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CHAPTER I

Introduction

In this paper we compute the image of stable, nilpotent combinations of orbital

integrals under the transfer map for the Lie algebra of the p-adic group G2.

1.1 Motivation

Let k be a p-adic field with Weil group Wk. Let GL be the Langlands dual group

of G. The Local Langlands program, stated roughly, conjectures a correspondence

between continuous homomorphisms (called L-parameters) v : Wk → GL and collec-

tions of complex, irreducible, admissible representations of (pure inner forms of) G.

The Langlands correspondence is supposed to carry certain number theoretic data

associated to the L-parameters to certain representation theoretic information of

the members of the L-packets. Furthermore, for nice morphisms between Langlands

dual groups, Langlands conjectured a relation amongst the L-packets of the original

groups.

The simplest, interesting case of a map between Langlands dual groups was ex-

plored by Kottwitz, Langlands, and Shelstad [Kot3, LanShe]; in which one takes the

root system ΦG of a fixed group G and looks at all inclusions of sub root systems
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ΦH that come about in a nice way. There is a reductive k-group H with the same

character lattice as G but with ΦH as its root system. Such inclusions of root systems

give a map from geometric, semisimple conjugacy classes in H to those of G which,

with a little work, becomes a map of ’stable’ invariant distributions. If a distribu-

tion DH maps to a distribution D under this process we call D a transfer of DH .

Conjecturally, to each L-packet Πv of H we should be able to find a canonical stable

combination of the characters of the members of Πv, call it SΘH
v . As an application,

one expects that for a fixed G, as one varies H over all endoscopic groups and v over

all Langlands parameters of the various H, the C-span of the transfers of all SΘH
v

should contain the characters of all admissible, irreducible representations of G. This

is very satisfying for a p-adic group theorist because it moves the Langlands Corre-

spondence from a classification of L-packets to a classification of representations.

Work of Kottwitz and Waldspurger has reduced to the Lie algebra many interest-

ing questions in the Langlands program. Particularly, we have a theory of endoscopy

on the Lie algebra that is analogous to that of the group with the added benefit that

it is more computationally tractable. Where before we had L-packets split up by

endoscopic character identities, now we have stable combinations of orbital integrals

that are split up by the image of stable combinations on Lie algebras of endoscopic

groups.

Of particular interest is the cone of nilpotent elements within the Lie algebra.

These are the singular limits of semi-simple classes. A theorem of Harish-Chandra

gives that the character of a representation can be written as a sum of Fourier trans-

forms of nilpotent orbital integrals on a neighborhood of the identity. Furthermore,
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the nilpotent elements have a rather refined, interesting structure theory, lending

hope that additional structure can come into play. Hence, it is a natural question

to work out the theory of endoscopy for the nilpotent cone in a Lie algebra in the

hopes that such a theory provide insight into the theory for representations of groups.

1.2 Prior Results

The problem of computing the stable, nilpotent distributions and their image un-

der the endoscopic transfer maps is undertaken and solved for classical groups in the

book of Waldspurger [W3]. We map out Waldspurger’s approach:

1. Waldspurger proves a homogeneity theorem which roughly says that the re-

striction of the nilpotent invariant distributions to a specified subspace of the

smooth functions is the restriction of the invariant distributions supported on

compact elements to that same subspace.

2. One then constructs a basis for the G-orbits for the left translation action in the

subspace of the smooth functions in question utilizing lifts of Lusztig’s general-

ized Green functions. One writes distributions dual to each of these generalized

Green functions that are constructed explicitly from orbital integrals coming

from regular, semisimple elements.

3. Galois cohomology results for tori of Kottwitz and a little further effort pro-

vide enough tools to understand the stability of the tori constructed in step 2.

These Galois cohomology computations determine exactly which combinations
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of the distributions dual to lifts of generalized Green functions are stable. There

is an additional, technical trick here that we shall refer to in the body of the text.

4. Using the homogeneity theorem from part 1 and our stable combinations from

part 3, we expand our stable combinations from part 3 in terms of nilpotent

orbital integrals. These expansions give us a basis for the stable nilpotent in-

variant distributions. This step is somewhat elaborate and requires a series of

technical tools, including formulas of Kawanaka and Lusztig on Gelfand-Graev

characters. Waldspurger uses this stable basis to write down all stable combina-

tions of nilpotent orbital integrals for all elliptic, unramified endoscopic groups

of G.

5. Waldspurger then writes explicit transfers for all generalized Green functions,

which in turn provides transfers of our stable distributions in part 3, which,

via homogeniety arguments, provides the image under the transfer map of the

stable, nilpotent combinations from part 4.

Waldspurger’s program for attacking such problems has proven fairly amenable to

generalization to all reductive, p-adic groups. DeBacker generalized the homogeneity

theorem to general groups in [D1]. Major (and inspiring to the author of this work)

progress was made in generalizing Waldspurger’s program in the paper of DeBacker

and Kazhdan [DKaz1], which worked out step 2 in detail for Green functions, and, in

the case of G2, for Lusztig functions. DeBacker and Kazhdan then go on to execute

steps 3 and 4 for the group G2, producing the stable, nilpotent orbital integrals on
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the Lie algebra of G2. A follow-up paper worked out step 2 for all Lusztig functions

[DKaz2]. The work of Kazhdan and Varshanksy [KazV] found ‘nice transfers of the

Green functions (but not, to the author’s knowledge, the Lusztig functions) in part 2

in complete generality. Particularly, they found that the transfer of a Green function

was an explicit combination of related Green functions with some explicitly deter-

mined signs defined originally by Weil.

1.3 New Material, a Road Map to this Paper

Our goal was to finish Waldspurger’s program for G2. Specifically, we have found

the nilpotent, stable distributions for the Lie algebras of the endoscopic groups of

G2 and found methods to transfer them to g2, the Lie algebra of G2. As G2 is an

exceptional group, we must use a different parameterization of the structure theory

than that used by Waldspurger. For this, we go to results of DeBacker [D2]. [D3].

We must then construct various generalized Lusztig functions and distributions dual

to them. Most of these constructions and Lemmas are close to the results of De-

Backer and Kazhdan, but some (slightly) new arguments are required to deal with

SO4, which occurs as an endoscopic group of G2. Homogeneity arguments suffice

to compute the image of transfer for all groups but SO4, and all stable, nilpotent

combinations in so4, the Lie algebra of SO4, except the two composed of subregular,

nilpotent orbits. Finally, we generalize a trick we learned from DeBacker and Kazh-

dan by transferring twists of the stable combinations so that we can work out the

image in g2 of the subregular orbits in so4.

In Chapters 2, 3, and 4 we lay out the basics of Bruhat-Tits theory, harmonic
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analysis, and Galois cohomology that we shall require. Chapter 5 is devoted to the

definition of endoscopic groups and transfer factors following Kottwitz [Kot3] and

Waldspurger [W1]. Chapter 6 constructs the needed generalized Green functions,

focusing on concrete definitions for the cases of interest. Chapter 7 constructs the

various distributions we need. Up to this point everything is general.

Chapter 8 starts the computations particular to G2. We describe the structure

theory of all endoscopic groups and write down all the distributions from part 6

that we need. Chapter 8 contains all the various cohomology computations we need.

We also build a basis for the stable part of the distributions dual to the generalized

Green functions in Chapter 8. Chapter 9 contains our Gelfand-Graev character com-

putations. The computations in Chapter 9 allow us to relate the distributions that

are dual to generalized Green functions to nilpotent orbital integrals. Here we make

some slight improvements on the work of DeBacker and Kazhdan that we expect will

be useful for higher rank groups. The work on SO4 is new.

Chapter 11 then computes all stable, nilpotent distributions on all endoscopic

groups of G2. Chapter 12 proves some small (but delightful!) lemmas that we re-

quire to execute the transfer, and chapter 13 computes the image of the transfer

map. For the majority of the transfer map, homogeneity arguments combined with

some easy non-vanishing results suffice to solve the problem, but to compute the

image of the subregular orbits in so4, some creativity is required. It is fairly likely

the trick used can be combined with a more general formula of Lusztig for writing

Gelfand-Graev characters in terms of Deligne-Lusztig representations to get inter-

esting, general results.
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In the appendix we include our computations of Gelfand-Graev characters and

their pairings with Green functions on G2 and SO4. These computations are first

done for SL2, then bootstrapped to SO4. Here, Kawanaka’s formula fails, but Lusztig

has a general formula that applies to this case [Lus1]; however, as SO4 is quite easy

to work with directly, we simply work everything out explicitly. The rest of the ap-

pendix works out the case of G2. I am in rough agreement with DeBacker-Kazhdan,

but skip one adjustment on the p-adic level and hence compute slightly different

factors that arise in Kawanaka’s formula.
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I was fortunate to have excellent teachers in Mitya Boyarchenko, Stephen De-

Backer, and Gopal Prasad. All three generously offered their time and ideas. Stephen

DeBacker in particular showed great kindness, patience, and an incredible ability to

clarify difficult topics over the course of this project. It is a great pleasure to thank

all of them.



CHAPTER II

Basics and Bruhat Tits Theory

In this section we recall the structure theory for a reductive p-adic group. Our

notation will defer to that of DeBacker and Kazhdan in [DKaz1]. Before we begin I

would like to point out that we shall eventually consider only split groups and tori

over fields of large residual characteristic (relative to the rank of the groups). These

assumptions significantly reduce the level of caution needed in our definitions. The

theory of the building developed here was done first in [BT1, BT2, and MP].

2.1 Basic Structure Theory

Let k be any field. Let k̄ be a fixed algebraic closure of k. Let Gal(k̄/k) = Γ

be the absolute Galois group of k. Let V be any k-variety. If A is a k-algebra, let

V(A) be the group of A-points of V and V = V(k). We denote by σv the action of

σ ∈ Γ on v ∈ V. Let G be a k-group, by which we mean G is both a k-variety and a

group with both the multiplication map and the inversion map being k-morphisms.

Let g be the Lie algebra of G, again thought of as a k-variety. For any G-space

X with action (g, x) → g.x and S ⊂ X, let ZG(S) = {g ∈ G|g.x = x∀x ∈ S} be

the fixator of S and NG(S) = {g ∈ G|g.S = S} be the stabilizer of S. We write

NG(S) = {g ∈ G|g.S = S} and ZG(S) = {g ∈ G|g.x = x∀x ∈ S} as well. Note that

8
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when X is a k-variety with k-action by G and S ⊂ X is closed in the Zariski toplogy,

both ZG(S) and NG(S) are naturally k-varieties. For X ∈ g(k̄) we shall sometimes

write GX for ZG(X). For g ∈ G(k̄) and X ∈ g(k̄) we will write gX for X acted on

by g via the adjoint action.

We now add the hypothesis that G be a k-quasi split reductive k-group. Let TG

be a maximal k-torus contained in BG, a Borel k-subgroup of G. To such a pair

(TG,BG) let the quadruple (X∗(G,TG),Φ, X∗(G,TG), Φ̌) be the root datum of G

with choice of positive roots ∆G corresponding to BG. As usual, the reflections in

X∗(G,TG) ⊗ R over the hyperplanes on which the roots vanish generate the Weyl

group of TG in G, W(TG,G)
∼= NG(TG)/ZG(TG). Given two maximal tori T′ and

T′′ we shall mean by W (T′,T′′) the set of cosets T′g with gT′ = T′′. We shall write

WT for NG(T )/ZG(T ), which may not be the k-points of WT. Note that not all the

roots need be defined over k, however all of these objects are acted on by Γ. If one

changes to a different maximal k-torus of G, the datum stays the same, however the

Γ-action and the fields of definition of the various roots may be altered. We will

occasionally drop arguments and subscripts when no confusion is possible.

Let gα be the eigenspace of g where TG acts by the root α. Then g = tG ⊕α∈∆

gα ⊕α∈∆ g−α. Note that bG = tG ⊕α∈∆ gα and we get another Borel subgroup called

Bop
G that has corresponding Lie algebra t⊕α∈∆ g−α.

For any field F, a splitting of any reductive, F split, F-group is a collection

(T,B, {Xα}α∈∆) where T < B is a F-split, maximal F-torus contained in a Borel

F-subgroup, ∆ the corresponding set of positive roots and each Xα ∈ gα is non-zero
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with the relations σXα = Xσα for all σ ∈ Gal(F̄/F) and α ∈ Φ.

We now introduce notions special to the case of a p-adic, reductive group. Let k

be a p-adic field with finite residue field f. Let R be the ring of integers of k. Let P

be the maximal ideal of R. Let K be the maximal unramified extension of k in the

fixed algebraic closure k̄. Let F be the residue field of K. Then F may be identified

with f̄. For any extension E/K let RE be the ring of integers of E and let PE be the

maximal ideal of RE. Let Γun =Gal(K/k). Let Frobf be a topological generator for

Gal(F/f), and let Frobk be a topological generator for Γun lifting Frobf. Let q = |f|.

Let ν be a discrete, non-trivial Z-valued valuation of k. This valuation extends to K

uniquely. This valuation provides a norm and hence a p-adic toplogy on the field k

that passes to the k-points of any k-variety. In order to make our work more explicit,

we fix a uniformizer $ of R, so P = $R.

Let H be a reductive, complex group on which Γ acts. We call this action an

L-action if Γ fixes some splitting of H. A dual group for G, denoted Ĝ is a re-

ductive, complex group with root datum (X∗(G), Φ̌, X∗(G),Φ) and any L-action of

Γ. Any two dual groups for G are isomorphic, and any two Γ-fixed splittings are

ĜΓ-conjugate (See [Kot1, section 1.5), so we can safely consider Ĝ unique. For any

topological group G1, we shall also use the Pontryagin dual of a group G1, which is

the set of characters of irreducible, complex representations of G1. We will only use

the Pontryagin dual for abelian or finite groups, so there are no topological or finite

dimensionality difficulties to consider. We shall denote the Pontryagin dual of G1 by

GD
1 to distinguish it from the dual group we just defined.
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If G is k-split, after fixing a Borel BG containing a maximal k-split k-torus SG

with set of positive roots ∆G, one may compute the root datum with respect to

this maximal, k-split torus SG and the resulting Γ action on the root datum is

trivial. Furthermore, one gets a Chevalley basis subordinate to (SG,BG) of g,

{Xφ, Hδ|φ ∈ Φ, δ ∈ ∆G} with Hδ ∈ sG(k), Xδ ∈ gδ(k) ⊂ bG(k), and X−δ. ∈ bopG(k)

with all commutators in SpanZ{Xφ, Hδ}. As is, there are many options for Chevalley

bases. We shall pick a particular Chevalley basis in the near future.

2.2 Bruhat Tits Theory

Let E be a Galois extension of k. Let B(G, E) be the Bruhat-Tits building of

G(E). Let B(G) be B(G, k). We may identify B(G) with B(G, K)Γun . To each maxi-

mal k-split torus S in G we may associate an apartment A(S) = A(S, k) ∼= X∗(S)⊗R

in B(G, k). We identify B(S, k) with A(S, k). Recall that ν is our discrete valuation.

Let Ψ = {ν ◦ φ + n : S → Z|φ ∈ Φ, n ∈ Z} be the set of affine roots of G with

respect to S and ν. There is a natural pairing ZΦ× ZΦ̌→ Z that can be extended

to Ψ× Φ̌→ Z. This lets us think of the affine roots as functions on A(S) with their

zero sets giving a simplicial decomposition of A(S). We call the simplicies in this

decomposition facets. We have a partial order on facets given by F < F ′ if F̄ ⊂ F̄ ′.

A maximal facet is called an alcove, while a minimal facet is called a vertex. The

reflection group generated by all zero sets of all affine roots of G with respect to S

is called the affine Weyl group W aff
(G,S). The normalizer NG(T ) acts on A(T ) while G

acts on B(G) by simplicial isometries. The stabilizer of an alcove C is called ΩC or

‘the omega group of C.’ For any two alcoves C, C ′ in B(G) there is some g ∈ G such

that gC = C ′.
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To each point x ∈ B(G, K), Bruhat-Tits theory associates a smooth, RK-structure

on G. When x ∈ B(G) the resulting RK-structure is even a R-structure. In the latter

case let Gx be the resulting R scheme while in the former we are forced to let Gx

be only a RK group-scheme. In either case, denote the RK points of Gx by G(K)x.

The result is a parahoric subgroup of G(K). Of course, in the special case x ∈ B(G)

we may look at the Rk points G(k)x to get a parahoric of G, and G(K)Γun
x = G(k)x.

Let G(K)+
x be the pro-unipotent radical of G(K)x. There is a connected, F-group

such that Gx(F) = G(K)x/G(K)+
x . The groups that arise depend only on the facet

F to which x belongs, so we will frequently say G(K)F , G(K)+
F , and GF rather than

worrying about choosing a point within F . For a point x ∈ B(G) the root system

attached to x is the set of all vector parts of the affine roots that vanish at x. We

call a point x special if φx contains a multiple of every root in φ. We call a vertex x

hyperspecial if it is special in B(G, K) and G is k-quasi split.

Following Moy-Prasad we can define RK structures on g(K) yielding g(K)x,

g(K)+
x , g(K)F , and g(K)+

F . Let LF be the Lie algebra of GF . Then LF (F) ∼=

g(K)F/g(K)+
F . Let ψ̇ be the vector part of the affine root ψ. In the case that x

lies in the zero set of some affine root ψ we will also look at g(K)ψ = gψ̇ ∩ g(K)x.

This does not depend on which x we pick in the zero set of ψ, as any two points will

differ by an element of the zero set of ψ and hence not effect the valuations allowed

for the ψ̇ root subspace. For X ∈ gF , we shall sometimes let X̄ denote the image in

LF (F) of X and likewise ḡ for the image of g ∈ G(k)x in Gf (f).

In Chapter 12 we will need to do some depth r analysis. Again from Moy-Prasad,
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for any r ∈ R we also get depth r filtrations, gx,r, on the Lie algebra. We let

gr = ∪x∈B(G)gx,r.

Let G0 = ∪x∈B(G)Gx and G0+ = ∪x∈B(G)G
+
x . These are the compact elements

and the topologically unipotent elements of the group G respectively. Likewise,

g0 = ∪x∈B(G)gx and g0+ = ∪x∈B(G)g
+
x are the compact and topologically nilpotent

elements in the Lie Algebra g.

We now specialize to G2, the k-split k-group of type G2. Fix a preferred maximal,

k-split, k-torus of G2 called SG2 and a preferred Borel k-subgroup BG2 containing

SG2 . Let sG2 and bG2 be their respective Lie algebras. These choices specify an

apartment AG2 ⊂ B(G2) and a system of positive roots as before. Fix a preferred

hyperspecial vertex x0. Then there is exactly one alcove AG2 contained in AG2 and

containing x0 in its closure such that all the affine roots that vanish at x0 and who

have vector part equal to one of the simple roots corresponding to BG2 are positive

on AG2 . Fix that AG2 .

Fix a Chevalley basis {XG2
φ , HG2

δ } contained in gx0 . For every facet F ⊂ ĀG2 , we

can construct a Chevalley basis, {X̄G2,F
φ , H̄G2,F

δ }, of LF contained in LF (f), consisting

of images of elements of (g2)F (k) of the form {$iφ,FXG2
φ , HG2

δ } where iφ,F ∈ {0, ±1}.

We will use all these Chevalley bases to explicitly describe the various elements and

orbits in question. Subscripts and superscripts are surreptitiously absent when no

confusion is possible, and by convention elements of a Chevalley basis for a f-Lie al-

gebra appear with a bar overhead while that of a k-Lie algebra shall appear without

a bar.
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We shall need some method to determine facets in the buildings of the various

groups we consider. In DeBacker and Kazhdan [DKaz1] there is a beautiful param-

eterization of the facets of G2 relating the facets to the residue groups that occur

and some information about the length of the root. The facets that occur within the

confines of this paper occur with a great degree of degeneracy, in particular 2 pairs

of facets that cannot be easily distinguished occur in SO4. Furthermore, similar

degeneracies should arise with increasing frequency for higher rank groups, so we

adapt a somewhat more cumbersome notation that will fit our goals.

For a k-group G with alcove AG, and torus SG with AG ⊂ A(SG), let ΨA be the

collection of all affine roots with respect to SG with zero sets intersecting ĀG and

that are strictly positive on AG. For S ⊂ ΨAG , FS = ∩ψ∈S{x ∈ ĀG|ψ(x) = 0}.

For example, for G2 with the alcove chosen by DeBacker and Kazhdan, ΨA =

{α, β, 1 − 3α − 2β}. The vertex of type G2 is F{α,β}, the vertex of type SO4 is

F{α,1−3α−2β}, the facet of type SL3 is F{β,1−3α−2β}, the longest 1 dimensional facet in

ĀG2 is F{β}, the second longest 1 dimensional facet is F{α}, the shortest 1 dimensional

facet is F{1−3α−2β}, and AG2 = F∅.

2.3 Jacobson-Morosov Theorem and Corresponding Filtrations

Let G be a reductive, k-quasi split k-group. Let N (g) be the nilpotent variety of

g and U(g) be the unipotent variety of G. Let gs.s. be the semisimple elements of g.

Let greg be the elements of g with dim ZG(X) minimal. Let greg.s.s. be the regular,

semisimple elements, that is the elements X s.t. ZG(X)0 is a torus, and gs.r.s.s. be
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the strongly regular semi simple elements of g, that is X ∈ g such that ZG(X) is a

torus.

Fix X ∈ N (g)(k). After making certain assumptions on p (p > h + 2 where h

is the Coxeter number of the group suffices), the Jacobson-Morosov theorem assures

the existence of a triple (X,H, Y ) with the following properties:

• [X, Y ] = H, [X,H] = 2X, [H, Y ] = 2Y , and

• The k-linear span is closed under the Lie bracket of g and Spank({X, Y,H}) ∼=

sl2.

• We have a co-character µ ∈ X∗(G) with dµ(1) = H.

Let g(i) be the i eigenspace of Ad(H). Let g(≥ j) = ⊕i≥jg(i). All these defi-

nitions also make sense over f. Fix a facet F ⊂ B(G) and e ∈ N (LF )(f) lifting to

X ∈ N (g)(k) then we can choose a compatible triple (e, f, g) of elements of LF (f)

such that (e, f, g) lifts to (X, Y,H).

We will require that the residual characteristic of our p-adic field be sufficiently

large so that the following conditions are met:

• Every torus of every group we will encounter will be at worst tamely ramified.

• The exponential map of every reductive group over a finite field we encounter

will be a k-isomorphism between that group’s nilpotent and unipotent varieties.

• Jacobson-Morosov triples will exist for every group and Lie algebra encountered.

• All Killing forms we encounter will be non-degenerate.



16

• We assume that every torus contains a strongly regular semi-simple element.

These restrictions eliminate finitely many characteristics when working with a

fixed group. While some of these assumptions are not particularly demanding, re-

moving the first would certainly require wildly different techniques than we have

available in this paper. This would be the most interesting assumption to remove,

and the most likely to be of interest for (far) future applications.



CHAPTER III

Some Harmonic Analysis

In this chapter we recall some definitions and theorems on harmonic analysis for

reductive, p-adic groups.

3.1 Various Spaces of Functions

Let V be a variety defined over f and let W be a variety defined over k. Let

e be a finite field extension of f and E be a finite, unramified field extension of k.

For U ⊂ W(E) (or U ⊂ V(e)) let [U ] be the characteristic function of U . That

is, [U ] : W(E) → C is defined by [U ](x) = 1 if x ∈ U and [U ](x) = 0 otherwise.

In the special case where U = {x} is a one element set we shall write [x] for [{x}].

Define the space C∞c (V(e)) of all C-valued functions on V(e). Any extension of the

discrete valuation on k to E gives a topology on E called the p-adic topology. This

topology extends to a topology of W(E), again called the p-adic topology on W(E).

Let C∞c (W(E)) denote the space of locally constant, compactly supported C-valued

functions on W(E), with the topology on W(E) given by the p-adic topology rather

than the Zariski topology. For X ⊂ W(E) we can restrict the p-adic topology on

W(E) to X and write C∞c (X) for the locally constant, compactly supported C-

valued functions on X.

17
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3.2 Haar Measure and the Fourier Transform on the Lie algebra

Let µG be the Haar measure on G with measµG(G(k)+
F ) = |LF (f)|− 1

2 for all facets

F , and µg be the Haar measure on g(k) with respect to the additive group of the

underlying vector space with measµg(g(k)+
F ) = |LF (f)|− 1

2 . This normalization is inde-

pendent of the facet chosen. We shall occasionally suppress the measure when writing

integrals, writing
∫
f(g)dg rather than

∫
f(g)dµ(g). Let B(X, Y ) = tr(ad(X) ad(Y ))

be the Killing form, which, by our assumptions on p, is nondegenerate. Fix a non-

trivial character on R/P and lift and extend it to Λ, a character of k. Note that by

construction, Λ also gives an unique character of f ∼= R/P which we shall also call

Λ. For f ∈ C∞c (g) define the Fourier transform of f to be:

F(f)(X) =
∫

g
Λ(B(X, Y ))f(Y )dY

For F ⊂ B(G) a facet, LF is a variety over f, so we have C∞c (LF (f)). We shall fre-

quently compare C∞c (g(k)F ) with C∞c (LF (f)). For f ∈ C∞c (LF (f)), define its Fourier

transform f̂ ∈ C∞c (LF (f)) to be:

f̂(X̄) = |LF (f)|− 1
2 ΣȲ ∈LF (f)Λ(B(X̄, Ȳ ))f(Ȳ )

If F is a facet in B(G) and f is a function on LF (f) then for all X ∈ g(k)F let

fF (X) = f(X̄) and extend by zero to all of g(k). We call fF the ‘lift of f .’ Note

fF ∈ C∞c (g(k)F ) ⊂ C∞c (g(k)). We have chosen our normalizations for Haar measures

and the Fourier transform on C∞c (LF (f)) so that (f̂)F (X) = F(fF )(X).
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Our Haar measure gives us an inner product on C∞c (g(k)) defined by the equation

< f, g >=
∫

g
f̄(x)g(x)dx, where z̄ denotes complex conjugation for z ∈ C. The fact

that both f and g are compactly supported eliminates any convergence questions.

The fact that G is reductive and hence unimodular implies this measure is conjuga-

tion invariant. While C∞c (g(k)) is not complete with respect to the metric induced

by this inner product, it at least allows us to discuss orthogonality in a sensible way.

3.3 Basics on Induction and Restriction

For any reductive f-group G with Lie algebra L we have defined C∞c (L(f)). Let

CG(L(f)) ⊂ C∞c (L(f)) be the subset of G(f)-invariant functions on L(f). There is a

pairing (f, g)L on C∞c (L(f)) invariant under the adjoint action of G(f) defined by:

(f, g)L = ΣX̄∈L(f)f̄(X̄)g(X̄)

Where, for z ∈ C, we use z̄ to denote complex conjugation.

Given a parabolic f-subgroup P < G with Levi decomposition into f-subgroups

P = MU, with Lie algebras p = m⊕ u, we can define a map IndG
P : CM(m)→ CG(g)

by:

IndG
Pf(X̄) = 1

|P(f)|Σ(x̄,Z̄,Ȳ )∈G(f)×u(f)×m(f)f(Ȳ )[X̄](x̄(Ȳ + Z̄))

We also get the restriction map rG
P : CG(L(f))→ CM(m(f)) defined by:
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rG
Pf(Ȳ ) = 1

|G(f)||U(f)|Σ(z̄,Z̄)∈G(f)×u(f)f(z̄(Ȳ + Z̄))

As usual, we have (rG
Ph, f)m = (h,IndG

Pf)g. If rG
Pf = 0 for all proper parabolic

f-subgroups P < G, we call f cuspidal.

We shall need a similar definition of cuspidality over k. For a k-split reductive k-

group G fix a hyperspecial vertex x. Let K = Gx. Fix a parabolic k-subgroup P with

Levi decomposition P = MN and k-points P = MN and with Lie algebras p = m⊕n.

Then as N is a closed subgroup of G, we can restrict the Haar measure of G to pro-

vide a left-invariant measure on N . We can define a map f → fP : C∞c (g)→ C∞c (m)

given by the formula:

fP (Y ) =
∫
K

∫
n
f(k(Y + Z))dZdKk

Now let G be a p-adic, reductive group. Say H ⊂ F̄ ⊂ B(G) are two facets.

Then G+
H ⊂ G+

F ⊂ GF ⊂ GH and GF/G
+
H can be identified with the P(F) for

some parabolic f subgroup of GH . Additionally, U(P)(f) ∼= G+
F/G

+
H and any Levi

f-subgroup part of P is isomorphic to GF . Similar results hold for gF , gH , etc. We

shall let IndHF =IndGH
P and rHF = rGH

P .

3.4 Orbital Integrals and Invariant Distributions

Fix Y ∈ g. Let OY be the G-orbit of Y . Note OY ∼= G/ZG(Y ). By work of Ranga

Rao and Deligne [R] there is an unique up to scaling G-invariant measure on OY

which induces an invariant distribution on C∞c (g) we shall denote by µY . We call µY
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the ‘orbital integral associated to Y .’ In this case we normalize the measure on OY

to be the quotient measure derived from G.

Say X ⊂ g. Let N be the nilpotent variety of g. For any (possibly infinite) di-

mensional C-vector space V let V ∗ be the linear dual of V . Let D(X) = (C∞c (X))∗,

called the distributions supported on X. If S ⊂ C∞c (X), let D(X,S) = S∗ and we

get a restriction map resS : D(X)→ D(X,S). If Y ⊂ X then we can identify D(Y )

with the subspace {T ∈ D(X)|∀f with supp(f) ∩ Y = ∅, T (f) = 0} contained in

D(X) via the map E : D(Y ) → D(X), ET (f) = T (f |Y ). For any smooth function

f on X and any g ∈ G let gf(x) = f(gx). We call a distribution on X G-invariant

if T (xf) = T (f) ∀f smooth, supported on X. Let J(X) be the space of G-invariant

distributions supported on X. We will be particularly interested in J(N (k)), the

invariant distributions supported on the nilpotent set. The following results are

known: [H-C]

Theorem III.1. (Harish-Chandra):Let K = {f ∈ C∞c (g)|µX(f) = 0 for all X ∈

greg,s.s.}. Say T ∈ D(g). Then T ∈ J(g) if and only if res KT = 0.

Theorem III.2. (Harish-Chandra):SpanC{µN |N ∈ N (k)} = J(N (k)). In particu-

lar, for p-adic reductive groups dimCJ(N (k)) <∞.

Less well known is the following definition: for X ∈ greg,s.s., let {Xσ} be a choice

of representatives of the rational conjugacy classes in the geometric conjugacy class

of X. Then µstabX = ΣσµXσ is an invariant distribution that does not depend on the
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choice of the Xσs. Let Kstab = {f ∈ C∞c (g)|µstabX (f) = 0 for all X ∈ g}. We say

that a distribution T ∈ D(g) is stable if resKstabT = 0. Let Jst(X) be the stable

distributions supported on the set X ⊂ g.

Recall that we have fixed an alcove A ⊂ B(G). Define the space of functions

D0 = ΣA′⊂B(G)C
∞
c (g/gA′), where the sum is over all A′ alcoves in B(G). Let

D0
0 = ΣF⊂ĀC

∞
c (gF/gA). Let D0+ = Σx∈B(G)C

∞
c (g/g+

x ). Notice that the Fourier

transform maps C∞c (g0) to D0+ .

Theorem III.3. (DeBacker,Waldspurger)[D1, W3]:resD0J(g0) =resD0J(N ) and for

T ∈ J(g0), resD0T = 0 if and only if resD0
0
T = 0.

The Fourier transform of a distribution is given by the formula T̂ (f) = T (f̂).

We shall also need the following theorem of Harish-Chandra:

Theorem III.4. (Harish-Chandra):Let h be a cuspidal function on g. The function

G→ C given by g →
∫

g
f(gZ)h(Z)dZ is smooth and compactly supported.

Theorem III.5. (Waldspurger)[W3]:Say T ∈ Jst(g0). By Theorem 2.4.3:

resD0 T = ΣO∈N (k)/G(k)cO(T )µO

Then: ΣO∈N (k)/G(k)cO(T )µO is itself stable.



CHAPTER IV

Galois Cohomology

This chapter covers basics on Galois cohomology that we shall use in our compu-

tations. While some results in this section could be stated for mildly more general

fields (namely those of cohomological dimension ≤ 1), we shall restrict our attention

to the case where k is p-adic. We will frequently use that the Galois group of an

unramified extension of k and of a tamely, totally ramified extension of k are both

pro-cyclic. In this chapter, we shall attempt to explicitly write the Galois group

we are computing cohomology of to assist the reader in following the arguments.

Reader be warned: we shall occasionally identify a cocycle representative with its

cohomology class.

4.1 Rational Orbits in a Geometric Class

Suppose V is a k-variety. Let G act on V via k-automorphisms. Say x ∈ V . We

will often be interested in G(k̄)x∩V . Note G(k̄)x ∼= [G(k̄)/ZG(x)(k̄)] as k-varieties in

all cases we shall study. Consider the exact sequence:

0→ ZG(x)→ G→ G/ZG(x)→ 0

23
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Taking k points we get the long exact sequence:

0→ ZG(x)→ G→ [G/ZG(x)](k)→ H1(Gal(k̄/k),ZG(x))→ H1(Gal(k̄/k),G)

We are interested in G-orbits in [G/ZG(x)](k). This set is in bijection with

coker[G → [G/ZG(x)](k)] =ker[H1(Gal(k̄/k),ZG(x)) → H1(Gal(k̄/k),G)]. More

explicitly, let y ∈ Gx∩ V . Then y = g.x where g ∈ G(k̄). For σ ∈Gal(k̄/k), we have

g.x = y = σy = σ(g.x) = σg.σx = σg.x therefore x = (g−1)(σg).x, so we get a cocyle

aσ ∈ ker[H1(Gal(k̄/k),ZG(x))→ H1(Gal(k̄/k),G)].

When k is p-adic or finite, H1(Gal(k̄/k,G) is finite. For more details, see Serre’s

book [Ser] for a proof of this result for fields of cohomological dimension ≤ 1, which,

in particular, covers both k finite and k p-adic. We shall call the G(k̄)-orbits on

V(k̄) ‘geometric orbits’ and the G-orbits in V ‘rational orbits.’ In the case when

V = G or V = g with G acting by conjugation and the adjoint action respectively,

we shall say say ‘x is a geometric conjugate of y’ when ∃g ∈ G(k̄) s.t. g.x = y, and

when y ∈ Gx ∩ V we shall say ‘x is a rational, geometric conjugate’ of y. When x is

strongly regular semi simple, we may say that ‘y is stably conjugate to x.’ This def-

inition agrees with the language of Kottwitz [Kot1, Kot2, Kot3] because centralizers

of strongly regular elements are connected.

For reductive, p-adic groups we have the following beautiful result of Kottwitz:

H1(Gal(k̄/k),G) ∼= (π0(Z(Ĝ)Γ))D. We shall make great use of the Kottwitz isomor-

phism both to compute the order of these kernels and to write down transfer factors

later. For a proof, see Kottwitz [Kot1]. We shall also use the fact that for inclusions
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of maximal k-tori into reductive k-groups the Kottwitz isomorphism is functorial-

Kottwitz [Kot2 Theorem 1.2].

Lemma IV.1. Let K be a pro-cyclic group with free generator that acts on groups

A, B, and C. Let 0 → A → B → C → 0 be an exact sequence of K-groups with

im(A) < B a normal subgroup. Then the induced map H1(K,B) → H1(K,C) is

surjective.

Proof. :Let σ be a topological generator for K. Let π be the surjective map B → C.

Say cτ is a cocycle in H1(K,C). Then for all n ∈ N, cσn = c(σc)(σ
2
c)...(σ

n−1
c). Fix

any lift b of cσ. Since σ topologically generates K with no relations, we can define a

cocycle in H1(K,B) by setting bσn = b(σb)(σ
2
b)...(σ

n−1
b) and extending continuously

to K. As π is a K-equivariant map, π(σ
j
b) = σjc, so π(bσn) = cσn . As π(bτ ) = cτ on

a dense subset of K, π(bτ ) = cτ and our lemma is proved.

We will need to use this basic computation in several places:

• When considering unramified tori in a p-adic reductive group (section 8.1).

• When considering nilpotent orbits in the Lie algebra of a p-adic reductive group

(section 8.2).

• When considering the stable conjugates of a strongly regular semi simple element

in the Lie algebra (sections 9.1 and 9.2).
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4.2 Unramified Tori in a Reductive p-adic Group

In this section we follow DeBacker [D3]. Say T is an unramified, maximal k-torus

in G. By this we shall mean T = T(k), T is a maximal k-torus in G, T ⊂ G as k va-

rieties, and T splits over an unramified extension. Take our fixed alcove AG ⊂ B(G).

Every rational conjugacy class of unramified tori of G contains a representative T

such that the image of T ∩G(k)F in GF is a maximal, minisotropic f-torus in GF for

some facet F ⊂ ĀG. Thus, to exhaust all possibilities, we need to list pairs (T, F )

where F is a facet in AG and T is an unramified torus lifting an elliptic, maximal

f-torus in GF . To count each rational conjugacy class once, we say two facets F1 and

F2 are equivalent if for some (hence any) apartment A containing both F1 and F2,

the smallest affine subspace in A containing gF1 contains F2 for some g ∈ G.

We must now classify maximal tori in a reductive algebraic group H defined over

f. Over F all maximal tori are conjugate, so fix a maximally f-split torus S. The sta-

bilizer of S is NH(S), thus we get ker[H1(Gal(F/f), NH(S))→ H1(Gal(F/f),H)] is in

bijection with the f conjugacy classes of maximal f tori in H. As H1(Gal(F/f),H) = 0

for all reductive, connected f groups ker[H1(Gal(F/f), NH(S))→ H1(Gal(F/f),H)] =

H1(Gal(F/f), NH(S)). Consider the exact sequence:

0→ S→ NH(S)→W→ 0

Taking Gal(F/f) fixed points we get:

0→ S(f)→ NH(S)(f)→W(f)→ H1(Gal(F/f),S)→
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H1(Gal(F/f), NH(S))→ H1(Gal(F/f),W)

By Lang’s theorem, H1(Gal(F/f),S) = 0, therefore H1(Gal(F/f), NH(S)) →

H1(Gal(F/f),W) is injective. As Gal(F/f) is pro-cyclic, Lemma IV.1 shows the

map H1(Gal(F/f), NH(S)) → H1(Gal(F/f),W) is also surjective. Combining these

facts, H1(Gal(F/f), NH(S)) ∼= H1(Gal(F/f),W).

In practice we can compute H1(Gal(F/f),W) explicitly, so the problem of classify-

ing rational conjugacy classes of unramified, maximal k-tori in G is effectively solved.

4.3 Nilpotent elements in a reductive p-adic group

We again follow a paper of DeBacker [D2]. Let E be a nilpotent element in the

Lie algbra of a reductive p-adic group G. Fix an alcove C ⊂ B(G). Then there is

some g ∈ G such that gE ∈ g(k)F for some F ⊂ C̄.

Note that if E ∈ g(k)F is nilpotent, then the image of E in LF (f) is also nilpotent.

Furthermore, the preimage of any nilpotent in LF (f) intersects a unique nilpotent

orbit of g(k)F of minimal dimension. Thus, for each pair (F, e) with F ⊂ B(G) a

facet and e ∈ N (LF )(f) a nilpotent of LF we can produce a lift in N (g)(k)/G. We

let O(F,e) ⊂ N (g)(k) be the G-orbit of the lift.

However, two different pairs can yield the same nilpotent orbit in g(k). For

a fixed apartment A in the building B(G) and a subset X ⊂ A let A(A, X) be

the smallest affine subspace of A containing X. For two facets F and F ′ we say
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that F is associated to F ′ if there is an apartment A containing both F and F ′

with A(A, gF ) = A(A, F ′) for some g ∈ G. In this case we get natural maps

g(K)gF ∩g(K)F ′ → LgF (F) and g(K)gF ∩g(K)F ′ → LF ′(F) that are surjective maps

with kernel g(K)+
gF∩g(K)+

F ′ which provide an isomorphism LgF ∼= LF ′ . For nilpotents

e ∈ N (LF )(f) and e′ ∈ N (LF ′) we say e is associated to e′ if ge = e′ after we identify

LgF with LF ′ via the above isomorphism. Likewise for functions f ∈ C∞c (LF (f)) and

f ′ ∈ C∞c (LF ′(f)).

Theorem IV.2. (DeBacker)[D2]:N (g)(k)/G(k) is in bijection with the set of asso-

ciativity classes of pairs (F, e).

As the closure of an alcove is a fundamental domain for B(G) under the G-action,

we may find representatives for the associativity classes of pairs of the form (F, e)

with F ⊂ Ā. For each representative we compute the geometric nilpotent orbits in

LF (F) via Bala-Carter theory[C]. Fix E ∈ LF (F). Then the rational orbits in the ge-

ometric class are in bijection with ker[H1(Gal(F/f),ZGF (E)) → H1(Gal(F/f),GF )].

Again, H1(Gal(F/f),GF ) = 0 and we need only compute H1(Gal(F/f),ZGF (E)). By

a theorem of Steinberg, connected algebraic groups over f have trivial Galois coho-

mology, hence we will be able to pass to the component group. In all cases we need

we can compute this explicitly.

4.4 Rational Classes in a Stable Strongly Regular Semi Simple Orbit

Say X is a strongly regular semi-simple element in g. That is ZG(X) = T some

maximal torus in G. Then, as before, the rational classes in the stable conjugacy

class of X will be in bijection with the set ker[H1(Gal(k̄/k),T)→ H1(Gal(k̄/k),G)].
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By Steinberg’s theorem for any connective, reductive k-group H we have that

H1(Gal(k̄/K),H) = 0. By inflation restriction we get 0 → H1(Γun,H(K)) →

H1(Γ,H) → H1(Gal(k̄/K),H)Γun = 0, so H1(Γ,H) = H1(Γun,H(K)). Thus we

shall need to compute ker[H1(Γun,T(K)) → H1(Γun,G(K))]. We shall always do

this explicitly.



CHAPTER V

Endoscopic Groups

In this chapter we define endoscopic groups and transfer factors. We also compute

the endoscopic groups of G2. More theory for endoscopy will follow in chapter 12,

but we shall only need to work with one group at a time until then. We shall work

with k-split groups to avoid needless technicalities involving twisting to a quasi-split

inner form. Most of this is out of the papers of Kottwitz [Kot1, Kot2]. For a view on

how the theory develops without assuming G k-quasi split see the paper of Kazhdan

and Varshavsky [KazV].

5.1 Endoscopic Groups and Transferring Conjugacy Classes

For any k-split, k-group G with root datum (X∗(G),ΦG, X∗(G), Φ̌G), the dual

group Ĝ is the C-group with root datum given by (X∗(G), Φ̌G, X
∗(G)G,ΦG) with

L-action given by Γ acting trivially. Let S be a maximal k-split, k-torus of G. Pick

w ∈ W (G) and s ∈Hom(X∗(G),C×) ∼= ŜΓ
G. We shall call such a pair (w, s) an endo-

scopic pair for G. Let Φ̌H = {α ∈ Φ̌G|s(α) = 1}, let σH = w ◦ σG, and let ΦH = Φ̌∗H .

Then the quadruple (X∗(G),ΦH , X∗(G), Φ̌H) with Γ action given by having Frobk

act by σH is the root datum of an unramified, reductive k-group H and we say ‘H

is an endoscopic group of G.’ Let SH be a maximally k-split, maximal k-torus of

30
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H such that the root datum constructed above is the root datum of H with respect

to the torus SH, and let sH be its Lie algebra. Then the data (H,SH, s) is an en-

doscopic triple of G. Note this triple now depends on a choice of SG < G to make

sense. We call H an unramified, endoscopic group of G if (R⊗Z ΦG)W (ΦH)o<σH> = 0.

Note W (H) < W (G) and that the identification of X∗(G) with X∗(H) is Γ-

equivariant. Given an endoscopic triple, we have an isomorphism sG ∼= sH given

by our identification of X∗(G) with X∗(H). By Chevalley’s theorem, semi-simple

classes in g are classified by sG/W (G) and semi-simple classes in h are classified by

sH/W (H). Since ΦH ⊂ ΦG, W (H) < W (G). Combining the isomorphism sG
∼= sH

with the inclusion of Weyl groups, we get a map AH/G : Hs.s. → Gs.s., called the

transfer map. A lemma of Langlands and Shelstad [LanShe, 1.3A] shows this map

is Γ-equivariant. Note that AH/G is finite to one, with degree [W (H) : W (G)] on

regular elements in H that map to regular elements in G. Note further that AH/G is a

map of conjugacy classes, not of elements. As we are working on geometric conjugacy

classes and all split, maximal k-tori of G (resp. H) are conjugate by Groethendieck’s

theorem, our choices of maximal tori (and hence our choices of endoscopic triple from

our endoscopic pair) are irrelevant for the definition of AH/F .

If XG represents a conjugacy class in g and XH represents a conjugacy class in h

such that the transfer map sends the class of XH to the class of XG we call XG an

image of XH . In the case that XG is an image of XH and XG is (strongly) regular

semi-simple we shall call XH G-(strongly) regular. Denote by hG−reg the set of G-

regular semi simple elements in h and by hG−s.reg the set of G-strongly regular semi

simple elements.
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5.2 Transfer Factors on the Lie Algebra

We would like to use the transfer map AH/G to map orbital integrals on h to

orbital integrals on g. Unfortunately, the obvious map taking functions in C∞c (h) to

functions in C∞c (g) given by the formula f ′(X) = ΣY s.t.AH/G(Y )=Xf(Y ) fails to pre-

serve smoothness of functions. Particularly, smoothness fails at the identity. To fix

this difficulty we modify the obvious map by adding what are called transfer factors.

These transfer factors are only well defined after a choice of a k-splitting of G. Our

transfer factors will be a product of two factors:

∆H
G (XH , XG) = ∆H

G,I(XH , XG)∆H
G,II(XH , XG)

Both factors will vanish unless XG is an image of XH . The first factor is a char-

acter on the Galois cohomology classifying the stable conjugates of XG. We have

s ∈ T̂ Γ
G and we can identify π0(T̂ Γ

G) = H1(Γ, T )D via the Tate-Nakayama pairing.

Note that this factor depends not only on the group H, but also on the s that is

used in its construction.

The second factor will be defined from the root data of both G and H and is

designed to make the transfer factor invariant under different choices of tori and

splitting. However, Kottwitz showed in [Kot3] that the k-splitting of G can be cho-

sen such that ∆H
G (XH , XG) = 1 whenever XG lies in a fixed Kostant section of G and

XG is an image of XH . Thus, we shall never need to directly compute ∆H
G,II(XH , XG),

as we shall only need to compare the rational class XG lies to our fixed Kostant sec-
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tion[Kos, Kot3]. For completeness we define ∆G
H(XH , XG) in complete generality,

but the uninterested reader may freely skip to section 5.3. See [LanShe] for details.

For α ∈ ΦG let kα be the field of definition of α and let k±α be the field of

definition of the set {α,−α}. Then k ⊂ k±α ⊂ kα. If [kα : k±α] = 2 we say

that α is a symmetric root. Call the set of symmetric roots Φsym. A collection

{aα ∈ k̄×|α ∈ ΦG, aασ = aσα, a−α = −aα} is called an a-data. Fix any a-data for G.

Let χα be the character of k×±α associated to the extension kα/k±α by local class field

theory. Let ∆H
G,I(XH , XG) =< λ(SG), sSG >, where λ(SG) is the image of λ(SscG ) in

H1(Γ, SG) under the map induced by the canonical homomorphism SscG → SG (Ssc

being the k-points of the split torus in the simply connected cover of G lying over

S) and λ(SG) is the invariant defined by Langlands and Shelstad in [LanShe]. Let

∆H
G,II(XH , XG) = Πα∈Φsymχα(α(XG)

aα
). The definition of ∆H

G does not depend on the

a-data used.

Much of the material in Langlands’ and Shelstad’s work on endoscopy does not

come up on the Lie algebra. Particularly, we are skipping discussion of the notion

of a χ-data and three additional multiplicands in the transfer factors for reductive

p-adic groups. One factor related to the Weyl discriminant will later get baked into

our nilpotent orbital as a normalizing factor. We will not mention them further, as

we are only interested in the theory of endoscopy for the Lie algebra in this work.
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5.3 The Elliptic Unramified Endoscopic Groups of G2

We now specialize back to the case where G is the split k-group of type G2. Re-

call we have fixed a hyperspecial vertex and an alcove containing it, hence a choice

of positive roots ∆G2 . Let α be the short root and β the long root in ∆G2 . There

are four possibilities for the isomorphism class of an endoscopic group. If the roots

included in ΦH are {±α,±(3α + 2β)} then the isomorphism class of the resulting

endoscopic group is SO4. A second possibility for ΦH is {±β,±(3α+β),±(3α+2β)}

with the resulting endoscopic group of type PGL3. The third possibility is all roots

of G2, in which case the endoscopic group is isomorphic to G2. The fourth possibility

is no roots in ΦH , in which case one gets an unramified torus. All other possibilities

end up not being elliptic. The tori have only the trivial nilpotent orbit, which is au-

tomatically stable. Furthermore, our homogeneity theorem in chapter 12 and some

dimension counting will show that the trivial orbit for a torus will always transfer

to the regular orbit in N (g2), so we shall not pay much attention to tori that are

elliptic, unramified endoscopic groups of G2. This leaves us with three cases to work

with in general.

When discussing the original group G2 we shall discuss roots as before with no

superscript. However when we wish to look at an endoscopic group of G2, we will

label the root with the Lie type of the endoscopic group in question as a superscript.

For example, α would be a short root of G2 while αSO4 would be a root of SO4. Here

is the dictionary between roots in on g2 and our choice of ∆H :
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Root on g2 Root on pgl3

3α + β αPGL3

β βPGL3

Root on g2 Root on so4

α αSO4

3α + 2β βSO4

We shall also now construct various Chevalley bases analogous to those in section

1. To do this in a compatible way we will need to identify a maximal k-split k-torus

and a Borel k-subgroup of each endoscopic group that maps in a nice way to that of

G2. For each H we have our k-split k-torus SH that maps via transfer to our fixed

SG2 selected in section 1. For each H we have an inclusion iH : ΦH ↪→ ΦG2 . We set

∆H = i−1(i(φH) ∩ ∆G). Fix a hyperspecial vertex x0,H ∈ A(SH). Our choice of a

system of positive roots determines an alcove AH and a Chevalley basis {XH
φ , H

H
δ }

of h =Lie(H) consisting of vectors in hx0,H
(k). For every F ⊂ ĀH facet, we can

construct a Chevalley basis of LF contained in LF (f), {X̄H,F
φ , H̄H,F

δ }, consisting of

images of elements of hF (k) of the form {$iφ,FXH
φ , H

H
δ } where iφ,F ∈ {0,±1}.



CHAPTER VI

Generalized Green Functions and Gelfand-Graev Characters

In this section we establish the facts needed about representations of reductive

groups defined over f. We then lift many of these results to g(k).

6.1 Deligne Lusztig Representations and their Characters

We will follow the conventions laid out by Lusztig. We refer to Lusztig [Lus1,

Lus3, Lus4] and Carter [C]. Let G be a reductive f group. Let T < B < G be

a maximal f-torus contained inside a Borel f-group. Let U < B be the maximal

unipotent subgroup of B. Let Θ be a character of T(f). Let L : G → G be the

Lang isogeny, given by the equation L(g) = g−1Frobf(g). Let X̃T be the f-variety

L−1(U) ⊂ G. Deligne and Lusztig constructed a representation RΘ
T,G of G(f) on the

vector space ⊕H i
et(X̃T,Ql) with character RΘ

T,G(g) = Σi(−1)itr(g,H i
et(X̃T,Ql)Θ).

These characters are called Deligne-Luztig characters.

We say a set of functions C separates classes under an equivalence relation if

the characteristic function of each equivalence class lies in the C-linear span of C.

The Deligne-Lusztig characters separate rational, semisimple classes in G(f). Fur-

thermore, for Θ regular, the Deligne-Lusztig character differs from an irreducible

character of G(f) by at most a sign that can be explicitly computed. These char-

36
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acters take values in the roots of unity in Ql, so after identifying the roots of unity

in Ql with those of C we may (and will!) consider the Deligne-Lusztig characters as

complex valued functions.

Let U(G) be the unipotent variety of G. For u ∈ U(G)(f), the value of RΘ
T,G(u)

does not depend on Θ, thus we have the Green functions QT(u) = R1
T,G(u) defined

on the f-points of unipotent variety U(G)(f). Due to our assumptions on the char-

acteristic of f, we can (and again will!) identify the unipotent variety of G with

the nilpotent variety of g via the G-equivariant logarithm map. As our interest is

focused on the Lie algebras, we shall from now on think of Green functions as defined

on N (f), the f-nilpotent variety in g(f), rather than U(f). When we wish to specify

which group we are computing the Green function on we shall include a superscript,

for example QG
T vs QH

T . See Cart [C] for details.

For f-tori T, T′ ⊂ G, let N(T,T′) = {g ∈ G|gT = T′}.

Theorem VI.1 (C 7.6.2). 1
|G(f)|Σn∈N (G)(fQT(n)QT′(−n) = |N(T,T′)|

|T(f)||T′(f)| . In particular,

two non conjugate Tori produce orthogonal functions on N (f).

It will be important for us to understand the relationship between the Green func-

tions of a reductive group and the Green functions of a Levi factor of a parabolic

subgroup of that reductive group. Let T be a f-torus contained in a Levi f-subgroup

L of a parabolic f-subgroup P < G. Let P = LU be the Levi decomposition of P

and let π : P → L be the projection map. Let θ be a complex character of T(f). For

any character ψ ∈ L(f)D let (ψ)P be the composition ψ ◦ π.
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Proposition VI.2 (C 7.4.4). RG
T,θ =IndGP (RL

T,θ)P

Proposition VI.3 (C 8.4.1). Let X ∈ N (f) be a regular nilpotent element. Then

for all f-tori T, QT(X) = 1.

6.2 Lusztig Functions

While the Green functions separate rational, semisimple classes, they are not suf-

ficient to separate rational nilpotent classes in g(f). To do so we must introduce

functions coming from Lusztig’s character sheaves. We shall limit ourselves to a

concrete, explicit definition. For a field E and a reductive E-Lie algebra h we say

that X ∈ N (h)(E) is E-distinguished if X does not lie in any Levi E-subalgebra of

a E-Parabolic of h. If a nilpotent orbit contains a E-distinguished element we call

the orbit E-distinguished as well.

For X ∈ g, let the component group of X be CX = ZG(X)/[ZG(X)0]. Notice

that CX is in bijection with H1(Γf, ZG(X)) which in turn parameterizes the rational

classes in the geometric class of X.

A cuspidal local system of G is a pair (OX , χ) consisting of a f-distinguished

G(f)-orbit OX and a ‘cuspidal’ character χ of the component group of X. For us,

‘cuspidal’ characters will be those we list explicitly. For c ∈ CX let OX,c denote the

rational orbit associated to c by this identification. Recall that for a set S we have

define [S] to be the characteristic function of the set S. The Lusztig function G(OX ,χ)

associated to the cuspidal local system (OX , χ) is given by the equation:
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Σc∈CX/∼χ(c)[OX,c]

For this paragraph we specialize to the case of G2, its endoscopic groups, and the

various possible residue groups Gx. It is easy to see that if one fixes a X in each dis-

tinguished class that distinct cuspidal local systems produce orthogonal functions.

One proves this by noticing that the Lusztig functions are supported on a single

geometric orbit and on that orbit take precisely the values of a character on the

component group of our fixed X. Furthermore, a case by case analysis using Propo-

sition VI.3 and the Green polynomials defined in section 7 of [Spr] shows the Lusztig

functions are orthogonal to the Green functions. Thus, by counting, we get that the

set of all Green functions and the Lusztig functions associated to the cuspidal local

systems separates all the rational nilpotent orbits. We shall call this collection the

generalized Green functions of G. Note that a generalized Green function of G is

either determined by a facet and an unramified torus, or a facet and a cuspidal local

system. From now on, we shall denote a generalized Green function by G(F,δ) where

F is a facet and δ may either be a maximal unramified torus or a cuspidal local

system of the residue group GF .

6.3 Generalized Gelfand-Graev characters

We shall need one more class of characters on a reductive group over f. These

characters will be defined by induction of a generic character of a Levi subgroup.

Let L < G be a Levi f-subgroup. Let B be a Borel f-subgroup of L with unipo-

tent radical U. Then U/[U,U] is a f vector space. We call a character ψ ∈ U(f)D
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generic if the composition of that character by the quotient map to U/[U,U] yields

a distinct nontrivial character on each simple root subspace of U (note only sim-

ple root subspaces occur in the quotient). Then the induced character IndGUψ is a

Gelfand-Graev character. For any nilpotent e ∈ G(f), because we have assumed p is

good, we can find a maximal parabolic f-subgroup Pe with unipotent radial Ue such

that e ∈ ue(f), the f-points of the Lie algebra of U. Using the Killing form and the

Kirillov orbit method we associate a character called the Gelfand-Graev character to

e.

As with our Green functions, we may restrict a Gelfand-Graev character to

U(G)(f) and use our assumptions on p to build a G(f)-equivariant logarithm map to

consider our Gelfand-Graev characters as functions on the Lie algebra g(f).

Now let G be a reductive k-group. Then for F ⊂ B(G) a facet, GF is a reductive

f-group with Lie algegra LF . Given a pair (F, e) with e ∈ N (GF )(f) we can construct

a Gelfand-Graev character Γ(F,e) ∈ CGF (f)(N (GF )(f)) satisfying the following formula

([DKaz1] or [Lus2]):

Γ(F,e)(Z̄) = |LF (−1)|
1
2

|LF (≤−1)|Σḡ∈GF (f),ḡZ̄∈LF (≤−2)Λ(B(X, gZ)).

Let h(F,e) ∈ C(gF/g
+
F ) be the function [e+ LF (≤ 1)]. Then from [Lus2]:

Σḡ∈G(f)ĥ(F,e)(
ḡZ̄) = |LF (1)||LF (f)| 12 Γ(F,e)(Z̄) for all Z̄ ∈ LF (f).
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6.4 Lifting Generalized Green Functions to a p-adic Group

Now let G be a k-split, reductive p-adic group. We shall produce a basis of the

G-orbits of functions in D0 in terms of Fourier transforms of generalized Green func-

tions. Firstly, as all alcoves are conjugate under the action of G and functions in D0

are compactly supported, we may choose representative functions in D0
0. Note that

for all F ⊂ ĀG that g+
F ⊂ gAG , thus we can realize the set gF/gAG as a quotient of

gF/g
+
F
∼= LF .

The Fourier transform gives a G-equivariant map on C∞c (g) that restricts to a

bijective map from C(gF/gAG) to C(g+
AG
/g), so we have reduced the problem to

studying C(g+
AG
/g+

F ). However, C(g+
AG
/g+

F ) is a subspace of C(gF/g
+
F ) with image in

LF (f) in bijection with C(N (GF )(f).

As in section 3, the rational, nilpotent orbits in g(k) are parameterized by pairs

(F, e) where F is a facet in B(G), e is a f-distinguished nilpotent in LF (f), and we

mod out by equivalency classes by the association relation on facets and LF conju-

gacy on the nilpotent elements in the residue group.

We have already shown that the generalized Green functions of LF separate nilpo-

tent classes, thus their lifts to gF will span G-orbits of functions in D0. For p-adic

groups G we shall call the collection of all pairs (F,GF ) where F is a facet and GF is

the lift of a generalized Green function of LF the generalized Green functions of G.

However, there will be some C-linear relations among the generalized Green func-
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tions lifting from various different LF . We shall eliminate these relations in two steps.

First, pass from all generalized Green functions of G to classes under the associa-

tion relation defined in Chapter 4.3. This eliminates the possibility of redundancies

given by G conjugacy associating two facets as in section 3. We further eliminate all

GF = QT such that T is not elliptic in LF . Every generalized Green function removed

is redundant, and we are left with a spanning set of the correct finite cardinality,

thus the remaining functions must form a linearly independent set.

We shall also need that the Fourier transforms of the functions h(F,e) provide a

basis of G-orbits of D0 when we restrict (F, e) to a set of representatives for the

nilpotent orbits in g(f). Fortunately, this is easy to see, as h(F,e) is the unique func-

tion amongst our collection of h(F,e) that takes value 1 on O(F,e) yet vanishes on any

nilpotent orbit containing O(F,e) in its closure, thus there can be no linear relations

amongst the h(F,e).



CHAPTER VII

Various Families of Distributions

In this section we construct several families of distributions that shall prove useful.

Many of the results follow from the work in [DKaz1], however we have to be careful

that the theory works for SO4, so we write in some detail.

7.1 Nilpotent Orbital Integrals

Our primary aim in this paper is to study nilpotent orbital integrals. For a group

G this is the set of µX where X is a nilpotent element of g(k). These integrals are in

bijection with the nilpotent orbits of g(k) and hence there are only finitely many of

them. Nilpotent orbital integrals span J(N (g)(k)) by a theorem of Harish-Chandra.

7.2 Orbital Integrals Dual to Green functions

We shall need to associate one distribution to each Green function; and, even-

tually, two distributions to each Lusztig function. Unfortunately, we can only offer

general definitions for distributions associated to Green functions. We shall address

the Lusztig functions only for the cases that concern us in particular.
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We first create a distribution for each Green function. Fix a unramified, maxi-

mal torus T corresponding to the parameter (F,T) with F a facet, T a maximal f

torus of GF with the image of T(K) in GF (F) being T(F). Fix XT ∈ t(k) mapping

to X̄T ∈LieT(f) such that ZG(XT ) = T and ZGF (f)(X̄T ) = T(f). Let G(F ′,δ) be any

generalized Green function. Then we have the following Lemma:

Lemma VII.1 (DKaz1). Take the assumptions of the above paragraph. Then:

µXT (Ĝ(F ′,δ)) =

(−1)rk(T)|GF (f)||NG(T )/T |
|LF (f)|1/2|T(f)| if (F ′, δ) ∼ (F, T )

0 otherwise

Proof. µXT (Ĝ(F ′,δ)) =
∫
G/T
Ĝ(F ′,δ)(

gXT )dg

With the measure being the quotient measure. As Ĝ(F ′,δ) ∈ C∞c (gF ′/g
+
F ′), Ĝ(F ′,δ)(

gXT ) 6=

0 forces gXT ∈ gF ′ which implies g−1F ′ ⊂ B(T ) ⊂ B(G). Let F be the set of G-

facets in B(T ) ∩ G.F ′. For each H ∈ F let XH be the image of XT in LH(f). Then

ZGH(f)(XH) = TH
∼= T, and we can lift TH to an unramified, maximal torus of G,

denoted TH . The data (H,TH) yields a corresponding toric Green function QH
TH

.

Let F rep denote a choice of representatives for T -orbits in F . For H ∈ F rep, fix

gH ∈ G with g−1
H F ′ = H. Then:

µXT (Ĝ(F ′,δ)) = ΣH∈Frep
∫
GHT/T

Ĝ(F ′,δ)(
gHgXT )dg

= ΣH∈Frepµ(GHT/T )Ĝ(F ′,δ)(
gHXT )
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We need to compute Ĝ(F ′,δ)(
gHXT ) =

=
∫

gH
Λ(B(XT , Y ))G(F ′,δ)(

gHY )dY

= 1
|LH(f)|(1/2) ΣȲ ∈LH(f)Λ(B(XT , Y ))G(F ′,δ)(

gHY )

= 1
|GH(f)||LH(f)|1/2 ΣȲ ∈LH(f)ΣZ̄∈LH(f)Σg∈GH(f)[X̄T ](gZ̄)Λ(B(Z, Y ))G(F ′,δ)(

gHY )

= 1
|GH(f)|ΣȲ ∈LH(f)F(Σg∈GH(f)[X̄T ]g)(Ȳ )G(F ′,δ)(

gHY )

By [Kaz] F(Σg∈GF (f)[X̄
g])(Ȳ ) = (−1)rk(T)|T(f)|

|LT(f)|1/2 QF
T(Ȳ ). Thus we get:

Ĝ(F ′,δ)(
gHXT ) = 1

|GH(f)|ΣȲ ∈LH(f)
(−1)rk(T)|T(f)|
|LT(f)|1/2 QF

T(Y )g
−1
H G(F ′,δ)(Y )

= (−1)rk(T)|T(f)|
|LT(f)|1/2 (QH

T ,
g−1
H G(F ′,δ))LH

= (−1)rk(T)|T(f)|
|LT(f)|1/2 (QF

T , r
H
F (g

−1
H G(F ′,δ)))LF

Thus we get:

µXT (Ĝ(F,δ)) = ΣH∈Frep
(−1)rk(T)µ(GHT/T )|T(f)|

|LT(f)|1/2 (QF
T , r

H
F (g

−1
H G(F ′,δ)))LF .

As G(F ′,δ) is cuspidal there is an apartment A and g ∈ G with A(A, F ) =

A(A, gF ′). Thus to prevent (QF
T , r

H
F (g

−1
H G(F ′,δ)))LF from vanishing we get that (F,QF

T ) ∼

(F ′, δ). Now we consider the case when (F ′, δ) ∼ (F,QF
T ).

Combining VI.1 and VI.2 gives:

µXT (Ĝ(F,δ)) = ΣH∈Frep
(−1)rk(T)µ(GHT/T )|NG(T(f))|

|LT(f)|1/2|T(f)| .

We compute µ(GFT/T ) and |F rep|.
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µ(GFT/T ) = |GF (f)||LT (f)|(1/2)

|LF (f)|(1/2)|T(f)|

|F rep| = |NG(T )/T |
|NGF

(T)(f)/T(f)|

Thus µXT (Ĝ(F ′,δ)) = (−1)rk(T)|GF (f)||NG(T )/T |
|LF (f)|1/2|T(f)| , finishing our proof.

From our work in section 6.4, we have that for any X ′ ∈ t satisfying the same

properties as X, resD0
0
µ̂X =resD0

0
µ̂X′ . Let D(F,T ) = µ̂X . Note that this determines a

distribution in J(g(k)) that depends on X, but that the restriction of this distribu-

tion to D0 depends only on the data (F, T ).

7.3 Distributions Dual to Lusztig functions

We shall now define the first of two distributions to be associated to a Lusztig

function. Say G(F,δ) is a Lusztig function with δ a cuspidal local system of GF . Con-

sider the distribution T(F,δ) ∈ J(g(k)) given by the formula:

T(F,δ)(f) =
∫
G

∫
g
f(gZ)G(F,δ)(Z)dZdg.

Theorem III.4 forces this integral to always converge for any f ∈ C∞c (g) as G(F,δ)

is a cuspidal function.

Lemma VII.2. Given (F, δ) and (F ′, δ′) with corresponding cuspidal generalized
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Green function G(F ′,δ′) we have:

T(F,δ)(Ĝ(F ′,δ′)) =

|GF (f)|2
|LF (f)| (Ĝ(F,δ),G(F,δ))F if (F, δ) ∼ (F ′, δ′)

0 otherwise

Unfortunately, the stability of the distributions T(F,δ) is difficult to study, so we

shall execute a more elaborate construction, case-by-case for G2 and its endoscopic

groups. The rough idea is that we shall replace convolution against a lift of G(F,δ)

with convolution against the characteristic function of a particular set of semi-simple

elements with each of these elements having a totally ramified torus as its centralizer.

The miracle is that when you look at the resulting distribution’s restriction to D0
0,

it agrees with our T(F,δ) up to a constant.

For a cuspidal local system on GF (f) given by the pair (X̄, χ), we can construct a

sl2 triple {X̄, H̄, Ȳ } from the Jacobson-Morosov theorem and our original assump-

tions on characteristic. We also have a lift {X,H, Y } to gF , cocharacters µ and

µ̄, and filtrations of LF and g. Let P be the distinguished parabolic of GF asso-

ciated to X̄ and P a parabolic k-subgroup of G whose image in GF is P. Note

Lie(P)(f) = LF (≥ 0). Furthermore, let M be the group whose Lie algebra has f-

points LF (0) and N be the group whose Lie algebra has f-points LF (> 0). Then

MN = P gives a Levi decomposition of P. We likewise get P = MN. Note that all

these notions depend on X, even though it is absent from the notation.

First for we work with G2 and PGL3. Note that for every cuspidal local system

for either of these groups, the nilpotent in the data defining it is the lift of a distin-

guished element of Gv where v is a vertex in F0. As g2 is simple, among the affine
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roots whose zero sets intersect F0 in codimension 1, there is precisely one affine root

for which v does not lie in the zero set and that takes positive values on F0. Call

that affine root Ψv.

Let B(X,χ) = X + gΨv(K) \ g+
Ψv

(K) ⊂ g(K). One can verify explicitly that the

centralizer of any element of B(X,χ) is an elliptic K-torus in G(K) that splits over

a totally ramified extension by embedding g2 and computing minimal polynomials.

Note the fact that X is distinguished implies C(X) = MX . We now identify these

two groups. For m ∈ C(X) we fix gm ∈ MX ∩G(K)F with σ(gm)−1gm = m. Set

A(X,χ, gm) = {gmY |Y ∈ B(X,χ) with cY = σ(Y )}. Note that A(X,χ, gm) ∼= R×K ,

so we get a Haar measure on A(X,χ, gm). Let Sm be the centralizer in G of any

element of A(X,χ, gm) and S0
m be its parahoric. Let ∼ be the relation of σ-conjugacy

on MX . Note H1(Γ,MX) ∼= MX/ ∼.

We now define the distributions of interest:

D(F,δ) = ΣMX/∼
χ(m)|Sm/S0

m|
|ZGF (f)(

gmX̄)|

∫
A(X,χ,gm)

µY dY .

For SO4 the nilpotent associated to a cuspidal local system is still a lift from a

distinguished nilpotent of the residue group at a vertex, however now two affine roots

do not vanish on the vertex in question as the closure of an alcove is a polysimpli-

cal complex rather than a simplicial complex. We simply adapt by working in each

simple factor and writing an integral over a space isomorphic to R× ×R×.
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More precisely, let the two affine roots vanishing at v be ψv,1 and ψv,2. We let

B(X,χ)SO4 = X+gΨv,1(K)\g+
Ψv,1

(K)+gΨv,2(K)\g+
Ψv,2

(K). Then letASO4(X,χ, gm) =

{gmY |Y ∈ BSO4(X,χ) with cY = σ(Y )}. All other notation remains the same and

we get:

D(F,δ) = ΣMX/∼
χ(m)|Sm/S0

m|
|ZGF (f)(

gmX̄)|

∫
ASO4 (X,χ,gm)

µY dY .

7.4 Relating the two Distributions Dual to a Lusztig Function

These arguments are identical to those of DeBacker and Kazhdan, however there

they are not thinking of the group SO4 so we repeat them as a precaution.

Fix (F, δ) a cuspidal local system of G. Then, in every case with which we

are concerned, F is a vertex in B(G). As before we get B(F, δ) with the central-

izer of any element of B(F, δ) yielding a torus T(F,δ,Y ). We get a corresponding

y = B(T(F,δ,Y )(K) ∩ B(G) = F + µ̂
2h
∈ B(G), where h is the Coxeter number of G.

We will need two auxiliary functions. We first define I(F,δ)(Z) ∈ C∞C (g0):

I(F,δ)(Z) =
∫
Gy

Σm̄∈Me/∼
χ(m)

|CGF (f)(
gme)|

∫
AG(F,χ,gm)

Λ(B(Z, jY ))dY dj

Note G+
F ≤ Gy, thus we can define:

J(F,δ)(Z) = Σī∈GF (f)I(F,δ)(
iZ)
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Lemma VII.3. ∀Z ∈ g0 \ gF , I(F,δ)(Z) = 0.

Proof. Fix Z ∈ g0 \ gF . Suppose Z /∈ gy,−(1/h). For all m ∈ MX(K) every el-

ement of AG(X,χ, gm) is ‘good’ of depth 1/h in the sense of Adler and Roche,

hence
∫
Gy

Λ(B(Z, jY ))dj = 0 from [AD 6.3.3]. Thus we need only consider when

Z ∈ g(y,−(1/h) \ gF . Then we can write:

I(F,δ)(Z) =
µ(g+

y )

|f×| Σl∈M(f)Σm∈MX(K)/∼
χ(m)

|CGF (f)(
gme)|Λ(B(Z, lgmX))∗

ΣWΛ(B(Z, lW )).

Where by summing over W̄ we mean summing over (gψF \ g+
ψF

)/g+
ψF

. As the final

term does not involve l̄ it suffices to show that:

Σm∈MX(K)/∼
χ(m)

|CGF (f)(
gme)|Λ(B(Z, lgmX)) = 0.

Note gy ⊂ gy,−(1/h) ⊂ gF + gψF and gy,−1/h/gy ∼= LF (−2) ⊕ g−ψF /g
+
−ψF , hence

g−ψF 6⊂ gF and g+
−ψF ⊂ gy ⊂ gF . Z /∈ gF then implies Z = Z−ψ̇F + Z ′ with Z ′ ∈ gF ,

where Z−ψ̇F denotes the projection of Z onto the g−ψ̇F . We need to look at the

Fourier transform of:

Σm∈Me/∼
χ(m)|ZM(f)(

gme)|
|ZGF (f)(

gme)| [M(f)gme]

By results of Lusztig, this Fourier transform is supported on the f-rational points

of the Zariski dense M-orbit in LF (−2). Thus we need only show the image of Z−2,

the projection of Z onto g−2, does not have image lying in this orbit.
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Suppose Z−2 lies in this orbit. Then the centralizer of Z−2 + Z−ψ̇F must be a

maximal k-torus which splits over a tamely ramified extension. However, Z−ψ̇F /∈ gy

and Z−2 /∈ gy, thus the coset Z + gY = Z−2 +Z−ψ̇F + gy must contain no nilpotents.

However, Z ∈ g0 and g0 ⊂ N (k) + gy [AD]. Contradiction.

Lemma VII.4. For Z ∈ g0, J(F,δ)(Z) = µ(Gy)

µ(G+
F )
Ĝ(F,δ)(Z).

Proof. WLOG Z ∈ gF .

J(Z) = µ(Gy)Σī∈GF /G+
F

Σm∈Me/∼
χ(m)

|ZG(f)(
gme)|

∫
AG(F,χ,gm)

Λ(B(Z, iY ))dY

= µ(Gy)Σm∈Me/∼χ(m)ΣW̄∈LF (f)Λ(B(Z,W ))[GF (f)gme](W̄ )

= µ(Gy)

µ(G+
F )

ˆG(F,δ).

Lemma VII.5 (DKaz1). : resD0+T(F,δ) = |GF (f)|
|LF (f)|

1
2

resD0+D(F,δ)

Proof. Fix f ∈ D0+ .

D(F,δ)(f) = ΣMX/∼
χ(m)|Sm/S0

m|
|ZGF (f)(

gmX̄)|

∫
A(X,χ,gm)

µY (f)dY

= ΣMX/∼
χ(m)

|ZGF (f)(
gmX̄)|

∫
A(X,χ,gm)

∫
G
f(jY )djdY

= ΣMX/∼
χ(m)

|ZGF (f)(
gmX̄)|

∫
A(X,χ,gm)

Σj̄∈G/GF
∫
GF
f(jiY )didY
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=
µ(G+

F )

µ(Gy)
Σj̄∈G/GF

∫
g
f̂(−(jZ))J(Z)dZ

= Σj̄∈G/GF
∫

g
f(jZ)G(F,δ)dZ

= 1
µ(GF )

∫
G

∫
g
f(jZ)G(F,δ)(Z)dZdj

= |LF (f)|
1
2

|GF (f)| T(F,δ)(f) �

Now we finally get:

Theorem VII.6. The following equation holds:

D(F,δ)(Ĝ(F ′,δ′)) =

|GF (f)|
|LF (f)|

1
2

(G(F,δ),G(F,δ))LF (F ′, δ′) ∼ (F, δ)

0 otherwise

Proof. It will suffice to show D̂(F,δ)(Z) = |LF (f)|
1
2

|GF (f)| T̂(F,δ)(Z). As the Fourier transform

maps C∞c (g0) to D0+ we need only show resD0+T(F,δ) = |GF (f)|
|LF (f)|

1
2

resD0+D(F,δ). This is

Lemma VII.5.



CHAPTER VIII

Explicit Structure Theory

Here we work out the Weyl groups, unramified tori, rational nilpotent orbits, and

cuspidal local systems of G2 and its endoscopic groups.

8.1 Weyl Groups

We now shall work out some structure theory we shall need to continue. The Weyl

group of G2, WG2 , is D6, the dihedral group with 12 elements. We fix two generators

for WG2 labeled R, rotation from α to β by π
3
, and F , reflection perpendicular to

the root α. When we are considering G2 as the base group from which we construct

all our endoscopic groups and as the target for the transfer map, we shall include

no subscripts. When we are considering G2 as an endoscopic group of itself we shall

add subscripts to give RG2 and FG2 , representing the analogous transformations on

the roots of the endoscopic group. The Weyl group of PSL3 is S3, the dihedral

group with 6 elements generated by RPSL3 , rotation by 2π
3

from αPSL3 to βPSL3 and

FPSL3 defined as reflection over βPSL3 . The Weyl group of SO4 is Z/2Z×Z/2Z with

generators (F, Id) and (Id, F ). The Γ action on each is trivial.

For WG2 , conjugacy class structure is as follows: {Id}, {R,R5}, {R2, R4}, {R3},

{F, FR2, FR4}, {FR,FR3, FR5}. We shall refer to the various conjugacy classes by

53
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(g) where g is the first group element in the list we provided.

For WPSL3 , the three conjugacy classes are {Id}, {RPSL3 , R
2
PSL3
}, and

{FPSL3 , FPSL3RPSL3 , FPSL3R
2
PSL3
}.

WSO4 is abelian, so we shall conflate conjugacy classes with elements. The group

is generated by (F, Id) which acts by reflection over the hyperplane perpendicular

to αSO4 and (Id, F ) which acts by reflection over the hyperplane perpendicular to

(3α + 2β)SO4 .

We will need to discuss Weyl group elements and conjugacy classes of various GF .

All of these groups are of the same type as the k-groups whose Weyl groups were

discussed above with one exception: the group GL2(f). We shall continue to use the

notation above with FGL2 being the nontrivial element of WGL2
∼= Z/2Z.

8.2 Unramified Tori

We parameterize unramified tori in G2 and its endoscopic groups. The data in our

chart describes the following information respectively: the facet F in terms of the

positive affine roots that vanish on it, the associated f-group GF , the image of Frobe-

nius under the cocycle for T, and the corresponding element in the Weyl group of G2.
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F GF aFrobf ∈WGF aFrobf ∈WG2

{α, β} G2(f) R R

R2 R2

R3 R3

{1− 3α− β, β} Sl3(f) R R2

{α, 1− 3α− 2β} SO4(f) F × F R3

{α} GL2(f) F F

{β} GL2(f) F FR

Gm(f)2 Id Id

Now we do the same for the elliptic, unramified endoscopic groups of G2.

PGL3

F GF aFrobf ∈WGF aFrobf ∈WPSL3

{αPSL3 , βPSL3} PSL3(f) R RPSL3

{αPSL3} GL2(f) F FPSL3

Gm(f)2 Id IdPSL3

SO4
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F GF aFrobf ∈WGF aFrobf ∈WSO4

{(αSO4 , βSO4} SO4(f) (F, F ) (F, F )

{αSO4 , 1− βSO4} SO4(f) (F, F ) (F, F )

{αSO4} GL2(f) F (Id, F )

{βSO4} GL2(f) F (F, Id)

Gm(f)2 Id Id

8.3 Nilpotent Orbits

We now describe the distinguished nilpotent orbits for each of the residue groups.

Case 1: G2
m. There is only the trivial nilpotent orbit. It lifts to the trivial orbit

in g2

Case 2: GL2. From rational canonical form we get two orbits, one of which is

distinguished.

A)GF{α}
∼= GL2: Xα ∈ g2(k) represents a lift of a regular nilpotent over f.

B)GF{β}
∼= GL2: Xβ ∈ g2(k) represents a lift of a regular nilpotent over f.

Case 3: SO4. There is one distinguished SO4(F)-orbit in so4(F). A represen-

tative element is X̄α + X̄−3α−2β ∈ so4(f). The component group of the centralizer

ZSO4(F)(X̄α + X̄−3α−2β) is isomorphic to the Galois module Z/2Z with the trivial

action. Then |H1(Gal(F/f), ZSO4(F)(X̄α + X̄−3α−2β))| = 2. Let m and m′ ∈ so4(f)

be two representatives of these classes. More concretely, fix a non-square ε ∈ R×
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whose image in f is a nonsquare. Lifts of representatives of the two distinguished

nilpotent orbits of SO4(f) are given by Xα+$X−3α−2β and εXα+$X−3α−2β ∈ g2(k).

Case 4: SL3. There is one distinguished SL3(F)-orbit in sl3(F). A representative

is given by X̄β+X̄−3α−β ∈ sl3(f). Then the component group of ZSl3(F)(X̄β+X̄−3α−β)

is Z/3Z, however the Gal(F) action depends on whether or not |µ3(k)| = |µ3(f)| = 3

or 1. If |µ3(f)| = 3, the action is trivial and |H1(Gal(F/f), ZSl3(F)(X̄β+X̄−3α−β))| = 3

with the two nontrivial cocycles both splitting over the unique cubic extension of f.

If |µ3(k)| = 1, the action of Frobenius switches the two non identity elements of

Z/3Z and |H1(Gal(F), ZSl3(F)(X̄β + X̄−3α−β))| = 1. Thus if |µ3(k)| = 1 we get only a

single rational nilpotent orbit, while if |µ3(k)| = 3, we get 3 rational nilpotent orbits.

We fix representatives of these f-orbits in L{β,3α+2β−1}(f), n, n′, and n′′ with n′ and

n′′ only occurring if |µ3(k)| = 3.

Case 5: G2. There are two distinguished orbits in g2(F). Representatives are

given by the elements X̄α + X̄β (which we call ereg) and X̄β + X̄3α+β ∈ g2(f) (which

we call esubreg, soon to be joined by two geometric conjugates).

A)Orbits within the geometric conjugacy class of X̄α+X̄β = ereg. The component

group of ZG2(F)(X̄α + X̄β) is trivial, hence there is only one rational orbit in g2(k)

corresponding to ({α, β}, ereg) and a representative is Xα +Xβ.

B)Orbits within the geometric conjugacy class of X̄β + X̄3α+β ∈ g2(f). The com-

ponent group of ZG2(F)(X̄β + X̄3α+β ∈ g2(f)) is isomorphic to S3 with two possible

actions of Gal(F/f). If |µ3(k)| = 3 then the image of Frobenius can be trivial, a
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2-cycle, or a 3-cycle. The choice of which cycle never matters, as all cycles of the

same length are conjugate, hence the corresponding cocycles are cohomologous.

If |µ3(k)| = 1 then the Frobenius of f exchanges the two 3-cycles and two of the

2-cycles. All three of the 2-cycles interchange the 3-cycles through conjugation, so

whichever one is fixed will force cocycles that choose different 3-cycles for the image

of Frobenius to be conjugate. Furthermore, conjugating by the correct non-fixed

2-cycle will force the cocycle to be trivial. If the cocycle sends Frobenius to the fixed

2-cycle, the cocycle splits over a degree 2 extension, while if the Frobenius maps to

a non-fixed 2-cycle, the cocycle splits over a degree 6 extension. These two cases are

not cohomologous, yielding 3 cocycles in total.

Of these, fix representatives in LF{α,β}(f): Xβ + X3α+β = esr, e
′
sr and e′′sr with

|Mesr(f)| = 6, |Me′sr(f)| = 3, |Me′′sr(f)| = 2.

Tallying up all our nilpotent orbits we get 9 + |µ3(k)| nilpotent orbits for G2.

For PSL3 we have the following facets up to association labeled as before:

{αPSL3 , βPSL3} PSL3

{αPSL3} GL2

∅ G2
m

Case 1: G2
m. Again only the trivial nilpotent orbit. It lifts to the trivial orbit in sl3.

Case 2: GL2. As before, from rational canonical form we get two orbits, one of
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which is distinguished. The element XαPSL3 is a lift of a representative of the orbit.

Case 3: PSL3 We get one distinguished orbit. A representative is X̄βPSL3 +X̄βPSL3 .

As we are now dealing with PSL3, we get the component group of ZPSL3(X̄βPSL3 +

X̄βPSL3 ) is trivial. Thus only one rational orbit. The element XβPSL3 + XβPSL3 pro-

vides a lift to sl3(k).

For SO4 we have the following facets up to association labeled as before:

{αSO4 , βSO4} SO4

{αSO4 , 1− βSO4} SO4

{βSO4} GL2

{αSO4} GL2

∅ G2
m

Case 1:G2
m again we have the trivial orbit lifting to the trivial orbit in so4(k).

Case 2:For the residue groups of type GL2 we have precisely one distinguished

orbit each. For the facet where αSO4 vanishes it lifts to XαSO4 and for the facet where

βSO4 vanishes a lift is XβSO4 .

Case 3:For residue groups of type SO4 there is again one distinguished orbit in

SO4(F), however this orbit splits into 2 rational orbits as again |H1(Gal(F/f), ZSO4(F)(e))| =

2. For the vertex where the set {αSO4 , βSO4} vanishes a lift is XαSO4 + XβSO4 and

εXαSO4 +XβSO4 while for the facet where the set {αSO4 , 1− βSO4 + 1} vanishes a lift

is XαSO4 +$X2βSO4 and εXαSO4 +$XβSO4 .
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8.4 Cuspidal Local Systems

We now classify the cuspidal local systems for each of the endoscopic groups of

G2.

G2

GF Nilpotent Component Group Character Name

G2 Xβ +X3α+β S3 sgn CG2
1

SO4 Xα +$X3α+2β Z/2Z× Z/2Z sgn× sgn CG2
2

SL3 Xβ +$X−3α−2β Z/|µ3(f)|Z ψ CG2
3

SL3 Xβ +$X−3α−2β Z/|µ3(f)|Z ψ−1 CG2
4

SO4

GF Nilpotent Component Group Character

SO4 XαSO4 +XβSO4 Z/2Z sgn CSO4
1

SO4 XαSO4 +$X−βSO4 Z/2Z sgn CSO4
2

PGL3 has none as the centralizers of distinguished, nilpotent elements are all

connected.

Recall from section 7.3 the definition of B(X,χ) and BSO4(X,χ). We shall soon

need to understand the isomorphism class of the centralizer of an element arising from

either of those two constructions. In each case, the centralizer is a totally ramified

torus T = gSG (recall SG was our k-split torus previously defined). Let the splitting

field of T over K be E. Then Gal(E/K) is cyclic of order prime to p generated by
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an element τ . The k-isomorphism class of T is then determined by the image of

g−1τg ∈WG. We first work with G2. For CG2
1 , we have w = R2 and the extension is

degree 3. For the other 3 cuspidal local systems w = R and the extension is degree 6.

For SO4, in both cases w = F SO4 × F SO4 and the extension is of degree 2.



CHAPTER IX

Stability for Distributions Dual to Generalized Green
Functions

In this chapter we study the stability properties of the distributions constructed

in chapter 7.

9.1 Stability for Distributions Dual to Green Functions

Let X be a strongly regular semi-simple element in g(k) such that its centralizer

is a maximal, K-split torus. We address two questions needed for our harmonic

analysis:

1)How many rational orbits lie in the geometric orbit of the element in question?

2)How many of these rational orbits lie in the same torus as X?

We first address question 1. As we are dealing with strongly regular elements,

stable conjugacy is the same as geometric conjugacy. Look at the exact sequence

of pointed sets 0 → T → G → OX → 0 and take k fixed points to get 0 → T →

G → OX(k) → H1(Γ,T) → H1(Γ,G) → 0. We want kerH1(Γ,T) → H1(Γ,G).
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Using that the Kottwitz isomorphism is functorial for inclusion of elliptic, maximal

tori [Chapter 5 or Kot1], we get π0(Z(T̂ )Γ)D → π0(Z(Ĝ)Γ)D. We shall compute the

kernel of this map explicitly.

We now address question 2. Rational classes in OX(K)∩LieS(k) are in bijection

with N(T ) = [NG(K)(T(K))/T(K)]Γ/[NG(T )/T ]. Again, we can compute this ex-

plicitly, which we shall now do.

PGL3:For PGL3, at the level of GL3 all geometrically conjugate tori are ratio-

nally conjugate by rational canonical form, thus after passing to the quotient the

same is true for PGL3, and further computation becomes unnecessary.

G2:As G2 is simply connected H1(Γ,G) is trivial, so we need only compute

π0(Z(T̂ )Γ)D. To do this we look at the torsion points of the co-invariants under

the Galois action on X∗(T ), but the Γ action factors through a Γun action as T is

unramified where Frobk acts via a Weyl group element w. Then we need to compute

tor[X∗(T )/(1 − w)X∗(T )]. Let S be a two dimensional split f-torus. Here are the

results, following our parameterization from section 8.2:
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Name GF Im(frob) |H1(Gal(K/k), T (K))| |N(T )|

TG2

(F{α,β},TR) G2 R 1 1

TG2

(F{α,β},TR2 ) G2 R2 3 1

TG2

(F{α,β},TR3 ) G2 R3 4 1

TG2

(F{α,1−3α−2β},T(F,F ))
SO4 F × F 4 3

TG2

(F{β,1−3α−2β},R) SL3 R 3 2

TG2

(F{α},TF ) GL2 F 1 1

TG2

(F{β},TF ) GL2 F 1 1

TG2

(F∅,S) G2
m Id 1 1

Notice that geometrically conjugate tori must have isomorphicH1(Gal(K/k), T (K).

Consulting our chart, one sees that only two pairs share the same order ofH1(Gal(K/k), T (K)

with the |N(T )| of the two pairs summing to |H1(Gal(K/k), T (K)|. Hence, those

pairs are geometrically conjugate and no others; specifically, TG2

(F{α,β},TR2 ) and TG2

(F{β,1−3α−2β},R)

must be stably conjugate and TG2

(F{α,β},TR3 ) and TG2

(F{α,1−3α−2β},T(F,F ))
must also be stably

conjugate, and no other pairs.

SO4:

For SO4 things are slightly more complicated as |H1(Γ, SO4)| = 2. First, the table

as before:
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Name GF Im(Frobk) |H1(Gal(K/k), T (K))| |N(T )|

T SO4

(F{α,β}T(F,F ))
SO4 F × F 4 1

T SO4

(F{α,1−β}T(F,F ))
SO4 F × F 4 1

T SO4

(F{α}TF ) GL2 F 1 1

T SO4

(F{β}TF ) GL2 F 1 1

T SO4

(F∅,S) G2
m Id 1 1

Look at the maps:

H1(Γ,TSO4

(F{α,β}T(F,F ))
)→ H1(Γ, SO4)

and

H1(Γ,TSO4

(F{α,1−β}T(F,F ))
)→ H1(Γ, SO4)

By Kottwitz’s theorem for elliptic tori, both maps must be surjective. Thus

we compute the order of both kernels must be 2. This forces T SO4

(F{α,β}T(F,F ))
and

T SO4

(F{α,1−β}T(F,F ))
to be stably conjugate. No other pair is.

9.2 Stability for Distributions Dual to Lusztig Functions

Recall that SG is a maximal, split k-torus of G. Let T be a maximal, tamely,

totally ramified k-torus. In particular, T is elliptic over K. Let E be the extension

of K that splits T. Then Gal(E/K) is cyclic with generator τ . Say T = gSG with

g ∈ G(E). Then g−1τ(g) ∈ NG(E)(S(E)). Let w be the class in W(E) that g−1τ(g)

passes to. Let X be a strongly regular semi-simple element of g(k) that has T as its

centralizer. As in section 2, the G(k) orbits in OX(k̄) ∩ g(k) are in bijection with
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ker[H1(Γun,T)→ H1(Γ,G(K))]. We do a case by case analysis again.

For PGL3 we have no cuspidal local systems.

For G2 simply connectedness reduces the problem to computing H1(Γun,T(K)).

By a theorem of Bruhat and Tits [BT3] we get:

H1(Γun,T(K)) ∼= [T(K)/T(K)0]/(1−Frobk)[T(K)/T(K)0].

We have T(K)0 = T(K)0+ as T is a K-anisotropic torus. By Steinberg’s theorem

we have |H1(Gal(E/K),T(E)0+)| = 1 and T(K)0+ = T(E)
Gal(E/K)

0+ from Adler, De-

Backer [AD]. By combining these facts we get that T(K)/T(K)0
∼= [T(E)/T(E)0+ ]Gal(E/K).

Using that T is K-elliptic we get:

[T(E)/T(E)0+ ]Gal(E/K) ∼= [T(E)0/T(E)0+ ]Gal(E/K) ∼=

[S(E)0/S(E)0+ ]w◦τ = [S(E)0/S(E)0+ ]w.

Thus we need to compute the w-fixed points of [S(E)0/S(E)0+ ]. For CG2
2 , CG2

3 , and

CG2
4 , every Y that occurs has w = R for its centralizer, and |[S(E)0/S(E)0+ ]w| = 1.

Thus for these three cases, for any Y ∈ B(X,χ), OY is the only rational orbit in the

stable class of Y , and the distributions D(F,δ) will be a sum of stable distributions,

hence stable.
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For the remaining case, we have CG2
1 , w = R2, and |[S(E)0/S(E)0+ ]w| = 3, and

the individual orbital integrals D(F,δ) we have built will not be stable on their own.

For this cuspidal local system, the group C(X) ∼= S3 with the 3-cycle in S3 involving

roots of unity. Thus, we must break our analysis into the two cases where |µ3(k)| = 3

and |µ3(k)| = 1.

Case 1:|µ3(k)| = 3. In this case, the Γun-action on C(X) is trivial. There are

three conjugacy classes in S3, so we get three terms:

D(F,δ) =
sgn(Id)|SId/S

0
Id|

|ZGF (f)(
gIdX̄)|

∫
A(X,sgn,gId)

µY dY +
sgn(R)|SR/S0

R|
|ZGF (f)(

gRX̄)|

∫
A(X,sgn,gR)

µY dY

+
sgn(F )|SF /S0

F |
|ZGF (f)(

gF X̄)|

∫
A(X,sgn,gF )

µY dY =

= 1∗3
6

∫
A(X,sgn,gId)

µY dY + 1∗3
3

∫
A(X,sgn,gR)

µY dY + −1∗1
2

∫
A(X,sgn,gF )

µY dY

For the third term in the above sum the resulting semi-simple elements Y have

centralizers with trivial cohomology. Thus the third summand of this distribution is

stable.

We now deal with the integrals tied to the classes (Id) and (RS3). For Y ∈

A(X, sgn, gId), the rational classes in the stable orbit are represented by Y , gRY, and

gR2Y . As both gRY and gR2Y occur in the second integral and the same 1 : 2 ratio

occurs, the sum of the first two terms in D(F,δ) forms a stable distribution. As D(F,δ)

is now a sum of stable distributions, D(F,δ) itself is stable.
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Case 2:|µ3(k)| = 1.

Here we need to compute the Frobk conjugacy classes in C(X). In our nota-

tion, the classes are {Id, R,R2}, {F}, and {FR,FR2}. The class associated to the

first has |H1(Gal(K/k,Sm(K))| = 1 with |Sm/S0
m| = 1, while the other two have

|H1(Gal(K/k,Sm(K))| = 3 with |Sm/S0
m| = 3. Thus we get the following equation:

D(F,δ) = 1∗3
6

∫
A(X,sgn,ge)

µY dY + −1∗3
3

∫
A(X,sgn,gFR)

µY dY+

−1∗3
6

∫
A(X,sgn,gF )

µY dY

The first term has |H1(Gal(K/k,Sm(K))| = 1, so it is stable. The latter two

occur in a 1 : 2 ratio, which is precisely what is needed to force their sum to be

stable. Thus the whole distribution is stable.

For SO4 we have two local systems to work with. Let X = XαSO4 + X(3α+2β)SO4 .

Then MX
∼= Z/2Z = {±1} with trivial Γ-action. For m ∈ MX , either m = 1 or

m = −1, and in both cases |Sm/S0
m| = 2 and |H1(Gal(K/k),Sm)| = 2, We get:

D(F,δ1) = 1∗2
2

∫
A(X,sgn,ge)

µY dY + −1∗2
2

∫
A(X,sgn,gFR)

µY dY

The other cuspidal local system yields the distribution:

D(F,δ2) = 1∗2
2

∫
A(X′,sgn,ge)

µY dY + −1∗2
2

∫
A(X′,sgn,gFR)

µY dY

Where X ′ = XαSO4 + $X(3α+2β)SO4 . We shall prove that no nontrivial linear
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combination of these two distributions is stable. However, to do this we will need to

explore some explicit conjugacy classes in so4(k). Let Xa,b,c,d = aXSO4

αSO4
+bXSO4

−(α)SO4
+

cXSO4

(3α+β)SO4
+ dXSO4

−(3α+β)SO4
.

Lemma IX.1. Say a, a′, b, b′, c, c′, d, and d′ ∈ k×. Then Xa,b,c,d is geometrically con-

jugate to Xa′,b′,c′,d′ if and only if ab = a′b′ and cd = c′d′.

Proof. Note Xa,b,c,d is geometrically conjugate to X1,ab,1,cd via

µ̌αSO4 (
√
a
−1

)µ̌βSO4 (
√
c
−1

). Likewise, Xa′,b′,c′,d′ is geometrically conjugate toX1,a′b′,1,c′d′ .

However, {X1,x,1,y|x, y ∈ k̄} is a Kostant section and Xa,b,c,d is regular, hence the con-

jugacy class of Xa,b,c,d intersects {X1,x,1,y|x, y ∈ k̄} precisely once.[Kos]

Lemma IX.2. Say a, a′, b, b′, c, c′, d, and d′ ∈ (R)×. Then Xa,b$,c,d$ is rationally

conjugate to Xa′,b′$,c′,d′$ if and only if the following two conditions are satisfied:

A)ab = a′b′, cd = c′d′

B)One of the following four conditions is satisfied:

i) a
a′

and c
c′

are both squares,

ii) a
a′

and c
c′

are both not squares,

iii) a
b′

and c
d′

are both squares,

iv) a
d′

and c
d′

are both not squares.

Proof. Assume Xa,b$,c,d$ = gXa′,b′$,c′,d′$ with g ∈ SO4(k). We get ab = a′b′ and

cd = c′d′ from 9.1. Let T1 = ZG(Xa,b$,c,d$) and T2 = ZG(Xa′,b′$,c′,d′$). Both of
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these are tamely ramified and their respective buildings sit inside of B(S04). Then

B(T1) ∩ B(SO4) = B(T2) ∩ B(SO4) = {x} where x is the center of the alcove A we

have selected. Then g.x = x, thus g ∈stabG(x). We know:

stabG(x) =< Uα(R), U−1−α(R), Uβ(R), U−β−1(R),S(R) >

∪w < Uα(R), U−1−α(R), Uβ(R), U−β−1(R),S(R) >.

We look at the action of three cocharacters α̌, β̌, and α̌+β̌
2

and the action of w̃, a

choice of representative for w satisfying equation 4 below:

1. α̌(r)Xx,y$,z,w$ = Xr2x,r−2y$,z,w$

2. β̌(s)Xx,y$,z,w$ = Xx,y$,sz,s−2w$

3.
α̌+β̌

2
(q)Xx,y$,z,w$ = Xqx,q−1y$,qz,q−1w$

4. w̃Xx,y$,z,w$ → Xy,x$,w,z$.

Recall SSO4 is the k-points of our k-split k-torus that we previously fixed. The

only element of the root subgroups that preserves the set {Xx,y$,z,w$|x, y, z, w ∈ R×}

is the identity, while the rest of (SO4)x does preserve the set {Xx,y$,z,w$|x, y, z, w ∈

R×}, hence by intersecting the Bruhat decomposition of SO4 with (SO4)x we get that

g lies in SSO4

∐
wSSO4 . Recall ε is a fixed non square in R×. Let S ′ = α̌(k×)β̌(k×).

Then SSO4 = S ′
∐ (α̌+β̌)

2
(ε)S ′, and we get:
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g ∈ SSO4

∐
wSSO4 = S ′

∐ (α̌+β̌)
2

(ε)S ′
∐
wS ′

∐
w (α̌+β̌)

2
(ε)S ′.

These four possibilities for g correspond to the four possible conditions in B).

Now say conditions A) and B) are satisfied. If either condition B)iii or condition

B)iv are satisfied, then conjugating Xa,b,c,d by w̃ and leaving Xa′,b′,c′,d′ yields a pair

satisfying either condition B)i or condition B)ii. If a
a′
/∈ (R×)2 and c

c′
/∈ (R×)2 then

replace Xa,b$,c,d$ with
α̌+β̌

2
(ε) and we get a

a′
∈ (R×)2 and c

c′
∈ (R×)2, thus we may

assume condition B)i without loss of generality. Fix r, s ∈ R× with r2 = a′

a
and

s2 = c′

c
. Then:

α̌(r)β̌(s)Xa,b$,c,d$ = Xaa′/a,ba/a′$,cc′/c,dc/c′$ = Xa′,bb′/v$,c′,dd′/d$

= Xa′,b′,$,c′,d′$

And our Lemma is proved.

LetX1
a,b = X1,a$,1,b$, X2

a,b = Xε,aε−1$,1,b$, X3
a,b = X1,a$,b,$ andX4

a,b = Xε,aε−1$,b,$.

Then:

D(F,δ1) =
∫
a,b∈R× µX1

a,b
−

∫
a,b∈R× µX2

a,b

D(F,δ2) =
∫
a,b∈R× µX3

a,b
−

∫
a,b∈R× µX4

a,b
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Lemma IX.3. No C-linear combination of D(F,δ1) and D(F,δ2) is stable.

Proof. By Lemma IX.1, X i
a,b is geometrically conjugate to Xj

c,d if and only if a = c

and b = d. By Lemma IX.2, X1
a,b is rationally conjugate to X2

a,b if and only if

a
b
/∈ (R×)2. Likewise, X3

a,b is rationally conjugate to X4
a,b if and only if a

b
/∈ (R×)2.

Furthermore, X1
a,b is rationally conjugate to X3

a,b if and only if a or b ∈ (R×)2 and

X2
a,b is rationally conjugate to X3

a,b if and only if a or b ∈ (R×)2. Finally, X1
a,b is

rationally conjugate to X4
a,b and X3

a,b is rationally conjugate to X2
a,b if and only if a

or b /∈ (R×)2. We summarize all this data in three cases:

1. Exactly one of a or b is in (R×)2. Then X i
a,b is rationally conjugate to Xj

a,b for

all i, j.

2. Both a and b are in (R×)2. Then X1
a,b is rationally conjugate to X3

a,b and X2
a,b

is rationally conjugate to X4
a,b and no other pairs are rationally conjugate.

3. Both a and b are not in (R×)2. Then X1
a,b is rationally conjugate to X4

a,b and

X2
a,b is rationally conjugate to X3

a,b and no other pair is rationally conjugate.

Let rD(F,δ1) + sD(F,δw) be a stable linear combination of D(F,δ1) and D(F,δ2).

Assume a, b ∈ (R×)2 as in case 2. Then the occurrence of µX1
a,b

in D(F,δ1) must be

paired with an equal sign occurrence of its geometric but not rational conjugate in

the expression rD(F,δ1) + sD(F,δ2). That means either µX2
a,b

or µX4
a,b

must occur with
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the same coefficient, and as µX2
a,b

only occurs with the coefficient r, this forces the

equation r = −s.

Now assume a, b /∈ (R×)2 as in case 3. Then the µX1
a,b

in the expression rD(F,δ1) +

sD(F,δw) has to pair with µX2
a,b

or µX3
a,b

, and it cannot pair with µX2
a,b

because of the

sign in D(F,δ1), thus we get the equation r = s.

Combining these we get r = s = 0 and the lemma is proved.

9.3 A Basis for the Stable, Compactly Supported Distributions

We write down a basis for the stable distributions in resD0J(g0).

We first address a minor technical point. In order to force our combinations of

distributions dual to Green functions be stable we will have to adjust the precise

X ∈Lie(T ) that we use to define DG
(F,T) for each unramified torus. Our strategy is

to pick representatives for each stable class, pick regular elements arbitrarily for our

representatives, then pick the remaining regular elements to be stably conjugate to

our fixed choices. For G2, the tori we need to pick arbitrary XT for are T(Fα,β ,TR2 )

and T(Fα,β ,TR3 ). For SO4 we need to pick a regular element for T(F{αSO4 ,βSO4},T(F,F )).

In every other case the regular elements are chosen to be conjugate to one of our

fixed choices, or are not related by geometric conjugacy and thus cause no trouble.

This forces the combination we built to be stable. We can make these adjustments

because the restriction of our D(F,T) to D0 depends only on the unramified torus T ,
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not on the particular XT we choose.

First we write a stable basis for the distributions dual to generalized Green func-

tions for PGL3:

Lemma IX.4. Let X, Y ∈ sl3(k) =Lie(PGL3), g ∈ PGL3(k̄) with gX = Y . Then

∃h ∈ PGL3(k) with hX = Y .

Proof. Let π : GL3 → PGL3 be the quotient by the center of GL3. Note π is a

k-rational map as the center of GL3 is a closed k-group. Fix X ′, Y ′ ∈ gl3(k), g′ ∈

GL3(k̄) with dπ(X ′) = X, dπ(Y ′) = Y , π(g′) = g. Then g′X ′ = Y ′+Z with Z in the

center of gl3. As X ′ and Y ′ are both in the k-points of gl3, we get that Z ∈ gl3(k),

and as the k-points of a k-subgroup are the intersection of the k̄-points of the sub-

group with the k-points of the ambient group, we get that Z is in the k-points of

the center of gl3. By rational canonical form, ∃h′ ∈ GL3(k) with h′X ′ = Y ′+Z. Set

π(h′) = h ∈ PGL3(k). Then hX = dπ(h
′
X ′) = dπ(Y ′ + Z) = Y + 0 = Y.

Corollary IX.5. Every PGL3(k)-invariant distribution on sl3(k) is stable.

Proof. Lemma IX.4 shows rational conjugacy and geometric PGL3-conjugacy agree

for sl3, hence for all X ∈ slreg,s.s.3 (k), µstabX = µX . Thus Kstab = K (recall definitions

from chapter 3). By Theorem III.1, every invariant distribution on sl3(k) kills every

function in K, thus every invariant distribution on sl3(k) kills every function in Kstab,
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thus every invariant distribution on sl3 is stable.

The following distributions separate the generalized Green functions, and hence

span resD0J(g0):

DPGL3

(F∅,S)

DPGL3

(F{α},TF )

DPGL3

(F{α,β},TR)

All of the above distributions are stable.

For SO4 the following distributions separate generalized Green functions:

DSO4

(F,S)

DSO4

(F{α},TF )

DSO4

(F{β},TF )

DSO4

(F{α,β},T(F,F ))
+DSO4

(F{α,1−β},T(F,F ))

DSO4

(F{α,β},T(F,F ))
−DSO4

(F{α,1−β},T(F,F ))
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D(F{α,β},Xα+Xβ ,sgn×sgn)

D(F{α,β−1},Xα+Xβ ,sgn×sgn)

We have already shown that the first 4 distributions are in fact stable. We have

also shown that no linear combination of the last 2 can be stable. We need to show

that no linear combination of the last 3 can form a stable distribution.

Lemma IX.6. For r, s, t ∈ C with at least one of r, s, t non-zero, the following dis-

tribution is not stable:

r(DSO4

(F{α,β},T(F,F ))
−DSO4

(F{α,1−β},T(F,F ))
) + sD(F{α,β},Xα+Xβ ,sgn×sgn)+

tD(F{α,1−β},Xα+Xβ ,sgn×sgn)

Proof. Say the above distribution is stable. Notice that there is no overlap between

the various orbital integrals occurring in the distributions:

sD(F{α,β},Xα+Xβ ,sgn×sgn) + tD(F{α,1−β},Xα+Xβ ,sgn×sgn)

and

r(DSO4

(F{α,β},T(F,F ))
−DSO4

(F{α,1−β},T(F,F )
)

Thus r = 0, reducing the problem to lemma IX.3.
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Corollary IX.7. :The following is a basis of resD0J
st((so4)0):

DSO4

(F,S)

DSO4

(F{α},TF )

DSO4

(F{β},TF )

DSO4

(F{α,β},T(F,F ))
+DSO4

(F{α,1−β},T(F,F ))

For G2 the following distributions separate generalized Green functions:

DG2

(F,S)

DG2

(F{α},TF )

DG2

(F{β},TF )

DG2

(F{α,β},TR)

DG2

(F{α,β},TR2 ) + 2DG2

(F{β,1−3α−β},TR)
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DG2

(F{α,β},TR3 ) + 3DG2

(F{α,1−3α−2β},T(F,F ))

DG2

(F{α,β},esubreg ,sgn)

DG2

(F{α,1−3α−2β},m,sgn×sgn)

DG2

(F{β,1−3α−β},n,ψ)

DG2

(F{β,1−3α−β},n,ψ−1)

DG2

(F{α,β},TR2 ) −D
G2

(F{β,1−3α−β},TR)

DG2

(F{α,β},TR3 ) −D
G2

(F{α,1−3α−2β},T(F,F ))

Notice that the distributions DG2

(F{β,1−3α−β},n,ψ) and DG2

(F{β,1−3α−β},n,ψ−1) exist if and

only if |µ3(k)| = 3, thus dim[resD0J((g2)0)] = 9 + |µ3(k)|.

Lemma IX.8. (DK):Let r, s ∈ C with at least one non-zero. Say resD0T = r(DG2

(Fα,β ,TR2 )−

DG2

(Fβ,3α+β−1,TR)) + s(DG2

(Fα,β ,TR3 )−D
G2

(Fα,3α+2β−1,T(F,F ))
). Then T is not a stable distribu-

tion.

Proof. Say T is stable. Say r 6= 0. As resD0J((g2)0) =resD0N , we have T̂ is repre-

sented on C∞c ((g2)0+) by a locally integrable function on (g2)0+ . Extend this function

by zero to all of g2 and call the result T̂ .
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LetDG2

(Fα,β ,TR2 )−D
G2

(Fβ,3α+β−1,TR) = D1 andDG2

(Fα,β ,TR3 )−D
G2

(Fα,3α+2β−1,T(F,F ))
= D2 with

corresponding combination of generalized Green functions G1 and G2. As Ĝ(F,δ) ∈ D0

and G(F,δ) ∈ C∞c ((g2)0+) we have:

r = T (Ĝ1) = T̂ (G1) =
∫

g2
T̂ (X)G1(X)dx

By the Weyl integration formula we get:

r = ΣhCartanch
∫

h
|η(H)|T̂ µH(G1)dH

For r to be non-zero there must be some H regular semisimple in (g2)0+ with

µH(G1) 6= 0. As the Green functions involved are both cuspidal, we know H is ellip-

tic. This gives us that 0 6= T̂ (H) = rD̂1(H) + sD̂2(H)

However from [W1] we know that T̂ is a stable function. Looking at the formulae

for D1 and D2 this is impossible. An analogous argument holds if we assume s 6= 0.



CHAPTER X

Pairing Distributions with Gelfand-Graev Characters

This section works through the computational heart of our comparison of resD0J(g0)

and resD0J(N ). Specifically, we compute µO(F ′,e′)
(h(F,e)), D(F,T )(h(F,e)) andD(F,δ)(h(F,e)).

The functions in question are defined in chapter 6 while the distributions in question

are defined in chapter 7.

10.1 Pairing Nilpotent Orbital Integrals with Gelfand-Graev Characters

Lemma X.1. (Waldspurger)[W3]:Let (F, e) parameterize a nilpotent orbit. Then:

µO(F,e)
(h(F,e)) = |LF (1)| 12 .

Lemma X.2. (Waldspurger)[W3]:Say O(F,e) 6⊂ Ō(F ′,e′). Then:

µO(F ′,e′)
(h(F,e)) = 0.

These are straightforward generalizations of lemmas of Waldspurger [W3].

80
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10.2 Pairing Distributions Dual to Lusztig with Gelfand-Graev Charac-
ters

Let G(F,δ) be a Lusztig function. Let x be a vertex in B(G). Let e ∈ N (Gx)(f) be

f-distinguished.

Lemma X.3. If F ∩ Gx = ∅, then D(F,δ)(h(x,e)) = 0. If F ∩ Gx = F , then

D(F,δ)(h(x,e)) = |Lx(0)|−1
2 G(F,δ)(e).

Proof. Fortunately for us, every cuspidal local system (F, δ) of every group we study

has F a vertex.

D(F,δ)(h(x,e)) = |LF (f)|
1
2

|GF (f)|

∫
G

∫
g
h(x,e)(

gZ)G(F,δ)(Z)dZdg

= |LF (f)|
1
2

|GF (f)|

∫
G

∫
gF
h(x,e)(

gZ)G(F,δ)(Z)dZdg

= |LF (f)|
1
2

|GF (f)|

∫
G

ΣZ̄∈gF /(gF∩g+

g−1x
)h(x,e)(

gZ)
∫

gF∩g+

g−1x

G(F,δ)(Z + Z ′)dZ ′dg

If g−1x 6= F then the image of gF ∩gg−1x in LF (f) is the f-points of the Lie algebra

of a proper parabolic f-subgroup of GF . The image of gF ∩ g+
g−1x in LF (f) is the

f-points of the nilradical of said Lie Algebra. As G(F,δ) is a cuspidal function, the

innermost integral is zero. Therefore the whole expression vanishes if F and x are

not in the same G-orbit in B(G). If they do lie in the same G-orbit, without loss of

generality F = x. Then:

D(F,δ)(h(x,e)) = |Lx(f)|
1
2

|Gx(f)|

∫
Gx

∫
gx
h(x,e)(

gZ)G(x,δ)(Z)dZdg

= |Lx(f)|
1
2

|Gx(f)| µ(Gx)µ(g+
x )|Lx(≤ −1)|G(x,δ)(e)

= |Lx(0)|− 1
2G(x,δ)(e).
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10.3 Pairing Distributions Dual to Green Functions with Gelfand-Graev
Characters

This computation has to be done in two steps. The second is rather elaborate,

particularly for SO4.

Lemma X.4. (DeBacker-Kazhdan):Let (F,T) be a pair consisting of F a facet and

T a minisotropic torus of GF . Say XT ∈ gF with the image of XT in LF (f) a regular

element of Lie(T)(f). Let T be a lift of T to G. Let (C, e) be a pair consisting of C a

facet with e a f-distinguished nilpotent of LC(f). Then µXT (h(C,e)) = 0 unless there is

a g ∈ G such that gC ⊂ B(T ). If there is such a g, then we may assume C ⊂ B(T )

and the following equation holds:

µXT (h(C,e)) = (−1)rk(T )|LC(1)|
1
2 |NG(T )/T |

|NGC
(T)(f)/T(f)| (IndCFQ

F
T ,Γ(C,e))LC

Proof. WLOG ZG(XT ) = T. Let hC(Y ) = 1
|GC(f)|Σḡ∈GC(f)h(C,e)(

gY ). Then:

µXT (h(C,e)) =
∫
G/T

h(C,e)(
gXT )d∗g =

∫
G/T

hC(gXT )d∗g

With d∗g understood to be the quotient measure on G/T . Fix g ∈ G. As

h(C,e) ∈ C(gC/g
+
C), the condition h(C,e)(

gXT ) 6= 0 forces gXT ∈ gC . Then XT ∈ gg−1C ,

hence g−1C ⊂ B(T ) ⊂ B(G). Set F = GC ∩ B(T ). For V ⊂ F a facet of the same

type as C, the centralizer in GC of the image of XT in LV (f) is naturally isomor-
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phic to T. Thus we have a corresponding Green function we call QV
T . Furthermore,

QV
T =IndVFQ

F
T . Let F rep be a choice of representatives for the T -orbits in F . We

may assume C ⊂ F without loss of generality. For V ⊂ F rep fix gV ∈ G such that

g−1
V C = V . Then gVGV = GC , and as hC is GC-invariant we get the equation:

µXT (hC) = ΣV⊂Frep
∫
GV T/T

hC(gV gCT )d∗g

= ΣV⊂Frepµd∗g(GV T/T )hC(gVXT )

Notice µd∗g(GV T/T ) = |GV (f)||LT(f)|
1
2

|LV (f)|
1
2 |T(f)|

, thus we get:

µXT (hC) = |GV (f)||LT(f)|
1
2

|LV (f)|
1
2 |T(f)|

ΣV ∈FrephC(gVXT )

To finish we need to compute the term hC(gVXT ). Define hV (X) = hC(gyX).

From Fourier inversion we get:

hV (XT ) =
∫

gV
Λ(B(XT , Y ))ĥV (−Y )dY

Furthermore:

(QF
T , r

V
F ĥ)LF = (QV

T , ĥ)LV = 1
|GV (f)|ΣX̄∈LV (f)Q

V
T (X̄)ĥV (X)

As supp(ĥ) ⊂ N (k), we can use the equation F(Σg∈GF (f))[X̄T]g)(X̄) = (−1)rkT|T(f)|
|LT(f)|

1
2

QF
T(X̄)

to get:

(−1)rkT|T(f)|
|LT(f)|

1
2

(QF
T , r

V
F ĥ)LF = 1

|GV (f)|ΣX̄∈LV (f)F(Σg∈GF (f))[X̄T]g)(X̄)ĥV (X)
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= 1

|GV (f)||LV (f)|
1
2

ΣX̄∈LV (f)ΣȲ ∈LV (f)Σg∈GV (f)[X̄T](gȲ )Λ(B(X, Y ))ĥV (X)

Making the change of variables (X, Y )→ (g
−1
X, g

−1
Y ) and moving the sum over

GV (f) to be first we get:

(−1)rk(T)|T(f)|
|LT(f)|

1
2

(QF
T , r

V
F ĥ)LF = µdX(g+

V )ΣX̄∈LV (f)Λ(B(X,XT ))ĥV (X)

= µdX(g+
V )ΣX̄∈LV (f)Λ(B(X,XT ))ĥV (−X)

=
∫

gV
Λ(B(XT , X))ĥV (−X)dx

= hV (XT )

Combining these computations we get:

µXT (hC) = |GV (f)||LT(f)|
1
2

|LV (f)|
1
2 |T(f)|

ΣV⊂FrephV (XT )

= (−1)rk(T) |GC(f)|
|LC(f)|

1
2

ΣV⊂Frep(Q
F
T , r

V
F ĥ)LF

= (−1)rk(T) |GC(f)||Frep|
|LC(f)|

1
2

(QF
T , r

V
F ĥ)LF

= (−1)rk(T)|LC(1)| 12 |F rep|(IndCFQ
F
T ,Γ(C,e))LF

Now we compute |F rep| to finish.

Fix a maximal k-split torus T′ of G such that B(T ) = A(A(T′, k), F ). Say

V ⊂ F rep and g ∈ G with gC = V . Let gT denote the f-torus whose F-points are the

image of gT(K)∩G(K) in GV (F). Using our identification of GF with GV we retrieve

a k ∈ GV with kgT = T. As T is a lift of T, it is a lift of kgT, so we get k′ ∈ G+
V

with k′kgT = T . Therefore F rep is in bijection with multiplicative NGC (T )/T -orbits

in NG(T )/T . Thus:
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µXT (hC) = (−1)rk(T)|LC(1)| 12 |NG(T )/T |
|NGC

(T)(f)/T(f)|(IndCFQ
F
T ,Γ(C,e))LF

= µXT (h(C,e))

Unfortunately, it is fairly elaborate to compute (IndxFQ
F
T ,Γ(x,e))LF , especially for

SO4. We do this by using a result of Kawanaka followed by using computations of

Springer. However, to use the result of Kawanaka we must first discuss the notion

of a special nilpotent orbit.

Let X ∈ N (f) be a nilpotent element. Let BGX = {B ⊂ G Borel subgroup|X ∈

b(f)}. Let e(X) =dimF(BGX). We say the orbitOX is special if 2e(X) =dimF(ZG(X))−rk(G).

Let Σ be the set of pairs (X,φ) with X ∈ N (f) special and φ ∈ CD
X . Notice that

G(F) acts on Σ.

Theorem X.5. (Springer)[Spr 6.10]:There is a bijection between Σ/G(F) and WD.

Notice that all regular nilpotent orbits are special. This is because there is a

unique Borel containing them by a theorem of Steinberg and the dimension of their

centralizer is equal to the rank of the ambient group by definition.

For PGL3, centralizers of nilpotent elements are connected, which is enough to

force all orbits to be special.
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We will also need that the subregular orbit in G2 is special.

X e(X) dimF(ZG(X))−rk(G)

XG2
3α+β +XG2

β 1 2

Theorem X.6. (Kawanaka)[Kaw 2.3.2]: Let (F, e) be a pair consisting of a facet

F with a f-distinguished nilpotent e ∈ N (GF )(f). For adjoint groups of type An or

exceptional type there is a decomposition Γ(F,e) = γ0
(F,e) + γ1

(F,e). We have γ1
(F,e) = 0

if e is special. Furthermore, we have the following equation for γ0
(F,e):

γ0
(F,e) = |WF |−1Σw∈W (−1)rk(G)−rk(Tw)|Tw(f)|qe(e)X(F,e)

w (q)QTw

The constant e(e) is defined above (where we define e(X). The constants X
(F,e)
w (q)

are given by Green polynomials (see [Spr] for full details) evaluated at q−1. The torus

Tw is the torus of G for which the corresponding cocycle takes value w on Frobf.

Notice that SO4 is not covered by Kawanaka’s formula. There is a more general

formula of Lusztig that specializes to that of Kawanaka, but we shall work explicitly

due to the low dimension of the groups involved.

In all the cases we wish to use Kawanaka’s formula the above computations, The-

orem X.5, and Theorem X.6 combine to show γ1
(F,e) = 0.

The formula in theorem 10.6 looks superfically different from Kawanaka’s origi-

nal. Kawanaka collapses the factor of qe(e) into his XA
w (q) while DeBacker-Kazhdan
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do not, and I have followed the conventions of DeBacker-Kazhdan. If e is regular

in GF , as a Green function takes the value 1 on a regular orbit, we get X
(F,e)
w = 1.

Moreover, for e regular e(e) = 0. The rest of the cases we will need will be for the

subregular orbit in GF ∼= G2. Note for e ∈ G2(f) subregular we have dimF̄(BG2
e ) = 1.

We retrieve the green polynomials needed for G2 directly from [DKaz1] or [Spr] and

evaluate at q−1:

X
(F(α,β),e1)
w = 1 + q−1(χ(w) + 2τ(w))

X
(F(α,β),e

′
1)

w = 1 + q−1(χ(w)− τ(w))

X
(F(α,β),e

′′
1 )

w = 1 + q−1(χ(w))

Where χ and τ are given by the following character table for WG2 :

sgn χ τ sgnτ χτ

Id 1 2 1 1 2

F −1 0 1 −1 0

FR −1 0 −1 1 0

R 1 1 −1 −1 −1

R2 1 −1 1 1 −1

R3 1 −2 −1 −1 2

Corollary X.7. (Kawanaka, DeBacker, Kazhdan):Say G is split, adjoint of type An,

En, F4, or G2. Fix (F,T) a facet with a minisotropic torus T. Say XT ∈ gF with

the image of XT in LT (f) a regular element of T(f). Let T be a lift of T to G. Let
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(C, e) be a facet with a special, distinguished nilpotent of LC(f). Then µXT (h(C,e)) = 0

unless there is a g ∈ G such that gC ⊂ B(T ). If there is such a g, then we may

assume C ⊂ B(T ) and the following equation holds:

µXT (h(C,e)) =
|LC(1)|

1
2 |NG(T )/T |qe(e)X(C,e)

wT

|WC |

Proof. From Lemma X.4 we have:

µXT (h(C,e)) = (−1)rk(T)|LC(1)| 12 |NG(T )/T |
|NGC

(T)(f)/T(f)|(IndCFQ
F
T ,Γ(C,e))LF

We compute the pairing (IndCFQ
F
T ,Γ(C,e))LF . Let wT be a representative of the

conjugacy class in WGx determined by T. Using Theorem X.6 and the fact that e is

special:

(IndCFQ
F
T ,Γ(C,e))LF = (IndCFQ

F
T , γ

0
(C,e))LF

= (IndCFQ
F
T , |W |−1Σw∈W (−1)rk(G)−rk(Tw)|Tw(f)|qe(e)X(C,e)

w (q)QTw)LF

= |WC |−1Σw∈W (−1)rk(G)−rk(Tw)|Tw(f)|qe(e)X(C,e)
w (q)(IndCFQ

F
T , QTw)LF

By [C], (IndCFQ
F
T , QTw)LF =

|NGx (T)(f)

|T(f)|2 if IndCFQ
F
T = QTw

0 otherwise

(IndCFQ
F
T ,Γ(C,e))LF =

= |W |−1(−1)rk(GC)−rk(T)|T(f)|qe(e)X(C,e)
wT (q)(IndCFQ

F
T ,IndCFQT )LF

= |WC |−1(−1)rk(GC)−rk(T)|T(f)|qe(e)X(C,e)
wT (q)

|NGC
(T)(f)|

|T(f)|2

=
(−1)rk(GC )−rk(T)qe(e)X

(C,e)
wT

(q)|NGx (T)|
|WC ||T(f)|
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Going back to our original goal:

µXT (h(C,e)) = (−1)rk(T)|LC(1)| 12 |NG(T )/T |
|NGC

(T)(f)/T(f)|(IndCFQ
F
T ,Γ(C,e))LF

= (−1)rk(T)|LC(1)| 12 |NG(T )/T |
|NGC

(T)(f)/T(f)|
(−1)rk(GC )−rk(T)qe(e)X

(C,e)
wT

(q)|NGC
(T)(f)|

|WC ||T(f)|

= (−1)rkGC
|LC(1)|

1
2 |NG(T )/T |qe(e)X(C,e)

wT

|WC |

And the corollary is proved.

For the groups that arise in our investigations, the rank of GC is always 2, so the

factor of (−1)rkGc may be discarded and we get:

µXT (h(x,e)) =
|Lx(1)|

1
2 |NG(T )/T |qe(e)X(F,e)

wT

|Wx|

We explicitly compute the pairings we need in the appendix. We record the re-

sults here:

For G = G2 we get the following table, with row 1
|NG(T )/T |D(F,T), specified by

(F,T), evaluated at column h(F,e), specified by e:
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ereg esr e′sr e′′sr n n′ n′′ m m′′

(F∅, S) 1
12

q+4
12

q+1
12

q+2
12

1
6

1
6

1
6

1
4

1
4

(F{α},TF ) 1
12

q+2
12

q−1
12

q
12

0 0 0 1
4

1
4

(F{β},TF ) 1
12

q−2
12

q+1
12

q
12

1
6

1
6

1
6

1
4

1
4

(F{α,β},TR) 1
12

q−1
12

q+2
12

q+1
12

0 0 0 0 0

(F{α,β},TR2) 1
12

q−1
12

q+2
12

q+1
12

0 0 0 0 0

(F{α,β},TR3) 1
12

q−1
12

q+2
12

q+1
12

0 0 0 0 0

(F{β,1−3α−2β}, TR2) 0 0 0 0 1
6

1
6

1
6

0 0

(F{α,1−3α−2β}, TR3) 0 0 0 0 0 0 0 1
4

1
4

These computations are not tractable for our applications to stability in chap-

ters 11 and 13. We must construct some related stable distributions that are closer

to being dual to the h(F,e). Notice that every stable conjugacy class of unramified

tori in G2 is parameterized by a conjugacy class in WG2 . Let Cw be a collection of

unramified tori forming a system of representatives for the rational classes of tori

in the stable conjugacy class parameterized by w. For any κ ∈ WD
G2

, let Dκ =

Σw∈WG2
κ(w)ΣT∈Cw

1
|NG(T )/T |D(F,T). Then we get the following table for Dκ(h(F,e)):

ereg esr e′sr e′′sr n n′ n′′ m m′′

Id 1 q q q 1 1 1 2 2

Dsgn 0 0 0 0 0 0 0 −1 −1

Dχ 0 1 1 1 0 0 0 0 0

Dτ 0 2 −1 0 0 0 0 0 0

Dsgnτ 0 0 0 0 1 1 1 0 0

Dχτ 0 0 0 0 0 0 0 1 1
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For G = SO4 Kawanaka’s results are not valid, so we do everything by hand in

the appendix. We need to specify h(F,e) with the data (F, e) for SO4 because there

are two classes of vertices with residue group SO4. Replace D(F,T ) with
D(F,T )

kC,T
, as for

our applications we don’t need to know these evaluations beyond their behavior that

is uniform in C, T , non-zero scaling. Here is the result in table format:

h(F{α,β},m) h(F{α,β},m′) h(F{α,1−β},m) h(F{α,1−β},m′)

D(F∅,S) 1 1 1 1

D(F{α},TF ) −1 −1 −1 −1

D(F{β},TF ) −1 −1 −1 −1

D(F{α,β},T(F,F )) 1 1 1 1

D(F{α,1−β},T(F,F )) 1 1 1 1

Note in particular that these pairings depend on only the Green function, and

not on which of the four regular orbits we evaluate. This will be key in our stability

computations for SO4.

For κ ∈ WD
SO4

we define Dκ analogously to the case for G2.



CHAPTER XI

Stable Nilpotent Orbital Integrals

In this section we determine which of the nilpotent orbital integrals are stable for

each of the endoscopic groups of G2.

11.1 Stable Nilpotent Orbital Integrals for PGL3

For PGL3 we have corollary IX.5, so all distributions are stable; in particular all

distributions supported on the nilpotent cone are stable.

11.2 Stable Nilpotent Orbital Integrals for G2

We follow DeBacker-Kazhdan [DKaz1]. The key technique of their analysis is to

use homogeneity to split up the computations by dimension, using Lemma X.2 we

work from highest dimension nilpotent orbit down, then use a counting argument to

make sure we exhaust all possibilities.

By X.1 and X.2 distinct nilpotent k-orbits in g(k) give linearly independent or-

bital integrals. From Theorem III.3 we know that:

92
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resD0J(N ) =resD0J((g2)0)

From our computations in section 9.3 we know dim resD0J
stab((g2)0) = 7+ |µ3(k)|.

The method of DeBacker and Kazhdan is to pick out stable nilpotent orbital inte-

grals until we exhaust 7 + |µ3(k)| dimensions.

Firstly, the orbital integral corresponding to 0 is trivially stable.

We shall need a result on homogeniety that follows from a more general result in

section 12.2. We state the version we need now and delay the proof until chapter 12.

Lemma XI.1. Let T be a stable distribution with expansion:

resD0T = ΣO∈N (k)/G(k)cO(T ) resD0 µO.

Then for each i ∈ N, ΣdimO=icO(T )µO is also stable.

Proof. :See Cor XII.2.

Consider the distribution DG2
T(F{α,β},R)

. Our computations in chapter 8 tell us this

distribution is stable. By III.3 we can write:

resD0 D
G2
T(F{α,β},R)

= ΣO∈N (k)/G2(k)c(D
G2
T(F{α,β},R)

) resD0 µO
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Evaluating both sides of this equation at the function h(F{α,β},ereg) we get:

DG2
T(F{α,β},R)

(h(F{α,β},ereg)) = ΣO∈N (k)/G2(k)c(D
G2
T(F{α,β},R)

)µO(h(F{α,β},ereg))

Let C = DG2
T(F{α,β},R)

(h(F{α,β},ereg)). From Corollary X.7 and our Green polynomial

computation for regular e we get:

C = DG2
T(F{α,β},R)

(h(F{α,β},ereg)) =
|L{α,β}(1)|

1
2 ||NG(T(F{α,β},R))/T(F{α,β},R)|∗q0∗1

|WF{α,β} |

In particular, C 6= 0.

From Lemma X.2 and using the fact that O(F{α,β},ereg) is the unique, maximal

dimension, nilpotent orbit in g2(k) we get that µO(h(F{α,β},ereg)) = 0 unless O =

O(F{α,β},ereg), in which case Lemma X.1 gives µO(F{α,β},ereg)
(h(F{α,β},ereg)) = |LF{α,β}(1)| 12 .

Thus we get:

cOreg(D
G2
T(F{α,β},R)

)|LF{α,β}(1)| 12

In particular cOreg(D
G2
T(F{α,β},R)

) 6= 0. Now, as Oreg is the unique orbit of maximal

dimension in g2, we get from Lemma XI.1 that µOreg is stable.

Recall our definition from section 10.3 of the stable distributions Dκ for κ ∈

WG2 . Write resD0 Dsgn = ΣO∈N (k)/G2(k)cO(Dsgn) resD0 µO. Then by our computa-

tions of the pairing Dsgn(h(F,e)) we get c(F{α,β},ereg)(Dsgn) = 0, which in turn forces

c(F{α,β},esr)(Dsgn) = c(F{α,β},e′sr)(Dsgn) = c(F{α,β},e′′sr)(Dsgn) = 0. Likewise, we get



95

c(F{β,1−3α−2β},n)(Dsgn) = c(F{β,1−3α−2β},n′)(Dsgn) = c(F{β,1−3α−2β},n′′)(Dsgn) = 0.

As Dsgn(h(F{α,1−3α−2β},m)) = Dsgn(h(F{α,1−3α−2β},m′)) = 1, we get some combination

of c(F{α,1−3α−2β},m)(Dsgn) and c(F{α,1−3α−2β},m′)(Dsgn) is not 0. This combination must

be stable by homogeneity.

Now we analyze the expansion:

resD0 D(F{α,1−3α−2β},m,sgn×sgn) = ΣO∈N (k)/G2(k)cO(D(F{α,1−3α−2β},m,sgn×sgn)) resD0 µO

Notice the same argument gives that cO(D(F{α,1−3α−2β},m,sgn×sgn)) = 0 except for

the orbits O(F{α,1−3α−2β},m) and O(F{α,1−3α−2β},m′). Consider the pair:

cO(F{α,1−3α−2β},m)
(D(F{α,1−3α−2β},m,sgn×sgn))

and

cO(F{α,1−3α−2β},m
′)

(D(F{α,1−3α−2β},m,sgn×sgn))

This pair must be linearly independent from the pair we got for Dsgn. This second

combination must be stable as well, hence the two distributions µO(F{α,1−3α−2β},m)
and

µO(F{α,1−3α−2β},m
′)

must both be stable.

Similar arguments for the three stable distributions Dχ, Dτ , and D(F{α,β},esr,sgn)

prove that the orbital integrals µO(F{α,β},esr)
, µO(F{α,β},e

′
sr)

, and µO(F{α,β},e
′′
sr)

are stable,
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likewise the distributions D(F{β,1−3α−2β},nsr,ψ), D(F{β,1−3α−2β},nsr,ψ), and Dsgnτ do the

trick for showing the stability of the |µ3(k)| invariant distributions µO(F{β,1−3α−2β},n)
,

µO(F{β,1−3α−2β},n
′)

, and µO(F{β,1−3α−2β},n
′′)

.

We have produced 1 + 1 + 2 + 3 + |µ3(k)| = 7 + |µ3(k)| linearly independent sta-

ble distributions in J(N ), which is the same as the previously computed dimension

of resD0J
st((g2)0), thus the remaining two nilpotent orbital integrals µO(F{α},X̄α)

and

µO(F{β},X̄β)
are not stable.

11.3 Stable Nilpotent Orbital Integrals for SO4

First we observe that by our SO4 stability computations in chapter 8, there are

4 complex dimensions of resD0J
stab((so4)0) spanned by distributions dual to Green

functions and none from Lusztig functions. As always, the nilpotent orbital integral

given by the trivial orbit is stable.

We expand the following five distributions:

resD0 D(F∅,S) = ΣO∈N (k)/SO4(k)cO(D(F∅,S)) resD0 µO

resD0 D(F{α},Tw) = ΣO∈N (k)/SO4(k)cO(D(F{α},Tw)) resD0 µO

resD0 D(F{β},Tw) = ΣO∈N (k)/SO4(k)cO(D(F{β},Tw)) resD0 µO

resD0 D(F{α,β},T(F,F )) = ΣO∈N (k)/SO4(k)cO(D(F{α,β},T(F,F )) resD0 µO
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resD0 D(F{α,1−β},T(F,F )) = ΣO∈N (k)/SO4(k)cO(D(F{α,1−β},T(F,F )) resD0 µO

We evaluate each of these at the functions h(F{α,β},m), h(F{α,β},m
′), h(F{α,β−1},m),

and h(F{α,1−β},m
′). Recall our table from the end of section 10.3 that records

the needed data. Notice that all four distributions evaluate to the same value

on all 4 regular, rational, nilpotent k-orbits. As these orbits are maximal dimen-

sion amongst the nilpotent orbits, using the homogeniety theorem (Cor XII.2) and

Lemma X.2, we get that c(F1,e1)(D(F,T )) = c(F2,e2)(D(F,T )) for all (F, T ), and for

(F1, e1) and (F2, e2) both regular. Thus resD0(Jst((so4)0)∩resD0SpanC{µ(F,e)|(F, e)

regular} =SpanC(µO(F{α,β},m)
+ µO(F{α,β},m

′)
+ µO(F{α,1−β},m)

+ µO(F{α,1−β−1},m
′)

).

That is, the sum of the four regular, nilpotent orbital integrals is stable. Fur-

thermore, any stable combination of regular, nilpotent orbital integrals is exactly a

scalar times the sum of the four regular, nilpotent orbital integrals.

Now we know dimJstab(N ) = 4, and we also know:

J(N ) =

Cµ0⊕ SpanC{µ(F,e)|(F, e) regular}⊕SpanC{µO(Fα,X̄α)
, µO(Fβ,X̄β)

}

Taking the dimension of the stable part of both sides and throwing out the two

dimensions we have already found in J(N )stab we get that:

dimCSpanC{µO(Fα,X̄α)
, µO(Fβ,X̄β)

} ∩ Jstab(N ) = 2
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Hence we get that both µO(Fα,X̄α)
and µO(Fβ,X̄β)

are stable.



CHAPTER XII

H-Stability and Transfer

In this chapter we define H-stability and work out some lemmas on the transfer

map.

12.1 H-Stability and Transfer

Recall from chapter 5 the definition of transfer factors ∆G,H and the transfer map

on geometric classes AH/G. We have also defined in chapter 3 the notion of the kernel

for invariant distributions K = {f ∈ C∞c (g)|µX(f) = 0 for all X ∈ greg,s.s.} and for

X ∈ greg,s.s. we have stable combinations:

µstabX = ΣX′µX′ = Σσ∈H1(Γ,ZG(X))µXσ

Where the sum is understood to be over a set of representatives for the rational

classes in the geometric class of X.

We now generalize these notions to define a notion of stability for functions and

orbital integrals on g relative to a fixed endoscopic group H. For Y ∈ hG−s.reg, we

define a distribution µ
H/G
Y ∈ D(g) by the following equation:

99
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µ
H/G
Y = ΣX∆(X, Y )µX

Where the sum is understood to be taken over a choice of representatives for

the rational conjugacy classes in the geometric class AH/G(OY ). This lets us de-

fine KstabH/G = {f ∈ C∞c (g|µH/GY (f) = 0 ∀ Y ∈ hG−s.reg} and dually we can define

JH−stab(g) = {T ∈ D((g)|T (f) = 0∀f ∈ KstabH/G}, the H-stable distributions on g.

Notice that all H-stable distributions are invariant, as K ⊂ KstabH/G. Furthermore, no-

tice that when we consider G as an endoscopic group of itself we recover our previous

notion of stability.

Recall t(X) is Lie(ZG(X)|. We introduce the Weyl DiscriminantD(X) = |det(adX|g/tX)|k.

This lets us define for Y ∈ h(k)G−s.reg,s.s.:

φStabY = ΣY ′D(Y ′)1/2µY ′

φ
H/G
Y = ΣXD(X)1/2∆(X, Y )µX

Where, again, the sum is understood to be over a choice of representatives for

the rational classes in the geometric class of Y . Notice that the first distribution is

defined on h while the second is defined on g.

We have already defined in chapter 5 a map from the geometric conjugacy classes

in h to the geometric conjugacy classes in g and the transfer factors ∆G,H . We now

continue to define the transfer map. Given f ∈ C∞c (g) and fH ∈ C∞c (h) we say that

fH is a transfer of f if and only if for all Y in hG−s.reg the following equation holds:
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φ
H/G
Y (f) = φstabY (fH)

Notice that Kstab ⊂ C∞c (h) is exactly all functions that are killed by the func-

tionals on the right hand of the equation for every Y ∈ h(k)s.reg,s.s., while KstabH/G ⊂

C∞c (g) is exactly all functions that are killed by the functionals on the left for all

Y ∈ h(k)G−s.reg,s.s.. Thus Kstab ⊂ C∞c (h) is precisely the functions that are transfers

of the 0 function on g, and 0 is a transfer for any function in KstabH/G. That means if

fH and fH1 are both transfers of f , then fH − fH1 ∈ Kstab, and if fH is a transfer of

both f and f1, then f − f1 ∈ KstabH/G. If D ∈ J(g) and DH ∈ J(h) then we say that D

is a transfer of DH if the following equation holds for every fH transfer of f :

D(f) = DH(fH)

Notice that if D is a transfer of DH , then DH must automatically be stable, while

D must be H-stable. Furthermore, the distributions φ
H/G
Y are automatically trans-

fers of φstabY .

12.2 H-stability and Homogeneity

For z ∈ k× and f ∈ C∞c (g) let zf ∈ C∞c (g) be given by the equation:

zf(X) = f(zX).

Denote by D[n] ⊂ D(g) the distributions T satisfying the equation:
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T (z
2
f) = |z|−nT (f).

Lemma XII.1. Say T ∈ JH−stab(g). Say we have a finite collection {Tn} with

Tn ∈ D[n](g) and resD0T = ΣnresD0Tn. Then Tn is H-stable for all n.

Proof. This argument is a straight forward generalization of an argument Wald-

spurger[W3]. Say f ∈ KstabH/G(g). Then as f is compactly supported and gA(k) is

an open neighborhood of zero there is some N ∈ N such that for all z ∈ k× with

ν(z) ≥ N , z2
f ∈ Cc(g(k)/gA(k)) ⊂ D0. From our assumptions, for all such z we

have the equation:

T (z
2
f) = ΣnTn(z

2
f) = Σn|z|−nTn(f).

As f ∈ KstabH/G, z
2
f ∈ KstabH/G. Therefore T (z

2
f) = 0. As there are infinitely many z

with distinct |z| and with |z| ≥ N , while there are only finitely many Tn, this forces

the individual Tn(f) to all be zero. Thus every Tn is H-stable.

Corollary XII.2. Say T ∈ JH−stabH/G (g) and resD0T = ΣO∈N (k)/G(k)cO(T )resD0µO.

Then ΣO′cO′(T )µO′ is H-stable where the sum is over all nilpotent orbits of a fixed

dimension.

Proof. :It is well known [H-C, Lemma 3.2] that for X ∈ N , µX ∈ D[dimkOX ].
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Notice that when H = G we recover the results of Waldspurger for stable distri-

butions that we used in chapter 11.

Theorem XII.3. Let D be a transfer of DH . Say we have finite collections {Dn}

and {DH
n } with Dn ∈ D[n](g), DH

n ∈ D[n](h), resD0D = ΣnresD0Dn, and resD0D =

ΣnresD0Dn. Let eG =dimkg − rk(g), likewise eH . Then Dn+eG−eH is a transfer of

DH
n for all n.

Proof. Again, a generalization of Waldspurger’s results in [W3]. Note that all Dn

are H-stable and all DH
n are stable by Lemma XII.1. Let fH be a transfer of

f . Then φstabY (fH) = φ
H/G
Y (f) for all Y ∈ hG−reg. Observe that for all z ∈ k×,

D(z2X)1/2 = |det(adz2X|g/tz2X)|1/2F = |z|eGD(X). Notice that the map f → zf

commutes with the adjoint action and notice that transfer factors also ignore scal-

ing. Thus we get:

φstabz2Y (z
2
fH) = |z|eHφstabY (fH) = |z|eHφH/GY (f) =

|z|eH−eGφH/GzY (z
2
f) = φ

H/G
zY (|z|eH−eG [z

2
f ])

Thus z2
fH is a transfer of |z|eH−eG [z

2
f ]. As both f and fH are compactly sup-

ported in C∞c (g) and C∞c (h) respectively, we can find an n ∈ N such that for all

z ∈ k× with ν(z) ≥ n, z
2
f ∈ D0(g) and z2

fH ∈ D0(h). As before, ∀z ∈ k× such that
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ν(z) ≥ n, we have the two equations:

D(|z|eH−eGz2
f) = ΣnDn(|z|eH−eG [z

2
f ]) = Σn|z|eH−eG−nDn(f)

DH(z
2
fH) = ΣnD

H
n (z

2
fH) = Σn|z|−nDH

n (fH).

Taking the difference of these two equations, sorting terms by degree in |z|, and

using the fact that D is a transfer of DH we get:

0 = D(z
2
f)−DH(z

2
fH) = Σn|z|−n[Dn+eG−eH (f)−DH

n (fH)]

Using the infinitely many z we get infinitely many linear relations on the finitely

many possibly nonzero expressions [Dn+eG−eH (f)−DH
n (fH)], hence all [Dn+eG−eH (f)−

DH
n (fH)] = 0, or Dn+eG−eH (f) = DH

n (fH). As we have made no assumptions on our

pair consisting of fH a transfer of f , we get that Dn+eG−eH is a transfer of DH
n .

This theorem will let us talk about transferring nilpotent orbital integrals by

working with the T(F,δ).

12.3 The Transfer Map on the Nilpotent Cone

Recall from section 1 that for x, y ∈ B(G) and r ∈ R non-negative we have the

depth r Moy-Prasad filtrations of the Lie algebra gx,r and the set gr = ∪x∈B(G)gx,r.

Note that gr is a union of the open sets gx,r(k), hence is open. As gr(k) = ∩x∈B(G)[gx,r+
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N (k)] and each [gx,r + N (k)] is closed, we get that gr is closed. Thus we get two

projection maps πG,r : C∞c (g)→ C∞c (gr) ⊂ C∞c (g) and π⊥G,r : C∞c (g)→ C∞c (g \gr) ⊂

C∞c (g) with πG,r(f) = f |gr and π⊥G,r(f) = f |g\gr . Note Id = πG,r + π⊥G,r gives a

decomposition of the identity as a sum of two idempotents. Additionally, gr and

g \ gr are G(k)-invariant as for g ∈ G(k), ggx,r = ggx,r. Notice that if X ∈ gx,r and

X ∈ gy,r then X ∈ gz,r for all z in the geodesic between x and y.

Lemma XII.4. Say H is an endoscopic group of G. Say Y ∈ hG−s.regr . Say

X ∈ AH/G(OY )(k). Then X ∈ gr.

Proof. As Y ∈ hG−s.regr 5 we have some Y ′ geometrically conjugate to Y with Y ′ ∈

sH(E), E/k some finite Galois extension and sH the split maximal torus in h that is

the Lie algebra of the torus SH that the root datum of H is calculated with respect

to. Let eE be the ramification degree of E. As E is also a p-adic field we can de-

fine RE, the ring of integers in E with uniformizer $E chosen with $eE
E = $k. As

Y ∈ hr, we get that Y ′ ∈ sH($reE
E RE). As in chapter 1, let sG be the torus in g that

is the Lie algebra of the torus SG that we computed the root datum of G with. We

identify sG with sH as before, and let X ′ be an image of Y ′ lying in sG($reE
E RE).

Then OX′(k̄) = AH/G(OY )(k̄) = OX(k̄). As X ′ ∈ sG($reE
E RE) and depth is invariant

under conjugation we get X ′ ∈ ∪x∈B(G)(E)gx,reE(E), hence X ∈ ∪x∈B(G)(E)gx,reE(E).

Hence X ∈ gr as desired.

Given a G-invariant closed and open subspace V ⊂ g(k) and f ∈ C∞c (g), f |V
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extended by zero is also in C∞c (g). Given D ∈ J(g) we can define D|V ∈ J(g) via

the equation D|V (f) = D(f |V ).

Lemma XII.5. Say DH ∈ J(N (H)). Let D be a transfer of DH . Then the distri-

bution D|gr ∈ J(gr) ⊂ J(g) is also a transfer of DH .

Proof. Let fH be a transfer of f . By Lemma 12.4 πH,r(f
H) (resp. π⊥H,r(f

H)) is

a transfer of πG,r(f) (resp. π⊥G,r(f)). As N (H)(k) ⊂ h0 and DH ∈ J(N (H)(k))

we get 0 = DH(π⊥H,r(f
H)) = D(π⊥G,r(f)). Thus DH(fH) = D(f) = D(πG,r(f)) +

D(π⊥G,r(f)) = D(πG,r(f)) = D|gr(f).

For D ∈ J(g) and f ∈ C∞c (g) define D∞(f) = limr→∞D|gr(f), where it is cur-

rently understood that limr→∞D|gr(f) may not converge.

Theorem XII.6. For D ∈ J(g):

A)limr→∞D|gr(f) always converges.

B)The map f → D∞(f) defines a distribution D∞ ∈ J(N ).

C)If D is a transfer of DH ∈ Jstab(N (h)), then D∞ is a transfer of DH .

Proof. For arbitrary f ∈ C∞c (g), ∃L ⊂ g compact, open such that for all x ∈ g, l ∈ L,

f(x + l) = f(x). As supp(f) is compact, supp(f) is covered by a finite collection
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of disjoint sets {xi + L}i∈I . Then D(f) = Σi∈ID(f(xi)[xi + L]). As ∩r∈Rgr = N

and if A < B we have ∩r≤Bgr ⊂ ∩r≤Agr we get that there is some rf such that the

collection J ⊂ I of indices j such that (xj + L) ∩ N 6= ∅ is the same as the indices

j′ such that Drf (f(xj′)[xj′ + L]) 6= 0. Then D∞(f) = D|grf (f), and hence D∞(f) is

always a well defined complex number. Hence A) is proved.

We now prove B). Observe that ∩r∈Rgr = N implies that D∞ is always supported

on N . Furthermore for f ∈ C∞c (g), g ∈ G we have D∞(f − gf) = D|grf (f − gf) = 0

as D|grf ∈ J(grf ).

To prove C), let f ∈ C∞c (g) be a transfer of fH ∈ C∞c (h). Fix r such that

D∞(f) = D|gr(f). By Lemma XII.5, D|gr is a transfer of DH , therefore D∞(f) =

D|gr(f) = DH(fH).

This theorem proves that if we haveDH a stable, nilpotent distribution in J(N (h))

that transfers to any distribution of g, we can find a nilpotent transfer.



CHAPTER XIII

Nilpotent Endoscopy for g2

13.1 Sketch of What’s Coming

In this chapter we compute the image of the transfer map. Our strategy is as

follows:

1. For G2, all the work was done explicitly in our stability computations, as trans-

fer from G2 to itself is just the identity map on stable distributions.

2. In each remaining case, we first take the stable combinations DH
i where i is an

arbitrary index that we explicitly write down (roughly; the decreasing split rank

of the involved tori). We transfer these stable combinations of orbital integrals

to combinations DG2
i .

3. We look at the dimensions of the stable, nilpotent orbital integrals and use the

homogeneous transfer theorem to compute the dimension of their image.

4. We write each resD0D
H
i = Σjai,jµj, where j runs over an index for the stable

108
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combinations of nilpotent orbital integrals in h. The matrix ai,j is invertible so

that we can isolate each individual µj with a non-zero coefficient. We do the

analogous work in g2.

5. We use dimension arguments to compute the full image for PGL3, and most of

the image for SO4, however part of the image lies in the span of the subregular

nilpotent orbits in g2 for SO4, so dimensionality arguments do not suffice.

6. We use our embedding WSO4 ↪→ WG2 and twist the various stable distributions

on so4 by characters in WD
SO4

to separate their behavior on the subregular orbits

in g2 to finish our computation of the image.

13.2 Transfer from G2

Recall from chapter 5 the definition of an Endoscopic group and transfer factors.

Recall from chapter

For H ∼= G2 in order to get the root system of H to be of type G2 we require

that s(α̌) = 1 for all α̌ ∈ φG2̌ , hence s = Id. Consequently, all the transfer factors

∆G,H(XG, XH) = 1 if XG is an image of XH and 0 otherwise. We see that H-stability

is the same as stability in this case, so no unstable distribution lies in the image un-

der transfer, and that every stable distribution of G2 is a transfer of itself.
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13.3 Transfer from PGL3

For H ∼= PGL3 we get s(β̌) = s(3α̌ + β̌) = 1, s(α̌) 6= 1, thus s(α̌) = ξ or

s(α̌) = ξ−1 where ξ ∈ µ3(k) is a nontrivial cube root of unity. Thus there are two

possible endoscopic datums that will lead to slightly different transfers.

We shall proceed by transferring orbital integrals and then using our homogene-

ity theorem to restrict to D0 and pass to nilpotent orbital integrals. Let Y be in

pglG2−s.reg
3 (k) with centralizer TY . By Lemma IX.4 the rational PGL3(k)-orbit of Y

in pgl3 is the stable orbit. By Lemma VII.1, resD0µY depends only on TY , not the

particular element chosen, thus we shall consider the transfer torus by torus rather

than worrying about more fine information. We can use the results of section 12.4

to transfer to g2. Here are the results:

TY Various TX

T(F∅,Id) T(∅,Id)

T(F{βPGL3
},F ) T(F{β},F )

T(F{αPGL3
,βPGL3

},R) T(F{α,β},R2), T(F{β,1−3α−2β},R)

Notice that T(F{β,1−3α−2β},R) occurs twice.

The transfer factors only come into play in the case that Y ∈ t(F{αPGL3
,βPGL3

},R).

Let X0 ∈ t(F{α,β},R2) have Y as an image, with X1 and X2 being representatives of

the other two rational classes that have Y as an image (recall our cohomology com-

putations in chapter 9). Then we can choose s to get:



111

φ
PGL3/G2

Y = φX0 + ξφX1 + ξ−1φµX2

Thus: resD0φ
PGL3/G2

Y =

resD0 D
G2
TF{α,β},R

2)
+ ξ resD0 D

G2
T(F{β,1−3α−2β},R)

+ ξ−1 resD0 D
G2
T(F{β,1−3α−2β},R)

=

resD0 D
G2
TF{α,β},R

2)
− resD0 D

G2
T(F{β,1−3α−2β},R)

Notice that (conveniently) our final answer does not depend on our choice of s in

the endoscopic datum. Using the above table and transfer factor combinations we

now produce a table of the transfers of the various DPGL3

(F,T ) in terms of DG2

(F ′,T ′):

DPGL3

(F,T ) Transfer

DPGL3

(F∅,S) DG2

(∅,S)

DPGL3

(F{βPGL3
},TF ) DG2

(F{β},TF )

DPGL3

(F{αPGL3
,βPGL3

},TR) DG2

(F{α,β},TR2 ) −D
G2

(F{β,1−3α−2β},TR)

The orthogonality result, Lemma VII.1, immediately shows that the set of dis-

tributions occurring on the left hand side is linearly independent. Likewise for the

right hand side. Lemmas X.1 and X.2 show that the stable combinations of nilpo-

tent orbital integrals are linearly independent of each other. Hence, each of the three

nilpotent orbital integrals must occur with non-zero coefficient in at least one of the

transfers of the DPGL3

(F,T ) s. As the combinations of DG2

(F,T ) are also linearly independent,

the rank of the transfer map on nilpotent orbital integrals must be 3.

We now use Theorem XII.3. Recall the definition eG = dimk(g)− rk(g) from the-
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orem XII.3. Compute eG2−ePGL3 = 14−2−(8−2) = 6, so our homogeneity theorem

will shift dimensions by 6. The three nilpotent orbits of PGL3 are of dimension 6,

2, and 0, so we get transfers to nilpotent orbits in g2 of possible dimensions 12, 8,

and 6. These are the dimensions of the regular orbit, the orbit of Xβ, and the orbit

of Xα respectively. Thus, we get the following table for the transfer map for PGL3

up to constants:

Orbit in pgl3 Image in g2

0 O(F{β}Xβ)

O(F{β},Xβ) O(F{α},Xα)

O(F{α,β},ereg) O(F{α,β},ereg)

13.4 Transfer from SO4

For H ∼= SO4 there are three possible embeddings of Ȟ → Ǧ2, but they are all

equivalent. Our requirements for s are s(α̌) = s(3α+̌2β)̌ = 1, s(β)̌ 6= 1, thus we get

s(β̌) = −1.

This time the unramified elements produce the following transfer on tori:

Various TY Various TX

T(F∅,Id) T(∅,Id)

T(F{αSO4
},F ) T(F{α},F )

T(F{βSO4
},F ) T(F{β},F )

T(F{αSO4
,βSO4

},(F,F )), T(F{αSO4
,1−βSO4

},(F,F )) T(F{α,β},R3), T(F{α,1−3α−2β},(F,F ))

The last grouping contains 2 copies of each torus on the SO4 side and contains 1
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copy of the torus at F{α,β} and 3 copies of the torus at F{α,1−3α−2β}. We again only see

transfer factors for the last pairing of stable classes on the list. Here, our choices force:

DSO4

(F{αSO4
,βSO4

},T(F,F ))
+DSO4

(F{αSO4
,1−βSO4

},T(F,F ))

To transfer to:

DG2

(F{α,β},TR3 ) +DG2

(F{α,1−3α−2β},T(F,F ))
−DG2

(F{α,1−3α−2β},T(F,F ))
−DG2

(F{α,1−3α−2β},T(F,F ))
=

DG2

(F{α,β},TR3 ) −D
G2

(F{α,1−3α−2β},T(F,F ))

Again, this is independent of choosing equivalent endoscopic datums. Easy use

of Lemma VII.1 shows the combinations of DSO4

(F,T ) on both sides are linearly inde-

pendent, similarly Lemma 8.3.1 shows the stable combinations of nilpotent orbital

integrals on so4 are linearly independent. We get the following table:

Stable Combination Transfer

DSO4

(F∅,Id) DG2

(∅,Id)

DSO4

(F{αSO4
},F ) DG2

(F{α},F )

DSO4

(F{βSO4
},F ) DG2

(F{β},F )

With the one additional result that:

DSO4

(F{αSO4
,βSO4

},(F,F )) +DSO4

(F{αSO4
,1−βSO4

},(F,F ))

Transfers to:
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DG2

(F{α,β},R3) −D
G2

(F{α,1−3α−2β},(F,F ))

We again compute dimensions and use Theorem XII.3 to compute dimensions

of the image; our stable combinations on so4 are of dimension 0, 2, 2, and 4, and

dimg2−dimso4 = 14− 6 = 8, so the nilpotent distributions in so4 transfer to nilpo-

tent distributions in g2 of dimension 8, 10, 10, and 12. Combining this information

with our linear independence results we immediately get that the 0 orbit in so4 trans-

fers to O(F{α},Xα), the stable combination consisting of regular orbits transfers to the

regular orbit in g2, and the remaining two orbits must go to linearly independent

combinations of the subregular orbits in g2.

Fortuitously we have already computed exactly what each of the DG2

(F,T ) do on the

regular and subregular orbits. Our strategy follows that of DeBacker and Kazhdan:

we note that the stable distributions on so4 are nicely parameterized by conjugacy

classes in WSO4 . For a character κ ∈ WD
SO4

, let D
SO4/G2
κ be the transfer of distri-

bution Σw∈WSO4
κ(w)Dstab

w (see chap 10 for the definition of Dstab
w ). Evaluating at

h(F,e) ∈ C∞c (g2) for e regular or subregular, we get the following table:

ereg esr e′sr e′′sr n n′ n′′ m m′′

D
SO4/G2

Id
1
3

q
3

q
3

q
3

1
3

1
3

1
3

1
2

1
2

D
SO4/G2

sgn×Id 0 1
3

1
3

1
3

1
3

1
3

1
3

0 0

D
SO4/G2

Id×sgn 0 1
3

1
3

1
3

0 0 0 0 0

D
SO4/G2

sgn×sgn 0 0 0 0 0 0 0 0 0

We remind the reader that if |µ3(k)| = 1 the nilpotents n′ and n′′ don’t exist,

hence in that case we take µ(F{3α+2β−1,β},n′) = µ(F{3α+2β−1,β},n′) = 0.
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In particular, restricting to D0 and looking at the local expansions of Dsgn×Id

and DId×sgn, we observe that Cµreg(Dsgn×Id) = Cµreg(DId×sgn) = 0. This com-

bined with our evaluations then forces C(F{α,β},esr)(DId×sgn) = C(F{α,β},e′sr)(DId×sgn) =

C(F{α,β},e′′sr)(DId×sgn) 6= 0, hence by homogeniety we get that µ(F{α,β},esr)+µ(F{α,β},e′sr)+

µ(F{α,β},e′′sr) must lie in the image of transfer for the endoscopic group SO4.

Combining this information with the same argument for Dsgn×Id then shows that

µ(F{3α+2β−1,β},n) +µ(F{3α+2β−1,β},n′) +µ(F{3α+2β−1,β},n′′) lives in the image under endoscopy

from SO4, and we are done.

We can actually do slightly better. Explicit computations on GL2(f) ∼= GF{α}(f)
∼=

GF{β}(f) show the following pairings on SO4 (again up to a non-zero factor):

h(F{α},Xα) h(F{β},Xβ)

D(∅,S) 1 1

D(F{α},F ) −1 0

D(F{β},F ) 0 −1

D(F{α,β},F×F ) 0 0

Which in turn shows the following:
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h(F{α},Xα) h(F{β},Xβ)

DId 0 0

Dsgn×Id 2 0

DId×sng 0 2

Dsgn×sgn 2 2

Thus we see that µ(F{α},Xα) maps to a constant times the combination µesr +

µe′sr +µe′′sr +µn+µn′+µn′′ while µ(F{β},Xβ) maps to a constant times the combination

µesr + µe′sr + µe′′sr . In both cases, we understand that µn′ and µn′′ are both zero if

|µ3(k)| = 1.



APPENDIX

In the appendix we compute the pairing (QT,Γe)LF for G2 and for so4. For

SO4, our strategy is to start with SL2, pass to SL2 × SL2 via a theorem stated

in Carter [C] on Groethendieck-Lefshetz trace formula on products, and finally to

SL2 × SL2/{± Id} via a theorem of Springer[Spr]. For G2, we use Kawanaka’s for-

mula and the Green functions we have found in [Spr], closely following [DKaz1].

Everything here is elementary, explicit, and not generalizable.

117



118

.1 Pairings for SL2

We need the Green functions on SL2 to proceed. We shall also compute Gelfand-

Graev characters and pair them so the reader can observe how the Gauss sums that

occur simplify in an easy case before attempting the same argument over SO4.

Theorem .1. (Steinberg):Let T be a torus. Let Φ : X∗(T)⊗R→ X∗(T)⊗R be the

action of Frobf. Then |T(f)| = det|Frobf− Id |.

Theorem .2. Say G is a reductive f-group with maximal f-torus T. QT(0) =

εTεG
|G(f)|p′
|T(f)|p′

.

Theorem .3. Say G is a reductive f-group with maximal f-torus T. Say e ∈ N (G)(f)

is regular. Then QT(e) = 1.

Where by |G(f)|p′ we mean the part of the |G(f)| coprime to p. Combining this

with the easy fact that |SL2(f)| = q(q + 1)(q − 1), letting ε be a non-square in f,

and suppressing any superscripts on our roots we get the following values of Green

functions on the nilpotent cone:

0 X̄α εX̄α

QS (q + 1) 1 1

QTw −(q − 1) 1 1

Over finite fields the Gelfand-Graev character Γe ∈ CG(L) is given by Γe(X̄) =

|L|
|L(≤−1)|Σg∈G(f),gX̄∈L(≤−2)Λ(B(e, gX̄)). We compute the filtration associated to e = X̄α:
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SpanX−α ⊕ t⊕SpanX̄α

Note that εX̄α produces the same filtration. As sl2(≤ −2) is 1 dimensional,

|sl2(≤ −2)(f)| = q while |sl2(f)| = q(q − 1)(q + 1).

ΓX̄α(X̄α) = 1
q
Σr∈(f×)2Λ(B(X̄α, rX̄−α))2q = 2I1

ΓX̄α(εX̄α) = 1
q
Σr∈(f×)2Λ(B(X̄α, rεX̄−α))2q = 2I2

ΓεX̄α(X̄α) = 1
q
Σr∈(f×)2Λ(B(εX̄α, rX̄−α))2q = 2I2

ΓεX̄α(εX̄α) = 1
q
Σr∈(f×)2Λ(B(εX̄α, rεX̄−α))2q = 2I1

Where I1 is one Gauss sum depending on choice of Λ and I2 is the other that splits

the sum ΣZ̄∈sl2(−2)\{0}Λ(B(X̄α, Z̄)). The key idea is that for the regular nilpotent this

sum is a character sum over the full sl2(≤ −2) \ {0}. As the sum of a non-trivial,

irreducible character over a full group is 0 and the character in question is degree 1

we get I1 + I2 = −1.

Here is a table of the results:

0 X̄α εX̄α

ΓX̄α (q + 1)(q − 1) I1 I2

ΓεX̄α (q + 1)(q − 1) I2 I1

Now we compute the actual pairings by working orbit by orbit, using SL2 invari-
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ance and our explicit results, and knowing the sizes of the conjugacy classes in sl2(f):

(ΓXα , QS) = (q+1)2(q−1)−(q+1)(q−1)
q(q+1)(q−1)

= 1

(ΓXα , QT ) = −(q+1)(q−1)2−(q+1)(q−1)
q(q+1)(q−1)

= −1

(ΓεXα , QS) = (q+1)2(q−1)−(q+1)(q−1)
q(q+1)(q−1)

= 1

(ΓεXα , QT ) = −(q+1)(q−1)2−(q+1)(q−1)
q(q+1)(q−1)

= −1

.2 Pairings for SO4

We first compute Green functions on SO4 from those of SL2. Using that the

Groethendieck-Lefschetz trace formula on products yields a tensor product of func-

tions we can get Green functions of SL2 × SL2. We then use Springer’s Lemma

[Spr, Lemma 5.3] stating that for a morphism of reductive groups φ : G → H, a

torus T < G, and its image φ(T ) we have the equation QT = Qφ(T ) ◦ dφ to pass to

SO4. Noticing that the total derivative of an isogeny is the identity map we get the

following table for Green functions on SO4:

0 X̄α X̄β X̄α + X̄β εX̄α + X̄β

QS (q + 1)2 q + 1 q + 1 1 1

QT(F,Id)
−(q − 1)(q + 1) −(q − 1) q + 1 1 1

QT(Id,F )
−(q − 1)(q + 1) q + 1 −(q − 1) 1 1

QT(F,F )
(q − 1)2 −(q − 1) −(q − 1) 1 1

Notice that SO4
∼= SL2 × SL2/ ± Id. A subgroup of [SL2 × SL2/ ± Id](f) is

SL2(f)×SL2(f)/±Id which has |SL2(f)×SL2(f)/±Id | = |SL2(f)2|/2 = q2(q+1)2(q−1)2

2
.

Lets compute the index of this subgroup. Let ε be a non square. Then (a, b) ∈ [SL2×
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SL2/±Id](f) iff (a, b)σ = ±(a, b) which is equivalent to (a, b) =diag(ε, ε−1, ε, ε−1)(c, d)

with c, d ∈ f×. Thus |SO4(f)| = q2(q + 1)2(q − 1)2.

We write down the relevant filtrations on so4 so that we can compute the values

of Gelfand-Graev characters. For Xα we get:

Span(X̄−α)⊕Span(X̄−β, t, X̄β)⊕SpanX̄α

For X̄β we get:

Span(X̄−β)⊕Span(X̄−α, t, X̄α)⊕SpanX̄β

For both X̄α + X̄β and εX̄α + X̄β we get:

Span(X̄−α, X̄−β)⊕ t⊕Span(X̄α, X̄β)

We compute the values of ΓX̄α .

ΓX̄α(0) = |LF (−1)|−
1
2

|LF (≤−1)| |SO4(f)| = q(q + 1)2(q − 1)2.

As LF (≤ −2) consists entirely of nilpotent elements, we need only concern our-

selves with nilpotent elements. If X̄β is involved in anyway there is no hope of

conjugating it away, so we get the character vanishes away from the orbit of X̄α.

It remains to compute ΓX̄α(X̄α). We get 1
q
ΣZ∈so4(−2)\{0}Λ(B(X,Z)) ∗ |Zso4(Z)|.

As so4(−2) ∼= Ga(f) we get the sum of a nontrivial character over everything but
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the identity, so as before 1
q
ΣZ∈so4(−2)\{0}Λ(B(X,Z))∗|Zso4(Z)| = 1

q
(−1)|ZSO4(f)(X̄α)|.

|ZSO4(f)(X̄α)| = 2q|SL2(f)|/2 = q2(q + 1)(q − 1), thus:

ΓX̄α(X̄α) = 1
q
(−q2(q + 1)(q − 1)) = −q(q + 1)(q − 1).

Likewise for X̄β.

For X̄α + X̄β:

ΓX̄α+X̄β(0) = 1
q2 q

2(q + 1)2(q − 1)2 = (q + 1)2(q − 1)2.

ΓX̄α+X̄β(X̄α) = ΓX̄α+X̄β(X̄β) = −(q + 1)(q − 1) by the same argument as before,

with the adjustment that |so4(−2)| = q2 now.

|ZSO4(f)(X̄α + X̄β)| = 2q2.

ΓX̄α+X̄β(X̄α + X̄β) = 1
q2 Σḡ∈GF (f),gZ̄∈LF (≤−2)Λ(B(X̄α +Xβ,

g (X̄α + X̄β))) =

1
q2 [Σr∈(f×)2Σs∈(f×)2Λ(B(X̄α + X̄β, rX̄−α + sX̄−β))+

Σr∈f×\(f×)2Σs∈f×\(f×)2Λ(B(X̄α + X̄β, rX̄−α + sX̄−β))]|ZSO4(f)(X̄α + X̄β)| =

2q2

q2 [Σr∈(f×)2Σs∈(f×)2Λ(B(X̄α, rX̄−α))Λ(B(X̄β, sX̄−β))+

Σr∈f×\(f×)2Σs∈f×\(f×)2Λ(B(X̄α, rX̄−α))Λ(B(X̄β, sX̄−β))] =
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2(I1 + I2).

ΓX̄α+X̄β(εX̄α + X̄β) = 1
q2 Σḡ∈GF (f),gZ̄∈LF (≤−2)Λ(B(X̄α +Xβ,

g (εX̄α + X̄β))) =

2[Σr∈(f×)2Σs∈(f×)2Λ(B(X̄α + X̄β, rεX̄−α + sX̄−β))+

Σr∈f×\(f×)2Σs∈f×\(f×)2Λ(B(X̄α + X̄β, rεX̄−α + sX̄−β))] =

2[Σr∈(f×)2Σs∈(f×)2Λ(B(X̄α, rεX̄−α))Λ(B(X̄−β, sX−β))+

Σr∈f×\(f×)2Σs∈f×\(f×)2Λ(B(X̄α, rεX̄−α))Λ(B(X̄−β, sX̄−β))] =

= 2(I3 + I4).

For ΓεX̄α+X̄β the same arguments cover evaluation at 0, X̄α, X̄β.

ΓεX̄α+X̄β(X̄α + X̄β) = 1
q2 Σḡ∈GF (f),gZ̄∈LF (≤−2)Λ(B(εX̄α + X̄β,

g (X̄α + X̄β))) =

2[Σr∈(f×)2Σs∈(f×)2Λ(B(εX̄α + X̄β, rX̄−α + sX̄−β))+

Σr∈f×\(f×)2Σs∈f×\(f×)2Λ(B(εX̄α + X̄β, rX̄−α + sX̄−β))] =

2[Σr∈(f×)2Σs∈(f×)2Λ(B(εX̄α, rX−α))Λ(B(X̄β, sX−β))+

Σr∈f×\(f×)2Σs∈f×\(f×)2Λ(B(εX̄α, rX̄−α))Λ(B(X̄β, sX̄−β))] =

2[Σr∈(f×)2Σs∈(f×)2Λ(B(X̄α, rεX̄−α))Λ(B(X̄β, sX̄−β))+

Σr∈f×\(f×)2Σs∈f×\(f×)2Λ(B(X̄α, rεX̄−α))Λ(B(X̄β, sX̄−β))] =
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= 2(I3 + I4)

ΓεX̄α+X̄β(εX̄α + X̄β) = 1
q2 Σḡ∈GF (f),gZ̄∈LF (≤−2)Λ(B(εX̄α + X̄β,

g (εX̄α + X̄β))) =

2[Σr∈(f×)2Σs∈(f×)2Λ(B(εX̄α + X̄β, rεX̄−α + sX̄−β))+

Σr∈f×\(f×)2Σs∈f×\(f×)2Λ(B(εX̄α + X̄β, rεX̄−α + sX̄−β))] =

2[Σr∈(f×)2Σs∈(f×)2Λ(B(εX̄α, rεX̄−α))Λ(B(X̄β, sX̄−β))+

Σr∈f×\(f×)2Σs∈f×\(f×)2Λ(B(εX̄α, rεX̄−α))Λ(B(X̄β, sX̄−β))] =

2[Σr∈(f×)2Σs∈(f×)2Λ(B(X̄α, rX̄−α))Λ(B(X̄β, sX̄−β))+

Σr∈f×\(f×)2Σs∈f×\(f×)2Λ(B(X̄α, rX̄−α))Λ(B(X̄β, sX̄−β))] =

= 2(I1 + I2)

We must describe the various Ij. In particular, the expression I1 + I2 + I3 + I4

will occur in our pairings. Observe that this sum is the sum of the character

λ(Z) = Λ(B(X̄α + X̄β, Z)) over the rational points of the regular SO4(f)-orbit in

so4. Then:

0 = ΣZ∈SO4(<−2)λ(Z) = I1 + I2 + I3 + I4 + ΣZ∈f×X̄αλ(Z) + ΣZ∈f×X̄β + λ(0) =

I1 + I2 + I3 + I4 − 1− 1 + 1

Thus I1 + I2 + I3 + I4 = 1.



125

We now write tables for the values of the function ΓXQ̄T and the size of the nilpo-

tent orbits prior to computing the full pairing:

0 X̄α X̄β

|O(f)| 1 (q + 1)(q − 1) (q + 1)(q − 1)

Γ(SO4,Xα)Q̄S q(q + 1)4(q − 1)2 −q(q + 1)2(q − 1) 0

Γ(SO4,Xβ)Q̄S q(q + 1)4(q − 1)2 0 −q(q + 1)2(q − 1)

Γ(SO4,Xα+Xβ)Q̄S (q + 1)4(q − 1)2 −(q + 1)2(q − 1) −(q + 1)2(q − 1)

Γ(SO4,εXα+Xβ)Q̄S (q + 1)4(q − 1)2 −(q + 1)2(q − 1) −(q + 1)2(q − 1)

X̄α + X̄β εX̄α + X̄β

|O(f)| (q+1)2(q−1)2

2
(q+1)2(q−1)2

2

Γ(SO4,Xα)Q̄S 0 0

Γ(SO4,Xβ)Q̄S 0 0

Γ(SO4,Xα+Xβ)Q̄S 2(I1 + I2) 2(I3 + I4)

Γ(SO4,εXα+Xβ)Q̄S 2(I3 + I4) 2(I1 + I2)

(ΓXα , QS)so4 = q(q+1)4(q−1)2−q(q+1)3(q−1)2

q2(q+1)2(q−1)2 = (q+1)2−(q+1)
q

= q + 1

(ΓXβ , QS)so4 = q(q+1)4(q−1)2−q(q+1)3(q−1)2

q2(q+1)2(q−1)2 = (q+1)2−(q+1)
q

= q + 1

(ΓXα+Xβ , QS)so4 =
(q+1)4(q−1)2−(q+1)3(q−1)2−(q+1)2(q−1)3+2(I1+I2+I3+I4)

(q+1)2(q−1)2

2

q2(q+1)2(q−1)2 =

(q+1)2−(q−1)−(q+1)−1
q2 = 1

(ΓεXα+Xβ , QS)so4 =
(q+1)4(q−1)2−(q+1)3(q−1)2−(q+1)2(q−1)3+2(I1+I2+I3+I4)

(q+1)2(q−1)2

2

q2(q+1)2(q−1)2 = 1
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0 Xα Xβ

|O(f)| 1 (q + 1)(q − 1) (q + 1)(q − 1)

Γ(SO4,Xα)Q̄T(F,Id)
−q(q + 1)3(q − 1)3 q(q + 1)(q − 1)2 0

Γ(SO4,Xβ)Q̄T(F,Id)
−q(q + 1)3(q − 1)3 0 −q(q + 1)2(q − 1)

Γ(SO4,Xα+Xβ)Q̄T(F,Id)
−(q + 1)3(q − 1)3 (q + 1)(q − 1)2 −(q + 1)2(q − 1)

Γ(SO4,εXα+Xβ)Q̄T(F,Id)
−(q + 1)3(q − 1)3 (q + 1)(q − 1)2 −(q + 1)2(q − 1)

Xα +Xβ εXα +Xβ

|O(f)| (q+1)2(q−1)2

2
(q+1)2(q−1)2

2

Γ(SO4,Xα)Q̄T(F,Id)
0 0

Γ(SO4,Xβ)Q̄T(F,Id)
0 0

Γ(SO4,Xα+Xβ)Q̄T(F,Id)
2(I1 + I2) 2(I3 + I4)

Γ(SO4,εXα+Xβ)Q̄T(F,Id)
2(I3 + I4) 2(I1 + I2)

(ΓXα , QT(F,Id)
)so4 = −q(q+1)3(q−1)3+q(q+1)2(q−1)3

q2(q+1)2(q−1)2 = −(q+1)(q−1)+q−1
q

= −(q − 1)

(ΓXβ , QT(F,Id)
)so4 = −q(q+1)3(q−1)3−q(q+1)3(q−1)2

q2(q+1)2(q−1)2 = −(q+1)(q−1)−(q+1)
q

= −(q + 1)

(ΓXα+Xβ , QT(F,Id)
)so4 = −(q+1)3(q−1)3+(q+1)2(q−1)3−(q+1)3(q−1)2+(q+1)2(q−1)2

q2(q+1)2(q−1)2 = −1

(ΓεXα+Xβ , QT(F,Id)
)so4 = −(q+1)3(q−1)3+q(q+1)2(q−1)3−q(q+1)3(q−1)2+(q+1)2(q−1)2

q2(q+1)2(q−1)2 = −1

0 Xα Xβ

Γ(SO4,Xα)Q̄T(Id,F )
−q(q + 1)3(q − 1)3 −q(q + 1)2(q − 1) 0

Γ(SO4,Xβ)Q̄T(Id,F )
−q(q + 1)3(q − 1)3 0 q(q + 1)(q − 1)2

Γ(SO4,Xα+Xβ)Q̄T(Id,F )
−(q + 1)3(q − 1)3 −(q + 1)2(q − 1) (q + 1)(q − 1)2

Γ(SO4,εXα+Xβ)Q̄T(Id,F )
−(q + 1)3(q − 1)3 −(q + 1)2(q − 1) (q + 1)(q − 1)2
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Xα +Xβ εXα +Xβ

Γ(SO4,Xα)Q̄T(Id,F )
0 0

Γ(SO4,Xβ)Q̄T(Id,F )
0 0

Γ(SO4,Xα+Xβ)Q̄T(Id,F )
2(I1 + I2) 2(I3 + I4)

Γ(SO4,εXα+Xβ)Q̄T(Id,F )
2(I3 + I4) 2(I1 + I2)

(ΓXα , QT(Id,F )
)so4 = −q(q+1)3(q−1)3−q(q+1)3(q−1)2

q2(q+1)2(q−1)2 = −(q+1)(q−1)−(q+1)
q

= −(q + 1)

(ΓXβ , QT(Id,F )
)so4 = −q(q+1)3(q−1)3+q(q+1)2(q−1)3

q2(q+1)2(q−1)2 = −(q+1)(q−1)+(q−1)
q

= −(q − 1)

(ΓXα+Xβ , QT(Id,F )
)so4 = −(q+1)3(q−1)3−(q+1)3(q−1)2+(q+1)2(q−1)3+(q+1)2(q−1)2

q2(q+1)2(q−1)2 = −1

(ΓεXα+Xβ , QT(Id,F )
)so4 = −(q+1)3(q−1)3−(q+1)3(q−1)2+(q+1)2(q−1)3+(q+1)2(q−1)2

q2(q+1)2(q−1)2 = −1

0 Xα Xβ

Γ(SO4,Xα)Q̄T(F,F )
q(q + 1)2(q − 1)4 q(q + 1)(q − 1)2 0

Γ(SO4,Xβ)Q̄T(F,F )
q(q + 1)2(q − 1)4 0 q(q + 1)(q − 1)2

Γ(SO4,Xα+Xβ)Q̄T(F,F )
(q + 1)2(q − 1)4 (q + 1)(q − 1)2 (q + 1)(q − 1)2

Γ(SO4,εXα+Xβ)Q̄T(F,F )
(q + 1)2(q − 1)4 (q + 1)(q − 1)2 (q + 1)(q − 1)2

Xα +Xβ εXα +Xβ

Γ(SO4,Xα)Q̄T(F,F )
0 0

Γ(SO4,Xβ)Q̄T(F,F )
0 0

Γ(SO4,Xα+Xβ)Q̄T(F,F )
2(I1 + I2) 2(I3 + I4)

Γ(SO4,εXα+Xβ)Q̄T(F,F )
2(I3 + I4) 2(I1 + I2)

(ΓXα , QT(F,F )
)so4 = q(q+1)2(q−1)4+q(q+1)2(q−1)3

q2(q+1)2(q−1)2 = (q−1)2+(q−1)
q

= q − 1

(ΓXβ , QT(F,F )
)so4 = q(q+1)2(q−1)4+q(q+1)2(q−1)3

q2(q+1)2(q−1)2 = q − 1

(ΓXα+Xβ , QT(F,F )
)so4 = (q+1)2(q−1)4+(q+1)2(q−1)3+(q+1)2(q−1)3−(q+1)2(q−1)2

q2(q+1)2(q−1)2 =

(q−1)2+(q−1)+(q−1)+1
q2 = 1
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(ΓεXα+Xβ , QT(F,F )
)so4 = (q+1)2(q−1)4+(q+1)2(q−1)3+(q+1)2(q−1)3+(q+1)2(q−1)2

q2(q+1)2(q−1)2 = 1

Now we compute D(F,T )(h(C,e)). Let kC,T = |NG(T )/T |
|NGC

(T)(f)/T(f)| . Replace D(F,T ) with

D(F,T )

kC,T
, as for our applications we don’t need to know these evaluations more precisely

than up to non-zero scaling that is uniform in both C and T . Here is the result in

table format:

h(F{α,β},m) h(F{α,β},m′) h(F{α,1−β},m) h(F{α,1−β},m′)

D(F∅,S) 1 1 1 1

D(F{α},TF ) −1 −1 −1 −1

D(F{β},TF ) −1 −1 −1 −1

D(F{α,β},T(F,F )) 1 1 1 1

D(F{α,1−β},T(F,F )) 1 1 1 1

.3 Pairings for G2

This computation is easy, but long. We use the notation for nilpotent orbits in

g2 defined in Chapter 8.

The formula of Corollary X.7 (when non-vanishing) is:

D(F,Tw)(h(F,e)) =
|Lx(1)|1/2|NG(T )/T |qe(e)X(F,e)

Tw

|Wx|

The relevant Green Polynomials are:

X
(FG2

,ereg)

(F,Tw) = 1
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X
(FG2

,esr)

(F,Tw) = 1 + q−1(χ(w) + 2τ(w))

X
(FG2

,e′sr)

(F,Tw) = 1 + q−1(χ(w)− τ(w))

X
(FG2

,e′′sr)

(F,Tw) = 1 + q−1χ(w)

X
(FSO4

,m)

(F,Tw) = 1

X
(FSO4

,m′)

(F,Tw) = 1

X
(FSL3

,n)

(F,Tw) = 1

X
(FSL3

,n′)

(F,Tw) = 1

X
(FSL3

,n′′)

(F,Tw) = 1

Notice that after rescaling we can replace Ds
Ct with Σ(F,T )∈C

D(F,T )

|NG(T )/T | where the

sum is over all conjugacy classes of tori whose corresponding Weyl conjugacy class

in WG2(k̄) is C.

Recall our list of nilpotent orbits in Chapter 8.

For the regular and subregular nilpotents in g2 we have |Lx(1)| = 1.

For all but the nilpotents esr, e
′
sr, and e′′sr we have e(e) = 0, while for the three



130

orbits esr, e
′
sr, and e′′sr we have e(e) = 1.

For all four of ereg), esr, e
′
sr, and e′′sr we have|Wx| = 12. For both m and m′ we

have |Wx| = 4. For n, n′, n′′, we have |Wx| = 6.

Pairings are as follows:

D(F,S)(h(F{α,β},ereg)) = 1
12

D(F,S)(h(F{α,β},esr)) = q1(1+q−1(2+2))
12

D(F,S)(h(F{α,β},e′sr)) = q1(1+q−1(2−1))
12

D(F,S)(h(F{α,β},e′′sr)) = q1(1+q−12)
12

D(F,S)(h(F{3α+2β−1,β},n)) = 1
6

D(F,S)(h(F{3α+2β−1,β},n′)) = 1
6

D(F,S)(h(F{3α+2β−1,β},n′′)) = 1
6

D(F,S)(h(F{α,3α+2β−1},m)) = 1
4

D(F,S)(h(F{α,3α+2β−1},m′)) = 1
4

D(Fα,TF )(h(F{α,β},ereg)) = 1
12

D(Fα,TF )(h(F{α,β},esr)) = q1(1+q−1(0+2))
12

D(Fα,TF )(h(F{α,β},e′sr)) = q1(1+q−1(0−1))
12

D(Fα,TF )(h(F{α,β},e′′sr)) = q1(1+q−10)
12

D(Fα,TF )(h(F{3α+2β−1,β},n)) = 0

D(Fα,TF )(h(F{3α+2β−1,β},n′)) = 0

D(Fα,TF )(h(F{3α+2β−1,β},n′′)) = 0

D(Fα,TF )(h(F{α,3α+2β−1},m)) = 1
4
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D(Fα,TF )(h(F{α,3α+2β−1},m′)) = 1
4

D(Fβ ,TF )(h(F{α,β},ereg)) = 1
12

D(Fβ ,TF )(h(F{α,β},esr)) = q1(1+q−1(0−2))
12

D(Fβ ,TF )(h(F{α,β},e′sr)) = q1(1+q−1(0+1))
12

D(Fβ ,TF )(h(F{α,β},e′′sr)) = q1(1+q−10)
12

D(Fβ ,TF )(h(F{3α+2β−1,β},n)) = 1
6

D(Fβ ,TF )(h(F{3α+2β−1,β},n′)) = 1
6

D(Fβ ,TF )(h(F{3α+2β−1,β},n′′)) = 1
6

D(Fβ ,TF )(h(F{α,3α+2β−1},m)) = 1
4

D(Fβ ,TF )(h(F{α,3α+2β−1},m′)) = 1
4

D(F{α,β},TR)(h(F{α,β},ereg)) = 1
12

D(F{α,β},TR)(h(F{α,β},esr)) = q1(1+q−1(1−2))
12

D(F{α,β},TR)(h(F{α,β},e′sr)) = q1(1+q−1(1+1))
12

D(F{α,β},TR)(h(F{α,β},e′′sr)) = q1(1+q−11)
12

D(F{α,β},TR)(h(F{3α+2β−1,β},n)) = 0

D(F{α,β},TR)(h(F{3α+2β−1,β},n′)) = 0

D(F{α,β},TR)(h(F{3α+2β−1,β},n′′)) = 0

D(F{α,β},TR)(h(F{α,3α+2β−1},m)) = 0

D(F{α,β},TR)(h(F{α,3α+2β−1},m′)) = 0

D(F{α,β},TR2 )(h(F{α,β},ereg)) = 1
12

D(F{α,β},TR2 )(h(F{α,β},esr)) = q1(1+q−1(−1+2))
12

D(F{α,β},TR2 )(h(F{α,β},e′sr)) = q1(1+q−1(−1−1))
12
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D(F{α,β},TR2 )(h(F{α,β},e′′sr)) = q1(1+q−1(−1))
12

D(F{α,β},TR2 )(h(F{3α+2β−1,β},n)) = 0

D(F{α,β},TR2 )(h(F{3α+2β−1,β},n′)) = 0

D(F{α,β},TR2 )(h(F{3α+2β−1,β},n′′)) = 0

D(F{α,β},TR2 )(h(F{α,3α+2β−1},m)) = 0

D(F{α,β},TR2 )(h(F{α,3α+2β−1},m′)) = 0

D(F{α,β},TR3 )(h(F{α,β},ereg)) = 1
12

D(F{α,β},TR3 )(h(F{α,β},esr)) = q1(1+q−1(−2−2))
12

D(F{α,β},TR3 )(h(F{α,β},e′sr)) = q1(1+q−1(−2+1))
12

D(F{α,β},TR3 )(h(F{α,β},e′′sr)) = q1(1+q−1(−2))
12

D(F{α,β},TR3 )(h(F{3α+2β−1,β},n)) = 0

D(F{α,β},TR3 )(h(F{3α+2β−1,β},n′)) = 0

D(F{α,β},TR3 )(h(F{3α+2β−1,β},n′′)) = 0

D(F{α,β},TR3 )(h(F{α,3α+2β−1},m)) = 0

D(F{α,β},TR3 )(h(F{α,3α+2β−1},m′)) = 0

D(F{β,3α+2β−1},TR2 )(h(F{α,β},ereg)) = 0

D(F{β,3α+2β−1},TR2 )(h(F{α,β},esr)) = 0

D(F{β,3α+2β−1},TR2 )(h(F{α,β},e′sr)) = 0

D(F{β,3α+2β−1},TR2 )(h(F{α,β},e′′sr)) = 0

D(F{β,3α+2β−1},TR2 )(h(F{3α+2β−1,β},n)) = 1
6

D(F{β,3α+2β−1},TR2 )(h(F{3α+2β−1,β},n′)) = 1
6

D(F{β,3α+2β−1},TR2 )(h(F{3α+2β−1,β},n′′)) = 1
6

D(F{β,3α+2β−1},TR2 )(h(F{α,3α+2β−1},m)) = 0
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D(F{β,3α+2β−1},TR2 )(h(F{α,3α+2β−1},m′)) = 0

D(F{α,3α+2β−1},TR3 )(h(F{α,β},ereg)) = 0

D(F{α,3α+2β−1},TR3 )(h(F{α,β},esr)) = 0

D(F{α,3α+2β−1},TR3 )(h(F{α,β},e′sr)) = 0

D(F{α,3α+2β−1},TR3 )(h(F{α,β},e′′sr)) = 0

D(F{α,3α+2β−1},TR3 )(h(F{3α+2β−1,β},n)) = 0

D(F{α,3α+2β−1},TR3 )(h(F{3α+2β−1,β},n′)) = 0

D(F{α,3α+2β−1},TR3 )(h(F{3α+2β−1,β},n′′)) = 0

D(F{α,3α+2β−1},TR3 )(h(F{α,3α+2β−1},m)) = 1
4

D(F{α,3α+2β−1},TR3 )(h(F{α,3α+2β−1},m′)) = 1
4

Stable distributions evaluated at he:

DId(h(F{α,β},ereg)) = 1
12

DId(h(F{α,β},esr)) = q+4
12

DId(h(F{α,β},e′sr)) = q+1
12

DId(h(F{α,β},e′′sr)) = q+2
12

DId(h(F{3α+2β−1,β},n)) = 1
6

DId(h(F{3α+2β−1,β},n′)) = 1
6

DId(h(F{3α+2β−1,β},n′′)) = 1
6

DId(h(F{α,3α+2β−1},m)) = 1
4

DId(h(F{α,3α+2β−1},m′)) = 1
4

DF (h(F{α,β},ereg)) = 1
12
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DF (h(F{α,β},esr)) = q+2
12

DF (h(F{α,β},e′sr)) = q−1
12

DF (h(F{α,β},e′′sr)) = q
12

DF (h(F{3α+2β−1,β},n)) = 0

DF (h(F{3α+2β−1,β},n′)) = 0

DF (h(F{3α+2β−1,β},n′′)) = 0

DF (h(F{α,3α+2β−1},m)) = 1
4

DF (h(F{α,3α+2β−1},m′)) = 1
4

DFR(h(F{α,β},ereg)) = 1
12

DFR(h(F{α,β},esr)) = q−2
12

DFR(h(F{α,β},e′sr)) = q+1
12

DFR(h(F{α,β},e′′sr)) = q
12

DFR(h(F{3α+2β−1,β},n)) = 1
6

DFR(h(F{3α+2β−1,β},n′)) = 1
6

DFR(h(F{3α+2β−1,β},n′′)) = 1
6

DFR(h(F{α,3α+2β−1},m)) = 1
4

DFR(h(F{α,3α+2β−1},m′)) = 1
4

DR(h(F{α,β},ereg)) = 1
12

DR(h(F{α,β},esr)) = q−1
12

DR(h(F{α,β},e′sr)) = q+2
12

DR(h(F{α,β},e′′sr)) = q+1
12

DR(h(F{3α+2β−1,β},n)) = 0

DR(h(F{3α+2β−1,β},n′)) = 0
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DR(h(F{3α+2β−1,β},n′′)) = 0

DR(h(F{α,3α+2β−1},m)) = 0

DR(h(F{α,3α+2β−1},m′)) = 0

DR2(h(F{α,β},ereg)) = 1
12

DR2(h(F{α,β},esr)) = q+1
12

DR2(h(F{α,β},e′sr)) = q−2
12

DR2(h(F{α,β},e′′sr)) = q−1
12

DR2(h(F{3α+2β−1,β},n)) = 1
6

DR2(h(F{3α+2β−1,β},n′)) = 1
6

DR2(h(F{3α+2β−1,β},n′′)) = 1
6

DR2(h(F{α,3α+2β−1},m)) = 0

DR2(h(F{α,3α+2β−1},m′)) = 0

DR3(h(F{α,β},ereg)) = 1
12

DR3(h(F{α,β},esr)) = q−4
12

DR3(h(F{α,β},e′sr)) = q−1
12

DR3(h(F{α,β},e′′sr)) = q−2
12

DR3(h(F{3α+2β−1,β},n)) = 0

DR3(h(F{3α+2β−1,β},n′)) = 0

DR3(h(F{3α+2β−1,β},n′′)) = 0

DR3(h(F{α,3α+2β−1},m)) = 1
4

DR3(h(F{α,3α+2β−1},m′)) = 1
4

Now lets look at the distributions associated to cuspidal local systems evaluated
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at h(F,e).

D(F{α,β},esr,χ), (h(F{α,β},ereg)) = 0

D(F{α,β},esr,χ)(h(F{α,β},esr)) = 1
q2

D(F{α,β},esr,χ)(h(F{α,β},e′sr)) = −1
q2

D(F{α,β},esr,χ)(h(F{α,β},e′′sr)) = 1
q2

D(F{α,β},esr,χ)(h(F{3α+2β−1,β},n)) = 0

D(F{α,β},esr,χ)(h(F{3α+2β−1,β},n′)) = 0

D(F{α,β},esr,χ)(h(F{3α+2β−1,β},n′′)) = 0

D(F{α,β},esr,χ)(h(F{α,3α+2β−1},m)) = 0

D(F{α,β},esr,χ)(h(F{α,3α+2β−1},m′)) = 0

D(F{α,3α+2β−1},m,sgn×sgn), (h(F{α,β},ereg)) = 0

D(F{α,3α+2β−1},m,sgn×sgn)(h(F{α,β},esr)) = 0

D(F{α,3α+2β−1},m,sgn×sgn)(h(F{α,β},e′sr)) = 0

D(F{α,3α+2β−1},m,sgn×sgn)(h(F{α,β},e′′sr)) = 0

D(F{α,3α+2β−1},m,sgn×sgn)(h(F{3α+2β−1,β},n)) = 0

D(F{α,3α+2β−1},m,sgn×sgn)(h(F{3α+2β−1,β},n′)) = 0

D(F{α,3α+2β−1},m,sgn×sgn)(h(F{3α+2β−1,β},n′′)) = 0

D(F{α,3α+2β−1},m,sgn×sgn)(h(F{α,3α+2β−1},m)) = 1
q

D(F{α,3α+2β−1},m,sgn×sgn)(h(F{α,3α+2β−1},m′)) = −1
q

D(F{β,3α+2β−1},n,ψ), (h(F{α,β},ereg)) = 0

D(F{β,3α+2β−1},n,ψ)(h(F{α,β},esr)) = 0

D(F{β,3α+2β−1},n,ψ)(h(F{α,β},e′sr)) = 0
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D(F{β,3α+2β−1},n,ψ)(h(F{α,β},e′′sr)) = 0

D(F{β,3α+2β−1},n,ψ)(h(F{3α+2β−1,β},n)) = 1
q

D(F{β,3α+2β−1},n,ψ)(h(F{3α+2β−1,β},n′)) = ξ
q

D(F{β,3α+2β−1},n,ψ)(h(F{3α+2β−1,β},n′′)) = ξ−1

q

D(F{β,3α+2β−1},n,ψ)(h(F{α,3α+2β−1},m)) = 0

D(F{β,3α+2β−1},n,ψ)(h(F{α,3α+2β−1},m′)) = 0

D(F{β,3α+2β−1},n,ψ−1), (h(F{α,β},ereg)) = 0

D(F{β,3α+2β−1},n,ψ−1)(h(F{α,β},esr)) = 0

D(F{β,3α+2β−1},n,ψ−1)(h(F{α,β},e′sr)) = 0

D(F{β,3α+2β−1},n,ψ−1)(h(F{α,β},e′′sr)) = 0

D(F{β,3α+2β−1},n,ψ−1)(h(F{3α+2β−1,β},n)) = 1
q

D(F{β,3α+2β−1},n,ψ−1)(h(F{3α+2β−1,β},n′)) = ξ−1

q

D(F{β,3α+2β−1},n,ψ−1)(h(F{3α+2β−1,β},n′′)) = ξ
q

D(F{β,3α+2β−1},n,ψ−1)(h(F{α,3α+2β−1},m)) = 0

D(F{β,3α+2β−1},n,ψ−1)(h(F{α,3α+2β−1},m′)) = 0

Notice that for all C conjugacy class in WG2 we have DC(h(F{α,β},ereg)) = 1
12

. Thus

if we take any non-trivial character κ ∈ WG2

D and form the new stable distribution

Dκ = Σw∈WG2
κwDC , then Dκ(h(F{α,β},ereg)) = 0. We will use this fact to explore the

stability of the various subregular orbits in g2(k) in chapter 10. We now compute a

table of all the Dκ evaluated at the h(F,e) for regular and subregular (F, e).

DId, (h(F{α,β},ereg)) = 1

DId(h(F{α,β},esr)) = (q+4)+3(q+2)+3(q−2)+2(q−1)+2(q+1)+(q−4)
12

= q
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DId(h(F{α,β},e′sr)) = (q+1)+3(q−1)+3(q+1)+2(q+2)+2(q−2)+(q−1)
12

= q

DId(h(F{α,β},e′′sr)) = (q+2)+3(q)+3(q)+2(q+1)+2(q−1)+(q−2)
12

= q

DId(h(F{3α+2β−1,β},n)) = 1+3∗0+3+2∗0+2∗1+0
6

= 1

DId(h(F{3α+2β−1,β},n′)) = 1+3∗0+3+2∗0+2∗1+0
6

= 1

DId(h(F{3α+2β−1,β},n′′)) = 1+3∗0+3+2∗0+2∗1+0
6

= 1

DId(h(F{α,3α+2β−1},m)) = 1+3∗1+3∗1+2∗0+2∗0+1
4

= 2

DId(h(F{α,3α+2β−1},m′)) = 1+3∗1+3∗1+2∗0+2∗0+1
4

= 2

Dsgn(h(F{α,β},ereg)) = 0

Dsgn(h(F{α,β},esr)) = (q+4)−3(q+2)−3(q−2)+2(q−1)+2(q+1)+(q−4)
12

= 0

Dsgn(h(F{α,β},e′sr)) = (q+1)−3(q−1)−3(q+1)+2(q+2)+2(q−2)+(q−1)
12

= 0

Dsgn(h(F{α,β},e′′sr)) = (q+2)−3q−3q+2(q+1)+2(q−1)+(q−2)
12

= 0

Dsgn(h(F{3α+2β−1,β},n)) = 1−3∗0−3+2∗0+2∗1+0
6

= 0

Dsgn(h(F{3α+2β−1,β},n′)) = 1−3∗0−3+2∗0+2∗1+0
6

= 0

Dsgn(h(F{3α+2β−1,β},n′′)) = 1−3∗0−3+2∗0+2∗1+0
6

= 0

Dsgn(h(F{α,3α+2β−1},m)) = 1−3∗1−3∗1+2∗0+2∗0+1
4

= −1

Dsgn(h(F{α,3α+2β−1},m′)) = 1−3∗1−3∗1+2∗0+2∗0+1
4

= −1

Dχ, (h(F{α,β},ereg)) = 0

Dχ(h(F{α,β},esr)) = 2(q+4)+0∗3(q+2)+0∗3(q−2)+1∗2(q−1)−2(q+1)−2(q−4)
12

= 1

Dχ(h(F{α,β},e′sr)) = 2(q+1)+0∗3(q−1)+0∗3(q+1)+1∗2(q+2)−2(q−2)−2(q−1)
12

= 1

Dχ(h(F{α,β},e′′sr)) = 2(q+2)+0∗3(q)+0∗3(q)+2(q+1)−2(q−1)−2(q−2)
12

= 1

Dχ(h(F{3α+2β−1,β},n)) = 2+0∗3∗0+0∗3+1∗2∗1−2∗1−2∗0
6

= 0

Dχ(h(F{3α+2β−1,β},n′)) = 2+0∗3∗0+0∗3+1∗2∗1−2∗1−2∗0
6

= 0

Dχ(h(F{3α+2β−1,β},n′′)) = 2+0∗3∗0+0∗3+1∗2∗1−2∗1−2∗0
6

= 0
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Dχ(h(F{α,3α+2β−1},m)) = 2+0∗3∗1+0∗3∗1+2∗0−2∗0−2∗1
4

= 0

Dχ(h(F{α,3α+2β−1},m′)) = 2+0∗3∗1+0∗3∗1+2∗0−2∗0−2∗1
4

= 0

Dτ , (h(F{α,β},ereg)) = 0

Dτ (h(F{α,β},esr)) = (q+4)+3(q+2)−3(q−2)−2(q−1)+2(q+1)−(q−4)
12

= 2

Dτ (h(F{α,β},e′sr)) = (q+1)+3(q−1)−3(q+1)−2(q+2)+2(q−2)−(q−1)
12

= −1

Dτ (h(F{α,β},e′′sr)) = (q+2)+3(q)−3(q)−2(q+1)+2(q−1)−(q−2)
12

= 0

Dτ (h(F{3α+2β−1,β},n)) = 1+3∗0−3−2∗0+2∗1−0
6

= 0

Dτ (h(F{3α+2β−1,β},n′)) = 1+3∗0−3−2∗0+2∗1−0
6

= 0

Dτ (h(F{3α+2β−1,β},n′′)) = 1+3∗0−3−2∗0+2∗1−0
6

= 0

Dτ (h(F{α,3α+2β−1},m)) = 1+3∗1−3∗1−2∗0+2∗0−1
4

= 0

Dτ (h(F{α,3α+2β−1},m′)) = 1+3∗1−3∗1−2∗0+2∗0−1
4

= 0

Dsgnτ , (h(F{α,β},ereg)) = 0

Dsgnτ (h(F{α,β},esr)) = (q+4)−3(q+2)+3(q−2)−2(q−1)+2(q+1)−(q−4)
12

= 0

Dsgnτ (h(F{α,β},e′sr)) = (q+1)−3(q−1)+3(q+1)−2(q+2)+2(q−2)−(q−1)
12

= 0

Dsgnτ (h(F{α,β},e′′sr)) = (q+2)−3(q)+3(q)−2(q+1)+2(q−1)−(q−2)
12

= 0

Dsgnτ (h(F{3α+2β−1,β},n)) = 1−3∗0+3−2∗0+2∗1−0
6

= 1

Dsgnτ (h(F{3α+2β−1,β},n′)) = 1−3∗0+3−2∗0+2∗1−0
6

= 1

Dsgnτ (h(F{3α+2β−1,β},n′′)) = 1−3∗0+3−2∗0+2∗1−0
6

= 1

Dsgnτ (h(F{α,3α+2β−1},m)) = 1−3∗1+3∗1−2∗0+2∗0−1
4

= 0

Dsgnτ (h(F{α,3α+2β−1},m′)) = 1−3∗1+3∗1−2∗0+2∗0−1
4

= 0

Dχτ , (h(F{α,β},ereg)) = 0

Dχτ (h(F{α,β},esr)) = 2(q+4)+0∗3(q+2)+0∗3(q−2)−2(q−1)−2(q+1)+2(q−4)
12

= 0
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Dχτ (h(F{α,β},e′sr)) = 2(q+1)+0∗3(q−1)+0∗3(q+1)−2(q+2)−2(q−2)+2(q−1)
12

= 0

Dχτ (h(F{α,β},e′′sr)) = 2(q+2)+0∗3q+0∗3q−2(q+1)−2(q−1)+2(q−2)
12

= 0

Dχτ (h(F{3α+2β−1,β},n)) = 2+0∗3∗0+0∗3−2∗0−2∗1+2∗0
6

= 0

Dχτ (h(F{3α+2β−1,β},n′)) = 2+0∗3∗0+0∗3−2∗0−2∗1+2∗0
6

= 0

Dχτ (h(F{3α+2β−1,β},n′′)) = 2+0∗3∗0+0∗3−2∗0−2∗1+2∗0
6

= 0

Dχτ (h(F{α,3α+2β−1},m)) = 2+0∗3∗1+0∗3∗1−2∗0−2∗0+2∗1
4

= 1

Dχτ (h(F{α,3α+2β−1},m′)) = 2+0∗3∗1+0∗3∗1−2∗0−2∗0+2∗1
4

= 1
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