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CHAPTER I

Introduction

As Brunnermeier, Crockett, Goodhart, Persaud, and Shin (2009) report, the Credit

Crunch of 2007-2009 involved a regulatory failure and the solution should not be

more regulation per se, but better and different regulation. Today we are certain only

about the “different” part since in many countries there are significant regulatory

changes,1 but we do not know their unintended consequences. In the U.S., Volcker

rule represents one of these regulatory changes.2 The rule limits banks’ proprietary

trading that is not at the behest of their clients and caps each bank’s ownership in

hedge funds and private equity funds at three percent of the assets. Certain activities

such as market making, hedging, securitization, and risk management are exempted.

Banks have a seven year time frame to become compliant with the regulation.

Reform advocates such as the consumer coalition Americans for Financial Reform

think Volcker rule is too weak, and, on the other hand, banks believe it is too costly.3

For instance, JPMorgan Chase estimates that the direct costs of the Volcker rule for

them will be $400 million - $600 million annually (see Economist, February 18th

1See e.g. European recommendations Liikanen (2012) and Vickers (2011).
2The Volcker rule is section 619 of the Dodd-Frank Wall Street Reform and Consumer Protection Act

and it was proposed by former U.S. Federal Reserve Chairman Paul Volcker. For more information: http://
www.sec.gov/rules/proposed/2011/34-65545.pdf, http://banking.senate.gov/public/_files/070110_Dodd_Frank_Wall_Street_
Reform_comprehensive_summary_Final.pdf, and http://www.sec.gov/about/laws/wallstreetreform-cpa.pdf.

3See e.g. Reuters, October 11th 2011, “U.S. reveals Volcker rule’s murky ban on Wall St bets” by Dave Clarke and
Alexandra Alper, Dealbook, New York Times, February 13th 2012, “At Volcker Rule Deadline, a Strong Pushback
From Wall St.” by Ben Protess and Peter Eavis, and Dealbook, New York Times, February 22nd 2012, “The Volcker
Rule, Made Bloated and Weak” by Jesse Eisinger.

1

http://www.sec.gov/rules/proposed/2011/34-65545.pdf
http://www.sec.gov/rules/proposed/2011/34-65545.pdf
http://banking.senate.gov/public/_files/070110_Dodd_Frank_Wall_Street_Reform_comprehensive_summary_Final.pdf
http://banking.senate.gov/public/_files/070110_Dodd_Frank_Wall_Street_Reform_comprehensive_summary_Final.pdf
http://www.sec.gov/about/laws/wallstreetreform-cpa.pdf


2012, “The Dodd-Frank act; Too big not to fail”).

Several papers have studied bank capital’s role in regulation (see e.g. Hart and

Zingales 2011; Acharya, Kulkarni, and Richardson 2010; Kashyap, Rajan, and Stein

2008; Barth, Caprio, and Levine 2004; Bhattacharya, Boot, and Thakor 1998; Dangl

and Lehar 2004; Decamps, Rochet, and Roger 2004; Hellmann, Murdock, and Stiglitz

2000; Morrison and White 2005; and Repullo 2004). Some authors have focused

specifically on the Volcker rule. Konczal (2012) claims that the Volcker rule will

help with the conflicts of interest between banks and their clients and provide for

the stability of the economy by removing the “casino” part of the financial system

from the core banking parts. Despite the good intentions of the Volcker rule, the

rule has also received wide criticism. According to Chatterjee (2011), the rule as

proposed is doomed because banks are allowed to continue to trade on behalf of

their customers and because it is difficult to separate the client serving activity from

proprietary trading. Chow and Surti (2011), Whitehead (2011), and Duffie (2012)

argue that the implementation of the Volcker rule would reduce the quality and

capacity of market making services that banks provide to U.S. investors. Further,

activities identified as too risky for retail banks might migrate to the unregulated

parts of the financial system and this could increase systematic risk. Moreover, some

authors warn that the regulation may have also other unintended consequences. For

instance, Campbell, Ramadorai, and Ranish (2012) present evidence that regulation

may contribute to a surge in delinquencies.

The goal of our study is to develop a framework with which we are able to estimate

and analyze the impact of the Volcker rule on banks’ market equity value and default

probability. To achieve this goal, we divide the trading into two parts: alpha bets

and hedging of basic banking cash flows. Under this stylized setup we develop two
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models that maximize the bank’s expected discounted dividends, i.e., the value of

bank market equity equity. In our models presented in Chapter II and III, the state

variable is a bank’s buffer capital ratio, i.e., accounting equity capital ratio over a

minimum capital level. If the buffer capital violates the minimum capital level then

the bank is liquidated.4 We solve the bank’s optimal policy (in maximizing the value

of the bank) for dividends, liquid asset investments, and the allocation of assets into

trading and basic banking business in a single optimization model. This is important

since these decisions affect each other and, hence, cannot be analyzed separately. By

dynamic programming, the value function satisfies an ordinary differential equation

that we solve numerically. We ignore the implementation costs and risks such as

differences between federal and state regulators found in Agarwal, Lucca, Seru, and

Trebbi (2012).

Several other papers have also modeled banks and other firms’ optimal actions

with similar stochastic models. The basic theoretical continuous time model of a

capital constrained firm is presented in Milne and Robertson (1996). That paper is

extended in Milne and Whalley (2001), Milne (2004), and Peura and Keppo (2006)

to allow for a recapitalization option. Peura and Keppo also calibrate their model

to accounting data on U.S. commercial banks and show that this class of models

explains about 40% of the variation in the buffer capital levels. We confirm this

finding in our analysis. Keppo, Kofman, and Meng (2010) consider a model with

liquid risky asset investment. In our models in Chapter II and III we extend their

framework by considering the proportion of trading assets as a free variable and by

including the correlation between banking and trading cash flows to the model. The

4We model the effect of capital via an elevated survival probability. Holmstrom and Tirole (1997) develop a model
in which capital induces the bank to monitor borrowers. This suggests that bank capital has also a positive effect on
monitoring. We do not model this effect directly. However, our cross-sectional analysis on the sample of U.S. banks
suggests that the model explains a significant part of the variation in the banks’ buffer capital ratios.
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correlation is an important variable in our analysis since it allows hedging of the

banking cash flows. Estrella (2004) uses a variant of the classical inventory or cash

management models to study cyclicality of bank capital. Consistent with our model,

Mehran and Thakor (2011) find that bank value and its components (the stand-alone

values of banks assets and liabilities and the synergies among them) are positively

cross-sectionally related to bank capital.

The rest of the paper is organized as follows. Chapter II presents a simple stochas-

tic model with no recapitalization and results. Chapter III presents another stochas-

tic model with recapitalization. Each of Chapter II and Chapter III includes the

calibration results, cross-sectional test, and comparative statics using its respective

model. Chapter IV concludes.
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CHAPTER II

A Simple Stochastic Control Model with No
Recapitalization

2.1 Model

We introduce our first model with no recapitalization. Recapitalization activities

include issuing or re-purchasing a bank’s own stock. In this section we present the

used stochastic processes and the objective of the bank under consideration. This

model is based on Milne and Robertson (1996) and Keppo et al. (2010). We analyze

a single bank that maximizes its expected discounted dividends. Consistent with

Basel banking rules (Basel Commitee on Banking Supervision 1996a,b,c), we divide

the bank’s assets into banking book and trading book.

The banking book consists of loans that are not marked to market for manage-

rial and accounting purposes. The trading book is a portfolio of different traded

instruments (e.g. stocks, bonds, swaps, forward contracts and other derivative in-

struments) that are usually marked to market daily.

We assume that the bank’s total risk-weighted assets RW (t)5 grow at a positive

risk-free rate r, so that

RW (t) = RW (0)ert (2.1)

5Risk-weighted assets are calculated as a weighted sum of a bank’s nominal risk exposures, where the weights
depend on product type and counterparty sector. According to Peura and Keppo (2006), risk-weighted assets are
typically between 65% and 70% of total assets.
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for some initial positive amount RW (0). This implies that our bank is in a steady

state and its total risk-weighted assets grow at a risk-free rate due to new loans and

investments.6 The bank operates up to liquidation. The liquidation time is defined

as the first time when equity hits zero:

τ = inf{t|X̄(t) ≤ 0},

where τ is the liquidation time and X̄(t) is the accounting value of bank equity (bank

capital) at time t. The credit risk requirement can be modeled by defining X̄ as the

capital above the minimum capital level (see e.g. Peura and Keppo 2006). We use a

minimum capital level in our model calibration and set the minimum level equal to

8% of the total risk-weighted assets (this is about the minimum capital level in our

dataset).

We assume that earnings from the banking book and the trading book are propor-

tional to the bank assets. Banking book equals a fixed proportion of the assets and

the rest of the assets are in the trading book. Thus, the bank dedicates certain fixed

proportion of its assets to the basic banking business. The trading book consists

of a liquid risky asset investment and a risk-free investment. The bank trades the

assets in the trading book continuously without any frictions. More specifically, the

cumulative earnings processes under the risk-neutral probability measure (see e.g.

Bjork 2009) are given by

dEB(t) = RW (t)ζ(r + αB)dt+RW (t)ζσBdWB(t),

dET (t) = RW (t)(1− ζ)θ(t)(r + αT )dt

+RW (t)(1− ζ)θ(t)σTdWT (t) +RW (t)(1− ζ)(1− θ(t))rdt

= RW (t)(1− ζ)[r + θ(t)αT ]dt+RW (t)(1− ζ)θ(t)σTdW (t), (2.2)
6As pointed out in Keppo et al. (2010), we can justify this in two ways: (1) the growth rate of RWA has only

a second order effect on the buffer stock, and (2) RWA fluctuates significantly less than the corresponding market
prices due to the definition of RWA.
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where EB(t) and ET (t) are the banking and trading book cumulative earnings at

time t, r is the risk-free rate, ζ is the constant proportion of RW (t) in the banking

book and ζ ∈ [ζl, 1], ζl > 0 is the minimum size of the banking book (so that the firm

is still considered as a bank), θ(t) is the proportion of the trading book invested in

the liquid risky asset and θ(t) ∈ [0, 1] for all t ≥ 0, αB and αT are banking book and

trading book alphas, σB and σT are banking book and trading book volatilities and

σB, σT > 0,WB(t) and WT (t) are Wiener processes under the risk-neutral probability

measure corresponding to EB and ET and their correlation is ρBT .

If (2.2) is under the risk-neutral measure then it would be natural to assume that

αT = 0 (see e.g. Bjork 2009). However, this implies that a bank engages in trading

business only to hedge their risk from banking business (see Corollary 2.12) and this

is not what we observe in the market. Therefore, we assume that the bank is able

to generate alpha, in which case αT > 0. This excess return could be, for instance,

from market making or it just reflects the bank shareholders’ expectation for the

future returns. We assume the bank is able to control θ(t) in continuous time. It

can also choose ζ, but this parameter is constant. We do not specify the trading and

banking activities that create the alphas (excess returns αB and αT ). In our model

they are just alphas of the trading and banking books, and in the model calibration

we estimate the parameters from accounting and market data.

By (2.2), the earnings of the bank follow

dE(t) = dEB(t) + dET (t)

= RW (t)[r + ζαB + (1− ζ)θ(t)αT ]dt+

+RW (t)[ζσBdWB(t) + (1− ζ)θ(t)σTdWT (t)] (2.3)

and, thus, the earnings depend on the asset size, the earnings parameters, and

7



the bank’s trading. As we can see, the earnings volatility depends on the asset

quality: The more is invested in trading, the higher the earnings volatility (typically,

σT > σB). The earnings are added to bank equity, i.e., to the bank’s capital.

The bank controls its bank capital also through dividend payments that can be

implemented instantaneously without any costs. Formally, a capital control policy π̄

is a collection (ζ π̄, {θπ̄(t), Lπ̄(t)}), where ζ π̄ is the proportion of total risk-weighted

assets in the banking book under policy π̄, θπ̄(t) is the proportion of trading book

in the risky liquid asset at time t, and Lπ̄(t) is the cumulative amount of dividends

at time t. We denote by Π the class of admissible policies and they satisfy:

(i) ζ π̄ ∈ [ζl, 1], where ζl > 0, and ζ π̄ is constant during the lifetime of the bank

(ii) θπ̄(t) ∈ [0, 1] for all t ≥ 0 and it is adapted to Ft, where filtration {Ft} is

generated by the Wiener processes WB(t) and WT (t)

(iii) Lπ̄t is a non-decreasing right-continuous process adapted to Ft and Lπ̄0− = 0.

Condition (i) indicates that the bank cannot change the proportion of the risk-

weighted assets in the banking book after it has selected that. Thus, the banking

business is a long-term investment with long-term commitments. By (ii), short

selling is not allowed and the bank cannot invest more than its trading book in the

risky asset. Condition (iii) says that dividends cannot be negative.

Bank capital as a function of policy π̄ is denoted by X̄ π̄(t) and, by (2.3), it satisfies:

X̄ π̄(t) = X̄(0) +

∫ t

0

rXπ(u)du+

∫ t

0

dEπ̄(u)− Lπ̄(t)

= X̄(0) +

∫ t

0

rXπ(u)du+

∫ t

0

R(u)[r + ζ π̄αB + (1− ζ π̄)θπ̄(u)αT ]du

+

∫ t

0

R(u)[ζ π̄σBdWB(u) + (1− ζ π̄)θπ̄(u)σTdWT (u)]− Lπ̄(t). (2.4)

The integral terms are the gains and losses from the trading and banking books. The

last term is the cumulative dividend process. Thus, cumulative profits feed to the
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capital, while dividend payments and cumulative losses represent a leakage from the

capital. The first integral term represents that bank capital also earns the risk-free

rate.7

By risk-neutral pricing, the market value of bank equity is the expected discounted

dividends until liquidation. Thus, the market equity value under policy π̄ and initial

capital x̄ (accounting value of equity above the minimum requirement) is given by

V̄π̄(x̄) = E

[∫ τ̄π̄

0

e−(r+δ)tdLπ̄(t)|X̄(0) = x̄

]
, (2.5)

where E is expectation under the risk-neutral probability measure, δ is a positive

constant representing the wedge between debt and equity finance due to capital

market frictions such as taxation and agency costs of equity.8 The wedge satisfies

δ > max[αB, αT ], which gives V̄π̄(x̄) <∞. Thus, the excess return in (2.3) and (2.4)

is less than the wedge between debt and equity finance.

The problem is to identify the value of an optimally managed bank:

V̄ (x̄) = sup
π̄∈Π

V̄π̄(x̄) (2.6)

and an admissible policy which achieves this value.

7As in Peura and Keppo (2006), this assumption can be justified in several ways. We assume that bank capital
is explicitly invested in a risk-free asset. Alternatively, we could postulate that any capital the bank has replaces
an equivalent of borrowing/deposit funding and that the effective cost of borrowing/deposits to the bank equals the
risk-free rate. The latter assumption, in turn, could be justified by the presence of deposit insurance.

8As pointed out in Keppo et al. (2010), the parameter δ should not be interpreted as equity risk premium since it is
assumed constant and does not depend on bank leverage. This suggests that our modeling framework is risk-neutral
(risk-neutral share holders or risk-neutral probability measure). If the risk-neutral probability measure is used then
the drift term of buffer capital process need not coincide with its observed value. In particular, since uncertainty
in our model is driven by a Brownian Motion, a change of measure would influence the drift in (2.4), but not the
volatility.
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2.2 Characterization of Optimum

The capital dynamics defined in (2.4) are not time-homogenous, which makes

direct solution of the problem (2.6) difficult. However, the problem of capital control

can be transformed into a time-homogenous problem of capital ratio control through

a simple normalization. The normalized state variable, the bank capital ratio is given

by

X(t) = X̄(t)/RW (t).

From Peura and Keppo (2006) we get the following lemma that presents the capital

ratio control problem and shows its connection to the capital control problem (2.6).

Lemma II.1. (Capital control problem) Given an admissible policy π ∈ Π, the capital

ratio satisfies

Xπ(t) = X(0) +

∫ t

0

[r + ζπαB + (1− ζπ)θπ(u)αT ]du

+

∫ t

0

[ζπσBdWB(u) + (1− ζπ)θπ(u)σTdWT (u)]− Lπ(t). (2.7a)

Define the liquidation time by

τπ = inf{t|Xπ(t) ≤ 0} (2.7b)

and the bank equity value as percentage of the total risk-weighted assets under policy

π by

Vπ(X(0)) = EX(0)

[∫ τπ

0

e−δtdLπ(t)

]
, (2.7c)

where the expectation is conditional on the capital ratio dynamics (2.7a). The value

function:

V (x) = sup
π∈Π

Vπ(x). (2.7d)
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Then (2.6) can be expressed in terms of (2.7d) as

V̄ (X̄(0)) = RW (0)V (X(0)). (2.8)

Further, let π∗ be the policy which achieves the optimum in (2.7d). Then the optimal

policy of (2.6), π̄∗, can be expressed in terms of π∗ by

ζ π̄
∗

= ζπ
∗
, θπ̄

∗
(t) = θπ

∗
(t) and Lπ̄

∗
(t) =

∫ t

0

RW (u)dLπ
∗
(u). (2.9)

Thus, when π and π̄ are related through (2.9) then the capital ratio process (2.7a)

is the process of X̄ π̄(t)/RW (t). The proof is based on Ito’s lemma and equations

(2.1) and (2.3). Equation (2.8) implies that the objective function of the capital ratio

control problem, (2.7d), can be interpreted as the market value of bank equity as a

percentage of the total risk-weighted assets.

From Højgaard and Taksar (2004) we get the following lemma.

Lemma II.2. (Concavity) The value function in (2.7d) is increasing and concave.

We characterize the value function (2.7d) through a set of variational inequali-

ties. For this we define the infinitesimal generator I corresponding to (2.7a) for all

sufficiently regular f as follows

Iθf(x) =
1

2
[ζ2σ2

B+(1−ζ)2θ2σ2
T+2ζσBρBT (1−ζ)θσT ]f ′′(x)+[r+ζαB+(1−ζ)θαT ]f ′(x).

(2.10)

Further, let us write the value function corresponding to banking proportion ζ ∈

[ζl, 1] as V ζ(x). That is, V ζ(x) is the expected discounted dividends in (2.7c) and

(2.7d) for given ζ.

Now we get the following proposition. The proof follows from standard arguments

(see e.g. Højgaard and Taksar 1999 or Fleming and Soner 2005).
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Proposition II.3. (Value function) The value function corresponding to banking

book proportion ζ ∈ [ζl, 1] solves

LIQUIDATION: V ζ(0) = 0 (2.11a)

OUTSIDE DIVIDENDS: δV ζ(x) = Iθ∗V
ζ(x) for all x ∈ (0, u) (2.11b)

DIVIDENDS:
∂V ζ(x)

∂x
= 1 for all x ≥ u (2.11c)

where dividend barrier u ∈ (0,∞) and the optimal trading strategy:

θ∗(x) = max

{
0,min

[
1,− ζσBρBT

(1− ζ)σT
− αT

(1− ζ)σ2
T

∂V ζ(x)

∂x
/
∂2V ζ(x)

∂x2

]}
. (2.12)

θ∗(x) is solved in Subsection 2.5.2 for an easy implementation. The optimal policy

can be understood as follows. Dividends are paid so as to never let the capital ratio

rise above u, and between the dividend payments the bank invests actively in the

risky financial asset. The optimal trading strategy solves max(Iθ − δ)V ζ(x) = 0.

Note that, by (2.10) and Lemma II.2, (Iθ − δ)V ζ(x) is concave with respect to

θ ∈ [0, 1] and, thus, the first order condition gives the optimal trading strategy

θ∗. The term − ζσBρBT
(1−ζ)σT

in (2.12) is due to (partial) hedging of banking cash flows,

and − αT
(1−ζ)σ2

T

∂V ζ(x)
∂x

/∂
2V ζ(x)
∂x2 is from the alpha of the trading strategy. The hedging

term has its maximum value when the correlation equals −1, and the alpha term is

increasing in the alpha of the trading, αT . Note that hedging increases value because,

by Lemma II.2, the value function is concave and hedging decreases volatility. The

max and min functions in (2.12) are due to the trading constraint.

Proposition II.3 follows from standard dynamic programming arguments applied

to the Bellman equation. By (2.11a), when the capital ratio hits zero the bank is

liquidated. The slope condition at the dividend barrier (2.11c) and the differen-

tial equation between the dividend times (2.11b) hold since paying dividends and
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trading are always admissible. We note that the smooth pasting and the super con-

tact conditions are required for V ζ at the dividend barrier, i.e., ∂V ζ(x)
∂x
|x=u = 1 and

∂2V ζ(x)
∂x2 |x=u = 0 (see Dumas 1991).

In case of nonzero correlation between the banking and trading earnings, the value

function in Proposition II.3 has to be solved numerically.9 If the correlation is zero,

i.e., ρBT = 0 then we get the model in Keppo et al. (2010). Further, note that if

ζ = 1 then the bank invests all the wealth in the banking business and, therefore,

the value function is independent of trading since then there are no trading assets.

In this case the model equals Peura and Keppo (2006). For ζ ∈ [ζl, 1), the smooth

pasting and the super contact conditions with Lemma II.2 lead to an explicit formula

for the value function (2.11) at the dividend barrier u:

Lemma II.4. (Value at dividend barrier) Let τ > 0, αT > 0, σT 6= 0, and ζ ∈ [ζl, 1).

Then the value function at the dividend barrier is given by

V ζ(u) =
r + ζαB + (1− ζ)αT

δ
(2.13)

and θ∗(u) = 1, i.e., the bank has the maximum position in the liquid risky asset at

the barrier. If the above conditions hold, except if we have αT ≤ 0, then

V ζ(u) =
r + ζαB

δ
. (2.14)

Further, if αT = 0 then θ∗(u) = max{0,min[1,− ζσBρBT
(1−ζ)σT

]}, and if αT < 0 then

θ∗(u) = 0, i.e., then the bank has the minimum position in the liquid risky asset at

the barrier.

Proof: By (2.11b) and the value matching, smooth pasting, and super contact con-

9We use a standard finite difference approximation method to solve the value function (see e.g. Kushner and
Dupuis 2000, Section 5.1) and implemented the method in Matlab.
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ditions at u, we have

V ζ(u) = sup
θ∈[0,1]

[(r + ζαB + (1− ζ)θαT )/δ].

First, if αT = 0 then we get (2.14) directly and, by Proposition 2.12, θ∗(u) is as

given in the lemma. Second, if αT > 0 then θ∗(u) = 1 and (2.13) follows. Finally, if

αT < 0 then θ∗(u) = 0 and (2.14) follows.

�

By Lemma II.4, the value function at the dividend time is given by the simple

equations (2.13) and (2.14) which do not include the banking and trading volatilities

or their correlation. However, the dividend barrier u (solved by the value matching

and smooth pasting conditions) and, therefore, also the dividend time depend on the

volatilities and the correlation.

From (2.12) we get the following corollary.

Corollary II.5. (Trading) If the trading alpha and the correlation between the bank-

ing and trading cash flows are both zero then the bank does not trade. That is, if

αT = 0 and ρBT = 0 then θ∗(x) = 0 for all x ∈ [0, u].

This result implies that there are two motivations for trading: alpha generating

bets and the hedging of banking earnings. When the trading alpha and the correla-

tion are zero then there is no trading. In this case our model is given by Peura and

Keppo (2006).

So far we have analyzed the value function with given banking book size ζ ∈ [ζl, 1].

Next we discuss about the optimal ζ and for this we define Υx(ζ) = V ζ(x), where x

is the buffer capital at time 0. The optimal ζ is solved at time 0 and it is constant:

ζ∗ = arg maxζ∈[ζl,1]Υ
x(ζ). By the extreme value theorem, Υ attains its maximum on
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[ζl, 1]. The maximum value is either at a local maximum in (ζl, 1), or at a boundary

(ζl or 1), i.e., at the point where the derivative is zero or at a boundary. We solve ζ

numerically by testing these candidates.

Note that if ζ was time varying then we would solve that from (2.11b) similarly

as θ∗ in (2.12). This would give

ζ = max

{
ζl,min

[
1,

θαT − αB
σ2
B + θ2σ2

T − 2σBρBT θσT

∂V ζ(x)
∂x

∂2V ζ(x)
∂x2

+
θσT (θσT − σBρBT )

σ2
B + θ2σ2

T − 2σBρBT θσT

]}
,

where, by Lemma II.2, the first term besides θαT −αB is negative. This implies that

the higher the banking alpha relative to the trading alpha, the bigger the banking

book size is. Since typically σT > σB, the last term is positive if θ ≥ ρBT .
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2.3 Model Calibration

In this section we calibrate this model to twelve U.S. banks during 2000 Q1 –

2011 Q4. This period was selected to include the most current period after the

repeal of the Glass-Steagall Act of 1933 on late 1999.10 We use the twelve banks

because for them we have required accounting data for our analysis over this time

period from the Compustat Database.11 We also use the banks’ risk-weighted assets

and tier 1 capital data from the Bank Regulatory Databases for the banks’ asset

and core capital sizes, the banks’ stock price and shares outstanding from CRSP

for the market value of shareholders’ equity (the shares outstanding are used with

the model’s market capitalization), the yield on 3-month U.S. treasury bill for the

risk-free interest rate, and the S&P 500 index for the market portfolio.

2.3.1 Banks

The banks are introduced in Table 2.1. As we can see, the banks’ average to-

tal risk-weighted assets during the time period vary from below three billion USD

(ABVA, HTLF, and TMP) to over 500 billion USD (BAC, JPM, and WFC). The big

banks have smaller buffer capital ratios than the small banks have: The correlation

between the buffer capital ratio12 and the risk-weighted asset size is -0.44. This is

consistent with the “too big to fail” concept since if the big banks know that they are

so large and so interconnected that their failure would be disastrous to the economy,

and which therefore must be supported by government when they face difficulty, then

it might be optimal for the big banks to maximize the value of the bailout option by

10The Glass-Steagall separation of investment and deposit banking was generally repealed by the Gramm-Leach-
Bliley Act of 1999 during the administration of Bill Clinton.

11Compustat data variables include: total assets, trading account securities, federal funds sold and securities
borrowed or purchased under agreements to resell, interest income and expense on federal funds sold and securities
borrowed or purchased under agreements to resell comprehensive income, net gain (loss) from trading securities, tier
1 capital ratio, minority interest, and shareholders’ equity.

12In this model, we assume a fixed minimum requirement for all banks.
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running their business with a low buffer capital ratio.13 However, given the model

parameters (that might, at least partially, be driven by the above discussed moral

hazard), seven banks (CBSH, FHN, HTLF, JPM, STT, TMP, and WTFC) have

higher mean buffer capital ratios than this model dividend barriers (both under es-

timated parameters and under the significant parameters, columns under u in Table

2.1). Thus, these banks run their business with higher capital buffers than what is

optimal according to this model (the seven banks include both small and big banks)

and, therefore, each of these banks has a lower default probability than the corre-

sponding optimally managed bank has. However, the banks might have too high

earnings volatility due to the moral hazard problem discussed above and they might

have too much leverage because the banks pay low interest rates for their own debt

due to the government support (we do not model the government support). Higher

earnings volatility and leverage naturally increase the risks of the whole industry.

Most of the bank assets are in the basic banking business, eleven banks have

over 90% of their assets in the banking book. Only JPM has less than 90% of their

assets in the banking book. For all the banks, the banking earnings volatility is

lower than their trading volatility. This is consistent with DeYoung and Roland

(2001), Stiroh (2004, 2006), and Stiroh and Rumble (2006) who find that movement

away from traditional banking activities toward other financial services increases

the volatility and market risk. Seven banks had negative correlation between the

banking and trading earnings. Negative correlation implies partial hedging of the

basic banking business. Seven banks out of twelve had higher trading alpha (excess

return) than the banking alpha. Some of the trading alphas are too high for forward

looking estimates. However, as explained in Table 2.1, the alphas are bounded above

13For more on this, see e.g. Haldane and Alessandri (2009) and Miles, Yang, and Marcheggiano (2012).
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by a technical condition and this model parameters are the 2000 Q1 - 2011 Q4

sample estimates. We do not know specifically which activities create their trading

alphas. For instance, many banks have profitable market making of which return

on capital can be high14, and during our sample time period many banks placed a

lot of assets that looked as a banking book-type into the trading book (e.g. CDO

tranches), possibly to take advantage of trading book’s lower capital requirements.

Further, many high trading alpha banks have high trading volatilities and, by the

concavity of the value function (Lemma II.2), this model bank might prefer not to

invest in the trading. To understand better the effect of different model parameters,

in Subsections 2.5.6 and 2.5.7 we analyze the model behavior with respect to wide

ranges of parameter values. For instance, we show in Subsection 2.5.7 that the

Volcker rule can raise the default probability of a bank even under a small trading

alpha. In the next subsection we explain the parameter estimation.

2.3.2 Model Parameters

For bank sizeRWt we use the total risk-weighted assets. This is consistent with the

Basel capital requirements since they are calculated by using the risk-weighted assets

(Basel Commitee on Banking Supervision 1996a,b,c), so they are not directly based

on market or accounting equity values. The risk-weighted assets help implementation

of the minimum capital level with a simple modification: In this section, capital ratio

(2.7a) is the banks’ tier 1 capital ratio15 (the ratio of tier 1 capital to the total risk-

weighted assets) in excess of a minimum capital level of 8%. We use 8% because it

is close to the minimum mean buffer capital value of our sample banks.16

14For instance, Morgan Stanley posted net trading gains every day during the second quarter of 2007 and Goldman
Sachs had only 11 losing days in their trading between April 2009 and April 2010 (see e.g. Bloomberg, May 13th
2010, “Rigged-Market Theory Scores a Perfect Quarter” by Jonathan Weil).

15Tier 1 capital is the core measure of a bank’s financial strength from a regulator’s point of view. It equals
shareholders’ equity plus minority interests minus portion of perpetual preferred stock and goodwill.

16Note that the minimum Basel II capital ratio is 8%, which is close to our minimum level. The U.S. did not fully
implement Basel II (see e.g. Verdier (2012)).
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Further, as in Peura and Keppo (2006), we use a common estimate for the wedge

between debt and equity finance for all the banks and set δ = 4%. Subsections

2.5.6 and 2.5.7 analyze the impact of these assumptions on the banks’ equity value,

dividend policy, and default probability.

The total risk-weighted assets are the sum of banking risk-weighted assets RWABt

and trading risk-weighted assets RWATt:

RWt = RWABt +RWATt.
17

Although the banking proportion ζ is optimized in this model, we estimate it as the

average of the time series for the ratio of the banking assets to the total assets i.e.

{RWABt/RWt}, which is ζd in Table 2.1. This assumption modifies the constraint

on the wedge δ given in Section 2.1 to δ > ζdαB + (1− ζd)αT .18 Further, note that ζ

is constant in this model, i.e., the banking asset size is a long term strategic decision

and, therefore, the observed ζd in Table 2.1 is not the same as the current optimal

ζ. As an example, if we set ζI = 75%, which is close to the minimum ζd in Table

2.1 (JPM), then the model’s optimal allocation in the banking business is given by

Table 2.1 (columns under ζ). Thus, according to this model, in this case the equity

value of six banks (ABVA, BAC, JPM, STI, TMP, and WFC; so, all the big banks

are in this group) would rise if the size of their trading units was decreased since

all these banks have optimal banking proportion higher than their current banking

proportion (under both the estimated parameters and the significant ones). This is

because all these banks have either a statistically significant negative trading alpha

or a statistically significant positive correlation between the trading and banking

17Risk-weighted banking assets RWABt and trading assets RWATt are assumed as: RWATt = RWt ·
trading-related assets

total assets
, and RWABt = RWt − RWABt where trading-related assets include (a) trading account secu-

rities and (b) federal funds sold, securities purchased under agreements to resell.
18 In Table 2.1, diamond symbol (♦) indicates trading alpha values which violate the δ-condition, i.e., which do

not satisfy αT < (δ − ζαB)/(1− ζ). These estimates are set to αT = (δ − ζαB)/(1− ζ)− ε where ε = 10−4 in our
analysis.
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cash flows, or the trading alpha and the correlation are insignificant and therefore

almost zero. That is, they have unprofitable trading or they do not hedge, or both

the trading and the hedging are not effective enough. Further, the equity value of

only four banks (CBSH, FHN, MTB, and STT) would rise under both the estimated

parameters and the significant ones if the trading books were increased. As we will

see in Table 2.2, because of this trading value, the default probability of the four

banks rises due to the Volcker rule.

All these four banks have significantly positive trading alphas. Thus, given all

the data in Table 2.1, it is not obvious that trading is vital for our sample banks.

However, note that here we simply assume that the banking business could keep its

profitability when it is expanded, which may not be the case. To avoid this problem,

in the next section we assume that if the trading is decreased then that money is

invested in a risk-free asset, not in the banking business. That is, the method of the

next section represents a more positive trading effect because the banking business

generates a positive alpha. Our model’s correct trading effect estimate is somewhere

between these two estimates.

Similarly as with the assets, total net comprehensive income NIt over period

(t− 1, t] is the sum of banking net income NIBt and trading net income NITt over

the same period:

NIt = NIBt +NITt
19.

However, to get trading net income (NITt) from the trading revenues we subtract

50% for compensation and infrastructure costs from all (positive) gains.20 This

19Some banks (e.g. Bank of America) define trading-related assets as the sum of: (i) trading account assets; (ii)
reverse purchases; (iii) securities borrowed; and (iv) derivative assets. We modify this definition of trading-related
assets according to the availability of data in Compustat as the sum of (a) trading account securities and (b) federal
funds sold, securities purchased under agreements to resell, and trading revenues as the sum of gain/loss on (a)
and interest income on (b) minus interest expense on federal funds purchased and securities sold under repurchase
agreements.

20I.e., NIT = max(0.5 · trading revenues, 0) + min(trading revenues, 0), and NIB = net comprehensive income
(including minority interests) - NIT.
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is consistent with the compensation at several leading banks.21 We analyze the

effect of this assumption in Subsections 2.5.6 and 2.5.7 by varying the trading alpha

parameter.

We define banking return on assets, ROBt, and trading return on assets, ROTt,

over period (t− 1, t] as follows

ROBt =
NIBt

RWABt−1

, ROTt =
NITt

RWATt−1

.

In other words, the returns are computed by dividing the net income of year t by

the corresponding assets in the previous year (t − 1). Volatilities σB and σT are

estimated as the annualized standard deviations of the time series {ROBt} and

{ROTt}, respectively. Parameter ρBT is the correlation between the time series.

Volatilities and correlations are in Table 2.1. Most of the volatilities are less than

5%, but there are three banks with over 50% annual trading volatility (ABVA, STT,

and WTFC). None of these high trading volatility banks are big banks. Seven out

of twelve banks have negative correlation between the banking and trading earnings.

However, only one of the correlations are statistically significant and there are two

other banks in Table 2.1 with significant positive correlations between the earnings.

This implies that the hedging story is weak. Further, both big and small banks have

positive and negative correlations.

Risk-adjusted excess trading return αT is estimated by Capital Asset Pricing

Model:

ROTt −Rf = αT + βT (RM −Rf ) + ε,

where βT is the trading beta coefficient, Rf is the quarterly 3-month treasury yield,

RM is the quarterly S&P 500 index return, and ε is a residual term. Table 2.1 gives

21See e.g. Boston.com, January 22nd 2010, “Goldman earns record $4.79B in Q4, cuts bonus pool” by Stevenson
Jacobs,
http://articles.boston.com/2010-01-22/business/29306629_1_proprietary-trading-bank-financial-crisis
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the trading beta and alpha estimates. Nine banks have positive beta estimates and

three of the estimates are statistically significant.22 Eight banks have positive trading

alphas and four of them are statistically significant. On the other hand, there are

also two banks with statistically significant negative trading alphas. Both of these

negative trading alpha banks are big banks. Clearly, all of our sample banks do not

benefit from the trading. Some of the alphas and betas are high, indicating that

some of the banks have lucrative activities (e.g. market making) and/or they use

leverage and/or derivative instruments. As explained in Table 2.1, the alphas are

bounded above by a technical condition (see footnote 18). In Subsections 2.5.6 and

2.5.7 we analyze the model behavior with respect to wide ranges of parameter values.

For instance, we show in Subsection 2.5.7 that the Volcker rule can raise the default

probability of a bank even under a small trading alpha.

When using the same method in estimating the banking alphas as we did with the

trading alphas, we find that all the banking alphas are negative over the time period

2000 Q1 – 2011 Q4. This is not due to the recent global financial crisis because these

estimates are similar for the 2000 Q1 – 2007 Q1 period. Note that if a bank’s forward

looking long-term banking alpha is negative then the bank should be liquidated,

unless banking has other purposes (such as collecting free government support that

can be utilized e.g. in trading; we do not model this) or a bank brings earnings

through recapitalization (we do not model this here but will model this in Chapter

III). Since we do not observe voluntary liquidations in our sample, we assume that

the forward looking alphas are non-negative. More specifically, we assume that all

the banks have the same strictly positive banking alpha. We find the forward looking

banking alpha by fitting the model equity value to the realized market equity value

22Note that we do not need the beta estimates since the expectation in (2.5) is under the risk-neutral probability.
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in the asset-weighted least squares sense and obtain αB = 0.38%. We analyze the

effect of this assumption on bank value, dividend policy, and default probability in

Section 2.5.

2.3.3 Cross-sectional Test and Comparative Statics

In Figure 2.1 we show that this model with the significant parameters explains

about 32% of the cross-sectional variation in the banks’ buffer capital ratios. Fur-

ther, the slope of the regression model is significant, indicating significant linear

relationship between the model and actual buffer capital levels. This is consistent

with Peura and Keppo (2006) who analyze a simpler model but a larger set of banks.

Thus, due to our small sample, Figure 2.1 just confirms the finding in that paper.

The model with the estimated parameters has a lower explanatory power.

Subsection 2.5.6 gives the comparative statics of the model under the median

model parameters. More specifically, figures in Subsection 2.5.6 analyze how the

value function (2.7d) and dividend barrier u change with respect to banking propor-

tion ζ, banking volatility σB, trading volatility σT , correlation between the banking

and trading earnings ρBT , banking alpha αB, trading alpha αT , risk-free rate r, and

wedge between debt and equity finance δ.

With these parameter values, the banking business has a higher risk adjusted

excess return than the trading business has and, therefore, the bank value rises in

the banking proportion (see Figure (2.3.1)). By the lower banking volatility, when

banking proportion rises then the earnings risk falls and, therefore, there is less

need for the hedging of future losses and the dividend barrier falls in the banking

proportion (see Figure (2.3.2)). The effect of banking and trading volatilities can be

explained in a similar way, because both of these volatilities increase the earnings

volatility. Since, by Lemma II.2, the value function is concave, the higher the earnings
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volatility the lower the value function (see Figures (2.3.3) and (2.3.5)). Further, the

higher the volatility the more the bank has to hedge its future losses and, thus, the

higher the dividend barrier (see Figures (2.3.4) and (2.3.6)). The earnings volatility

is the main driver of the dividend barrier: By Table 2.2, the earnings volatility and

dividend barrier have a correlation of 1.00 under the estimated parameters and 0.91

under the significant parameters (this is consistent with Peura and Keppo 2006).

Thus, our dividend policy is driven by risk management considerations.

The effect of correlation between the banking and trading cash flows is as expected

(see Figures (2.3.7) and (2.3.8)). The lower the correlation (and the more negative

it is), the higher the value function because then the hedging of banking cash flows

is more effective. Thus, in this case the earnings volatility falls and, by Lemma II.2,

the value function rises. To understand the effect of correlation on dividend policy,

we first note that we have two hedging methods for the banking cash flows. The

first is through trading and it requires negative correlation between the banking and

trading cash flows. The second is hedging with buffer capital and this is a substitute

for the first method. That is, if the bank is not able to hedge the banking cash flows

by trading then it raises its buffer capital so that it has more cushion for the future

losses. The buffer capital is increased by raising the dividend barrier and, therefore,

the dividend barrier rises in the correlation.

As expected, the value function is an increasing function of the banking and

trading alphas (see Figures (2.3.9) and (2.3.11)). However, the effect of the alphas

on the dividend barrier is not that straightforward (see Figures (2.3.10) and (2.3.12)).

This is because the alphas change the shape of the value function (see Figures (2.3.13)

and (2.3.14)): The lower the alphas, the more linear the value function. When alphas

rise then the value function becomes more concave and, thus, the bank becomes
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more risk averse. This creates the need to hedge more and the dividend barrier

rises. However, when alphas are increased even more then their effect on increasing

earnings dominates and this decreases the need for hedging and the dividend barrier

falls.

The risk-free rate has both positive and negative effects on the equity value. First,

by (2.7a), the expected capital ratio rises in the risk-free rate and this increases the

equity value (relative to the assets). Second, by (2.7c), the discount rate increases

in the risk-free rate and this lowers the equity value. Figure (2.3.15) shows that,

similarly as with regular call options (rho of the call), the positive effect is stronger

and, thus, the equity value rises. The dividend barrier falls in the risk-free rate

(see Figure (2.3.16)), because then buffer capital increases faster and discounting is

stronger. When buffer capital rises then there is less need for hedging (so, u indeed

falls), and when there is more discounting then the value of future dividends decrease

and, thus, it is better to pay dividends sooner (u falls). The effect of the wedge

between debt and equity finance can be explained in a similar way. However, the

wedge affects only the discounting, not the buffer capital dynamics. Thus, by (2.7b),

the wedge has only the negative value effect of the risk-free rate and, therefore, the

value falls (see Figure (2.3.17)). Further, when the wedge rises the company prefers

to pay dividends earlier and, hence, the dividend barrier falls (see Figure (2.3.18)).
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2.4 Volcker rule

By using a sensitivity analysis with the estimated model parameters, we next

study our sample banks’ trading and estimate the impact of the Volcker rule. In

this we utilize Corollary II.5, i.e., if αT and ρBT are zero then it is optimal for the

bank not to trade. More specifically, we measure the value of each bank under four

different cases:

(i) Bank equity value without the Volcker rule: Value with the estimated param-

eter values and with only the statistically significant estimates in Table 2.1. That is,

we calculate two bank equity values for this case. In the first, αT and ρBT are equal

to their estimated values, and in the second, each parameter equals its estimated

value if the estimate is statistically significant at 5% significance level and otherwise

the parameter is zero. Note that, by Table 2.1, αT and ρBT are the only parameters

in Proposition II.3 that could be zero.

(ii) Bank equity value without trading alpha bets: Value with αT = 0, i.e., there

is no trading due to the excess return and, thus, by Proposition II.3 in this case the

banks trade only for hedging. As in (i), we calculate the bank equity values with all

the ρBT -estimates and also with only the significant correlations (the insignificant

correlations are set to zero).

(iii) Bank equity value without hedging: Value with ρBT = 0, i.e., there is no

correlation between the trading and banking returns, and, therefore, the banks trade

only for the excess return, not for hedging. As in (i), we calculate the bank eq-

uity values with all the αT -estimates and also with only the significant alphas (the

insignificant alphas are set to zero).

(iv) Bank equity without trading: Value with αT = 0 and ρBT = 0, i.e., by

26



Corollary II.5 the banks do not trade at all.

In these cases we assume that only αT and ρBT change and all the other model

parameters are constant. Thus, for instance, we assume here that ζ is constant, i.e.,

the size of the banking book is independent of αT and ρBT . Further, in this section

we assume that if the trading is decreased then that money is invested in the risk-free

asset, not in the banking business. Comparing with the effect of optimal banking

fraction discussed in Subsection 2.3.2, the method of this section might give a more

positive trading effect because in our model the banking business generates a positive

alpha, although it is also risky.

The model estimated equity values under the four cases (i) − (iv) are in Table

2.2. The est. column is the bank equity with the estimated αT and ρBT parameter

values in Table 2.1 and the sig. column is with the significant parameters at 5%

significance level (non-significant αT and ρBT parameters are set to zero). We also

report percentage changes from the initial equity value (i) to each of the other equity

values (ii) − (iv), and calculate these changes with the estimated parameter values

and the significant parameters separately. These changes correspond to the value

impacts of the alpha bets, hedging, and trading overall. The difference between the

original bank equity value (i) and case (ii) gives the value change due to the alpha

bets. Similarly, the difference between (i) and (iii) is the equity value impact of

the hedging, and the difference between (i) and (iv) is the total equity value change

of trading. Depending on the implementation of the Volcker rule, the differences

between (i) and (ii) and between (i) and (iv) give the equity value decrease due

to the rule. Therefore, by Table 2.2, Volcker rule decreases on average bank equity

value between 14% (only significant parameters) and 20% (estimated parameters),

and thus about 17% is our estimate. The effect of banning alpha bets is about the
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same as banning all trading. Thus, the impact of hedging is on average about zero.

Further, as in Subsection 2.3.2, the Volcker rule penalizes big banks (BAC, JPM,

and WFC) less than typical banks in our sample due to the big banks’ unprofitable

trading (BAC and JPM, see Table 2.1) or lack of hedging (WFC).

As discussed earlier, in addition to the value changes in Table 2.2, the Volcker

rule might create significant compliance costs and we do not consider those in our

model.

2.4.1 Loan Prices

In this subsection we estimate how much banks should raise their loan rates to

compensate for the value decrease due to the Volcker rule. Since the rule prevents

banks from collecting trading alpha (or at least makes that harder and costly), banks

might focus more on the basic banking business. Therefore, we expect more inno-

vative banking products such as mortgages with insurances for real-estate risk (see

e.g. Fabozzi, Shiller, and Tunaru 2010). These products would allow banks to collect

higher fees and this way to increase their banking alphas.

We first estimate how much the banks should raise their banking alphas to com-

pensate the value decrease of the Volcker rule. After that we calculate the corre-

sponding increases in the loan rates that would give the new banking alphas if all

the other model parameters were fixed.23 Thus, this is a simple comparative statics

of the model. The increases in the loan rates can be viewed as a measure for new in-

novation and/or cost cutting that the banks need to do to justify the higher banking

alphas.

More specifically, we consider three scenarios (the first and the last are for the

23For instance, we saw this kind of behavior when the U.S. Congress limited the penalties on late payments of
credit cards. After the limitation credit card companies started collecting more fees from those people with sterling
credit (see e.g. New York Times, May 18th 2009, “Credit Card Industry Aims to Profit From Sterling Payers” by
Andrew Martin).
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Volcker rule). In the first, we assume that the Volcker rule allows hedging but not

the alpha bets. In this case we compare cases (i) and (ii), and find a new banking

alpha for case (ii) such that the bank equity value in (ii) equals the equity value in

(i). In the second case, hedging is prevented but not the alpha bets. In this case we

compare (i) and (iii) and estimate a new banking alpha for (iii) that produces the

same equity value as in (i). In the last case, we assume that the Volcker rule prevents

all trading (hedging and the alpha bets). Thus, in this case we compare (i) and (iv),

and calculate a new banking alpha in the same sense as with the other cases. The

new banking alphas are reported in Table 2.2. On average, the alpha bets would raise

the banking alpha by about 26 basis points (BPS) with the estimated parameters and

22 BPS with the significant parameters, the hedging by 1 BPS with the estimated

parameters and 0 BPS with the significant parameters, and total trading by about

26 BPS with the estimated parameters and 22 BPS with the significant parameters.

For the Volcker rule effect, we use the impact from the alpha bets and total trading.

Thus, by our comparative statics, banks should increase their banking alphas by

about 24 BPS to keep their equity value the same as before the rule. Big banks do

not need to raise their banking alphas because they are penalized the least by the

rule. As mentioned before, to get the higher banking alphas, banks need to create

new products and/or to improve their efficiency.

After we have the new banking alphas, we estimate the corresponding bank loan

margin changes. For this we analyze banking net income and assume here that

each bank’s NIBt equals the loan margin after default losses times the banking

assets, i.e., NIBt = mRWABt−1, where m is the loan margin and RWABt−1 is the

the banking assets at time t − 1. Thus, return on the banking assets is given by

NIBt/RWABt−1 = m. On the other hand, if we use the same return model as with
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the trading assets in subsection 2.3.2 then we have

NIBt

RWABt−1

= Rf + αB + β(RM −Rf ) + ε,

where β is the beta of the banking assets and we assume it is independent of αB.

Combining the two representations for banking asset returns, we get m = Rf +αB +

β(RM − Rf ) + ε, which gives ∆m = ∆αB. That is, the change in the loan margin

equals the banking alpha change. Thus, by Table 2.2, if the Volcker rule prevents

banks from trading or just from taking alpha bets then the banks should raise their

loan margins between zero and 1.62% (on average 24 BPS) to compensate the value

decreases from the Volcker rule. We expect that big banks have least pressure to

increase their loan margins; by our comparative statics, they do not need to raise the

loan rates at all (but many banks have to decrease their trading operations). Thus,

the effect of the Volcker rule on the loan margins is quite small. This is because,

based on our model and data, banks do not benefit much from the trading and most

of the banks’ assets are in the basic banking business. Therefore, a small increase in

the loan margins compensates the value fall due to the rule.

2.4.2 Default Probabilities

By (2.5), banks maximize their equity value, they do not necessary minimize their

default probability. Because banking regulators are in the business of minimizing the

default probability, banks and their regulators might have conflicting interests. For

instance, in 2008 during the recent financial crisis 21 large banks in the U.S. and

Europe paid total over $400 billion dividends which represents around one-third of

their 2007 market capitalization of $1.3 trillion (Acharya, Shin, and Gujral 2009).

The dividends lowered the banks’ capital and, therefore, their default probability

increased.
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In our model, a new regulation (or similarly a new portfolio constraint) cannot

increase the banks’ value because the rule sets constraints on their behavior. On the

other hand, regulation changes can increase or decrease the banks’ default proba-

bility. Unfortunately, it is not obvious what the effect on the default probability is

since banks react to regulation and this can cause positive and negative effects. This

is also the case with the Volcker rule.

If trading is profitable then ban on trading lowers the expected earnings and this

way also the expected buffer capital level. If also hedging is prevented then earnings

risk might increase. Both these effects may increase the default probability. On the

other hand, there is also a positive effect: Since Volcker rule prevents trading and, by

Table 2.1, trading earnings have a higher volatility than banking earnings have, the

total earnings volatility and this way also the default probability might fall. Thus,

the total effect on the default probability depends on the magnitude of the negative

and positive effects.24 Table 2.2 gives the effect of Volcker rule on the banks’ default

probability over 100 years, expected annual earnings, and earnings volatility. The

default probabilities are estimated by Monte Carlo simulation with 10,000 paths. By

Table 2.2, the change of the default probability from case (i) (i.e. without the Volcker

rule) to cases (ii)− (iv) (ban on alpha bets, hedging, and all trading; both estimated

and significant parameters) has correlation of -0.77 with the corresponding expected

earnings change and 0.05 with the corresponding earnings volatility change. Thus,

the expected earnings seem to drive the default probability as its correlation has a

higher absolute value.25 This implies that the best way to hedge default risk is to

run a profitable business. Note that, by Table 2.1, the Volcker rule prevents several

24Keppo et al. (2010) consider banks’ market risk requirement and, according to their model, the requirement has
similar effects on the default probability as the Volcker rule.

25Default probability does not necessarily increase in earnings volatility. By Figures (3.4.4) and (3.4.6) in Subsection
2.5.6, the dividend barrier rises in the volatility. Therefore, a low earnings volatility also means a low buffer capital
which could increase the default probability.
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banks to run their most profitable business.

The effect of Volcker rule on the default probability can be analyzed by comparing

the default probability in case (i) (without the rule) with cases (ii) (ban on alpha

bets) and (iv) (ban on all the trading). On average the Volcker rule increases the

default probability between 0.7% (with the estimated parameters) and 1.5% (with the

significant parameters) if only alpha bets are prevented, and between 0.8% (with the

estimated parameters) and 1.6% (with the significant parameters) if all the trading

is prevented. Thus, if the banks behave optimally according to our model then the

negative default effects of trading alpha and hedging are stronger than the positive

effect of a lower earnings volatility. As a result, the default probability of the banks

for the next 100 years increases on average by about half (from 2.3% to 3.4%). This

effect is mainly driven by four banks (CBSH, FHN, MTB, and STT). Their default

probabilities rise due to the Volcker rule under all cases (estimated parameters /

significant ones, ban on alpha bets / ban on all trading), and in this sense their

effect is robust. By Table 2.1, all the four banks have statistically significant positive

trading alphas and their value would rise if their trading operations were expanded.

Therefore, when trading is prevented, their expected profits fall (see column E(∆X)

in Table 2.2) and this lowers the buffer capital of the four banks, which raises the

default probability.

We analyze the robustness of these findings in Subsection 2.5.7 by using the

estimated parameters of FHN and MTB banks in Table 2.1. By Table 2.2, the

default probabilities of FHN and MTB both rise due to the Volcker rule. Within

the range of parameter values in the figures of Subsection 2.5.7, FHN has a higher

default probability under the Volcker rule as long as its trading alpha is positive and

banking volatility is higher than 0.1%. These two parameter scenarios indicate that
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the rule raises FHN’s default probability as long as the bank benefits from trading

relative to the banking business. Thus, the effect of Volcker rule on FHN’s default

probability is quite robust and it is not driven by the banks’ unusually high trading

alpha (it is enough that the alpha is positive). By Subsection 2.5.7, MTB’s default

probability rises due to the Volcker rule as long as the banking proportion is higher

than 98.5%, the correlation between trading and banking cash flows is lower than

0.4, trading volatility is lower than 2.4%, and trading alpha is over 2.2%. Thus,

similarly as with FHN, the parameter ranges for the correlation, trading volatility,

and the trading alpha imply that as long as there is enough trading value, the Volcker

rule raises the default probability. The parameter scenario of the banking book is

more complicated. By Figures (2.3.4) and (2.3.6) in Subsection 2.5.6, the dividend

barrier of case (ii) is lower than in case (i) due to the lower earnings volatility of case

(ii). When the banking proportion is higher than 98.5% then, by Figure (2.3.2) in

Subsection 2.5.6, the dividend barrier is even lower, raising the default probability

- especially in case (ii). This explains the rising default probability due to Volcker

rule when ζ > 98.5%.

We doubt the hedging story and its benefits. By Table 2.2, if the hedging is

prevented then the default probability falls by 0.08% (estimated parameters) and by

0.05% (significant parameters). This indicates that the banks do not focus on the

hedging of their default probability.
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2.5 Appendix for Chapter II

2.5.1 Model under the Objective Measure

Let us define the market return evolves as the following dynamics under the objective

measure P:

dM(t) = (r + λσM)M(t)dt+M(t)σMdW
P
M(t)

where W P
M(t) is a Wiener process under P, λ is market price of risk and it is constant.

We can write this process in terms of WM(t), which is a Wiener process under the

risk-neutral probability measure, as follows

dM(t) = M(t) [rdt+ σMdWM(t)] .

Thus, we have

WM(t) = λt+W P
M(t). (2.15)

Under the risk-neutral probability,

dEB(t) = RW (t)ζ(r + αB)dt+RW (t)ζσBdWB(t),

where WB(t) = ρBMWM(t) +
√

1− ρ2
BMW̃B(t), WM(t) and W̃B(t) are independent

Wiener processes, and ρBM is the correlation between them. By (2.15), WB(t) =

ρBMλt+ ρBMW
P
M(t) +

√
1− ρ2

BMW̃B(t) and this gives the following P-dynamics:

dEB(t) = RW (t)ζ(r + αB + σBλρBM)dt+RW (t)ζσBdW
P
B(t),

where W P
B(t) = ρBMW

P
M(t)+

√
1− ρ2

BMW̃B(t). The buffer capital ratio dynamics

(2.11a) can be written under P as follows

Xπ(t) = X(0) +

∫ t

0

[r + ζπαB + (1− ζπ)θπ(u)αT + ζπ]du

+

∫ t

0

λ[σBρBM + (1− ζπ)θπ(u)σTρTM ]du

+

∫ t

0

[ζπσBdW
P
B(u) + (1− ζπ)θπ(u)σTdW

P
T (u)]− Lπ(t).
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where the correlations are estimated by using ρBM = Corr
[

NIBt
RWABt

, ∆Mt

Mt

]
, ρTM =

Corr
[

NITt
RWATt

, ∆Mt

Mt

]
, and the market price of risk from λ =

(
E[∆M

M
]− r

)
/
√
V ar[∆M

M
]/∆t.

2.5.2 Optimal Trading Strategy

Unconstrained optimal trading strategy

Let θ̃(x) denote an unconstrained optimal trading strategy at buffer capital level

x obtained from (2.11b) by the first order condition i.e.

θ̃(x) = − ζσBρBT
(1− ζ)σT

− αT
(1− ζ)σ2

T

V ′(x)

V ′′(x)
. (2.16)

If αT = 0 then θ̃(x) = − ζσBρBT
(1−ζ)σT

and θ∗(x) = max{0,min(− ζσBρBT
(1−ζ)σT

, 1)}. Now

assume αT 6= 0.

Rearranging (2.16) we get

V ′′(x) = k1(θ̃(x))V ′(x) (2.17)

where k1(·) = − αT
(1−ζ)σ2

T (·)+ζσBρBT σT
.

Inserting (2.17) into (2.11b) and then differentiating w.r.t. x. we come to

δV ′(x) =
[
(1− ζ)2θ̃(x)σ2

T θ̃
′(x) + ζσBρBT (1− ζ)σT θ̃

′(x)
]
k1(θ̃(x))V ′(x)[

−1

2
σ2
θ(1− ζ)σ2

T θ̃
′(x)k1(θ̃(x)) + (1− ζ)αT θ̃

′(x)

]
V ′(x)

+

[
1

2
σ2
θk1(θ̃(x)) + (r + ζαB + (1− ζ)θ̃′(x)αT )

]
V ′′(x).

Replacing V ′′ by (2.17) into the above equation and solving for θ̃′(x) we get

θ̃′(x) =
δ − 1

2
σ2
θ̃
k2

1(θ̃(x))− µθ̃k1(θ̃(x))[
(1− ζ)2θ̃(x)σ2

T + ζσBρBT (1− ζ)σT

]
k1(θ̃(x)) +

[
σ2
θ̃
(1−ζ)σ2

T

2αT

]
k2

1(θ̃(x)) + (1− ζ)αT

(2.18)
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Initial Unconstrained Optimal Trading Weight θ̃(0)

θ̃(0) solves the following system of equations:

0 = 1
2
[ζ2σ2

B + (1− ζ)2θ̃(0)2σ2
T + 2ζσBρBT (1− ζ)θ̃(0)σT ]V ′′(0)

+[r + ζαB + (1− ζ)θ̃(0)αT ]V ′(0),

θ̃(0) = − ζσBρBT
(1−ζ)σT

− αT
(1−ζ)σ2

T

V ′(0)
V ′′(0)

.

The first equation is from (2.11a) and (2.11b), and the second equation is (2.16)

at x = 0.

The second equation is equivalent to:

V ′(0) = −(1− ζ)σ2
T θ̃(0) + ζσBσTρBT

αT
V ′′(0), (2.19)

if αT 6= 0. Substituting (2.19) into the first equation in the system and letting

θ̃0 = θ̃(0), we get

0 = −αT (1− ζ)2σ2
T θ̃

2
0 − 2(r + ζαB)(1− ζ)σ2

T θ̃0 − 2(r + ζαB)ζσBσTρBT + αT ζ
2σ2

B.

By the quadratic formula and using the fact that if ρBT < 0 and αT > 0 then θ̃0 > 0

since V ′(0)/V ′′(0) < 0, we get

θ̃0 =
(r + ζαB)σT −

√
(r + ζαB)2σ2

T + (αT ζσB)(−2(r + ζαB)σTρBT + αT ζσB)

−αT (1− ζ)σT
.

(2.20)

Constrained Optimal Trading Strategy θ∗(x)

By (2.18) and (2.20), we get
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θ̃(x) = θ̃0 +

∫ x

0

g(y)dy

where

g(y) =
δ − 1

2
σ2
θk1(θ̃(y))2 − µθk1(θ̃(y))

((1− ζ)2θ̃(y)σ2
T + ζσBρBT (1− ζ)σT )k1(θ(y))− 1

2
σ2
θ(1− ζ)σ2

Tk1(θ(y)) + (1− ζ)αT
.

Therefore, the constrained optimal trading strategy θ∗(x) = max{0,min(θ̃(x), 1)},

where

θ̃(x) =


θ̃0 +

∫ x
0
g(y)dy if αT 6= 0,

− ζσBρBT
(1−ζ)σT

if αT = 0.
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2.5.3 Model Parameters

Table 2.1: Sample Banks and Their Model Parameters over 2000 Q1-2011 Q4 .

Bank (Ticker) Risk-weighted Assets, m$ BC, % Vd, % ζd,% ζ,% σB ,% σT ,% ρBT αT ,% βT ,% u, %

(standard deviation) (standard deviation) est. sig. (standard error) (standard error) (standard error) est. sig.

ALLIANCE BANKSHARES 390 5.73 11.19 91.90 99.59 100.00 0.60 192.43 -0.43 615.81 ♦ -775.52 78.78 3.08

(ABVA) (50) (17.11) (0.18) (620.74) (1851.08)

BANK OF AMERICA 874,187 0.94 15.82 90.98 100.00 100.00 0.42 1.48 -0.24 -1.50 ∗∗ 4.92 ∗∗ 1.83 1.83

(BAC) (486,145) (2.22) (0.14) (0.47) (1.67)

COMMERCE BANCSHARES 13,011 4.23 23.05 99.88 97.05 75.00 0.14 12.47 -0.47 ∗∗ 55.36 ∗∗ 25.49 0.27 0.27

(CBSH) (632) (0.12) (0.12) (6.12) (21.75)

FIRST HORIZON 22,559 2.73 17.20 95.91 91.92 75.00 0.58 5.99 -0.08 21.02 ∗∗ 5.85 1.70 1.79

(FHN) (5,652) (2.64) (0.14) (2.26) (7.97)

HEARTLAND FINANCIAL 2,132 2.00 14.72 99.96 99.68 100.00 0.18 29.81 0.05 1.86 110.92 ∗∗ 0.53 0.53

(HTLF) (644) (0.05) (0.15) (10.62) (36.34)

JPMORGAN CHASE 827,965 1.37 14.83 74.17 100.00 100.00 0.26 0.76 -0.23 -1.23 ∗∗ 2.41 ∗∗ 0.72 0.72

(JPM) (319,811) (9.72) (0.14) (0.24) (0.84)

M & T BANK 46,239 0.09 19.89 99.54 83.75 83.75 0.17 1.89 0.31 ∗ 2.94 ∗∗ 3.85 0.49 0.49

(MTB) (14,500) (0.84) (0.13) (0.56) (1.98)

STATE STREET 53,943 6.80 35.27 99.27 98.77 98.53 0.95 63.35 0.17 264.73 ∗∗,♦ 68.80 3.56 3.21

(STT) (13,739) (1.33) (0.17) (88.86) (312.78)

SUNTRUST BANKS 133,965 0.81 13.88 97.16 100.00 100.00 0.36 1.88 0.23 -0.55 1.31 1.54 1.54

(STI) (26,138) (4.27) (0.14) (0.57) (2.02)

TOMPKINS FINANCIAL 1,472 3.94 25.11 98.63 100.00 100.00 0.14 1.28 -0.16 -1.18 -0.66 0.32 0.32

(TMP) (427) (1.56) (0.22) (0.76) (2.25)

WELLS FARGO 526,377 1.18 19.89 97.34 100.00 100.00 0.31 2.37 0.70 ∗∗ 0.34 3.98 1.53 1.24

(WFC) (333,883) (2.62) (0.09) (0.75) (2.63)

WINTRUST FINANCIAL 6,252 1.63 12.45 99.92 99.65 99.95 0.15 111.98 -0.28 467.18 -1323.96 0.23 0.37

(WTFC) (3,193) (0.17) (0.15) (231.90) (791.79)

Risk-weighted assets column is the average total risk-weighted asset size during the period in terms of million USD. BC denotes the mean buffer capital ratio. Vd is the average

market capitalization during the time period divided by the average risk-weighted asset during the time period (subscript d is for data, distincting from the model estimated

value). Parameter ζd is the time-series average of the ratio of banking assets to total assets, and ζ is the corresponding model optimal ratio (the lower bound ζI is 75%). The

column under est. is calculated with the trading alphas and correlations equal to their estimated values (the estimates are in this same table) while the column under sig. is

calculated with only the statistically significant trading alphas and correlations (the non-significant trading alphas and correlations are zero). Each bank’s estimated σB and

σT are the time-series annualized standard deviation of the banking and trading returns, and ρBT is the correlation between the banking and trading returns. One asterisk (∗)

indicates the significance level of 5%, and two (∗∗) indicates 1%. Each bank’s αT and βT are the bank’s trading alpha (excess return) and trading beta coefficient. Diamond

symbol (♦) indicates the trading alpha values which violate the δ-condition in Subsection 2.3.2 (footnote 18), i.e., which have αT ≥ (δ − ζαB)/(1− ζ). We set these estimates

equal to αT = (δ − ζαB)/(1 − ζ) − ε where ε = 10−4. Therefore, we use the trading alpha value of 20.36% for ABVA and 222.72% for STT. u denotes the model estimated

dividend barrier. We find the forward looking banking alpha by fitting the model equity value to the realized market equity value in the asset-weighted least squares sense and

obtain αB = 0.38% (αB is the model implied value and it is the same for all the banks).
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2.5.4 Volcker Rule

Table 2.2: Effects of trading. (i) Base case is with the estimated parameters; (ii) is the case with trading alpha αT = 0; case (iii) is with ρBT = 0, i.e., zero correlation
between the banking and trading earnings; case (iv) is with zero ρBT and αT . V is the model bank equity value in terms of the risk weighted assets. ∆V/V is the value change
relative to the base case value. αB is a (new) banking alpha that gives the same bank equity value as in the base case. ∆αB is the difference between the base case αB and
the new αB . DP denotes the default probability during the next 100 years (by Monte Carlo simulation with 10,000 paths and time discretization ∆t = 1/365 a year). E(∆X)
and Std(∆X) are the annualized average and standard deviation of ∆X, respectively. u denotes the model estimated dividend barrier. The columns under est. are calculated
with the trading alphas and correlations equal to their estimated values in Table 2.1 while the columns under sig. are calculated with only the statistically significant trading
alphas and correlations (the non-significant trading alphas and correlations are zero).

Bank Cases V , % ∆V/V,% DP,% E(∆X), % Std(∆X), % αB ,% ∆αB ,% u,%

est. sig. est. sig. est. sig. est. sig. est. sig. est. sig. est. sig. est. sig.

ABVA (i) Base case 27.50 20.11 14.17 5.12 1.07 0.35 8.88 0.55 0.38 0.38 78.78 3.08

(ii) αT = 0 20.52 20.11 -25.38 0.00 4.17 5.12 0.35 0.35 0.50 0.55 0.52 0.38 0.14 0.00 2.67 3.08

(iii) ρBT = 0 26.10 20.11 -5.09 0.00 14.07 5.12 1.07 0.35 8.86 0.55 0.48 0.38 0.10 0.00 79.27 3.08

(iv) αT , ρBT = 0 20.11 20.11 -26.87 0.00 5.12 5.12 0.35 0.35 0.55 0.55 0.53 0.38 0.15 0.00 3.08 3.08

BAC (i) Base case 16.26 16.26 3.16 3.16 0.35 0.35 0.38 0.38 0.38 0.38 1.83 1.83

(ii) αT = 0 16.38 16.26 0.71 0.00 2.77 3.16 0.35 0.35 0.37 0.38 0.38 0.38 0.00 0.00 1.75 1.83

(iii) ρBT = 0 16.26 16.26 0.00 0.00 3.16 3.16 0.35 0.35 0.38 0.38 0.38 0.38 0.00 0.00 1.83 1.83

(iv) αT , ρBT = 0 16.26 16.26 0.00 0.00 3.16 3.16 0.35 0.35 0.38 0.38 0.38 0.38 0.00 0.00 1.83 1.83

CBSH (i) Base case 26.28 26.28 0.06 0.06 0.45 0.45 0.13 0.13 0.38 0.38 0.27 0.27

(ii) αT = 0 22.91 22.91 -12.84 -12.84 0.12 0.12 0.38 0.38 0.13 0.13 0.45 0.45 0.07 0.07 0.30 0.30

(iii) ρBT = 0 26.26 26.26 -0.10 -0.10 0.06 0.06 0.45 0.45 0.14 0.14 0.38 0.38 0.00 0.00 0.29 0.29

(iv) αT , ρBT = 0 22.88 22.88 -12.94 -12.94 0.14 0.14 0.38 0.38 0.14 0.14 0.45 0.45 0.07 0.07 0.33 0.33

FHN (i) Base case 62.20 62.11 0.41 0.44 1.22 1.22 0.59 0.60 0.38 0.38 1.70 1.79

(ii) αT = 0 17.91 17.90 -71.21 -71.19 4.61 4.68 0.36 0.36 0.55 0.55 1.27 1.27 0.89 0.89 3.04 3.06

(iii) ρBT = 0 62.11 62.11 -0.15 0.00 0.44 0.44 1.22 1.22 0.60 0.60 0.38 0.38 0.00 0.00 1.79 1.79

(iv) αT , ρBT = 0 17.90 17.90 -71.23 -71.19 4.68 4.68 0.36 0.36 0.55 0.55 1.27 1.27 0.89 0.89 3.06 3.06

HTLF (i) Base case 20.49 20.46 0.29 0.27 0.38 0.38 0.18 0.18 0.38 0.38 0.53 0.53

(ii) αT = 0 20.46 20.46 -0.15 0.00 0.27 0.27 0.38 0.38 0.18 0.18 0.38 0.38 0.00 0.00 0.53 0.53

(iii) ρBT = 0 20.50 20.46 0.01 0.00 0.29 0.27 0.38 0.38 0.18 0.18 0.38 0.38 0.00 0.00 0.53 0.53

(iv) αT , ρBT = 0 20.46 20.46 -0.15 0.00 0.27 0.27 0.38 0.38 0.18 0.18 0.38 0.38 0.00 0.00 0.53 0.53
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Bank Cases V , % ∆V/V,% DP,% E(∆X), % Std(∆X), % αB ,% ∆αB ,% u,%

est. sig. est. sig. est. sig. est. sig. est. sig. est. sig. est. sig. est. sig.

JPM (i) Base case 14.75 14.75 0.68 0.68 0.28 0.28 0.20 0.20 0.38 0.38 0.72 0.72

(ii) αT = 0 14.78 14.75 0.22 0.00 0.79 0.68 0.28 0.28 0.19 0.20 0.38 0.38 0.00 0.00 0.69 0.72

(iii) ρBT = 0 14.75 14.75 0.00 0.00 0.68 0.68 0.28 0.28 0.20 0.20 0.38 0.38 0.00 0.00 0.72 0.72

(iv) αT , ρBT = 0 14.75 14.75 0.00 0.00 0.68 0.68 0.28 0.28 0.20 0.20 0.38 0.38 0.00 0.00 0.72 0.72

MTB (i) Base case 17.32 17.32 8.83 8.83 0.39 0.39 0.18 0.18 0.38 0.38 0.49 0.49

(ii) αT = 0 16.70 16.70 -3.56 -3.56 9.04 9.04 0.38 0.38 0.17 0.17 0.39 0.39 0.01 0.01 0.48 0.48

(iii) ρBT = 0 17.46 17.46 0.82 0.82 8.24 8.24 0.39 0.39 0.17 0.17 0.38 0.38 0.00 0.00 0.47 0.47

(iv) αT , ρBT = 0 16.70 16.70 -3.56 -3.56 9.04 9.04 0.38 0.38 0.17 0.17 0.39 0.39 0.01 0.01 0.48 0.48

STT (i) Base case 103.24 103.59 0.51 0.47 2.00 2.00 1.11 1.05 0.38 0.38 3.56 3.21

(ii) αT = 0 19.61 19.61 -81.01 -81.07 14.49 14.49 0.38 0.38 0.94 0.94 2.00 2.00 1.62 1.62 6.06 6.06

(iii) ρBT = 0 103.59 103.59 0.34 0.00 0.47 0.47 2.00 2.00 1.05 1.05 0.37 0.38 -0.01 0.00 3.21 3.21

(iv) αT , ρBT = 0 19.61 19.61 -81.01 -81.07 14.49 14.49 0.38 0.38 0.94 0.94 2.00 2.00 1.62 1.62 6.06 6.06

STI (i) Base case 17.63 17.63 2.13 2.13 0.37 0.37 0.35 0.35 0.38 0.38 1.54 1.54

(ii) αT = 0 17.63 17.63 0.00 0.00 2.13 2.13 0.37 0.37 0.35 0.35 0.38 0.38 0.00 0.00 1.54 1.54

(iii) ρBT = 0 17.63 17.63 0.00 0.00 2.13 2.13 0.37 0.37 0.35 0.35 0.38 0.38 0.00 0.00 1.54 1.54

(iv) αT , ρBT = 0 17.63 17.63 0.00 0.00 2.13 2.13 0.37 0.37 0.35 0.35 0.38 0.38 0.00 0.00 1.54 1.54

TMP (i) Base case 22.36 22.36 0.14 0.14 0.37 0.37 0.13 0.13 0.38 0.38 0.32 0.32

(ii) αT = 0 22.36 22.36 0.03 0.00 0.14 0.14 0.37 0.37 0.13 0.13 0.38 0.38 0.00 0.00 0.31 0.32

(iii) ρBT = 0 22.36 22.36 0.00 0.00 0.14 0.14 0.37 0.37 0.13 0.13 0.38 0.38 0.00 0.00 0.32 0.32

(iv) αT , ρBT = 0 22.36 22.36 0.00 0.00 0.14 0.14 0.37 0.37 0.13 0.13 0.38 0.38 0.00 0.00 0.32 0.32

WFC (i) Base case 18.58 18.43 1.43 1.09 0.38 0.37 0.35 0.30 0.38 0.38 1.53 1.24

(ii) αT = 0 18.43 18.43 -0.81 0.00 1.09 1.09 0.37 0.37 0.30 0.30 0.38 0.38 0.00 0.00 1.24 1.24

(iii) ρBT = 0 18.86 18.43 1.46 0.00 1.18 1.09 0.38 0.37 0.31 0.30 0.37 0.38 -0.01 0.00 1.26 1.24

(iv) αT , ρBT = 0 18.43 18.43 -0.81 0.00 1.09 1.09 0.37 0.37 0.30 0.30 0.38 0.38 0.00 0.00 1.24 1.24

WTFC (i) Base case 39.75 20.24 0.06 0.15 0.77 0.38 0.15 0.15 0.38 0.38 0.23 0.37

(ii) αT = 0 20.27 20.24 -49.01 0.00 0.17 0.15 0.38 0.38 0.14 0.15 0.77 0.38 0.39 0.00 0.35 0.37

(iii) ρBT = 0 39.68 20.24 -0.17 0.00 0.07 0.15 0.77 0.38 0.17 0.15 0.38 0.38 0.00 0.00 0.30 0.37

(iv) αT , ρBT = 0 20.24 20.24 -49.07 0.00 0.15 0.15 0.38 0.38 0.15 0.15 0.77 0.38 0.39 0.00 0.37 0.37
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2.5.5 Buffer Capital

In this subsection, we illustrate how our model explains cross-sectional variation

in the banks’ buffer capital ratios (equity capital ratios above the minimum capital

level) before the Volcker rule. Figure 2.1 represents the actual capital buffer ratio

against the model predicted capital level taken to be the dividend barrier u in Table

2.1. This plot uses banks’ mean capital buffer ratios over 2000 Q1 – 2011 Q4 as the

measure of the actual buffer ratios.
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Figure 2.1: Actual vs. model buffer capital ratios for the sample banks. This figure
shows mean buffer capital ratios (during 2000 Q1 – 2011 Q4) plotted against the corresponding
model dividend barriers. The filled triangles are with the trading alphas and correlations equal to
their estimated values while the empty squares are with the statistically significant trading alphas
and correlations (the non-significant trading alphas and correlations are zero). Linear regression
lines are drawn in the figure. The numbers in the parentheses are the standard deviations of
the parameters. Without the outlier (ABVA), the regression line for the estimated parameters is
y = 1.344 + 0.86x and R2 is 20%. Thus, then the regression line is close to the regression line of
the significant parameters.

41



2.5.6 Comparative Statics

Figure 2.2: Comparative Statics. We use the following median parameter values over all the
banks: ζ = 95%, r = 2%, δ = 2%, σB = 0.3%, σT = 4%, ρBT = −0.1, αB = 0.4%, αT = 0.4%,
δ = 2%, and x = 0.5%. Figures below show how the value function (2.7d) and dividend barrier u
change with respect to banking proportion ζ, banking volatility σB , trading volatility σT , correlation
between the banking and trading earnings ρBT , banking alpha αB , trading alpha αT , risk-free rate
r, and wedge between debt and equity finance δ.
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(2.3.1) Value function vs. banking proportion
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(2.3.2) Dividend barrier vs. banking proportion
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(2.3.3) Value function vs. banking volatility
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(2.3.4) Dividend barrier vs. banking volatility
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(2.3.5) Value function vs. trading volatility
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(2.3.6) Dividend barrier vs. trading volatility
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(2.3.8) Dividend barrier vs. correlation
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(2.3.9) Value function vs. banking alpha
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(2.3.10) Dividend barrier vs. banking alpha
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(2.3.11) Value function vs. trading alpha
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(2.3.12) Dividend barrier vs. trading alpha
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(2.3.13) Value function and dividend barrier vs. buffer
capital under three banking alphas: 0.05% (lowest), 0.1%
(middle), and 0.3% (highest). The dotted vertical lines are
dividend barriers. This explains (j).
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(2.3.14) Value function and dividend barrier vs. buffer
capital under three trading alphas: 0.05% (lowest), 0.5%
(middle), and 5% (highest). The dotted vertical lines are
dividend barriers. This figure explains (l).
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(2.3.15) Value function vs. adjusted risk-free rate
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(2.3.16) Dividend barrier vs. adjusted risk-free rate
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(2.3.17) Value function vs. wedge between debt and equity
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(2.3.18) Dividend barrier vs. wedge between debt and eq-
uity
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2.5.7 Default Probability

Figure 2.3: Default probability changes with varying model parameters for Bank FHN.
We analyze two banks (FHN and MTB) and how their default probability changes with respect
to model parameters. We consider two cases: Case (i) is without the Volcker rule and case (ii) is
under the Volcker rule (no alpha bets). The first bank is FHN and we use its estimated parameters
in Table 2.1. Figures below show how the default probability changes with respect to banking
proportion ζ, risk-free rate r, correlation between the banking and trading earnings ρBT , wedge
between debt and equity finance δ, banking volatility σB , trading volatility σT , banking alpha αB ,
and trading alpha αT .
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Figure 2.4: Default probability changes with varying model parameters for Bank MTB.
The second bank is MTB and we use its estimated parameters in Table 2.1. Figures below show how
the default probability changes with respect to banking proportion ζ, risk-free rate r, correlation
between the banking and trading earnings ρBT , wedge between debt and equity finance δ, banking
volatility σB , trading volatility σT , banking alpha αB , and trading alpha αT .
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CHAPTER III

A Stochastic Control Model with Recapitalization

3.1 Model

We introduce a new model which considers a bank’s recapitalization process.26

Similar to our model presented in Chapter II, the new model is based on Milne and

Robertson (1996) and Keppo et al. (2010). The main differences between the two

models are as follows:

• Assets dynamics:

– In Chapter 3.1, we model total assets instead of risk-weighted assets27 as

in Chapter 2.1. This has some advantages and disadvantages. One of the

advantages is that we have reliable quarterly data for total assets from the

Compustat database while the data of risk-weighted assets are not available

in the same database. In addition, the method of applying different weights

to different types of assets in computing risk-weighted assets is unclear and

complicated to model. One disadvantage against using total assets may be

that it is not as informative as the risk-weighted assets.

– Although the assumption in Chapter 2.1 that the risk-weighted assets grows

26A bank has a motivation to buy back their shares when their prices decline considerably below their own
estimation in the market to increase the bank’s per-share earnings. Buybacks are under regulation by the Federal
Reserve since they can lower their buffer capital (see e.g. Wall Street Journal “Fed Wary of Bank Stock Buybacks.”)

27See footnote 5.
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at risk-free rate has an advantage of making the model simple to implement

numerically28, it lacks evidence supported by banks’ data. It is well-known

that assets equals shareholders’ equity plus debt. If we assume that assets

grows at a fixed rate while equity evolves stochastically, then we inevitably

and unwillingly make the assumption that this debt evolves stochastically.

Therefore, it is realistic to model assets as a stochastic variable of which

movement is correlated with that of the equity. Thus, we model assets by

a geometric brownian motion that has a correlation with the dynamics of

the shareholders’ equity in Chapter 3.1.

• A bank’s sources of earnings:

– In Chapter 2, a bank may collect earnings from net comprehensive income

i.e. earnings from banking and trading business as well as from interests

income on bank capital re-invested at a risk-free rate. However, we removed

the assumption that a bank earns interests on the bank capital as in Chap-

ter 3.1, and we assume that the net income earnings are strictly divided

into earnings from bank’s investments in banking assets and earnings from

trading.

– In Chapter 3.1, we incorporate a bank’s recapitalization (issuing and buy-

ing a bank’s own stock) into our model while we did not in Chapter 2.1.

Therefore, in the new model, a bank may have earnings not only from net

comprehensive income but also from recapitalization. This can be justified

by Table 3.2 as the estimates of net comprehensive recapitalization return

are positive for most banks. We assume that earnings through recapitaliza-

28This assumption enables us to obtain the ODE for the value function outside dividends in (2.11b) of which
coefficients do not depend on x, which makes solutions easily attainable.
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tion is proportion to the size of the bank i.e. total assets.

Besides these differences, our model in Chapter 2.1 takes a similar approach with

the previous model to solve the same optimization problem for banks.

3.1.1 A Model of Bank Capital

The bank operates up to liquidation. The liquidation time is defined as the first time

when equity hits minimum capital level:

τ = inf{t|X̄(t) ≤ 0}, (3.1)

where τ is the liquidation time and X̄(t) is the accounting shareholders’ equity above

the minimum level K ·A(t), K is a fixed ratio, e.g., the minimum capital requirement

of Basel regulation (see e.g. Peura and Keppo 2006). We use a minimum capital

level in our model calibration and set K equal to the minimum equity capital ratio

in our dataset.

We assume that earnings from the banking book and the trading book are pro-

portional to bank assets A(t). Banking book equals a fixed proportion of the assets

and the rest of the assets are in the trading book. Thus, the bank dedicates a cer-

tain fixed proportion of its assets to the basic banking business. We also assume

that the bank’s interest payments on its debt are deducted from the banking book.

The trading book consists of a liquid risky asset investment and a risk-free invest-

ment. The bank trades the assets in the trading book continuously without any

frictions. More specifically, the cumulative earnings processes under the risk-neutral

probability measure (see e.g. Bjork 2009) are given by
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dEB(t) = [A(t)ζ(r + αB)dt+ A(t)ζσBdWB(t)]− r
[
A(t)− (X̄(t) +KA(t))

]
dt

= A(t) [ζ(r + αB)− r(1−K)] dt+ rX̄(t)dt+ A(t)ζσBdWB(t) (3.2)

dET (t) = A(t)(1− ζ)θ(t)(r + αT )dt+ A(t)(1− ζ)θ(t)σTdWT (t)

+A(t)(1− ζ)(1− θ(t))rdt

= A(t)(1− ζ)[r + θ(t)αT ]dt+ A(t)(1− ζ)θ(t)σTdWT (t), (3.3)

where EB(t) and ET (t) are the banking and trading book cumulative earnings at

time t, A(t) is the bank’s assets at time t, r is the risk-free rate, ζ is the constant

proportion of A(t) in the banking book and ζ ∈ [ζl, 1], ζl > 0 is the minimum size of

the banking book (so that the firm is still considered as a bank), θ(t) is the proportion

of the trading book invested in the liquid risky asset and θ(t) ∈ [0, 1] for all t ≥ 0,

αB and αT are banking book and trading book alphas, σB and σT are banking book

and trading book volatilities and σB, σT > 0, WB(t) and WT (t) are Wiener processes

under the risk-neutral probability measure corresponding to EB and ET and their

correlation is ρBT .

Net banking income equals net banking earnings before interest payments on

debt minus the interest payments. The net banking earnings before the interest

payments are represented by the first two terms in (3.2), and the interests payments

are represented by the last term. Thus, we assume that the bank pays risk-free rate

for its debt29 and its banking business can earn excess return αB. The parameter

αB corresponds to high loan margins and returns on the bank’s loan portfolio. Note

that αT in (3.3) implies that the banks might be able to generate trading alpha. This

29By Compustat data, our sample banks’ (introduced in Section 3) pay about risk-free interest rate on their debt:
The interest rate on their debt and 3-month treasury bill rate have a correlation of 0.9 between 2000 and 2011.
Further, the average interest rate in that period is about 2% which is about the 3-month treasury bill rate over the
same time period.
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excess return could be, for instance, from market making or it just reflects the bank

shareholders’ expectation for the future returns.

We define a Wiener process WE(t) under the risk-neutral probability measure and

volatility σθ(t) corresponding to the total earnings of the bank as follows

σθ(t)dWE(t) = ζσBdWB(t) + (1− ζ)θ(t)σTdWT (t)

where

σθ(t) =
√
ζ2σ2

B + 2ζσBρBT (1− ζ)θ(t)σT + (1− ζ)2θ(t)2σ2
T , (3.4)

and σθ(t) represents the volatility of the bank’s earnings. As we can see, the earnings

volatility depends on the asset quality: The more is invested in trading, the higher

the earnings volatility (typically, σT > σB). We assume the bank is able to control

θ(t) in continuous time. It can also choose ζ, but this parameter is constant. We do

not specify the trading and banking activities that create the alphas (excess returns

αB and αT ). In our model they are just alphas of the trading and banking books,

and in the model calibration we estimate the parameters from accounting and market

data.

By (3.2)-(3.4), the earnings of the bank follow

dE(t) = dEB(t)+dET (t) = A(t)

[
µθ − r(1−K) + r

X̄(t)

A(t)

]
dt+A(t)σθ(t)dWE(t)

(3.5)

where

µθ(t) = r + ζαB + (1− ζ)θ(t)αT . (3.6)

Drift term µθ(t) represents proportional net income before interest payments on the

bank’s debt. Thus, the earnings depend on the asset size, the earnings parameters,

and the bank’s trading. The earnings are added to X̄(t), i.e., to the bank’s equity

capital above the minimum level.
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We assume that the bank’s total assets follow a geometric Brownian motion given

by

A(t) = A(0)e(µA− 1
2
σ2
A)t+σAWA(t) (3.7)

for some initial positive amount A(0), where µA is the constant percentage drift, σA

is the constant percentage volatility and σA > 0, WA(t) is a standard Wiener process

under the risk-neutral probability measure, and the correlation between WA(t) and

WE(t) is ρAE.

The bank’s capital also changes due to equity issuances and stock buybacks. For

this we define net recapitalization as equity issuance minus stock buybacks. We

assume that the cumulative net recapitalization follows

dR(t) = A(t)[µRdt+ σRdWR(t)]. (3.8)

where σR > 0 and WR(t) is a Wiener process under Q and it has correlations:

dWR(t)dWA(t) = ρRAdt and dWR(t)dWE(t) = ρREdt. Thus, asset dynamics and net

recapitalization processes are correlated (parameter ρRA) because changes in equity

due to the net recapitalization also changes the asset size. Parameter ρRE is due to

the fact that earnings process might tricker recapitalization and stock repurchases.

As expected, in our data (see Table 3.2) we have ρRA > 0 and ρRE < 0 (both of them

are significant at 5% level), i.e., when there is recapitalization then the asset size rises

and when earnings are low, banks sell equity. Equation (3.8) differs from the model

in Keppo et al. (2010) who do not consider stock buybacks but only equity issuances

when bank capital level is low. Since the correlation between recapitalization and

equity level is insignificant, we do not use the model in Keppo et al. (2010) in the

present paper. Naturally, the net recapitalization depends on many factors such as

taxes, equity level, earnings, bond market prices, and market liquidity, and we do
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not model here. Instead we use directly (3.8) and fit the net recapitalization process

to our data.

In addition to banking book size and trading risk, the bank controls its bank

capital through dividend payments that can be implemented instantaneously without

any costs. Formally, a capital control policy π̄ is a collection (ζ π̄, {θπ̄(t), Lπ̄(t)}),

where ζ π̄ is the proportion of total assets in the banking book under policy π̄, θπ̄(t)

is the proportion of trading book in the risky liquid asset at time t, and Lπ̄(t) is the

cumulative amount of dividends at time t. We denote by Π the class of admissible

policies and they satisfy:

(i) ζ π̄ ∈ [ζl, 1], where ζl > 0, and ζ π̄ is constant during the lifetime of the bank

(ii) θπ̄(t) ∈ [0, 1] for all t ≥ 0 and it is adapted to Ft, where filtration {Ft} is

generated by the Wiener processes WA(t), WE(t), and WR(t).

(iii) Lπ̄t is a non-decreasing right-continuous process adapted to Ft and Lπ̄0− = 0.

Condition (i) indicates that the bank cannot change the proportion of the assets

in the banking book after it has selected that. Thus, the banking business is a long-

term investment with long-term commitments. By (ii), short selling is not allowed

and the bank cannot invest more than its trading book in the risky asset. Condition

(iii) says that dividends cannot be negative.

Bank capital as a function of policy π̄ is denoted by X̄ π̄(t) and, by (3.5) and (3.8),

it satisfies:

X̄ π̄(t) = X̄(0)−K(A(t)− A(0)) +

∫ t

0

dEπ̄(u) +

∫ t

0

dR(u)− Lπ̄(t)

= X̄(0)−K(A(t)− A(0)) +

∫ t

0

A(u)

[
µθ(t) − r(1−K) + r

X̄(t)

A(t)

]
du

+A(u)σθ(u)dWE(u) +

∫ t

0

A(u)[µRdu+ σRdWR(u)]− Lπ̄(t). (3.9)

The integral terms are the gains and losses from the trading and banking books and
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the changes of equity due to the net recapitalization. The last term is the cumulative

dividend process. Thus, cumulative profits and equity issuances feed to the capital,

while dividend payments, cumulative losses, and stock buybacks represent a leakage

from the capital.

By risk-neutral pricing, the market value of bank equity is the expected discounted

dividends until liquidation. Thus, the equity value under policy π̄ and initial account-

ing buffer capital x̄ is given by

V̄π̄(x̄) = E

[∫ τ̄π̄

0

e−(r+δ)tdLπ̄(t)|X̄(0) = x̄

]
, (3.10)

where E is expectation under the risk-neutral probability measure, δ is a positive

constant representing the wedge between debt and equity finance due to capital

market frictions such as taxation and agency costs of equity.30 The wedge satisfies

δ > max[αB, αT , µR−r], which gives V̄π̄(x̄) <∞. Thus, the wedge δ should be greater

than any of the returns from banking, trading, or net recapitalization in excess of

risk-free rate. The problem is to identify the value of an optimally managed bank:

V̄ (x̄) = sup
π̄∈Π

V̄π̄(x̄) (3.11)

and an admissible policy which achieves this value.

3.1.2 A Normalized Model of Bank Capital Ratio

The capital dynamics defined in (3.9) are not time-homogenous, which makes direct

solution of the problem (3.11) difficult. However, the problem of capital control can

be transformed into a time-homogenous problem of capital ratio control through a

simple normalization. The normalized state variable, the bank capital ratio is given

by

X(t) = X̄(t)/A(t). (3.12)
30Since our modeling framework is under the risk-neutral probability measure δ should not be interpreted as an

equity risk premium.
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From Peura and Keppo (2006) we get the following lemma that presents the capital

ratio control problem and shows its connection to the capital control problem (3.11).

Lemma III.1. (Capital control problem) Given an admissible policy π ∈ Π, the

capital ratio satisfies

Xπ(t) =X(0) +

∫ t

0

[
(µθπ(u) − r(1−K −Xπ(t))− σAσθ(u)ρAE)du+ σθπ(u)dWE(u)

]
+

∫ t

0

[(µR − σAρRAσR)du+ σRdWR(u)]− Lπ(t)

−
∫ t

0

[Xπ(u) +K][(µA − σ2
A)du+ σAdWA(u)]. (3.13a)

Define the liquidation time by

τπ = inf{t|Xπ(t) ≤ 0} (3.13b)

and the bank equity value as percentage of the total assets under policy π by

Vπ(X(0)) = EX(0)

[∫ τπ

0

e−(r+δ−µA+ 1
2
σ2
A)t+σAWA(t)dLπ(t)

]
, (3.13c)

where the expectation is conditional on the capital ratio dynamics (3.13a). The value

function:

V (x) = sup
π∈Π

Vπ(x). (3.13d)

Then (3.11) can be expressed in terms of (3.13d) as

V̄ (X̄(0)) = A(0)V (X(0)). (3.14)

Further, let π∗ be the policy which achieves the optimum in (3.13d). Then the optimal

policy of (3.11), π̄∗, can be expressed in terms of π∗ by

ζ π̄
∗

= ζπ
∗
, θπ̄

∗
(t) = θπ

∗
(t), and Lπ̄

∗
(t) =

∫ t

0

A(u)dLπ
∗
(u). (3.15)
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Hence, when π and π̄ are related through (3.15) then the capital ratio process

(3.13a) is the process of X̄ π̄(t)/A(t). The proof is based on Ito’s lemma and equations

(3.5) and (3.7). Equation (3.14) implies that the objective function of the capital

ratio control problem, (3.13d), can be interpreted as the market value of bank equity

as a percentage of the total assets.

From Højgaard and Taksar (2004) we get the following lemma.

Lemma III.2. (Concavity) The value function in (3.13d) is increasing and concave.
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3.2 Characterization of Optimum

We characterize the value function (3.13d) through a set of variational inequalities.

For this purpose we define the infinitesimal generator A corresponding to (3.13a) for

all sufficiently regular f as follows

Aθf(x) =
1

2

[
σ2
θ + σ2

R + 2σθσRρRE + (x+K)2σ2
A

]
f ′′(x)

−(x+K)σA(σRρRA + σθρAE)f ′′(x)

+[µθ − r + µR − (x+K)(µA − r)]f ′(x). (3.16)

Further, let us write the value function corresponding to banking proportion ζ ∈

[ζl, 1] as V ζ(x). That is, V ζ(x) is the expected discounted dividends in (3.13c) and

(3.13d) for given ζ.

Now we get the following proposition. The proof follows from standard arguments

(see e.g. Højgaard and Taksar 1999 or Fleming and Soner 2005).

Proposition III.3. (Value function) The value function corresponding to banking

book proportion ζ ∈ [ζl, 1] solves

LIQUIDATION: V ζ(0) = 0 (3.17a)

LIQUID ASSET INVESTMENT: max
θ∈[0,1]

(Aθ − λ)V ζ(x) = 0 for all x ∈ (0, u)

(3.17b)

DIVIDENDS:
∂V ζ(x)

∂x
= 1 for all x ≥ u (3.17c)

where λ = r−µA+ δ and the optimal trading strategy θ∗(x) = max
{

0,min[1, θ̂(x)]
}

,

where θ̂(x) solves:

θ̂(x) = − ζσBρ

(1− ζ)σT
− αT

(1− ζ)σ2
T

[
1 + (σRρRE − (x+K)ρAEσA)/σθ̂(x)

] ∂V ζ(x)
∂x

∂2V ζ(x)
∂x2

.

(3.18)
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For each buffer capital ratio x, one of the inequalities (3.17b) - (3.17c) is tight.

The numerical solution for (3.18) is given in Appendix 3.5.2. The optimal policy

can be understood as follows. Dividends are paid so as to never let the capital ratio

rise above u, and between the dividend payments the bank invests actively in the

risky financial asset. The optimal trading strategy solves max(Aθ − λ)V ζ(x) = 0.

Note that, by (3.16) and Lemma III.2, (Aθ − λ)V ζ(x) is concave with respect to

θ ∈ [0, 1] and, thus, the first order condition gives the optimal trading strategy

θ∗. The term − ζσBρ
(1−ζ)σT

in (3.18) is due to (partial) hedging of banking cash flows,

and − αT
(1−ζ)σ2

T [1+(σRρRE−(x+K)ρAEσA)/σθ̂(x)]
∂V ζ(x)
∂x

/∂
2V ζ(x)
∂x2 is from the alpha of the trading

strategy. The hedging term has its maximum value when the correlation equals −1,

and the alpha term is increasing in the alpha of the trading, αT . Note that hedging

increases value because, by Lemma III.2, the value function is concave and hedging

decreases volatility. The max and min functions in the equation for θ∗(x) are due to

the trading constraint.

Proposition III.3 follows from standard dynamic programming arguments applied

to the Bellman equation. By (3.17a), when the capital ratio hits zero the bank is

liquidated. The slope condition at the dividend barrier (3.17c) and the differen-

tial equation between the dividend times (3.17b) hold since paying dividends and

trading are always admissible. We note that the smooth pasting and the super con-

tact conditions are required for V ζ at the dividend barrier, i.e., ∂V ζ(x)
∂x
|x=u = 1 and

∂2V ζ(x)
∂x2 |x=u = 0 (see Dumas 1991).

In case of nonzero correlation between the banking and trading earnings, the value

function in Proposition III.3 has to be solved numerically.31 If the correlation is zero,

i.e., ρ = 0 then we get the model in Keppo et al. (2010). Further, note that if ζ = 1

31We use a standard finite difference approximation method to solve the value function (see e.g. Kushner and
Dupuis 2000, Section 5.1) and implemented the method in Matlab.
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then the bank invests all the wealth in the banking business and, therefore, the value

function is independent of trading since then there are no trading assets. In this case

the model equals Peura and Keppo (2006). For ζ ∈ [ζl, 1), the smooth pasting and

the super contact conditions with Lemma III.2 lead to an explicit formula for the

value function (3.17) at the dividend barrier u:

Lemma III.4. (Value at dividend barrier) Let τ > 0, αT > 0, σT 6= 0, and ζ ∈ [ζl, 1).

Then the value function at the dividend barrier is given by

V ζ(u) =
ζαB + (1− ζ)αT + µR − (u+K)(µA − r)

λ
(3.19)

and θ∗(u) = 1, i.e., the bank has the maximum position in the liquid risky asset at

the barrier. If the above conditions hold, except if we have αT ≤ 0, then

V ζ(u) =
ζαB + µR − (u+K)(µA − r)

λ
. (3.20)

Further, if αT = 0 then θ∗(u) = max{0,min[1,− ζσBρ
(1−ζ)σT

]}, and if αT < 0 then

θ∗(u) = 0, i.e., then the bank has the minimum position in the liquid risky asset at

the barrier.

Proof: By (3.17b) and the value matching, smooth pasting, and super contact con-

ditions at uD, we have

V ζ(u) = sup
θ(u)∈[0,1]

[(ζαB + (1− ζ)θ(u)αT + µR − (u+K)(µA − r))/λ].

First, if αT = 0 then we get (3.20) directly and, by Proposition III.3, θ∗(u) =

max{0,min[1,− ζσBρ
(1−ζ)σT

]}. Second, if αT > 0 then θ∗(u) = 1 and (3.19) follows.

Finally, if αT < 0 then θ∗(u) = 0 and (3.20) follows.

�
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By Lemma III.4, the value function at the dividend time is given by the simple

equations (3.19) and (3.20) which do not include any volatilities or correlations.

However, the dividend barrier u (solved by the value matching and smooth pasting

conditions) and, therefore, also the dividend time depend on the volatilities and the

correlations.

From (3.18) we get the following corollary.

Corollary III.5. (Trading) If the trading alpha and the correlation between the

banking and trading cash flows are both zero then the bank does not trade. That is,

if αT = 0 and ρ = 0 then θ∗(x) = 0 for all x ∈ (0, u].

This result implies that there are two motivations for trading: alpha generating

bets and the hedging of banking earnings. When the trading alpha and the correla-

tion are zero then there is no trading. In this case our model is given by Peura and

Keppo (2006).

So far we have analyzed the value function with given banking book size ζ ∈ [ζl, 1].

Next we discuss about the optimal ζ and for this we define Υx(ζ) = V ζ(x), where x

is the buffer capital at time 0. The optimal ζ is solved at time 0 and it is constant:

ζ∗ = arg maxζ∈[ζl,1]Υ
x(ζ). By the extreme value theorem, Υ attains its maximum on

[ζl, 1]. The maximum value is either at a local maximum in (ζl, 1), or at a boundary

(ζl or 1), i.e., at the point where the derivative is zero or at a boundary. We solve ζ

numerically by testing these candidates.

Note that if ζ was time varying then we would solve that from (3.17b) similarly

as θ∗ in Proposition III.3. This would give ζ = max(ζl,min(1, ζ̂)) where

ζ̂ =
(θαT − αB)σθ

(σθ + σRρRE − (x+K)σAρAE)(σ2
B + θ2σ2

T − 2σBρθσT )

∂V ζ(x)
∂x

∂2V ζ(x)
∂x2

+
θσT (θσT − σBρ)

σ2
B + θ2σ2

T − 2σBρθσT
,

where, by Lemma III.2, the first term besides θαT − αB and (σθ + σRρRE − (x +
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K)σAρAE) is negative. This implies that the higher the banking alpha relative to the

trading alpha, the bigger the banking book size is. Since typically σT > σB, the last

term is positive if θ ≥ ρ.

62



3.3 Model Calibration

In this section we calibrate our model to twelve U.S. banks during 2000 Q1 –

2011 Q4. This period was selected to include the most current period after the

repeal of the Glass-Steagall Act on late 1999.32 We use the twelve banks because

for them we have required accounting data for our analysis over this time period

from the Compustat Database.33 We estimate the model parameters by using the

in-sample data on the banks. The period is divided into in-sample and out-of-sample

periods: 2000 Q1 – 2009 Q4 is the in-sample period and 2010 Q1- 2011 Q4 is the

out-of-sample period. We also use the banks’ stock price and shares outstanding

from CRSP for the market value of shareholders’ equity (the shares outstanding are

used with the model’s market capitalization), the yield on 3-month U.S. treasury bill

for the risk-free interest rate, and the S&P 500 index for the market portfolio.

3.3.1 Banks

The banks are introduced in Table 3.1. As we can see, the banks’ average total

assets during the time period vary from below three billion USD (ABVA, HTLF,

and TMP) to over 500 billion USD (BAC, JPM, and WFC). The big banks have

smaller buffer capital ratios than the small banks have: The correlation between the

mean buffer capital ratio and the mean asset size is -0.10. This is consistent with

the “too big to fail” concept since if the big banks know that they are so large and

so interconnected that their failure would be disastrous to the economy, and which

therefore must be supported by government when they face difficulty, then it might

be optimal for the big banks to maximize the value of the bailout option by running

32Glass-Steagall Act limited commercial banks’ security activities and affiliations between commercial banks and
securities firms.

33Compustat data variables include: total assets, trading account securities, federal funds sold and securities
borrowed or purchased under agreements to resell, interest income and expense on federal funds sold and securities
borrowed or purchased under agreements to resell comprehensive income, net gain (loss) from trading securities, tier
1 capital ratio, and shareholders’ equity.
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their business with a low buffer capital ratio.34 However, given the model parameters

(that might, at least partially, be driven by the above discussed moral hazard), seven

banks (CBSH, FHN, HTLF, JPM, STT, TMP, and WTFC) have higher mean buffer

capital ratios than our model dividend barriers (both under estimated parameters

and under the significant parameters, columns under u in Table 3.1.). Thus, these

banks run their business with higher capital buffers than what is optimal according

to our model (the seven banks include both small and big banks) and, therefore,

each of these banks has a lower default probability than the corresponding optimally

managed bank has. However, the banks might have too high earnings volatility due

to the moral hazard problem discussed above and they might have too much leverage

because the banks pay low interest rates for their own debt due to the government

support (we do not model the government support). Higher earnings volatility and

leverage naturally increase the risks of the whole industry.

Most of the bank assets are in the basic banking business, eleven banks have over

90% of their assets in the banking book. Only JPM has less than 80% of their assets

in the banking book. For all the banks, the banking earnings volatility is lower than

their trading volatility. This is consistent with DeYoung and Roland (2001), Stiroh

(2004, 2006), and Stiroh and Rumble (2006) who find that movement away from

traditional banking activities toward other financial services increases the volatility

and market risk. Seven banks had negative correlation between the banking and

trading earnings. Negative correlation implies partial hedging of the basic banking

business. Seven banks out of twelve had higher trading alpha (excess return) than

the banking alpha. Some of the trading alphas are too high for forward looking

estimates. However, as explained in Table 3.1, the alphas are bounded above by a

34For more on this, see e.g. Haldane and Alessandri (2009) and Miles et al. (2012).
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technical condition and our model parameters are the 2000 Q1 - 2011 Q4 sample

estimates. We do not know specifically which activities create their trading alphas.

For instance, many banks have profitable market making of which return on capital

can be high35, and during our sample time period many banks placed a lot of assets

that looked as a banking book-type into the trading book (e.g. CDO tranches),

possibly to take advantage of trading book’s lower capital requirements. Further,

many high trading alpha banks have high trading volatilities and, by the concavity

of the value function (Lemma III.2), our model bank might prefer not to invest

in the trading. To understand better the effect of different model parameters, in

Subsections 3.5.6 and 3.5.7 we analyze the model behavior with respect to wide

ranges of parameter values. For instance, we show in Subsection 3.5.7 that the

Volcker rule can raise the default probability of a bank even under a small trading

alpha. In the next subsection we explain the parameter estimation.

3.3.2 Discrete Model for Equity Ratio

In this subsection, we estimate parameters by comparing our continuous model

with the corresponding discrete model and matching their first and second moments.

For this, we need to write our model under the objective measure P to estimate

parameters from real data. This is done in Subsection 3.5.1.

The accounting identity that governs the evolution of bank’s shareholders’ equity

is of the form

Ct = Ct−1 +NIt −Dt + St (3.21)

where Ct is bank’s shareholders’ equity at time t, NIt is net (comprehensive) income

over period (t−1, t), Dt is total dividend payments over period (t−1, t), each payment

35For instance, Morgan Stanley posted net trading gains every day during the second quarter of 2007 and Goldman
Sachs had only 11 losing days in their trading between April 2009 and April 2010 (see e.g. Bloomberg, May 13th
2010, “Rigged-Market Theory Scores a Perfect Quarter” by Jonathan Weil).
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made at discrete finite times, and St is net recapitalization over period (t− 1, t). For

the net recapitalization, we use the change in the sum of common and preferred

capital plus capital surplus/share premium minus treasury capital. Note that (3.21)

is consistent with our continuous time model (3.9).

Let Bt denote the bank’s shareholders’ equity above the minimum capital require-

ment K · At at time t i.e. Bt = Ct −K · At, and Xt = Bt/At the bank buffer equity

ratio, where At is the total assets at time t. Then, the discrete dynamics of Xt follows

∆Xt =
Bt

At
− Bt−1

At−1

=
Ct
At
− Ct−1

At−1

=

(
Ct
At
− Ct−1

At

)
+

(
Ct−1

At
− Ct−1

At−1

)
=

Ct − Ct−1

At
+
Ct−1

At−1

(
At−1 − At

At

)
=

(
NIt
At
− Dt

At
+
St
At

)
−
(

∆At
At

)
[Xt−1 +K].

Then, the expectation and variance of change in equity ratio can be written:

E[∆Xt] = E

[
NIt
At

]
− E

[
Dt

At

]
+ E

[
St
At

]
− E

[
∆At
At

(Xt−1 +K)

]
,

V ar[∆Xt] = V ar

[
NIt
At

]
+ V ar

[
Dt

At

]
+ V ar

[
St
At

]
+ V ar

[
∆At
At

(Xt−1 +K)

]
+2Cov

[
NIt
At

,
St
At

]
− 2Cov

[
NIt
At

,
∆At
At

(Xt−1 +K)

]
−2Cov

[
St
At
,

(
∆At
At

)
(Xt−1 +K)

]
.

Similarly, we obtain the expectation and variance of dX under the objective mea-

sure P according to (3.25) as follows:

E[dX] = [µθ − σθ(σAρAE − λρM)− r(1− (K + E[X])]dt− E[dL̃]

+[µR − σR(σAρRA − λρSM)]dt− (E[X] +K)(µA − σ2
A + λσAρAM)dt

V ar[dX] = σ2
θdt+ V ar[dL̃] + σ2

Rdt+ σ2
A

(
(E[X] +K)2 + V ar[X]

)
dt

+2σθσRρREdt− 2σθσA(E[X] +K)ρAEdt

−2σRσA(E[X] +K)ρRAdt (3.22)
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In comparison between (3.22) and (3.22), we estimate parameters in the continu-

ous model using correspondence:

σθ =

√
1

∆t
V ar

[
NIt
At

]
, σR =

√
1

∆t
V ar

[
St
At

]
, σA =

√√√√ V ar
[(

∆At
At

)
(Xt−1 +K)

]
((E[X] +K)2 + V ar[X])∆t

,

ρRE =
Cov

[
NIt
At
, St
At

]
σθσR∆t

, ρAE =
Cov

[
NIt
At
, ∆At
At

(Xt−1 +K)
]

σθσA(E[X] +K)∆t
,

ρRA =
Cov

[
St
At
, ∆At
At

(Xt−1 +K)
]

σRσA(E[X] +K)∆t
,

µθ =
1

∆t
E

[
NIt
At

]
+ σθ[σAρAE − λρM ] + r(1−K − E[X])

µR =
1

∆t
E

[
St
At

]
+ σR[σAρRA − λρSM ]

µA =
1

∆t(E[X] +K)
E

[
∆At
At

(Xt−1 +K)

]
+ σ2

A − λσAρAM . (3.23)

The estimates for λ, ρAM , ρSM , ρM are given in Table 3.1.

3.3.3 Model Parameters for Net Income Earnings

Now we estimate the parameters for the dynamics of net (comprehensive) income

earnings. The total assets At is the sum of banking assets ABt and trading assets

ATt:

At = ABt + ATt.

Similarly as with the assets, total net comprehensive income NIt over period (t−1, t]

is the sum of banking net comprehensive incomeNIBt and trading net comprehensive

income NITt over the same period:

NIt = NIBt +NITt.

For the trading revenues we use the gain (loss) of trading/dealing securities in Com-

pustat. However, to get trading net income (NITt) from the trading revenues we

subtract 50% for compensation and infrastructure costs from all (positive) gains.
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This is consistent with the compensation at several leading banks.36 We analyze the

effect of this assumption in Subsections 3.5.6 and 3.5.7 by varying the trading alpha

parameter. For the banking net income (NIBt) we use Compustat’s net income

(NIt) minus the trading net income (NITt).

We define banking return on assets, ROBt, and trading return on assets, ROTt,

over period (t− 1, t] as follows

ROBt =
NIBt

ABt−1

, ROTt =
NITt
ATt−1

.

In other words, the returns are computed by dividing the net income of year t by

the corresponding assets in the previous year (t− 1).37

Volatilities σB and σT are estimated as the annualized standard deviations of the

time series {ROBt} and {ROTt}, respectively. Parameter ρBT is the correlation

between the time series {NIBt
At−1
} and {NITt

At−1
}. Volatilities and correlations are in Table

3.1. Most of the volatilities are less than 5%, but there are four banks with over 5%

annual trading volatility (FHN, HTLF, JPM, and WTFC). Ten out of twelve banks

have negative correlation between the banking and trading earnings. However, only

two of the correlations are statistically significant and there is another bank in Table

3.2 with significant positive correlations between the earnings. This implies that the

hedging story is weak. Further, both big and small banks have positive and negative

correlations.

Risk-adjusted excess trading return αT is estimated by Capital Asset Pricing

Model:

ROTt −Rf = αT + βT (RM −Rf ) + ε,

36See e.g. Boston.com, January 22nd 2010, “Goldman earns record $4.79B in Q4, cuts bonus pool” by Stevenson
Jacobs,
http://articles.boston.com/2010-01-22/business/29306629_1_proprietary-trading-bank-financial-crisis

37We use Compustat variables as follows: AT = trading securities, AB = total assets - AT, NIT = max(0.5*net
gain in trading, 0) + min(net gain in trading, 0), and NIB = net income - NIT.
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where βT is the trading beta coefficient, Rf is the quarterly 3-month treasury yield,

RM is the quarterly S&P 500 index return, and ε is a residual term. Table 3.2 gives

the trading alpha and beta estimates. Nine banks have positive beta estimates and

two of the estimates are statistically significant.38 Five banks have positive trading

alphas and four of them are statistically significant. On the other hand, there are also

seven other banks with statistically significant negative trading alphas. Clearly, all

of our sample banks do not benefit from the trading. Some of the alphas and betas

are high, indicating that some of the banks have lucrative activities (e.g. market

making) and/or they use leverage and/or derivative instruments. As we will see in

Section 3.4, the Volcker rule can raise the default probability of a bank even under

a small trading alpha.

When using the same method in estimating the banking alphas, i.e. banking

excess return prior to the interest payments on debt, as we did with the trading

alphas, we use the time series for banking return ROBt plus the time series for the

interest payments divided by total assets It minus on debt minus the risk-free return

on the RHS as follows

(ROBt + It)−Rf = αB + βT (RM −Rf ) + ε,

where βB is the banking beta coefficient. Table 3.2 gives the banking alpha and

beta estimates. we find that all the banking alphas are negative over the time period

2000 Q1 – 2011 Q4. This is not due to the recent global financial crisis because

these estimates are similar for the 2000 Q1 – 2007 Q1 period. In theory, a bank

should be liquidated if a bank’s banking alpha is negative, which is not the case in

reality. That means, all sample banks rely on their earnings from trading business or

net recapitalization. Not surprisingly, nine banks have positive net recapitalization
38Note that we do not need the beta estimates since the expectation in (6) is under the risk-neutral probability.
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return on assets.

We estimate the wedge between debt and equity finance, δ as the implied solution

by fitting the model equity ratio value to the realized market equity ratio. We com-

pute such δ once with estimated parameters or once with significant parameters.39

Although the banking proportion ζ is optimized in our model, we also estimate

it from our data. We find the best-fitting implied ζ for the equations (3.6) and

(3.4) by using the estimates of σθ and µθ computed as in (3.23). We assume that

r = 2% as it is close to the average of risk-free rate over our sample period. We

denote the solution of the system above by ζd, which is given in Table 3.1. Note that

θ(t) = 1 for convenience above. Using ζd requires us to modify the constraint on the

wedge δ given in Section 1 to δ > max[ζdαB + (1 − ζd)αT , µR]. None of our sample

banks have parameter estimates which violate this constraint. Further, note that ζ

is constant in our model, i.e., the banking asset size is a long term strategic decision

and, therefore, the observed ζd in Table 3.1 is not the same as the current optimal

ζ. In fact, If we set ζI = 75%, which is close to the minimum ζd in Table 3.1 (JPM),

the model’s optimal allocation in the banking business is at 75% or the minimum

banking proportion possible. In other words, according to our model, the equity

value of all sample banks would rise if the size of their trading units was increased.

However, note that here we simply assume that the trading business could keep its

profitability when it is expanded, which may not be the case.

3.3.4 Cross-sectional Test and Comparative Statics

In Figure 3.2 we show that our model explains about 34% of the cross-sectional

variation in the banks’ maximum buffer capital ratios. Further, the slope of the

regression model is significant, indicating significant linear relationship between the

39See columns under δ in Table 3.1
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model and actual buffer capital levels. This is consistent with Peura and Keppo

(2006) who analyze a simpler model but a larger set of banks. Thus, due to our

small sample, Figure 3.2 just confirms the finding in that paper.

Subsection 3.5.6 gives the comparative statics of the model under the median

model parameters. More specifically, figures in Subsection 3.5.6 analyze how the

value function (3.13d) and dividend barrier u change with respect to banking propor-

tion ζ, banking volatility σB, trading volatility σT , correlation between the banking

and trading earnings ρBT , banking alpha αB, trading alpha αT , risk-free rate r, and

wedge between debt and equity finance δ.

With these parameter values, the banking business has a higher risk adjusted ex-

cess return than the trading business has and, therefore, the bank value rises in the

banking proportion (see Figure (3.4.1) in Subsection 3.5.6). By the lower banking

volatility, when banking proportion rises then the earnings risk falls and, therefore,

there is less need for the hedging of future losses and the dividend barrier falls in the

banking proportion (see Figure (3.4.2)). The effect of banking and trading volatil-

ities can be explained in a similar way, because both of these volatilities increase

the earnings volatility. Since, by Lemma III.2, the value function is concave, the

higher the earnings volatility the lower the value function (see Figures (3.4.3) and

(3.4.5)). Further, the higher the volatility the more the bank has to hedge its future

losses and, thus, the higher the dividend barrier (see Figures (3.4.4) and (3.4.6)).

The earnings volatility is the main driver of the dividend barrier: By Table 3.2, the

earnings volatility and dividend barrier have a correlation of 1.00 under the esti-

mated parameters and 0.91 under the significant parameters (this is consistent with

Peura and Keppo (2006)). Thus, our dividend policy is driven by risk management

considerations.
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The effect of correlation between the banking and trading cash flows is as expected

(see Figures (3.4.7) and (3.4.8)). The lower the correlation (and the more negative

it is), the higher the value function because then the hedging of banking cash flows

is more effective. Thus, in this case the earnings volatility falls and, by Lemma III.2,

the value function rises. To understand the effect of correlation on dividend policy,

we first note that we have two hedging methods for the banking cash flows. The

first is through trading and it requires negative correlation between the banking and

trading cash flows. The second is hedging with buffer capital and this is a substitute

for the first method. That is, if the bank is not able to hedge the banking cash flows

by trading then it raises its buffer capital so that it has more cushion for the future

losses. The buffer capital is increased by raising the dividend barrier and, therefore,

the dividend barrier rises in the correlation.

As expected, the value function is an increasing function of the banking and

trading alphas (see Figures (3.4.9) and (3.4.11)). However, the effect of the alphas

on the dividend barrier is not that straightforward (see Figures (3.4.10) and (3.4.12)).

This is because the alphas change the shape of the value function (see Figures (3.4.13)

and (3.4.14)): The lower the alphas, the more linear the value function. When alphas

rise then the value function becomes more concave and, thus, the bank becomes

more risk averse. This creates the need to hedge more and the dividend barrier

rises. However, when alphas are increased even more then their effect on increasing

earnings dominates and this decreases the need for hedging and the dividend barrier

falls.

The adjusted risk-free rate has both positive and negative effects on the equity

value. First, by (3.13a), the expected capital ratio rises in the adjusted risk-free rate

and this increases the equity value (relative to the assets). Second, by (3.13c), the
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discount rate increases in the adjusted risk-free rate and this lowers the equity value.

Figure (3.4.13) shows that, similarly as with regular call options (rho of the call),

the positive effect is stronger and, thus, the equity value rises. The dividend barrier

falls in the adjusted risk-free rate (see Figure (3.4.14)), because then buffer capital

increases faster and discounting is stronger. When buffer capital rises then there is

less need for hedging (so, u indeed falls), and when there is more discounting then the

value of future dividends decrease and, thus, it is better to pay dividends sooner (u

falls). The effect of the wedge between debt and equity finance can be explained in a

similar way. However, the wedge affects only the discounting, not the buffer capital

dynamics. Thus, by (3.13b), the wedge has only the negative value effect of the

adjusted risk-free rate and, therefore, the value falls (see Figure (3.4.15)). Further,

when the wedge rises the company prefers to pay dividends earlier and, hence, the

dividend barrier falls (see Figure (3.4.16)).
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3.4 Volcker Rule

By using a sensitivity analysis with the estimated model parameters, we next

study our sample banks’ trading and estimate the impact of the Volcker rule. In

this we utilize Corollary III.5, i.e., if αT and ρBT are zero then it is optimal for the

bank not to trade. More specifically, we measure the value of each bank under four

different cases:

(i) Bank equity value without the Volcker rule: Value with the estimated param-

eter values and with only the statistically significant estimates in Table 3.2. That is,

we calculate two bank equity values for this case. In the first, αT and ρBT are equal

to their estimated values, and in the second, each parameter equals its estimated

value if the estimate is statistically significant at 5% significance level and otherwise

the parameter is zero. Note that, by Table 3.1, αT and ρBT are the only parameters

in Proposition III.3 that could be zero.

(ii) Bank equity value without trading alpha bets: Value with αT = 0, i.e., there

is no trading due to the excess return and, thus, by Proposition III.3 in this case the

banks trade only for hedging. As in (i), we calculate the bank equity values with all

the ρBT -estimates and also with only the significant correlations (the insignificant

correlations are set to zero).

(iii) Bank equity value without hedging: Value with ρBT = 0, i.e., there is no

correlation between the trading and banking returns, and, therefore, the banks trade

only for the excess return, not for hedging. As in (i), we calculate the bank eq-

uity values with all the αT -estimates and also with only the significant alphas (the

insignificant alphas are set to zero).

(iv) Bank equity without trading: Value with αT = 0 and ρBT = 0, i.e., by
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Corollary III.5 the banks do not trade at all.

In these cases we assume that only αT and ρBT change and all the other model

parameters are constant. Thus, for instance, we assume here that ζ is constant, i.e.,

the size of the banking book is independent of αT and ρBT . Further, in this section

we assume that if the trading is decreased then that money is invested in the risk-free

asset, not in the banking business.

3.4.1 Bank Value

The model estimated equity values under the four cases (i)− (iv) are in Table 3.3.

We also report percentage changes from the initial equity value (i) to each of the

other equity values (ii)− (iv).These changes correspond to the value impacts of the

alpha bets, hedging, and trading overall. The difference between the original bank

equity value (i) and case (ii) gives the value change due to the alpha bets. Similarly,

the difference between (i) and (iii) is the equity value impact of the hedging, and the

difference between (i) and (iv) is the total equity value change of trading. Depending

on the implementation of the Volcker rule, the differences between (i) and (ii) and

between (i) and (iv) give the equity value decrease due to the rule.

By Table 3.3, Volcker rule decreases on average bank equity value by 1% in the

assets-weighted sense. The effect of banning alpha bets is about the same as banning

all trading. Thus, the impact of hedging is on average about zero.

To analyze the robustness of our results further, we create a fictitious bank with

trading model parameters as follows: r = 3%, αT = 3.5% and σT = 3.03%. These

parameter values are consistent with the hedge fund parameter estimates in Ang,

Gorovyy, and van Inwegen (2011), Cremers and Petajisto (2009), Getmansky, Lo,

and Makarov (2004), Wermers (2003), Daniel, Grinblatt, Titman, and Wermers

(1997), Carhart (1997), Chen, Hong, Huang, and Kubik (2004), and Kosowski,
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Naik, and Teo (2007). The other model parameters are equal to the median es-

timates of the corresponding parameters in our sample data: ζ = 98%, σB = 0.65%,

ρBT = −0.09, muA = 11.69%, σA = 10.75%, ρAE = 0.01, µR = 0.68%, αB =

0.56%, ρRA = 0.48, ρRE = −0.35, and δ = 16.78%. Thus, this fictitious bank has

trading operations that correspond to hedge funds in the empirical papers. We find

that preventing alpha bets decreases the fictitious bank’s equity value by 11.6% and

preventing hedging decreases the bank equity value by 0.4%. Thus, consistent with

the results of our sample banks, hedging has only a small impact on the fictitious

bank. If all trading is banned then the bank’s equity value falls by 12%.

As discussed earlier, in addition to the value changes in Table 3.3, the Volcker

rule might create significant compliance costs and we do not consider those in our

model.

3.4.2 Loan prices

In this subsection we estimate how much banks should raise their loan rates to

compensate for the value decrease due to the Volcker rule. Since the rule prevents

banks from collecting trading alpha (or at least makes that harder and costly), banks

might focus more on the basic banking business. Therefore, we expect more inno-

vative banking products such as mortgages with insurances for real-estate risk (see

e.g. Fabozzi et al. 2010). These products would allow banks to collect higher fees

and this way to increase their banking alphas.

We first estimate how much the banks should raise their banking alphas to com-

pensate the value decrease of the Volcker rule. After that we calculate the corre-

sponding increases in the loan rates that would give the new banking alphas if all

the other model parameters were fixed.40 Thus, this is a simple comparative statics

40For instance, we saw this kind of behavior when the U.S. Congress limited the penalties on late payments of
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of the model. The increases in the loan rates can be viewed as a measure for new in-

novation and/or cost cutting that the banks need to do to justify the higher banking

alphas.

More specifically, we consider three scenarios (the first and the last are for the

Volcker rule). In the first, we assume that the Volcker rule allows hedging but not

the alpha bets. In this case we compare cases (i) and (ii), and find a new banking

alpha for case (ii) such that the bank equity value in (ii) equals the equity value in

(i). In the second case, hedging is prevented but not the alpha bets. In this case

we compare (i) and (iii) and estimate a new banking alpha for (iii) that produces

the same equity value as in (i). In the last case, we assume that the Volcker rule

prevents all trading (hedging and the alpha bets). Thus, in this case we compare

(i) and (iv), and calculate a new banking alpha in the same sense as with the other

cases. The new banking alphas are reported in Table 3.3. On average, the alpha bets

would raise the banking alpha by about 1 basis point (BP), the hedging by almost 0

BPS, and total trading by about 1 BP.

For the Volcker rule effect, we use the impact from the alpha bets and total

trading. Thus, by our comparative statics, banks should increase their banking

alphas by about 9.5 BPS to keep their equity value the same as before the rule.

As mentioned before, to get the higher banking alphas, banks need to create new

products and/or to improve their efficiency.

After we have the new banking alphas, we estimate the corresponding bank loan

margin changes. For this we analyze banking net income and assume here that each

bank’s NIBt equals the loan margin after default losses times the banking assets, i.e.,

NIBt = mABt−1, where m is the loan margin and ABt−1 is the the banking assets

credit cards. After the limitation credit card companies started collecting more fees from those people with sterling
credit (see e.g. New York Times, May 18th 2009, “Credit Card Industry Aims to Profit From Sterling Payers” by
Andrew Martin).
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at time t − 1. Thus, return on the banking assets is given by NIBt/ABt−1 = m.

On the other hand, if we use the same return model as with the trading assets in

subsection 3.3.3 then we have

NIBt

ABt−1

= Rf + αB + β(RM −Rf ) + ε,

where β is the beta of the banking assets and we assume it is independent of αB.

Combining the two representations for banking asset returns, we get m = Rf +αB +

β(RM − Rf ) + ε, which gives ∆m = ∆αB. That is, the change in the loan margin

equals the banking alpha change. Thus, by Table 3.2, if the Volcker rule prevents

banks from trading or just from taking alpha bets then the banks should raise their

loan margins between zero and 47 BPS (on average 1 BP) to compensate the value

decreases from the Volcker rule. We expect that big banks have least pressure to

increase their loan margins; by our comparative statics, they do not need to raise the

loan rates at all (but many banks have to decrease their trading operations). Thus,

the effect of the Volcker rule on the loan margins is quite small. This is because,

based on our model and data, banks do not benefit much from the trading and most

of the banks’ assets are in the basic banking business. Therefore, a small increase in

the loan margins compensates the value fall due to the rule.

3.4.3 Default probabilities

By (3.11), banks maximize their equity value, they do not necessary minimize their

default probability. Because banking regulators are in the business of minimizing the

default probability, banks and their regulators might have conflicting interests. For

instance, in 2008 during the recent financial crisis 21 large banks in the U.S. and

Europe paid total over $400 billion dividends which represents around one-third of

their 2007 market capitalization of $1.3 trillion (Acharya et al. 2009). The dividends
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lowered the banks’ capital and, therefore, their default probability increased.

In our model, a new regulation (or similarly a new portfolio constraint) cannot

increase the banks’ value because the rule sets constraints on their behavior.41 On

the other hand, regulation changes can increase or decrease the banks’ default prob-

ability. Unfortunately, it is not obvious what the effect on the default probability is

since banks react to regulation and this can cause positive and negative effects. This

is also the case with the Volcker rule.

If trading is profitable then ban on trading lowers the expected earnings and this

way also the expected buffer capital level. If also hedging is prevented then earnings

risk might increase. Both these effects may increase the default probability. On the

other hand, there is also a positive effect: Since Volcker rule prevents trading and, by

Table 3.2, trading earnings have a higher volatility than banking earnings have, the

total earnings volatility and this way also the default probability might fall. Thus,

the total effect on the default probability depends on the magnitude of the negative

and positive effects.42 Table 3.3 gives the effect of Volcker rule on the banks’ default

probability over 100 years, expected annual earnings, and earnings volatility. The

default probabilities are estimated by Monte Carlo simulation with 10,000 paths. By

Table 3.3, the change of the default probability from case (i) (i.e. without the Volcker

rule) to cases (ii)− (iv) (ban on alpha bets, hedging, and all trading; both estimated

and significant parameters) has correlation of -0.68 with the corresponding expected

earnings change and 0.63 with the corresponding earnings volatility change. Thus,

the expected earnings seem to drive the default probability as its correlation has a

41As discussed in subsection 3.4.1, the increase in bank value in case (ii) for banks ABVA, BAC, and STI is due
to the negative trading alpha and positive correlation estimates. To avoid this problem, we may assume that in case
(ii) and case (iv) we set a new alphaT equal to max[αT , 0]. Then their bank value in case (ii) would equal their
bank value in case (i). We did not implement this in our results.

42Keppo et al. (2010) consider banks’ market risk requirement and, according to their model, the requirement has
similar effects on the default probability as the Volcker rule.
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higher absolute value.43 This implies that the best way to hedge default risk is to

run a profitable business. Note that, by Table 3.2, the Volcker rule prevents several

banks to run their most profitable business.

The effect of Volcker rule on the default probability can be analyzed by comparing

the default probability in case (i) (without the rule) with cases (ii) (ban on alpha

bets) and (iv) (ban on all the trading). On average the Volcker rule increases the

default probability by 0.24% if only alpha bets are prevented, and by 0.24% (in the

assets-weighted sense) if all the trading is prevented. Thus, if the banks behave

optimally according to our model then the negative default effects of trading alpha

and hedging are stronger than the positive effect of a lower earnings volatility.

This effect is mainly driven by three banks (FHN, MTB, and WTFC). Their

default probabilities rise due to the Volcker rule under all cases, and in this sense

their effect is robust. By Table 3.1, all the three banks have statistically significant

positive trading alphas and their value would rise if their trading operations were

expanded. Therefore, when trading is prevented, their expected profits fall (see

column E(∆X) in Table 3.3) and this lowers the buffer capital of the three banks,

which raises the default probability.

We analyze the robustness of these findings in Table 3.3 in two ways. First,

by using the fictitious bank introduced in Subsection 3.4.1 with the hedge fund

parameters. We find that the default probability of this bank also rises due to

Volcker rule from 89% to 95%. Second, using the estimated parameters of FHN

and MTB banks in Table 3.1, we vary the parameter values to see how the default

probability responds to the change of each parameter value. By Table 3.2, the default

probabilities of FHN and MTB both rise due to the Volcker rule. Within the range

43Default probability does not necessarily increase in earnings volatility. By Figures (d) and (f) in Subsection
3.5.6, the dividend barrier rises in the volatility. Therefore, a low earnings volatility also means a low buffer capital
which could increase the default probability.
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of parameter values in the figures of Table 3.3, FHN has a higher default probability

under the Volcker rule as long as its trading alpha is positive and banking volatility

is higher than 0.1%. These two parameter scenarios indicate that the rule raises

FHN’s default probability as long as the bank benefits from trading relative to the

banking business. Thus, the effect of Volcker rule on FHN’s default probability is

quite robust and it is not driven by the banks’ unusually high trading alpha (it is

enough that the alpha is positive). By Subsection 3.3, MTB’s default probability

rises due to the Volcker rule as long as the banking proportion is higher than 98.5%,

the correlation between trading and banking cash flows is lower than 0.4, trading

volatility is lower than 2.4%, and trading alpha is over 2.2%. Thus, similarly as with

FHN, the parameter ranges for the correlation, trading volatility, and the trading

alpha imply that as long as there is enough trading value, the Volcker rule raises the

default probability. The parameter scenario of the banking book is more complicated.

By Figures (d) and (f) in Subsection 3.5.6, the dividend barrier of case (ii) is lower

than in case (i) due to the lower earnings volatility of case (ii). When the banking

proportion is higher than 98.5% then, by Figure (b) in Subsection 3.5.6, the dividend

barrier is even lower, raising the default probability - especially in case (ii). This

explains the rising default probability due to Volcker rule when ζ > 98.5%.

We doubt the hedging story and its benefits. By Table 3.2, if the hedging is

prevented then the default probability falls by 0.01% in the assets-weighted sense.

This indicates that the banks do not focus on the hedging of their default probability.
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3.5 Appendix for Chapter III

3.5.1 Model under the Objective Measure

Let us define the market return evolves as the following dynamics under the objective

measure P:

dM(t) = (r + λσM)M(t)dt+M(t)σMdW
P
M(t)

where W P
M(t) is a Wiener process under P, λ is market price of risk and it is constant.

We can write this process in terms of W (t), which is a Wiener process under the

risk-neutral probability measure, as follows

dM(t) = M(t) [rdt+ σMdWM(t)] .

Thus, we have

WM(t) = λt+W P
M(t). (3.24)

Under the risk-neutral probability,

dA(t) = A(t) [µAdt+ σAdWA(t)] ,

where WA(t) = ρAMWM(t) +
√

1− ρ2
AMW̃A(t), WM(t) and W̃A(t) are independent

Wiener processes under the risk-neutral probability measure and ρAM is the correla-

tion between them. By (3.24), WA(t) = ρAM
[
λt+W P

M(t)
]

+
√

1− ρ2
AMW̃A(t) and

this gives the following P-dynamics:

dA(t) = A(t)
[
(µA + λσAρAM)dt+ σAdW

P
A(t)

]
,

where W P
A(t) = ρAMW

P
M(t) +

√
1− ρ2

AMW̃A(t).

Similarly, ρM is the correlation between the market return and net income return.

WQ
R = λt + W P

R and ρSM is the correlation between the market return and net

recapitalization return.
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Similarly, the buffer capital ratio dynamics (13a) can be written under P as follows

Xπ(t) = X(0) +

∫ t

0

[
µθπ(u) − r(1− (K +Xπ(t)))− σAσθ(u)ρAE + σθ(t)λρM

]
du

+

∫ t

0

σθ(t)dW
P
E +

∫ t

0

[(µR − σAρRAσR + λρSMσR)du+ σRdW
P
R(u)]− Lπ(t)

−
∫ t

0

[Xπ(u) +K][(µA − σ2
A + λσAρAM)du+ σAdW

P
A(u)], (3.25)

where the correlations are defined as ρM = Corr
[
NIt
At
, ∆Mt

Mt

]
, ρAM = Corr

[
∆At
At
, ∆Mt

Mt

]
,

ρSM = Corr
[
St
At
, ∆Mt

Mt

]
, and the market price of risk from λ =

E[ ∆M
M

]−r√
V ar[ ∆M

M
]/∆t

.

3.5.2 Optimal Trading Strategy

Unconstrained optimal trading strategy

Let θ̂(x) denote an unconstrained optimal trading strategy obtained from (3.17b)

by the first order condition i.e.

θ̂(x) = − ζσBρBT
(1− ζ)σT

− αT

(1− ζ)σ2
T (1 + (σRρRE − xρAEσA)σ−1

θ̂(x)
)

∂V ζ(x)

∂x
/
∂2V ζ(x)

∂x2
.

(3.26)

If αT = 0 then θ̂(x) = − ζσBρBT
(1−ζ)σT

and θ∗(x) = max{0,min(− ζσBρBT
(1−ζ)σT

, 1)}. Now

assume αT 6= 0.

Rearranging (3.26) we get

V ′′(x) = k2(x; θ̂(x))V ′(x) (3.27)

where k2(x; θ(x)) = − αT
(1−ζ)σ2

TB(x;θ(x))θ(x)+ζσBρBT σTB(x;θ(x))
andB(x; θ(x)) = 1+(σRρRE−

xρAEσA)σ−1
θ(x).

Inserting (3.27) into (3.17b) and then differentiating w.r.t. x. we come to

λV ′(x) =
(

(1− ζ)2θ̂(x)σ2
T θ̂
′(x) + ζσBρBT (1− ζ)σT θ̂

′(x)
)
k2(x)V ′(x)

−1

2
σ2
θ(1− ζ)σ2

T θ̂
′(x)k2(x)V ′(x) + (1− ζ)αT θ̂

′(x)V ′(x)

+
1

2
σ2
θk2(x)V ′′(x) +

(
r + ζαB + (1− ζ)θ̂′(x)αT

)
V ′′(x)
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Replacing V ′′ by (3.27) into the above equation and solving for θ̂′(x) we get

θ′(x) =
µA + λ− (σ2

Ax− σA(σRρRA + σθρAE) + µθ + µR − xµA) k2(x)−Q(x)
(
K2(x)
αT

+ 1
)

dσθ
dθ

(σθ + σRρRE − xσAρAE)k2(x) + Q(x)K1(x)
αT

+ (1− ζ)αT
(3.28)

where

Q(x) =
1

2
(σ2

θ + σ2
R + 2σθσRρRE + x2σ2

A − 2xσA(σRρRA + σθρAE))k2
2(x),

K1(x) = ((1− ζ)σ2
T θ(x) + ζσBρBTσT )B2(x) + (1− ζ)σ2

TB(x),

K2(x) = B1(x)((1− ζ)σ2
T θ(x) + ζσBρBTσT ),

B1(x) = −ρAEσAσ−1
θ ,

B2(x) = −(σRρRE − xρAEσA)σ−2
θ

dσθ
dθ

,

dσθ
dθ

= σ−1
θ

(
(1− ζ)2σ2

T θ(x) + ζ(1− ζ)σBσTρBT
)
.

Initial unconstrained optimal trading weight θ̂(0)

θ̂(0) solves the following system of equations:
0 = 1

2
[σ2
θ̂(0)

+ σ2
R + 2σθ̂(0)σRρRE]V ′′(0) + [µθ̂(0) + µR]V ′(0),

θ̂(0) = − ζσBρBT
(1−ζ)σT

− αT
(1−ζ)σ2

T (1+σRρREσ
−1

θ̂(0)
)

V ′(0)
V ′′(0)

.

The first equation is from (3.17a) and (3.17b), and the second equation is (3.26)

at x = 0.

The second equation is equivalent to:

V ′(0) = −
(1− ζ)σ2

T (1 + σRρREσ
−1

θ̂(0)
)θ̂(0) + ζσBσTρBT (1 + σRρREσ

−1

θ̂(0)
)

αT
V ′′(0),

(3.29)

if αT 6= 0. Substituting (3.29) into the first equation in the system and letting
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θ̂0 = θ̂(0), we get

0 =
1

2
[σ2
θ̂0

+ σ2
R + 2σθ̂0σRρRE]− [µθ̂0 + µR](1 + σRρREσ

−1

θ̂0
)

(
(1− ζ)σ2

T θ̂0 + ζσBσTρBT
αT

)
,

which can be solved for an implied solution θ̂0.

Constrained Optimal Trading strategy θ∗(x)

By (3.28), we get

θ̂(x) = θ̂0 +

∫ x

0

g(y)dy

where

g(y) =
µA + λ− (σ2

Ay − σA(σRρRA + σθρAE) + µθ + µR − yµA) k2(y)−Q(y)
(
K2(y)
αT

+ 1
)

dσθ
dθ

(σθ + σRρRE − yσAρAE)k2(y) + Q(y)K1(y)
αT

+ (1− ζ)αT
.

Therefore, constrained optimal trading strategy θ∗(x) = max{0,min(θ̂(x), 1)},

where

θ̂(x) =


θ̂0 +

∫ x
0
g(y)dy if αT 6= 0,

− ζσBρBT
(1−ζ)σT

if αT = 0,

which can be solved numerically.
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3.5.3 Model Parameters

Table 3.1: Sample Banks and Their Model Parameters over 2000 Q1 - 2011 Q4 .

Bank (Ticker) Assets, m$ BC,% Vd, % ζd, % ζ, % u, % δ, %

ALLIANCE BANKSHARES 411 0.89 2.62 86.16 N/A 0.00 N/A

(ABVA) (503)

BANK OF AMERICA 1,211,812 4.46 5.92 84.10 100.00 2.58 31.86

(BAC) (1,085,799)

COMMERCE BANCSHARES 14,438 3.96 17.12 98.93 75.00 2.45 4.69

(CBSH) (4,050)

FIRST HORIZON 29,147 3.89 7.50 97.59 100.00 3.12 16.78

(FHN) (14,441)

HEARTLAND FINANCIAL 2,549 2.12 8.05 99.94 100.00 2.49 12.62

(HTLF) (1,623)

JPMORGAN CHASE 1,190,280 2.05 7.16 75.11 N/A 0.00 N/A

(JPM) (1,029,168)

M & T BANK 49,755 4.82 10.98 99.70 75.00 2.20 20.60

(MTB) (28,978)

STATE STREET 108,343 2.36 13.87 96.42 N/A 0.00 N/A

(STT) (84,771)

SUNTRUST BANKS 147,425 6.09 6.45 97.25 100.00 0.96 99.99

(STI) (66,854)

TOMPKINS FINANCIAL 2,046 2.17 15.73 98.05 100.00 2.59 11.68

(TMP) (1,069)

WELLS FARGO 525,876 2.74 11.59 98.50 100.00 2.69 20.95

(WFC) (613,018)

WINTRUST FINANCIAL 6,688 3.29 5.45 99.96 100.00 2.09 11.97

(WTFC) (6,628)

The sample of twelve U.S. commercial banks over period 2000 Q1 – 2011 Q4. The in-sample period is 2000 Q1 –

2009 Q4, and the out-of-sample period is 2010 Q1 – 2011 Q4. Assets column is the average total asset size during

the whole sample period in terms of million USD. BC denotes the mean buffer capital ratio using the data from 2008

Q1 – 2009 Q4. The following items were calculated using the in-sample data only.Vd is the time-series average of

market capitalization divided by total assets (subscript d is for data, distincting from the model estimated value). ζd

is the time-series average of banking assets divided by total assets. u denotes the model estimated dividend barrier.

δ is computed as an implied value that matches the realized market equity value with the model equity value at the

mean buffer capital ratio given in the column BC, which is computed with only the statistically significant alphas

and correlations (the non-significant alphas and correlations are set to zero).
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Table 3.2: More Model Parameters.

Bank (Ticker) σB , % σT , % ρBT αB , % βB , % αT , % βT , % µA, % σA, % ρAE µR, % σR, % ρRA ρRE

ALLIANCE BANKSHARES 0.64 2.21 -0.35 -0.99 ∗∗ 0.76 -2.91 0.04 -3.35 10.43 0.30 -0.30 0.41 0.49 -0.48
(ABVA) (0.27) (0.38) (0.89) (1.56) (3.02) (0.27) (0.23) (0.23)
BANK OF AMERICA 0.50 0.90 -0.15 0.80 ∗∗ -0.24 -1.36 ∗∗ 0.02 12.57 11.07 0.03 1.05 1.85 0.60 ∗∗ -0.19
(BAC) (0.16) (0.15) (0.47) (0.32) (0.71) (0.16) (0.10) (0.15)
COMMERCE BANCSHARES 1.08 7.45 0.00 0.28 -0.81 -6.88 ∗ 0.05 5.13 5.13 -0.01 0.56 0.90 0.21 -0.84 ∗∗

(CBSH) (0.16) (0.34) (1.00) (2.60) (6.98) (0.16) (0.15) (0.05)
FIRST HORIZON 0.66 6.42 -0.23 -0.31 0.14 18.83 ∗∗ 0.01 2.78 12.13 0.49 ∗∗ 0.57 1.16 -0.22 -0.55 ∗∗

(FHN) (0.15) (0.21) (0.62) (2.24) (6.02) (0.12) (0.15) (0.11)
HEARTLAND FINANCIAL 0.39 23.36 -0.02 0.59 ∗∗ 0.13 -21.88 ∗∗ 1.03 ∗∗ 11.27 5.91 -0.29 0.45 0.89 0.41 ∗ -0.46 ∗∗

(HTLF) (0.17) (0.13) (0.38) (4.86) (13.54) (0.16) (0.14) (0.14)
JPMORGAN CHASE 0.92 0.75 0.12 0.53 -0.91 -1.21 ∗∗ 0.01 17.07 16.31 0.65 ∗∗ 0.96 1.75 0.46 ∗∗ 0.01
(JPM) (0.16) (0.29) (0.85) (0.21) (0.71) (0.09) (0.13) (0.16)
M & T BANK 0.32 1.96 -0.02 0.89 ∗∗ 0.52 2.33 ∗∗ 0.06 ∗ 11.43 12.69 -0.01 0.78 1.59 0.91 ∗∗ -0.20 ∗

(MTB) (0.16) (0.09) (0.31) (0.56) (1.21) (0.16) (0.03) (0.15)
STATE STREET 1.06 3.40 -0.17 -0.33 1.23 4.12 ∗∗ 0.03 23.54 36.30 0.03 0.96 1.30 -0.11 -0.18
(STT) (0.20) (0.44) (1.41) (1.58) (2.88) (0.20) (0.20) (0.20)
SUNTRUST BANKS 0.74 4.29 -0.24 0.66 ∗∗ -0.20 -8.06 ∗∗ 0.06 5.52 7.39 0.23 0.86 1.52 0.64 ∗∗ -0.33 ∗

(STI) (0.15) (0.23) (0.69) (1.59) (3.97) (0.15) (0.09) (0.14)
TOMPKINS FINANCIAL 0.45 1.43 0.74 ∗ 1.14 ∗ -0.23 -1.36 -0.01 12.01 6.12 -0.32 -0.03 0.18 0.47 0.05
(TMP) (0.13) (0.29) (0.65) (1.17) (2.01) (0.27) (0.23) (0.30)
WELLS FARGO 0.84 2.66 0.78 ∗ 0.83 ∗∗ 2.99 ∗ 0.23 0.07 18.35 18.97 -0.88 ∗ 1.06 2.06 0.91 -0.82
(WFC) (0.08) (0.28) (0.38) (0.94) (2.25) (0.05) (0.03) (0.07)
WINTRUST FINANCIAL 0.35 136.94 -0.53 ∗ 0.36 ∗∗ 0.56 67.58 -0.29 11.94 6.82 -0.10 0.50 0.77 0.70 ∗∗ -0.37
(WTFC) (0.17) (0.16) (0.52) (65.49) (213.53) (0.23) (0.12) (0.20)

All items in Table 3.2 were calculated using the in-sample data only. Each bank’s estimated σB , σT , σA, and σR are the time-series annualized standard deviation of returns

from banking, trading, assets and recapitalization, respectively. ρBT , ρAE , ρRA and ρRE are the correlations, each between the banking and trading returns, between asset

and banking/trading returns, between recapitalization and asset returns, and between banking/trading and recapitalization returns. One asterisk (∗) indicates the significance

level of 5%, and two (∗∗) indicates 1%. Each bank’s αB (αT ) and βB (βT ) are the bank’s banking (trading) alpha (excess return) and banking (trading) beta coefficient.

Standard deviations or errors of the estimates are in the parentheses.
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3.5.4 Model Value
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Figure 3.1: Actual vs. model values of banks at the mean out-of-sample equity level.
This figure shows realized market equity level during the out-of-sample period 2010 Q1 – 2011 Q4
plotted against the model value function evaluated at the mean out-of-sample equity level. The
filled triangles are with the banking and trading alphas and correlations equal to their estimated
values while the empty squares are with the statistically significant banking and trading alphas and
correlations ρBT , ρRE , ρRA and ρAE (the non-significant alphas and correlations are zero). Linear
regression lines are drawn in the figure. The numbers in the parentheses are the standard deviations
of the parameters. One asterisk (∗) indicates the significance level of 5%, and two (∗∗) indicates
1%.
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Table 3.3: Effects of trading. (i) Base case is with the estimated parameters; (ii) is the case with trading alpha
αT = 0; case (iii) is with ρBT = 0, i.e., zero correlation between the banking and trading earnings; case (iv) is
with zero ρBT and αT . V is the model bank equity value in terms of the risk weighted assets. ∆V/V is the value
change relative to the base case value. αB is a (new) banking alpha that gives the same bank equity value as in the
base case. ∆αB is the difference between the base case αB and the new αB . DP denotes the default probability
during the next 100 years (by Monte Carlo simulation with 10,000 paths and time discretization ∆t = 1/365 a year).
E(∆X) and Std(∆X) are the annualized average and standard deviation of ∆X, respectively. u denotes the model
estimated dividend barrier.

Bank Cases V , % ∆V/V,% DP,% E(∆X),% Std(∆X),% αB ,% ∆αB ,% u,%

BAC (i) Base case 5.92 100.00 -0.68 1.67 0.80 2.58

(ii) αT = 0 5.92 0.00 100.00 -0.68 1.67 0.80 0.00 2.58

(iii) ρBT = 0 5.92 0.00 100.00 -0.68 1.67 0.80 0.00 2.58

(iv) αT , ρBT = 0 5.92 0.00 100.00 -0.68 1.67 0.80 0.00 2.58

CBSH (i) Base case 17.12 14.86 -0.02 0.69 0.28 2.45

(ii) αT = 0 17.12 0.00 14.86 -0.02 0.69 0.28 0.00 2.45

(iii) ρBT = 0 17.12 0.00 14.86 -0.02 0.69 0.28 0.00 2.45

(iv) αT , ρBT = 0 17.12 0.00 14.86 -0.02 0.69 0.28 0.00 2.45

FHN (i) Base case 7.50 84.67 -0.08 1.09 -0.31 3.12

(ii) αT = 0 4.92 -34.36 100.00 -0.79 1.36 0.16 0.47 1.89

(iii) ρBT = 0 7.50 0.00 84.67 -0.08 1.09 -0.31 0.00 3.12

(iv) αT , ρBT = 0 4.92 -34.36 100.00 -0.79 1.36 0.16 0.47 1.89

HTLF (i) Base case 8.06 68.76 -0.03 0.69 0.59 2.49

(ii) αT = 0 8.06 0.00 68.76 -0.03 0.69 0.59 0.00 2.49

(iii) ρBT = 0 8.06 0.00 68.76 -0.03 0.69 0.59 0.00 2.49

(iv) αT , ρBT = 0 8.06 0.00 68.76 -0.03 0.69 0.59 0.00 2.49

MTB (i) Base case 10.99 77.62 -0.08 0.92 0.89 2.20

(ii) αT = 0 10.92 -0.62 78.15 -0.08 0.92 0.89 0.01 2.21

(iii) ρBT = 0 10.99 0.00 77.62 -0.08 0.92 0.89 0.00 2.20

(iv) αT , ρBT = 0 10.92 -0.62 78.15 -0.08 0.92 0.89 0.01 2.21

STI (i) Base case 6.45 100.00 -4.05 4.31 0.66 0.96

(ii) αT = 0 6.45 0.00 100.00 -4.05 4.31 0.66 0.00 0.96

(iii) ρBT = 0 6.45 0.00 100.00 -4.05 4.31 0.66 0.00 0.96

(iv) αT , ρBT = 0 6.45 0.00 100.00 -4.05 4.31 0.66 0.00 0.96

TMP (i) Base case 15.76 30.67 -0.01 0.65 1.14 2.59

(ii) αT = 0 15.76 0.00 30.67 -0.01 0.65 1.14 0.00 2.59

(iii) ρBT = 0 15.76 0.00 30.67 -0.01 0.65 1.14 0.00 2.59

(iv) αT , ρBT = 0 15.76 0.00 30.67 -0.01 0.65 1.14 0.00 2.59

WFC (i) Base case 11.61 70.38 -0.04 0.95 0.83 2.69

(ii) αT = 0 11.61 0.00 70.38 -0.04 0.95 0.82 0.00 2.66

(iii) ρBT = 0 11.61 0.00 70.38 -0.04 0.95 0.82 -0.01 2.66

(iv) αT , ρBT = 0 11.61 0.00 70.38 -0.04 0.95 0.82 0.00 2.66

WTFC (i) Base case 5.45 97.55 -0.11 0.66 0.36 2.20

(ii) αT = 0 5.45 0.00 97.55 -0.11 0.66 0.36 0.00 2.20

(iii) ρBT = 0 5.35 -1.84 99.47 -0.16 0.70 0.37 0.01 2.22

(iv) αT , ρBT = 0 5.35 -1.84 99.47 -0.16 0.70 0.37 0.01 2.22
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3.5.5 Buffer Capital

We illustrate how our model explains cross-sectional variation in the banks’ buffer

capital ratios (equity capital ratios above the minimum capital level) before the

Volcker rule. Figure 3.2 represents the actual maximum capital buffer ratio against

the model predicted capital level taken to be the dividend barrier u in Table 3.1.

This plot uses banks’ maximum capital buffer ratios over 2000 Q1 – 2011 Q4 as the

measure of the actual buffer ratios.
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Figure 3.2: Actual vs. model buffer capital ratios for the sample banks. This figure shows
maximum buffer capital ratios (during 2000 Q1 – 2011 Q4) plotted against the corresponding model
dividend barriers. The filled triangles are with the banking and trading alphas and correlations equal
to their estimated values while the empty squares are with the statistically significant banking and
trading alphas and correlations ρBT , ρRE , ρRA and ρAE (the non-significant alphas and correlations
are zero). Linear regression lines are drawn in the figure. The numbers in the parentheses are the
standard deviations of the parameters.
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3.5.6 Comparative Statics

Figure 3.3: Comparative Statics. We use the following median parameter values over all the
banks: ζ = 95%, r = 2%, σB = 0.5%, σT = 2%, ρBT = −0.1, αB = 0.1%, αT = 3%, δ = 18%,
µA = 9%, σA = 7%, ρAE = −0.01, µR = 0.5%, σR = 1%, ρRE = −0.3, ρRA = 0.4 and x = 1%.
Figures below show how the value function (3.13d) and dividend barrier u change with respect to
banking proportion ζ, banking volatility σB , trading volatility σT , correlation between the banking
and trading earnings ρBT , banking alpha αB , trading alpha αT , risk-free rate r, and wedge between
debt and equity finance δ, mean asset growth rate µA, asset volatility σA, correlation between net
income earnings and assets growth return ρAE , correlation between assets growth return and net
recapitalization earnings ρRA, mean net recapitalization rate µR, net recapitalization volatility σR,
and correlation between net income earnings and recapitalization earnings ρRE .
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(3.4.1) Value function vs. banking proportion
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(3.4.2) Dividend barrier vs. banking proportion
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(3.4.3) Value function vs. banking volatility
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(3.4.4) Dividend barrier vs. banking volatility
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(3.4.5) Value function vs. trading volatility
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(3.4.6) Dividend barrier vs. trading volatility
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(3.4.8) Dividend barrier vs. correlation between
banking and trading earnings
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(3.4.10) Dividend barrier vs. banking alpha
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(3.4.11) Value function vs. trading alpha
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(3.4.12) Dividend barrier vs. trading alpha
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(3.4.13) Value function vs. risk-free rate
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(3.4.14) Dividend barrier vs. risk-free rate
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(3.4.15) Value function vs. wedge between debt and
equity
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(3.4.16) Dividend barrier vs. wedge between debt and
equity
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(3.4.17) Value function vs. mean asset growth rate
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(3.4.18) Dividend barrier vs. mean asset growth rate
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(3.4.19) Value function vs. asset volatility
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(3.4.20) Dividend barrier vs. asset volatility
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(3.4.21) Value function vs. correlation between net
income and assets
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(3.4.22) Dividend barrier vs. correlation between net
income and assets
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(3.4.23) Value function vs. correlation between assets
and recapitalization
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(3.4.24) Dividend barrier vs. correlation between as-
sets and recapitalization
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(3.4.25) Value function vs. mean net recapitalization
rate
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(3.4.26) Dividend barrier vs. mean net recapitaliza-
tion rate
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(3.4.27) Value function vs. net recapitalization
volatility
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(3.4.28) Dividend barrier vs. net recapitalization
volatility
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(3.4.29) Value function vs. correlation between net
income and recapitalization
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(3.4.30) Dividend barrier vs. correlation between net
income and recapitalization
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3.5.7 Default Probability

Figure 3.4: Default probability changes with varying model parameters for Bank FHN.
We analyze two banks (FHN and WFC) and how their default probability changes with respect to
model parameters. We consider two cases: case (i) is without the Volcker rule and case (ii) is under
the Volcker rule (no alpha bets). The first bank is FHN and we use its estimated parameters in Table
3.2. Figures below show how the default probability changes with respect to banking proportion
ζ, risk-free rate r, banking volatility σB , trading volatility σT , banking alpha αB , trading alpha
αT , correlation between the banking and trading earnings ρBT , correlation between net income
earnings and net recapitalization earnings ρRE , correlation between assets and net income earnings
ρAE , correlation between net recapitalization earnings and assets ρRA, assets growth rate µA, net
recapitalization returns on assets µR, assets volatility σA, net recapitalization volatility σR, wedge
between debt and equity finance δ.
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Figure 3.5: Default probability changes with varying model parameters for Bank WFC.
The second bank is WFC and we use its estimated parameters in Table 3.2. Figures below show
how the default probability changes with respect to banking proportion ζ, risk-free rate r, banking
volatility σB , trading volatility σT , banking alpha αB , trading alpha αT , correlation between the
banking and trading earnings ρBT , correlation between net income earnings and net recapitalization
earnings ρRE , correlation between assets and net income earnings ρAE , correlation between net
recapitalization earnings and assets ρRA, assets growth rate µA, net recapitalization returns on
assets µR, assets volatility σA, net recapitalization volatility σR, wedge between debt and equity
finance δ.
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CHAPTER IV

Conclusion

Our goal of this study is to develop a framework with which we are able to measure

and analyze the impact of Volcker rule on banks’ market equity value and default

probability. We have developed two models in which a bank aims to maximize its

expected future dividends i.e. the bank’s market equity value. The models divide

banks’ trading into alpha bets and hedging of basic banking cash flows. We assume

that the Volcker rule can be implemented and that it bans alpha bets or all trading.

We have shown that if the alpha of a bank’s trading strategies and the correlation

between its trading and banking cash flows are both zero then it is optimal for the

bank not to trade at all.

Further, we calibrate the models to a sample of twelve U.S. banks. We use these

banks because for them required accounting data for our analysis is available in

the Compustat Database. Our empirical results with the limited accounting data

indicate that the equity value of the banks would fall on average by about 1% (in

the assets-weighted sense) due to the Volcker rule, this fall could be compensated

by raising loan margins by about 1 basis point, and that the rule would increase

the banks’ default probability on average. The default probability rises because the

rule cuts the banks’ profitable operations. As a robustness check, we have confirmed
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that the decreased equity value and increased default probability in the results of

our sample banks are consistent with the case of a bank with hedge fund parameter

estimates.

Our analysis is based on the pre-Volcker rule situation under which several banks

may have had profitable or unprofitable trading due to certain economic conditions.

We do not know if the trading profits are sustainable and how they are generated

(could be partly due to market making). However, we have shown that the rule

can raise the default probability of a bank even under a small trading alpha. We

ignore implementation costs and risks of the regulation. These important issues are

considered in other papers. However, even under our stylized model that assumes

that the rule can be implemented without costs, its benefits are unclear.

The Volcker rule may have unintended consequences such as increasing default

probability of a bank and therefore harming the stability of the U.S. financial system.

Those need to be analyzed and measured.
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