements Φx and a subset I ⊆ [N ] such that |I∩supp y| ≥
(1− ζ

2
)| supp y|, the decoding algorithm D returns x̂, such that x admits the following

decomposition:

x = x̂ + ŷ + ẑ,

where | supp x̂| = O(s), | supp ŷ| ≤ ζs, and ‖ẑ‖1 ≤ ‖z‖1 + η.

Intuitively, y and z will be the head and the tail of the residual x− x̂, respectively.

We shall use the weak system on x− x̂ (with a different candidate set I) and iterate,

approximating the original x. We shall give the details in Section 3.6. To obtain a

weak system, we critically rely on the following two lemmata.

Lemma 3.12 (Noise). Let α > 1 and t > αk. Let Φ be the adjacency graph of an

(n,m, d, 2αk, ε) expander with ε < 1/2. Let x ∈ Rn such that |x1| ≥ |x2| ≥ · · · ≥ |xn|.
Let I = [αk], then

‖(Φ(x− x[t]))Γ(I)‖1 ≤ 4εd(‖x− x[t]‖1 + αk|xt+1|).

Proof. Partition {1, . . . , N} into blocks I ∪ H1 ∪ B1 ∪ B2 ∪ . . . , where H1 = {αk +

1, . . . , t} and Bi = {t+ (i− 1)αk+ 1, . . . , t+ iαk} for i ≥ 1. Consider x restricted to

a block Bi.

Case 1. xBi is flat, i.e., |xt+iαk| ≥ |xt+(i−1)αk+1|/2. Consider all d|Bi| edges in

the expander emanating from Bi. Suppose that Z edges of them are incident to Γ(I),

then

|Γ(I) ∪ Γ(Bi)| ≤ εd(|I|+ |Bi|)− Z.

On the other hand, by the expansion property,

|Γ(I) ∪ Γ(Bi)| ≥ (1− ε)d(|I|+ |Bi|),

which implies that

Z ≤ εd(|I|+ |Bi|) ≤ 2εαkd.

39



Each of the Z edges sends a noise of xi to Γ(I), therefore

‖(ΦxBi)Γ(I)‖ ≤ Z ·max
i∈Bi
|xi| ≤ 2εαkd · |xt+(i−1)αk+1| ≤ 4εd‖xBi‖1,

where the last inequality follows from the fact that xBi is flat so that αk|xt+(i−1)αk+1| ≤
2‖xBi‖1.

Case 2. xBi is not flat, then |xt+iαk| < |xt+(i−1)αk+1|/2. Let

J = {i ∈ Bi : |xi| < |xt+(i−1)αk+1|/2}.

Increase |xi| for all i ∈ J so that |xi| = |xt+(i−1)αk+1|/2 and xBi becomes flat, and

this increases ‖xBi‖1 by at most αk|xt+(i−1)αk+1|/2. Invoking Case 1, we obtain that

‖(ΦxBi)Γ(I)‖1 ≤ 4εd

(
‖xBi‖1 +

αk
∣∣xt+(i−1)αk+1

∣∣
2

)
.

Now we go back to the entire x. Suppose that Bi1 , . . . , Biq are not flat, then by

triangle inequality we shall have

‖(Φ(x− xt))Γ(I)‖1 ≤ 4εd‖x− xt‖1 + 4εd · αk
2

q∑
p=1

∣∣xt+(ip−1)αk+1

∣∣ .
Observe that |xt+(ip−1)αk+1| ≤ |xt+(ip−1−1)αk+1| for p ≥ 2, we can show inductively

that

|xt+(ip−1)αk+1| ≤
|xt+1|
2p−1

, p ≥ 1,

whence it follows that

‖(Φ(x− x[t]))Γ(I)‖1 ≤ 4εd(‖x− x[t]‖1 + αk|xt+1|).

In the usual decomposition, the head contains the entries with large coordinate

values, which will be referred to as heavy hitters. If a heavy hitter is failed to be

recovered, it must have been displaced by another entry, loosely called a decoy, in the

recovered signal. The next lemma bounds the number of decoys.

Lemma 3.13 (Decoys). Suppose that G is a (4s, ε
512

)-bipartite expander which sat-

isfies the (9s
ε
, βε, ζ)-isolation property, where 1

2
− ζ > 576β. Let x ∈ Rn be a signal

satisfying the assumption in the Weak system, and let x′ ∈ Rn be the estimates defined
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as

x′i = median
u∈Γ({i})

∑
(u,v)∈E

xu, i ∈ [N ].

Define

D = {i ∈ [N ] : |xi − x′i| ≥ ε/(4s)},

then |D| < s/8.

Proof. Without loss of generality, assume that |D| = s/8, or we replace D with a

subset of size exactly s/8. Also assume that |x1| ≥ |x2| ≥ · · · ≥ |xn|. Suppose that

|xi| ≥ ε/(2s) for all i ∈ H := supp y, otherwise we can place the violated i’s into z,

causing ‖z‖1 to increase by at most s · ε/(2s) = ε/2, so we would have ‖z‖1 ≤ 2. Let

T = H ∪D ∪ {i : |xi| ≥ ε/(4s)}, then t := |T | ≤ ‖z‖1/(ε/(4s)) + |D|+ |H| ≤ 9s/ε.

Note that |xt+1| ≤ ε/(4s). Taking α = 2 in Lemma 3.12, we know that

‖(Φ(x− x(t)))Γ(H∪D)‖1 ≤ 4 · βεd
(

3

2
+
ε

2
+ 2s · ε

4s

)
≤ 8βεd.

By the isolation property, there are at most 9s
ε
· ε

144
= s

16
elements in T which are not

isolated in at least ζd nodes from other elements in T . This implies that at least s/16

elements in D are isolated in at least ζd nodes from other elements in T .

A decoy at position i receives at least ε/(4s) noise in at least (1/2− ζ)d isolated

nodes of Γ({i}), hence in total, a decoy element receives at least ε(1/2 − ζ)d/(4s)

noise. Therefore the s/16 decoys overall should receive noise at least

ε(1
2
− ζ)d

4s
· s

16
> 8βεd ≥ ‖(Φ(x− xt))Γ(H∪D)‖1,

which is a contradiction. Therefore |D| < s/8.

Remark 3.14. Despite the fact that we have specified various constants (such as 4,
1

512
, 9, etc) in the lemma above, the constants can be flexibly adjusted such that the

number of decoys is at most ζs for any given small ζ > 0 with appropriate choices of

other constants.

In [PS12] it is essentially proved that

Theorem 3.15 (Weak). Suppose that Φ is the adjacency matrix of an (N,Bd, d, 4s, η)

bipartite expander such that (a) d = O( 1
ηζ2 log N

s
) and B = O( d

ζη
) and (b) it is an

instance of a (B, d) hashing scheme. With appropriate instantiations of constants, Φ

gives a correct Weak system that runs in time O(|I|η−1ζ−2 log(N/s)).
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Algorithm 3.1 Weak system.

Input: N , s, Φ (adjacency matrix of a d-left-regular expander G), Φx, and I
Output: x̂

for j ← 1 to d do
for each i ∈ I do

x
(j)
i ← medianu∈Γ({i})

∑
(u,v)∈E xu . each sum is an element of input Φx

for each i ∈ I do
x′i ← median1≤j≤d x

(j)
i

x̂← top O(s) elements of x′

return x̂

Proof. The proof is essentially the same as [PS12, Lemma 4]. It follows from Lemma 3.13

that with appropriate choices of constants, that there are at most ζs/4 decoys and at

least (1− ζ/4)s elements i in supp y satisfy |xi − x′i| ≤ η/(4s). Let I ′ = I ∩ supp y.

We describe below the construction of x̂, ŷ and ẑ.

• Elements i ∈ supp x̂ with a good estimate (to within ±η/(4s)) contribute xi−x̂i

to ẑ. There are at most s of these, each contributing η/(4s), for total contribu-

tion η/4 to ẑ.

• Elements i ∈ supp x̂ with a bad estimate (not to within ±η/(4s)) contribute

xi − x̂i to ŷ. There are at most ζs/4 of these.

• Elements i ∈ supp z\ supp x̂ contribute xi to ẑ. The `1 norm of these is at most

‖z‖1.

• Elements i ∈ I ′ \ supp x̂ with a good estimate that are nevertheless displaced

by another element i′ ∈ supp x̂ \ supp y with a good estimate contribute to ẑ.

There are at most s of these. While the value xi may be large and make a

large contribution to ẑ, this is offset by xi′ satisfying |xi′ | ≥ |x̂i′ | − η/(4s) ≥
|x̂i| − η/(4s) ≥ |xi| − η/(2s), which contributes to z but not to ẑ. Thus the net

contribution to ẑ is at most η/(2s) for each of the s of these i, for a total η/2

contribution to ẑ.

• Elements i ∈ I ′ \ supp x̂ that themselves have bad estimates or are displaced

by elements with bad estimates contribute xi to ŷ. There are at most ζs/4 bad

estimates overall, so there are at most ζs/4 of these.

• Elements i ∈ I \ I ′ contribute to ŷ. There are at most ζs/2 of these.

It is clear that | supp ŷ| ≤ ζs and ‖ẑ‖1 ≤ ‖z‖1 + η, as desired. The runtime is easy

to verify.
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3.4 Hashing and Expander

It remains to show that a bipartite expander as required by Theorem 3.15 exists.

In fact, by probabilistic methods, we can show that it can be attained by both one-

layer and two-layer hashing schemes, with appropriate parameters. The proofs use

standard techniques and are postponed to the end of the chapter.

3.4.1 One-layer hashing

Lemma 3.16. For any ε ∈ (0, 1/4), k ≥ 1, α ≥ 1 and N = Ω(αk), a random

one-layer (B, d) hashing scheme gives an (αk, ε) bipartite expander with probability

≥ 1− 1/N c, where B = Ω(αk
ε

) and d = Ω(1
ε

log N
k

).

In addition, hashing gives isolation property as well.

Lemma 3.17. For any ε, ζ ∈ (0, 1/4), k ≥ 1, α ≥ 1 and N = Ω(k/ε), a random one-

layer (B, d) hashing scheme gives a bipartite graph with (L, ε, ζ)-isolation property

with probability ≥ 1− 1/N c, where B = Ω( k
ζε

), d = Ω( 1
ζε

log N
k

), L = O(k/ε).

Combining Lemma 3.16, Lemma 3.17 and Theorem 3.15, we have completed a

clean formulation, in the language of expanders, of the result on weak system in

[PS12].

3.4.2 Two-layer Hashing

Now we show that a two-layer hashing scheme, upon which our identification

procedure will be built, also gives a desirable bipartite expander.

Lemma 3.18. Let ε ∈ (0, 1/4), k ≥ 1 and N = Ω(max{k/ε2, k2}). A random

two-layer (B1, d1, B2, d2) hashing scheme gives an (N,B2d1d2, d1d2, 4k, ε) bipartite ex-

pander with probability ≥ 1− 1/N c, where B1 = Ω( k
ε2

), d1 = Ω(1
ε

log(N/k)
log(B1/k)

), B2 = Ω(k
ε
)

and d2 = Ω(log B1

k
) with appropriate choices of constants.

Remark 3.19. The constraint that k = O(
√
N) could be weakened to k = O(N1−ξ)

for any ξ > 0. The constants hidden in various Ω(·) notations above will depend on

ξ.

We show that this two-layer hashing scheme also gives a good isolation property.

Lemma 3.20. Let α > 1 be an arbitrarily constant and (B1, d1, B2, d2) be a two-

layer hashing scheme with B1 = Ω( k
ζαε2α

), d1 = Ω( α
α−1
· 1
ζε

log(N/k)
log(B/k)

), B2 = Ω( k
ζε

) and
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d2 = Ω(1
ζ

log B1

k
). Then with probability ≥ 1 − 1/N c, the two-layer hashing scheme

with parameters prescribed above gives a bipartite graph with the (L, ε, ζ)-isolation

property, where L = O(k/ε).

3.5 Identification of Heavy Hitters

In the previous section, we showed how to estimate all candidates in a candidate

set I quickly. The main runtime bottleneck is finding a non-trivial set I ⊂ [N ] of

candidates. This is the topic of this section.

The overall strategy is as follows. Using the two-layer hashing scheme (B1, d1, B2, d2),

we except that a heavy hitter dominates the first-layer buckets where it lands in Ω(d1)

repetitions. In each of such repetition, it is a heavy hitter in a signal of length B1,

and expected to be recovered using the Weak algorithm applied to the signal of length

B1 with I = [B1]. After finding the heavy buckets in each repetition, the remain-

ing problem is to extract the position of a heavy hitter i from the Ω(d1) repetitions

which contain i. To do this, we shall encode the index i in such a way that if we

recover the buckets containing i in enough repetitions we shall be able to reconstruct

i. Some previous work [GSTV07] uses bit-testing matrices to encode logN bits of i

at the cost of a logN factor blow-up in the number of measurements. Our goal is

to be more efficient in number of measurements. In the for-each setting, [GLPS12]

uses error correcting code to tolerate a fraction of corrupted measurements at no ad-

ditional measurement cost. Unfortunately the method has a relatively large failure

probability and thus does not work in the for-all setting.

We introduce the following model of Weak list recovery.

Definition 3.21. Fix parameters m,N, s. The Sparse Recovery Channel takes an

m-by-N matrix Φ as input, chooses a signal x with decomposition x = y + z with

| supp y| ≤ s and ‖z‖1 ≤ O(1), and outputs Φx.

Note that x may depend on Φ. Also note that any signal may be chosen by

the channel and normalized so that ‖z‖1 ≤ 3/2. It will be convenient to assign the

normalization at this point to match the Weak system (Defintion 3.11). Next, we

define the Weak Recovery Criterion appropriate for this channel. See Figure 3.1 for

detailed explanation.

Definition 3.22 (Weak list Recovery Criterion). Fix parameters m,N, s, ε. Let m

be a vector of β-bit messages, for i ∈ [N ], and suppose m̂ is a list of possible index-
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Figure 3.1: Sparse recovery channel. The encoder and decoder agree on some matrix
Φ. The encoder takes messages m and produces a measurement matrix
Φ′ based on m and Φ. The channel is fed with Φ′ and x and produces
Φ′x, from which the decoder tries to recover m̂ in the sense of weak list
recovery.

message pairs. We say that m̂ is correct in the List Weak sense if, for at least

| supp y| − s/4 indices i in supp y, we have (i,mi) ∈ m̂.

So we encode N messages but, as we will see, we will want to produce m̂ in time

k poly(logN)� N , so |m̂| � N . A correct recovery must include most messages that

are important according to the x. Whether we can code β bits for the m-measurement

sparse recovery channel, and how effcient or simple the decoding process is, depends

on the values of k, N , m, and β, like many results in coding theory.

The general setup is given in Algorithm 3.2. We break each message mi associated

with position i into d1 chunks, mi,1, . . . ,mi,d1 . Note that mi could be much longer

than logN bits in order to guarantee a successful list recovery. Now in the j-th

repetition of the d1 repetitions, we obtain a signal x̃ of length B. Each x̃` is associated

with a message that can be viewed as a weighted sum of mi,j for positions i hashed into

bucket `. If a heavy hitter i is isolated in bucket ` and the noise is mild in this bucket,

this weighted sum would be approximately mi,j, and we expect to recover mi,j from

the second-layer hashing, with inner encoding and decoding. Now we assume that we

have recovered mi,j for heavy hitter i in sufficiently many repetitions j. The central

difficulty is to match mi,j with mi,j′ with j 6= j′ in order to find enough fraction of

mi in the end. In order to solve this we shall encode some linking information in

the node that will enable us to match mi,j with mi,j′ . This will be the topic of the

next subsection, in which we shall use the Parverash-Vardy code to overcome this

difficulty.

As a starter we first show how to code β = log(B/k) bits in the length-B Sparse

Recovery Channel, and recover the messages associated with Ω(k) heavy hitters in

the length B signal in time approximately B. This simple case illustrates our idea of

encoding.
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Algorithm 3.2 Back-pointer paradigm.

. (B1, d1, B2, d2) hashing scheme
for i = 1 to N do

Break: Break the information of i into d1 chunks
Outer encoding: Encode the chunks with cluster info and against errors,

getting {mi,j}d1
j=1

end for
for j = 1 to d1 do

Inner encoding: Encode mi,j, for i ∈ [N ]
. ... length B1, (B2d2)-measurement Sparse Recovery Channel ...

Inner decoding: Recover m̂j in the Weak List sense
Record Side Info: Tag each element of m̂j with j

end for
Outer decoding: From m̂ =

⋃
j m̂j’s, find chunk clusters and correct errors;

produce I
Call Weak system with candidate set I

Lemma 3.23. Fix k,B, β, with B = Ω(k) and β = O(log(B/k)). There is a

coding scheme for the length-B m-measurememt Sparse Recovery Channel for m =

O(k
ε

log B
k

) in the weak list recovery sense in which decoding runs in time O(B log3B
k

).

This scheme also uses a look up table of size β.

Proof. As an outer code, use Reed-Solomon over an alphabet of size β/ log β. This

is concatenated with a random code of length log β as an inner code. The inner code

can be decoded in constant time from a lookup table of size β and the outer code

can be decoded by solving a linear system of size approximately β in time O(β2). To

encode the β bits of the inner code, proceed as follows.

To encode a single bit b ∈ {0, 1}, replace each row ρ of Φ with a 2-by-N submatrix.

In column i of ρ, replace each 1 with a height-two column
(
ρi
0

)
or
(

0
ρi

)
depending on

b. For decoding in the presence of noise, consider any
(
a
b

)
to be a relaxed encoding

equivalent to
(
ρi
0

)
if |a| > |b| and

(
0
ρi

)
otherwise. Replace each 0 with a height-2

column of zeros.

Overall we use a Weak system (Theorem 3.15) with a (Θ(k), O(1)) bipartite ex-

pander that exhibits a (Θ(k), d) hashing scheme, where d = Θ(log(B/k)). We know

that there exist Ω(k) heavy hitters, each dominates the buckets where it lands in

Ω(d) repetitions. In each such repetition, our bit encoding scheme ensures that the

associated bit can be recovered successfully, hence for each of such heavy hitter, we

shall collect Ω(d) bits, enough to recover the message of β bits.

The runtime is O(Bβ2 log(B/k)) for exhaustive recovery in the Weak system.
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...
...

...
...

· · ·

N columns

d1 rows

Figure 3.2: Underlying graph GN . Suppose that x1 is in tail and that x2, x3 and xN
are heavy hitters.

...
...

...
...

· · ·

Figure 3.3: Ideally recovered graph G̃, with expander copies aligned in a column.
Since the first column corresponds to a tail item, it is almost absent in
the recovered graph. There are arcs from non-Gij nodes to Gij nodes.
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...
...

...
...

· · ·

Figure 3.4: Recovered graph G̃, with ‘supposed’ expander copies aligned in columns.
The first column corresponds to a tail item so it is almost absent. The top
node in the second column is corrupted so it points to wrong columns but
nevertheless the correct rows because the row information is hard-wired.
The top node in the third column is correctly recovered but the second
node in the column is corrupted. The top node in the last column has a
small bucket value in the first repetition so it is absent G̃. If we perform
BFS at the top node in the third column, we may include a lot of nodes
in the second column.

3.5.1 Expander Encoding

3.5.1.1 Expander-based Coding Description

Parameters. β, γ > 0 are fixed constants. B1, d1, B2, d2 are as in Lemma 3.20

such that B1 = Ω
(
( k
ε2

)1+β log N
k

)
. c ≤ m are constant integers, h is an integer,

ε = O
((

α
m

) m
m−c
( log(B1/k)

log(N/k)

)γ)
. Let G be a graph of d1 nodes with constant degree δ

that satisfies Theorem 3.3, and α, ζ, κ be constants provided by Theorem 3.5 when

applied to G. Without loss generality we can assume that α ≤ 1/2. Adjust the hidden

constants together with c, m and h appropriately (depending on β and γ) such that

(a) B1 > d1;

(b) (h− 1)m logB1
N < αd1;

(c) (αd1 − (h− 1)m logB1
N) · hm > dc1;

(d) c ≥ log δ/ log κ.

We note that an instance of m,h is to choose m ≥ c(1 + 1/γ) and h = Θ(d
c/m
1 ).
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Encoding. We shall use Reed-Solomon for inner encoding. We now define our outer

coding, which is based on Parvaresh-Vardy code [PV05].

Take N disconnected copies of G and call the union GN , where each node is

indexed by a pair (i, r) ∈ [N ]× [d1]. See Figure 3.2.

Let F be a field such that |F| = Θ(B1) is a power of 2 and E(x) be an irreducible

monic polynomial over F such that degE(x) = logB1
N . View each i ∈ [N ] as a

polynomial f over F with degree logB1
N − 1. For each (i, r) ∈ GN , associate with it

an element p(i, r) ∈ Fm+1 as

p(i, r) = (xi,r, f(xi,r), (f
h mod E)(xi,r), . . . , (f

hm−1

mod E)(xi,r)),

where f is a polynomial associated with i ∈ [N ] and xi,r ∈ F so that xi,r are distinct

for different r. This is possible because of Property (a).

Attach to a node (i, r) a message mr,i containing the information of p(r, i) as

well as H(i, r1(r)),. . . , H(i, rδ(r)), where r1(r), . . . , rδ(r) are the neighbours of r in

G and H(i, j) ∈ [B1] gives the bucket index where i lands in the j-th outer hashing

repetition. It is clear that mi,r has Θ(logB1) = O(d2) bits and therefore we can

encode it in d2 hash repetitions, see Lemma 3.23.

Decoding. In each of the d1 repetitions, we shall recover O(k/ε) heavy buckets and

thus obtain O(k/ε) nodes with their messages. Even when the messages are recovered

correctly, we only know that a message corresponds to mr,i for some i and we do not

know which i it is. However, if we can determine that enough messages are associated

with the same i, we would have obtained enough p(i, r) for different values of r then

we should be able to find f and thus recover the position i.

To determine enough p(i, r) for the same i, we do clustering as follows. Suppose

that there are k heavy hitters at position i1, . . . , ik.

Let G̃ be a graph of d1 × O(k/ε) nodes, arranged in a d1 × O(k/ε) grid. For

now we assume that the messages are recovered correctly for heavy hitter i in all d1

repetitions. Each message has the form p(i, r), h1, . . . , hδ, where hj = H(i, rj(r)) for

1 ≤ j ≤ δ. Add an arc (i, r)→ (hj, rj(r)) for each 1 ≤ j ≤ δ.

Since the messages are recovered correctly, the graph G̃ will contain several disjoint

copies of the expander graph G, say Gi1 , . . . , Gik , though each Gij is not necessarily

aligned within the same column in G̃. There will be arcs incoming to Gij from nodes

not in any Gij , but there are no outgoing arcs from Gij . In this case, we can recover

each Gi1 perfectly, and collect the full set {mij ,r}
d1
r=1 and thus recover ij.
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Rearrange the nodes within each row, we can align each copy of G in the same

column to fit these columns in the underlying GN . In this case, the columns i1, . . . , ik

are exactly the copies of the expander graph G. See Figure 3.3 for an illustration.

However, the heavy hitters may not be recovered in some repetitions and the

messages could be seriously corrupted. When we are adding the arcs, we introduce

two kinds of errors, respectively:

(i) We lose a node in Gij , i.e., the node is not present in G̃ because the heavy hitter

ij is not recovered in that repetition;

(ii) We connect a node in Gij to a node in some other Gij′
(j 6= j′), owing to

errorous message.

As before, we align each ‘ideal copy’ of G in the same column. See Figure 3.4 for an

example.

We hope that for a heavy hitter i, only a few messages {mi,r}r are ruined and the

i-th column of GN will contain a large connected subgraph G′ of G, by Theorem 3.5.

Hence if we start a breadth-first search from an appropriate node with depth c logδ d1,

the whole G′ will be visited. In other words, we shall obtain a large set of {p(i, r)},
only a small number of which will be associated with the same i, but we expect to

obtain enough {p(i, r)} of the same i, which turns out to be sufficient to extract f

associated with i using a good error-correcting code such as Parvaresh-Vardy code.

3.5.1.2 Proofs

Now we show that the system described above meets the aforementioned guaran-

tee.

Lemma 3.24. Let β, γ > 0. The encoding and decoding strategy of Section 3.5.1.1

are correct in the sense of the guarantee of that section, against the channel de-

scribed in that section. It uses O(ε−2s log(N/s)) measurements and runs in time

O(s1+β poly(logN, 1/ε)), provided that N = Ω(max{s2, s/ε2}) and ε = O
(
( log s

logN

)γ)
.

Proof. Combining Lemma 3.18, Lemma 3.16 and Lemma 3.20, one can show that

there exists an (4s, ε)-expander such that

(a) the expander exhibits a (B1, d1, B2, d2) hashing structure, where the parameters

are as in Lemma 3.20;

(b) the expander satisfies the (O(s/ε), O(ε), O(1))-isolation property;
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(c) each second layer hashing gives an (d2, O(s/ε), O(1))-expander.

As in the proof of Lemma 3.13, suppose that |xi| ≥ ε/s for all i ∈ supp y, otherwise

we can place the violated i’s into z, causing ‖z‖1 to increase by at most s · ε/s = ε, so

we would have ‖z‖1 ≤ 2. Call the elements in supp y heavy hitters. If | supp y| ≤ s/4

our goal is automatically achieved, so we assume that | supp y| > s/4.

Step 1. Overall we know from Remark 3.14 that we have at most s/8 decoys, or,

we can recover | supp y|−s/8 heavy hitters from the second-layer bucket values, where

successful recovery means that each of them dominates in at least α2d1d2 second-layer

buckets, i.e., the bucket noise is at most ν = ε/(2s). For each of them, in at least

β1d1 of d1 outer repetitions, it dominates in at least β2d2 inner repetitions, where

(1 − β1)(1 − β2) > 1 − α2. Because whenever an element dominates in the second-

layer bucket, it must dominate the first-layer bucket incident to that second-layer

bucket, we conclude that there exists a set S ⊆ supp y, |S| ≥ | supp y| − s/8, such

that each i ∈ S dominates at least β1d1 first-layer buckets among all d1 repetitions,

and in each of such repetitions, it dominates at least β2d2 second-layer buckets.

We can choose the hidden constants in the expander parameters such that β1 ≥ 1−
ζ and β2 matches the error tolerance of the coding scheme we described in Lemma 3.23,

where ζ is the parameter we set in Section 3.5.1.1.

Step 2. It follows from above that each i ∈ S will be recovered in at least β1d1

outer repetitions, since its bucket value is ≥ ε/s − ν ≥ ε/(2s). Indeed, in every

repetition of outer hashing, we collect top O(s/ε) (first-layer) buckets, so we will

include every bucket with value ≥ ε/(2s), and thus the heavy hitter i. In this case,

the message associated with the heavy hitter will be recovered correctly, as the inner

encoding can tolerate 1−β2 fraction of error. Therefore we know that for each i ∈ S,

the associated messages will be correctly recovered in β1d1 outer repetitions.

Step 3. As described in the previous section, we shall form a graph G̃. Note

that for i ∈ S, β1d1 nodes in the column are good nodes (i.e., with correct message).

For each of them, perform a breadth-first search of O(logδ d1) steps, collecting at

most dc1 nodes. Since the column contains at most (1 − β)d1 ≤ ζd1 bad nodes, by

Theorem 3.5 and Property (d) of our choices of parameters, there exists a good node

in the i-th column such that if we perform a breadth-first search of c logδ d1 steps, we

shall collect αd1 good nodes which are all in the i-th column. The Parvaresh-Vardy

code with our choice of parameters (Property (b) and (c)) enables us to include it in

the list. We shall briefly describe the decoding below. Having collected at most dc1

points (x, r(x)) ∈ Fm+1, we consider all polynomials Q(x, y0, . . . , ym−1) of degree at

most dX = αd1− (h− 1)m logB1
N in its first variable and at most h− 1 in each such

51



that Q(x, r(x)) = 0 for all i. Our choice of parameters (Property (c), i.e., dXh
m > dc1)

guarantees that such Q exists. Then, the existence of αd1 good nodes (in the BFS

visited nodes) indicates that the equation

Q(x, fi(x), (fhi mod E)(x), . . . , (fh
m−1

i mod E)(x)) = 0

has αd1 roots in F for fi corresponding to the coordinate i ∈ S. By our choice

of parameters (Property (b)), the univariate polynomial Q(x) has degree less than

αd1 and must be identically zero. This means that fi(x) is a root of Q∗(z) =

Q(x, z, zh, . . . , zh
m−1

) = 0 over F[x]/E(x). We can find fi by factoring Q∗ and thus

recover the position i of the heavy hitter.

In the end, our candidate list will contain all i ∈ S, that is, we shall have recovered

| supp y| − s/8 heavy hitters.

Number of Measurements. The number of measurements is

O(B2d1d2) = O(ε−2s log(N/s)).

Size of Look-up Table. The inner decoding uses a look-up table of sizeO(logB1) =

O( s
ε

+ log log N
s

). The algorithm also stores the expander graph G, which takes space

O(d1). Both are smaller than the space cost of the recovered graph O(sd1/ε), so their

contribution to the space complexity can be neglected.

Runtime. For each of d1 repetition, we shall recover every bucket with value

≥ ε/(2s) in O(B1 log3(B1/k)) = O(s1+β poly(logN, 1/ε)) time. There are O(s/ε)

of them in each repetition. Then we form a graph of size O(sd1/ε). Forming this

graph takes time O(s1+β poly(logN, 1/ε)) from the argument above. Then we do

breadth-first search of c logδ d1 steps on every node. Each BFS takes O(dc1) time. Each

decoding of the BFS nodes takes poly(d1, log |B1|) = poly(logN, 1/ε) time, and can be

done deterministically (see, e.g., [CEPR09, Theorem 4.3]), since |F| has a small char-

acteristic. Hence extracting heavy hitters i from the recovered graph G̃N takes time

O(s poly(logN, 1/ε)) and therefore, the overall runtime is O(s1+β poly(logN, 1/ε)).

In the end, we shall obtain a candidate list of size O(s poly(logN, 1/ε)).
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3.6 Toplevel System

Now we define Toplevel system as in [PS12]. A Toplevel system is an algorithm

that solves our overall problem. The construction here closely follows [GLPS12, PS12].

Definition 3.25. An approximate sparse recovery system (briefly, a Toplevel system),

consists of parameters N , k, ε, an m-by-N measurement matrix Φ, and a decoding

algorithm D that satisfy the following property: for any vector x ∈ Rn, given Φx, the

system approximates x by x̂ = D(Φx), which satisfies

‖x̂− x‖1 ≤ (1 + ε)
∥∥x[k] − x

∥∥
1
.

Algorithm 3.3 Toplevel System

Input: Φ, Φx, N , k, ε
Output: x̂

x̂← 0
y← Φx
for j ← 0 to log k do

Run Algorithm 3.2 on y with length N , s ← k/2j, η ← ε
γj(1−γ)

and obtain a
candidate list I

Run Algorithm 3.1 on candiate set I with s← k/2j and η ← εγj

Let x′ be the result
x̂← x̂ + x′

y← y −Φx′

end for
return x̂

Theorem 3.26. Let β, γ > 0. There is a Toplevel system that uses O(ε−2k log(N/k))

measurements and runtime O(k1+β poly(logN, 1/ε)), provided that N = Ω(max{k2, k/ε2})
and ε = O

(
( log k

logN
)γ
)
.

Proof. Suppose that in Lemma 3.24, the exponent of 1/ε in runtime is c = c(β, γ) > 2.

Choose α < 1 such that αc > 1/2.

Using Lemma 3.24 for identification and Theorem 3.15 for estimation, with appro-

priate choice of constants, we claim that at the beginning of the j-th step, x = y + z,

where | supp y| ≤ k/2j and

‖z‖1 ≤ 1 + ε
(
1 + α + α2 + · · ·+ αj−1

)
.
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We shall prove this claim by induction. Letting s = k/2j, η = ε(1− α)αj for identifi-

cation, which introduces at most η into the tail and the tail remains at most 3/2 by

assuming that all head items, i.e., the non-zero elements in y, are all larger than η/s.

The identification procedure returns a candidate I that contains 3/4 fraction of

supp y (note that when the head is flat, we can change supp y to be a superset

that satisfies this condition without changing the norm of z). Then the estimation

procedure, with s = O(k/2j) and η = εαj+1 will give us

x = x̂ + ŷ + ẑ,

where | supp x| = O(s), | supp ŷ| ≤ s/2 and

‖ẑ‖1 ≤ ‖z‖1 + ε(1− α)αj + αj+1 = ‖z‖1 + αj.

It is easy to verify that ‖ẑ‖1 ≤ 1 + ε/(1 − α) = O(1) and thus Lemma 3.24 for

identification and Theorem 3.15 can be applied at the next round and the inductive

hypothesis is satisfied. Therefore, in the end we shall obtain that

‖x̂− x‖1 ≤
(

1 +
ε

1− α

)
‖x− xk‖1.

The number of measurements used for identification is

O

(∑
j

1

ε2α2j
· k

2j
log

N
k
2j

)
= O

(
k

ε2

∑
j

(
1

2α2

)j (
j + log

N

k

))
= O

(
k

ε2
log

N

k

)

and the number of measurements used for estimation is

O

(∑
j

1

ε2αj
· k

2j
log

N
k
2j

)
= O

(
k

ε2

∑
j

(
1

2α

)j (
j + log

N

k

))
= O

(
k

ε2
log

N

k

)

hence the total number of measurements is O(ε−2k log(N/k)) as claimed.

It can be verified in a similar way that total runtime is O(k1+β poly(logN, 1/ε)).

Finally, replacing ε with (1− α)ε completes the proof.

Remark 3.27. Regarding the theorem above,

(a) The constants in big O-notations and the power in poly(logN, 1/ε) depend on

β and γ.

(b) As in Remark 3.19, The constraint that k = O(
√
N) could be weakened to
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k = O(N1−ξ) for any ξ > 0.

(c) The factor k1+β in the runtime is due to our choice ofB1 = Ω((k/ε2)1+β log(N/k))

such that logB1 = O(log(B1/k)) = O(d2). When k ≤ (logN)c for some c > 0,

since B1 = Ω(k/ε2(1+β)), choosing B1 = Θ(k log(N/k)/ε2(1+β)) would suffice. It

leads to runtime O(k poly(logN, 1/ε)).

(d) For large ε we can take d1 = (log(N/k)/ log(B1/k))1+α for α > 0, which gives an

algorithm which uses more measurements O(k log1+α(N/k)/ε2) but suboptimal

by only a logarithmic factor from the best known lower bound.

3.7 Open Problems

In this section, we present some open problems.

Restriction on ε. The algorithm in this chapter restricts ε to ( log k
logN

)γ for any γ > 0

because of it applies the Parvaresh-Vardy code. In a sense our construction reduces

the problem to a list recovery problem. We ask if it is possible to find an improvement

by applying a better list recoverable code. The ultimate goal is to relax the restriction

of ε to ε ≤ ε0 for some constant ε0 > 0.

Sparse Recovery in `2/`1 norm. The ultimate problem is the `2/`1 problem. We

hope that the algorithm in this paper offers new ideas for the mixed-norm problem.

Again the difficulty is in identification, as an RIP2 matrix would be sufficient for

estimation.

Post-measurement Noise. In many algorithms on the sparse recovery problem,

the input to the decoding algorithm is Φx + ν instead of Φx, where ν is an arbitrary

noise vector. It can been seen that our algorithm does tolerate substantial noise in

`1 norm. We leave to future work full analysis and possible improved algorithms.

3.8 Proof of Lemma 3.16

Proof. Let ps be the probability of a fixed set of s elements hashed into less than

(1 − ε)ds elements. By symmetry this probability is independent of the s positions
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and thus is well-defined. Hence the probability

Pr{hashing does not give an expander} =
4k∑
s=2

(
N

s

)
ps. (3.1)

Our goal is to show that

ps ≤ exp

(
−cs ln

eN

s

)
(3.2)

for some absolute constant c > 2, for which it suffices to show that

ps ≤ exp

(
−cs ln

N

k
ln
Ck

s

)
(3.3)

for some c, C > 0. Indeed, it follows from (3.3) that

ps ≤ exp

(
−cs ln

N

k
ln
Ck

s

)
≤ exp

{
−cs

(
ln
N

k
+ ln

Ck

s

)}
= exp

(
−cs ln

CN

s

)
and (3.2) holds. Assume for the moment that (3.2) is proved, then we can bound

(3.1) by

αk∑
s=2

(
N

s

)
ps ≤

αk∑
s=2

exp

{
s ln

eN

s
− cs ln

CN

s

}

≤
αk∑
s=2

exp

{
−(c− 1)s ln

C ′N

s

}

≤
αk∑
s=2

exp (−(c− 1)s logN) <
1

N c′

as desired.

Now we compute ps. Fix a set S of s elements. Suppose that they are hashed into

Xi (i = 1, . . . , d) buckets in d repetitions, respectively. We have that 1 ≤ Xi ≤ s and∑
Xi ≤ (1− ε)sd. Define the event

Ei(Xi) = {S is hashed into Xi rows in i-th reptition},

and we shall compute Pr{Ei(Xi)}.
When Ei happens, there are s − Xi repetitions. Consider hashing the element

one by one, choosing b1, . . . , bd ∈ {1, . . . , B} sequentially. We have a collision when

selecting bi if bi ∈ {b1, . . . , bi−1}. The probability that a collision occurs at step i,
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even conditioned on b1, . . . , bi−1, is at most i/B ≤ s/B. Therefore,

Pr{Ei(Xi)} ≤
(

s

s−Xi

)( s
B

)s−Xi
.

Hence

ps =
∑

Pr{E1(X1), . . . , Ed(Xd)} =
∑ d∏

i=1

(
s

s−Xi

)( s
B

)s−Xi
=
∑( s

B

)sd−∑Xi
d∏
i=1

(
s

s−Xi

)

where the summation is over all possible configurations of {Xi}. Invoking the com-

binatorial identity

∑
k1+k2+···+km=n

(
r1

k1

)(
r2

k2

)
· · ·
(
rm
km

)
=

(
r1 + r2 + · · ·+ rm

n

)
(3.4)

and writing X =
∑
Xi, we see that

ps ≤
(1−ε)sd∑
X=d

( s
B

)sd−∑Xi
(

sd

sd−
∑
Xi

)
≤

d∑
X=εsd

(
sd

X

)( s
B

)X
Now we invoke Chernoff bound

n∑
k=εn

(
n

k

)
λk ≤

(
eλ

ε

)εn
, λ < ε (3.5)

to obtain that

ps ≤
( es
εB

)εsd
≤ exp

(
−cs log

N

k
ln
Ck

s

)
as desired, where the constants c, C > 0 can be made arbitrarily big.

3.9 Proof of Lemma 3.17

Proof. Let S be a set of size s ≤ L. We shall bound the probability ps (which is

defined by symmetry) that at least εs elements of S collide with each other in at least

ζd repetitions. When this happens, there are at least εζds colliding element-repetition

pairs. As in Lemma 3.16 it suffices to have (3.3) for some c, C > 0 that can be made

arbitrarily large.
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In one repetition, one element of S collides with others with probability ≤ s/B.

By a coupling argument as in [PS12], among all sd element-repetition pairs with

expected µ = s2d/B failed pairs, there are at least ζεsd failed pairs with probability(
eµ

ζεds

)ζεsd
=

(
es

ζεB

)ζεsd
≤ exp

(
−cs log

N

k
ln
Ck

s

)
as desired, where the absolute constants C, c > 0 can be made arbitrary large.

3.10 Proof of Lemma 3.18

Proof. Let ps be the probability of a fixed set of s elements hashed into less than

(1 − ε)ds elements. By symmetry this probability is independent of the s positions

and thus is well-defined. Hence the probability

Pr{hashing does not give an expander} =
4k∑
s=2

(
N

s

)
ps. (3.6)

Similarly to Lemma 3.16, it suffices to show that

ps ≤ exp

(
−cs ln

N

k

)
(3.7)

Assume for the moment that this is proved, then we can bound (3.6) to be

4k∑
s=2

(
N

s

)
ps ≤

4k∑
s=2

exp

{
s ln

eN

s
− cs ln

N

k

}

≤
4k∑
s=2

exp
{
s ln(eN)− c

2
s ln(eN)

}
(k ≤

√
N/e)

≤
4k∑
s=2

exp
(
−
( c

2
− 1
)
s log(eN)

)
<

1

N c′

as desired.

Now we prove (3.7). Fix a set S of s elements. The outer layer of hashing has

d1 blocks of size B1, and let Yi (i = 1, . . . , d1) be the number of hashed row of the s

elements in i-th block. The inner layer has d1d2 blocks, indexed by (i, j)1≤i≤d1,1≤j≤d2

of size B2, and let Xij be the number of hashed row of the s elements in the (i, j)-th

58



block. Define the events

Ei(Yi) = {S is hashed into Yi rows in i-th outer block}

Eij(Xij) = {S hashed into Xij rows in (i, j)-th inner block}

First we calculate Pr{Ei}(Yi). Consider picking a row at one time for an element in

S in order. When Ei(Yi) happens there are at least s− Yi collisions, hence

Pr{Ei(Yi)} ≤
(

s

s− Yi

)(
s

B1

)s−Yi
and similarly

Pr{Eij(Xij)|Ei(Yi)} ≤
(

Yi
Yi −Xij

)(
Yi
B2

)Yi−Xij
It follows that

ps =
∑

Pr{E11(X11), . . . , Ed1d2(Xd1d2)|E1(Y1), . . . , Ed1(Yd1)}Pr{E1(Y1), . . . , Ed1(Yd1)}

≤
∑∏

i

Pr{Ei}(Yi)
∏
i,j

Pr{Eij(Xij)|Ei(Yi)}

≤
∑∏

i

(
s

Yi

)(
s

B1

)s−Yi
·
∏
i,j

(
Yi
Xij

)(
Yi
B2

)Yi−Xij
≤
∑(

s

B1

)sd1−
∑
Yi ( s

B2

)d2
∑
Yi−

∑
Xij∏

i

(
s

Yi

)∏
i,j

(
Yi
Xij

)

where the summation is taken over all possible configurations of {Xi} and {Yi} so

that s ≥ Yi ≥ maxj Xij and
∑
Xij ≤ (1− ε)sd1d2.

Invoking the combinatorial equality (3.4) and letting X =
∑
Xij and Y =

∑
Yi,

we obtain that

ps ≤
sd1∑
Y=d1

(
sd1

Y

)(
s

B1

)sd1−Y min{d2Y,(1−ε)sd1d2}∑
X=d1d2

(
d2Y

X

)(
s

B2

)d2Y−X

=

(1−ε/2)sd1∑
Y=d1

(
sd1

Y

)(
s

B1

)sd1−Y d2Y∑
X=d1d2

(
d2Y

X

)(
s

B2

)d2Y−X

+

sd1∑
Y=(1−ε/2)sd1

(
sd1

Y

)(
s

B1

)sd1−Y (1−ε)sd1d2∑
X=d1d2

(
d2Y

X

)(
s

B2

)d2Y−X

=: S1 + S2 (3.8)
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We bound S1 and S2 separately. First,

S1 ≤
(

1 +
s

B2

)sd1d2 sd1∑
Y=εsd1

(
sd1

Y

)(
s

B1

)Y
It follows from Chernoff bound (3.5) that

S1 ≤
(

1 +
s

B2

)sd1d2
(
es
ε
2
B1

)εsd1/2

≤ exp

{
−1

2
εsd1

(
ln
εB1

2es

)
+ sd1d2 ln

(
1 +

s

B2

)}
≤ exp

{
−1

4
εsd1 ln

B1

k
+ c2εsd1d2

}
(since B1 & k/ε2)

≤ exp

{
−c3s ln

N

k

}
(3.9)

where the absolute constant c2 > 0 can be made arbitrarily close to 0 and the absolute

constant c3 can be made arbitrarily large.

Now we bound S2. When Y ≥ (1− ε/2)sd1d2 then

(1− ε)sd1d2

d2Y
≤ 1− ε

2
.

Again invoking Chernoff bound,

(1−ε)sd1d2∑
X=d1d2

(
d2Y

X

)(
s

B2

)d2Y−X

≤
(
es
ε
2
B2

)d2Y−(1−ε)sd1d2

≤
(

1

C ′

)d2Y−(1−ε)sd1d2

where C ′ > 0 is an absolute constant which can be made arbitrarily large. So

S2 ≤
sd1∑

Y=(1−ε/2)sd1

(
sd1

Y

)(
s

B1

)sd1−Y ( 1

C ′

)εsd1d2/2

≤
(ε/2)sd1∑
Y=0

(
sd1

Y

)(
s

B1

)Y (
1

C ′

)εsd1d2/2

≤ 2

(
1

C ′

)εsd1d2/2
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It immediately follows, similarly to upper-bounding S1, that

S2 ≤ exp

{
−c4s ln

N

k

}
, (3.10)

where c4 > 0 can be made arbitrarily large. Plugging (3.9) and (3.10) into (3.8) we

see that (3.7) holds. This completes the proof.

3.11 Proof of Lemma 3.20

Proof. Fix a set S of size s. Let event E be that at least (1− ε/2)s elements in S are

isolated in at least (1− ζ/2)d1 first-layer buckets. Similarly to Lemma 3.17 we know

that

Pr{Ec} ≤
(

c′s

ζεB1

)ζεsd1

≤ e−cs log N
k

where c′ is an absolute constant and c > 0 can be made arbitrarily large. In the above

we used that fact that since B1 = Ω(k/(ζαε2α)) it holds that

ln
ζε2B1

c1k
≥
(

1− 1

α

)
ln
B1

k
.

Now let us be conditioned on the event E . Among the (1−ε/2)s elements we shall

show that at least (1 − ε) of them are isolated in at least (1 − ζ)d1d2 second-layer

buckets. That means there are a total of at least ε
2
η
2
sd1d2 failed pairs of element-

reptition. But now, the probability of each collision is always bounded by s/B2 even

conditioned on previous outcomes, and we can proceed as in Lemma 3.17 to conclude

that there are at least θζεsd1d2 (for some absolute constant θ) with probability at

most (
es

θζεB2

)θζεsd1d2

≤ e−c
′′s log N

k ,

as desired, where the constant c′′ > 0 can be made arbitrarily large.

61



CHAPTER 4

Off-grid Fourier Sampling1

4.1 Introduction

As discussed in Section 1.4, there has been a lot of work to recover the signal with

sparse discrete Fourier representation, which has broad applications in communica-

tion problems. Unfortunately, these assumptions are too strong for many practical

applications where the discrete Fourier transform coefficients are only approximation

of an underlying continuous Fourier transform. For example, if we want to measure

the approaching speed (the ‘doppler’) of an object via the Doppler effect, we transmit

a sinusoid wave eiω0t (where t is time in this example) and receive a sinusoid wave

whose frequency offset from ω0 depends on the unknown doppler, v. Since v can be

essentially any continuous value, so can be the received frequency. If there are two or

more speeding objects in view, the received signal is of the form f(t) = a1eiω1t+a2eiω2t,

where ω1/ω2 is not necessarily a rational number, so that f(t) is not periodic. This

practical and common example does not directly fit the discrete Fourier transform

setting of [KM93, GGI+02, GMS05, Iwe09, HIKP12b, HIKP12a].

A natural discretization approach, which takes a large number of samples at

equidistant time points and reduces the problem to this discrete signal of samples, is

complicated because there are inconveniences such as interpreting the result of the

discrete version in the continuous setting and locating a real-valued frequency from

a cluster of components in the discretized signal. Therefore, instead of developing a

discretization reduction in this paper, we take a more direct approach of extending

the existing techniques for the discrete setting, such as isolation by hashing and es-

timation, to the continuous setting, despite the fact that it introduces an additional

log k factor into sampling duration.

1A preliminary version of the result in this chapter appeared in [BCG+12].
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A concrete application of our approach is the bearing (or angular direction) esti-

mation of sources transmitting at fixed frequencies, a canonical array signal processing

problem with applications to radar, sonar, and remote sensing. Other applications

also include the finite rate of innovation problems [VMB02].

The organization of this chapter is as follows. In Section 4.2, we define our model

and problem formulation. In Section 4.3, we present our algorithm and its analysis.

In Section 4.4, we discuss the simple discretization approach. In Section 4.5 we give

an application of this result to bearing estimation problems.

4.2 Preliminaries

In this section, we define the problem of sublinear recovery of sparse off-grid

frequencies, set the stage notationally, and then detail our results.

4.2.1 The problem

We define a spectrally sparse function f with off-grid frequencies as a function

f : R→ C with k frequencies ω1, . . . , ωk ∈ S1 (hereinafter S1 is identified with (−π, π]

and the arithmetic is to be modular), and we allow for noise ν in the spectrum that is

supported on a set Iν ⊂ S1. We fix a minimum frequency resolution η > 0 and assume

that {[ωj − η/2, ωj + η/2)}kj=1 and Iν + [−η/2, η/2) are all mutually disjoint on S1.

That is, the frequencies are not on a fixed, discrete grid but they are separated from

each other and from the noise by a minimum frequency resolution. In our analysis

below, we assume that |ωj| ≥ η without loss of generality.

Specifically, let (Iν ,M, µ) be a σ-finite measure space, (R,L, λ) denote the canon-

ical Lebesgue measure space of R and ν be in L1(Iν , dµ). Furthermore, suppose that

ν(ω)eiωx is a (µ × λ)-measurable function on Iν × R. (The product measure µ × λ
is with respect to M × L. We do not take completion of the product measure.)

Note that this assumption is automatically satisfied if µ is a Borel measure on Iν ,

which could be an important and common case. Now, v(ω)eiωt is µ-measurable for

all t ∈ R and, as a consequence, νφ is µ-measurable for any φ ∈ C(Iν) because any

continuous function on a compact set can be uniformly approximated by trignometric

polynomials. We assume f is of the form

f(t) =
k∑
j=1

aje
iωjt +

∫
Iν

ν(ω)eiωtdµ, t ∈ R, aj ∈ C (4.1)
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Without loss of generality, we can assume that aj 6= 0 for all j. It is clear that f is

locally integrable on R, and can therefore be viewed as a tempered distribution. Its

Fourier transform f̂ is also a tempered distribution. Define the spectrum of f to be

the support of f̂ , which is a closed set. It can be readily verified that the spectrum

of f defined in this way consists of {ωj} and a subset I ′ ⊆ Iν such that ν = 0 almost

everywhere w.r.t. µ on Iν \ I ′. This agrees with our intuition of ‘spectrum’ being

{ωj}. Alternatively, one can define the spectrum of a bounded function in a more

elementary way, see [Hel95] for example.

Fix ε1, ε2 ∈ (0, 1]. Our goal is to find all (aj, ωj) with

|aj| ≥
ε1
k
‖a‖1 +

ε2
k

∫
Iν

|ν(ω)|dω (4.2)

making as few samples on Z as possible (and with the smallest support) from f and for

the shortest duration and to produce such a list in runtime comparable to the number

of samples. The number of samples and the size of the support set of the samples

should be proportional to a polynomial in k and log(1/η), the number of desired

frequencies and precision. We call the frequencies ωj whose associated amplitude aj

meet the threshold condition (4.2) significant.

We observe that if we dilate the frequency domain S1 by a factor 1/d ∈ R (i.e., map

ω to ω/d), we produce an equivalent sequence of samples f(t), at regularly spaced

real-valued points t = nd, n ∈ Z. While the points are indexed by the integers, the

values themselves t = nd are in R. The dilation factor d determines the “rate” at

which we sample the underlying signal and the total number of samples times the

sampling rate is the duration over which we sample. Both the rate and the total

number of samples are resources for our algorithm.

4.2.2 Notation

Let Ω be a domain (which can be either continuous or discrete). Roughly speaking,

we call a functionK : Ω→ R a filter ifK is or approximates the characteristic function

χE of some set E ⊂ Ω, which will be called the pass region of K. The signal resulting

from applying filter K to signal f (viewed as a function on Ω) is the pointwise product

K · f .

Let Km,ε,α (often abbreviated as Km,ε or Km when there is no ambiguity on the

parameters) be a kernel defined on S1 that satisfies the following properties:

• it is continuous on S1,
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• it approximates χ[− π
m
, π
m

] (so Km is a filter):

1. |Km,ε(x)| ≤ ε for |x| ≥ π
m

;

2. |Km,ε(x)− 1| ≤ ε for |x| ≤ (1− α) π
m

;

3. Km,ε(x) ∈ [−ε, 1 + ε] elsewhere;

• its Fourier transform K̂m,ε : Z→ C has finite support: | supp K̂m,ε| = O(m
α

log 1
ε
).

A Dolph-Chebyshev filter convolved with the characteristic function of an interval

meets these criteria. See Figure 4.1 for a plot of Km. We call the region [−(1 −
α) π

m
, (1 − α) π

m
] the plateau of Km. The pass region of Km is [− π

m
, π
m

] and we define

the transition region to be the complement of plateau in the pass region. A similar

kernel was used in [HIKP12b] and [HIKP12a] with the only difference that their kernel

was constructed by a Gaussian kernel convolved with the characteristic function of

an interval. It is in our favor to use a kernel with a finite Fourier expansion.

4.2.3 Sampling with respect to a kernel

In this paper, we shall repeatedly query for values of the form

h(x) =
k∑
j=1

ajK(ωjx) +

∫
Iν

ν(ω)K(ωx)dµ

for some kernel function K. Below we shall describe how to obtain h(x) from appro-

priate samples of f(t). Assume that k has a finite Fourier expansion

K(x) =
N∑

n=−N

κne
inx.

Then

h(x) =
k∑
j=1

N∑
n=−N

κnaje
inωjx +

∫
Iν

N∑
n=−N

κnν(ω)einωjxdµ

=
N∑

n=−N

κn

(
k∑
j=1

aje
inωjx +

∫
Iν

ν(ω)einωjxdµ

)

=
N∑

n=−N

κnf(nx),
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Figure 4.1: Plot of Km with α = 0.476

which means that h(x) is a weighted sum of samples {f(nx)}Nn=−N , where the weights

are the Fourier coefficients of the kernel K(x).

4.2.4 Main result

Theorem 4.1. There exist a probability distribution D on a set of sampling points

t ∈ R and an algorithm A such that for each perturbed exponential polynomial f(t)

as in (4.1), with probability ≥ 1− δ, the algorithm returns a list Λ = {(a′j, ω′j)}kj=1 of

coefficients and frequencies such that

1. For each aj that satisfies (4.2) there exists ω′j ∈ Λ such that

|ωj − ω′j| ≤
ε2
k
η.

2. Let Λ0 =
{
ω′j ∈ Λ : ∃ωj0 such that

∣∣ωj0 − ω′j∣∣ ≤ ε2η
k

and |aj0| satisfies (4.2)
}

. Then

for each ω′j ∈ Λ0 it holds that

|a′j − aj| ≤
ε1
k
‖a‖1 +

ε2
k
‖ν‖1.

3. For each ω′j ∈ Λ \ Λ0, it holds that

|a′j| ≤
ε1
k
‖a‖1 +

ε2
k
‖ν‖1.

The algorithm takes

O

(
k

ε2
log

k

δ
log

1

ε2η
log

k

min{ε1, ε2}

)
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samples and runs in time

O

(
k

ε2
log

k

δ

(
log

1

ε2η
log

k

min{ε1, ε2}
+ log

1

δ

))
.

Furthermore, the size of the support of D, i.e., the total duration of sampling, is

O

(
k

ε2η
log

k

min{ε1, ε2}

)
.

This result gives `∞ bounds on both frequency estimates and coefficient estimates.

In comparison with the discrete setting, frequency estimates are new and coefficient

estimates are of the same kind as in [HIKP12b]. In the analogy of the discrete case,

the minimum separation η = 1/N . For ε1 = ε2 = ε and constant δ, the number of

samples and the runtime both become

O

(
k

ε
log k log

N

ε
log

k

ε

)
and the sampling duration becomes

O

(
kN

ε
log

k

ε

)
.

4.3 Analysis

Almost all sublinear-time sparse recovery algorithms, including both the Fourier

and the canonical basis cases, randomly hash coefficients into buckets. Since the

representation is sparse, it is likely that each bucket contains exactly one coefficient

and small noise so that its position can be found and then its value can be estimated.

Our algorithm also follows this recipe. Later developments of these algorithms are

iterative for the purpose of using a smaller number of samples or measurements or

because of inability to obtain an accurate estimate. In contrast, our algorithm is not

iterative. We hash the range of the frequencies into buckets and repeat sufficiently

many times so that all frequencies are isolated, then we locate the frequency and

estimate its amplitude. We do not need to iterate in the estimation procedure, because

we use good kernel, as in [HIKP12b]. We shall briefly explain below why it is rather

difficult to devise an iterative algorithm for the continuous case.

A main difference between the discrete and continuous case is that, in the contin-

uous case, it is impossible to recover a frequency exactly (from finite samples) so that
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one can subtract off recovered signals at exact positions. Typically in the discrete

setting, an iterative algorithm uses a loop invariant either as in [GLPS12, HIKP12a]

or in [GMS05]. In the former case, the number of buckets decreases per round as the

number of remaining heavy hitters decreases. In the continuous case, however, the

accuracy of the frequency estimates produced by location procedure are dependent

on the width the pass region of the filter: the wider the pass region, the more inac-

curate the frequency estimate is. Unless the estimation procedure not only estimates

the coefficient at given frequency but also improves the frequency estimate, we would

have to increase the distance d between samples from O(k/η) to O(k2/η) in order to

the achieve the same accuracy for the final frequency estimate, (i.e., we must increase

the duration over which samples are collected.)

In the latter case [GMS05], the number of buckets is kept the same at each round

while the energy of the residual signal drops, and there are typically log ‖a‖ rounds.

In hashing, we need to bound the inaccuracy |K(h(ω)) −K(h(ω′))|, where ω′ is the

recovered estimate of some real frequency ω, h the hash function and K the kernel.

We can achieve this with a kernel that does not have a significant portion of its total

energy outside of its pass region (i.e., a “non-leaking” kernel), but it is not obvious

how to achieve such an accurate estimate using a Dirichlet or Fejér kernel which

was used in [GMS05]. Besides, using a “non-leaking” kernel like the one used in

[HIKP12b, HIKP12a] or the one used in this paper unfortunately introduces a factor

log ‖a‖ into the number of samples in order to decrease the noise in a bucket.

4.3.1 Recovery algorithm

See Algorithm 4.1 for detailed pseudocode.

4.3.2 Analysis of algorithm

Here we provide a modular characterization of the algorithm.

Isolation.

This portion of the analysis is similar to that of [HIKP12a] but we emphasize the

continuous frequency setting.

Let Km be the kernel as described in Sec. 4.2 and set D = 2π/η. Define

H = {Km(ωd) = hd(ω)|d ∈ [D, 2D]}
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Algorithm 4.1 The overall recovery algorithm for the off-grid problem

1: function Main
2: y ← signal samples
3: L← Identify(y)
4: Λ← Estimate(L)
5: return

∑
ω∈Λ aωe

iωt

6: end function

1: function Identify(y)
2: L← ∅
3: for t← 1 to Θ(log k

δ
) do

4: Choose a random d uniformly from [D, 2D]
5: bi ← 0 for all i = 0, . . . ,m− 1
6: for r ← 1 to dlog2(1/η)e do
7: Collect samples and compute {u`}m−1

`=0 and {v`}m−1
`=0 according to

Remark 4.8, where u` =
∑

j ajKm

(
ωjd− 2π`

m

)
Kn

(
ωjd

2r
− 2π

2rm
`− 2b`π

2r

)
and v` =

∑
j ajKm

(
ωjd− 2π`

m

)
Kn

(
ωjd

2r
− 2π

2rm
`− 2b`π

2r
− π

)
8: for `← 0 to m− 1 do
9: if |v`| > |u`| then

10: b` ← b` + 2r−1

11: end for
12: for `← 0 to m− 1 do
13: L← L ∪ {2π`

md
+ 2b`π

d
}

14: end for
15: return L
16: end function

1: function Estimate(L)
2: Choose hash families H1 and H2 as described.
3: for r ← 1 to Θ(log m

δ
) do

4: for each ω ∈ L do
5: a

(r)
ω ← measurement w.r.t. H1

6: b
(r)
ω ← measurement w.r.t. H2

7: end for
8: for each ω ∈ L do
9: aω ← mediant a

(r)
ω

10: bω ← mediant b
(r)
ω

11: end for
12: L′ ← {x ∈ L : |bω| ≥ |aω|/2}.
13: Λ← {(ω, aω) : ω ∈ L′}.
14: Cluster Λ = {(ω, aω)} by ω and retain only one element in the cluster.
15: Retain top k ones (w.r.t. aω) in Λ
16: return Λ
17: end function
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to be a family of hash functions. We choose hd randomly from H by drawing d from

the interval [D, 2D] uniformly at random. Observe that the map ω 7→ ωd is a random

dilation of S1. Similar to [HIKP12a] and [GMS05], we shall consider m-translations

of Km, denoted by {K(j)
m }m−1

j=0 , where K
(j)
m (x) = Km

(
x− 2πj

m

)
(x ∈ S1), so that their

pass regions cover S1. The pass regions will be referred to as buckets and the pass

region of K
(j)
m as j-th bucket. For convenience we shall also call the plateau of K

(j)
m

the plateau of the j-th bucket. It is clear that each frequency ω, under the random

dilation ω 7→ ωd, will land in some bucket with index b(ω, d).

In the discrete setting, we hash N elements into m buckets so that each bucket

contains N/m elements. Here we hash (−π, π] into m buckets so that each bucket

has measure 2π/m. Similar to [HIKP12a] and [GMS05], the next lemmata show that

this hashing is effective, immitating Claim 3.1, Claim 3.2 of [HIKP12a] and Lemma

3.1 of [GMS05].

The first lemma tells us that the probability of collision of two well-separated

frequencies under a random hash function hd ∈ H is small.

Lemma 4.2. Suppose that |ω′ − ω| ≥ η. Then

Pr
d
{b(ω, d) = b(ω′, d)} ≤ 1

m

(
2 +

1

m

)
.

Proof. Without loss of generality, assume that ∆ω = ω′ − ω > 0. Write ωd = x + ξ

with |ξ| < π/m. Then the probability is equal to

Pr
{

(∆ω)d ∈
[
2sπ − ξ − π

m
, 2sπ − ξ +

π

m

]}
≤ 1

D
· 2π

m∆ω
· |I|,

where I is the set of possible s’s,

I =

{⌊(∆ω)D + ξ − π
m

2π

⌋
+ 1, . . . ,

⌊2(∆ω)D + ξ + π
m

2π

⌋}
.

The desired upper bound of the probability follows immediately from that

|I| ≤ (∆ω)D

2π
+ 1 +

1

m
.

While Lemma 4.2 guarantees that well-separated frequencies do not collide under

our hash function, because we are in the continuous setting, there is some probability

that a frequency is hashed into the transition region of the kernel Km. The following

lemma shows that with high probability, a frequency bounded away from zero is
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mapped to the region of the kernel that is very close to 1.

Lemma 4.3. Assume that ω ≥ η and let 0 < α < 1/2 be as given in the definition

of the kernel Km. Then

Pr
d

{
ωd ∈

[
2sπ

m
− (1− α)

π

m
,
2sπ

m
+ (1− α)

π

m

]
for some s ∈ Z

}
≥ (1−α)

(
1− 1

m

)
.

Proof. It is clear that the probability is at least

1

D
· (1− α)

2π

ωm
· |I|,

where I is the set of possible s’s, and that

I =

{⌊
ωD

m

2π
− 1− α

2

⌋
+ 1, . . . ,

⌊
2ωD

m

2π
+

1− α
2

⌋}
.

Then

|I| ≥ ωDm

2π
− 1.

and the result follows immediately.

The next lemma will allow us to estimate the coefficient of an isolated frequency

and to bound the inaccuracy of its estimate in terms of the noise ‖ν‖1.

Lemma 4.4. Suppose that ξ is a random variable such that |ξ| ≤ π/m and the

parameter ε of Km,ε satisfies ε ≤ c/m for some constant c > 0. Let ω ≥ η. Then

Ed[|Km(ωd+ ξ)|] ≤ 2(c+ 2)

m
.

Proof. Define

K̃m(x) = sup
|y−x|≤π/m

|Km(y)|,

it is not difficult to see that

‖K̃m‖1 ≤ 2πε+
4π

m
≤ 2πC

m

where C = c+ 2. Let d be uniformly chosen from some interval I. Then

Ed[|Km(ωd+ ξ)|] ≤ Ed[|K̃m(ωd)|] =
1

|I|

∫
I

|K̃m(ωt)|dt =
1

ω|I|

∫
ωI

|K̃m(x)|dx.
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Then ∫
ωI

|K̃m(x)|dx ≤ 2Cπ

m

⌈
ω|I|
2π

⌉
,

and thus

Ed[K̃m(ωd+ ξ)] ≤ C

m
·
dω|I|

2π
e

ω|I|
2π

.

For I = [D, 2D],

Ed[|K̃m(ωd)|] ≤ C

m

(
1 +

1

[ωD
2π

]

)
.

Let D = 2π/η, since ω ≥ η, it follows that [ωD/(2π)] ≥ 1, and the desired result

holds.

Now we are ready to show our algorithm isolates frequencies.

Fix j0 and choose m = Ω(k). The hashing guarantees that ωj0 is well-isolated

with probability Ω(1) by taking a union bound. Also, it follows immediately from

Lemma 4.4 that the expected contribution of ν to the bucket is at most c‖ν‖1/m.

Therefore we conclude by Markov’s inequality that

Lemma 4.5. Conditioned on ωj0 being well-isolated under hd ∈ H, with probability

Ω(1), ∣∣∣∣∣∑
j 6=j0

ajhd(ωj) +

∫
Iν

ν(ω)hd(ω)dµ

∣∣∣∣∣ ≤ C1ε‖a‖1 +
C2

m
‖ν‖1

for some constants C1, C2 that depend on the failure probability.

Proof. Note that hd(ω) = Km((ω − ωj0)d + ξd), where ξd is piecewise continuous on

[D, 2D], and thus einξd is λ-measurable. Since Km has a finite Fourier expansion, we

can easily see that hd(ω) is a finite sum of (µ× λ)-measurable functions and is thus

(µ×λ)-measurable. Therefore we can apply Fubini’s Theorem to an iterated integral

of |hd(ω)|. By Lemma 4.4 and Fubini’s Theorem,

E
[∣∣∣∣∫

Iν

ν(ω)hd(ω)dµ

∣∣∣∣ ] ≤ E
[∫

Iν

|ν(ω)| |hd(ω)|dµ
]

=

∫
Iν

ν(ω)E |hd(ω)| dω

≤ c

m

∫
Iν

|ν(ω)|dµ,

Since ωj (j 6= j0) lands in different bucket from ωj0 ,

|hd(ωj)| ≤ ε, j 6= j0
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thus

E

[∣∣∣∣∣∑
j 6=j0

ajhd(ωj) +

∫
Iν

ν(ω)hd(ω)dµ

∣∣∣∣∣
]
≤ ε‖a‖1 +

c

m
‖ν‖1

The result follows from Markov’s inequality.

Bit Testing.

The isolation precedure above reduces the problem to the following: The parame-

ter d is known, and exactly one of {ωjd}kj=1, say ωj0d, belongs to
⋃N−1
n=0 [2nπ−δ, 2nπ+δ]

for some small δ = π/m and (large) N . Suppose that ωj0d ∈ [2sπ − δ, 2sπ + δ]. We

shall find s and thus recover ωj0 . Assume that ωj0 is significant; i.e., aj0 satisfies (4.2).

We recover s from the least significant bit to the most significant bit, as in

[GMS05]. Assume we have already recovered the lowest r bits of s, and by translation,

the lowest r bits of s are 0s. We shall now find the (r + 1)-st lowest bit.

Let Kn (n is a constant, possibly n = 3) be another kernel with parameter ε′ (a

small constant). The following lemma shows that Line 6–11 of Identify gives the

correct s.

Lemma 4.6. Suppose that the lowest r bits of s are 0, let

G1(x) = Km(x)Kn

( x
2r

)
, G2(x) = Km(x)Kn

( x
2r
− π

)
and u be the sample taken using G1 and v using G2. Then |u| > |v| if s ≡ 0

(mod 2r+1) and |u| < |v| if s ≡ 2r (mod 2r+1), provided that

m ≥ C

ε2
k and ε ≤ C ·min

{ε1
k
,
ε2
k

}
for some C > 0.

Proof. It is straighforward from the isolation discussion. When s ≡ 0 (mod 2r),

|u| ≥ (1− ε)(1− ε′)|aj0| − (1 + ε′)

(
C1ε‖a‖1 −

C2

m
‖ν‖1

)
. (4.3)

and when s ≡ 2r−1 (mod 2r),

|u| ≤ (1 + ε)ε′|aj0|+ (1 + ε′)

(
C1ε‖a‖1 +

C2

m
‖ν‖1

)
. (4.4)
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Similar bounds hold for |v|. Thus it suffices to choose

m ≥ 2(1 + ε′)C2

1− ε− 2ε′
· k
ε2
.

Repeat this process until r = log2(πD) = O(log(π/η)) to recover all bits of s.

At each iteration step the number of samples needed is O(| supp Ĝ1| + | supp Ĝ2|) =

O(| supp K̂m| · | supp K̂n|) = O( k
ε2

log 1
ε
), so the total number of samples used in a

single execution of Line 7 of Identify is O( k
ε2

log 1
ε

log 1
η
).

The precision of ωj0d will be δ = π/m, and thus the precision of ωj0 will be

π/(md) ≤ π/(mD) = η/m.

In summary, the hashing process guarantees that

Lemma 4.7. With probability at least 1−O(δ), Identify returns a list L such that

for each ωj with aj satisfying (4.2), there exists ω′ ∈ L such that |ω′ − ωj| ≤ η/m.

Remark 4.8. Notice that σ(Km) ⊆ [−M,M ] ∩ Z for some integer M > 0. We

shall show that, similar to [GMS05], despite Line 7 of Identify (for m translations

altogether) requires mr numbers, each of which is a sum of 2M+1 terms, this process

can be done in O((M +m logm)r) time instead of O(Mmr) time.

Suppose that at some step, for the j-th translation (0 ≤ j ≤ m−1), the translation

that shifts the lowest bits of sj to 0 is bj. By Section 4.2.3, we shall take Θ(Mn)

samples, corresponding to the the spectrum of KmKn, so we index the samples by

(s, t) with |s| ≤ Θ(n) and |t| ≤M . We need the numbers

Θ(n)∑
s=−Θ(n)

e−2πi(bj+
j
m

) s
2r

M∑
t=−M

e−2πi jt
mwstzst, j = 0, . . . ,m− 1,

where zst is the sample with index (s, t) and wst’s are the Fourier coefficients of KmKn.

Notice that the inner sum can be rewritten as

m∑
`=0

e−2πi j`
m

∑
t∈(mZ+`)∩[−M,M ]

wstzst,

which can be done in O(M +m logm) time using the FFT algorithm. The outer sum

has only constantly many terms. Hence to compute m numbers, each is a double

sum as above, takes only O(M +m logm) times. There are r steps, so the total time

complexity is O((M +m logm)r).
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4.3.2.1 Coefficient Estimation.

The isolation procedure generates a list L of candidate frequencies. Like [HIKP12a],

we estimate the coefficient at each position in L by hasing it into buckets using the

same kernel but with possibly different parameters. We shall show how to extract

good estimates and eliminate unreliable estimates among |L| estimates.

The following lemma states that if a frequency candidate is near a true frequency

then they fall in the same bucket with a good probability and if a frequency candidate

is adequately away from a true frequency then they fall in different buckets with a

good probability.

Lemma 4.9. Let D = Θ(1/η) and δ > 0. Choose d uniformly at random from

[θ1D, θ2D].

1. if |ω − ω′| ≤ β1δ/D ≤ η then

Pr {b(ω′, d) = b(ω, d)} ≥ 1− β1θ2.

2. if |ω − ω′| ≥ β2δ/D then

Pr {b(ω′, d) = b(ω, d)} ≤ 1

β2(θ2 − θ1)
+
cδ

D

for some universal constant c > 0.

Proof. Without loss of generality assume ω′ > ω. Then the probability in case (1)

can be rewritten as∑
s∈Z

Pr

{[
ω′d

2δ
+

1

2

]
=

[
ωd

2δ
+

1

2

]
= s

}
=

∑
possible s

1

(θ2 − θ1)D
·m
([

2sδ − δ
ω

,
2sδ + δ

ω′

])
,

where m(E) denotes the Lebesgue measure of set E. Note that

m

([
2sδ − δ
ω

,
2sδ + δ

ω′

])
= δ

ω + ω′ − 2s(ω′ − ω)

ω′ω
≥ δ

ω + ω′ − ωθ2β1 − β1δ
D

ω′ω
≥ δ

1− θ2β1

ω′

Thus the sum of probabilities can be bounded from below by

1

(θ2 − θ1)D
· δ1− θ2β1

ω′

([
ω′θ2D

2δ
+

1

2

]
−
[
ω′θ1D

2δ
+

1

2

]
+ 1

)
≥ 1− θ2β1.

The other case can be proved similarly as Lemma 4.2.
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Figure 4.2: K and K̃

Now consider a fixed significant frequency, say, ω1. Assume that ω1 is isolated

from other frequencies under hashing ω 7→ ωd. If ω1 lands in the plateau of the kernel

Km, that is, Km(ω1d) ≈ 1, then the bucket value∫
Km(xd)f(x)dx ≈ a1Km(ω1d) ≈ a1,

is a good estimate to the coefficient. Similarly if it lands outside the pass region,

the bucket value would be close 0. The only annoying situation is when it lands in

the transition of Km, in which case we may have a significant bucket value but much

smaller than the desired a1. Our plan is to detect the estimates from the transition

region and remove them. To this end, consider two kernels K and K̃ such that the

pass region of K falls within the plateau of K̃ (see Figure 4.2). Observe that the

set {x : K(x) ≥ K̃(x)/2} consists of two parts: one part falls completely within the

plateau of K̃, the other outside the pass region of K. With respect to the two kernels,

we obtain two bucket values

a =

∫
K(xd)f(x)dx ≈ a1K(ω1d)

and

a′ =

∫
K̃(xd)f(x)dx ≈ a1K̃(ω1d)

If |a| > |a′|/2, then we know that either ω1d falls in the plateau of K̃, which means

that a′ is a reliable estimate, or ω1d falls outside the pass region of K, which means

that a is small (and thus is a′). Hence we can drop the estimates with |a| < |a′|/2
and retain reliable estimates (either in the plateau of K̃ or outside the pass region

of K). We always take a′ as our final estimate, which would be either significant or

small. Furthermore, the plateau of K is contained in the set {x : K(x) ≥ K̃(x)/2},
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so we will always obtain a good estimate to a1 if we can guarantee that ω1d will land

in the plateau of K at least once.

This idea, together with the frequency estimate guarantee, is formalized in the

next few lemmata.

Choose parameters 0 < β1 < β2, 0 < θ1 < θ2 such that β1θ2 + α < 1/3 and

1/(β2(θ2 − θ1)) < 1/3. Let D = Cπ/η. Define a hash family

H = {Km(ωd) = hd(ω)|d ∈ [θ1D, θ2D]}.

It then holds that

Lemma 4.10. Let ω′ ≥ η and j0 = arg minj |ω′ − ωj|. Obtain a measurement aω′

w.r.t. hd ∈ H.

1. If |ω′−ωj0 | ≤ β1Cη/m, with probability Ω(1), it holds that |aω′ −aj0| ≤ ε‖a‖1 +

c′‖ν‖1/m for some c′ > 0 dependent on the failure probability;

2. If |ω′ − ωj0| ≥ β2Cη/m, with probability Ω(1), it holds that |aω′ | ≤ ε‖a‖1 +

c′‖ν‖1/m for some c′ > 0 dependent on the failure probability.

Proof. As in hashing, since ω′ is separated from all other ωj (j 6= j0), with probability

Ω(1), ωj does not land in the bucket for all j 6= j0. It follows from Lemma 4.9 that

1. If |ω′ − ωj0| ≤ β1Cη/m then ωj0 falls in the plateau of the same bucket as ω′

except with probability β1θ2 + α.

2. If |ω′ − ωj0| ≥ β2Cη/m then ωj0 falls in a different bucket from ω′ except with

probability 1/(β2(θ2 − θ1)) + cC/m.

Upon the success of either case, the noise in the bucket is at most ε‖a‖1 + C‖ν‖1/m

(by the argument in isolation the section) and the conclusion follows.

Let ∆ = ε‖a‖1 + c′‖ν‖1/m, where c′ is a constant dependent on the failure proba-

bility guaranteed in the preceding lemma and ε satisfies the condition in Lemma 4.6.

Take different C1 > C2 (and thus different D1 and D2) such that β1C2 ≥ 1 and

that C2β2 ≤ C1β1. Define hash families Hi (i = 1, 2) as

Hi = {Km(ωd) = hd(ω)|d ∈ [θ1Di, θ2Di]}, i = 1, 2.

It then follows that
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Lemma 4.11. Upon termination of execution of line 12 in Estimate, with proba-

bility ≥ 1−O(δ), for each ω′ ∈ L′ let j0 = arg minj |ω′ − ωj| it holds that

1. If |ω′ − ωj0 | ≤ β1C1η/m, then |aω′ − aj0 | ≤ ∆;

2. If |ω′ − ωj0| ≥ β2C1η/m, then |aω′ | ≤ ∆

3. If β1C1η/m ≤ |ω′ − ωj0| ≤ β2C1η/m, then |aω′ | ≤ 2∆.

Proof. Case (1) and (2) follow from the previous lemma. For ω′ in case (3) it holds

that aω′ ≤ 2bω′ and bω′ ≤ ∆ since |ω′ − ωj0| ≥ β2C2η/m.

Loosely speaking, Lemma 4.11 guarantees a multiplicative gap between the coeffi-

cient estimates for the “good” estimates of significant frequencies and the coefficient

estimates for all other frequency estimates. Next, we merge estimates of the same

true source. In increasing order, for each ω′ ∈ L′ with coefficient estimate aω′ , find

I(ω′) =

{
ω ∈ L′ : ω′ ≤ ω ≤ ω′ +

C1β1η

m
and

2

γ − 1
|aω′ | < |aω| <

γ − 1

2
|aω′ |

}
,

where γ > 3 is a constant to be determined later.

Choose any element from I as representative of all elements in I and add it to Λ.

Continue this process from the next ω′ ∈ L that is larger than I. Retain the top k

items of Λ.

Lemma 4.12. Suppose that Estimate is called with argument L. With probability

≥ 1− δ, it produces a list Λ such that

1. For each j with |aj| ≥ γ∆ for some γ > 2 +
√

5, if there exists ω′ ∈ L such that

|ω′ − ωj| ≤ π/m, then there exists (ω′′, aω′′) ∈ Λ (we say that ω′′ ∈ Λ is paired)

such that

|ω′′ − ωj| ≤
C1β1η

m
, |aω′′ − aj| ≤ ∆.

2. For each unpaired ω ∈ Λ it holds that

|aω| ≤ 2∆.

Proof. In case (1), for all ω ∈ L′ such that |ω − ωj| ≤ C1β1η/m it holds that |aω| ≥
(γ − 1)∆ while for other ω it holds that |aω| ≤ 2∆. There is a multiplicative gap so

the merging process does not mix frequencies that are close and far away from a true

source. It is easy to verify that ω ∈ L′ upon termination of Line 15 since C2β1 ≥ 1.
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The rest is obvious. The conclusion of the theorem holds with probability at least

1−O(δ), which can be made 1− δ by rescaling δ by a constant factor.

Now we are ready to prove our main result.

Proof of Theorem 4.1. It suffices to show that Main returns a desirable result with

probability ≥ 1− δ. Choose ε in the estimation procedure to be ε = min{ε1, ε2}/(γk)

and m ≥ γc′k, where γ is as in Lemma 4.12, then ∆ ≤ ‖ν‖1/(γk). Thus whenever

|aj| satisfies (4.2) it holds that |aj| ≥ γ∆. Combining Lemma 4.7 and Lemma 4.12

completes the proof.

Number of Samples.

There are O(log k
δ
) repetitions in isolation and each takes O( k

ε2
log 1

ε
log 1

η
) samples,

hence the isolation procedure takes O( k
ε2

log k
δ

log 1
ε

log 1
η
) samples in total.

The input of Estimate is a list L of size |L| = O(m log k
δ
). Use the same trick as

in isolation, it takes O(M) = O( k
ε2

log 1
ε
) samples for each of O(log |L|

δ
) = O(log m

δ
) =

O(log k
δε2

) repetitions. Hence the estimation takes O( k
ε2

log k
δε2

log 1
ε
) samples.

The total number of samples is therefore

O

(
k

ε2
log

1

ε

(
log

k

δ
log

1

η
+ log

k

δε2

))
= O

(
k

ε2
log

k

δ
log

1

ε2η
log

k

min{ε1, ε2}

)
.

Runtime.

It follows from Remark 4.8 that each isolation repetition takesO((M+m logm)r) =

O( k
ε2

log k
εε2

log 1
η
) = O( k

ε2
log 1

ε
log 1

η
) time. There are O(log k

δ
) repetitions so the total

time for isolation is O( k
ε2

log k
δ

log 1
ε

log 1
η
).

The input of Estimate is a list L of size |L| = O(m log k
δ
). Use the same trick in

Remark 4.8, it stakes O(M +m logm+ |L|) time to obtain values for all buckets and

compute a
(s)
ω and b

(s)
ω for all ω ∈ L and each s. Hence line 3–6 of Estimate takes

time O((M + m logm + |L|) log m
δ

) = O( k
ε2

log 1
ε

log k
δε2

) time. Thus estimation takes

time O( k
ε2

log 1
ε

log k
δε2

+ |L| log m
δ

+ |L| log |L|) = O( k
ε2

log k
δ
(log 1

ε
log 1

ε2
+ log 1

δ
)).

The total running time is therefore

O

(
k

ε2
log

k

δ

(
log

1

ε
log

1

η
+ log

1

ε
log

1

ε2
+ log

1

δ

))
= O

(
k

ε2
log

k

δ

(
log

1

ε2η
log

k

min{ε1, ε2}
+ log

1

δ

))
.
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Sample Duration.

It is clear that the sample duration is

O(Md) = O

(
M

η

)
= O

(
k

ε2η
log

k

min{ε1, ε2}

)
.

Output Evaluation Metric.

Since we do not expect to recover the frequencies exactly, the typical approxima-

tion error of the form ∥∥∥∥∥∑
j

(
aje

iωjx − a′jeiω
′
jx
)

+ ν(x)

∥∥∥∥∥
p

contains both the coefficient approximation error ‖a − a′‖ and a term of the form∑
|aj||ωj −ω′j|, rather than the more usual bound in terms of the noise alone ‖ν‖p in

the discrete case. Given bounds on both the coefficients |aj − a′j| and the frequencies

|ωj−ω′j|, it is possible to compute the two terms in the error. This is standard in the

literature of polynomial-time algorithms to recover real frequencies (e.g., [PPT11],

with which our result is comparable).

An alternative view is to treat the exponential sum
∑
aie

iωx as a distribution and

consider

sup
g∈F
|〈f1, g〉 − 〈f2, g〉|,

where f1 and f2 are two exponential sums and F some class of test functions. For

instance, when f1 and f2 are probability measures, it gives total variation distance

when F is the set of functions bounded by 1 and Wasserstein distance (or earth-

mover’s distance) when F consists of all 1-Lipschitz functions. But our algorithm has

no guarantee that ‖a‖ = ‖a′‖ so it is generally not a metric. Obviously this bound

can be expressed in terms of |ai − a′i| and |ωi − ω′i| (for example, with F being the

set of 1-Lipschitz function we obtain the L1 norm) and can thus be bounded if the

estimates of individual source are bounded. It remains unclear what class of test

functions would give a less common but interesting bound for this problem.
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Figure 4.3: Ŵ (ξ) = sin2(ξ/σ)/(ξ/σ)2

4.4 Discretization

As mentioned in the introduction, one may be tempted to reduce the continuous

setting to the discrete setting, assuming

f(t) =
k∑
i=j

aje
iωjt, aj ∈ C,

by simply taking samples of f(t)w(t) for some window function W (t) at N equidistant

points t = 0, ∆t, 2∆t, . . . , (N − 1)∆t. The discrete Fourier transform (DFT) of the

samples are approximately

1

∆t

k∑
j=1

ajŴ

(
ωj −

`

N∆t

)
, ` = 0, 1, . . . , N − 1

by observing that

N−1∑
k=0

eiωk∆tW (k∆t)e−i
k`
N ≈ 1

∆t

∫ T

0

eiωxW (x)e−i`
x

N∆tdt ≈ 1

∆t
Ŵ

(
ω − `

N∆t

)

provided that ∆t . 1/π (so the Riemann sum is a good approximation to the integral)

and W (t) is supported on, or negligible outside, [0, N∆t]. A typical choice of Ŵ is also

a window function. Suppose that the pass region of Ŵ has width σ . η to avoid the

interference of two different frequencies. The pass region ofW is typically 1/σ . N∆t,

hence 1/η . 1/σ . N∆t. Take Ŵ (ξ) = sin2(ξ/σ)/(ξ/σ)2 (See Figure 4.3). Consider

ω1 and let ` be the nearest integer to N∆t · ω1. Then the `-th coefficient in the DFT
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is
1

∆t

(
a1Ŵ

(
ω1 −

`

N∆t

)
+
∑
j 6=1

ajŴ

(
ωj −

`

N∆t

))
.

The first term in the bracket is close to a1 because |ω1 − `/(N∆t)| ≤ 1/(2N∆t) . σ

and thus Ŵ is close to 1. To bound the second term, notice that for j 6= 1,∣∣∣∣ωj − `

N∆t

∣∣∣∣ ≥ |ω − ω1| −
1

2N∆t
≥ |ω − ω1| −

1

Cη

for some absolute constant C > 0. And thus the second term is bounded by (by

rearranging the indices)

|a2|+ |a3|(
1− 1

C

)2 ( η
σ

)2 +
|a4|+ |a5|(

2− 1
C

)2 ( η
σ

)2 +
|a6|+ |a7|(

3− 1
C

)2 ( η
σ

)2 + · · · .
(
σ

η

)2

·max
i≥2
|ai|

This means that the `-th coefficient in the DFT is proportional to the cofficient asso-

ciated with ω1 corrupted by contributions from other cofficients associated with other

frequencies. It is therefore conceivable that there exists a constant C (depending

on W ) such that the top Ck coefficients of the N DFT coefficients include constant

approximations to those {ai}’s which are at least a constant fraction of ‖a‖1 with

the choice of σ . η and thus the sample duration is Θ(1/η). Using existing sparse

recovery results for discrete setting, it seems probable to recover the frequencies with

coefficients at least a constant fraction of ‖a‖1 with sample duration of N∆t ' 1/η.

Improving the guarantee to recovering frequencies with coefficients at least 1/k frac-

tion of ‖a‖1 will increase the sample duration to Θ(k/η) with σ shrunk from Θ(η) to

Θ(η/k).

This approach looks promising yet there are some inconveniences compared with

the preceding direct approach. For instance, typical discrete case results give an `2/`2

error bound, that is, ‖x − x′‖2 ≤ (1 + ε)‖x − x[k]‖2, where x′ is the approximation

of x and x[k] the best k-term approximation. It is not obvious how to interpret

such result in the continuous setting. On the other hand, under the discretization

scenario, a real-valued frequency spreads around so one may encounter a cluster of

significant components in the discretized signal and thus an additional step of locating

the frequency from a cluster of them is needed. This is not obvious either provided

only the `2 error guarantee. An `∞ error guarantee is more desirable, however, it

increases the complexity of the algorithms for the discrete case.

82



4.5 Application to Bearing Estimation

Humans use two ears to determine the location of the source of sound. This

localization problem falls in the area of array signal processing, which considers the

problem of locating signal sources (transmitters) using an array of receivers (sensors)

that measure the ambient wavefield. This problem has a rich history of research and

is found in a broad variety of fields such as radar, sonar, seismology and biomedicine.

We refer the readers to the classical references [JD92, Tre92] for more details. In this

section, we shall consider the problem of finding the sources under the assumption

that the number of sources (or an upper bound thereof) is known a priori. Our

formulation is as follows.

A source on the plane emits a sine wave at a single frequency ω and this wave

travels at speed c isotropically in this medium. If we ignore the decay of the amplitude

of the wave as it travels, the source is localized by a single bearing parameter θ ∈ S1,

if we were to express its position in polar coordinates. Formally, a source at angle θ

produces a wave field

Fθ(x, t) = aθ exp

(
iω

(
t+
〈x, nθ〉
c

))
, x ∈ R2, t ∈ R,

where nθ = (cos θ, sin θ) is the unit vector in the direction θ. Restricting the wave

field to x ∈ R, the horizontal axis, we have

Fθ(x, t) = aθ exp

(
iω

(
t+

x cos θ

c

))
, x ∈ R, t ∈ R,

or, writing ωθ = ω cos θ and assuming without loss of generality c = 1,

Fθ(x, t) = aθe
iωt+iωθx = aθe

iωteiωθx.

On the horizontal axis, the wavefield oscillates in both time t and in position x ∈ R,

separately.

Suppose that there are k sources, each transmitting sine waves at the same fre-

quency ω and at angles θ1, . . . , θk ∈ S1, and there is background noise at frequency ω

supported on Iν ⊂ S1. We assume that {[θj−η/2, θj+η/2)}kj=1 and [Iν−η/2, Iν+η/2)

are all mutually disjoint. That is, the sources are not on a fixed, discrete grid but

they are separated from each other and from the noise by a minimum resolution angle

η.

To simplify notation, we denote ωθj by ωj and observe that |ωj| ≤ ω. A single
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aperture

η

Figure 4.4: Receiver array and source configuration. The black nodes are receivers
and the grey ones sources.

receiver at position x on the horizontal axis observes the wavefield as

f(x, t) =
k∑
j=1

aje
iωteiωjx + eiωt

{∫
Iν

a(θ)eiω cos θ·xdµ

}
, x, t ∈ R,

where µ is a measure on S1 that satisfies the assumptions prescribed in Section 4.2.1.

The goal of the bearing estimation problem is to construct a (distribution over)

placements xm of M receivers and, from observations y(xm, t0) at a fixed time t0,

find the amplitudes {aj} and positions or angles {ωj} of the sources. This problem

has the form of an off-grid Fourier sampling problem where we seek the identity of

the unknown k “frequencies” ωj from M samples of a sparse signal plus background

noise. Figure 4.4 shows the configuration of sources and receivers.

Choose 0 < β < π/2 and consider θ ∈ J = [−(π − β),−β] ∪ [β, π − β], whence

| sin θ| ≥ sin β. Furthermore, we have

|ω cos θ1 − ω cos θ2| ≥ ω(sin β)|θ1 − θ2|

for θ1, θ2 ∈ J . Thus, it follows for θj ∈ J that ωj is separated from the other

frequencies and the noise by at least ωη sin β. Because there is nothing special about

placing the receivers on the horizontal axis, we can also consider receivers distributed

on a line that is rotated a constant number of times with respect to the horizontal

axes so that the translations of J cover S1 altogether, it suffices to find ωj (and the
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associated aj) with θj ∈ J for a fixed β. We also re-define the angular resolution η

to be η sin β. We hope that in this way we can reduce the problem to recovery of

{ωj}, or, {cos θj}. However, ambiguity arises since cos θ = cos(−θ), that is, sources

symmetric around the horizontal line cannot be distinguished. Also a source that is

close to the symmetric image of the other source may ruin the minimum separation

in the reduced problem. Therefore we further make the following assumption: there

exists an integer q > 4 such that for each pair of

Ep =

{
θj : θj ∈

[
π

4
+ (2p− 1)

π

q
− 2η,

π

4
+ (2p+ 1)

π

q
+ 2η

]}
and

E ′p =

{
θj : θj ∈

[
−π

4
+ (2p− 1)

π

q
− 2η,−π

4
+ (2p+ 1)

π

q
+ 2η

]}
, p = 0, . . . , q − 1,

it holds that d(−Ep + {2pπ
q
}, E ′p−{

2pπ
q
}) ≥ η and that d(−Ep + {2pπ

q
}, Iν) ≥ η, where

d(·, ·) is the metric on S1.

Consider a filter K on S1 with a finite Fourier transform K̂, supported on I ⊂ Z.

Then, placing receivers down on a line at positions {nx}n∈I associated with weights

{K̂(n)}n∈I , we find that the wavefield these receivers observe is

∑
n∈I

K̂(n)y(nx) =
k∑
j=1

aj
∑
n∈I

K̂(n) exp(iωjnx) +

∫
Iν

a(θ)
∑
n∈I

K̂(n) exp (iω(cos θ)nx) dµ

=
k∑
j=1

ajK(ωjx) +

∫
Iν

a(θ)K(ω(cos θ)x)dµ.

It is clear that any translation K(u + ·) can be achieved by the same receiver array

with associated weights {K̂(n)eiun}n∈I} and that scaling K(αx) can be achieved by

scaling the receiver array by the same factor α. Thus, we can perform all of the

required measurement techniques for sampling in a receiver array.

The following result is an immediate application of our main result.

Theorem 4.13. There is a distribution D on uniform receiver arrays and an algo-

rithm A such that for each wavefield emanating from k sources f(s) =
∑k

j=1 aje
iωjs+∫

Iν
a(θ)eiωsdµ, with constant probability, given observations from the receiver arrays,

the algorithm returns a list Λ of amplitudes and bearings Λ = {(a′j, ω′j)}kj=1 such that
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1. For each aj that satisfies (4.2) there exists ω′j ∈ Λ such that

|ωj − ω′j| ≤
ε2
k
η.

2. Let Λ0 =
{
ω′j ∈ Λ : ∃ωj0 such that

∣∣ωj0 − ω′j∣∣ ≤ ε2η
k

and |aj0| satisfies (4.2)
}
, then

for each ω′j ∈ Λ0 it holds that

|a′j − aj| ≤
ε1
k
‖a‖1 +

ε2
k
‖ν‖1.

3. For each ω′j ∈ Λ \ Λ0, it holds that

|a′j| ≤
ε1
k
‖a‖1 +

ε2
k
‖ν‖1.

The algorithm places

O

(
k

ε2
log k log

1

ε2η
log

k

min{ε1, ε2}

)
receivers and runs in time proportional to number of receivers. Furthermore, the

receiver aperture size is

O

(
k

ε2η
log

k

min{ε1, ε2}

)
.

Proof. By our assumption on Ep and E ′p, we can recover the sources in[
π

4
+ (2p− 1)

π

q
,
π

4
+ (2p+ 1)

π

q

]
∪
[
−π

4
+ (2p− 1)

π

q
,−π

4
+ (2p+ 1)

π

q

]
with symmetry ambiguity. With rotations of the receiver arrays, the only ambiguity

left will be to distinguish a source at θ from θ + π. Suppose that θ ∈ Ep0 . This

ambiguity can be resolved by rotating the receiver array for Ep0 by η, the correctness

of which is guaranteed by our assumption on Ep and E ′p again, noting the 2η brim on

each side of each interval.

We remark that it is possible to handle more configurations of sources, such as

sources at the vertices of a regular polygon, by starting with a random direction

instead of x-axis.
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4.6 Conclusion and Open Problems

In this chapter, we define a mathematically rigorous and practical signal model

for sampling sparse Fourier signals with continuously placed frequencies and devise a

sublinear time algorithm for recovering such signals. There are a number of technical

difficulties in this model with directly applying the discrete sublinear Fourier sampling

techniques, both algorithmic and mathematical. We leave the following problems

open and make conjectures.

• Several direct techniques incur the penalty of extra measurements. We do not

know if these additional measurements are necessary, if they are inherent in the

model.

• Unlike the discrete case, the “duration” of the sampling or the extent of the

samples is a resource for which we have no lower bounds. We think Θ(k/η) is the

tight bound with k logO(1)(1/η) samples while our algorithm takes O((k/η) log k)

samples for ε1 = Θ(1/k) and ε2 = Θ(1). It remains future work to devise

a sublinear time algorithm with smaller sample duration, for which a good

reduction to discrete case looks a promising approach.

• If not reducing to discrete case, it would be good to design an iterative algorithm

so the runtime can be lowered by an O(log k) factor. Notice that the number

of samples is always bounded by the runtime from above.
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