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Abstract 

 

A novel set reduction decision support framework for large-scale, team-based design 

efforts is presented.  The framework provides a design manager with valuable and easy-

to-understand information that is used to make better informed reduction decisions within 

a set-based design (SBD) environment.  SBD is a convergent design method that uses 

dominance and infeasibility to consider multiple design alternatives in parallel while 

accommodating separate groups of specialists within a concurrent engineering approach.  

Based on the limitations of current SBD research and the completion of extensive design 

experiments, three major set reduction considerations are identified: time-dependent 

design relationships, the impact of reduction decisions, and identifying robust reduction 

decisions.  Design relationships change as the fidelity of analysis increases, variable set-

ranges are reduced, or requirement changes are instituted.  Due to these changing 

conditions, the impact of reduction decisions can be difficult to determine.  Although 

SBD has proven resilient to changing circumstances, the reduction process can still be 

impact the design process to the point of potential failure.  Identifying robust reduction 

decisions avoids situations where changes lead to a design failure.     

 

Each of the three considerations set forth is addressed by a specific component of the 

overall decision support framework used to analyze a specific function of interest.  

Design space mapping is used to determine relationships between variable and function 

spaces.  The Longest Path Problem (LPP) formulated as a Markov Decision Process 

(MDP) is used as a structure for the reduction decision-making process and the 

identification of optimal decision paths.  Through simulation, robust decision paths are 

identified.  Since the developed LPP MDP formulation has never been used to analyze set 

reduction problems, multiple metrics and representations are developed using the MDP 

and simulation results.   



xvi 

 

Based on a series of studies, the MDP LPP framework is able to better handle situations 

with changing conditions, as well as better accommodate constrained problems, 

compared to a method based solely on current in-state knowledge.  As part of a ship 

design case study, the framework’s ability to handle multiple and more complicated 

functions is shown.  Also, how the framework fits into a more realistic reduction scenario 

is presented. 
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Chapter 1: Introduction 

 

 

Nothing endures but change. 

–Heraclitus (535BC – 475BC) 

 

There are a number of complexities associated with early-stage ship design, particularly 

for naval combatants, including the lack of design knowledge, the unavailability of 

adequate analysis tools, unknown and changing requirements, and diverse teams of 

designers working together.  Additionally, early-stage design decisions significantly 

impact the size, performance, and cost of the final product.  Designers are aware of the 

importance of early-stage decisions; therefore, emphasis is placed on making the best 

decisions possible.  However, as Heraclitus describes, the only thing that is constant is 

change, and ignoring the likelihood of changes occurring can lead to a failed design 

effort.   

 

Organizations such as the U.S. Navy have struggled with management of complexities 

and changes that arise during early-stage design.  Much of the challenge is related to the 

ambiguity between what are considered design methods and tools.  Tools are supposed to 

support and enable design methods, but they often restrict design when viewed as a 

method.  Currently within the Naval ship design community, there is a conflicting effort 

to define the preferred design method.  Due to its complex nature, the design process 

requires concurrent engineering (i.e. large teams of designers), but the community desires 

automated physics-based modeling and synthesis (i.e. no people).  This conflict stems 

from the belief that physics-based models are design tools, not methods in and of 

themselves. 
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In an attempt to mitigate this conflict, the set-based design (SBD) method has recently 

been employed within the U.S. Navy (Kassel, Cooper, & Mackenna, 2010; Eccles 2010; 

Doerry, 2009; Sullivan, 2008).  SBD provides a framework for large-scale, team-based 

design activities, while maintaining the flexibility to properly use various types and forms 

of tools throughout the design process.  The execution of SBD principles within the U.S. 

Navy, however, has proved challenging, mainly due to its unique culture and a lack of 

supportive tools (Doerry, 2010; Singer, Doerry, & Buckley, 2009; Mebane et al., 2011). 

 

This dissertation focuses on a particular aspect of SBD execution, design solution 

reduction decision making, which deals with the identification of solutions that are 

eliminated from consideration.  Through the use of design space mapping (DM) and a 

graph theoretic Markov Decision Process (MDP) formulation, the developed framework 

is able to understand dynamically changing design relationships and provide guidance on 

the reduction of design solutions by identifying robust decision paths.  This introduction 

first discusses, in greater detail, the SBD method and the U.S. Navy’s interest in applying 

it for early-stage design activities.  The motivation and scope of the research presented in 

this dissertation is then defined.  Finally, the contributions of this dissertation to both the 

general design and SBD fields, as well as the structure of the dissertation, are outlined.      

 

1.1 Background 

SBD is a design method developed in the automotive industry by Toyota, formalized by 

Ward, Sobek, Christiano, and Liker (1995).  This concurrent engineering method 

provides a theoretical framework for large-scale, team-based design activities that uses 

set-ranges of design variables, focusing on eliminating infeasible or dominated solutions 

versus searching for an optimal solution.  There are many advantages of using SBD, 

which include:  

 

 Having a thorough understanding of the design space, 

 The use of set-ranges to provide flexibility in handling uncertainties,  

 The ability to track design decisions, and  
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 The ability to delay decisions until more information is known and design 

tradeoffs are more fully understood (McKenney, Kemink, & Singer, 2011; Sobek, 

1997; Liker, Sobek, Ward, & Christiano, 1996; Ward, Liker, Christiano, & Sobek, 

1995).  

 

Given these advantages, the U.S. Navy has recently shown a desire to execute the SBD 

method for the ship design process (Kassel, Cooper, & Mackenna, 2010; Eccles 2010; 

Doerry, 2009; Sullivan, 2008).  In 2007, the Ship to Shore Connector (SSC) Program 

began Preliminary Design using SBD as a novel approach to consider more alternatives 

in less time, during the early stages of the three year target schedule (Mebane et al., 

2011).  The SSC Program marks the first application of the SBD method for a U.S. Navy 

design.  After completion of the SBD effort in September 2008, advantages were 

identified and most SSC team members saw value in the method (Doerry, 2010).  Along 

with its successful execution, there were a number of lessons learned, including the 

difficulty of extending the method to larger-scale programs and more complex design 

processes.   

 

One of the major challenges associated with SBD execution is the set reduction decision 

making process (McKenney & Singer, 2012; Doerry, 2010; Malak, Aughenbaugh, & 

Paredis, 2009; Nahm & Ishikawa, 2006; Ford & Sobek, 2005).  As variable set-ranges are 

modified and the design progresses, analysis tools and design relationships change.  

These temporal dynamics make it more difficult to fully understand the implications of 

modifying set-ranges, and in what order.  Determining when and by how much to reduce 

or expand a set-range is currently a more heuristic process, decided by a chief engineer or 

design manager.  Additionally, unlike the extensive databases on acceptable automotive 

set-ranges and interactions between variables developed at Toyota, the U.S. Navy has yet 

to develop these resources.  The processes that designers use to arrive at the final 

solution, as well as the actual design decisions executed, are just as important as the 

evaluation of solutions for this reason.  The human designer has control over when and 

what decisions to make during a design process; therefore, providing the designer with 

the best information at all times becomes essential.   
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The world-renowned reputation of Toyota for quality, safety, and value has been one way 

to highlight the effectiveness and success of the SBD practices established based on 

Toyota’s product development process.  However, since the beginning of 2008, there 

have been a series of public criticisms and recalls that damaged Toyota’s reputation.  

Liker and Ogden (2011) provide a detailed account of the recall crises in their book 

Toyota Under Fire.  To summarize, Toyota’s recalls stemmed from technical issues 

caused by a small number of engineering design errors, not the manufacturing process.  

While the technical issues were considered minor, Toyota management in Japan did not 

fully appreciate the seriousness of American perceptions of Toyota’s products, and the 

implications of their nonchalant reactions to the issues.  The main conclusions to draw 

from this example are that communication between headquarters and its regional 

organizations were limited, there was little understanding or appreciation of American 

perceptions, and that regional organizational management had little control to act within 

the timeframe that the public desired.  The Toyota recall crises identified the challenge of 

executing the principles that had made them successful in the past.  Toyota’s 

management did not identify their methods as failures, however, instead concluding that 

Toyota needed to stay true to their core values, and most importantly, their emphasis on 

learning from their mistakes.    

 

1.2 Motivation 

Principles observed at Toyota provide a framework for SBD execution in other fields, but 

a textbook execution based on their process is not practical.  Toyota has spent decades 

developing and modifying extensive documents and databases of the process, identifying 

lessons learned, and fostering a culture around its guiding principles.  In organizations 

such as the U.S. Navy, SBD can provide the framework to achieve the requirement for 

concurrent engineering, where complex design is completed by large teams of designers.  

The relatively unstructured execution process used for the SSC Program presents 

challenges in larger-scale programs, and Toyota’s detailed process cannot be replicated.  

While a heuristic approach can be used for smaller design activities with understandable 

design relationships, large-scale efforts have much more complex relationships that a 
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designer cannot fully understand.  Related SBD research has been in two major areas.  

One area focuses on related problems – not directly addressed in this dissertation – using 

optimization techniques, multi-objective Pareto fronts, design space exploration, and 

automated convergence approaches (Avigad & Moshaiov, 2010; Shahan & Seepersad, 

2009; Panchal, Gero Fernandez, Paredis, Allen, & Mistree, 2007).  The second area 

focuses on team dynamics, but is limited when dealing with guiding set reduction (Gray, 

2011, Singer, 2003).  Therefore, there is a significant part of SBD execution for large-

scale, team-based design activities that is missing.   

 

If there is a requirement to conduct team-based design, which most large organizations 

demand, a method that enables understanding of design relationships and guiding design 

convergence is needed.  Focus needs to be placed on design decisions as the process 

evolves and how changes in design relationships affect designer preferences and the 

design direction.  Without a structured approach to large-scale, team-based concurrent 

engineering, execution would not be possible.   

 

1.3 Research Scope 

There are many aspects of SBD execution, such as managing a large-scale, team-based 

approach, communication of sets, and facilitation of preference generation.  There has 

been successful research in some of these areas, while others remain mostly untouched.  

One aspect that remains an open research area is the guidance of set reductions through 

the integration of designer preferences during the design process.  This knowledge gap is 

the focus of this dissertation.  As part of the set reduction guidance research, three major 

considerations are directly addressed: time-dependent design relationships, the impact of 

reduction decisions, and identifying robust design decisions.  Each consideration is 

discussed briefly below.     

 

1.3.1 Time-Dependent Design Relationships 

Regardless of the design method used, dividing a design into manageable components 

can be difficult, and there will always be interdependencies to consider (Jones, 1992).  

The SBD method can reduce interdependencies of a complex design process by using 
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feasible set-ranges that are communicated and negotiated between designers (Liker, 

Sobek, Ward, & Cristiano, 1996).  However, when dealing with multiple designers and 

set-ranges, there is a need for tools that facilitate the exchange of information, as well as 

the need to identify other factors involved (Liker, Sobek, Ward, & Cristiano, 1996). 

 

While some interdependencies are captured through the negotiated sets, additional 

dependencies can arise due to set reductions, the use of higher fidelity analysis tools, and 

changes in requirements.  Reducing a set-range associated with one variable can impact 

the relationship between that variable and another variable or function of interest.  

Switching to a higher fidelity tool typically adds variables and design relationships.  

Also, requirement changes can shift the feasibility of an entire set-range significantly, 

depending on its degree.  The key component of all the potential dependencies – the issue 

this dissertation addresses – is that they change through time.   

 

1.3.2 Impact of Reduction Decisions 

Smith (2007) warns that, although the areas of the design space that are likely to be 

eliminated are both numerous and obvious in the design’s outset, weak spots are not often 

as clear later in the process.  Thus, set reduction should be completed carefully. Rapid 

reduction can lead to eliminating feasible options, while slow reduction could prolong 

selection of a solution (Smith, 2007; Ford & Sobek, 2005).  The best option for overall 

design reduction may mean keeping certain set-ranges open, even if feasibility or 

dominance says otherwise.  Keeping an infeasible region of the current design space 

could maintain flexibility and ensure set-range expansion is not required later.  

 

The responsibility of understanding the impacts of decisions and guiding set reduction is 

placed on the chief engineer or design manager in charge of the design process.  Many 

agree that using the SBD method requires considerable experience to manage effectively 

(Smith, 2007; Panchal, Fernandez, Allen, Paredis, & Mistree, 2005; Sobek, 1997).  

Others have stated that significant work in guiding set reduction needs to be completed 

(Malak, Aughenbaugh, & Paredis, 2009; Nahm & Ishikawa, 2006; Ford & Sobek, 2005).  

While experienced managers are always desired, a method to determine the impact of 
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reduction decisions used to aid managers in guiding set reduction would prove beneficial 

in all design circumstances.  The ideal method balances the risk and reward of reducing 

certain areas of the design space, and determines the impact of these decisions on the 

overall design process.   

 

1.3.3 Identification of Robust Decision Paths 

One of the major SBD principles developed by Toyota is a strong desire to stay within 

the initially defined sets, hence avoiding divergence.  Sobek (1997) stated that this 

principle was mainly due to the fact that “downstream sets are subsets of upstream ones, 

thus any work or communication based on upstream sets is also valid for all downstream 

sets, including the final solution.”  Additional work must be completed in order to fully 

understand the design space if set-ranges are reopened.  McKenney, Gray, Madrid, and 

Singer (2012) also identified the desire to avoid what they define as a failure opportunity, 

which occurs when the given set-ranges are not able to handle a design change. 

 

As part of the set reduction decision making process, there is a desire to avoid situations 

where set-ranges are not able to handle changes and/or have to be reopened.  By 

identifying potential decision paths that are more robust to changing design conditions, 

unfavorable situations can be avoided.  Through the identification of robust decision 

paths, the designer is equipped with further information that can be used to make 

informed set reduction decisions. 

 

1.4 Contributions 

This dissertation presents a framework that can be utilized as a decision support tool by 

designers making set reduction decisions within a SBD environment.  Leading up to the 

formulation of this framework, a number of important conclusions were formed that 

aided in its development.  Also, a series of methods to better understand the SBD 

reduction process were developed.  Specific contributions presented in this dissertation 

are as follows: 
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1. Aided in the development of a rigor standard that can be used to evaluate a design 

activity and determine the degree of adherence to five major SBD elements.  

Standards enable proper and repeatable execution of SBD principles. 

2. Developed a design facilitation tool that aids in understanding design 

relationships at the functional design level, thereby, improving the preference 

generation process for designers. 

3. Conducted a series of experiments with human designers that validated the ability 

of the SBD method to handle changes, and identified two elements, reduction path 

and reduction rate, as key factors in successful reduction efforts. 

4. Developed a novel approach to generate automatically set reduction graph 

structures.  This approach avoids the need to manually generate a graph for every 

problem. 

5. Developed an MDP formulation of the longest path problem for SBD reduction 

decision making, providing both a structure for the problem and a method for 

analysis. 

6. Created novel visual representations of the support framework results in simple 

and understandable formats so that SBD reduction decisions are presented to the 

designer. 

7. Developed a series of DM reduction metrics utilized within the support 

framework to describe quantitatively the impact of reducing certain regions of the 

design space. 

8. Through simulation, demonstrated the advantage of considering potential future 

outcomes versus the use of current in-state knowledge. 

 

1.5 Dissertation Structure 

There are two major phases of the research presented in this dissertation.  The first phase, 

outlined in Chapters 2-5, provides an introduction to SBD and the work completed to 

form the important conclusions that were the impetus for the developed framework.  The 

second phase, outlined in Chapters 6-8, presents the developed framework and metrics, 

and demonstrates their value through a series of studies and finally a ship design case 

study.  The remainder of this section briefly describes each chapter individually. 
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Chapter 2, Early-Stage Design, discusses the landscape of design and defines the 

distinction between a design approach, process, method, and tool.  Current design issues 

that have led to the inadequacy of traditional design methods are then presented.  Finally, 

the ability of SBD to handle these design issues and its advantages over more traditional 

design methods is discussed. 

 

Chapter 3, Set-Based Design Execution, presents both the successes and challenges 

associated with SBD executions.  A detailed description of the SSC Program is used as an 

example of a successful SBD execution.  Major SBD criticisms and execution challenges 

are also discussed to highlight the areas where improvement is needed.  A SBD rigor 

standard is introduced to aid in the understanding and classification of a SBD effort.  

Current SBD execution methods and aids are then presented, and the limitations of 

current research are summarized. 

 

Chapter 4, Initial Set-Based Design Research, first introduces the work completed by 

Singer (2003) and Gray (2011) that this dissertation is based on.  An initial case study is 

then presented that provides insights on the set reduction process.  Also, a design 

facilitation tool is discussed, as well as its shortcomings when applied to larger-scale 

design efforts. 

 

Chapter 5, Detailed Design Experiment, presents an extensive study of how SBD 

handles changes through a series of experiments using human designers.  A number of 

key conclusions were formed that help frame the problem and develop a framework that 

addresses several items, including the importance of reduction rate and path. 

 

Chapter 6, Decision Support Framework, outlines the methods used as part of the 

unified decision support framework, which include DM, MDP, and sensitivity analysis.  

Various representations of the method’s results are presented to demonstrate the types of 

information designers can use to make decisions. 
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Chapter 7, Evaluation and Comparison Studies, presents an evaluation of the 

developed reduction metrics used to integrate the DM method and the MDP formulation.  

The metrics are evaluated using the MDP formulation to identify distinguishable 

advantages.  Finally, the MDP formulation is utilized to show the advantages of 

considering future outcomes over a method focused on only current in-state knowledge. 

 

Chapter 8, Reduction Demonstration, uses a ship design case study to demonstrate the 

developed framework with multiple types of functions and representations.  A complete 

reduction is discussed in detail. 

 

Chapter 9, Conclusion, returns to the identified research problems and discusses the 

work presented throughout this dissertation to understand better how the developed 

framework addresses each problem with regard to the information designers can use to 

make reduction decisions.  Alternative applications and future work are also discussed.     
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Chapter 2: Early-Stage Design 

 

 

Design is a broad and extensive topic that spans multiple fields from business and 

marketing, to engineering.  The amount of effort put into product design is substantial, 

and decisions made early in the process significantly impact the end result.  For decades, 

the importance of design and its impact on total life-cycle cost has been established 

through observations and quantifiable studies at various companies.  Researchers have 

stated that 70-80% of a product’s cost is committed during the design stage (Gatenby & 

Foo, 1990; Huthwaite, 1994; Ullman, 2003; Anderson, 2004; Belay, 2009), while others 

emphasize the impact of design on quality and manufacturing productivity (Dixon & 

Duffey, 1988; Suh, 1990).  There are a few researchers who disagree with these 

statements and believe that further downstream activities, such as manufacturing, have 

more influence than most researchers acknowledge (Ulrich & Pearson, 1993; Barton, 

Love, & Taylor, 2001).  It is, however, difficult to challenge the fact that design is an 

essential aspect of product development, and possibly the most critical. 

 

While this chapter discusses all aspects of product development to some degree, the main 

focus is on early-stage design, which involves the transition between understanding 

requirements and incorporating them into the initial design of a system.  The goal of this 

chapter is to describe effectively the current landscape of design, to identify why more 

traditional methods are no longer adequate, and to establish the need for a method such as 

SBD to handle the present-day design environment.   
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This chapter begins by defining what early-stage design is in more detail and the 

distinction between the components of a design effort.  Characterizing a design effort is 

then discussed including a discussion of the act of design, design complexity, and design 

types.  The traditional design approach is then discussed, and concurrent engineering, a 

much needed improvement to traditional design is covered.  Focus is then placed on 

design processes, particularly systems engineering.  Multiple methods and tools are 

discussed, including an introduction to SBD and why it is considered superior to other 

methods. 

 

Before continuing, it is important to note that the topics discussed in this chapter are 

largely domain independent, meaning that principles, methods, and approaches 

mentioned do not depend on the domain or industry of interest.  The naval ship design 

practice is used as a case study, but unique aspects of this type of design will be 

identified. 

 

2.1 Defining Early-Stage Design 

Early-stage design, while defined differently at various organizations, plays an important 

role in any product development or acquisition process.  It is different from other stages, 

mainly due to its focus on understanding requirements as opposed to actual design work.  

Andrews (2004) describes the importance of understanding requirements by evaluating 

the true nature of early-stage design.  This knowledge does not involve transforming a set 

of requirements to an engineering design, but rather identifying the true nature of the 

design problem.  Andrews (2004) states, “… [T]he wicked problem demands to be 

tackled through a dialogue between the requirements generator (the naval staff or ship 

owner) and the preliminary ship designer.  The purpose of the dialogue is to elucidate the 

best mix of conflicting requirements within what is affordable and achievable, which 

necessarily has to be done by reference to materially feasible potential solutions” (p. 42).  

In order to understand the design problem in terms of potential requirements, actual 

solutions must be explored.  But the intention of evaluating these solutions is not to 

design a ship, but to define reasonable and obtainable requirements. 
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While all early-stage design efforts, as described above, deal with the definition of 

reasonable and obtainable requirements, there are different ways to achieve this goal.  A 

clear definition, therefore, of the components of a design effort is required.  For the work 

presented in this dissertation, the following definitions are used: 

 

 Design Approach: The overarching guiding principles of a design effort   

 Design Process: A series of structured steps to implement the design approach 

 Design Method: The way in which design alternatives are understood, analyzed, 

and selected for a particular approach and process  

 Design Tool: In support of design methods, tools are used to provide information 

that enables designer decision making  

 

Design approaches and processes are the high-level attributes of a design effort.  The 

approach describes the initial guidance required to initiate a design effort.  For example, 

is the design effort sequential in nature, or are activities completed in parallel?  A design 

process is a structure or framework within which the approach must be applied.  

Sometimes processes are developed around an approach and sometimes an approach 

must fit a given process.  A design method describes the specific way in which the 

approach within the process is carried out, including how design alternatives are 

understood, analyzed, and selected.  Finally, a design tool is used to support and enable 

the methods by providing design information.   

 

It is important to note that a design tool is distinctly different from a design method.  As 

mentioned in Chapter 1, certain tools can sometimes be confused as methods.  This 

confusion can restrict design efforts through the overreliance on design tool results, 

which leads to a lack of understanding of the complete design problem.  This reason is 

one of the reasons why clear definition of design components is so important.  

Throughout this chapter, comparisons between the different components are made, and 

proper usage is discussed.  Finally, the implications of this confusion on the need for new 

methods are presented.   
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2.2 Characterizing a Design Effort  

Before discussing specific design approaches, processes, methods, and tools, various 

aspects that characterize a design effort must be introduced.  This section first focuses on 

the act of designing, as well as what it takes to complete a successful design, namely 

teams of human designers.  Next, the increasing design complexity and present day 

challenges associated with tougher design environments are discussed.  This analysis 

includes important consideration of incrementally improved and wholly innovative 

design components.  These aspects of a design effort provide an initial understanding of 

design problems and leads into the discussion of two design approaches.  

 

2.2.1 The Act of Designing 

While tools and methods have changed over the course of history, design has remained a 

fundamental exercise that precedes the Egyptians’ construction of the pyramids.  There 

are a number of definitions for “designing” proposed over the years.  Jones (1992, p. 3) 

has compiled a comprehensive list of requisite elements that includes:  

 

 Decision making, in the face of uncertainty, with high penalties for error 

 The performing of a complicated act of faith 

 The imaginative jump from present facts to future possibilities 

 A creative activity – it involves bringing into being something new and useful 

that has not existed previously 

 

While the definition elements above describe the effort of design in different ways, the 

one common aspect is that they all refer “not to the outcome of designing, but to its 

ingredients” (Jones, 1992, p. 4).  Design should be thought of as a process, not the final 

product. 

 

A designer has two main objectives.  The first is to act as an interpreter from a customer’s 

desire (which can vary over time) to a functional working product, called “the 

interpretation objective.”  Interpretation incorporates transforming what a customer 

requests into requirements and then using these requirements to develop a design 
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specification.  This interpretation process is an art in itself and can have varying degrees 

of customer input.  For example, Apple has an uncanny ability to predict what consumers 

want before they know they want it.  In the case of other product developers, customers 

can have substantial input, and a successful product can still result.  This phenomenon 

occurs in engineering when a customer says one thing, but really means something 

completely different.  It is the engineer’s duty to interpret properly customer statements 

and then to turn them into a functional system design.  While some interpretations are 

relatively easy, others are much more difficult.  

 

The second main objective is to predict the future behavior of the product and identify if 

it can be used for its intended purpose, the prediction objective.  An interpretation may be 

complete, but not adequate now or in the future.  There must be a feedback loop that 

determines if the functional description of the product addresses the set of requirements.  

This process can be equally, if not more, difficult than identifying and interpreting these 

requirements successfully.  A visual representation of a designer’s objectives and their 

relations can be seen in Figure 2.1. 

  

 

Figure 2.1: Designer Objectives 

 

These two objectives lead perfectly into the difficulties of designing, which revolve 

mainly around the critical problem that “Designers are obliged to use current information 

to predict a future state that will not come about unless their predictions are correct” 

(Jones, 1992, pp. 10-11).  Designing is, in one sense, moving backwards from an 

assumed outcome to the steps that must be taken to achieve that outcome.  The designer’s 

Customer/
Stakeholders

Requirements
Design 

Specification

INTERPRETATION

PREDICTION
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advantage is that they are human and therefore have the ability to solve problems that 

cannot be input into a computer or have an equation made to describe them.  Even in an 

age where computers are part of almost every aspect of life, a designer’s brain is the key 

ingredient that makes designing possible.  Additionally, it is the teams of designers 

working together that enable large-scale complex design efforts to be accomplished.  

 

2.2.2 Design Complexity 

While the human designer remains the centerpiece of the design process, there are many 

contemporary challenges to address.  Cost growth within many engineering fields has 

exhibited rates exceeding the rate of inflation over the past few decades, especially within 

the government sector.  Cost growth is usually correlated with the complexity of a 

project: the more complex, the larger cost growth.  Nicholas and Steyn (2012) provide a 

few historical examples of cost escalations: “The Concorde supersonic airliner exceeded 

the original estimate by a factor of five, nuclear power plants often exceed estimates by a 

factor of two or three, and NASA spacecraft often exceed estimates by a factor of four to 

five” (p. 282).  Nicholas and Steyn (2012) also provide a list of reasons for cost 

escalations, some of which can be avoided and some of which may not.  These reasons 

include: 

 

 Uncertainty and Lack of Accurate Information 

 Changes in Requirements or Design 

 Economic and Social Factors 

 Inefficiency, Poor Communication, and Lack of Control 

 Ego Involvement of the Estimator 

 Project Contract 

 Bias and Ambition (pp. 283-286) 

 

In addition to the above reasons that can cause cost overruns, design complexity 

continues to increase as customers/stakeholders continue to expect more and more.  

Under current budget and economic constraints, cost growth and associated complexity 

trends may not be sustainable.   
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U.S. Navy cost escalation rates for the fleet, including submarines and aircraft carriers, 

has been between 7 and 11 percent (Arena, Blickstein, Younossi, & Grammich, 2006).  

This number has been typical not just for U.S. Navy ships, but also for other defense 

sectors, including weapon systems and aircraft developments.  A RAND study focusing 

on identifying why costs for U.S. Navy ships has risen identified two major sources of 

cost escalation: economy-driven and customer-driven.  Of particular interest to designers 

are the customer-driven factors that include complexity, standards and requirements, and 

procurement rate (Arena, Blickstein, Younossi, & Grammich, 2006).   

 

Complexity can be an ambiguous term, referring to anything from multiple component 

interactions and levels of subsystems to a measure used to describe the difficulty of 

understanding and predicting system operation and operational effectiveness.  The 

RAND study observed that ships are becoming more and more difficult to build.  This 

difficulty is indicated in the strong correlation between characteristic complexity 

measures, such as light ship weight or power density, evaluated over time.  The RAND 

study defines characteristic complexity as “a measure of how changes to basic ship 

features (e.g., displacement, crew size, number of systems) make them more difficult to 

construct” (p. xv).  Requirements changes, requirements creep and increased regulations 

also contribute to this increased difficulty.  Figure 2.2 and Figure 2.3 provide examples of 

correlated measures that can provide some insight into these current trends. 
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Figure 2.2: Power Density Trend for Surface Combatants (Arena, Blickstein, Younossi, 

& Grammich, 2006) 

 

 

Figure 2.3: Average Living Space per Sailor on Surface Combatants (Arena, Blickstein, 

Younossi, & Grammich, 2006) 

 

While the RAND study focuses more on a macro-level analysis, true design complexity 

embraces another aspect, which, while related, is not directly discussed.  Complexity is 

often thought of as a description of the product itself, but what is often overlooked is the 

process taken to design that product, hence why complexity is often described as a 

function of process, not product (Doerry, 2009).  Identifying how complexity affects a 

design process is important because a “project success is so sensitive to unknowns” 

(Colwell, 2005, p. 11).  A definition of complexity that is suitable for this research is “a 

measure of the uncertainty in understanding what it is we want to know or in achieving a 

functional requirement” (Suh, 2005, p. 4).  Along with the need to design and build more 
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complex systems, deal with new regulations, and meet higher customer expectations, 

comes a more complex design process. 

 

Although there are different types of complexity, combinatorial complexity is more 

important for analyzing a design process.  Doerry (2009) states, “Combinatorial 

complexity results from having many dependencies between the design activities” (p. 8).  

For the purposes of this research, a general complexity metric can be identified using 

basic dependencies between design activities, or groups of designers working on various 

aspects of the design.  Maier and Fadel (2004) describe an approach to measuring 

complexity “…based upon the coupling between design targets and design variables.  

The underlying assumption here is that the more coupled the design problem, the more 

complex it is” (p. 3). 

 

Along with more complex (and almost always larger) systems comes a larger design team 

that must collaborate to develop a cohesive design.  Complexity increases in the design 

process due to more dependencies between design activities.  While the advent of 

computers has enabled automation of analyses and digitally produced drawings, the 

substantial increase in complexity has caused teams to remain large.  The importance of 

design team communication and facilitation increases for complex designs.  Without 

effective communication during a large-scale design effort, decisions could be made 

based on inaccurate or out-of-date information. 

 

2.2.3 Design Types 

A major complexity consideration when designing is related to the type of design.  As 

mentioned earlier, there can be varying degrees of input or direction when designing a 

product.  A design effort can have varying degrees of difficulty depending on a variety of 

factors.  One of the most important factors is the uncertainty based on the limits of 

current understanding.  Uncertainties rise when there is lacking information available to 

predict product behavior and outcomes; for example, by not being able to identify a 

functional design that meets predicted requirements.   
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Evolutionary design is often defined as a continuous or incremental improvement based 

on a previous design.  This enhancement could include making a substantial change to 

only one subsystem.  Revolutionary design is described as a significant change to the 

entire system, which in most cases means starting with a “clean sheet of paper.”  One 

design type is not necessarily superior to the other, and selecting evolutionary and 

revolutionary design components is based on the ability of the design specifications to 

meet the desired requirements. 

 

Additionally, it is possible to select aspects of both design types since they exist on a 

continuous spectrum of possible design types that are related to other aspects of design, 

such as risk.  Englhardt (1993) states that an evolutionary design has lower risk than a 

revolutionary design (Figure 2.4).  Figure 2.5 illustrates how time and performance are 

affected by varying the type of design.  Revolutionary designs typically require a 

substantial amount of research and development before increases in performance can be 

realized, while evolutionary designs take less time and increment smaller increases in 

performances.     

 

 

Figure 2.4: Development Strategy Spectrum (Englhardt, 1993) 
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Figure 2.5: Development Strategy Performance Impact (Englhardt, 1993) 

 

A good example of the difference between evolution and revolution may be found in 

comparing the most recent U.S. Navy Destroyer design known as the DDG 1000 (first 

ship scheduled to be delivered in 2014) and the DDG 51 Class Destroyer, which has been 

under construction since the early 1990s.  The DDG 51 Class Destroyer design has gone 

through a series of evolutions from its initial design in the 1980s, including the most 

recent Flight IV design work currently being undertaken.  A typical evolutionary change, 

for example from Flight I to Flight II, consisted of weapon technology and system control 

upgrade.  The DDG 1000 is closer to a revolutionary design because of major desired 

changes to multiple systems including the hull, power plant, radar, and weapons that 

eventually led to a nearly “clean sheet” design.  While the DDG 1000 design team carried 

multiple designs during the process until risk was deemed manageable, the two main 

alternatives were drastically different, and it was indicative of an all or nothing approach. 

 

There are many factors that must be considered when identifying evolutionary and 

revolutionary components of a design, most of which are not under the direct control of 

designers.  Acquisition strategies and politics within organizations, such as the U.S. 

Navy, can heavily influence design decisions, with little true technical merit.  For 

example, the Congressional restriction of the deadweight of the DDG-51 Class Destroyer 

during early design efforts.  The importance of discussing evolution versus revolution in 

design lies in how designers implement each type of design.  The ability to successfully 

complete a more revolutionary design effort can depend on the specific design method 



24 

 

used.  For example, Sobek (1997) identifies the importance of open development with 

dynamic or revolutionary products, while most product domains for more evolutionary 

systems may remain unchanged. 

 

2.3 Design Approaches 

Along with identifying various characterizations of design, the approaches used to 

develop and select solutions lay the groundwork for defining the complete design effort.  

In a typical traditional approach (known as iteration), designers start by selecting a 

solution.  This solution is then synthesized, analyzed, and evaluated (Sobek, 1997).  After 

the evaluation stage, changes are made to the design based on whether the design is 

feasible and/or meets all requirements.  As more iterations are completed, fidelity of 

analysis increases and becomes more detailed.  Selecting which designs to iterate is 

another important component of design.  Typically, a chief engineer (or small group) 

develops a series of alternatives that are then evaluated. A design (or a few alternatives) 

is selected and subsystems are identified before the whole design team is engaged.  This 

strategy can be challenging when designs are revolutionary, because of the difficulty for 

one person (or a small group) to hold the necessary knowledge to understand the design 

in its entirety (Jones, 1992).  In addition, an iterative approach compliments the extensive 

field of design optimization, which (most of the time) requires single inputs and 

completes multiple evaluations (Sobek, 1997).  This traditional approach is the basis for 

point-based design, which will be discussed later in this chapter. 

 

One alternative approach to iteration, which is the basis for SBD, is using convergent 

strategies.  There are a number of issues associated with selecting a single solution.  

Sobek (1997) defines two characteristics of design that make selection a challenge: 

 

 Most designers do not truly understand the design problem until they have tried 

several detailed solutions 

 Designers cannot foresee all the interactions that will result as the details of the 

concept are worked out (p. 18) 
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These challenges can be partially resolved by using convergent strategies that analyze 

many alternatives.  Convergent methods allow for greater understanding of alternatives 

and design relationships before making a decision.  This section introduces the two major 

design approaches seen in design.  It is important to note that some approaches are a 

combination of both iterative and convergent strategies.   

 

2.3.1 Traditional Design 

The traditional design approach, which still to some degree takes place within some 

organizations, represents design as a sequential process.  Concept or preliminary design is 

first, contract and detailed design second, then manufacturing, and finally operation and 

disposal.  This approach is often referred to as the “over-the-wall” approach, where the 

most notable “wall” is between design and manufacturing.  The phrase refers to what 

occurs when a designer finishes a design in one phase and throws it over the wall to the 

next phase, such as manufacturing, where construction must be completed (Boothroyd, 

Dewhurst, & Knight, 2002). 

 

While the practice of a sequential “over-the-wall” approach might seem unfavorable, 

there are a number of valid reasons for such a strategy.  First, communication between 

different design groups can be challenging and expensive.  Additionally, it is often easier 

to pass a design to a downstream group instead of dealing with integration (Wheelwright 

& Clark, 1992).  Second, simultaneously addressing all aspects of the system’s lifecycle 

during design can be daunting, and the complexity of integration can be a difficult task 

(Wheelwright & Clark, 1992).  The “walls” help divide the work into manageable pieces 

that can be completed individually.  Finally, contractual requirements for a division of 

labor allow for open bidding.  For example, shipbuilding requires division of labor when 

the builder is not determined when design begins.  This “wall” makes it difficult to 

incorporate manufacturing input earlier in design.     

 

A negative consequence of the approach is splitting the design into a sequential and only 

downstream process (Sobek, Ward, & Liker, 1999).  The “we design it, you build it” 

attitude leads to integration issues and a substantial amount of rework (Boothroyd, 
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Dewhurst, & Knight, 2002).  Delay of work is the main issue associated with the 

sequential process, since major changes must be made once information is transferred to 

downstream activities (Ward, Liker, Christiano, & Sobek, 1995).  The issues associated 

with the traditional design approach have worsened as systems have become more 

complex, and the design landscape has changed with numerous technological 

advancements.  The difficulties of the traditional and sequential design processes have 

been established, but a substantial amount of research has been conducted to improve 

integration.  Research that focuses on lowering the “wall” between design and 

manufacturing include, but are not limited to, Design for Production (Storch, 

Sukapanpotharam, Hills, Bruce, & Bell, 2000), Design for Manufacturing Assembly 

(Molloy, Tilley, & Warman, 1998), Design for Six Sigma (Yang & El-Haik, 2009), and 

Lean Product Design (Liker & Lamb, 2002).  Other research areas that aid in lowering 

the “wall” specifically focused on in this dissertation will be discussed throughout the 

remainder of this chapter, including concurrent engineering and SBD.  

 

2.3.2 Concurrent Engineering 

After identifying the issues associated with traditional design, including fragmented 

communication and rework, it was evident that a new method was required.  Some argue 

that the answer to these issues could be found via concurrent engineering (CE).  CE, also 

referred to as simultaneous engineering or integrated product/process development, is not 

a new concept.  Even before extensive literature on the topic in the 1990s, CE practices 

were used during the World War II era (Ziemke & Spann, 1993).  A generally accepted 

definition of CE in literature from the Institute for Defense Analysis (1988) states: 

 

Concurrent engineering is a systematic approach to the integrated, concurrent design of 

products and their related processes, including manufacturing and support.  This 

approach is intended to cause the developers, from the outset, to consider all elements of 

the product life cycle from conception through disposal, including quality, cost, schedule, 

and user requirements. 
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The value of being able to consider all aspects of a product’s life cycle during design can 

easily be considered a major advantage, but accomplishing this task can be extremely 

challenging.  Salomone (1995) states that “…it is hard, if not impossible, to define the 

process of making a product before a product design has been created” (p. 1).  The push 

for the use of CE practices arises from the fact that existing traditional sequential design 

processes present serious limitations.  Also, the traditional method is no longer suitable 

due to the rapid pace of technology development and increased competition, resulting in a 

need for shorter development times, higher quality, and lower costs (Salomone, 1995; 

Bennett & Lamb, 1996; Addo-Tenkorang, 2011).  Furthermore, shifting environmental 

conditions for teams have made the traditional method less viable. These environmental 

conditions refer specifically to unique work environments, such as having team members 

in multiple locations, or understanding cultural differences among team members and the 

team leader’s role (Parker, 2008).    

 

CE directly conflicts with traditional design practices where the design is passed along 

with consideration of one set of factors at a time.  CE introduces Integrated Product 

Teams (IPTs) and co-location to improve communication.  An IPT is a group that is 

comprised of experts from many disciplines that work together and are collectively 

responsible for a particular product design effort.  Co-location is the placement of all 

people involved on a project in the same physical location.  Typically, downstream 

activities, such as manufacturing, are able to be initially considered during primary 

design stages using CE (Sobek, 1997).  Figure 2.6 provides a visual depiction of the 

development process using CE.  The main advantages of CE include lower cost, higher 

quality, shorter time to market, and less re-work (Bennett & Lamb, 1996; Addo-

Tenkorang, 2011).  The “wall” discussed in the previous section is lowered substantially 

using CE.  CE does not change the design process, but addresses concurrent 

communication and coordination needs for any type of process.  Nonetheless, some 

processes are more effective at implementing CE principles, which will be shown later in 

this chapter when discussing SBD.   
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Figure 2.6: Concurrent (Parallel and Integrated) Product Development (Bennett & Lamb, 

1996) 

 

While the need for a new method was identified and extensive research was conducted, 

struggle with practical execution in recent years has caused CE to lose some popularity.  

Attempts at implementing CE practices within organizations have occurred over the last 

decade with varying degrees of success.  Results from the successes indicate that, if done 

properly, CE can have a major positive impact, while results from the failures illustrate 

the difficulty of execution.  The identified advantages, when implemented correctly, have 

led companies to continue practicing CE practices.  Organizations such as NASA have 

continued to work towards a CE approach (McGuire, Oleson, & Sarver-Verhey, 2012), 

even in light of major system failures like the Columbia accident in 2003.  These mixed 

results should not deter the pursuit of the proven advantages of CE, but should provide 

appreciation of the difficulties of execution and the value in seeking practical process 

solutions.    

 

Significant challenges associated with CE execution include cultural hurdles intrinsic to 

the company implementing the approach.  Shifts in thinking must occur at all levels, 

including becoming more customer-focused and working in teams (Bennett & Lamb, 

1996).  Interest must change from individual to team-focused, so that decisions can be 

made through consensus.  Ogawa (2008) stresses the difficulty of implementing a CE 

approach, stating, “People have to accept use of a new method of working which may 

require the difficult decision to change their behavior and step away from their 
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experienced working style” (p. 16).  Beyond natural opposition to change, more difficult 

questions arise from using CE in practice for employees, such as in assigning credit for 

accomplishments and determining promotions.       

 

An important aspect of design efforts, that is typically underestimated when using CE, is 

forming design teams and the team dynamics associated with designing a product.  Parker 

(2008) emphasizes the definition of a team by stating, “A group of people is not a team.  

A team is a group of people with a high degree of interdependence geared toward the 

achievement of a goal or completion of a task” (p. 13).  The main issue with forming a 

team rests in the fact that an optimal team organization is circumstantial (Smith, 2004).  

Selecting the size of the team and the members themselves is critical for success.  Ogawa 

(2008) warns that a “design session will stop if there is any lack of information, 

resources, and capabilities in the team” (p. 18).  The NASA COMPASS Team at the 

Glenn Research Center identified four factors essential to forming their CE team 

(McGuire, Oleson, & Sarver-Verhey, 2012): 

 

1. The right people 

2. The appropriate tools 

3. A supportive meeting space 

4. A design project of sufficient magnitude around which to coalesce the multi-

discipline capabilities of the team 

 

These factors emphasize selecting proper team members and tools (which will be further 

discussed in the next section), but also determine that location and project magnitude 

directly impact the effectiveness of a CE approach.  One final note is the importance of 

communication among team members.  Smith (2004) offers the suggestion that a 

“…small team (fewer than ten) strengthens commitment and eases communication” (p. 

441).  Other effective communication principles are strongly associated with CE, such as 

co-location and two-way communication (Sobek, 1997).  Design is a team-based activity, 

and team dynamics cannot be ignored when designing complex systems. 
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There are many advantages to using CE during the product development process, 

especially during the early-stage design phase.  However, proper and effective 

application of CE principles has proven challenging, which can be seen by the steady 

decrease in industry interest since the late 2000s.  While numerous organizations have 

succeeded, many others have failed.  For some organizations, the issues associated with 

substantial organizational change caused by applying CE principles can sometimes be too 

much of a hindrance on operations.  There can be varying degrees of application of CE 

and most design organizations adopt some form of CE.  However, few apply it 

completely and successfully.  Advancements in present-day design methods and tools, 

including SBD and work presented in this dissertation, can facilitate the spread and 

success of CE practices.  The remaining two sections focus on the various types of 

methods and tools used during design and their ability to apply CE practices. 

 

2.4 Design Processes 

Design processes are a series of structured steps to implement the design approach.  In 

some situations, the process is developed to fit certain approaches, while in other 

situations the process is dictated by an organization and therefore must be fit to the 

structure.  This section presents one of each scenario, starting with a description of 

systems engineering.  The second subsection briefly describes the U.S. Navy acquisition 

process for the early-stages of design. 

 

2.4.1 Systems Engineering 

Kossiakoff, Sweet, Seymour and Biemer (2011) provide the following definition of 

systems engineering (SE): “The function of systems engineering is to guide the 

engineering of complex systems” (p. 3).  SE focuses on the system as a whole and places 

emphasis on aspects outside of pure engineering design, including its interaction with the 

environment and meeting various customers’ needs.  Systems engineers are actively 

involved in the design of the system through the guidance of concept development.  

Guidance is provided in the form of making key design decisions that are not only based 

on quantitative information provided by other disciplines, but qualitative assessments of 

the design and its component interactions.  Finally, SE is able to bring together multiple 
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engineering disciplines to understand better the system as a whole during the 

development process (Kossiakoff, Sweet, Seymour & Biemer, 2011).       

 

The foundations of SE are rooted in the fact that when dealing with new and innovative 

concepts, there is a requirement for many diverse people working together, in some cases, 

for years at a time.  While the origins of SE can be traced back to before formal 

engineering design disciplines existed, its official formulation grew during the same time 

CE did, and was concentrated during and after World War II.  This fact is not believed to 

be a coincidence, mainly because there is evidence that SE was, and continues to be, a 

structured approach to utilizing CE principles (Loureiro, 1999; Adams & Douthit, 2000; 

Lightfoot, 2002; Loureiro & Leaney, 2003).  During the development of SE, engineers 

that worked on complex system designs were required to communicate regularly with all 

disciplines, which increased demand for integration of CE principles (Loureiro, 1999).  

The requirement for integration made SE a good fit for utilizing CE principles.   

 

The SE structure is broken down into stages and further phases within each stage 

(Kossiakoff, Sweet, Seymour & Biemer, 2011).  The first stage is concept development, 

which consists of needs analysis, concept exploration, and concept definition. 

Engineering development is the second stage, and it consists of advanced development, 

engineering design, integration, and evaluation.  The third stage, post development, 

consists of production, operation, and support.  The basic elements can be seen in Figure 

2.7.   

 

 

Figure 2.7: Systems Engineering Stages and Phases (Kossiakoff & Sweet, 2003) 

 

Concept development includes identifying the need for a system, exploring for potentially 

feasible design solutions, and translating system requirements to a functional description.  



32 

 

The functional description outlines basic subsystems and the system architecture, or 

rather how the subsystems will fit together to form the overall system.   

 

The engineering development stage focuses on engineering a system to make sure it can 

operate effectively to meet the desired requirements set in concept development.  The 

early phase of engineering development entails identifying gaps in current technology 

and developing the necessary technology to meet the desired needs.  The bulk of design 

work is during the engineering design phase, where the system is developed and its 

performance is evaluated.  The final phase, integration and evaluation, verifies that the 

system meets requirements and that it can be economically produced. 

 

Post Development is an area that designers are not usually involved in and consists of 

production, operation, and support.  Production is a major and significant part of product 

development and includes the manufacturing process associated with the production of 

the system.  After the system is delivered and/or sold, operation and support allows for 

the system to continue operating as required for its lifetime. 

 

While SE provides a good structure to frame the product development process for a 

complex system, the actual method or approach used varies.  Andrews, Papanikolaou, 

Erichsen, & Vasudevan (2009) state that SE can be considered synonymous with project 

management, while Kossiakoff, Sweet, Seymour and Biemer (2011) believe SE is just 

one aspect of project management, not including aspects such as project fiscal, 

contractual, and customer relations.  Either way, it is generally agreed that SE is not, in 

and of itself, a complete design approach or method (Andrews, 2011).  Kossiakoff, 

Sweet, Seymour and Biemer (2011) propose the “spiral life cycle model” that they claim 

captures the iterative nature of design through multiple applications of the SE method 

(the design spiral or point-based design will be discussed in the next section).        

 

Since SE’s origins, there have been a number of changes, similar to the changes that led 

to the development of CE.  Kossiakoff, Sweet, Seymour and Biemer (2011) summarize 

three basic developments that led to the development of SE: 
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1. Advancing Technology, which provide opportunities for increasing system 

capabilities, but introduces development risks that require systems engineering 

management 

2. Competition, whose various forms require seeking superior (and more advanced) 

system solutions through the use of system-level trade-offs among alternative 

approaches 

3. Specialization, which requires the partitioning of the system into building blocks 

corresponding to specific product types that can be designed and built by 

specialists, and strict management of their interfaces and interactions (p. 6) 

 

With these three developments, the SE discipline has matured, producing new ways to 

look at the problem, which, in turn, has engendered new design methods. 

 

2.4.2 U.S. Navy Acquisition 

For the U.S. Navy, the “Requirements Elucidation” process as defined by Andrews 

(2004) occurs pre-Milestone A, during Analysis of Alternatives (AoA) and Pre-

Preliminary Design.  Figure 2.8 outlines the U.S. Navy 2 Pass-6 Gate process that was 

introduced in 2008 and “ensures that the appropriate stakeholders are involved in 

acquisition decisions from the development of the Initial Capabilities Document through 

detail design and construction” (Singer, Doerry, & Buckley, p. 32).  The traditional ship 

design stages can be seen at the bottom of the figure, and emphasize requirement 

definition, not design, during the early stages leading up to Preliminary Design.  While 

other navies have different terms for these stages, the same issues related to 

understanding requirements must be addressed. 
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Figure 2.8: U.S. Navy 2 Pass-6 Gate Acquisition Process (Singer, Doerry, & Buckley, 

2009) 

 

The U.S. Navy acquisition process is a good example where the design process is set and 

the design approaches and methods must be developed to fit the given structure.  The 

traditional design approach has typically been applied for such a process, however, this 

dissertation presents research that can aid in proper execution of more CE practices 

within the given design process.  

 

2.5 Design Methods 

Until now, the discussion has not ventured into the design method realm.  There are many 

aspects of design that can be independent of the method used, including the 

characterization of a design effort and the given design process.  Some methods have 

proven to be better than others, and some methods are outdated due to advancements in 

today’s environment.  This section begins by describing iterative methods, also known as 

point-based design (PBD) methods.  Next, convergent methods are discussed, including 
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an introduction to SBD, which is a method that shows promise in meeting present day 

design challenges and is compatible with CE practices.   

 

2.5.1 Iterative Methods 

PBD, also known as the design spiral, has traditionally been the method of choice when 

describing engineering design, and is still taught today, especially for initial ship design 

efforts.  PBD provides a structure to complete an iterative design process.  This model, 

first described for ship design by Evans (1959), focuses on the sequential nature of 

analysis in increasing detail as the spiral continues inward.  This eventually produces a 

single design that meets all requirements and constraints, while balancing all 

considerations (Singer, Doerry, & Buckley, 2009).  The spiral approach is also called 

PBD because the process is iterative in nature and attempts to develop a single solution 

that meets the desired requirements and constraints.  A visual depiction of the ship design 

spiral is presented in Figure 2.9.   

 

 

Figure 2.9: Ship Design Spiral (pkboatplans.blogspot.com/2011/11/design-spiral.html) 

 

Liker, Sobek, Ward, & Cristiano (1996) provide a general description of PBD: 

“The typical approach to design problems, as taught in the United States, begins 

by defining the problem, then generating many alternative solutions.  After 

preliminary analysis, engineers select the alternative with the most promise, then 
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analyze, evaluate, and modify it until a satisfactory solution emerges.  If the 

alternative proves infeasible, then designers select another alternative and/or 

revise the problem definition, and begin the process again.  The key point is that a 

single solution is synthesized first, then analyzed and changed accordingly…” (p. 

167).   

 

PBD is proven to produce sound and feasible designs, but there are a number of 

disadvantages, including the inability to achieve a globally optimal design, a bias towards 

old designs, limitation on the number of iterations available due to time and/or budget, 

and susceptibility to premature, costly design decisions (Mistree, Smith, Bras, Allen, & 

Muster, 1990; Liker, Sobek, Ward, & Cristiano, 1996; Singer, Doerry, & Buckley, 2009; 

Gray, 2011; McKenney, Buckley, & Singer, 2012). 

 

CE practices have been applied to the PBD method, but have not negated the 

disadvantages mentioned above.  A PBD approach to CE often attempts to improve 

communication through co-location (Singer, Doerry, & Buckley, 2009) and move a 

design closer to “optimal” (Liker, Sobek, Ward, & Cristiano, 1996).  In most areas, 

however, PBD contradicts the simultaneous design emphasized in CE practices by 

allowing downstream analyses to invalidate previous work (Liker, Sobek, Ward, & 

Cristiano, 1996).  Nowacky (2010) states that PBD correctly describes the iterative nature 

of design, but can be deceiving by dictating a set order of steps.  

 

With the design spiral as a baseline and the recognition of the shortcomings of traditional 

design, numerous modified PBDs and improved iterative methods have been proposed.  

Andrews, Papanikolaou, Erichsen, and Vasudevan (2009) provide an overview of ship 

design methodologies throughout the years in their paper entitled, “IMDC 2009 State of 

the Art Report on Design Methodology.”  These methodologies include the introduction 

of the design spiral by Evans (1959), an exploration phase flow diagram by Mandel and 

Chryssostomides (1972), a building block design methodology by Andrews and Dicks 

(1997), and an integrated ship design and optimization procedure by Papanikolau (2010).  

The paper by Andrews, Papanikolaou, Erichsen, and Vasudevan (2009) provides a 
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comprehensive overview of more traditional methods that revolve around the iterative 

nature of design; however, it does not discuss CE practices or more convergent design 

approaches that play an important role in design.    

 

The limitations of traditional or iterative design methods have identified a need for new 

methods.  However, a clear description of the issues that should be addressed must first 

be developed.  Ulrich and Eppinger (2008) provide a list of common dysfunctions in 

design teams during concept generation: 

 

 Consideration of only one or two alternatives, often proposed by the most 

assertive members of the team. 

 Failure to carefully consider the usefulness of concepts employed by other firms 

in related and unrelated products. 

 Involvement of only one or two people in the process, resulting in lack of 

confidence and commitment by the rest of the team. 

 Ineffective integration of promising partial solutions. 

 Failure to consider entire categories of solutions (p. 99). 

 

The downfall of many iterative or PBD methods is that there is inherent bias in the 

selection of a design.  In an effort to avoid these situations, consideration of many 

alternatives should be considered.  The integration of these solutions using input from the 

entire design team is an important element that new methods should include. 

 

2.5.2 Convergent Methods 

Convergent methods emphasize the importance of analyzing many alternatives and carry 

multiple alternatives as the design progresses, eliminating solutions only when the 

decision is justified.  Considering a wide range of solutions and eliminating solutions as 

the design progresses can reduce the incidence of common design team failures in the 

early stages of design, and their potentially devastating impacts on design schedules.  

Keeping multiple options open longer during a design effort allows the design team to 

have a better understanding of the design and the requirements that it is supposed to meet.  
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Convergent methods consider multiple alternatives and have various procedures for 

eliminating or including these alternatives.  This section introduces three different 

convergent methods, including SBD, the method focused on in this dissertation.  Design-

build-test and total design were selected due to them being other major convergent 

methods that have been proposed.    

 

2.5.2.1 Design-Build-Test 

The design-build-test (DBT) cycle is an approach that consists of three phases: the design 

phase, the build phase, and the test phase.  The design phase focuses on framing the 

problem and establishing goals followed by generating multiple alternatives.  The build 

phase includes building a working model of the design alternatives.  This phase includes 

the work necessary for the alternatives to be tested.  Lastly, the test phase focuses on 

evaluating certain aspects of the design of importance (Wheelwright & Clark, pp. 223-

225).  Figure 2.10 shows the DBT cycle.   

 

 

Figure 2.10: Design-Build-Test Cycle (Bernstein, 1998) 

 

This cycle is repeated based on the results of each test phase.  The key to this method is 

the ability to evaluate multiple alternatives at once, as the cycle is repeated and the 

fidelity of analysis is increased.  The effectiveness of this method rests in the 

effectiveness of each cycle, as well as the combination of the individual cycle results to 

form a cohesive understanding of the solutions (Bernstein, 1998).      
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2.5.2.2 Total Design (Method of Controlled Convergence) 

Another convergent method is called Total Design, also known as the Method of 

Controlled Convergence.  This method, introduced by Pugh (1991), focuses on all aspects 

of a design activity, but with special emphasis on external factors, such as the working 

environment.  Pugh (1991) defines total design as: “…the systematic activity necessary, 

from the identification of the market/user need, to the selling of the successful product to 

satisfy that need – an activity that encompasses product, process people and 

organization” (p. 5).  Within Pugh’s total design approach, the concept design method 

proposed is of particular interest.  The method of controlled convergence (MCC) is a 

repetitive two-step process.  Figure 2.11shows the method.   

 

 

Figure 2.11: Method of Controlled Convergence (Bernstein, 1998) 

 

The first step focuses on generating a large number of alternatives.  The second step 

focuses on evaluating and selecting alternatives.  Evaluation consists of determining 

whether alternatives meet requirements, or if they are dominated by other alternatives.  

Alternatives that do not meet requirements are either discarded or modified (Singer, 

Doerry, & Buckley, 2009).  This method is a combination of divergent and convergent 

steps that continue as fidelity of analysis increases and fewer alternatives are being 

considered.  This reduction continues until only one alternative remains.  Each alternative 

is analyzed using a PBD method, which forces the process at each stage in order to be 

sequential in nature.   
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2.5.2.3 Set-Based Design 

The final convergent method, also the main focus of this dissertation, is SBD.  In its most 

basic form, SBD is design discovery by way of elimination.  The process is characterized 

by: (1) communicating broad sets of design values, (2) developing sets of design 

solutions, and (3) delaying design decisions until adequate information is known.  

Throughout this process, separate groups of experts involved in the design continuously 

provide preferences for design values within the design space.  By identifying 

intersections between these groups’ feasible and preferred regions, the design space can 

be reduced, and a higher-level fidelity of analysis ensues.  As the sets are reduced and 

fidelity of analysis increases, more information is learned about the design, which 

reduces uncertainty and allows designers to make more informed decisions.  The final 

reduced region may not be contiguous, in fact, it will likely have candidates from various 

and disparate elements of the design space.  It can be considered to be more globally 

feasible, because it spans so many factors; but it is achieved through elimination of 

infeasible or dominated alternatives, not a search for the optimal.  

 

The Toyota Motor Corporation was the first to develop what is now referred to as SBD 

(Ward, Sobek, Christiano, & Liker, 1995), which, along with the Toyota Production 

System (Monden, 1983), has contributed to the company’s success within the automotive 

industry.  There has been considerable research on certain aspects of the SBD approach 

since 1995, when Allen Ward, an American researcher, coined the term.  Ward, along 

with colleagues Jeffrey Liker and Durward Sobek, at the University of Michigan, detailed 

Toyota’s use of set-based practices in a series of publications predominantly in the late 

1990s and early 2000s.  Since these initial publications, SBD practices have been applied 

in other areas, including the aerospace (Bernstein, 1998) and Naval ship design (Singer, 

Doerry, & Buckley, 2009) industries. 

 

Gray and Singer (2011) have stated:  

“To some degree, researchers have succeeded at facilitating individual 

components of the SBD process using methods such as response surfaces and 
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optimization methods (Venter & Haftka, 1999), computer aided design systems 

(Nahm & Ishikawa, 2006b), analytical hierarchical processes (AHP), expert 

systems, and multi-criteria decision making (Ray, Gokarn, & Sha, 1995).”   

 

While there are advantages to these methods, Singer (2003) and Gray (2011) identified 

the need to integrate all aspects of the SBD approach within a large-scale, team-based 

approach.   

 

2.5.2.3(a) Concept and Principles 

As mentioned earlier, the SBD concept can be described as design by elimination of 

dominated or infeasible solutions.  This method is, in a sense, the opposite of typical 

design methods that emphasize focusing on the “optimal” or preferred solutions.  To 

illustrate this important distinction, a commonly used Pareto front graph can be used 

(Figure 2.12).  A Pareto front is used extensively in MCDC or MDO frameworks, and 

describes the optimal non-dominated solutions with respect to multiple objectives.  While 

many points in the objective spaces are evaluated, typically the only points that are 

shown are along the actual Pareto front, or solid blue line in Figure 2.12.  Design 

decisions are typically made based on this line by selecting the “best” solution.  SBD 

does not consider the Pareto front or “best” solutions directly. Instead, designers make 

decisions to eliminate the highly infeasible solutions (found in the red solid oval in the 

bottom left of the graph) and the highly dominated solutions (found in the red solid oval 

in the top right of the graph).   
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Figure 2.12: SBD Concept 

 

An important distinction that makes the SBD concept of eliminating dominated or 

infeasible solutions is that selecting the “best” solution is not the same as what you have 

left when you eliminate the worst.  “Best” solutions can change radically as design 

progresses and fidelity of analysis increases.  SBD reduction decisions are different (and 

less risky) based on the fact that different areas of the design space are being considered 

and eliminated rather than relying on inherently uncertain, yet optimal solutions 

associated with the “best” solutions. 

 

Another important distinction is the use of elimination versus selection when reducing 

set-ranges.  Some argue that selecting the best region is the same as eliminating the 

worst; however, the methods cannot be directly compared.  By selecting the “best” 

region, an assumption of where the boundary of that region is required.  That assumption 

would most likely be based on infeasibility and/or dominance.  Therefore, understanding 

the infeasible and dominant regions is still required.  By solely focusing on these regions 

using elimination, there is no need for the identification of the best solutions.    

 

An analogy that can be used to understand better the SBD concept is the selection of the 

questions asked in the 20 Questions game.  The game requires at least two people: one is 
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the answerer who chooses an object or thing; the other players are the questioners.  Each 

questioner takes turns asking a question that must be answered using “yes” or “no”.  The 

questioner that can correctly guess the object or thing within 20 questions wins.  What 

children learn quickly when playing the game is that they cannot randomly guess 

irrelevant questions, but must instead use questions that eliminate possible answers until 

they are guided to deduce the correct person/place/object. Questions such as “Is it an 

animal?” can greatly reduce possible options, as opposed to “Is it a lion?” which only 

eliminates one (if it is not a lion, of course).  Ingenuity in eliminating solutions or options 

can be an effective strategy for both childhood games and complex design processes.     

 

Beyond the SBD concept, there are a number of SBD principles that describe the 

elements of a SBD process.  Again, these principles can be understood better by using a 

simple analogy, planning a meeting.  The goal is to find a time that allows everyone to 

attend.  One method is for the meeting organizer to select a time that is convenient for 

them and then ask the others if that time is suitable.  In most cases, this strategy does not 

work for everyone.  A series of emails back and forth between participants and the 

organizer ensues, with individuals proposing new times, hopefully resulting in a time that 

works for all.  This approach would be comparable to a PBD approach, where the 

organizer iterates a single solution (or time) until it is feasible.  A potentially easier, but 

more time-consuming approach would be to have an ad hoc meeting to schedule the 

meeting.  This way, everyone is present to discuss proposed times and they could reach a 

more optimal option quicker.  However, there is still the problem of finding a time to 

meet to schedule the meeting.  This problem illustrates how CE principles, such as co-

location, can help improve any type of method, including PBD.  Finally, a much superior 

option is for the meeting organizer to request that each participant send their availability 

for a set period of time they wish to meet.  Using all the availabilities, times that do not 

work can be eliminated immediately, and overlaps between availabilities can be 

identified.  In this situation, not only can a feasible meeting time be determined, but an 

optimal one as well, based on information provided by the participants about a degree of 

availability.  This would be considered a set-based approach that can be seen as the best 

approach to the scheduling problem.  
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The scheduling problem can be used as a good example of the overarching SBD 

principles that guide a design effort.  SBD’s main differentiating feature is eliminating 

infeasible or dominated solutions instead of searching for an optimal.  The SBD approach 

can be described as a concurrent engineering approach with the following characteristics 

(Bernstein 1998; Singer, Doerry, & Buckley, 2009): 

 

1. A large number of design alternatives are considered through an extensive 

exploration of the design space 

2. Separate groups of specialists are able to evaluate the design and provide 

preferences for solutions based on their own perspectives 

3. Intersections between sets are used to establish feasibility before commitment and 

guide the design towards a more optimal solution 

4. Fidelity of analysis is increased as the design progresses  

 

Figure 2.13 provides a visual depiction of the SBD approach.  The circles represent the 

feasible regions of the design space for different functional design groups.  By exploring 

the design space, intersections between groups can be identified.  The highlighted 

portions show these intersections.  As the design progresses downwards in the figure, the 

sets continue to be narrowed through the elimination of infeasible or dominated solutions. 
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Figure 2.13: Set-Based Communication and Convergence (Bernstein, 1998) 

 

SBD allows engineers to evaluate tradeoffs of a design with conflicting goals by gaining 

more information before making decisions.  Decisions are made to eliminate parts of the 

design space when trade-off information is better known or other solutions dominate.  At 

a point when all sets are feasible, and all tradeoffs are explored, the best possible design 

can be selected.  

 

2.5.2.3(b) Advantages 

At first glance, SBD can seem inefficient and wasteful.  Many alternatives are evaluated 

in parallel, and decisions are delayed.  However, SBD has shown to produce high 

efficiency and performance.  Ward, Liker, Christiano, and Sobek (1995) described this 

phenomenon as “The Second Toyota Paradox.”  The advantages of SBD come from the 

use of sets and the ability to delay decisions until dominance or infeasibility is 

established.  Communicating with sets allows for the delaying of decisions, which can 

reduce the amount of rework, allow for more informed decisions, and provide the ability 

to handle uncertainties.  Also, the approach can facilitate the ability to obtain more 

globally optimal designs.  Finally, a sometimes overlooked advantage, SBD promotes 

institutional learning.   

 



46 

 

The importance of the implications associated with using SBD is based on the nature of 

early-stage design, where decisions are made that commit costs and affect performance in 

the final product.  These decisions are made when the least amount of information is 

known about the design, sometimes leading to later design changes and rework.  Figure 

2.14 shows the substantial cost increase of making changes later in the design process for 

the Naval ship design process.   

 

 

Figure 2.14: Cost of Design Changes during Different Naval Ship Design Phases 

(Adapted from Keane and Tibbits, 1996) 

 

Typically in PBD, costs are committed earlier and management has greater influence 

over decisions when less design knowledge is known (Bernstein, 1998).  Since SBD 

delays decision making until more knowledge is known, costs are committed later.  This 

can be seen in Figure 2.15.  While knowledge is not changeable within the product 

development process, delaying decisions causes more management influence later, hence 

committing costs later as well.  The SBD approach of delaying decisions helps foster the 

attitude of making the right decision the first time around. 
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Figure 2.15: Advancing Product Development Practices using Set-Based Design 

(Bernstein, 1998) 

 

SBD facilitates delaying decisions by using set-ranges to define design variables, so 

design can continue until a better-informed decision can be made (Singer, Doerry, & 

Buckley, 2009).  This method prevents decisions from being made too early based on 

insufficient information.  Only when sufficient knowledge of the design is known are 

options eliminated.  By keeping the variables open longer, the amount of rework required 

is mitigated if a change occurs.  Using set-ranges instead of single points also allows 

handling of uncertainties throughout the design process.   

 

Maintaining flexibility in decision making ability during early-stage design allows 

designs to adapt to changing conditions (Nahm & Ishikawa, 2006a). Common design 

methods, such as point-based approaches require decisions to be made early when design 

alternatives are not fully developed. Ford and Sobek (2005) state that “often the 

performance, costs, and impacts on project duration of undeveloped alternatives cannot 

be predicted accurately enough in early stages to identify the best alternative.” By 

selecting an alternative too early, future iterative steps in the process could lead to 

incompatibility between design components and cascading changes.  SBD avoids this 

incompatibility by allowing functional design groups to complete useful work early by 

defining constraints and managing the design space (Smith, 2007).   
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Another advantage based on the use of sets is the ability to obtain more globally optimal 

designs than comparable approaches, such as PBD.  Instead of basing the current design 

effort on previous designs, SBD forces the exploration of many different concepts, some 

of which can be a significant improvement.  Also, Ward, Liker, Christiano, and Sobek 

(1995) state, “It also allows a company to pursue radical improvements with a fair degree 

of safety: if one idea does not work out, another is likely to” (p. 59).  Singer (2003) and 

Gray (2011) identified this advantage through a series of design experiments and 

concluded that for the same design project, SBD achieved a more globally optimal design 

than a PBD approach. 

 

The last, but certainly not least, main advantage is SBD’s ability to facilitate institutional 

learning.  As the various functional design groups communicate, designers can gain 

insight on the design problem from different perspectives (Gray, 2011).  Also, the 

practice of documenting the solution space and design decisions provides a reference for 

future design efforts.  Designers have a much better understanding of the design space 

and can use these lessons learned on other designs (Ward, Liker, Christiano, & Sobek, 

1995). In the next chapter, an explanation of the decision to use SBD for the preliminary 

design of the U.S. Navy’s Ship-to-Shore Connector will be provided.  The main reason 

for its use was not the major advantages researchers commonly cite, but SBD’s ability to 

document the design space and decision making process. 

 

Along with its advantages, there are currently a number of challenges associated with 

executing SBD practices.  Due to its importance in this research, the entirety of Chapter 3 

is dedicated to these issues as well as potential solutions. 

 

2.5.3 Design Method Comparison 

Iterative methods are more traditional and have been used extensively in multiple fields.  

However, there are serious limitations to iterative methods, as systems have become 

larger and more complex.  Convergent methods are able to improve certain aspects of 

iterative methods by considering many design alternatives and having a thorough 
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understanding of the design space.  SBD shares some of the same properties as the other 

convergent methods, but adds additional value through the consideration of separate 

groups of specialists and the use of dominance and infeasibility to guide set reduction.  

This section first compares iterative methods to SBD, then highlights the differences 

between SBD and the other convergent methods. 

 

A direct comparison between PBD and SBD highlights the key differences.  During any 

design process, there are a series of tasks that each method completes in different ways.  

Table 2.1 provides a direct comparison between PBD and SBD for a series of design 

tasks.  

 

Table 2.1: Comparison of Point-Based and Set-Based Design (Singer, Doerry, & 

Buckley, 2009) 

 

 

A more real-world comparison can be completed by evaluating the approaches from a 

design review perspective.  During a design review, experts from different fields review a 
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design effort and its findings.  When using a PBD approach with extensive use of 

optimization techniques, the designers must defend the alternative they selected as 

“optimal.”  Questions might be asked in regard to other alternatives that the designers did 

not evaluate.  Designers might then be forced to go back and evaluate additional options, 

which costs more and consumes more time.  This method does not provide a designer 

with the appropriate information.  SBD focuses on eliminating what is not considered to 

be the solution.  It is often much easier to agree on what the solution is not as opposed to 

convincing someone that a solution is correct.  SBD provides the designer with adequate 

information to answer questions and explain their reasoning for eliminating options, 

which better agrees with the design review process.  

 

While the underlying structures of both PDS and SBD methods can be contrasted using 

Table 2.1, in practice it is more difficult to show that one method is better than another.  

A set of experiments conducted by Singer (2003) showed the advantages of SBD over 

traditional PBD approaches.  Singer (2003) states, “The set-based design paradigm can 

replace point based design construction with design discovery; it allows more of design 

to proceed concurrently and defers detailed specifications until tradeoffs are more fully 

understood.”  The advantages of SBD over point-based approaches have been detailed in 

other references as well, including Liker (1996), Bernstein (1998), and Sobek (2008).   

 

The SBD method can also be compared to the other two convergent methods presented.  

While convergent methods as a whole have similar properties, SBD is more robust in two 

important ways.  In common, convergent methods consider many design alternatives and 

aid in developing a thorough understanding of the design space.  Additionally, fidelity of 

analysis is increased, knowledge is gained, and uncertainty is reduced as the design 

process progresses.  SBD is more robust by (1) allowing for separate groups of specialists 

to explore and conduct analysis concurrently and independently (Singer, Doerry, & 

Buckley, 2009) and (2) using dominance and infeasibility to guide design convergence.  

This distinction is key and will be discussed in the following sub-sections.  The other 

convergent methods discussed do not place specific emphasis on using design 

alternatives in this way (Bernstein, 1998).   
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While arguments can be made regarding what is the best design method, it is important to 

note that this dissertation does not focus on proving SBD is the better design method.  

The focus of this dissertation is on SBD execution, which will be discussed in detail in 

the next chapter. 

 

2.6 Design Decision Making Tools 

Design tools can generally be used within any design method.  Each design method, 

however, can use these tools in different ways.  The focus of this section is to discuss 

tools used in the higher-level design decision making process.  The first three tools, 

quality function deployment, axiomatic design, and failure mode and effect analysis, 

focus on understanding requirements, relationships, and potential failure modes early in 

the design.  The last two focus on the visualization and understanding of design 

alternatives or solutions and their associated value.  It is important to note that these are 

not design approaches or methods, but rather tools that can support a design method. 

 

2.6.1 Quality Function Deployment 

One technique that is used to improve understanding of requirements is quality function 

deployment (QFD).  QFD originated in Japan, but was first popularized in the United 

States in a Harvard Business Review article by Hauser and Clausing (1988).  The goal of 

QFD is to understand and meet customer requirements throughout all product 

development activities.  Advantages of QFD include increased customer satisfaction, 

better design process planning, and a reduced product development cycle (Cristiano, 

Liker, & White, 2001).  One important aspect of most QFD implementations is the house 

of quality.  Hauser & Clausing (1988) describe the house of quality as “…a conceptual 

map that provides the means for interfunctional planning and communication” (p. 3).  

This includes relationships between customer attributes (requirements) and engineering 

characteristics.  Functions that conflict can easily be identified and relative importance 

ratings can be used to prioritize aspects of the design.  Finally, it allows for a direct 

comparison to competitor’s products.  Figure 2.16 shows an example of a house of 

quality analysis.   
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Figure 2.16: House of Quality (Hauser & Clausing, 1988) 

 

There have been a number of difficulties associated with QFD execution, such as 

interpreting the customer voice, working in teams, and a lack of knowledge about using 

the method (Carnevalli & Miguel, 2008), which is why the technique is not widely used 

today.  Most current work in the QFD field focuses on improving the house of quality 

formulation.  Emphasis is currently being placed on the use of fuzzy logic and the 

analytical hierarchy process (AHP) to assist in developing the house of quality matrix 

(Carnevalli & Miguel, 2008).  

 

2.6.2 Axiomatic Design 

Axiomatic design is another technique used under the CE umbrella, and focuses on 

mapping the relationships in a design.  Introduced by Suh (1995), axiomatic design “…is 

about how to think and use fundamental principles during synthesis or mapping between 

the domains of the design world” (p. 2).  The domains that Suh refers to are the customer, 
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functional, physical, and process domains.  Interrelations between these domains are 

represented by a design matrix, and are determined using a form of transfer function or a 

qualitative description, also known as mapping (Lee, 2003).  The domain structure and 

mapping relations are shown in Figure 2.17.  Moving from left to right, the mapping 

represents the transition from what is desired to how it can be achieved. 

 

 

Figure 2.17: Four Axiomatic Design Domains (Suh, 1995) 

 

Suh states that there are two fundamental axioms to govern the design process: 

 

 Axiom 1: The Independence Axiom – Maintain the independence of the 

functional requirements (1995, p. 3). 

 Axiom 2: The Information Axiom – Minimize the information content (1995, p. 

4). 

 

Axiom 1 states that during the mapping process, functional requirements that the design 

must meet are independent, which translates into a design matrix that is either diagonal or 

triangular.  Axiom 2 defines information content as the probability of satisfying a given 

functional requirement.  Higher probabilities of success are preferred designs.  Within 

each domain, there are hierarchies that represent the design decomposition.  Mappings 

can occur between any hierarchy levels across domains.  The stated advantage of this 

formulation is that all aspects of product development can be described using the 

axiomatic design domains, which can facilitate CE practices. 
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Axiomatic design has been proposed in many fields and applications, but has recently lost 

support due to the difficulty of describing a practical design in its axiom and domain 

formulation (Hintersteiner & Zimmerman, 2000).  Axiomatic design still has close ties to 

similar CE techniques and execution structures, including its use to improve the QFD 

process (Carnevalli, J. A., Miguel, P. A. C., & Calarge, F. A., 2010), and its use in the 

systems engineering process (Hintersteiner & Zimmerman, 2000).  Similar to QFD, the 

intentions are valid and the structure shows promise, but execution requires substantial 

effort.  

 

2.6.3 Failure Mode and Effect Analysis 

Failure mode and effect analysis (FMEA) is used mainly as a risk management tool is.  

FMEA was first applied by the U.S. military and became widely adopted within multiple 

industries in the 1970s.  Currently, FMEA is used in industries ranging from 

semiconductor processing to healthcare (Fadlovich, 2007).  FMEA is a technique that is 

used to “…define, identify, and eliminate known and/or potential failures, problems, 

errors, and so on from the system, design, process, and/or service before they reach the 

customer” (Stamatis, 2003, p. 21).  FMEA also characterizes the type of failure based on 

factors, such as frequency, severity, detection, and a total risk rating.   

 

By anticipating potential failures, a design team can focus on designing them out of the 

product (Loureiro, 1999).  This foresight can be a valuable tool when using CE practices 

since FMEA is able to consider all predictable failure modes from every aspect of the 

product development process.  The same problems that can inhibit CE practices can also 

lead to difficulties with completing FMEA. These difficulties include working as a team, 

consensus decision making, and dedicating too much time on one particular issue.  

Nonetheless, when used properly, FMEA can be a valuable tool that can be used 

throughout the product development process. 

 

2.6.4 Multi-Criteria Decision Making 

The design decision making process typically dictates whether a design effort is 

successful or not.  There are many alternatives associated with decisions and each person 
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must go through an evaluation and selection process every time a decision is made.  This 

process consists of evaluating and comparing the alternatives based on determined 

criteria, and then selecting the alternative that best achieves those criteria.  Decisions are 

sometimes obvious, or intuitive, because there are so few factors involved; however, 

intuitive decision makers often continue to make decisions based on few factors even in 

the face of more complex situations and be confident in the outcome.  Multi-criteria 

decision making (MCDM) can be used in these situations to incorporate greater 

complexity.  In early-stage design of complex systems with many alternatives, making 

design decisions can be challenging.  Additionally, the decision making process is usually 

completed by a team, rather than one individual, which may make reaching a decision 

more time-consuming.  The number one challenge when making decisions is usually 

handling the various elements of uncertainty associated with the decision making process.  

Most of the time, decision-makers use their subjective viewpoints to make a final 

decision because capturing all aspects is believed not possible or perceived to be too 

difficult to accommodate in a quantitative manner. 

 

While decision making is an extensive research area separate from design, the two are 

closely related and the importance of understanding design decision making cannot be 

ignored.  The recent changes that have limited the applicability of traditional design 

practices and led to the development of concurrent engineering are applicable to decision 

making as well.  Pedrycz, Ekel, and Parreiras (2011) explain that: 

 

“[N]ew, more complicated, and unusual problems have emerged.  For many 

centuries, people made decisions by considering one or two main factors, while 

ignoring others that were perceived to be marginal to the essence of the problem.  

They lived in a world where changes in the surroundings were few and new 

phenomena arose “in turn” but not simultaneously” (p. 3). 

 

Today there are many other factors that must be incorporated into the decision making 

process, and attempting to understand the complexities of a system while comparing and 

contrasting alternatives can also be challenging.        
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MCDM is a discipline that focuses on providing a structure and methods for making 

multi-criteria decisions.  The elements that make up a MCDM problem consist of a set of 

known alternatives and multiple criteria to evaluate the alternatives.  There are many 

approaches that are used to solve these problems, including fuzzy set theory, multi-

attribute utility theory, and the analytic hierarchy process.   

 

2.6.5 Synthesis Models and Optimization 

Synthesis models and optimization techniques are used to compare and select alternatives 

that a DSE has evaluated to make the decision making process easier.  Synthesis models 

analyze multiple aspects of a design using mathematical models to determine a feasible 

solution.  Optimization is the use of mathematical models to analyze and compare 

alternatives to identify an “optimal” or best alternative using various methods.  Multi-

objective design optimization (MDO), also known as multidisciplinary design 

optimization, combines optimization techniques with synthesis models to trade-off 

aspects of a design to achieve an “optimal” solution, not just a feasible one.  The MDO 

field is extensive and spans many disciplines.  Martins and Lambe (2012) and Wit and 

van Keulen (2011) provide useful overviews of MDO architectures and strategies.  Kerns 

(2011), Fox (2011), and Hefazi, Mizine, Schmitz, Klomparens, and Wiley (2010) provide 

examples of ship design synthesis models used within a MDO framework.  

 

While a valuable tool within any design process, synthesis or optimization should not be 

confused with the design process itself.  Where possible, designers desire a synthesis 

model that can fully describe the complete design situation.  Similar to concurrent 

engineering practices, a completely encompassing synthesis model is ideal.  In reference 

to ship design synthesis models, Fox (2011) states, “The author has found that the 

‘perfect’ computer-aided design (CAD) program or ‘ship design synthesis model’ for the 

use in ship design is something of a ‘Holy Grail’ for the naval architecture community” 

(p. 35).  For complex design efforts, it is clear that a synthesis model that fully describes 

the complete design situation is not possible, especially when considering how the design 

situation changes as the design progresses.   
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While useful, it is important to understand the limitations of synthesis models and 

optimization techniques within a design process.  The most important consideration when 

using such methods is determining the various biases introduced.  The creation of a 

model is based on the subjective judgment of the modeler, and different methods can 

produce different results (Papalambros & Wilde, 2000).  Additionally, the lack of 

information, especially at early design stages, can make the model difficult to develop or 

too time-consuming to evaluate.  Finally, the context in which a solution can be declared 

“optimal” should be clear.  Papalambros and Wilde (2000) state: 

 

“A criterion for evaluating alternatives and choosing the ‘best’ one cannot be unique.  

Its choice will be influenced by many factors such as the design application, timing, 

point of view, and judgment of the designer, as well as the individual’s position in 

the hierarchy of the organization.”   

 

If synthesis models and optimization techniques could be used to describe the design 

situation, then it is fair to say that human designers would not be required for complex 

design.  Synthesis and optimization are valuable tools that aid designers in the decision 

making process and should not be ignored.  However, results incorporating these tools 

should be tempered with an understanding of how the models were developed and by 

whom.         

 

2.7 Chapter Summary 

Even within product development, engineering design is an extensive and broad research 

area.  This chapter was not intended to provide details of all aspects of early-stage design, 

but serve as an introduction to the concepts and aspects of design relevant to the research 

presented in this dissertation.  The first, and most important, consideration is that design 

matters.  Design is an integral aspect of product development and the methods used can 

greatly impact the success or failure of the final product.  What makes design possible, 

however, are not high speed computers or optimization algorithms, but rather the human 

designers managing the process and making key decisions at the right time in that 
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process.  Additionally, it is usually not a single designer, but teams of designers that must 

deal with the ever increasing complexity and size of design efforts.  An often downplayed 

aspect of design research is the influence of teamwork on the design effort, and how 

teams of designers can work together to develop a system that meets requirements.  This 

factor cannot be ignored and a framework to allow for teams of designers to work 

together on a large-scale and complex systems design is essential.  The size of design 

efforts is not only related to the physical complexity or size of the system itself, but the 

complexity of the design process.   

 

While traditional design practices focused on more iterative or point-based methods that 

have produced feasible and sound designs for decades, the need for concurrent 

engineering in today’s fast-paced, technologically advanced, and competitive world is 

clear.  There are, however, a number of challenges to practical execution of CE 

principles.  It is important to understand these challenges and learn from organizations 

that have succeeded and failed at implementing various degrees of CE.   

 

There are a number of design approaches that attempt to achieve or improve upon various 

aspects of traditional design.  Systems engineering is one approach that provides a 

structure for interacting with teams in a CE setting.  SE is not a complete design method, 

however.  There have been, and continue to be, numerous proposed methods based on 

PBD or the design spiral.  While it does represent the iterative nature of design, there are 

several disadvantages that cannot be overlooked.  Convergent methods carry multiple 

alternatives throughout the design process and provide a solid structure for CE execution.  

Specifically, SBD has shown to be a promising research area.  Its advantages over more 

traditional point-based and other convergent methods have been identified and proven by 

numerous researchers.  The area within SBD that still has major unanswered research 

questions is the proper execution of SBD principles within an organization.  It is 

impossible to replicate Toyota’s culture.  Therefore, a framework that can facilitate SBD 

execution in other organizations is needed.    
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Chapter 3: Set-Based Design Execution 

 

 

While theoretical advantages of SBD have been proven, practical execution of SBD 

principles remains a challenging task.  The previous chapter highlights the need for a 

framework that can aid organizations in executing SBD.  Although organizations like the 

U.S. Navy are different from Toyota, SBD principles can and should be adapted to other 

organizations.  Before SBD can be adopted, however, methods to aid in the facilitation 

and guidance of SBD principles are required.  This chapter identifies the necessary 

considerations for a successful SBD execution and highlights the limitations of current 

research in addressing them.     

 

An overview of the recent SBD execution for the U.S. Navy Ship to Shore Connector 

Program and its results are described as an introduction to SBD application with regard to 

ship design.  Based on the successful execution of SBD for the SSC Program, important 

lessons are identified.  Major SBD criticisms and execution challenges are then discussed 

to form a better understanding of current misconceptions and execution gaps.  In an effort 

to distinguish SBD from other methods and ensure all necessary elements are considered, 

a novel SBD rigor standard is proposed.  Next, an overview of related work associated 

with the execution of certain SBD principles is provided as well as the limitations or 

applicability of this work to the problems discussed in this dissertation.  Finally, a 

description of the areas necessary for proper SBD execution that currently lack research 

focus is presented. 
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3.1 U.S. Navy’s Ship to Shore Connector SBD Efforts 

SBD has been demonstrated in mainly commercial sectors, including aerospace and 

automotive industries, but was recently used for the first time in a ship design and 

acquisition program for the U.S. Navy (Singer, Doerry, & Buckley, 2009; Mebane et al., 

2011).  Beginning in 2007, the Ship to Shore Connector (SSC) Program executed SBD, 

based on a decision by its Naval Sea Systems Command (NAVSEA) program office, in 

part to test SBD advantages. One of these advantages is the ability to improve design 

flexibility as the design progresses (CDI Marine, 2009).  The main reason for the use of 

SBD, however, which was voiced by the SSC Program Office, was the ability to 

document design decisions and the accumulation of important corporate knowledge 

(McKenney, Buckley, & Singer, 2012).  The reasoning behind this notion is that the ship 

design process often takes years to complete, with substantial personnel turnover, and can 

lead to a dilution of design knowledge and rationale.  This section provides an overview 

of the SSC design efforts and the results of the SBD execution.         

 

3.1.1 Execution 

Without any formal SBD execution process, an effort to design a formal process was 

conducted using the Decision Oriented Systems Engineering (DOSE) method.  DOSE is 

a patented systems engineering method that facilitates process design and uses 

knowledge mapping techniques to facilitate operations of the decision making team 

(Buckley & Stammnitz, 2004; Buckley & Womersley, 2007; CDI Marine, 2009).  The 

goal was the creation of a detailed execution process based on the decisions made 

throughout the set reduction process.   

 

Once the process was defined, the actual design effort began.  The SSC requirements 

were derived from the need to replace the current fleet of Navy Landing Craft Air 

Cushions (LCACs) and other high-level requirements.  Figure 3.1 shows an image of the 

SSC design.  The provided requirements were used to define the initial design space 

(DS).  The DS was then partitioned into six element responsibilities: Performance (Skirt), 

Hull, Machinery, Auxiliaries, Command, Control, Communications, Computers, and 
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Navigation (C4N), and Human Systems Integration (HSI).  These responsibilities were 

determined based on aspects of the design that required particular expertise.   

 

 

Figure 3.1: SSC Artist Rendition (www.ship2shoreconnector.com) 

 

Analysis within each responsibility was completed concurrently and the trade spaces 

were reduced based on these analyses and expert recommendations.  Set reduction 

decisions required rationale, which was conducted by each System Engineering Manager 

(SEM) through trade studies and comparative assessments at the element level.  

Infeasible and dominated solutions were eliminated, leaving only feasible non-dominated 

solutions.  An integration team facilitated the reduction efforts by overseeing the 

reduction process and evaluating craft-level concepts.  A balancing filter was used to 

evaluate combinations of non-dominated solutions that determined platform viability.  

Finally, a multi-attribute utility model used craft-level metrics to compare the remaining 

solutions to reach the final and most viable candidates (CDI Marine, 2009).  The set 

reduction process is provided in Figure 3.2.  
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Figure 3.2: SSC Set Reduction Process (McKenney, Buckley, & Singer, 2012) 

 

3.1.2 Results 

After completion of the SBD effort in September 2008, advantages of SBD were proven 

and most SSC members saw value in the method (Doerry, 2010; Singer, Doerry, & 

Buckley, 2009; Mebane et al., 2011).  The SSC preliminary design also was completed 

on schedule, less than 10% over the original budget, and used no design margin (Doerry, 

2011).  However, with any execution of a new method, come lessons learned and areas 

for improvement.  Results from the study revealed ways in which SBD execution could 

be improved and how SBD could be applied to other types of ship designs.  To help 

determine the degree of success of the SSC SBD effort, four questions were posed at the 

beginning of the program.  These included: 

 

1. Did it produce a thorough canvass of the design space, with a sound body of 

analysis substantiating the tradeoffs available? 

2. Did it identify those design parameters of greatest impact to a good design and 

which options or ranges of these parameters are of greatest value to a good craft? 

3. Did it produce a truly unique and unexpected solution? 

4. Did it produce a staged progression towards a globally optimal design, with each 

stage resolving design details with successively greater fidelity? (CDI Marine, 

2009, p. 8). 
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It was concluded that the SSC effort succeeded in the first two points.  While the 

thoroughness of the canvassing effort can be argued to some degree, the SBD effort did 

force the exploration of a wide variety of options that could have potentially remained 

unexplored.  More importantly, the SBD process itself was successful and a final solution 

was achieved using the set reduction process identified at the beginning of the effort.  

Also, the SBD effort did identify key design parameters (11 in total) and the degree of 

importance relative to each other.  The extensive amount of data and analysis results used 

to make design decisions throughout the process continue to be available if any 

requirements change later in the design or for future design efforts. 

 

The SSC SBD effort did not succeed in the last two points.  Not achieving a truly unique 

and unexpected solution was not surprising, mainly because of the tight constraints 

placed on the design at the onset.  These include the readiness of usable technologies, 

schedules, and well deck dimensional restrictions.  Being a first attempt at executing 

SBD for ship design, it is not surprising that a complete staged progression with higher 

fidelity was not achieved.  Additional restrictions, such as schedule constraints limited 

the execution strategy to a more simple form.  However, with a more robust execution of 

the SBD method, the fourth point could have been tested to a fuller degree.  Overall, the 

SBD method has shown promise through its execution during the SSC Program.  It has 

also identified a number of execution challenges that need to be improved upon before 

SBD can be used for a larger-scale design effort. 

 

3.2 Major SBD Criticisms 

Although the SSC SBD efforts were deemed successful, there were also substantial 

criticisms.  While these criticisms can be rebuked quite easily, it is important to first 

address these issues and then attempt to understand why these types of misconceptions 

occur.  The three major criticisms of SBD include: 

 

1. An effort using a more traditional spiral model could have produced a candidate 

design in less time and with less effort. 
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2. SBD is not different from other global optimization search efforts (linked 

software codes), and people have been doing SBD all along. 

3. SBD is undoable because it takes too much time. 

 

The first major criticism is that an effort using a more traditional spiral model could have 

produced a candidate design in less time and with less effort.  This criticism confuses the 

reasoning behind the use of SBD and under what design scenarios SBD is most effective.  

SBD was chosen for the SSC program mainly to produce a more defensible design with 

greater resilience to requirement changes.  The design spiral or PBD methods have 

difficulty providing these added values.  A more traditional spiral model could have been 

used to design the SSC and potentially produce a sound and feasible design similar to the 

final design produced by the SBD efforts, but it would be more difficult to defend and 

potentially susceptible to changes.  The ability to handle changes is a major advantage 

and can reduce the amount of rework later in the design process.     

 

There is an additional consideration that is worth noting when discussing the best design 

method for a particular design type.  As mentioned earlier, when discussing the 

difference between evolutionary and revolutionary designs, the design type (in most 

cases) lends itself to a particular design method.  For example, with the highly 

constrained design space and few major changes compared to the LCAC, the SSC did not 

necessarily require the use of the SBD method.  This consideration does not mean that the 

added benefits of a SBD process should be ignored.  As described at the conclusion of the 

SSC SBD effort, a truly unique design was not obtained.  However, while the SSC looks 

similar to the LCAC on the surface, many of its internal components are different.  This 

difference is a product of the higher fidelity analysis that was conducted using the SBD 

method.   

 

The second major criticism is that SBD is not different from other global optimization 

search efforts (linked software codes), and people have been doing SBD all along.  An 

important distinction exists between global optimal search and design discovery by 

elimination of infeasible or dominated solutions, which the SBD method uses.  There are 
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also many other aspects of SBD that global search methods do not incorporate, most 

importantly team dynamics and communication between team members.  SBD is not 

closed-loop optimization.  Also, what synthesis loops and global search methods produce 

is not a complete design.  If a software code could completely design a ship, then human 

designers would not be needed.  SBD incorporates multiple aspects of designing, 

focusing on how human designers can reach the best possible design. 

 

The third criticism is that SBD is untenable because it takes too much time.  The first 

important distinction is that the fidelity of analysis and information increases as the 

design progresses.  This increase in fidelity means that design quality is also increasing.  

This must be balanced with time and cost, major considerations in any design.  The time 

and cost associated with a prescribed level of detail or quality should be determined at the 

outset.  Additionally, it has been proven at Toyota that putting additional design effort 

upfront can help develop better systems faster.  As mentioned in the previous chapter, 

this effect is known as the Second Toyota Paradox and is defined by Ward, Liker, 

Cristiano, and Sobek (1995) as “delaying decisions, communicating ‘ambiguously,’ and 

pursuing excessive numbers of prototypes…to design better cars faster and cheaper” (p. 

44).  The basic premise behind this fact is that the design is better understood when 

critical decisions are made, which reduces substantial rework that typically takes place 

during a product development process.  While the actual SBD effort might take longer 

than a traditional design process, in relation to the total development process, total time 

can be reduced greatly. 

 

3.3 Execution Challenges 

While it was identified in the previous section that the major SBD criticisms are off-base, 

it should be further identified why such misconceptions occur.  Similar to CE practices, 

practical execution of SBD can be challenging based on a lack of specific process or 

execution strategies.  This section discusses what the challenges of execution are and, 

more importantly, why they exist.  Four distinct challenges are discussed: textbook SBD 

execution, the unique nature of design spaces, moving from individuals to teams, and 
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adopting a new paradigm.  Only after identifying why such challenges exist, can a 

method be developed to aid in the execution process. 

 

3.3.1 Textbook SBD Execution 

While Toyota has been successful in their product development practices, execution of 

SBD principles can be more difficult for certain types of organizations, especially 

government-related organizations, such as the U.S. Navy.  The important question to ask 

is: how has Toyota been successful?  Jeffrey Liker outlines Toyota’s management 

practices, ways of thinking, and culture in his book The Toyota Way, which is a 

compilation of over 20 years of experience studying the Toyota process.  Liker outlines 

14 principles of what he calls the “Toyota Way,” which include: 

 

Section I: Long-Term Philosophy 

1. Base your management decisions on a long-term philosophy, even at the expense 

of short-term financial goals. 

Section II: The Right Process Will Produce the Right Results 

2. Create continuous process flow to bring problems to the surface. 

3. Use “pull” systems to avoid overproduction. 

4. Level out the workload (heijunka). (Work like the tortoise, not the hare.) 

5. Build a culture of stopping to fix problems, to get quality right the first time. 

6. Standardized tasks are the foundation for continuous improvement and employee 

empowerment. 

7. Use visual control so no problems are hidden. 

8. Use only reliable, thoroughly tested technology that serves your people and 

processes. 

Section III: Add Value to the Organization by Developing Your People and Partners 

9. Grow leaders who thoroughly understand the work, live the philosophy, and 

teach it to others. 

10. Develop exceptional people and teams who follow your company’s philosophy. 

11. Respect your extended network of partners and suppliers by challenging them 

and helping them improve. 
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Section IV: Continuously Solving Root Problems Drives Organizational Learning 

12. Go and see for yourself to thoroughly understand the situation (genchi genbutsu). 

13. Make decisions slowly by consensus, thoroughly considering all options; execute 

decisions rapidly. 

14. Become a learning organization through relentless reflection (hansei) and 

continuous improvement (kaizen). (Liker, 2004, pp. 37-41). 

 

After reviewing the 14 principles, it is evident that Toyota’s success comes from much 

more than simply the type of product development process they use.  Set-based 

concurrent engineering is only mentioned a few times in the whole book, with most 

attention focusing on only one principle, Principle 13.   

 

Toyota has spent decades developing the way they do business, and continues to evolve 

today (their response to recent recalls being a good example).  Therefore, it is impractical 

to assume that an organization, especially one such as the U.S. Navy, can completely 

change their structure, values, culture, and personnel in a short period of time. 

 

One additional advantage that Toyota has by practicing over decades is extensive 

documentation from multiple development projects.  There are numerous documents 

outlining design relationships and linkages between aspects of designs.  Also, the design 

decisions and the reasoning behind them are documented to aid in future projects.  These 

are extremely valuable pieces of information because they can be used to understand the 

design space and relationships earlier in future design efforts.  Organizations attempting 

to execute SBD principles must overcome the difficult hump and learning curve to gain 

the advantages seen through studying Toyota.  While Toyota’s product development 

process is impressive, designing automobiles is different from designing other complex 

engineering systems.     

 

3.3.2 Unique Design Spaces 

Every design problem is unique, and how a problem is formulated impacts the solutions, 

but also generalizations can be made for certain types of problems.  A way to characterize 
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a design space is related to the interdependencies of its variables and performance 

metrics.  There has been an extensive amount of research on design space exploration and 

response surface methodologies that deal with characterizing a design space, also called a 

solution space.  However, only a few methods focus on creating these spaces for CE 

approaches such as SBD.  The research presented in this dissertation adds additional 

insight by characterizing the design space for set-based thinking.  A detailed description 

of this work is presented in the next chapter.  Irrespective of the exploration method, the 

key distinction of ship design spaces is that they are relatively flat.  A flat design space is 

defined as one “in which ranges of control variables will produce similar behavior” 

(Bailey, Bras, & Allen, 1998, p. 7).  This characteristic makes the design process 

exceptional because there are many options that produce similar results when low fidelity 

analysis is used.  As design progresses to detailed design, however, the solution space 

becomes more constrained.  SBD can handle the increase in fidelity while managing the 

solution space, but initial effort is needed to be able to differentiate and eliminate options.  

This needs to be taken into consideration when attempting to execute SBD principles. 

 

3.3.3 Moving from Individuals to Teams 

SBD concepts can inherently make sense to individuals when attempting to design a 

system.  Great designers mentally use a method similar to SBD.  Experts evaluate many 

alternatives in their heads, determine their preference, and make decisions based on what 

they believe is the best design.  The difficulty is extending the set-based thinking of one 

designer to a team of designers that must make similar decisions.  This process is much 

more difficult, and without some aid in the process, it could break down quickly.  This is 

why the extension from one designer to a team of designers is a major implication of 

effectively executing SBD principles.   

 

3.3.4 Adopting a New Paradigm 

There are two important points that must be considered when adopting a new paradigm.  

First, the identification of whether the paradigm is actually new or if aspects are rooted in 

other work must be completed.  A “new” theory or method is rarely a genuine invention.  

Typically, it is a new application of a previous theory or method, or it is a combination of 
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multiple theories or methods in a unique and beneficial manner.  By understanding its 

roots and similarities to other theories or methods people are familiar with, adopting a 

new paradigm can become much easier.  The second point is the need to identify where 

the challenges of adopting a new paradigm come from and how can they be overcome.  

While this is a broad and challenging subject, understanding the challenges of adopting a 

new paradigm can help designers have a better handle on the task ahead of them.  

Attempting to overcome these challenges and potential aids in this process are also 

essential.   

 

The first point mentioned above leads to an evaluation of the roots of SBD.  A common 

misconception about SBD is that its underlying theory is in new and untested territory.  

Upon examination, however, McKenney, Buckley, and Singer (2012) determined that 

one of its major components is not completely unique.  The concept of eliminating design 

alternatives based on feasibility has been utilized in many design methods and design 

space evaluations.  The additional use of dominance to reduce sets is also not new and is 

rooted in utility theory, originally presented as a part of game theory (Van Neumann & 

Morgenstem, 1944).  An alternative dominates another if it is considered superior in all 

attributes relative to the other alternative.  Set reduction based on dominance, as practiced 

in SBD, is the same as dominance relationships using utility theory.  Related research 

using utility theory for SBD reduction is described in more detail in Section 3.5. 

 

Even though the use of feasibility and dominance is not new, SBD remains somewhat 

speculative in the eyes of some within the ship design community.  The majority of the 

resistance is believed to be associated with the introduction of a new paradigm 

(McKenney, Buckley, & Singer, 2012).  As described by Kuhn (1962), new paradigms 

are seen as difficult to adopt, as most people attempt to hold on to known and 

comfortable ideas or methods.  In U.S. Naval ship design, the conventional use of the 

design spiral and PBD methods are understandable, tried and true methods to ship design.  

Additionally, most ship design tools have been developed around the spiral method (a 

good example being the Advanced Ship and Submarine Evaluation Tool (ASSET)), 

which further enhances preference towards the conventional methods.  Using the 
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conventional method has led to extensive use of synthesis models being used to select 

designs, instead of used as a design tool (McKenney, Buckley, & Singer, 2012).  While 

synthesis models can be useful tools, the same issues associated with PBD methods 

apply, such as the introduction of design bias.  The difficulty of adopting a new paradigm 

goes hand-in-hand with the first execution challenge related to textbook execution of 

Toyota’s process. It is impossible to transplant a different culture into an organization 

overnight.   

 

While the difficulty of making a transformation from one paradigm to another can 

intuitively make sense, how to effectively make the transformation is less clear.  If there 

is ambiguity in relation to comparing two different paradigms, there should be a method 

to define the differences. 

 

3.4 SBD Rigor Standard 

As indicated in the previous sections, there are substantial challenges associated with 

SBD execution.  Not only are there misguided criticisms and serious cultural hurdles, 

there is no formal method to describe a SBD execution.  Similar to CE, there are degrees 

of SBD execution; therefore, there should be a method to determine how “set-based” a 

design activity actually may be.  A formal and generic rigor standard can both 

differentiate SBD from other methods, and increase understanding of SBD by defining 

key decisions and their resultant products.  In conjunction with Buckley and Singer, this 

author developed a SBD rigor standard that was presented at the 2012 International 

Marine Design Conference (McKenney, Buckley, & Singer, 2012).  This section presents 

this work in the context of improving the understanding of SBD executions and providing 

a framework to evaluate current and future SBD execution efforts.   

 

3.4.1 Proposed Standard 

It is usually stated that the most cost effective designs are the ones where more costly 

decisions are made later in the process.  The difficulty is that a designer is unable to 

identify these decisions at the beginning of the design process because design knowledge 

is minimal.  Patience is an essential quality in this respect, which is counterintuitive for 
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most engineers.  SBD requires a substantial amount of effort upfront, which is not usually 

common for more traditional design methods.  Just because a design effort is labeled 

SBD, does not mean it necessarily supports its principles.  Also, the execution of SBD 

will have to be tailored to meet specific design scenarios.  A rigor standard should instead 

focus on a process exemplifying key SBD principles rather than a specific rigid set of 

rules.  

 

The most rigorous application of SBD is one where set reductions occur based on 

dominance and feasibility until one solution remains.  This is not practical from a time 

and effort perspective.  While the most rigorous application is not practical, a degree of 

rigor can still be determined based on the key elements of SBD.  Thorough 

characterization of the design space, maintaining flexibility throughout set reductions, 

tracking convergence, documenting reduction decisions, continuous communication, and 

proactive leadership during execution are all important elements of a productive SBD 

process.  The proposed approach evaluates a design process before it starts to assess how 

much it coincides with SBD principles.  There are five major SBD elements that should 

be focused on during an evaluation.  The goals that should be achieved by a design 

process to support key SBD principles are provided in Table 3.1.   

 

Table 3.1: Key Elements of SBD (McKenney, Buckley, & Singer, 2012) 

 

 

Table 3.2 provides recommended levels of support for a SBD process.  Level 1 equates to 

a minimum level of SBD process support.  Level 3 equates to a sophisticated level of 

process support.  These levels are intentionally broad to ensure applicability while being 

specific enough to identify a degree of support for the identified key SBD elements. 

 

SBD Element GOAL: To what extent does the planned SBD process

Characterization Ensure that the design space is defined, bounded, described and documented

Flexibility
Facilitate, review, track and document reduction decisions, while maintaining 

the flexibility to accommodate errors and changes in requirements

Convergence Support set convergence and staying within previously defined sets

Facilitation Support communication across functional design groups
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Table 3.2: SBD Rigor Standards (McKenney, Buckley, & Singer, 2012) 

 

 

While some of these aspects have been presented in some form in the previous chapter, it 

is important to understand key distinctions between the elements and the reasoning 

behind identifying them as key elements.  The following sub-sections discuss each aspect 

of the standard and the important components associated with a successful SBD 

execution.   

 

SBD Element Levels of Success

1. Process characterizes design space based on heuristics with little formal data

2. Process supports formal declaration and documentation of parameters, 

bounds, and partitioning into functional design groups

3. Process supports protocol for 3
rd

 party review and approval

1. Process supports concurrent evaluation of alternatives across functional 

design groups 

2. Process supports tracking, documentation, and review of set reductions 

decisions and rationale 

3. Process supports 3
rd

 party review and approval reduction decisions and a 

protocol for reopening design space with good reason.

1. Process provides a design space sizing strategy to estimate the relative size 

of the design space and track set reduction progress.  

2. Process defines measures for tracking convergence, documents progress 

and projects completion time 

3. Process supports tracking and documentation  and 3
rd

 party review of 

deviations outside previous set ranges 

1. Process defines a grouping strategy to facilitate communication

2. Process establishes a formal communication protocol 

3. Process provides facilities for tracking, documenting and 3
rd

 party review of 

negotiations 

1. Process provides simple integration protocol where the integration lead 

resolves conflicts

2. Process provides integration protocol that supports convergence strategy 

and uses preferences to eliminate infeasible or inferior regions

3. Process provides for facilitation, tracking, documentation and 3
rd

 party 

review of negotiations involving competing and conflicting preferences across 

functional design groups

Characterization

Flexibility

Convergence

Communication

Facilitation
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3.4.1.1 Characterization 

Characterization attempts to define, bound, partition, and document the design trade 

space.  This is the typical first step for most design methods, and relies mainly on 

experienced designers and their understanding of the design space.  History has shown 

that there is often a failure to record the reasons for design decisions, which necessitates 

frequent relearning of the same lessons (Brown, 1992).  Also, with the time-consuming 

nature of design processes, young designers are not gaining the proper experience to 

become design managers (Brown, 1993).  While experienced designers provide valuable 

insight and can have a general idea of where a design is headed, it is important to not 

eliminate any designs too early if the decision is based only one designer’s opinion.  

Crucial components of the design can be overlooked if there is an overreliance on 

heuristic methods.    

 

SBD utilizes experienced designer’s knowledge and known information to explore large 

areas and conduct high level analysis to evaluate the design space for infeasible or 

inferior candidate solutions.  Alternatives should not be eliminated prematurely, 

especially when the level of detail remains low.  SBD then bounds the design space and 

partitions it for functional design groups to initiate the search regions.  Documentation of 

the design space, preferences of the functional design groups, and infeasibility criteria are 

also an important element of characterization.  The steps associated with SBD 

characterization forces designers to explore alternatives and areas of the design space 

more thoroughly than they may have otherwise. 

 

3.4.1.2 Flexibility 

Maintaining flexibility in decision-making during design permits adaptation to changing 

conditions (Nahm & Ishikawa, 2006).  This point is particularly important when making 

set reduction design decisions. Common design methods, such as point-based or spiral 

methods, invite decisions when design alternatives are not fully developed.  In a typical 

Analysis of Alternatives, a single design (or a few designs) are selected and characterized 

in greater detail, which could lead to incompatibility and costly changes (such as 

premature elimination or filtering).  According to Ford and Sobek (2005), “[o]ften the 
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performance, costs, and impacts on project duration of undeveloped alternatives cannot 

be predicted accurately enough in early stages to identify the best alternative.”  By 

eliminating or selecting an alternative too soon, future iterative steps could lead to 

incompatibility between design components and substantial rework.  In SBD, multiple 

alternatives can continue to be evaluated and carried forward until more information is 

known, and a more informed decision can be made.  Functional design groups are able to 

complete useful work early by defining constraints and managing the design space 

(Smith, 2007). 

 

Another component of maintaining flexibility is the way in which a solution is obtained.  

Focus is placed on the elimination of infeasible or dominated solutions as opposed to 

searching for favorable solutions.  It is important to distinguish between SBD and global 

optimization within the overall ship design process.  Optimization methods search for 

favorable solutions, ignoring or being unaware of the other solutions deemed less 

favorable.    

 

Design decisions are considered robust if “the decisions remain valid regardless of the 

choices made by other engineers working on the product” (Bernstein, 1998).  The most 

robust design decision is one that impacts no other decision within the design space, 

which means it is independent of any other decisions.  As sets narrow and negotiations 

between functional design groups continue, decisions should be made that accommodate 

as many groups’ preferences as possible.  In an ideal case, where all decisions are 

completely robust, convergence would not be needed and the optimal design would be 

found.  This solution would indicate that there were no tradeoffs or interdependences 

between any component of the design and overall satisfaction with the result.  Obtaining 

a completely robust design decision early in the process is not a practical pursuit; 

therefore, convergence is required to move towards a more robust and optimal solution.      

 

3.4.1.3 Convergence 

Convergence consists of set reduction (and expansion) progress metrics and protocols 

that are defined and executed.  One of the major SBD principles initially developed by 
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Toyota is a strong desire to stay within the initially defined sets, hence avoiding 

divergence.  Sobek (1997) stated that this was mainly due to the fact that “downstream 

sets are subsets of upstream ones, thus any work or communication based on upstream 

sets is also valid for all downstream sets, including the final solution.”  Additional work 

must be completed in order to fully understand the design space if set-ranges are 

reopened.  Expansion of sets should only occur when there are special exceptions, such as 

a good improvement idea or a problem that occurs (Sobek, 1997).  While expanding a set 

for legitimate reasons is allowed, convergence and set reduction is a SBD principle that 

should be followed. 

 

3.4.1.4 Communication 

Another principle that is an essential part of all concurrent engineering efforts, including 

SBD, is communication.  A formal negotiation protocol for managing complex 

interactions throughout the process should be established and executed.  Negotiating the 

preferences of functional design groups in a way that captures tradeoffs is an important 

component of SBD.  Preference-based reasoning methods are used to handle 

uncertainties, to provide and communicate preferences from functional design groups, 

and to integrate preferences to guide convergence (McKenney & Singer, 2012).  

Communication facilitation tools allow for easier transfer and combination of information 

between functional design groups and the chief engineer.  Specific development of 

communication/facilitation methods by Singer (2003) and Gray (2011) is provided in the 

next chapter. 

 

It is important that functional design groups communicate preferences for negotiation, as 

well as other important information regarding designs, such as the importance or 

influence of variables and design components.  At the integration stage, this information 

would help determine what design decisions are the most important (McKenney & 

Singer, 2012).  For example, Toyota waits until later in the design process to make 

decisions on low-impact components, like exhaust systems (Smith, 2007). 
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3.4.1.5 Facilitation 

A final and critical aspect of SBD is the role of the design manager or integration leader 

in managing the SBD effort and facilitating the process.  This referee (or team) is 

responsible for the review of rationale for elimination of solutions and documenting 

progress.  Guiding set reduction is the most important role of the facilitation lead, and is 

usually under the responsibility of the engineering manager or chief engineer in charge of 

managing the design process.  It is generally agreed upon that the SBD method requires a 

large amount of experience to manage correctly and efficiently (Sobek, 1997; Panchal, 

Fernandez, Allen, Paredis, & Mistree, 2005; Smith, 2007).  A solid engineering base is 

required for the integration leader to be able to understand interactions and tradeoffs that 

must be made.  SBD facilitates this process, but the role of the manager is essential.  

Toyota provides another good example of the importance of this role.  Smith (2007) 

states, “Toyota’s managers are all excellent engineers first, so they are prepared for this 

role.  In a company with weaker engineering managers, convergence might be choppy or 

delayed, thus jeopardizing the set-based process.” 

 

The role of facilitation includes combining preferences and information, communicating 

with functional design groups, and confirming or approving important design decisions.  

The key activities of the SBD method that the facilitation leader controls and oversees 

include: the characterization and set reduction review, convergence rate, integration, and 

the documentation of the process.  As mentioned earlier, the most rigorous application of 

SBD is when convergence continues until there is only one solution remaining.  In order 

to be efficient, the facilitation leader must take schedule and cost into account when 

setting set reduction strategies and reduction rate goals.  Documentation should also 

occur extensively so the reasons for making design decisions can be tracked in case 

changes occur.  Also, design decisions, if documented, can be recorded and used to teach 

younger designers the ship design process. 

 

3.4.2 Evaluation of U.S. Navy Design Efforts 

The five aspects of the rigor standard discussed in the previous section can be used to 

evaluate a SBD effort, using the scale provided in Table 3.2.  While the use of the SBD 
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rigor standard should be used at the start of a design effort to validate an intended 

method, it can also be retrospective and review past design efforts.  In addition to 

developing the rigor standard, McKenney, Buckley, and Singer (2012) also tested the 

standard using the authors’ experience with the SSC SBD execution.  Based on this initial 

assessment, a total score of 9 out of a possible 15 was achieved.  Table 3.3 provides a 

summary of the ratings.  Characterization was the most successful element with a 

maximum score of three, while flexibility and convergence both had scores of two.  

Communication and facilitation both had scores of one, indicating that these two 

elements were weakly executed.  This score results because communication during the 

SSC effort was tied to the team structure and no formal protocol was set in place.  Also, 

there was no formal negotiation related to integration.  One team leader dealt with most 

of the tradeoff decisions.  This rigor rating aligns closely with the conclusions of the SSC 

program where it was identified that a substantial amount of work was completed up 

front, but much less was done on the back end due to schedule constraints. 

 

Table 3.3: SSC Execution Rigor Rating 

 

 

The SSC was the first officially labeled SBD execution for the Navy, but the five 

elements of the rigor standard have been applied in some form to various past U.S. Navy 

design efforts.  While a detailed evaluation of all past design efforts has not been 

completed, some insight into a specific design effort can be gained by reading the 

literature on the U.S. Navy Joint Maritime Command and Control Capability (JCC(X)) 

concept exploration.  As the four Navy command ships were reaching the end of their 

service life (almost 40 years), a functional replacement of their capabilities was required.  

SBD Element Maximum

Assessed 

SSC’s SBD  

Level

Characterization 3 3

Flexibility 3 2

Convergence 3 2

Communication 3 1

Facilitation 3 1

Total Score 15 9
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The beginning of the Analysis of Alternatives (AoA) phases began in 2000.  There were 

no set requirements at the beginning of the concept exploration; in fact, it had not even 

determined if replacement ships were required.  This fact did not allow the designers to 

use a typical point-based method by using a baseline design.  A different type of method, 

similar in many aspects to SBD, was instead pursued. 

 

The most noticeable aspect of SBD used in the studies was an emphasis on eliminating 

alternatives.  It was first concluded that a completely shore-based capability would not be 

possible, but that did not initially mean that a dedicated ship was required.  Distributing 

the capability across multiple current and future platforms (ships) was still an option.  It 

was later identified that this distributed alternative was not affordable.  Next, analysis 

identified that extending the service life of the current ships or converting other ships was 

not cost effective.  Finally, a modified repeat design was rejected since it would not cost 

significantly less than a new build, which led to the decision to develop a new ship design 

concept (Doerry & Sims, 2002).  Throughout the AoA, a JCC(X) Oversight Group 

reviewed the available data and recommended the elimination of alternatives or 

suggested other areas of study (Doerry, Austin, & Strasel, 2002).  This process identified 

the desire to eliminate infeasible or dominated alternatives through an increasing detail of 

analysis.  Other SBD principles could be identified as well, including concurrent 

evaluation of multiple aspects of the design, and effectively exploring the design space 

using contour charts (Doerry, Austin, & Strasel, 2002). 

 

Overall, and as further examined in this section, defining a SBD rigor standard allows 

design efforts to be evaluated based on SBD principles.  Also, designers can use the 

proposed rigor standard to identify when their previous efforts have resembled aspects of 

SBD.   

 

3.5 SBD Execution Tools 

Looking back at the SSC as the main example, the rigor standard was able to identify 

specific areas of SBD execution that require improved structures and/or tools.  This 

section covers current research in the specific area of SBD execution efforts.  It is 
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important to keep in mind the five elements of the SBD rigor standard as the methods 

used in the tools are discussed.  It will be shown that, while these methods provide insight 

into certain aspects of SBD, most are unable to be applied to or capture all aspects. 

 

3.5.1 Space Mapping and Preference Facilitation  

Space mapping and preference facilitation methods can handle the temporal aspects of 

SBD by combining preferences throughout the design process.  These methods are used 

to handle uncertainties, provide and communicate preferences, and link the various 

design spaces, such as the variable, performance, and constraint spaces.  Current space 

mapping and preference facilitation research efforts were made with application to SBD 

include fuzzy set-based, interval set-based and probabilistic-based methods (Nahm & 

Ishikawa, 2006).  

 

The Method of Imprecision (MoI), a fuzzy set-based design mapping method, considers 

the fuzziness of both constraints and design variables (Antonsson, 2001; Law, 1996).  

MoI gives preference to design variable set-ranges that are mapped to an objective space, 

which is a function of the variables, to generate a preference function over the objective 

space.  This function is then aggregated with a preference for the objective set-range to 

form an overall preference function in the objective space.  Then, it is mapped back to the 

design variable space to determine what variables have more influence on the objective 

and what regions of the design variable space are the most preferred (Scott, 1999; Wang, 

2003).  MoI is able to provide a designer with the link between design alternatives and 

performance, but results in a wider solution based on the use of standard interval 

arithmetic (Nahm & Ishikawa, 2006). 

 

Finch and Ward (1997) developed an interval-based automated method that extends 

constraint satisfaction problems to set-constraints using predicate logic and constraint 

satisfaction techniques.  This method has been applied to simple catalog-based designs.  

Malak, Aughenbaugh, and Paredis (2009), as well as Rekuc (2005) have proposed similar 

interval-based methods that introduce the ability to evaluate alternatives under 

uncertainty and eliminate dominated solutions.  The methods use utility theory combined 
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with a branch and bound algorithm that cannot explicitly express the degree of 

desirability or preference of the designers, but generates bounds on the membership of 

feasible sets of design variations. 

 

Chen, Allen, Mavris, and Mistree (1996) present a probabilistic robustness method by 

integrating response surface methods, robust design techniques, and the compromise 

Decision Support Problem.  This method identifies a set of solutions based on a desirable 

set of preferences, but requires a substantial amount of information, involves detailed 

synthesis, and cannot explicitly determine preferences for design solutions (Nahm & 

Ishikawa, 2006a).  

 

Singer (2003) initially developed a fuzzy logic SBD communication facilitation tool that 

was later modified by Gray (2011) to incorporate uncertainty modeling.  These two topics 

will be discussed further in the next chapter, as they are the foundation of the research 

presented in this dissertation.  However, limitations of these methods also factored into 

the identification of key SBD execution components that required additional research.  

These limitations are also discussed in the next chapter. 

 

3.5.2 Design Optimization 

There is extensive SBD research in the optimization field that uses the intent of SBD, 

such as the use of set-ranges for variable values, but is not pertinent to the problem 

presented in this research.  The results presented in SBD optimization research are 

valuable for their specific applications, but do not directly solve the problem of large-

scale, team-based design.  Recognizing one of the major drawbacks of using 

optimization, which is that only a single point design can be pursued, researchers have 

focused on incorporating sets of design variables and developing various algorithms that 

facilitate design space reduction (Hannapel, 2012). 

 

The most recent example of set-based multi-objective optimization (MDO) is presented 

by Hannapel (2012), who developed a new MDO algorithm that incorporates SBD 

principles, including managing sets of design variables, gradual reduction of the design 
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space, and seeking a reduced design space, rather than a single point.  Avigad and 

Moshaiov (2010) have proposed a MDO problem involving the delay of decisions and 

handling changes in performance requirements.  The method focuses on variability under 

uncertainty, versus optimality for potential design solutions, when selecting the aspect of 

the design that is delayed.  This sequential method finds multiple Pareto fronts that have 

different locations due to design concept uncertainty.   

 

Madhaven, Shahan, Seepersad, Hlavinka, and Benson (2008) developed a set-based 

method where designers collaborate by exchanging targets for shared parameters using a 

Decision Support Problem mathematical model for multi-objective decisions.  Subsystem 

design teams use simulation models to identify Pareto sets of solutions based on the 

defined targets, who then communicate their results to the system level team.  The set of 

solutions is evaluated and a final design is selected.  Another process developed by Nahm 

and Ishikawa (2006) divides the design variable set-ranges into smaller regions.  A design 

of experiments (DOE) evaluates combinations of sets instead of points to determine a 

“possibilitic” distribution in the objective space.  This distribution is compared to an 

objective preference to determine feasible points.  Infeasible sets are eliminated, but if 

two or more feasible combinations exist, a metric is used to pick the optimal design 

(Nahm & Ishikawa, 2006; Nahm, Ishikawa, & Yang, 2007).  

 

3.5.3 Design Reduction Methods 

Focus on reducing the design space within a set-based framework has been limited, but 

researchers have identified some methods related to guiding design reduction.  A method 

using Bayesian networks for representing interesting regions of the design space and 

identifying interactions between local design spaces has been proposed (Shahan & 

Seepersad, 2009).  The method uses joint probability distributions for design variables 

and local Bayesian networks are shared to improve communication.  This method 

emphasizes the changing of preferences over time and does not restrict its applicability to 

only the use of meta-models. 
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There are also several decentralized decision making methods based on game theory 

(Panchal, Gero Fernandez, Paredis, Allen, & Mistree, 2007; Canbaz, Yannou, & Yvars, 

2011; Wang & Terpenny, 2003; Liang, Yan, & Shang, 2009).  These methods are much 

more decision-focused, guiding set reduction by eliminating infeasible portions of the 

design space and describing interactions between collaborators (Panchal, Fernandez, 

Allen, Paredis, & Mistree, 2005). 

 

Ford and Sobek (2005) use a basic real options framework to identify the interactions 

between design decisions and their effects on project performance.  Real options can be 

used to value product development strategies, including “an option to postpone the 

elimination of design alternatives” (Ford and Sobek, 2005).  Through the ability to model 

and evaluate various decision strategies, real options can potentially identify the value of 

certain design decisions.  

  

3.6 Limitations of Current Research 

Current research on the SBD method is broad and ranges from detailed MDO algorithms 

and design selection automation to new, decision-oriented methods.  By identifying 

current research motives, there is a limited amount of work attempting to solve the 

specific problem addressed in the proposed research, which is the understanding of 

design reduction in large-scale, team-based design.  Most of the current methods that 

guide SBD reduction focus on an algorithm or automated process that either attempts to 

find a single solution or does not allow for human input along the way.  The decisions to 

go in one design direction or eliminate certain solutions are unknown within most 

optimization frameworks.  Some methods have identified the importance of design 

decisions, but restrict human designer input throughout the process as sets of solutions 

change along with design component interactions.  Certain components of the methods 

evaluated provide insight into the problem defined in this dissertation, specifically 

regarding mapping and preference facilitation methods.   

 

In team-based design, the ability to facilitate preference negotiation and to understand 

requirements is essential.  The methods researched provide a first step towards having an 
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integrated approach, but need to be extended to allow guidance of set reduction with the 

SBD method in a team environment.  The extension should focus on modeling design 

relationships over time, as designer preferences change and fidelity of analysis increases.  

In addition, tracking or modeling design decisions, including the elimination of solutions, 

should be identified.   

 

3.7 Chapter Summary 

While the theoretical advantages of the SBD method have been proven, practical 

execution of SBD principles, similar to CE efforts, can be difficult.  The U.S. Navy’s use 

of SBD for preliminary design of the SSC outlined a successful SBD effort, but also 

identified challenges associated with its use.  SBD criticisms voiced before and during 

the SSC SBD execution were mainly off base, but identified the common misconceptions 

surrounding the use of a SBD method.  Beyond the criticisms, there are real and difficult 

execution challenges, including the inability to conduct a textbook execution like Toyota, 

the difficulty of dealing with flat design spaces, moving from a person to teams, and the 

unwillingness to adopt a new paradigm. 

 

McKenney, Buckley, and Singer (2012) introduced a SBD rigor standard to be able to 

evaluate a design activity and determine how “set-based” it truly was.  Using the standard 

to evaluate the SSC SBD execution, specific areas that needed improvement were 

identified.  The rigor standard can also be helpful when evaluating current research on 

SBD execution methods and aids.  Research areas of interest include design space 

mapping and preference facilitation, design optimization, and reduction methods.  By 

identifying current research motives, it can be seen that there is a limited amount of work 

attempting to solve the specific problems addressed in this dissertation, which is the 

guidance of set reduction decisions and the development a facilitation framework to 

understand design spaces and relationships for CE and large-scale, team-based design.   
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Chapter 4: Initial Set-Based Design Research 

 

 

The two major areas of SBD execution identified in the previous chapter that require 

additional research, and are the focus of this dissertation, include the guidance of set 

reduction decisions and understanding design relationships within the SBD environment.  

Before a method can be developed to support SBD execution in these areas, however, a 

better understanding of SBD reduction and the types of design relationships is required.  

While there are several theoretical advantages and execution challenges associated with 

the use of SBD, most have not been sufficiently explored to identify their actual impact 

on a design effort.   

 

This chapter begins by presenting work completed by previous researchers that is used 

extensively as the basis for the research in this dissertation.  Next, an initial case study is 

introduced to provide a basic description and understanding of the SBD method, 

including its advantages and challenges.  The goal of the case study is to show that the 

SBD method is robust to changing conditions.  For the U.S. Navy, the ability to utilize a 

design method robust to changes would be extremely beneficial, as requirements and 

desired technologies are constantly changing.  Using the conclusions of this case study, a 

novel design facilitation tool is developed to aid in the preference generation process and 

to understand design relationships at the functional design level.  The chapter concludes 

by summarizing major issues identified throughout the author’s initial research stages 

that merit further research. 
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4.1 Basis of Current Work 

The work presented in this chapter is primarily based on research completed by Dr. 

David Singer and Dr. Alexander Gray, both from the University of Michigan.  Singer 

(2003) initially developed a fuzzy logic (FL) communication facilitation tool and 

conducted experiments that confirmed advantages of SBD over point-based methods.  

Gray (2011) later modified the facilitation tool to incorporate type-2 FL uncertainty 

modeling and validated its advantages for more constrained design problems.  This 

section discusses each body of work individually and then defines which aspects are used 

in current research, as well as the potential areas of further development.   

 

4.1.1 SBD Communication Facilitation 

Singer (2003) predicated his research on the fact that the increasing of system complexity 

in the past has caused traditional design automation tools that exclude the human 

designer to become more likely to fail.  More specifically, a lack of data and models for 

preliminary design efforts has led to unsuccessful implementation of optimization 

techniques and expert systems.  The value of these tools is minimal during early design 

stages, mainly because the mathematical models that are used must be simplified to the 

point where major considerations are lost.  Singer proposed set-based concurrent 

engineering as a potential solution to this preliminary design problem over the more 

traditional point-based method.  Hybrid agents, defined as combinations of humans and 

elements of computer code, which perform specific actions, are introduced and used to 

structure and facilitate required communication and negotiation.  Communication and 

negotiation is performed using a FL software agent.  In an effort to investigate the use of 

different design methods during preliminary design, Singer planned and conducted a 

series of experiments using the FL software agent. 

 

4.1.1.1 Fuzzy Logic Design Agent 

Fuzzy logic allows for two types of knowledge to be combined: crisp (mathematical 

models) and linguistic (expert opinion).  The combination of objective and subjective 

knowledge allows for managing of more complex problems that require the addition of 
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subjective knowledge; a typical scenario during preliminary design.  The key distinction 

between fuzzy set theory and crisp set theory is the assumption that an element can be a 

member of multiple sets at one time with varying degrees of membership.  Figure 4.1 

presents the conventional way of thinking about sets where a value is either completely in 

a set or not in one at all.  The truth value describes the degree of membership in a set.  

For example, in the crisp theory example of Figure 4.1, a man is either tall or not tall.  

Therefore, a man who is 5’ 11” has a truth value of 100% for not tall and 0% for tall.  

Figure 4.2 presents the fuzzy set and membership function representation for height.  A 

membership function can be constructed to describe membership in the two sets 

describing height.  Now a man who is 5’ 11” is considered 50% tall and 50% not tall 

based on the membership function provided in Figure 4.2.  The use of membership 

functions allows subjective knowledge to be inserted into an analysis.    

 

 

Figure 4.1: Conventional Set Membership Functions (Singer, 2003) 

 

 

Figure 4.2: Fuzzy Sets and Membership Functions (Singer, 2003) 
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Fuzzy systems are used to complete a nonlinear mapping between crisp input variables 

and crisp output variables.  They also allow linguistic expressions to be used as rules that 

define the relationship between inputs and outputs.  The rules are defined based on all 

combinations of the input fuzzy sets that are activated.  There are four main steps in a 

traditional fuzzy system: fuzzification, activation of fuzzy rules, fuzzy inference, and 

defuzzification.  A diagram of the steps in the fuzzy system developed by Singer is 

provided in Figure 4.3.  The bolded components in the figure represent to modified 

elements of a typical fuzzy system.  Initially, the human agents determine limits of the 

sets and design preferences for a design variable.  Fuzzification deals with taking crisp 

input variables (membership functions of agent preferences) and converting them into 

membership in one or multiple fuzzy sets.  Next, a fuzzy rule bank is used to determine 

which rules are activated by the inputs.  Fuzzy inference is the logic used to determine 

the resulting output fuzzy set.  There are multiple inference formulas that can be used.  

The final step, defuzzification, is the process that converts a fuzzy membership function 

into a crisp valued output, or a joint output preference (JOP) curve.   

 

 

Figure 4.3: Negotiation Agent Fuzzy System (Singer, 2003) 

 

The fuzzy software agent developed by Singer is a variation of a traditional fuzzy system 

due to its specific mechanics.  First, the inputs to the FLS are membership functions 
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rather than crisp values.  Second, the FL rule bank spans the solution space and calculates 

the output by sweeping through the range of input variables to produce a JOP curve.  

Figure 4.4 shows these important differences and how they function.  In the system 

developed by Singer, human design agents input preferences for design variables that are 

described via a set of design values ranging from [xmin,xmax] utilizing any of three 

linguistic terms:  Preferred (P), Marginal (M), and/or Unpreferred (U).  The FL system 

sweeps across the set-range from minimum to maximum, activating rules from a fuzzy 

logic rule bank based on different combinations of the preference inputs.  The activated 

rules are then defuzzified to a crisp preference value.  As the process is repeated for every 

value xi within the set-range, a continuous JOP curve is produced, representing the 

negotiated preference for all design values.   

 

 

Figure 4.4: Design Assistant Software Two-Agent Example (Singer, 2003) 

 

4.1.1.2 Experiment and Results       

Singer’s FL design software breaks the SBD method into a hierarchical structure, with a 

chief engineer agent at the top of the structure and functional design agents beneath.  The 
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chief engineer agent has the responsibility of controlling the analysis and preference 

generation time for the SBD method.  This is done by sending requests for the negotiation 

of ship design variables to the design agents, and later narrowing the set-ranges of design 

variables based on JOP curve information, provided by the FL design tool.  In Singer’s 

study, six agents were used, including a chief engineer.  The agent structure can be seen 

in Figure 4.5.  All agents communicate with the fuzzy software agent, while the chief 

engineer sends information to other agents in a unidirectional manner. 

 

 

Figure 4.5: Agent Structure (Singer, 2003) 

 

A series of experiments were used to identify the value of the FL software agent for 

facilitating set-based communications.  The experiments utilized four groups of students 

that each completed two design experiments.  One experiment was conducted using the 

FL software for negotiation and communication.  The other experiment used an Internet 

chat window to communicate (participating members were not co-located).  The main 

conclusion was that the FL agent-based software provides a more systematic approach for 

accomplishing SBD, which in turn increases the chance of obtaining a more global 

optimal.  A separate conclusion was that SBD can replace a more point-based method, as 

was simulated using the chat window form of communication for design discovery.  The 

main advantage of the FL agent-based software is the ability to keep design variable sets 

open longer; a design philosophy of SBD.  Other advantages include the ability for 
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concurrent development, and delaying design decisions until tradeoffs are better resolved 

through a gain of knowledge.  The agent software’s ability to control set reduction can 

also facilitate adaptation to changing conditions and helps balance input from multiple 

perspectives.  Finally, the FLS agent-based structure enables the evaluation of a large 

number of alternatives, which means a larger portion of the design space is evaluated.  

This extensive evaluation of the design space can lead to a higher probability of finding a 

global optimal.  Additionally, the results from the experiments were compared to an 

MDO and determined to be the same.       

 

4.1.2 Uncertainty Modeling 

Gray (2011) built on Singer’s work to develop a FL design tool that further formalized 

the type-1 FL SBD negotiation process and introduced type-2 fuzzy logic that represents 

design uncertainty to improve SBD facilitation.  Type-1 FL systems, such as the one 

developed by Singer (2003), do not involve any uncertainty modeling, which can lead to 

more constrained designs being led into infeasible areas of the design space.  Gray 

introduces two additional methods that model uncertainty, a general type-2 FL method, 

and a more novel type-2 modeling FL system that utilizes randomization techniques.  A 

series of experiments using both unconstrained and constrained ship designs were 

conducted to compare the three different FL systems.  The results show that the 

introduction of uncertainty modeling to the SBD method can improve the overall set-

based reduction process.  More specifically, the experiments showed that when using 

uncertainty modeling within the SBD method, highly constrained designs were better 

managed.  For highly constrained designs, the use of the type-1 FL system led to a longer 

set reduction process with multiple design failures.  The type-2 FL systems resulted in 

completely feasible set reduction without any failures.  All three systems were able to 

handle a more loosely constrained design.  Also, SBD principles, such as delaying 

decisions and gradual set reductions, were identified. 
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4.1.3 Further Development Areas   

Both Singer (2003) and Gray (2011) provide a solid foundation for current SBD research 

with many potential avenues of further improvement.  There are a few common themes 

that can be identified from both Singer and Gray’s work.  These are provided below: 

 

 Set reduction takes a heuristic approach 

 The reduction path or set reduction process greatly impacts the feasibility of a 

design  

 Success is based on feasibility achieved at the end of the design experiments 

 SBD practices were able to manage changing design conditions  

 Preference generation and set reduction is based only on variable level 

information 

 

While Singer and Gray have provided a valuable method to structure set-based 

communication and negotiation of design variables, the set reduction process was 

completed in a heuristic manner.  The chief engineer agent uses the JOP curves outputted 

from the FL system to determine how to reduce the variable set-ranges.  No additional 

information other than the experience and knowledge of the chief engineer is used.  The 

main reason why a purely heuristic approach should be improved upon is the fact that the 

reduction path taken greatly impacts the feasibility or outcome of the design.  Whether it 

is the point-based method that led to failures in Singer’s experiments, or the highly 

constrained designs that failed when not considering uncertainty in Gray’s experiments, 

both identify the importance of the reduction path taken.  Success was also based on 

feasibility, which is an important consideration during design.  Nonetheless, additional 

metrics or methods of identifying the success and failure of particular reduction paths 

should be pursued.  By accurately understanding the reduction process, early warning 

signs or more robust decision paths can be identified before it is too late in the design 

process. 

 

Other considerations include understanding how SBD can handle changing conditions, 

especially changes to design requirements or constraints.  A better understanding of how 



100 

 

the SBD method manages changes and where the value of the flexibility specifically 

comes from would help future design efforts.  Lastly, preferences are provided in the 

design variable domain, which makes the most sense from a design perspective.  

However, in managing the reduction process one should consider the objective or 

requirement domains as well, which are functions of the design variables.  The 

relationships between these two domains have a major influence on the success of the 

design effort. 

 

4.2 Initial Case Study 

Using the advantages and further development areas of previous research, initial work 

began towards a basic understanding of the SBD method and its various components.  

Additionally, a better understanding of the decisions associated with making set 

reductions was desired.  An initial case study using human designers focused on the 

ability of the SBD method to manage a design change.  The objective of the initial case 

study was to confirm the theoretical advantages of the SBD method and identify major 

execution challenges.  The initial case study, described in McKenney, Kemink, and 

Singer (2011), is presented in this section.  The initial study was completed as a trial 

application of SBD for U.S. naval vessels in order to generate anecdotal data on the 

method, as well as to determine how SBD manages changes in design requirements.  The 

case study simulated rounds of the SBD method using a mine countermeasure (MCM) 

vessel design that deploys and recovers autonomous vehicles.   

 

4.2.1 Preparation 

Preparation for a SBD effort is essential and includes a number of important steps 

including the determination of what functional design groups and negotiated variables are 

to be considered for the specific design of interest.  Eight functional design groups were 

selected: general arrangements, weights, resistance, propulsion, stability, cost, payload, 

and seakeeping.  To facilitate the SBD method, a tool and methodology is required for 

each functional design group to complete a proper evaluation.  For example, the 

resistance group would require a resistance prediction program and basic hull 
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characteristics or parent hull.  These tools are either selected from an existing library or 

developed as needed, resulting in the creation of a methodology.   

 

Variables and parameters were selected based on their influence on the design, and 

whether the functional design groups required them.  Using the design groups identified 

earlier, variables were selected based on the possibility of conflicting preferences 

between two or more groups.  For example, the resistance group would prefer a smaller 

beam, while the stability group would prefer a larger beam.  The number of variables was 

limited in order to simplify the trial.  A total of nine variables were chosen to represent 

the values having the most significant impact on the design.   

 

Parameters are information that functional design groups have no specific preference for 

but still need to know.  Most parameters are exchanged between design groups and are 

based on the required inputs and outputs of the tools used.  These parameters were chosen 

based on the type of tool the design groups used and the specific values required by the 

tool to run.  

 

In addition to variables and parameters, there are also specific requirements for the vessel 

that must be defined.  These include:  transit speed, transit range, and operational sea 

state.  These requirements are used as inputs for some of the functional design groups.  

The trial organizers defined the set-ranges for these requirement values.  An initial study 

was completed to determine reasonable starting values for all variables and parameters 

used in the case study.  The selected negotiated variables, parameters, and requirements 

can be seen in Table 4.1. 
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Table 4.1: List of Negotiated Variables, Parameters, Requirement Ranges and 

Interactions 

 

 

4.2.2 Design Process 

As was identified in Chapter 2, SBD is more robust to changes.  However, this was never 

shown explicitly in a design context.  The goal of the case study was to prove this is in 

fact the case.  Therefore, the design process for the case study differed in certain aspects 

from a more intensive SBD execution.  It is important to note that the scope of this study 

was limited, and that the main focus was to complete a trial application of SBD and 

evaluate how SBD manages changes in requirements.  To simplify the problem, 

assumptions were made in regards to design group interactions and the integration 

process.   

 

An integration team, consisting of the case study organizers, was formed to facilitate and 

manage all aspects of the design process.  The role of the integration team is similar to a 

chief engineer, and includes combining design group preferences, making design 

decisions, and guiding set reduction.  Figure 4.6 shows how the process works.  Initially, 

a range of variable and parameter values were defined by the integration team based on 

the initial design space exploration.  These ranges were then distributed to the functional 
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design groups.  The functional design groups then took these values and used the 

designated tool to evaluate the design space.  They took the results of their evaluation and 

provided preferences for the negotiated variable set-ranges to the integration team.  

 

 

Figure 4.6: Case Study SBD Process 

 

Preferences are provided to the integration team using two different methods.  The first is 

a preference curve, which is a graph that provides preferences for specific values in a 

variable range by giving a rating between zero and one (basic utility function).  A rating 

of zero would mean that value is infeasible.  A rating of one would mean that it is the 

best, or one of the best, values from the design group’s viewpoint at that point in the 

design.  The second is information that cannot be captured in a preference curve: any type 

of recommendations or qualitative information that the design group wants to be known 

is also transferred to the integration team.   

 

The individual design groups’ preference curves are combined to form a single combined 

preference curve and all other information can then be gathered.  The integration team 

uses the given preferences to reduce the variable set-ranges through the elimination of 

infeasible values.  Variable set-ranges can be further reduced based on dominance.  For 

the case study, performance metrics were also identified to further reduce set-ranges.  

The next round of the process begins when the integration team distributes reduced 

variable set-ranges.  The integration team is integral to the process because all major 
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decisions are made at this level.  Furthermore, the integration team is required to record 

and document all factors involved in the design and decision making process.   

 

4.2.3 Results 

Three rounds of the SBD method were simulated, and different types of changing 

requirements occurred between rounds two and three, including an addition of storage 

and flight deck space, and the addition of a deck gun and ammunition stores in the bow.  

These changes affected the designer’s preferences for certain dimensions, including the 

hangar length.  Figure 4.7 shows how the preferences for hangar length changed between 

rounds two and three.  In round two, the preference level remained the same at 1.0 for 

lengths greater than 16 meters.  Following the requirement changes for round three, the 

preference level changed to favor the higher hangar length values, and never reached the 

preference level of 1.0 at any point.  While it seems logical that the higher hangar length 

values would be preferred after the requirement changes occurred, a major value of the 

SBD method can be identified as the ability to determine the impact of a change on 

design variable preference values.         

 

Figure 4.7: Hangar Length Preference Curves (Rounds 2 and 3) 

 

The final results of the SBD case study were reduced sets for all of the negotiated 

variables.  A negotiated variable exists when two or more functional design groups have 

a preference value for the variable.  The study did not produce a specific design, but 
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dramatically reduced each variable set to a reasonable and manageable range.  The major 

conclusions that can be drawn from the SBD case study are: 

 

 Changes in requirements can be managed by the SBD method, due to the 

robustness of the process 

o Specific values, such as speed and range, do not have to be chosen at the 

beginning 

o Variable and parameter ranges were flexible enough to allow for changes 

 The SBD method demonstrates how changes impact the design 

 

While the scope of the case study was narrow and did not cover all aspects of SBD, the 

goal of the study was achieved.  The evaluation of delaying decisions using SBD and 

how requirement changes can be managed are shown in the results.  Additionally, the 

case study revealed a number of challenges associated with implementing a SBD method. 

 

4.2.4 Identified Challenges 

There were two major challenges identified in this initial case study.  The first deals with 

the difficulty of providing preferences within a SBD framework.  The functional design 

groups must explore the design space and generate a preference that best represents this 

information based on their analyses and experience.  Regardless of the preference-based 

reasoning method used, designers are forced to use personal judgment to describe their 

preference for set-range values.  Additionally, the integration of these preferences can be 

a challenging effort when identifying what aspect of the design is more important at a 

specific time in the process. 

 

A transition in thinking may be required to properly evaluate a design space and provide 

preferences for a set of values.  A designer must transition from the traditional way of 

thinking in terms of discrete design variables to viewing design variables as sets of 

values.  It is human nature to reduce complex sets of data to discrete values, which are 

much simpler to process (Gray & Singer, 2011).  A good example is the use of a mean to 

describe a large data set that spans a range of values.  Also, as mentioned earlier, most 
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design tools are structured around the spiral model and discrete outcomes, which 

describes a static representation of the solution space.  Information communication 

between functional design groups and the chief engineer should be aided as well.  In an 

attempt to avoid the infamous “garbage-in, garbage-out” scenario, the quality of 

preference generation is essential.  A more formalized method, in the form of a design 

tool, which explores the design space and generates and relays preferences, would be 

beneficial within a SBD execution. 

 

The second challenge identified by the initial case study is the decision making process 

associated with variable set-range reductions.  The integration team in the case study 

consisted of the two organizers using a combination of preference functions and 

additional information to make reduction decisions.  The method was heuristic and used 

no standardized decision making framework.  The case study results identified the 

challenge of guiding set reduction and how different reduction paths can result in 

different outcomes.  A better understanding of how and when decisions are made, as well 

as determining the reproducibility of heuristic set reduction techniques would be the first 

step towards a more structured framework for set reduction decision making.   

 

4.3 Design Facilitation Tool 

In an effort to improve upon the challenges identified in the previous section, a design 

facilitation tool specifically tailored to the SBD method was developed by the author.  

The development of the tool is outlined by McKenney and Singer (2012) and was 

presented at the American Society of Naval Engineers Day 2012.  The tool focuses on the 

specific SBD problem of providing functional designers with valuable and relevant 

exploration and analysis tools to facilitate preference generation and guide 

communication within the SBD environment.  It also provides a basic understanding of 

design relationships.  The purpose of the tool is to link the design relationships to set 

reductions.    

 

As mentioned earlier, a functional designer or design group focuses on a component or 

aspect of the design, for example: structures, propulsion, or weights.  While gathering 
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data on the design space is the first step towards preference generation, the analysis and 

interpretation of the data is much more difficult to accomplish.  Finally, helping the 

human designer transition to set-based thinking can aid in preference generation and 

information communication.  Figure 4.8 provides an overview of the method with its 

three distinct components. 

 

 

Figure 4.8: Design Facilitation Tool Framework 

 

The overall goal of the facilitation tool is to improve how functional design groups 

generate preferences and determine what information should be communicated to aid in 

set reduction.  This is achieved through the development of a tool that facilitates design 

space evaluation and analyzes and interprets that data within the SBD method.  The first 

step is design space evaluation, which for this tool, is completed using Design of 

Experiments (DOE).  Analysis and interpretation is next and identifies various metrics, 

some rooted in DOE theory, to understand the design space and design interactions.  The 

final and most essential step is when the human designer takes the available information 

and converts it to variable preferences.  Additionally, helpful information for set 

reduction can be passed along to the chief engineer or design managers.  

 

Human Designer Input 

Provide Preferences 
Communicate Analysis and 

Interpretations 
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4.3.1 Design Space Evaluation 

There are many different techniques for conducting design space exploration or 

evaluation, including generating response surfaces, Monte Carlo simulations, DOE, and 

optimization.  While automated evaluation of the design space can be an effective tool, 

complete automation of preference generation from this evaluation is not recommended.  

Input from human designers and their evaluation of the design space is essential in a SBD 

method, or in any design-related activity.  While various techniques can provide 

information on the design space, the designer must effectively evaluate this information 

to communicate and provide preferences to the chief engineer.  Part of the reason why 

SBD can be difficult to implement is because it requires a shift in the cognitive 

processing and communication of data from discrete values to sets of values.  Execution 

of this shift requires re-training engineers and designers to think in a set-based manner.  

In an effort to facilitate the transition to set-based thinking, the design facilitation tool 

uses a combination of DOE and a custom-made analysis tool.  Studies using the analysis 

tool within the SBD method also reveal important considerations regarding set-based 

communication.         

Determining the relationships between variables and functional design objectives 

throughout the design space is of significant importance in the SBD method.  Each 

functional design group is tasked with exploring the design space to determine a feasible 

region and provide preferences for values within that region based on their objective, for 

example, minimizing resistance.  DOE can be used to understand which variables most 

greatly affect the calculated objective and determine the relationships between variables 

and the objective (Antony, 2003).   

 

One of the most common types of DOEs, which was used in the design facilitation tool 

discussed in this section, is a full factorial experiment (FFE).  A FFE evaluates all 

possible combinations of levels for all factors.  The number of levels refers to the amount 

of times a variable is evaluated within a given set.  The total number of experiments for 

studying k factors or variables at two levels is 2
k
 (Antony, 2003). 
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4.3.2 Analysis and Interpretation 

Analysis and interpretation was developed using an example functional design group in 

order to apply DOE techniques to design space exploration at the functional level.  A 

planing craft design was selected as the overall design with a seakeeping functional 

design group.  The objective of the seakeeping group is to minimize vertical 

accelerations.  Wave impact accelerations were estimated using a method described by 

Savitsky (1985).  There are certain limitations to this method, including a restriction on 

the acceptable length-to-beam ratio.  Also, the American Bureau of Shipping (ABS) 

Guidelines on vertical accelerations for a planing craft were used to provide additional 

constraints (ABS, 2007). 

 

Along with selecting a method to calculate the design group’s objective (vertical 

accelerations), inputs and variables used by the method to perform the FFE needed to be 

identified.  Design requirements that were input into the tool included speed (Vk) and 

significant wave height (h1/3).  The negotiated variables were selected for the planing 

craft design based on their influence on the design itself, and whether they were required 

for calculation by the functional design group.  The number of variables was limited to 

those needed by the empirical method used by the seakeeping group and potential 

conflicts between other groups.  The selected variables were length (L), beam (B), 

deadrise (β), and full load displacement (Δ).  Trim (τ) was considered an input parameter 

to seakeeping calculations. 

 

After defining the calculation method, inputs, and variables used by the seakeeping 

functional design group, a FFE was conducted over the design space for each negotiation 

round.  By reevaluating the design space as set-ranges converge, the analysis becomes 

dynamic.  Initial ranges are typically defined by the chief engineer or engineering 

manager and provided to the functional design group.  For this study, the selected set-

ranges were based on typical values for small planing craft.  This section discusses the 

different DOE and developed metrics that aid in the analysis and interpretation stage.    
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4.3.2.1 Main Effects 

The first and most basic DOE metrics that can be calculated are main effects.  A Main 

Effect Plot (MEP) for each variable describes the influence of that variable on the 

functional design group’s objective.  A MEP is “a plot of the mean response values at 

each level of a design parameter or process variable” (Antony, 2003, p. 34).  It is 

important to look at both the sign and magnitude of a MEP.  The sign shows the direction 

of the effect, whether the average response or objective value increases or decreases.  The 

magnitude shows the strength of the effect (Antony, 2003).  

 

Figure 4.9 shows a MEP for each variable that the seakeeping group negotiates, or for 

which it has a preference.  The x-axis on each plot displays the set-range for that variable.  

The y-axis for all plots describes the average values of the objective, which is vertical 

acceleration.  First, the slopes can be used to determine the direction of the main effects.  

For example, as deadrise increases, the average vertical accelerations decrease, which is 

logical from a ship design perspective.  Also, a level slope, like the length MEP, indicates 

that there is no relation between length values and vertical acceleration. 

 

 

Figure 4.9: Main Effects Plots for Seakeeping Functional Design Group 

 

The plots in Figure 4.9 were created by first calculating the vertical acceleration for every 

combination of variable values dictated by the FFE formulation.  The average of the 

resulting accelerations for specific variable values is then plotted. 
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The magnitude of the MEPs is also important because it shows which variable has the 

greatest effect on the objective.  It is evident in Figure 4.9 that displacement and beam 

have the largest effect, while length has no effect.  The effect of a variable can be 

mathematically calculated using the following basic equation: 

 

Ef = F(+1) – F(–1)     (4.1) 

 

where F(+1) is the average objective value at high level setting of a factor, and F(–1) is the 

average objective value at low level setting of a factor (Antony, 2003).  

 

MEPs can be easily generated within the DOE framework and can help designers 

determine the importance of variables based on the current model being used.  Also, 

functional designers can use the slopes of the MEPs to determine general trends when 

initially developing their preferences.  While this information is valuable to some degree, 

MEPs do not fully encompass variable importance at the functional design level.  Simply 

because an MEP shows that a variable has little effect on the objective does not 

necessarily mean it is not a major factor in design.  Main effects of variables should not 

be the only factor when determining the importance of variables.  

 

To provide an example regarding misleading variable effects, consider a containership 

design with a Cargo functional design group.  One of the most important variables for the 

Cargo group is the beam, which should have a value that corresponds to a multiple of the 

width of a standard container unit.  If the beam value does not directly match one of these 

multiples, there will be wasted space that cannot be utilized to store containers.  While 

the Cargo MEPs might show that beam does not have a large impact on the objective, the 

desire to not waste useable cargo volume could be a major factor in design that is not 

captured. 
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4.3.2.2 Evaluated Points and Feasibility 

While MEPs are useful to determine general trends and basic relationships, they do not 

provide enough detailed information to generate preferences for a range of variable 

values.  Also, a more detailed analysis should be conducted to determine the actual 

drivers of the functional design group.  As part of the MEP calculations, evaluations of 

the objective (vertical acceleration) were completed.  Using these evaluations, a better 

understanding of the design space can be accomplished.   

 

A plot of all the evaluated points within the design space can be generated to provide 

additional information to a functional designer.  Figure 4.9 shows a plot of all the points 

evaluated throughout the design space.  The x-axis is the set-range for displacement and 

the y-axis is the corresponding vertical acceleration, which is different from a MEP.  

Based on the FFE procedure, each displacement value is held constant, while all other 

variable values are evaluated at each corresponding level.  This plot shows a FFE with 10 

levels. A much larger spread at lower displacements is observed because these values 

produce the largest vertical accelerations.  As the displacement values increase, the 

vertical acceleration range is reduced.  It is important to note that at each displacement 

value, the same number of points is being evaluated, which means that they are much 

more concentrated at higher displacement values.  

 

Figure 4.10 provides the basic layout of the design space for displacement, but it is more 

important to see how the feasible points vary depending on displacement values.  Figure 

4.11 is a plot of only the feasible points from Figure 4.10.  Feasibility is determined 

based on constraints defined by the functional design group and the limitations of the 

calculation method.  When compared to Figure 4.9, the vertical acceleration range in 

Figure 4.11 is much smaller.  The plotted line is the average feasible vertical acceleration.  

The feasible vertical acceleration is shown to decrease as displacement increases in a 

more descriptive manner than the MEP.  This information can be used by the functional 

designer to provide preferences on variable values.  The larger displacement values 

would be preferred because the objective is minimized in that area.  
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Figure 4.10: All Evaluated Points for the Seakeeping Displacement Variable 

 

Figure 4.11: Feasible Points for the Seakeeping Displacement Variable with Average 

Feasible Vertical Acceleration Line 

 

Corresponding to the plots in Figure 4.10 and Figure 4.11, the percentage of feasible 

points at each displacement value can also be determined.  Figure 4.12 shows the percent 

feasibility for the seakeeping displacement variable.  At lower displacement values, there 

are significantly fewer feasible points than at higher values.  Also, the maximum 

percentage of feasible points is only a little more than 40%.  The trend in Figure 4.12 can 

be useful to determine the more constrained areas of the design space.  While lower 

displacement values have lower feasibility, it does not mean that they should be 

eliminated at this point.  
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Figure 4.12: Percent Feasibility Plot for Seakeeping Displacement Variable 

 

One way the information provided in Figure 4.12 can be used is to aid a designer in 

making set reduction.   There is a higher probability of reduction in the more feasible 

regions.  While the lower feasibility regions should not be ignored, effort should be 

focused in the areas that have a higher probability of reduction.  There is a potential 

conflict when there are high feasibility regions with less-preferred objective values. The 

example provided in Figure 4.10 and Figure 4.11 show similar trends assuming higher 

feasibility is more preferred, but this is not always guaranteed. 

Therefore, it seems that some combination of the average objective value and percent 

feasibility could be used to aid in preference generation.  There is a potential concern that 

sets will not converge if focus is placed solely on the objective value.  The importance of 

feasibility and optimizing the objective depends on the current stage of the design.  At the 

earlier stages of design, greater focus should be placed on the higher feasibility regions, 

while at later stages it would be legitimate to focus on lower percentage regions with 

more optimal objective values.  This first ensures feasibility and then focuses on 

optimizing the functional design objective. 

 

4.3.2.3 Robustness 

The design facilitation tool can also determine how a requirement change further 

constrains the design space and in what areas.  By identifying the highly constrained 

areas, a more robust decision can be made where changes do not affect the design as 
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much as others.  As discussed earlier, SBD can handle changing conditions through the 

negotiation of set-ranges.  Regardless of the method used, requirement changes affect, 

and in most cases constrain, the design space.  These effects can be visualized using the 

design facilitation tool by evaluating the feasibility of various changes.  Figure 4.13 

shows a series of percent feasibility plots for the same seakeeping displacement variable 

as earlier, but at various significant wave heights.  As the significant wave height 

requirement is increased, the percent feasibility decreases.  While the slopes are similar, 

there is no direct linear relationship between the different feasibilities.  This demonstrates 

that requirement changes can further constrain the design in certain areas more than 

others. 

 

Along with the percent feasibility plots, the average feasible vertical accelerations 

associated with the requirement changes can also be calculated.  Figure 4.14 shows these 

relationships for changes in the significant wave height requirement.  As the significant 

wave height increases, the average vertical accelerations also increase.  Due to 

constraining the design further, the more preferred objective values are no longer 

obtainable. 

 

 

Figure 4.13: Seakeeping Displacement Variable Percent Feasibility Plots for Significant 

Wave Height Requirement Changes 
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Figure 4.14: Seakeeping Displacement Variable Average Feasible Vertical Accelerations 

for Significant Wave Height Requirement Changes 

 

The designer can use the information provided in Figure 4.13 and Figure 4.14 to evaluate 

design requirement set-ranges instead of discrete requirements.  For example, if the 

significant wave height requirement was defined as the set [4, 10], then Figure 4.13 and 

Figure 4.14 can be used to show designers how this affects the design space.  It is 

important to reiterate that the significant wave height is a requirement; therefore, it 

cannot be a negotiated variable for which design groups have preference.  While the 

lowest displacement value in Figure 4.14 is feasible for significant wave heights 4–8 feet, 

it is infeasible at 10 feet.  This shows the designer that the design is more constrained at 

these lower displacement values. 

 

Percent feasibility plots can take many different forms and the example provided in 

Figure 4.13 is by no means representative of all types of variables, functional design 

groups, or requirement changes.  Various shapes and sizes can provide the designer with 

information that can be communicated to the chief engineer to better guide set reduction.    

 

4.3.3 Human Designer Input 

While gathering data on the design space is the first step towards preference generation, 

the analysis and interpretation of the data is much more difficult to accomplish.  Input 
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from human designers and their evaluation of the design space is essential in the SBD 

method.  

 

The developed design facilitation tool aids designers in understanding the required 

information to both provide preferences and communicate during SBD.  Variable impacts 

on functional design objectives have proven to be beneficial, but do not consider all 

aspects of a situation that a designer requires.  The tool can analyze the evaluated points, 

the feasible regions, and the average objective values.  The designer can then take the 

analysis results and apply them to preference generation while understanding that an 

optimal objective value is sometimes not as important as the percent feasibility.  The 

method can also be used to determine how the design space becomes constrained under 

requirement changes.  Though the information used by the designer can be generated 

multiple ways, the types of analysis provided within this tool can help transition a 

designer to a set-based mentality that can improve communication and set reduction 

during the SBD method.  

 

4.3.4 Method Limitations 

While the developed design facilitation tool can aid a designer in preference generation 

and transitioning to set-based thinking, the ability of its analysis to understand design 

relationships and their impact on the reduction process is lacking.  The tool is used at the 

functional design level, meaning that similar analysis is being conducted by other groups 

with different design perspectives.  For simple problems, such as the one presented in this 

section, the design relationship analysis was able to provide a good understanding of the 

impact of variables on functions and the feasibility of solutions. However, in order to link 

the analysis of different functions together and determine the same design relationships 

for larger-scale problems, an increased level of synthesis and decreased level of fidelity 

of analysis would be required.  This can take the human designer out of the design 

process, and can also lead to the requirement of lower fidelity models that oversimplify 

analyses.   
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As one of the major goals of this research was to develop a structure that supported 

concurrent engineering, this research direction was not extensible.  After identifying the 

limitations of the design facilitation tool for understanding large-scale design 

relationships for team-based design, the explicit goal of identifying relationships through 

the use of an alternative method, perhaps using only variable preferences, was defined.   

 

4.4 Chapter Summary 

The previous chapter highlighted the current challenges associated with SBD execution, 

as well as the limitations of current research on SBD execution.  Two major areas of 

interest were defined, including understanding design relationships and the temporal 

dynamics associated with the guidance of set reduction.  Building on research completed 

by Singer (2003) and Gray (2011), the initial case study and the use of the design 

facilitation tool provided additional insight on the two focus areas.   

 

Through the evaluation of Singer (2003) and Gray’s (2011) research, potential areas of 

further development were identified.  Most importantly, the guidance of the set reduction 

process was heuristic, yet reduction decisions greatly impacted the feasibility of a design.  

Also, the success of a design during the reduction process and under changing conditions 

was not defined, except for an evaluation of feasibility.  Finally, certain design 

relationships were ignored, including the relationship between design variables and 

functions of variables (objectives or requirements).  A set reduction framework that 

considers changing design relationships and reduction decision impacts is desired. 

 

An initial case study revealed that providing preferences can be a difficult challenge 

without any support.  Also, without any support, apart from preferences and expertise, the 

chief engineer had to make reduction decisions.  A design facilitation tool, developed by 

the author, was then presented to address the problem of understanding design 

relationships and improve the preference generation process.  While this tool can 

facilitate the transition to set-based thinking and preference generation, it is not 

extensible for larger scale problems without increasing the level of synthesis and 

decreasing the level of fidelity of analysis.  Due to both issues being counter to the 
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original goal of supporting CE, the need for an alternative method to understand design 

relationships was determined.  

 

It has been identified that SBD is able to handle changes and that the set reduction path 

plays a role in the outcome, but the specific links for certain situations between reduction 

and outcome has not been established.  The next chapter completes a more in-depth 

analysis of the set reduction process by developing metrics that can be used to describe 

the reduction process and conducting design experiments to better understand design 

relationships under changing conditions. 
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Chapter 5: Detailed Design Experiment 

 

 

The anecdotal conclusions from the initial case study provide an increased understanding 

of how the SBD method operates and is able to handle changes.  The developed design 

facilitation tool extended upon this basic understanding by identifying critical 

information for designer generated preferences and set reduction.  A detailed design 

experiment, which is discussed in this chapter, was conducted to determine the link 

between reduction path, variable preferences, and the ability to handle design changes.  

By identifying lag indicators from the experiment associated with the ability to handle 

changes, the development of lead indicators that can potentially avoid unfavorable set-

range combinations can be achieved.  The formulation of the detailed design experiment 

and a presentation of its initial results are described in McKenney, Gray, Madrid, and 

Singer (2012).  A FL design tool, described in the previous chapter, was utilized to 

simplify communication between design variables and solutions within the SBD 

environment by automating aspects, such as data collection and analysis, while allowing 

for human designer input.  Multiple SBD experiments instituting varying magnitudes and 

timings of design changes were conducted using the FL SBD tool.  By documenting how 

the SBD method handles changes in designer preferences, the impact of design 

requirement changes were determined and a link between reduction path and the ability 

to handle changes was established.  

 

Additionally, before analyzing the experiment’s results, multiple metrics were developed 

to better describe set reduction through the identification of trends in the data.  These 

metrics can improve the ability to evaluate experimental or actual results of a SBD effort
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and can be a used as a starting point in the guidance of set reduction decisions.  This 

chapter focuses first on the detailed design experiment and its associated design, a 

planing craft.  Experimental results and their associated implications for guiding set 

reduction are then presented. 

 

The novel contributions presented in this chapter are: 

 

 A demonstration of the robustness of the SBD method through its ability to 

handle design changes of varying magnitude at various stages of the reduction 

process 

 The development of metrics that improve the understanding and analysis of set-

range reduction and changing preferences through time 

 

5.1 Experiment Preparation 

After selecting a planing craft design for the experiment, a basic mission profile and 

requirements were developed.  Also, planing craft functional design groups and variables 

were selected.  Finally, a computational design tool was developed for each functional 

group. 

 

5.1.1 Representative Mission 

The basic mission profile and general requirements for the planing craft design were 

based on the Mark V Special Operations Craft.  The Mark V is mainly used to carry 

Special Operation Forces such as Navy SEALs into and out of operations.  Secondary 

missions include coastal patrol and interruption of enemy activities.  A typical 

detachment consists of two Mark V crafts that can be transported by two C-5 cargo plane 

or launched from a well or flight deck (U.S. Navy, 2009).  The general characteristics of 

the Mark V were used to verify the developed design tools and helped to generate the 

initial ranges for the variables.  The basic design requirements adapted from the Mark V 

mission profile included speed, range, payload, and sea state (Federation of American 

Scientists, 2010). 
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5.1.2 Functional Design Groups 

The initial stages of a SBD approach require the determination of functional design 

groups (i.e. weights, stability, etc.) for the planing craft design.  The functional groups for 

these experiments were selected based on general components of most planing craft.  The 

selected functional groups include: 

 

 Resistance, 

 Seakeeping, 

 Dynamic Stability, and 

 Weights. 

 

For the purposes of the experiments discussed in this paper, these four functional groups, 

represented as design agents in the SBD tool, provide enough information about the craft 

to simulate a set-based preliminary design.  For a more detailed analysis, additional 

functional groups could be added in areas such as propulsion, arrangements, and 

structures. 

 

Each functional design group had an objective that they hoped to achieve while 

incorporating all aspects of their focus area.  Their objectives are:   

 

 Resistance: minimize the resistance of the hull   

 Seakeeping: minimize vertical accelerations for the given sea state requirement 

 Dynamic Stability: minimize trim to reduce porpoising effects 

 Weights: minimize a weight criteria value that ensures displacement is greater 

than the weight estimate 

 

Resistance of the hull describes the effort required to move the ship through the water 

and is directly related to the power required to attain certain speeds.  Vertical 

accelerations, especially on high-speed small craft, are of major concern for both the 

safety of the crew and vessel, and their ability to operate.  A particular concern for small 

craft when planing is dynamic instability.  Porpoising is the dynamic coupled pitch-heave 
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oscillations that should be avoided.  Finally, the most basic consideration naval architects 

have to consider is if the ship can float, which is determined through a hydrostatic 

analysis of weight and displacement of the hull.    

 

While each group has a specific objective, there are other factors that should be 

considered when providing their preferences. The additional non-quantitative 

components of design are considered by designers when generating preferences.  For 

example, a designer might have an understanding of the limitations of the methods they 

are using to calculate their objectives.  If a result does not appear logical, then the 

designer can modify their preference to reflect the most appropriate estimate.  

 

5.1.3 Variables and Requirements 

Variables and parameters were selected for the planing craft design based on their 

influence on the design itself, and whether or not they were required by the agents.  Using 

the four design agents, variables were selected based on the possibility of conflicting 

preferences between two or more agents.  A preference can be defined as the degree to 

which certain design variable values favored.  For a SBD, negotiated design variables 

usually include the principal dimensions of the craft, because most agents have 

preferences for these values.  The number of variables was limited to those needed by the 

mainly empirical methods used by the design agents and with the purpose of simplifying 

the experiments.  The selected design variables were length (L), beam (B), deadrise (β), 

longitudinal center of gravity (LCG), and full load displacement (Δ).  The five variables 

were chosen to represent the values with the most significant impact on the planing craft 

design.  Negotiation of a design variable is only required when functional agents prefer 

different values.  For displacement, higher values increase resistance while lowering 

vertical accelerations.  A higher deadrise increases resistance but decreases vertical 

accelerations.  For the longitudinal center of gravity, an LCG further from the stern 

increases resistance while reducing trim.  These trade-offs dictate the negotiation of these 

design values.   
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There are also design requirements based on the representative mission that are provided 

to the design agents.  These requirements include speed, range, payload, and a 

representative wave height associated with a sea state.  While ranges of design 

requirements would normally be used in a full SBD, this experiment used single, discrete, 

requirement values.  A single value was chosen because the SBD approach was being 

utilized to determine the potential design space for a planing craft preliminary design, as 

opposed to searching for a single feasible solution.  Another aim of the experiment was to 

test the robustness of the SBD process rather than the value of SBD.  The benefits of 

SBD have already been discussed at length in Chapter 2.  The negotiated variables and 

design requirements can be seen in Table 5.1. 

 

Table 5.1: List of Negotiated Variables, Requirements, and Interactions 

 

 

5.1.4 Tool Development 

Each design agent needs a tool to conduct analysis for the functional component of the 

design.  These tools could range from a simple spreadsheet to sophisticated software.  A 

large part of the preparation for the experiment included determining which tools to use 

for each design group.  All tools were developed based on accepted methods from the 

planing craft field.  Some tools used first principles while others were empirically-based 

equations.  Also, a design methodology was developed to aid the design agent in charge 

of using the tool.  In an attempt to make the experiments run as smoothly as possible, 

substantial effort was put into making sure the agent evaluation process was as clear and 

user-friendly as possible.  The developed tools automated the design space exploration to 

Unit Resistance Seakeeping Stability Weight

Variables

Length (L) ft N N N

Beam (B) ft N N N N

Deadrise (β) deg. N N N N

Long. Center of Gravity (LCG) ft from stern N N

Full Load Displacement (Δ) lbs N N N N

Requirements

Speed (Vk) kts In In In In

Range nm In

Payload lbs In

Significant Wave Height (h1/3) ft In

In = Input N = Negotiated
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ensure that a large sample of combinations of variable values was evaluated.  This was 

previously introduced as the design facilitation tool in Chapter 4, and was used during the 

experiments to evaluate the design space for each design group.  Each subsection will 

discuss the tools in more detail and provide the references used.  

 

After defining the tools used by the design agents, the inputs can be identified to form a 

better idea of how the variables and requirements interact between agents.  Selecting the 

agents’ tools also dictates which inputs are required.  Table 5.1 provides the interactions 

between the variables and requirements of the agents.  This table also provides an 

overview of the inputs and outputs of each agent, as well as a glimpse into which 

variables and requirements are important to the agents. 

 

5.1.4.1 Resistance Tool 

The objective of the resistance agent is to minimize the resistance of the planing craft.  

Savitsky’s method was used to estimate the calm-water resistance of the planing craft 

design for this research (Savitsky, 1964).  Using additional resources on Savitsky’s 

method, an existing MATLAB program was modified for the Resistance agent to use 

during the experiments (Doctors, 1982).  Due to the small impact on the estimated 

resistance, values for the vertical center of gravity (VCG) and shaft angle were assumed 

and held constant.  Constraints on the objective function were related to the limitations of 

the method used.  These constraints included restrictions on trim (τ), average wetted 

length-to-beam ratio (λw), and beam Froude number (FnB). 

 

5.1.4.2 Seakeeping Tool 

The objective of the seakeeping agent is to minimize vertical accelerations.  The wave 

impact accelerations were estimated using a method described by Savitsky (1985).  There 

are certain limitations to this method, including a restriction on the acceptable length-to-

beam ratio.  Also, the American Bureau of Shipping (ABS) Guidelines on vertical 

accelerations for a planing craft were used to provide additional constraints (ABS, 2007).  

This was the same tool used as a case study when describing the design facilitation tool 

discussed in Chapter 4.   
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5.1.4.3 Dynamic Stability Tool 

The objective of the dynamic stability agent is to minimize trim to reduce porpoising 

effects.  Porpoising has been shown to depend strongly on trim angle (Celano, 1998).  A 

critical trim value can be calculated to estimate when porpoising will occur (Sun & 

Faltinsen, 2011).  In order to stay away from this region, calculated trim should remain 

below this value.  Trim calculations were made using methods provided in Faltinsen’s 

“Hydrodynamics of High-Speed Marine Vehicles” (Faltinsen, 2005).  The critical trim 

value was used as a constraint for the dynamic stability agent. 

 

5.1.4.4 Weight Tool 

The objective of the weight agent is to minimize a weight criteria value that ensures 

displacement is greater than the weight estimate.  The lightship weight estimation uses a 

modified Karyayanis method (Grubisic, 2008; Karyayanis, Molland, & Sarac-Williams, 

1999).  Fuel weight is calculated by using the provided speed and range.  The payload 

weight is provided as an input, and the total estimated weight is compared to the full load 

displacement.  The first constraint restricts the total buoyancy to a particular positive 

value.  The second constraint restricts the draft to be within a small percentage of the 

chine height.  The draft is then calculated using the geometric properties of the planing 

craft and the full load displacement associated with those dimensions.   

 

5.2 Screening Experiment 

Typically, before a large experiment is completed, a smaller-scale screening experiment 

is used to better understand important factors and aspects.  When there are many different 

potential factors involved in an experiment, screening can be used to reduce the number 

of design parameters.  This is done by identifying important design parameters that affect 

the overall goal of the experiment (Antony, 2003).  For this research, there were four 

main goals in completing a screening experiment: 

 

1. Determine reasonable initial ranges and ensure feasible regions exist 

2. Determine how long an experiment takes 
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3. Determine how many rounds are typical for this type of experiment 

4. Determine what type of change should be implemented for the experiment 

 

Before the screening experiment could begin, a complexity metric had to be defined to 

describe the various design changes that would be implemented.  The first three goals are 

discussed in Section 5.2.2, and the final goal is discussed in Section 5.2.3.   

 

5.2.1 Complexity Metric 

The complexity metric used for the experiment was initially presented in Chapter 2 when 

discussing cost escalation and its relation to increasing system and design complexity.  

When discussing the complexity of a design change in this paper, it is referring to the 

change to the design process, not the change in complexity of the planing craft design 

itself.  Identifying how complexity affects a design process is important because 

complexity usually leads to fragile designs that are sensitive to small perturbations 

(Colwell, 2005).  For the purposes of this experiment, a general complexity metric can be 

identified using basic dependencies between design activities, or agents in our 

experiments.  Maier and Fadel (2004) describe an approach to measuring complexity 

“…based upon the coupling between design targets and design variables.  The underlying 

assumption here is that the more coupled the design problem, the more complex it is” (p. 

3).   

 

By looking at the coupled nature of the planing craft design problem, a complexity metric 

can be used to identify different levels of design changes.  A change impacting only one 

agent is not as complex as a change impacting every agent.  Additionally, if two changes 

affect an equal number of agents, the higher complexity change is the one that constrains 

the design more and makes it more sensitive to failure.  For example, if two changes 

impact the same number of design groups, the one with the greater magnitude is more 

complex.  This was tested and concluded to be valid during the screening experiment. 
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5.2.2 Initial Design Space Exploration 

The initial design space exploration was used to ensure that there were feasible regions of 

the design space.  For logistical purposes, the experiment length and the number of 

rounds needed for reduction were also identified.  A round is defined as a completed 

negotiation on every design variable.  Once all agents provide preferences for each 

variable, a chief engineer determines updated set-ranges, which initiates another round of 

negotiations.  After completing the screening experiment, it was determined that feasible 

regions do exist within the design space, each experiment takes about one hour, and five 

rounds is the typical number of rounds required for reduction. 

 

5.2.3 Design Change Selection 

There were two general types of changes that were tested in the screening experiment.  

The first type of change was increasing the magnitude of a design requirement.  The 

design requirements that could be used were speed, range, payload, or significant wave 

height.  The second type of change was restricting a region of the variable space.  For 

example, a requirement for the planing craft to be transported in a C-5 cargo plane would 

restrict the beam.  Another change could institute a weight limitation for craning.  The 

impact of each type of change (speed increase and beam restriction) was tested in the 

screening experiment.  In order to test the hypothesis that the SBD method is robust 

enough to handle design changes, the selection of a design change was based on its total 

impact on all agents.  An increase in speed was selected as the final design change for the 

experiments due to the larger total impact on agents and how preferences shifted after a 

speed change was implemented.  

 

5.3 Design of Experiments 

The hypothesis developed to guide the design of experiments was that the SBD approach 

is robust enough to handle design changes of varying complexity at different times.  

There were two design parameters considered for the experiments: timing and magnitude 

of a change.  The three levels associated with timing were early, middle, and late.  These 

levels corresponded to a change at the beginning of round three, four, and five, 

respectively.  The levels associated with the complexity of a change, which was defined 
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earlier as an increase in magnitude of the speed requirement, were no change, moderate 

change, and large change.  For the experiments, the speed was initially set to 45 knots.  

The second level was set to 47 knots followed by a third level set to 50 knots.   

 

Due to a simplified design of experiments, replications of the experiments could be 

readily completed.  “Replication means repetitions of an entire experiment or a portion of 

it, under more than one condition” (Antony, 2003, p. 9).  The major condition change 

between replications was that different human designers were used.  It is worth noting 

that the unchanged experiments were considered a baseline test rather than an actual level 

of magnitude.  This means that the unchanged magnitude did not have to be tested at all 

three timings.  With this is mind, there were seven different types of experiments, with 

three replications of each type of experiment, meaning a total of 21 experiments were 

conducted.  Table 5.2 provides a list of the experiments conducted. 

 

Table 5.2: Detailed Design of Experiments 

 
 

The response characteristic for the experiments was robustness, which is defined as the 

observed number of times the current set-ranges could not handle a design change, or 

“failure opportunity.”  The process is able to continue after a failure opportunity occurs 

by reopening set-ranges to regain feasibility.    

 

5.4 Reduction Visualizations and Metrics 

Interpreting the experimental results was initially challenging, due to the fact that there 

are 420 preference curves available for review (21 experiments, 5 rounds, and 4 

variables).  In an effort to expedite the analysis of experiment results, a visualization 

Experiment Magnitude Timing Experiment Magnitude Timing Experiment Magnitude Timing

1 Unchanged - 8 Unchanged - 15 Unchanged -

2 Moderate Early 9 Moderate Early 16 Moderate Early

3 Moderate Middle 10 Moderate Middle 17 Moderate Middle

4 Moderate Late 11 Moderate Late 18 Moderate Late

5 Large Early 12 Large Early 19 Large Early

6 Large Middle 13 Large Middle 20 Large Middle

7 Large Late 14 Large Late 21 Large Late

Replication 1 Replication 2 Replication 3
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technique and reduction metrics were developed.  These techniques provide the ability to 

analyze and understand set reduction efforts in a simple and easy-to-understand format. 

 

As part of the work completed in collaboration with Gray, Madrid, and Singer (2012), a 

three-dimensional visual representation of a set reduction through time was developed.  

Figure 5.1 provides an example of reduction visualization for the beam variable.  The 

three axes show the beam values, the JOP level, and the round number.  Starting from the 

back of the figure in round one and moving forward to round five, the narrowing of the 

set-ranges can be seen.  This visualization can provide a designer with a good 

understanding of a reduction for a single variable and experiment.    

 

 

Figure 5.1: Beam Reduction with No Design Change (Exp. 15) 

 

While this visualization technique reduces the amount of figures to analyze due to the 

consideration of the preferences through time, 84 of these figures exist for the experiment 

results.  To reduce the amount of figures further, weighted mean and standard deviation 

metrics were developed to provide a quantitative assessment of a reduction process.  

These metrics can then be plotted for all three replications of a variable at the same time.  

This would reduce the total number of figures to 28, a much more manageable number 

than a total of 420 initially.  These metrics can be used both during an actual SBD 
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process as an intermediate reading of where the design is going or as a post-processing 

technique to evaluate what led to a specific result.     

 

The first step in the development of the metrics was being able to accurately describe the 

preferences of a JOP curve.  This was done using a weighted mean that, in a sense, finds 

the variable value that is associated with the center of the area under the JOP curve.  

Next, a standard deviation using the weighted mean can be calculated to describe the 

spread of the JOP curve around that weighted mean.  By evaluating how these two values 

change between rounds, both the direction the design is heading and the rate of reduction 

can be determined in a quantitative manner. 

 

For the weighted mean calculation, the design variable values are defined as data points 

(x) and the weights (w) are defined as the corresponding JOP levels.  The weights are 

normalized to sum to one to simplify the calculations.  For the non-empty data set 

{          } with non-negative weights {          }, the weighted mean is: 
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∑   
 
   

 
                

          
       (5.1) 

 

If the weights are normalized such that they sum to one (∑      
   ), the normalized 

mean equation simplifies to: 
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          (5.2) 

 

The weighted standard deviation can be calculated using the equation: 
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       (5.3) 

 

When the weights are normalized, the equation simplifies to: 

 

  √∑   (    ̅)  
         (5.4) 
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An example of weighted mean and standard deviation values for the unchanged design 

scenario (three experiments) for the beam variable for all five rounds is provided in 

Figure 5.2.  Each line corresponds to a specific experiment.  There were three unchanged 

experiments; therefore, there are three lines.  Rather than interpret each individual three-

dimensional JOP plot, one figure can be used to represent the same information in a 

simplified format.  It can be seen, for example, that there are two reduction paths taken 

by the three experiments: two converged to lower beam values, while one converged in a 

much different manner to higher beam values.  Also, the reduction rate can be visualized 

much easier using the standard deviation plot. 

 

 

Figure 5.2: Weighted Mean and Standard Deviation Reduction Plots 

 

Additional metrics based on the weighted mean and standard deviation calculations can 

also be introduced, including the slope and intercept of both between rounds.  This would 

identify a specific reduction rate and direction the design is heading in.  The development 

of these metrics are reserved for future work. 

 

5.5 Experiment Results 

The SBD experiments were conducted over the course of three days with the help of 

eight volunteers.  Volunteers were rotated to multiple agent positions depending on the 
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ability to change the conditions of each experiment replication.  Experiment organizers 

completed the chief engineer role for each experiment, as a detailed understanding of the 

SBD approach was needed for this role.  As mentioned earlier, a total of five rounds of 

negotiations occurred during every experiment.  At the end of each round, the chief 

engineer made a decision to reduce the variable set-ranges.  These decisions dictated the 

starting set-ranges of the next round.  After completing the experiments, initial results 

regarding confirmation of convergence, agreement between replications, and handling 

design changes could be identified.  There were also a few special cases where a failure 

opportunity occurred after a change was implemented, which are discussed individually 

to identify root causes. 

 

5.5.1 Confirmation of Convergence 

Before looking at how the implemented design changes affected the SBD approach, it is 

important to identify the baseline experimental results without a design change.  Three 

tests were conducted without implementation of a design change.  Figure 5.3 shows a 

general reduction for the variable beam with no design changes implemented (experiment 

15).  The three axes show the beam values, the JOP level, and the round number.  

Starting from the back of the figure in round one and moving forward to round five, the 

narrowing of the set-ranges can be seen.  Also, as certain values of the variables became 

infeasible and the chief engineer reduced the sets, the preference levels changed based on 

updated evaluations by the agents involved; this too can be seen in Figure 5.3.  Even 

though there seems to be a preference for higher beam values in round two, the 

preferences change in the next round.  The change in preference is a result of the other 

design variable set-ranges changing and the updated overlapping feasible regions existing 

between agents. 
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Figure 5.3: Beam Reduction with No Design Change (Exp. 15) 

 

Narrowing of the set-ranges for every design variable occurred at the end of each round 

in all experiments, to varying degrees.  For example, larger changes that greatly impacted 

preferences resulted in wider final set-ranges due to the effort taken to resolve the issues 

associated with the change.  Set reduction was controlled by the chief engineer agent.  

The rate of reduction varied for each variable, which is due to the impact of that variable 

on the agents’ objectives.  For instance, the deadrise remained open longer than the other 

variables.  This was because most deadrise values were initially feasible and deadrise did 

not substantially influence the objectives.  As the other variable set-ranges narrowed, 

fewer deadrise values were feasible, which caused it to narrow to a smaller range of 

values.   

 

5.5.2 Agreement between Replications 

Although narrowing occurred for all variables in every experiment, the reduction rates 

and final variable set-ranges for replications of the same experiment type varied.  These 

outcomes highlight the nature of the design space; most notably, that it is relatively 

unconstrained.  This can be seen by analyzing the final set-ranges for a given experiment 

type.  Figure 5.4 and Figure 5.5 are the other two replications of the experiment type 

discussed in the previous section for the beam with no design change (the first replication 

can be seen in Figure 5.3).  The final set-ranges shown in Figure 5.4 and Figure 5.5 are in 
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the same general region between 12-17 feet.  The final set-range for the other replication 

(Figure 5.3) is in the region between 20-25 feet.  Both regions are feasible and show high 

preferences, but are in different areas of the design space.  This same occurrence can be 

seen for other variables and experiment types.  In a more constrained design space, 

dictated mainly by the initial requirements, there would be fewer feasible areas that the 

set-ranges could converge towards.   

 

 

Figure 5.4: Beam Reduction with No Design Change (Exp. 8) 

 

Figure 5.5: Beam Reduction with No Design Change (Exp. 1) 
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Agreement between replications is not a necessity when evaluating whether set-ranges 

converge and how design changes are handled.  During experiments conducted by Gray 

(2011), the unconstrained design scenarios resulted in a wider range of final set-ranges, 

while the constrained design scenario led to either a more specific set-range area or a 

failure occurred.  It is important to note that the results of the experiments are not 

invalidated by a difference in where the set-ranges are reduced.  In the experiments, 

emphasis was placed on the ability to converge in a feasible region and manage design 

changes, and not on identifying agreement between replications. 

 

5.5.3 Design Changes 

The main objective of the experiments was to evaluate how the SBD process handles 

design changes at various times during the design process.  As the two magnitudes of 

speed change, the change in timings affects the process in different ways.  Also, the 

design changes impact the preferences of agents for certain variables more than others.  A 

general evaluation of trends related to both timing and magnitude are first discussed, 

including how agent preferences are modified when a design change is implemented.  

The next section focuses on the specific experiments that had interesting results to 

identify the potential causes of these failure opportunities.    

 

5.5.3.1 Effects of Varying Magnitudes 

There were a series of observations in evaluating the impact of varying magnitudes of 

changes.  Two important factors to look for are the reduction path taken and the final set-

range values.  By looking at the reduction path, a potential link can be identified between 

set reduction decisions made by the chief engineer and the ability to manage changes.  

Also, more general observations were made on how large or small final set-ranges are 

under the various conditions.  Another factor to look for is how preferences of variable 

set-ranges are modified after a change occurs.  By looking at an increasingly more 

complex change that is instituted, one can better understand how a set-based approach 

handles these changes.   
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A good example that can be used to better understand the two factors discussed in the 

previous paragraph is looking at the length JOP for three experiments with varying 

magnitudes of design change.  It is important to note that the design changes all occur at 

the beginning of round four.  Figure 5.6, Figure 5.7, and Figure 5.8 show the JOP plots 

for three separate experiments.  The first experiment (Figure 5.6) does not have any 

design change implemented.  This can be used as a baseline.  The second experiment 

(Figure 5.7) corresponds to a moderate speed change from 45 to 47 knots at the beginning 

of round four.  The third experiment (Figure 5.8) corresponds to a large speed change 

from 45 to 50 knots at the beginning of round four.  These figures can be used to form 

some basic observations.  

 

 

Figure 5.6: Length JOP Plot with No Change (Exp. 1) 
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Figure 5.7: Length JOP Plot with Moderate Change in R4 (Exp. 17) 

 

 

Figure 5.8: Length JOP Plot with Large Change in R4 (Exp. 20) 

 

The first observations focus on the reduction paths and final set-range values.  Initial 

observation of the figures identify that round one preferences were similar for all three 

experiments.  It is evident that, while there were higher preferences for larger and smaller 

values for the no change experiment, all three experiments converge towards the same 

general region.  In the moderate and large change case, the impact of that change can be 

seen by looking at the JOP plot for round four.  This shift in peak preference values is 
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more distinct for the large change than the moderate change, which would make sense 

because the large change should more greatly impact the solution space.   

 

While analyzing the JOP curves is the easiest way to identify the impact of design 

changes, taking the analysis a step further by evaluating each design group’s membership 

functions (MFs) can provide additional insight.  The MFs generated by each agent are 

combined through the FL system to make the JOP curves used by the chief engineer who 

then reduces the set-ranges.  After using the assigned tool to evaluate the design space 

within the set-ranges, the agent generates MFs to define preferences for regions of the 

set-range.   

 

Figure 5.9 shows MFs generated by the resistance agent for the length variable 

throughout several negotiation rounds, including the implementation of a major change in 

required design speed during round four.  Starting from the top,  

Figure 5.9 shows the resistance agent’s MFs from round three through round five for the 

length negotiation.  Solid lines represent the boundaries of preferred regions; dotted lines 

represent marginal regions; and dashed lines represent unpreferred regions.  The labels P, 

M, and U also correspond to the regions described above. 
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Figure 5.9: Resistance Membership Function for Length 

 

It can be seen in Figure 5.9 that there is a strong preference towards values roughly 

between 60 and 70 feet in round three.  After the major design change was implemented 

in round four, the preference region shifted to between 90 and 95 feet.  After further 

negotiation in round five, an unpreferred region develops and the preferred region moves 

slightly towards a value of 80 feet.  The scales for length on each round plotted in Figure 

5.9 are the same.  This shift in preference can also be seen in the JOP plot in Figure 5.8.  

The resistance agent had the most influence in the shift seen in Figure 5.8.  This is 

reasonable from a ship design perspective because, as the speed requirement increases, 

resistance can be further reduced by increasing the length.  

 

Another interesting observation is the final set-ranges for each case.  For the no change 

experiment, the final set-range was 70-90 feet (a range of 20).  This is much narrower 

compared to the other two experiments.  The moderate change experiment final set-range 

was 64.5-95 feet (a range of 30.5) and the large change experiment final set-range was 
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55-107 feet (a range of 52).  This seems somewhat counterintuitive because one would 

likely reason that as the change became larger, the solution space would be further 

constrained; however,  when thinking about the true impact of change, the role of the 

chief engineer and their reduction decisions become more significant.  After a change is 

implemented, the chief engineer would want to keep the set-ranges open longer than 

normal to understand the impact of that change and redirect the reduction path towards 

the new preferred region.  A larger change requires more time to figure out its actual 

impact, which can be an explanation for the round five set-range values being larger as 

the design change becomes larger.  This translates to a shift in the rate of reduction while 

the impact of the design change is identified and set reduction continues; however, this 

could be a function of the set-range values of a particular variable at the time a design 

change was implemented.  Additional discussion of this topic is presented in the next 

section. 

 

While these observations provide insight, there are other experiments that do not identify 

such a clear impact of design changes on their JOP plots and the set reduction process.  

The other replications of the same scenarios discussed earlier were also evaluated to 

better understand this difference.  Figure 5.10 and Figure 5.11 are the length JOP plots 

for the other two replications of the no change scenario, Figure 5.12 and Figure 5.13 are 

the length JOP plots for the other two replications of the moderate change scenario, and 

Figure 5.14 and Figure 5.15 are the length JOP plots for the other two replications of the 

large change scenario.  Figure 5.14 does not have any JOP for round four due to all set-

range values being infeasible for one of the agents.  This will be discussed in Section 

5.5.4 on special cases. 
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Figure 5.10: Length JOP Plot with No Change (Exp. 8) 

 

 

Figure 5.11: Length JOP Plot with No Change (Exp. 15) 
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Figure 5.12: Length JOP Plot with Moderate Change (Exp. 3) 

 

 

Figure 5.13: Length JOP Plot with Moderate Change (Exp. 10) 

 



145 

 

 

Figure 5.14: Length JOP Plot with Large Change (Exp. 6) 

 

 

Figure 5.15: Length JOP Plot with Large Change (Exp. 13) 

 

As mentioned in the explanation of agreement between replications of the same scenario 

in Section 5.5.2, it was determined that the design space was relatively unconstrained (i.e. 

there were multiple feasible combinations of final variable values).  This can be validated 

again when looking at the replications of the length of JOP plots.  Figure 5.6, Figure 5.7, 

and Figure 5.8 identified length values converging towards set-ranges between 70-100 

feet.  Figures 5.10-5.15 identify length values converging towards set-ranges between 

100-150 feet.  This is not too unexpected given the unconstrained nature of the design 
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problem, but what is interesting when looking at this alternative reduction path is the 

impact of design change on the preferences for set-range values.   

 

While slight shifts in preferences can be seen on some of the figures, most do not show 

any dramatic changes.  One explanation for this is that this alternative reduction path was 

able to accommodate change better than the one converging towards the lower length 

values.  Higher length values provide an opportunity to handle increased speeds by 

reducing resistance.  From an impact standpoint, it can be seen that certain reduction 

paths lead to less of a change in JOPs, which can be interpreted as a more robust path to 

changing conditions.  

 

The ability to handle design changes is theoretically based on the use of set-ranges as 

opposed to discrete values.  Similar to being able to better manage changes based on the 

reduction path taken, observations also show that set-ranges with larger ranges can better 

manage design changes.  Using the same length JOP plots used throughout this section, 

corresponding to nine total experiments associated with three scenarios, the set-ranges in 

round four can be identified.  Table 5.3 highlights these values.   

 

Table 5.3: Length Round 4 Set-Range Values and Ranges for Round 4 Changes 

 
 

Min Max Range

Exp. 1 65 135 70

Exp. 8 98 140 42

Exp. 15 95 150 55

Exp. 17 53 100 47

Exp. 3 80 139 59

Exp. 10 98 150 52

Exp. 20 50 115 65

Exp. 6 119 150 31

Exp. 13 50 150 100

Moderate Change

Large Change

Length (Round 4)

No Change
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The first experiment under both the moderate change and large change section is 

associated with the initial reduction experiments discussed, and are associated with 

reduction to the lower set-range values between 70-100 feet.  The remaining two below 

are associated with reduction towards the higher length set-range values that handled the 

changes better.  For the moderate change, the range of the length set was larger for the 

second alternative reduction path.  Also, excluding experiment six, the range of the length 

set was much larger for experiment 13 compared to experiment 20, which highlights the 

potential advantage of having larger set-ranges when a change occurs.  The range of the 

length set for experiment six was much smaller than experiment 20, but this resulted in 

no feasible region during round four negotiations.  This will be discussed more in Section 

5.5.4, but it highlights the importance of set-range values when a change occurs.  At a 

higher level, the rate of reduction directed by the chief engineer is considered important.  

For the cases that resulted in a visible impact, the set-ranges were smaller, while little 

impact was seen for larger set-ranges.  This observation again highlights the importance 

of the chief engineer and the set reduction decisions that he/she makes. 

 

5.5.3.2 Effects of Varying Timings 

Both the reduction path taken and how the set-ranges manage design changes can also be 

evaluated for the timing of a change.  When looking at the trends associated with the 

timing of a change, impacts are not as obvious as a change in magnitude, but valuable 

observations can be made.  A good example to show basic observations is how 

displacement in JOP plots change for three experiments due to the difference in timing.  

The magnitude of the change was held constant for this analysis at a large change level.  

Figure 5.16 shows the displacement JOP plots for an early change instituted at the 

beginning of round three, Figure 5.17 shows the displacement JOP plots for a middle 

change instituted at the beginning of round four, and Figure 5.18 shows the displacement 

JOP plots for a late change instituted at the beginning of round five. 
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Figure 5.16: Displacement JOP Plot with Early (R3) Change (Exp. 5) 

 

 

Figure 5.17: Displacement JOP Plot with Middle (R4) Change (Exp. 20) 
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Figure 5.18: Displacement JOP Plot with Late (R5) Change (Exp. 7) 

 

All three experiments converge towards the same region around 100,000 pounds.  

Starting with Figure 5.16, the early change in round three shows little or no impact of a 

change at this time.  Preferences did shift slightly towards lower displacement values, but 

for the most part the large set-range was able to manage the change.  A shift in 

preferences can be identified for a middle change, as seen in Figure 5.17, from lower 

values to higher, but reduction continued without any major issues.  The late change, as 

seen in Figure 5.18, shows the set-range reducing greatly to a small region.  This 

substantial reduction was dictated based on the feasibility of the other regions after the 

speed change was implemented. 

 

When looking at the final set-ranges, an interesting and somewhat counterintuitive 

observation to previous analysis can be made.  The early change experiment had a larger 

final set-range and the late change had the smallest final set-range.  In this situation, the 

observation can be explained based on the reasoning for the reductions.  For the 

displacement variable, reductions after the middle and late changes were based on 

infeasibility, which led to a substantial reduction.  It can also be seen that the reduction 

rate for the middle and late changes was faster leading up to the changes being 

implemented, while the early change was much slower.  This again highlights the 
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importance of the reduction rate and how it effects how the set-ranges handle a design 

change. 

 

5.5.4 Failure Opportunities 

In three of the experiments, design changes led to either a complete or partial failure 

opportunity.  As mentioned earlier, a failure opportunity occurs when the current set-

ranges cannot handle a design change.  It is considered a failure opportunity because 

feasibility can potentially be regained by reopening the variable set-ranges. 

 

5.5.4.1 Functional Design Failure (Experiment 6 and 16) 

At some point a design change will be too large for the current set-ranges to manage.  

This is represented as a completely unpreferred JOP.  There are, however, different ways 

a JOP becomes unpreferred.  The first case, which occurred in experiment 6 and 16, is 

when one functional design group is completely unpreferred for all variable set-ranges.  

Experiment 6 is the design scenario with a large speed change implemented in round 

four.  Experiment 16 is the design scenario with a moderate speed change implemented in 

round three.  Important considerations that should be accounted for include how the 

preferences changed from before the failure opportunity and after, as well as the 

reduction path taken leading up to the design change being implemented.   

 

First, the impact of the failure opportunity on design preferences using variable JOPs can 

be determined.  Experiment 6 will first be evaluated.  Figure 5.19 shows the beam 

preference with a failure opportunity occurring in round four after a speed change from 

45 to 50 knots.  The first three rounds are similar to the preferences in the unchanged case 

provided in Figure 5.3.  Round three preferences are mainly centered on values between 

20 and 25 feet, which is the same preferred range from the unchanged experiment.  After 

the speed increase is implemented, the resistance agent held no preference for values in 

the set.  This meant that the narrowed set was completely infeasible. 

 

Nevertheless, even when a failure opportunity occurs, the SBD process can still be used 

to redirect the design to a feasible region.  This is done by reopening the sets to previous 
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values that were feasible.  During experiment 6, when the failure opportunity occurred, 

the chief engineer reopened the set-range to the previous round three values and asked 

agents to re-negotiate the variables.  Figure 5.20 shows the beam preference with failure 

and then the reopening and re-negotiation of the set in round five.  The round five data 

shows that by reopening the sets, a feasible region can be found.  Although the 

preferences are again found in a feasible region, the lower beam values are now 

preferred, showing a large shift. This experiment resulted in the largest and most obvious 

impact of a design change.  From a ship design perspective, speed increases would 

correspond to preferring lower beam values.   

 

 

Figure 5.19: Beam JOP with Failure (Exp. 6) 
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Figure 5.20: Beam JOP with Failure and Re-Negotiation (Exp. 6) 

 

While the reduction paths were similar to the unchanged case leading up to the failure 

opportunity, the set-range reduction decisions by the chief engineer can provide 

additional insight into potential causes.  Figure 5.21 shows beam reduction plots, the set-

range values associated with each negotiation round, for both experiment 6 (failure 

opportunity) and experiment 20, which was able to handle the same type of change.  

Round one is at the top of the plot.  The design change occurred in round four.  Based on 

round three JOP plots, it is evident that the chief engineer decided to reduce the beam set-

range significantly for the round four negotiations.  When the design change was 

implemented, the smaller set-range was unable to handle the change, which led to the 

failure opportunity.  Experiment 20, which handled the design change, reduced the set-

ranges much more gradually and consistently.  Figure 5.22 shows a similar occurrence 

from the reduction plots for the length variable. 
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Figure 5.21: Beam Reduction Plots (Exp. 6 and 20) 

 

Figure 5.22: Length Reduction Plots (Exp. 6 and 20) 

 

Experiment 16 also identified similar observations to those of experiment 6.  Again, 

resistance was the agent that unpreferred all variable set-range values.  This suggests that 

resistance might be the limiting factor in this design and should be focused on during the 

reduction process.  Figure 5.23 and Figure 5.24 show how preferences are modified after 
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the set-ranges are reopened when a failure in round three (orange) occurs.  These figures 

show similar shifts in the JOP shapes after a design change and failure occurs.  

 

 

Figure 5.23: Deadrise JOP with Moderate Early Change (Exp. 16) 

 

Figure 5.24: Length JOP with Moderate Early Change (Exp. 16) 

 

After examining the reduction path and set-range values for experiment 16, similar 

observations to the experiment 6 results can be seen.  Figure 5.25 shows the deadrise 

reduction plot for experiment 16 and experiment 2, an experiment with the same design 

scenario that handled the design change in round three.  Figure 5.26 shows the same 
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reduction plot, but for the length variable.  The reduction plots associated with 

experiment 2 show relatively smooth reduction and no major shift after the design change 

is implemented.  Deadrise set-range values are reduced substantially for round three 

negotiations when the design change was implemented.  Length set-range values are also 

reduced at a faster rate when compared to experiment two reduction.  This again leads to 

the observation that reduction path and set-range values are critical for the success of a 

SBD process.  

 

 

Figure 5.25: Deadrise Reduction Plots (Exp. 16 and Exp. 2) 

 

Figure 5.26: Length Reduction Plots (Exp. 16 and Exp. 2) 

1 2 3 4 5
10

12

14

16

18

20

22

24

26

28

30

Round

D
e
a
d
ri
s
e
 (

d
e
g
)

 

 

Exp. 16

Exp. 2

1 2 3 4 5
20

40

60

80

100

120

140

160

Round

L
e
n
g
th

 (
ft

)

 

 

Exp. 16

Exp. 2



156 

 

 

Identifying failure opportunities and how the SBD process handles these situations are 

important components of a set reduction strategy.  By examining the reduction plots 

associated with a SBD process, the significance of the set reduction path taken can be 

determined.  Also, avoiding failure opportunities would be a primary concern for the 

chief engineer guiding the process.  If a failure opportunity occurs, however, the process 

can regain feasibility by reopening the set-ranges.  While expanding sets during the SBD 

process is not recommended, special exceptions, such as a good improvement idea, an 

error, or requirement change might dictate its use.  

 

5.5.4.2 Single Variable Failure (Experiment 13) 

Similar to a functional design failure, a single variable failure occurs when only one 

variable set-range is completely infeasible.  This typically happens when multiple MFs 

have unpreferred regions that when combined make the whole set-range unpreferred.  

During experiment 13, a single variable failure occurred for deadrise in round four, when 

a major design change was implemented.  Figure 5.27 shows the JOP plot for deadrise.  

As mentioned earlier, deadrise was a relatively open variable, and preferences were 

generally indifferent when other variable set-ranges remained open; however, when other 

influential variables, such as length or beam, are reduced significantly, preferences for 

deadrise are impacted.  
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Figure 5.27: Deadrise JOP with Major Middle Change (Exp. 13) 

 

Set-range values for the variables other than deadrise greatly reduced prior to the round 

four design change; however, the ranges were able to manage the change.  Due to the 

dramatic shift in preferences and narrow set-range values, round four preferences for 

deadrise signaled multiple unpreferred regions.  The two functional design groups that 

conflicted were the resistance and weight groups.  While both had feasible and preferred 

regions, their unpreferred regions combine to make the whole set-range unpreferred.  

Figure 5.28 shows the resistance MF for deadrise in round four.  The unpreferred region 

is relatively large and goes up to values around 22 degrees.  Figure 5.29 shows the weight 

MF for deadrise in round four.  Its unpreferred region starts around 22 degrees and goes 

to the maximum set-range value.  When this type of overlap occurs, the JOP curve for the 

entire deadrise set-range must be zero.  This causes a failure opportunity for the specific 

variable, in this case deadrise, where the unpreferred regions combine to make the whole 

set-range unpreferred. 
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Figure 5.28: Resistance Membership Function for Deadrise (Round 4-Exp. 13) 

 

Figure 5.29: Weight Membership Function for Deadrise (Round 4-Exp. 13) 

 

The single variable failure opportunity that occurred in experiment 13 highlighted the 

impact of conflicting preferences and the importance of all variables in the set reduction 

process, even ones that seem to have indifferent preferences early on.  In some cases, 

JOPs do not provide all the information necessary to understand the causes of failure 

opportunities.  Individual functional design group MFs describing their preferences for 

set-range values can be used to understand specific types of failures, such as overlapping 

unpreferred regions.  Also, the impact of reducing all variable set-ranges should be 

considered, as well as how a reduction could potentially impact a variable’s feasibility 

later in the process.  
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5.6 Experiment Conclusions 

The results of the experiments show how the robustness of the SBD process can manage 

design changes.  This robustness comes from the ability to delay decisions and keep sets 

open longer.  Also, by being able to reopen sets after a failure opportunity occurs, 

feasible regions can be located and the new design direction can be found.  The 

experiments show that more impact comes from 1) more complex design changes and 2) 

later-stage design changes.  One of the most important conclusions made from the 

experimental results is that regardless of the complexity and timing of a design change, 

the SBD process can demonstrate how a change affects the design and where the new 

design direction should be.   

 

Beyond the basic, and intuitive, conclusions, there are certain observations regarding 

specific types of scenarios that merit further discussion and analysis.  These scenarios are 

related to both the reduction path taken and the rate of reduction; both of which are 

identified as potential factors in how changes in design impact the process.   

 

First, due to the unconstrained nature of the design problem, multiple reduction paths 

could be taken to achieve a reduced feasible region.  However, it was identified from the 

experiments that some paths were able to handle design changes better than others.  This 

has major implications for the importance of the reduction path taken and the crucial role 

of the chief engineer in the set reduction process.    

 

Second, the experiments identified the importance of reduction rate and the range of the 

set when a design change is implemented.  From this observation, there were two types of 

situations that led to different reduction rates.  The first was the observation that larger 

magnitude changes resulted in larger final set-ranges than smaller magnitude changes for 

the length variable.  The second was the observation that the early change experiment had 

the largest final set-range and the late change had the smallest final set-range for the 

displacement variable.  The difference can potentially be explained by looking at the 

reduction paths for each scenario and the rate of reduction.  There are two basic situations 

that can occur when a change is implemented: 1) preferences might change, but the 
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feasible region stays relatively similar and a reduction is not forced or 2) the change leads 

to an infeasible region to develop, forcing a reduction. These two situations have the 

opposite effect on results, even if the same type of change and timing is implemented.  It 

can also be different for each variable.  These observations emphasize the importance of 

the reasoning a chief engineer uses to reduce sets. 

 

Finally, the experiments identified special occurrences during the SBD process defined as 

failure opportunities, which require additional research to understand.  If such 

occurrences can be predicted and what triggers them can be identified, a designer can 

make more educated set reduction decisions, including which reduction path to take and 

the rate at which to reduce set-ranges.  By understanding the causes of these failure 

opportunities, chief engineers can guide the set reduction process in such a way that 

avoids these potential scenarios to begin with. 

 

5.7 Chapter Summary 

This chapter focuses on detailed design experiments conducted to identify more concrete 

conclusions regarding the ability of SBD to handle design changes.  A total of 21 

experiments were conducted.  There were seven design scenarios with three replications 

of each design scenario.  A design scenario consists of a magnitude of change of the 

speed requirement (no change, moderate, and large) and what round of negotiations the 

design change was implementing (early, middle, and late). 

 

Based on initial difficulty associated with analyzing the experiment results, a 

visualization technique and a series of reduction metrics were developed to aid in the 

understanding and analysis of SBD reduction efforts.  The developed metrics can be used 

during a SBD execution to understand the current reduction characteristics of the effort.    

 

The experiment results were broken down into three aspects: the effects of varying 

magnitudes, the effects of varying timings, and the special cases that resulted in failure 

opportunities.  Overall, the results of the experiments show how the robustness of the 

SBD process can handle design changes.  The robustness of the process comes from the 
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ability to delay decisions and keep sets open longer.  Also, by being able to reopen sets 

after a failure opportunity occurs, feasible regions can be located and the new design 

direction can be found.  The experiments show most impact comes from more complex 

design changes and later-stage design changes.  One of the most important conclusions 

made from the experimental results is that regardless of the complexity and timing of a 

design change, the SBD process can show how a change affects the design and where the 

new design direction should be.  

 

There were also certain observations regarding specific types of scenarios that identified 

additional conclusions.  It was seen from the experiments that some paths were able to 

handle design changes better than others.  This has major implications for the importance 

of the reduction path taken and the crucial role of the chief engineer in the set reduction 

process.  The experiments also identified the importance of reduction rate and the range 

of the set when a design change is implemented.  There are two basic situations that can 

occur when a change is implemented: preferences might change, but the feasible region 

stays relatively similar and a reduction is not forced, or the change leads to the 

development of an infeasible region, forcing a reduction.  The outcomes of these two 

situations are the opposite even if the same type of change and timing is implemented.  It 

can also be different for each variable.  These observations emphasize the importance of 

the reasoning a chief engineer uses to reduce sets. 

 

Finally, failure opportunities were observed and the ability to manage these scenarios 

requires additional research to understand.  If failure opportunities can be predicted and 

their triggers identified, a designer can make more educated set reduction decisions, 

including which reduction path to take and the rate to reduce set-ranges.  By 

understanding the causes of these failure opportunities, chief engineers can guide the set 

reduction process in such a way that avoids these potential scenarios to begin with. 

 

The major observations and conclusions that can be formed from conducting the detailed 

experiment provide insight into the set reduction process.  However, using the developed 

reduction metrics and observations seen from the experiment results are considered lag 
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indicators.  The reduction process had to occur before these metrics could be calculated 

and observations seen.  In an attempt to avoid the situations that led to failure 

opportunities and remain in an area of the design space that is robust to change, there is a 

requirement for lead indicators.  These indicators would guide the designer in making set 

reduction decisions with the intention of avoiding areas of the design space that can lead 

to potential failures.  
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Chapter 6: Decision Support Framework 

 

 

The previous chapters have introduced SBD as a potentially advantageous design 

method, but a method that has been characterized by a number of execution challenges.  

The difficulties of conducting early-stage design efforts in today’s environment are clear, 

and there are no simple solutions for the complex issues that arise throughout a design 

effort.  SBD execution for organizations such as the U.S. Navy is of particular interest.  

For example, how do you effectively manage a large-scale, team-based design process for 

complex systems that are difficult to fully understand?  Utilizing the developed tools and 

experiment results discussed in the previous chapters, a set reduction decision support 

framework, which is presented in this chapter, is created. 

 

This chapter begins by identifying insights gained from previous research and the 

formulation of the problem statements used to guide the remainder of the work presented 

in this dissertation.  Next, an overview of the methodologies used is presented, including 

the longest path problem, the Markov Decision Process, design space mapping, and 

sensitivity analysis using preference structure simulations.  Finally, visual representations 

of the methodology’s results are highlighted, which can be utilized by a designer to make 

more informed design reduction decisions within a SBD environment. 
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6.1 Problem Formulation 

The three research problems presented in Chapter 1 are revisited in this section to 

demonstrate a clear understanding of their implications through initial research insights 

and to show how the developed decision support framework addresses each problem.  It 

is also important to consolidate and understand the implications of previous work 

completed by other researchers.  

 

6.1.1 Insights from Previous Research 

The overarching insight gained from previous research, which is demonstrated by 

reviewing current SBD research and completing the initial research discussed in the 

previous chapters, is that the guidance of set reduction is a critical element of SBD 

execution for large-scale, team-based design efforts and remains an open research 

problem.  The majority of SBD research currently focuses on different research areas 

including design optimization techniques, multi-objective Pareto fronts, and automated 

reduction methods.  Additionally, the U.S. Navy’s execution of SBD for the SSC 

identified that while advantages were seen, extension to larger-scale design efforts would 

be challenging.  Both the initial case study and detailed experiment revealed that more 

heuristic set reduction decision making can result in different reduction paths and 

outcomes for the same design scenario.  These collective observations identify the 

guidance of set reduction as an important and open research area. 

 

The two components of set reduction efforts that have been identified as major influences 

on the design outcome are time-dependent design relationships and determining robust 

decision paths.  A major observation seen both in the practical setting of the SSC SBD 

execution and the academic setting of the design experiments was the lack of design 

relationship understanding.  Even more significant is the understanding of these design 

relationships as they change over time.  Design relationships change as the fidelity of 

analysis increases, variable set-ranges are reduced, or requirement changes are 

implemented.  Additionally, there is a lack of understanding associated with the impact of 

reduction decisions.  A reduction decision made early can greatly impact the ability of a 

design process to handle changing relationships later in the process.  Also, it was 
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identified that reduction path and rate have a major impact on handling a design change.  

While SBD has been shown to be change resilient, the design experiments revealed that 

the reduction process can still be restricted to the point of potential failure.    

 

In summary, the four major insights gained from previous work include the need for: 

 

1. A method to aid in SBD execution for large-scale, team-based design 

2. A more formal set reduction decision making framework 

3. A better understanding of time-dependent design relationships and the 

potential impact of current decisions on the design process  

4. The identification of robust decision paths that avoid failure opportunities, 

while considering reduction path and rate 

 

6.1.2 Problem Statements 

The insights outlined in the previous section have shown that there is still a substantial 

need for SBD execution support, especially in how decisions should be made to reduce 

the design space, while considering total design process impacts.  This involves 

understanding relationships as the design process progresses and understanding design 

reduction decisions.  The insights obtained through design research and the previous 

work completed, as outlined in the previous two chapters, led to the development of three 

major problem statements.  The work presented in the remainder of this dissertation 

focuses on these three statements and the development of a framework to aid in their 

solution.  Table 6.1 summarizes the three research problems and questions, followed by 

the proposed solutions.    
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Table 6.1 Research Problem Statements and Proposed Solutions: 

 

 

The first research problem is the issue of time-dependent design relationships and how to 

handle changing dependencies as the design process progresses.  Design space mapping 

can be used to determine relationships between the various design spaces, including 

variable, constraint, and objective spaces.  These mapping techniques can also facilitate 

human designer preferences for variable and function values.  Using the preferences 

provided at each time step, a series of mappings can be completed to determine the 

influence of variables at different set-ranges.  At each time step, preferences are updated 

and the mappings can be repeated to get an updated view of design relationships. 

 

The second research problem builds on the first by acknowledging the difficulty of 

determining when and where to make design reduction decisions.  The Longest Path 

Problem (LPP) formulated as a Markov Decision Process (MDP) is proposed to aid in 

design reduction decision making.  This proposed method is able to balance the risk and 

reward of reducing certain areas of the design space and can determine the impact of 

these decisions on the overall design process.  Using the information provided by the 

design space mappings, the MDP can be used every round of the SBD process to identify 

optimal decision paths.  The MDP results can provide the design manager, or chief 

engineer, with valuable guidance on how to reduce the design space from the perspective 

of the identified function.  This process can be completed for multiple functions of 

interest to provide a clearer design reduction strategy for the overall design process.    

Problem Research Question Proposed Solution

Time-dependent design 

relationships

How can a designer understand 

changing dependencies as the 

design progresses?

Extension of Design Space 

Mapping

Determining impact of 

reducing certain areas of 

the design space

How can a designer organize 

reduction decisions to account 

for total design process 

impacts?

Longest Path Problem (LPP) 

formulated as a Markov 

Decision Process

Identifying robust 

decision paths

What decision paths are flexible 

to changing design conditions?
Preference Change Simulations
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The third research problem focuses on the identification of robust decision paths.  The 

goal is to avoid failure opportunities and potential situations where the current set-ranges 

cannot handle a changing design relationship.  Identifying potential decision paths that 

are more flexible to changing design conditions would be preferred.  Preference change 

simulations can be used to identify these robust decision paths.  The LPP MDP 

formulation can also be used with various design preference structures representing 

potential future changes in preferences.  Additionally, the likelihood of a certain path 

being able to handle varying magnitudes of changing conditions, including preference 

and requirement changes, can be determined. 

 

6.2 Execution Strategy 

Before introducing the components of the developed framework, it is important to 

understand how the framework can be used within a SBD effort and by whom.  As 

mentioned previously, the chief engineer’s role of managing the set reduction process is 

critical to the success of a design effort.  An overview of the set reduction process is 

provided in Figure 6.1.  After functional design groups are provided with the initial 

variable set-ranges from the chief engineer, they conduct engineering analysis and 

generate their preferences.  JOPs are then calculated and sent to the chief engineer.  At 

this point, the developed framework is used by the chief engineer to evaluate potential 

reduction decisions.  Based on the framework results and any other considerations a chief 

engineer desires, the decision to reduce is made and the new set-ranges are sent to the 

functional design groups.  At this point, the process begins again.  
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Figure 6.1: Set Reduction Overview 

 

The research problems presented in the previous section lend themselves to a sequential 

decision making framework that uses preference information from teams of designers as 

a basis for making design space reduction decisions.  Again, an assumption made for the 

work presented in this dissertation is that JOPs are initially provided and adequately 

represent the current design problem.  The ability of JOPs to describe designer 

preferences has been explicitly shown by Singer (2003) and Gray (2011).  This section 

presents a mathematical framework for reduction decision making within a SBD 

environment that combines DM, the LPP formulated as an MDP, and simulation.  

 

This section initially provides an overview of how the three methods are combined into a 

cohesive execution strategy.  The required inputs and how each is used within the 

developed framework are discussed as well as the links between the three major methods 

proposed.  The execution strategy can be broken down into a series of distinct steps that 

occur during a single round of negotiation, or time-step in the decision making process.  

Functional design groups 
conduct engineering analysis 

and generate preferences 

JOPs are calculated and sent 
to chief engineer 

Chief engineer evaluates 
potential reduction decisions 
using developed framework 

Decision to reduce is made 
and new set-ranges are sent 
to functional design groups 
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The developed framework is designed for use at every negotiation round.  After a set 

reduction decision has been selected during a given round, the method is used to 

reevaluate the remaining reduction process using updated variable preferences provided 

by the functional design groups.   

 

For each negotiation round, there are a number of important inputs that are required to 

use the developed framework.  These include: 

 

 Variables and associated set-ranges, 

 Number of set-range partitions for each variable, 

 Function, 

 Function preference, 

 Variable preferences, 

 Simulation variation strategy (how preference structures vary), and 

 Type of reward. 

 

The first inputs are the variables and their associated set-ranges.  A set-range is the 

minimum and maximum variable values being considered.  These will change for each 

negotiation round as the set reduction process continues.  The number of partitions that 

each variable set-range should be divided into is also an input and is based on the level of 

detail required or how complicated the preference functions are.  If smaller reductions are 

desired, a larger number of partitions should be selected.  Also, if the JOPs have multiple 

modes or complicated curvatures, additional partitions can provide a more accurate 

representation of the different regions.  A variable partition region is a specific area of a 

set-range.  For example, if there are two partitions for a given set-range, there will be two 

variable partition regions: the lower region and upper region.  The function of interest is 

required along with a preference for particular function values or regions.   

 

Variable preferences are also required, which are in the form of JOPs based on analysis 

conducted by the functional design groups.  How the preference structures should vary 

for the simulations is also important and guidance is needed to determine how many 
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variations of the assumed preference structure are required.  Finally, the type of reward, 

which is based on design space mapping (DM) information, is required.  The developed 

reduction metrics that are used to calculate the reward are discussed after the DM 

presented. 

 

A complete overview of the execution strategy is now presented.  Figure 6.2 may be 

referenced for further explanation as the steps are described.  Step 1 is the generation of 

the graph structure.  The graph structure is determined based on variable set-ranges and 

the number of partitions.  One such structure is the single reduction scenario that is 

focused on in this dissertation.  Next, step 2 determines the number of simulations 

required and their associated preference structures.  Using the simulation variation 

strategy, initial preference structures can be determined.  The initial preferences of all the 

simulations are the provided JOPs.  All subsequent state preferences are based on the 

assumed preference structure for the specific simulation.  The total number of simulations 

is based on the number of variables and preference structure variations.     

 

For every simulation within a negotiation round, a series of calculations needs to be 

completed.  First, a design space mapping is completed using the determined variable 

preferences, function, and inputted function preference for every state in the structure 

associated with a given simulation.  The outputs from the state mappings are used to 

calculate the reward and risk metrics.  These metrics are calculated for every outgoing 

graph connection, or feasible reduction, based on state mapping inputs.  The final step for 

every simulation is calculating the optimal reduction policy, or path, and reward.  Using 

the MDP LPP formulation, the optimal policy and associated reward is recorded for every 

simulation. 

 

Back at the negotiation round level, various representations of the simulation results and 

recorded information are generated.  This information includes the optimal strategy, 

robust decision paths, alternative paths, reward over time, likelihood of attainment, and 

multi-objective trade-offs.  The decision-maker uses these representations to make a set 

reduction decision.  The set-ranges are reduced and functional design groups receive 
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updated set-ranges to continue their analysis.  As mentioned previously, a visual 

depiction of this execution strategy is provided in Figure 6.2. 
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Figure 6.2: Execution Strategy Overview 
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The overall reduction process from the initial to the final reduced variable set-range 

values can be completed in different ways.  Using the inputs defined earlier in this 

section, the designer can specialize each round’s analysis based on current conditions.  

For this dissertation, a structured reduction approach is assumed.  The number of 

negotiation rounds is dictated by the number of partitions and variables.  This means that 

for the variable that has a region reduced, the next round’s analysis for that variable will 

have one fewer partitions.  For example, if a two-partition variable is reduced, a single 

partition remains.  The region does not get partitioned again into two regions.  This then 

dictates the number of negotiation rounds associated with the reduction process.  This 

reduction structure can be considered valid for the relatively simple triangular 

preferences assumed in this dissertation.  For more complex preferences, additional 

partitioning might be required. 

 

The following novel characteristics of the developed framework include: 

 

 The extension of design space mapping (DM) methods to include multiple metrics 

that can be used to aid design reduction 

 Provides a mathematical framework for team-based SBD reduction that captures 

changing conditions as the design progresses, including designer input 

 Applies the longest path optimization problem and the Markov Decision Process 

(MDP) to early-stage design reduction decision making efforts 

 

6.3 Methods 

The remainder of this section introduces the methods used within the execution strategy.  

The reduction path MDP formulation is first discussed to provide an overview of the 

major problem structure.  Next, the DM method is presented and its relation to the MDP 

formulation is provided.  Sensitivity and simulation that uses the combination of the 

MDP and DM is then presented.  Novel approaches to representing the results of the 

complete framework are also discussed.  How each component fits into the overall 

reduction process and execution strategy is provided along the way.  First, however, an 
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example problem is presented to be used throughout the remainder of the chapter as an 

illustrative aid in describing the methods used.  

 

6.3.1 Example Problem 

For this chapter, a function of two variables is used to demonstrate how each element of 

the methodology is implemented.  The function selected is the length-to-beam ratio (R), 

which is used in naval architecture to describe the slenderness of a hull.  Larger length-to-

beam values signify a longer and more slender hull, while smaller values signify a 

shorter, wider hull.  The variables are length (L) and beam (B).  The equation for the 

function R is: 

 

  
 

 
      (6.1) 

 

While a simple function, it is able to illustrate how the developed methodology can be 

utilized.  In the following sections, the length-to-beam ratio will be continually 

referenced.  

 

6.3.2 Reduction Path Optimization 

There are a series of key decisions that must be made during any design reduction 

process, most importantly what area of the design space should be focused on (or 

eliminated in the SBD case) and when that decision should be made.  The design 

reduction process is also stochastic in nature due to many unknown and changing 

relationships, an incomplete description of the solution space, and potential external 

influences resulting in design changes (i.e. requirement changes).  One of the main 

objectives when guiding design reduction is to maximize the reward associated with 

eliminating a certain area of the design space while considering the risk associated with 

that decision.  The reward is based on DM information, and is explicitly defined later in 

this chapter.  This section first introduces the Canadian Traveler Problem to gain a better 

understanding of the reduction path problem.  A novel approach to generate graph 

structures is then discussed, followed by an introduction to longest path problems.  
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Finally, a Markov Decision Process (MDP) formulation that models the reduction path 

problem is introduced.  

 

6.3.2.1 Understanding the Reduction Path Problem  

As identified in Chapter 2, one of the main challenges associated with design decision 

making is that there is a large amount of incomplete information, especially at the early 

stages.  The designer does not know what future analysis or preferences are going to be, 

therefore, they are forced to make decisions based on the best information they have 

available.  After the decision is made, the designer can potentially evaluate whether that 

decision was appropriate.  The types of decisions that are made differ depending on the 

design approach taken. For example, for the set reduction decision making process, the 

graph can be known before the process begins if the number of partitions is assumed 

from the start. 

 

A similar type of problem arises in the extensive literature associated with the shortest-

path problem (SPP).  The SPP is the problem of finding a path from one node in a graph 

to another by minimizing the sum of the edge weights between nodes.  Applications of 

the SPP in a geometric setting have identified a variant that deals with certain edge 

weights or nodes being unknown.  Examples of this type of SPP application include the 

movement of a robot through an area with various obstacles (Papadimitriou & 

Yannakakis, 1991) and robot navigation under sensor uncertainty (Briggs, Detweiler, 

Scharstein, & Vandenberg-Rodes, 2002).  Papadimitriou and Yannakakis (1991) state, “It 

is sometimes natural to assume, both in the graph-theoretic and the geometric contexts, 

that the planner initially has incomplete information about the graph or scene, and such 

information is acquired in a dynamic manner, as the search for a good path evolves” (p. 

127).  While this is in reference to robot navigation, the same principles can be applied to 

design.    

 

The special case of the SPP where the graph structure is known is called the Canadian 

Traveler Problem (CTP).  The CTP describes a typical scenario for certain travelers in 

Canada: only when a driver reaches an intersection can he or she identify if the roads 
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leading out are snowed in or not.  This is a problem in which the weight of an edge is 

learned only when arriving at the next node. After arriving to an intersection, the traveler 

can determine whether a road is snowed in and can decide in which direction to continue 

(Nikolova & Karger, 2008).  The simplest implementation of this problem is to resample 

edge weights each time a new node is visited.  This formulation fits nicely for the set 

reduction decision making process because the resampling of edge weights can be 

synonymous with negotiating reduced set-range values. 

 

In an effort to make the reduction formulation more intuitive, the longest path problem 

(LPP) can be used instead of the SPP.  The LPP was selected based on the intuitive nature 

associated with maximizing a reward associated with a decision path as opposed to 

minimizing a defined cost.  The LPP, a component of graph theory, is the problem of 

finding a path from one node in a graph to another by maximizing the sum of the edge 

weights between nodes.  While solving a LPP compared to a SPP can be more 

challenging and take additional time, there are multiple methods for solving both types of 

problems.  The LPP can be formulated as a SPP by multiplying edge weights by negative 

one.  Before an LPP problem can be solved, however, a graph structure must be defined 

including its associated nodes and arcs.     

 

6.3.2.2 Generation of Graph Structure 

One of the prerequisites for solving a LPP is a defined graph structure that describes the 

sequential decision making scenario.  After providing the required inputs, the generation 

of the reduction graph structure is the first step.  The goal of the graph structure 

generation step is to identify potential reduction decisions.  The required inputs to 

generate a graph include the number of variables, variable set-range values, and the 

number of partitions for each variable.  There are three general structures that can be used 

to describe the set reduction decision making process, each with increasing degrees of 

detail and complexity.  These structures include single reduction, multiple reductions, and 

potential reopening.  For this dissertation, the single-reduction scenario is used.  The 

multiple reductions and potential reopening scenarios are discussed as future work in 

Chapter 9. 
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The first scenario, defined as single reduction, is when only one variable partition region 

(set-range) can be reduced at a time.  There is no ability to reduce multiple variable set-

ranges or reduce multiple partition regions at the same time.  This provides a simple 

structure that can be easily understood through inspection for basic problems.  Figure 6.3 

shows the graph structure for the length-to-beam single reduction problem with two 

partitions for each variable set-range.  The bracketed numbers are the states and each 

node is associated with the shown set-range combinations.  This is a directed acyclic 

graph (DAG), which allows for easier solution methods compared to both undirected and 

cyclic graphs.  Each row of nodes is associated with a specific epoch or time-step.  For 

this graph structure, a total of two decisions would need to be made in sequence, which is 

based on the fact that there are two variables with two partition regions.  For the single 

reduction structure, the number of time steps is dictated by the number of variables and 

partitions.  The goal is to reduce to one partition region for each variable.  This 

corresponds to four potential combinations of final partition regions.  An artificial 

terminal node is added for two reasons: to aid in the solution of the SPP by defining one 

start node and one terminal node and to account for potential rewards associated with 

being at a final node. 
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Figure 6.3: Length-to-Beam Single Reduction Graph (Two Partitions) 

 

While the graph in Figure 6.3 can be manually generated for the simple length-to-beam 

problem, larger problems would require substantial time and effort for graph generation.  

Therefore, a novel approach to automatic graph generation for the set reduction decision 

making problem was developed.  The goal of this approach is to develop a transition 

matrix that describes the relationships between the set-ranges associated with each state.  

The transition matrix is calculated using principles from design of experiments (DOE), 

specifically a full factorial experiment (FFE) setup.  The calculation process combines 

the total number of reduction steps, defined as levels, for each variable (defining the 

nodes) with determining how set-range combinations are related (defining the directed 

edges).   

 

The first step is determining the number of states (or nodes) required to describe the set 

reduction process.  The total number of states can be calculated using the number of 

levels associated with each variable and then the possible combinations between 

variables.  The number of levels for a variable is based on the number of partitions.  A 

[1] L:200-300, B:25-35

[2] L:250-300, B:25-35 [3] L:200-250, B:25-35[4] L:200-300, B:30-35

[5] L:250-300, B:30-35 [6] L:200-250, B:30-35

[7] L:200-300, B:25-30

[8] L:250-300, B:25-30 [9] L:200-250, B:25-30

[10] Artificial Terminal Node



180 

 

simple example is when the number of partitions, defined as P, is equal to two.  The set-

range with two partition regions is one level, and each individual partition region is 

another level, for a total of three levels.  This is considered a triangular number, which 

counts the number of objects that can form an equilateral triangle.  The formula for a 

triangular number, with notation changed for the levels calculation, is provided in 

Equation 6.2. 

 

   ∑   
            

 (   )

 
   (6.2) 

 

To determine the total number of states by calculating the combination of all variable 

levels, the number of levels for each variable can be multiplied together.  This can be 

described as a FFE.  If the number of partitions is the same for every variable, the total 

number of nodes, T, can be calculated using Equation 6.3.  The total number of variables 

is defined as N. 

 

  (
 (   )

 
)
 

      (6.3) 

 

For the length-to-beam example with     and    , the total number of nodes would 

be equal to     .  Notice that the artificial terminal node does not count towards this 

total node value. 

 

After the number of states has been calculated, the relationships between the states need 

to be determined.  Reduction occurs when moving from a higher level to a lower level for 

each variable.  A higher level set-range is a variable set-range that is larger than a lower 

level set-range.  Moving from a higher level to a lower level is associated with 

eliminating a particular variable partition region.  DOE principles can again be used, but 

in a different way.  A FFE can be set up where the factors are the beginning and end 

partition regions that describe a variable set-range.  The levels for each factor are the 

number of partitions for that specific variable.  FFE results for length in the length-to-

beam problem with two partitions are provided in Table 6.2.   
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Table 6.2: Length Variable Two-Partition FFE 

 

 

Partition region “1” in Table 6.2 corresponds to the variable region 200-250 and partition 

region “2” corresponds to the variable region 250-300.  By numbering the partition 

regions in this manner, a rule can be added to determine if the set-ranges are valid, which 

is that the end partition region number is greater than or equal to the beginning partition 

number.  As shown, not all of the resulting FFE is valid based on how the problem is set 

up.  For example, the shaded row in Table 6.2 shows an infeasible partition region.  The 

1-2 region represents the initial set-range of both partitions, the 1-1 region represents the 

lower set-range partition, and the 2-2 region represents the higher set-range partition.   

 

After infeasible and redundant partition regions are eliminated from the FFE, the 

relationships between the variable partition regions can be determined.  A series of 

logical arguments are used to identify where connections exist.  For every permutation 

(order does matter) of the variable partition regions (PRs), the logical arguments in 

Equation 6.4 are used to identify if a connection exists.  The starting partition region is 

defined as    , and the potential reduced region is defined as    .  The subscripts B and 

E stand for the beginning and ending region for a particular partition region, respectively.   

 

    
                

           

        (6.4) 

    
                

           

 

The first logical argument identifies whether a lower partition region is eliminated and 

the upper region remains the same.  The second logical argument does the opposite: it 

Begin End

200-250 1 1

300-200 2 1

200-300 1 2

250-300 2 2

Set-

Range

Partition Region
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identifies if a higher partition region is eliminated and the lower region remains the same.  

If either logical argument is true, then a connection exists.  A good example is 

determining if a connection exists between the region 1-2 and both regions 1-1 and 2-2 

shown in Table 6.2.  By identifying what each region represents, it can be easily 

determined that there should be a connection between the initial region 1-2 and the other 

two reduced regions.  For the reduction from region 1-2 to 2-2, the first argument holds.  

For the reduction from region 1-2 to 1-1, the second argument holds.  It is important to 

note that these logical arguments only hold for a single reduction scenario.  After 

reordering the partition regions from largest to smallest, a transition matrix can be 

determined for each variable.  The transition matrix for the length variable with two-

partitions is provided in Table 6.4 for a reordered FFE shown in Table 6.3.  Note that 

partition regions shown in Table 6.4 are connected to themselves.  This is because every 

variable region does not have to be reduced every time-step.    

 

Table 6.3: Length Variable Reordered Two-Partition FFE 

 
 

Table 6.4: Two-Partition Variable Transition Matrix 

 

 

The final step in the graph generation process is to define the set-range values for each 

node, which is a combination of all the variable regions.  The variable transition matrices 

are used in a similar way as the variable partition FFE results are used to determine 

partition region connections.  By looking at all the permutations of the variable partition 

regions, the number of regions that remain the same and the number of regions that are at 

the next level for all variables are determined.  Again, using a similar series of logical 

Begin End

200-300 1 2

250-300 2 2

200-250 1 1

Set-

Range

Partition Region

200-300 250-300 200-250

200-300 1 1 1

250-300 0 1 0

200-250 0 0 1

Set-

Range

Set-Range
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arguments associated with both ensuring that only one variable and a single region is 

reduced at a time, the states and relationships (arcs or connections between nodes) can be 

automatically generated.  The automatic graph generation method developed can be used 

to determine a graph structure that is then used as an input to the LPP.    

 

6.2.2.3 Longest Path Problem 

The LPP provides the structure to evaluate potential future outcomes and sets the 

problem up so steps 3-5 in Figure 6.2 can be completed.  With a complete generation of 

the graph structure, the information outputted from the DM can be used to describe the 

desire to take certain reduction paths within a LPP framework.  The LPP can be 

formulated as a linear programming problem.  Given a graph   (   ) where V is the set 

of nodes and E is the set of edges and start node    , let cuv be the cost (weight) of an 

edge (   )   .  The total cost of path p is  ( )  ∑    (   )   
 where      is the set of edges 

in path p.  The longest path length  (   )   (  )          
 ( ) where Psv is a set of paths 

from s to v.  The traditional SPP and LPP have been solved using dynamic programming 

methods, including the popular Dijkstra’s and Bellman-Ford algorithms.  Dijkstra’s 

algorithm solves the single-source SPP for a graph with non-negative edge weights, and 

the Bellman-Ford algorithm can accommodate negative edge weights, which can 

correspond to a LPP.  The LPP is solved using the Bellman-Ford algorithm for the 

research presented in this dissertation. 

 

The traditional LPP provides a valuable framework to begin to understand set reduction 

decisions, but there are some limitations to its current formulation.  These limitations 

include: 

 

1. Being unable to capture the stochastic nature of the reduction process, 

2. The inability to understand the potential impacts of decisions at various time-steps 

3. Future edge weights and probabilities are unknown. 

 

In an effort to improve upon the first limitation introduced above, stochastic shortest and 

longest path problem (SSPP, SLPP) formulations can be used to add a probability 
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distribution at each node over all possible successor nodes (Bertsekas & Tsitsiklis, 1991).  

Examples of SSPP applications include automobile route planning with stochastically 

changing road congestion levels, vessel routing with uncertain weather conditions, and 

robot navigation through a random environment (Polychronopoulos & Tsitsiklis, 1996).  

A SLPP formulation can address the first limitation of the basic LPP, however, a 

traditional application does not translate directly.  A risk-adjusted reward between each 

node is calculated and the basic LPP is solved using the modified risk-adjusted reward 

calculations.  Using this formulation, the modified edge weight is now defined as       .  

The risk-adjusted reward calculation is discussed further in Section 6.3.4.  A more 

detailed formulation that handles the stochastic nature of the problem in an improved 

manner is discussed as future work in Chapter 9. 

 

6.3.2.4 Markov Decision Process Formulation 

The LPP can be formulated as a Markov Decision Process (MDP).  MDPs provide a 

structured way to evaluate decision making by modeling the relationships between 

present and future decision and outcomes (Puterman, 1994).  A MDP is closely related to 

optimization problems and is also known as sequential dynamic programming.  The 

second limitation of traditional path problems, the inability to understand the potential 

impacts of decisions at various time-steps, can be handled using an MDP framework.  

LPPs require the specification of a start and end node as inputs and solution methods 

typically only output the optimal path and distance.  There is no regard to other potential 

paths, distances from other nodes, and cumulative distances as the graph is traversed.  

MDPs provide additional information than simply the optimal path and distance, which 

can provide decision-makers with a better understanding of the problem at hand.  This 

section introduces MDPs and how they are solved starting with a description of their 

structure, then a discussion on how optimality is determined, and finally an introduction 

to the solution method used in this research. 
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6.3.2.4(a) Structure 

Regardless of the type of problem, an MDP structure consists of the same elements.  The 

sequential decision making model representation is provided in Figure 6.4.  Puterman 

(1994) describes the process as follows: 

 

At a specified point in time, a decision maker, agent, or controller observes the 

state of a system.  Based on this state, the decision maker chooses an action.  The 

action choice produces two results: the decision maker receives an immediate 

reward (or incurs an immediate cost), and the system evolves to a new state at a 

subsequent point in time according to a probability distribution determined by the 

action choice.  At this subsequent time, the decision maker faces a similar 

problem, but now the system may be in a different state and there may be a 

different set of actions to choose from (p. 1).   

 

 

Figure 6.4: Sequential Decision Making Problem Representation (Puterman, 1994) 

 

A fully observable MDP has five major components, defined by Puterman (1994):  

 

 Design epochs, t 

 System states,   { } 

 Available actions,    { }  

 State and action dependent rewards,   (   ) 
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 State and action dependent transition probabilities,   ( 
     )  

 

Design epochs are the time steps that decisions are made at; states are where an agent can 

exist, actions are the decisions an agent can make, rewards are what an agent gets by 

making a certain decision in a specific state, and transition probabilities describe the 

likelihood that an agent will move to a certain state if a specific action is taken in a given 

state.  It is assumed that all components are known when a decision is made.   

 

One important property of MDPs, known as the Markov property, states that the current 

optimal policy is independent of previous state policies.  This is derived from that fact 

that the probability distribution of future states depends only on the present state.  In 

relation to the reduction decision making process, the Markov property makes intuitive 

sense.  The current set reduction decision is not conditional on a previous decision and is 

only based on the observed state information and future opportunities.  This is one of the 

main reasons that an MDP framework was selected over a more conditional structure, 

such as Bayesian networks. 

 

An MDP solution, defined as a policy, specifies an action that should be taken, and is 

denoted as π.  The quality of a policy is determined using the total utility of the states a 

policy represents.  An optimal policy is denoted as π
*
.  Utility will be defined explicitly in 

the next section, but represents the total risk-adjusted reward for a specified policy (or 

path) that traverses different regions of the design space.   

 

A special class of MDPs is the LPP defined as a deterministic dynamic problem.  In a 

deterministic dynamic program, choice of an action determines the future state with 

certainty.  For example, if a chief engineer decides to take an action to reduce a certain 

area of the design space, the subsequent state will be, with certainty, the area remaining 

after the reduction.  For the MDP model to take this into account, a transfer function is 

used instead of a transition probability matrix.  To formulate a LPP as a MDP, nodes 

represent states, arcs characterize actions, a transfer function represents transition 

probabilities, and edge weights symbolize rewards.  For the LPP, traditional MDP 
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transition probabilities do not correlate.  If a decision is made in a MDP, there is a certain 

likelihood that the system will end up in multiple states.  With a directed graph, the 

system knows with certainty that the future state will be determined by the action taken.  

Therefore, instead of having a transition probability matrix, a transition probability 

function is defined: 

 

  (     )  {
              (   )   

              (   )   
    (6.5) 

 

where   (   ) is a function that “specifies the system state at time t + 1 when the 

decision maker chooses action      in state s at time t” (Puterman, 1994, p. 42).  In a 

deterministic dynamic program, the total reward is used to identify optimal routes, which 

is equivalent to a LPP. 

 

6.3.2.4(b) Optimality 

The MDP performance measure, utility, can be calculated in many different ways.  While 

additive rewards are the most common way, there are variations that are required 

depending on the type of problem that needs to be solved.  The first issue to resolve is 

whether the problem has a finite or infinite horizon.  A finite horizon is associated with a 

problem where there is a fixed time N that dictates when the decision making process 

must end.  This means that an optimal action for a given state could change over time.  A 

non-stationary policy is a policy that depends on time.  An infinite horizon is where there 

is no fixed time limit, which means that the optimal action only depends on the current 

state and not the time step.  The optimal policy in this case is called stationary.  The 

typical output of a MDP is a decision matrix that provides the optimal actions for a given 

state and epoch (or time-step).  An example of a non-stationary decision matrix is 

provided in Table 6.5.  For stationary policies, there would only be one row because time 

does not matter.  It is important to note that not all infinite horizon problems have infinite 

state sequences.  It only means that there is no fixed deadline to which the process must 

adhere. For example, the single reduction formulation has fixed sequences with terminal 

states, but is considered an infinite-horizon problem.  The multiple reduction formulation 
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does not have fixed sequences or a fixed time limit; therefore, it is an infinite-horizon 

problem as well.   

 

Table 6.5: Example Decision Matrix (Niese, 2012) 

 

 

The next step is determining how to calculate the utility used to identify optimal policies.    

Derived from multi-attribute utility theory, there are two ways to define the utility of 

sequences: additive and discounted rewards.  The additive and discounted rewards utility 

calculations are shown in Equation 6.6 and Equation 6.7, respectively. 

 

 ([          ])   (  )   (  )   (  )      (6.6) 

 

 ([          ])   (  )    (  )     (  )     (6.7) 

 

The discount factor, γ, in Equation 6.7 is a number between 0 and 1 and places emphasis 

on current rewards over future rewards.  Values of γ close to 0 indicate that future 

rewards are increasingly insignificant.  When γ is equal to 1, rewards at all times are 

equally significant, which is equivalent to additive rewards.  A discount factor of γ is 

associated with an interest rate of (   )   .  The main issue with infinite-horizon 

problems is that if there are no terminal states that can be reached in finite time, or if a 

terminal state is never reached, policies are infinitely long and rewards converge to 

infinity (Russell & Norvig, 2003).   

 

For the single reduction case, terminal states exist and it is guaranteed that one will be 

reached in finite time.  This is known as a proper policy.  Additive rewards (   ) can 

typically be used for proper policies without any issues.  The research presented in this 

dissertation assumes a discount factor equal to one, due to the fact that a proper policy 
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exists for the single reduction scenario.  When the discount factor is equal to one, the 

utility calculations are equivalent to additive rewards.  This calculation equally weighs all 

states that make up a sequence.   

 

The final step in a MDP is to determine how to compare between and select policies.  The 

value of a policy for the LPP is the sum of the discounted rewards.  In a stochastic 

problem where transition probabilities exist, the value of a policy would be the expected 

sum of the discounted rewards.  An optimal policy π
*
 satisfies Equation 6.8. 

 

          ∑    (  )
 
        (6.8) 

 

For this dissertation, value iteration is used to find the optimal policy, which is discussed 

in the next section. 

 

6.3.2.4(c) Value Iteration 

The value iteration algorithm, developed by Bellman (1957), can be used for MDPs to 

calculate the optimal policy or path to the terminal state.  The utility of each state is 

calculated and then the state utilities are used to select an optimal action in each state 

(Russel & Norvig, 2003).  The utility of a state is the additive rewards associated with an 

optimal policy from that state.  Using the maximum expected utility principle, the 

optimal action is defined as the action that maximizes expected utility, or basic utility for 

the LPP.  The utility at each state for the LPP is: 

 

 ( )        ( 
     )(  (   )   (  ))   (6.9) 

 

The utility of a given state is the discount factor multiplied by the maximum utility 

associated with all potential future paths.  The future path utilities are calculated by first 

validating that a connection between two states exists, which is determined by using a    

value of 0 or 1.  If a valid connection exists, the utility is calculated by the reward 

associated with moving from one state to another, plus the utility associated with the 

second state.  Notice that there is no immediate reward associated with being in a given 
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state.  This is because of the specialized formulation associated with a deterministic 

dynamic program and the LPP.  The utility of a state is only associated with the path 

going forward that has the maximum value.   

 

The optimal policy, π
*
, can be calculated by taking the argument of the maximization in 

the utility equation: 

 

  ( )           ( 
     )(  (   )   (  ))   (6.10) 

 

The value iteration algorithm is based on the Bellman equation (Bellman, 1957).  For n 

possible states, there are n equations that contain n unknowns, which are the utilities of 

each state.  Unfortunately, the equations become nonlinear due to the max operator.  An 

iterative approach is required because the equations cannot be solved using linear 

algebra.  The utility of each state is updated based on the previous iteration’s utility 

values until each utility value converges.  If   ( ) is the utility at state s and the ith 

iteration, the Bellman update, or iteration step, is: 

 

    ( )        ( 
     )(  (   )    (  ))  (6.11) 

 

It has been proven that this process converges to a fixed point given initial state utility 

values of zero (Briggs, Detweiler, & Scharstein, 2004).  Based on a specified maximum 

error allowed for the utility of every state, a termination condition can be developed to 

determine the proper number of iterations (Russel & Norvig, 2003).  An example 

termination condition is provided in Equation 6.12. 

 

‖      ‖          (6.12) 

 

The majority of longest and shortest path problems, including the problem presented in 

this dissertation, can be solved by directly using dynamic programming methods such as 

the value iteration algorithm while more complicated formulations require the use of 

approximation algorithms.   
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6.3.3 Design Space Mapping 

Design space mapping is used to determine relationships between function and variable 

preferences.  This is step 5 in the execution strategy.  As discussed in the previous 

section, the MDP requires inputs for the transition probabilities and rewards.  For the 

formulation used in this research, a transfer function and a risk-adjusted reward is used.  

The reward is based on a DM that is completed for every state in the graph structure for a 

given MDP problem.  This section presents the DM method and how the results can be 

used within the MDP formulation.  A detailed discussion of various developed metrics 

that directly link the mapping results to the MDP rewards is presented in the next chapter. 

 

As mentioned in Chapter 2, traditional design methods require decisions to be made early 

that typically have a large impact on the final cost.  While being able to handle imprecise 

information would be valuable at the early stages of design, most methods and tools 

require precise information.  SBD allows the use of imprecise information, including 

preferences, for design variables of interest.  DM enhances preference-based reasoning 

by identifying the impacts of variables on key functions of interest, such as performance 

objectives.  One of the major assumptions associated with the work presented in this 

dissertation is that variable JOPs have already been determined, for example, using the 

fuzzy logic systems developed by Singer (2003) and Gray (2011).  DM uses these 

variable preferences as an input and maps them to a function space.  The mapping of 

designer preferences is best described using the Method of Imprecision, or MoI 

(Antonsson & Otto, 1995).   

 

MoI first identifies design variables, di, and an initial range of valid variable values, Xi, 

which is a subset of the design variable space (DVS).  For each design variable, a 

designer provides a preference function on Xi, denoted as    
(  ).  Performance 

variables, pj, are identified next including their mapping fj such that      ( ).  The 

mappings can be any type of calculation where the performance variables are a function 

of the design variables.  The range of valid performance variable values, Yj, for pj is a 

subset of the performance variable space (PVS).  Figure 6.5 shows the basic steps of a 
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mapping from the DVS to the PVS.  In the PVS, MoI also identifies a preference function 

that represents a functional requirement, which could be considered a customer’s 

preference for performance variable values, pj (Antonsson & Otto, 1995).   

 

Figure 6.5: Design Space Mapping from DVS to PVS (Adapted from Wood, Otto, & 

Antonsson, 1992) 

 

Design variable preferences are then mapped from the DVS to the PVS to calculate the 

preference of a performance variable using Zadeh’s extension principle (Zadeh, 1965).  

The extension principle was initially developed to complete operations of independent 

fuzzy variables.  The extension principle for a discrete-valued function is: 

 

 (  )  {
   {   { (  )    (  )}              (       )}

       {              (       )}   
 (6.13) 

 

where d1,…, dN are variable values,      (       ) is a function of the variables or 

objective, and  (  ) is the preference level for the variable value di (Wood, Otto, & 

Antonsson, 1992).  The extension principle equation means that the achievable 

Variables

d1, d2, … , dn 

Variable Space Preferences

Function Space

µ µ µ 

µ 
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performance preference,   ( ⃗), from the mapping is the least upper bound of the 

minimum of all design variable preferences at a specific performance value.  For 

continuous-valued functions, the maximum (max) operation is replaced by the supremum 

operation (sup).   

 

A simple one-dimensional example can be used to understand the extension principle 

more clearly, which is shown in Figure 6.6.  For the one-dimensional case, the extension 

principle equation can be reduced to: 

 

  ( )     {  ( )      ( )}    (6.14) 

 

For every mapping combination of the design variables, the minimum preference level of 

the design variable values is associated with that mapped performance variable, which is 

calculated using the function f (a basic curve in this example).  The associated preference 

level,   ( ), in the DVS is then mapped to the PVS to determine   ( ).  If there are 

multiple mappings for the same function value, the maximum preference level is used.  In 

this one-dimensional example, if the function was horizontal at a particular point, then 

there would be multiple performance values that are the same for different variable 

values (and preference levels).  In this case, the maximum preference level would be 

used. 

 

 

Figure 6.6: Zadeh’s Extension Principle (Antonsson & Otto, 1995) 
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In multi-dimensional problems, the extension principle calculations become more 

complicated.  Every combination of design variable values must be mapped to the PVS 

and the minimum preference level for the design variables should be recorded.  After the 

minimum operations are completed, the maximum preference level at every performance 

variable value becomes the final preference level of the mapped preferences.  A more 

detailed example can be used to describe the steps for DM.  First, an important note on 

nomenclature is required.  If X is a collection of objects denoted generically by x, then a 

fuzzy set  ̃ in X is a set of ordered pairs defined by: 

 

 ̃  {(    ̃( ))    }    (6.15) 

 

where   ̃( ) is called the membership function of x in  ̃.  If x and y are real numbers 

defined by sets  ̃ and  ̃, respectively, the fuzzy set  ̃ representing the real numbers z 

given by         can be calculated.   ̃ and  ̃ are defined as the following sets: 

 

 ̃  {(   ) (     ) (     ) (     ) (     ) (     ) (     ) (   )} (6.16) 

 

 ̃  {(   ) (     ) (     ) (     ) (     ) (     ) (     ) (   )} (6.17) 

 

Figure 6.7 shows plots of sets  ̃ and  ̃.  Also, the x and y values can be identified as 

  {               } and   {               }.  Other values of interest include 

   {                   } and    {                   }. 
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Figure 6.7: Example Plots of Fuzzy Sets 

 

Table 6.6 shows x and y values and their associated membership function values.  

Referring back to Equation 6.13, the mapping operations can be completed.  Initially, the 

set  ̃ can be defined, as seen in Equation 6.18.  For notational purposes, the mapped 

membership function value is above the horizontal line and the mapped function value is 

below the line (the line does not signify a division operation).  Also, the plus signs 

between evaluations do not signify the addition of these values, but the combination of all 

the mappings for the set  ̃.  For example, the first mapping is associated with     and 

   .  The membership function values for both x and y are equal to zero, which is why 

the mapped membership function value is     (   ).  The second mapping is associated 

with     and    .  The membership function value for x is zero and for y is one. 

 

Table 6.6: Values for x and y and their Associated Membership Function Values 

 

 

0 1 2 3 4 5 6 7

0.0 0.1 0.6 0.8 0.9 0.7 0.1 0.0

0.0 1.0 0.7 0.5 0.2 0.1 0.0 0.0

x,y

μ
 ̃

 ̃



196 

 

 ̃  {
    (   )

 
 

    (   )

 
 

    (     )

 
 

    (     )

 
   

   (     )

  
  

 
   (       )

  
  }                                          (    ) 

 

It can be seen in Equation 6.18 that sometimes the mapped function value is the same for 

different variable mapping combinations.  For example, the last two mappings in 

Equation 6.18 have mapped function values equal to 25.  These mapped function values 

are associated with {       } and {       }.   

 

The next step is performing the minimum operations seen above the line.  Equation 6.19 

shows the results of taking the minimum of the two variable membership function values 

corresponding to the variable values mapped.  It is evident that there are still the two 

mappings with function values equal to 25, but the mapped membership function values 

are different.  The final step in the mapping process is performing the maximum 

operations for the mappings that have the same mapped function values.  In this case, the 

mapping with a mapped membership function value of 0.5 is retained.  The resulting 

fuzzy set  ̃ is plotted in Figure 6.8.  While the meaning of this plot is insignificant for 

this example, it does highlight the type of result that the extension principle calculates. 

 

 ̃  {
   

 
 

   

 
 

   

 
 

   

 
   

   

  
   

   

  
  }   (6.19) 
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Figure 6.8: Example Plot of Mapped Function 

 

The extension principle can be solved analytically, but requires the solution of a 

complicated non-linear programming problem.  The preferred solution method is using a 

discrete numerical approach.  Within the MoI, computation of the extension principle is 

done using the Level Interval Algorithm (LIA), also known as the vertex method.  The 

LIA uses interval analysis by discretizing the design variable preference levels into a 

specified number of α-cuts.  Wood, Otto, and Antonsson (1992) describes what the LIA 

algorithm does as “performing interval analysis for each α-cut and combining the 

resultant intervals, the output is a discretized fuzzy set, the performance parameter output 

of input preference functions for the case of a design calculation.”  There are a series of 

conditions related to the use of the LIA algorithm including: 

 

 Preference functions must satisfy normality and convexity conditions  

 Preference functions must be continuous,  

 No singularities of the functions can occur (i.e. no division by zero or zero 

arguments), and  

 Variable preference functions must be monotonic (Wood, Otto, & Antonsson, 

1992).  
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Antonsson and Otto (1997) extended the LIA to handle internal extrema or non-

monotonic variable preference functions. 

 

The following LIA algorithm description is presented in Wood, Otto, & Antonsson 

(1992): 

 

The algorithm is as follows: for N real imprecise design parameters,  ̃     ̃ , let    (  [   ]) 

be an element of  ̃ .  Given a performance parameter represented by the mapping 

 

   (       )            ̃  

 

respectively, let  ̃ be the fuzzy output of the mapping.  The following steps lead to the solution of 

 ̃. 

 

1. For each  ̃ , discretize the preference function into a number of α values,        , where M 

is the number of steps in the discretization. 

 

2. Determine the intervals for each parameter  ̃          at each α-cut,           . 

 

3. Using one end point from each of the N intervals for each αj, combine the end points into an 

N-ary array such that 2
N
 distinct permutations exist for the array. 

 

4. For each of the 2
N
 permutations, determine     (       )         .  The resultant 

interval for the α-cut, αj, is then given by 

 

    [   (  )     (  )]  

 

By implementing the LIA algorithm for a particular mapping, an achievable preference 

function in the PVS is found.  This can be compared to the designer-inputted 

performance requirement to identify overlap.  Figure 6.9 shows an example of the 

achievable preference function,   ( ), and the performance requirement,   ( ).  Both 

functions are in the performance space.  From these two functions, an overall preference 

function,   ( ), can be calculated by combining both preferences using either a 

compensating (   √    ) or non-compensating (       [     ]) trade-off strategy.  For 
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this research, a non-compensating strategy, which maximizes satisfaction with the least 

satisfactory aspect of the design, is selected because it is a more conservative strategy 

(Law & Antonsson, 1994).  After calculating the overall preference, the maximum 

preference level (  
     [  ( ⃗)]) and α-cuts for the overall preference in the performance 

space (   
 

 ) can be found to aid in the mapping back to the DVS. 

 

 

Figure 6.9:    for compensating and non-compensating trade-offs (Antonsson & Otto, 

1995) 

 

After mapping design variable preferences to the PVS and calculating the overall 

preference, the overall preference can be mapped back to the DVS to identify what 

design variable values are in the overlapping region.  An inverse mapping can be used to 

backward calculate α-cuts, if the inverse of the mapping function can be found.  If the 

inverse mapping cannot be found, a revised extension execution can be used that does not 

require the function inverse by aggregating the overall preference in the DVS.  In the 

current method, computations are carried out in both the DVS and PVS, and finally the 

overall performance preference is generated before the design variable overall preference, 

which is why the function inverse is required.  In the revised method, the final 

aggregation for the overall preference is in the DVS.  The revised method can be 

understood as applying the two-step current method at a finite number of design points, 

where the function inverse is well defined.  The usage of the function inverse is avoided 

by transferring the information of the functional requirements in the PVS to the DVS by 

using the equivalent inverse of the function at individual points in the PVS (Wang, 2003). 

p 
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The complete DM method is best explained through a simple example.  Using the length-

to-beam ratio example, the design space mapping method can be used to map preferences 

for the length and beam variables to the function space.  Using the overlap between the 

combined preference and another introduced function space preference, the overall 

preference can be determined and mapped back to the variable space.  First, nominal 

variable preference functions are generated for length and beam.  These can be seen in 

Figure 6.10.  The set-range values for the variables were selected based on reasonable 

length-to-beam values and naval architecture experience.  

 

 

Figure 6.10: Variable Preference Functions for Length and Beam (Variable Space) 

 

Using the LIA algorithm described earlier, the variable preference functions can be 

mapped to the function space to form a single combined preference function.  The 

combined preference function can be seen in Figure 6.11 as the blue solid line.  A 

function preference, which is inputted by the user, is the red dashed line.  If this function 

preference were a requirement, it would be interpreted as preferring a length-to-beam 

value of six, but allowing it to be between five and 7.5.  The green shaded area is the 

overall preference area and that can be identified as the overlapping region between the 
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combined preference and the function preference.  This area, once identified, can be 

mapped back to the variable space, identifying which variable set-range values are 

preferred. 

 

Figure 6.11: Combined Preference and Inputted Function Preference (Function Space) 

 

The mapping back to the variable space utilizes the inverses of the original function from 

each variable’s perspective.  The same forward mapping calculation presented above can 

be completed using the inverse functions to map the overall preference to the variable 

space.  For the length-to-beam problem, the inverses would be       and     .  

More importantly for the SBD approach, areas with little or no preference can also be 

identified.  Figure 6.12 shows the variable preferences and the mapped overall preference 

function.  It can be seen that general trends show preferences for lower length values and 

higher beam values.    
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Figure 6.12: Variable Preferences and Mapped Overall Preference (Variable Space) 

 

While DM provides an effective way to understand relationships between variable and 

function preferences, the method needs to be extended in order to be used as inputs in the 

MDP framework.  To the knowledge of the author, there are currently no metrics that 

utilize DM information to aid designers in set reduction decisions.  As the utilization of 

this information directly impacts the MDP results, selecting proper ways to use the 

mapping information is critical. 

 

6.3.4 Reward Calculation 

This section focuses on calculation of the rewards, based on mapping information, used 

as inputs into the SBD MDP framework.  The goal is to determine the impact of reducing 

certain areas of the design space.  This is step 4 in the execution strategy.  A series of risk 

and reward reduction metrics are developed using the DM areas.  Current SBD reduction 

methods are mainly heuristic and do not consider potential future outcomes.  Focusing 

solely on current information can lead set reduction unintentionally in a direction with a 

high potential for failure (McKenny, Gray, Madrid, & Singer, 2012).  By developing 

reduction metrics using DM information, additional information can be provided to the 

designer to make better set reduction decisions.  
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Before these metrics can be developed, it is important to identify the type of information 

designers desire when making set reduction decisions.  While determining what a 

designer wants can become ambiguous, the discussion here is simplified in an effort to 

develop meaningful metrics.  Every person, every day, makes decisions; and while each 

person does not always consciously analyze all of the potential options, the final decision 

is not developed arbitrarily.  One way of analyzing decisions is using a basic risk versus 

reward evaluation.  A person must be able to weigh the potential reward against the risk 

associated with the decision of pursuing that reward.  In most scenarios, higher risk is 

associated with a larger reward, but also a lower likelihood of obtaining that larger 

reward.  A good example of this risk versus reward scenario is thought process and 

calculations that go into deciding whether to invest in a stock.  While risk can be high, 

the potential return is almost always higher than in lower risk options.  People will make 

different decisions using the same risk and reward information available based of their 

personal beliefs and goals (whether they are risk adverse or reward seeking).  Even 

though the decisions people make may be different, the underlying information used to 

make to those decisions should adequately express the nature of the risk versus reward 

evaluation process. 

 

For a designer, risk and reward can be thought of in different ways.  A fundamental 

conflict that arises during SBD reduction efforts is the desire to reduce the solution space 

while remaining in an unconstrained area of the design space, where many potential 

solutions exist.  As mentioned in Chapter 2, selecting the “best” region, and eliminating 

the worst are not directly comparable.  By selecting the “best” region, an assumption of 

where the boundary of that region is required.  That assumption would most likely be 

based on infeasibility and/or dominance.  Therefore, understanding the infeasible and 

dominant regions is still required.  By solely focusing on these regions using elimination, 

there is no need for the identification of the best.   For SBD, there are various forms of 

elimination criteria that can be used to reduce set-range values.  During experiments 

conducted by Singer (2003) and Gray (2011), their elimination criterion was loosely 

based on a clipping method using the joint output preference (JOP) curves.  For example, 
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the regions where preference levels fell below a certain threshold, such as 0.2, were 

eliminated.  With the addition of the design space mapping method and its associated 

design information, new elimination criteria have been developed to improve the inherent 

limitations with the methods developed by Singer (2003) and Gray (2011). 

 

The first step in developing reduction metrics involves partitioning the design space into 

regions.  As discussed in the previous chapter when introducing the set reduction graph 

structure, partitions are used to understand characteristics about specific areas of the 

design variable space.   

 

Figure 6.13 is similar to a figure presented in the previous chapter when introducing the 

design space mapping method, however in this case each variable set-range is partitioned 

into two distinct regions.  The number of partitions can vary depending on the specific 

problem and they do not have to be the same for every variable.  The partitioned regions 

allow a designer to understand the impact of eliminating certain regions.     

 

Figure 6.13: Mapped Variable Space with Partition Points 

 

The remainder of this section introduces multiple types of risk and reward metrics.  These 

metrics utilize not only DM information, but the inputted variable and function 
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preferences associated with the problem of interest.  The metrics are presented for the 

scenario in which a specific partitioned region is potentially being reduced.  This analysis 

is conducted for every combination of potential reductions to calculate a metric value for 

each individual scenario.  Each metric is described using the length-to-beam example 

problem introduced in the previous chapter and a potentially eliminated region of 

  [       ].  This translates to calculating the risk and reward associated with 

eliminating length variable values between 250 and 300.  After the metrics are 

introduced, Section 7.2 discusses the evaluation and comparison of these metrics using 

the MDP framework.    

 

6.3.4.1 Reward Metrics 

Out of the two types of metrics, reward metrics describe the value associated with 

reducing a certain area of the design space.  Two reward metrics were developed to 

investigate different approaches to the set reduction problem.  The first reward metric, 

defined as satisfaction reward, utilizes the overall preference area in the variable space as 

a reward.  In this case, the reward described the degree to which variable preferences are 

meeting the required function preference in the variable space.  The second reward 

metric, defined as reduction reward, utilizes the difference in area between the variable 

preference and the overall preference in the potentially reduced region.  This type of 

reward emphasizes reducing areas with large differences between obtainable values, and 

values that overlap with the function preference.   

 

The satisfaction reward is calculated by determining the area of the overall preference 

mapped back to the variable space within the partitioned regions which remain after a 

potential reduction occurs.  The ratio between the mapped area and the area produced by 

the variable preference in that same region can then be defined as the satisfaction reward.  

The satisfaction reward (SR) calculation is provided as Equation 6.20.  For a total of N 

variables, the overall preference area in the variable space (   ) and the variable 

preference area (  ) can be used to calculate the proper ratio.  The subscripts T and R 

correspond to the total area and the reduced region area, respectively. 
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       (6.20) 

 

As the ratio increases, the overall preferred region in the remaining set-range increases.  

The calculated ratios for each variable are then summed together to form a single reward 

value.  The maximum value of the final ratio is equal to the number of variables.  Figure 

6.14 shows the regions used to calculate the satisfaction reward and the calculation for 

the length-to-beam problem.   
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Figure 6.14: Example Satisfaction Reward Calculation 

 

The reduction reward, unlike the satisfaction reward, only deals with areas from the 

region that is eliminated when a decision is made.  The unpreferred area for the 

eliminated region, which is the variable preference area minus the overall mapped area in 

that region, is used.  The ratio of the unpreferred area to the variable preference area for 

the eliminated region is then calculated.  The reduction reward (RR) calculation is 

provided as Equation 6.21.  The same areas and notations described for the SR calculation 

can be used for the RR calculation.  
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       (6.21) 

 

Figure 6.15 shows the regions used to calculate the RR, as well as the calculation for the 

length-to-beam problem.  It can be seen there is only one ratio used.  This is because 

there is only a reduction in one variable at a time using the single reduction scenario, as 

described in the previous chapter. 
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Figure 6.15: Example Reduction Reward Calculation 

 

Both reward metrics are ratios of areas associated with either variable preferences, or the 

overall mapped preference, in the variable space.  Beyond this fact, the calculations and 

the areas used are different and can produce different results if used when making set 

reduction decisions.  While the satisfaction reward emphasizes variable values with large 

overall preference, and the reduction reward emphasizes the difference between 

obtainable and overlapping areas, both on their own are not adequate to describe all 

reduction considerations.  For this reason, additional metrics are needed.   
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6.3.4.2 Risk Metrics 

In an effort to describe the risk associated with not having a feasible solution, two risk 

metrics were developed.  The first risk metric, defined as variable risk, utilizes ratios of 

the initial variable preferences to describe the probability of a solution existing.  The 

second risk metric, defined as function risk, is based on the ratio of the overlapping area 

to the function preference area in the function space, which describes the likelihood of 

meeting the desired function values.   

 

Variable risk (VR) describes the probability of a solution existing.  VR places emphasis 

on attempting to remain in an unconstrained area of the design space.  The metric is also 

used as a measure of how constrained an area of the design space is.  The variable 

preferences are a combined description of what the different functional design groups feel 

is both possible and preferred based on the analysis that is conducted.  However, it is 

important to note that the term “preferred” can mean different things depending on the 

scenario.  For a traditional design emphasizing preferred regions, the variable preference 

can describe where the optimal solutions exist.  For the SBD approach that emphasizes 

eliminating infeasible or dominated solutions, the variable preferences can describe the 

regions that have infeasible or dominated solutions.   

 

VR is calculated by taking the ratio of the variable preference area of the remaining 

region after the reduction to the overall variable preference area.  The ratios for each 

variable are then multiplied together to determine the overall risk value.  This value will, 

therefore, always be between zero and one for each potential decision that is analyzed.  

VR can be calculated using Equation 6.22.  Again, the same areas and notations described 

for the previous two metrics can be used for the VR calculation. 

 

   ∏ (
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       (6.22) 

   

This metric multiplies the risk value for each variable together, as they can be considered 

independent events with probabilities between zero and one.  Figure 6.16 shows the 
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regions used to calculate variable risk and its calculation for the length-to-beam problem.  

Notice that VR does not depend on the mapped overall preference area.  This is due to the 

fact that the probability of a preferred solution existing is not necessarily dependent on 

overlap between the combined preference and function preference, which determines the 

overall preference.   

200 250 300
0

0.2

0.4

0.6

0.8

1

L(m)

P
re

fe
re

n
c
e
 L

e
v
e
l

 

 

25 30 35
0

0.2

0.4

0.6

0.8

1

B(m)

P
re

fe
re

n
c
e
 L

e
v
e
l

Variable Preference

Overall Preference Area

Partition Point

Variable 

Risk

Reduced 

Set-Range

 

Figure 6.16: Example Variable Risk Calculation 

 

On the other hand, function risk emphasizes maintaining a large overall area in the 

function space.  Maintaining a large overlap with function preference values allow for 

adaptability to change during the design process.  The function risk calculation describes 

the likelihood of overlap between the combined and function preference in the function 

space.  This is calculated by dividing the function preference area by the overall 

preference area for the future state that a reduction will result in.  This ratio, which will 

always be between zero and one, describes the probability of meeting the function 

preference based on a given reduction.  The function risk (FR) calculation requires 

additional areas to be defined.  The overall preference area in the function space (   ) 

and the function preference area (  ) are required to calculate the ratio.  The FR is 

calculated using Equation 6.23.    
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Figure 6.17 shows the regions used to calculate the function risk and its calculation for 

the length-to-beam problem.  The value will fall between zero and one, and can be 

represented as a probability. 

 

Function 

Risk

 

Figure 6.17: Example Function Risk Calculation 

 

While both the risk and reward metrics can individually describe an aspect of a potential 

set reduction, the best combination of the individual risk and reward metrics need be 

evaluated to properly capture the tradeoffs inherent in a set reduction effort.  

 

6.3.5 Sensitivity and Simulation 

Before the framework results can be calculated, the types of preference changes to 

evaluate must be determined, defined as the simulation variation strategy, or step 2 in the 

execution strategy.  The simulation variation strategy is first presented.  The simulation 
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output used to identify robust decision paths, step 5 in the execution strategy, is then 

discussed.   

 

When using MDPs to solve sequential decision making problems, the parameters such as 

the rewards and probabilities are typically held constant.  However, due to uncertain 

forecasts and environments, these values can vary from the estimates used as inputs.  The 

third limitation of the basic LPP is that future edge weights and probabilities are 

unknown, especially for the reduction problem.  Future edge weights and probabilities 

can be estimated based on current preferences, but these estimates do not account for the 

changing of dynamics associated with design relationships or potential requirement 

changes. 

 

Niese (2012) identifies the important distinction between sensitivity and accounting for 

imprecise parameters.  Imprecision replaces the constant parameter with a closed interval 

and determines the optimal policies (one to infinite) associated with the parameter 

intervals.  There have been many proposed approaches to solving the imprecision 

problem, including using max-min techniques, perturbed dynamic programming, and 

robust dynamic programming (White & El-Deib, 1986; Hopp, 1988; Wallace, 2000; Tan 

& Hartman, 2011).  Sensitivity uses the same constant parameters, but determines 

parameter bounds where the original optimal policy remains optimal (judge of solution 

stability).  Tan and Hartman (2011) recommend using the Bellman equations instead of 

solving the problem for different parameter values to save computation time.  Niese 

(2012) describes the overall approach where rewards are expressed as affine functions of 

uncertain parameters, which is similar to shadow price calculations in linear 

programming. 

 

For the set reduction problem, emphasis should be placed on the link between changing 

preferences and the impact of changing rewards on the optimal reduction path.  This 

would lend itself to the use of imprecision to identify the optimal policies associated with 

a range of changing preference structures.  The issue with using the approaches discussed 

in the previous paragraph is that there is no way to determine preference structures from a 
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change in the risk-adjusted rewards, which is associated with areas under the preference 

curves.  Therefore, advanced and timesaving approaches are not possible based on the 

current formulation.  The basic fundamentals of sensitivity analysis, however, can still be 

utilized to identify the impact of changing preferences.  The sequential decision making 

problem can be solved multiple times for different reward parameter values associated 

with an actual and known change in preference structures.  These evaluations are 

completed using a series of simulations. 

 

The goal of conducting simulations is to better understand the impacts of potential 

preference structures, both changing requirements and variable preferences throughout 

the reduction process.  For a given simulation, a progressive preference structure for the 

variable preferences is assumed and the optimal policy is calculated.  The initial 

preferences for every simulation are the same and are defined as the variable JOPs 

associated with the current round of negotiations.  The future state preferences are based 

on the particular simulation’s assumed preference structure, which varies by simulation.  

The assumed preference structure is what varies between simulations.   

 

While any valid DM shape can be used as the assumed preference structure, a simple 

triangular shape is used for this work.  The triangular preference shape is defined by three 

points: left-lower (  ), upper ( ), and right-lower (  ).  Each is associated with specific 

variable values.  The preference levels of ll and rl are equal to zero and the preference 

level of u is equal to one.  The governing constraint regarding the variable values 

associated with these points is provided in Equation 6.24, where lb and ub are the lower 

and upper bounds of the variable set-range, respectively.  This constraint ensures that a 

valid preference curve is generated that can be inputted into the DM method.  Figure 6.18 

shows an example preference structure with defining points and bounds. 

 

                 (6.24) 
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Figure 6.18: Preference Structure Defining Points 

 

An additional input that identifies the number of preference structure combinations is 

required to complete the sensitivity analysis.  This input, defined as the preference 

structure variation value, is the number of evaluations along the set-range for each 

defining point.  This number must be greater than one.  For example, if the variation 

value is equal to two, each defining point (ll, u, and rl) would have evaluation points at 

the lower and upper bound.  All combinations of the evaluation points, subject to the 

constraint provided in Equation 6.24, are used as inputs into the simulations.  When the 

variation value is equal to two, as seen in Figure 6.19, there are a total of three valid 

combinations.  The valid combinations for each variable are determined, and then the 

total combinations of all the variable preference structures are calculated, which is equal 

to the total number of simulations conducted.  For example, if there are two variables 

with three valid combinations each, a total of nine (3
2
) simulations would be completed. 
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Figure 6.19: Preference Structure Variations for Variation Value Equal to Two 

 

The preferences associated with the states after the initial state in the reduction graph are 

clipped versions of the assumed preferences for a given simulation.  A demonstration of 

the clipping method is provided in Figure 6.20.  The assumed preference is on the left.  

With two partitions, the clipped preference for the state associated with a reduction in 

length from 250 to 300 is shown on the right.  Using this method, the preferences for all 

the states for a given simulation, except the initial state, are based on the same assumed 

preference structure.  The progressive preference structure for a simulation is the 

compilation of the initial and clipped preferences.   
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Figure 6.20: Preference Clipping Method Demonstration 

 

For each progressive preference structure, the MDP is solved and an optimal policy and 

reward is calculated.  By varying the progressive preference structures, optimal policies 

under varying conditions can be identified, including the most robust policy to change. 

 

The outputs of the simulations include the optimal path length (or total reward) and the 

optimal reduction path for every preference structure combination.  While the total 

reward accurately represents the reward level relative to other optimal paths, the value 

does not have any physical meaning, such as distance traveled or net present value seen 

in other MDP formulations.  This is addressed further in the next section.  An example 

optimal path result from a simulation is provided in Table 6.7.  It can be seen for all 

preference structure combinations, there are only two optimal paths that result.  Four 

simulations result in an optimal path 1-4-6-10, while five results in an optimal path 1-3-6-

10.  The 1-4-6-10 path is associated with a reduction in beam values between 25 and 30 

first, then a reduction in length values between 250 and 300.  The 1-3-6-10 path is 

associated with a reduction in length values between 250 and 300 first, then beam values 

between 25 and 30.  For a single reduction scenario, the difference is which variable 

should be reduced first.  
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Table 6.7: Simulation Optimal Path Results 

 

 

While the results of the simulations provide some insight, larger simulation results would 

be too difficult to comprehend in table format, such as in Table 6.7.  The key is to 

provide the decision maker with simple and understandable representations of the results 

and additional traceable information as a decision support tool.  This effort is outlined in 

the next section. 

 

6.4 Representation 

The goal of generating representation information is to provide the chief engineer with 

useful information to make better informed decisions.  This is step 6 in the execution 

strategy.  The combination of DM, the LPP MDP formulation, and simulation provide 

information on optimal reduction paths, rewards through time, and the overall mapped 

preferences in the function and variable space.  Being able to communicate this large 

amount of information to a chief engineer making set reduction decisions can be 

challenging.  This section offers unique representations of the information provided by 

the framework outlined in the previous sections.  The length-to-beam example problem is 

used to illustrate these representations.  It is important to note that these are for purely 

illustrative purposes only.  The results are not associated with a specific design effort. 

 

Simulation # 1 2 3 4

1 1 4 6 10

2 1 4 6 10

3 1 4 6 10

4 1 4 6 10

5 1 3 6 10

6 1 3 6 10

7 1 3 6 10

8 1 3 6 10

9 1 3 6 10

Epoch
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6.4.1 Optimal Strategy 

The first two identified research problems included time-dependent design relationships 

and determining the impact of reducing certain areas of the design space.  This section 

focuses on how an optimal strategy can be determined before initial preferences are 

provided.  This would allow the chief engineer to have a better understanding of the 

relationships between variables and potential reductions that can be made.  Leveraging 

the simulation structure, the initial preference structures can be replaced with the 

assumed preferences associated with each simulation.  The future state preferences are 

determined based on the clipping method introduced in the previous section.  Utilizing 

the assumed triangular preference shape, the peak variable preference values can be 

linked to the optimal policy associated with that preference structure.  Table 6.8 shows 

the optimal strategies for various combinations of variable peak preference values for the 

length-to-beam example problem.  The problem consists of the single reduction scenario 

with two variable partitions.  The optimal strategy in Table 6.8 is for the decisions 

associated with being in epoch 1, or the initial state.  The numbers in the table are 

associated with the next state, or combination of set-ranges, that are optimal for the given 

epoch.  These state numbers also correspond to the graph structure provided in Figure 

6.3.    

 

Table 6.8: Optimal Strategy Given Peak Preferences (Epoch 1) 

 

 

The first important element of Table 6.8 is that the optimal policy for a combination of 

variable peak preference values can be determined.  This provides the decision-maker 

with a better understanding of the relationships between variables and also the function of 

interest, because the optimal strategy is based on the rewards associated with the overall 
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preference in the function space.  A similar table can be generated for each epoch of the 

sequential decision making problem.  For example, the optimal strategy in Epoch 2 for 

the same problem is provided in Table 6.9. Regardless of the peak preference values for 

either variable, the optimal strategy is shown to always reduce to state 6. 

 

Table 6.9: Optimal Strategy Given Peak Preferences (Epoch 2) 

 

 

The second important element that can be seen in Table 6.8 is the identification of the 

boundaries where the optimal strategy shifts to a different action.  The two actions seen in 

Table 6.8 include moving to state 4 (eliminating beam values 25-30) and moving to state 

3 (eliminating length values 250-300).  A clear line is seen for this example, but does not 

always have to be true.  This is helpful for a decision-maker for a number of reasons.  

The major takeaway is a better understanding of how the optimal strategy changes if peak 

preferences are different than expected or change as the design progresses.  For example, 

if the designer believed that the peak beam value will remain around 25m but the length 

value is relatively uncertain, this graph can indicate that that scenario is not of major 

concern for the decision-maker.  Regardless of the peak length value for a beam of 25m, 

the optimal strategy remains the same, moving to state 4.  If an opposing scenario was 

true, however, and the peak length value stayed constant around 300m and the beam peak 

value was uncertain, there would be two optimal strategies to contend with.   

 

It is a major advantage to know whether a decision a designer needs to make is affected 

by changing conditions.  Instead of spending time and effort attempting to reduce the 

uncertainty associated with a variable value, this can be ignored if the outcome does not 

matter.  The optimal strategy shown in Table 6.9 would be even more ideal for a 
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decision-maker.  This would be associated with selecting a robust reduction decision.  

For any combination of variable peak preference values, the optimal policy will be the 

same, which for this example is a reduction to length values 200-250m and beam values 

of 30-35m.  The optimal strategy tables can provide substantial insight to designers 

before a design effort even begins, and should be the starting point in understanding how 

changing design relationships affect the decisions that need to be made.  In an effort to 

analyze preference structures beyond single-peak shapes, such as bi-modal preferences, 

additional work should be completed to develop a generic metric for various types of 

shapes. 

 

6.4.2 Robust Decision Paths 

Identifying robust decision paths is the third research problem introduced at the 

beginning of this chapter.  Using the MDP formulation of the LPP, potential future 

decisions can be incorporated into the analysis at early stages.  Also, in an effort to avoid 

entering infeasible regions of the design space in the future, following a more robust 

decision path can be more beneficial than following what is considered “optimal” based 

only on current information.  The optimal policies for all the simulations can be 

aggregated to identify which path(s) are optimal more than others.  For example, the 

length-to-beam problem with four variable partitions has six unique optimal paths that 

occur for all of the simulations; however, only one is optimal in most.  Table 6.10 

provides the optimal paths identified from the simulations and the percentage of the 

simulations that each path was optimal, shown in descending order.  To generate this 

table, the unique optimal paths for every simulation are first calculated.  The number of 

unique paths that multiple simulations have in common is then calculated and converted 

into a percentage.  For example, the first unique optimal path seen in the first row was 

optimal for 40% of the simulations.  The reduction graph structure associated with the 

four partition length-to-beam problem is provided in Figure 6.21.   
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Table 6.10: Optimal Paths with Percentage Optimal 

 

 

Figure 6.21: Four Partition Graph Structure for Length-to-Beam Problem 

 

The percentage optimal is defined as the robustness metric for the given simulation 

scenario.  The most robust path can be identified in Table 6.10 as the first path 

(highlighted) with a percentage optimal of 0.4, or 40%.  It is important to note that the 

second optimal path has a high percentage as well at 32%.  To gain a better 

understanding of the proportionality between optimal decisions in each time step, a 

stacked bar graph can be generated, known as a decision path output.  Figure 6.22 shows 

the associated decision path output for the problem described above.  The x-axis is the 

epoch or time step (defined as a round in this SBD research) and the y-axis is the 

percentage that the action resulting in the shown state is optimal.  Epoch 1 is the starting 

state, which is defined a priori, and epoch 8 is the artificial terminal state, at which all 

paths should end. 
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Figure 6.22: Decision Path Output 

 

The one important element that is lacking in the decision path outputs is how the optimal 

action in each epoch is related to other epochs.  To better understand the relationships 

between epochs, the top two optimal policies provided in Table 6.10 can be mapped over 

the decision path output in three dimensions.  When visualizing the decision path in three 

dimensions, the stacked bar graph, seen in Figure 6.23, is taken and each stack is plotted 

individually.  The colors of the stacks are linked to the state colors in Figure 6.22, but in 

three dimensions are not required to make an interpretation.  The black solid lines show 

the top two policies.  Notice that both policies include state 30 in epoch 6.  This can 

provide the decision-maker with a better understanding of decision paths, while 

considering the optimal decision to make in a given epoch, or time step.  
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Figure 6.23: Three-Dimensional Decision Path Output with Optimal Policies 

 

Identifying robust decision paths and the optimal decision for a given epoch, as well as 

connecting both together is the main goal of conducting simulations.  The designer now 

can incorporate information about potential futures into present decisions.  While no one 

can predict with certainty what will happen in the future, including changing design 

relationships or requirements, making a robust decision reduces the likelihood of failing.  

The decision path output with optimal policies can provide the information necessary for 

a designer to identify robust decision paths.  

 

6.4.3 Alternative Paths 

While the decision path output with optimal policies can be helpful, it can also be 

difficult to follow if there are many optimal policies or optimal states for a given epoch.  

A designer must always be cognizant of when a current path or decision fails.  One way 

to determine this is by tracking the connections between a given policy and the number of 

alternative optimal states it can reduce to over time.  The more optimal states a given 

policy can connect to, the greater chance of reducing without a failure.  This adds a layer 

of flexibility to the decision making process by quantitatively evaluating the ability to 

change directions if need be.   
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Table 6.11 provides the number of optimal path connections for every optimal policy in 

descending order based on the number of optimal path connections.  A connection is 

defined as an arc between states part of a particular path and other optimal states.  This 

number does not include the connections associated with the given path.  The path with 

the highest number of connections does not have the highest optimal percentage 

(highlighted in table).  Also, it can be seen that the optimal path with the highest 

percentage optimal has one of the lowest number of connections.  This could potentially 

identify an issue if the path becomes infeasible at some point in the reduction process.   

 

Table 6.11: Optimal Path Connections for Optimal Policies 

 

 

A visual representation of all connections between optimal states, including feasible 

connections not seen in the optimal policies, is provided in Figure 6.24.  The thin gray 

arrows identify connections associated with the optimal policies.  The thick red arrows 

identify additional feasible connections not seen in any optimal policy.  By identifying 

these additional connections, previously unknown connections can now be exploited if 

any optimal paths become infeasible. 
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Figure 6.24: Optimal Policy Connections 

 

The ability to identify alternative paths if the current path becomes infeasible is essential 

for successful reduction.  The optimal policy connections metric can provide a decision-

maker with relevant and easy to understand information about alternative reduction paths 

if one is required.  Also, by selecting a policy that has both a high percentage and a large 

number of optimal policy connections, the policy becomes even more robust to changes. 

 

6.4.4 Reward over Time 

While the previous representations have focused solely on path dependencies, analyzing 

components of the optimal rewards can gain additional insight.  As mentioned earlier, the 

rewards are defined as the combination of areas associated with a given state and specific 

preference structures in the variable space.  Trends associated with the rewards over time 

can provide insight into the optimal paths identified by the simulations.  
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Figure 6.25 provides the mean and minimum/maximum reward over time associated with 

all optimal paths from the simulations.  The reward at time equal to one is associated with 

moving from the state in epoch one to the state in epoch two.  Therefore, the total number 

of time-steps will be one less than the total number of epochs.  It is important to note that 

the calculated values in Figure 6.25 are not cumulative, but are for the reward at each 

time-step.  This plot can identify trends in the reward values over time.  For example, the 

reward at time-step three has a lower magnitude than at time-step two.  Lower relative 

magnitudes can potentially signify where the path is intentionally accepting a lower 

reward for the possibility of obtaining much larger rewards at some future time.  By 

understanding how the reward changes over time, a designer can identify areas that 

require further analysis, even for a simple plot. 

     

 

Figure 6.25: Mean and Minimum/Maximum Reward over Time 

 

A similar type of graph that can provide additional insight is the cumulative reward over 

time.  Figure 6.26 provides the mean and minimum/maximum cumulative reward over 

time associated with all optimal paths from the simulations.  By identifying trends in the 

reward over time plot, such as a change in the reward magnitude, the cumulative reward 

plot can be referenced to determine the total impact of the optimal paths.  For example, 

multiple paths can be compared and a lower magnitude reward at an earlier time-step can 
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Figure 6.26: Mean and Minimum/Maximum Cumulative Reward over Time 

 

Reward over time plots can be beneficial for a designer by identifying trends as well as 

comparing the rewards associated with different paths.  Figure 6.27 shows a comparison 

between the two paths that had the highest optimal percentage.  For each path, the mean 

of the rewards for that given path was taken and plotted through time.  Figure 6.28 shows 

a similar comparison for the cumulative reward.  Based on designer preferences, he/she 

might choose an optimal path with a lower optimal percentage if the reward and 

cumulative reward is more favorable in their eyes. 
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Figure 6.27: Mean Reward over Time for Top Optimal Paths 

 

 

Figure 6.28: Mean Cumulative Reward over Time for Top Optimal Paths 
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similar.  Regardless of the designer’s preference, the reward over time plots provide 

valuable information for the decision making process. 
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6.4.5 Likelihood of Attainment 

The final, and perhaps most important, developed representation of the simulation results 

is defined as the likelihood of attainment (LoA).  The calculated overall preferences using 

DM, associated with the states of a given path, can be used to gain insight on the 

overlapping regions in the function and variable space.  The overall preference in the 

function space is the overlapping region between the mapped combined variable 

preference and the designer-provided function preference.  This curve, in a sense, 

describes the attainable function values given certain variable preferences.  In the 

variable space, the overall preference describes the variable values that are associated 

with the overlapping region.  For a single state and mapping, the overall preference can 

be transformed to represent a probability density function (PDF).  The transformed PDF 

would represent the relative likelihood for the function to take a given value.   

 

For every optimal path identified by a single simulation, the overall preference curve, 

both in the function and variable space, can be tracked through time.  A composite curve 

can be generated for every optimal path from each simulation.  The composite curve is 

calculated by determining the average preference level at each function or variable value 

for all states associated with an optimal path.  The composite curves can be analyzed in 

different ways, including the generation of a single composite for all simulations or 

comparing composite curves associated with different unique optimal paths.  The 

composite curves can be considered representations of various types of PDFs, but it is 

important to state that these combined curves are not the actual PDF for the function.  

 

Figure 6.29 shows the 25 composite curves associated with the 25 simulations with 

differing preference structures, which are the average preference levels for L/B values for 

the states associated with the simulation’s optimal path.  These composites can then be 

combined to form a single composite curve, or the likelihood of attainment associated 

with all simulation optimal paths.  Again, the average preference level at each L/B value 

for all simulation composite curves is calculated to obtain a single curve.  Figure 6.30 

shows the composite curve for all optimal paths from the simulations.  This represents the 
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likelihood of attaining certain function values given the potential outcomes represented 

by the various simulation preference structures.    

 

 

Figure 6.29: Likelihood of Attainment for Individual Optimal Paths 

 

 

Figure 6.30: Likelihood of Attainment for All Optimal Paths in Function Space 
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The composite curves are defined as the likelihood of attainment.  LoA curves can be 

calculated for both the function and its variables.  The curve in the function space 

represents the overlap between the combined preference associated with the mapping of 

variable preferences to the function space and an inputted function preference (or 

requirement).  If the combined preference completely encapsulates the function 

preference, then the likelihood of attainment would be equal to the function preference.  

More importantly, when there is no overlap between the functions, the likelihood of 

attainment is equal to zero for those values.  These curves provide valuable information 

to the designer when weighing their options on how to reduce the design space based on 

what function values are obtainable.   

 

Composite curves can also be generated for the unique optimal paths identified.  The 

higher percentage paths have more curves that make up the composite.  The composite 

curves associated with the two optimal paths with the highest percentage of occurrences 

in the simulations are provided in Figure 6.31.  This can provide additional insight on 

making the decision between two paths.  For example, if length-to-beam values between 

7 and 7.5 are of concern, then both paths have relatively the same likelihood of 

attainment in that region.  If values between 6 and 7 matter to the designer, then this is a 

different story.  It might be worth investigating which technical aspects are impacting the 

two optimal paths and choose to go into greater detail for that aspect during the next 

negotiation round.  Using the likelihood of attainment to compare different paths can 

provide the designer with additional information. 
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Figure 6.31: Likelihood of Attainment for Top Two Unique Optimal Paths 
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Figure 6.32: Likelihood of Attainment for All Optimal Paths in Variable Space 

 

The likelihood of attainment curves presented in this section provides both a powerful 
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decisions.  Beyond making a better decision, these curves can be used to quantify the risk 

or likelihood associated with moving towards a particular area of the design space.  This 
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a solution carries too much risk.  These curves are easily understood by stakeholders 

involved in the design, such as customers like the U.S. Navy, since the likelihood of 

attainment curves represent a substantial amount of analysis in an easy to understand 

way.  
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This section discusses the development of a method to understand multi-objective trade-
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Decision making tradeoffs are somewhat unique compared to typical tradeoff scenarios 

that deal with a solution space.  The tradeoffs are intentionally in the decision space, 

which emphasizes the decisions to reduce the design space.  A common approach to 

presenting tradeoff information is through the use of Pareto optimality, which identifies a 

set of non-dominated solutions.  For the points on the Pareto front, in order to improve 

one point in any of the objectives, another objective must become worse.  Hence, a point 

on the front is not better or worse than any other without an additional selection method.  

Pareto fronts help to identify and understand potential tradeoffs between multiple 

objectives and are typically provided to human decision-makers for consideration.  A 

Pareto front can be determined using the percentage optimal values from the robust 

decision path analysis for two separate functions.   

 

For illustrative purposes only, an additional function defined as length multiplied by 

beam, is introduced in addition to the length-to-beam ratio.  While this has little meaning 

for a naval architect, it is used to demonstrate the types of results that multi-objective 

trade-off analysis can provide.  Due to the fact that both functions have the same 

variables, the states in their graph structure will be the same.  If the functions have 

different numbers of variables, the link between their states must be made.  This is 

discussed further in Chapter 8 when presenting a demonstration of the set reduction 

framework. 

 

The Pareto front uses the percentage optimal values, defined as robustness, for the 

identified optimal paths from the simulations.  First, any unique optimal paths that are in 

common for both functions are identified and their robustness values recorded.  Non-

dominated decision paths are then determined.  For two partitions and the single 

reduction case, there are three points on the Pareto front that represent decision paths 

(provided in Figure 6.33).  In some scenarios, there might not be any completely unique 

paths in common, especially for functions that do not have the same variables.  An 

additional calculation method is introduced that focuses just on the initial decision that 

must be made.  The robustness values associated with the same initial decisions for each 

function are calculated using the modified method.  The Pareto front associated with this 
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method is provided in Figure 6.34.  It can be seen, when comparing Figure 6.34 to Figure 

6.33, that robustness values increase in the vertical direction as there were more unique 

optimal paths, but most had common initial decisions.  The robustness along the 

horizontal axis remained the same because there were only two unique optimal paths for 

this function.     

 

Figure 6.33: Unique Path Robustness Pareto Front for Two Partitions and Single 

Reduction Case 

 

 

Figure 6.34: Initial Decision Robustness Pareto Front for Two Partitions and Single 

Reduction Case 
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The value of the Pareto front plots provided in Figure 6.33 and Figure 6.34 for the 

designer making set reduction decisions is in the ability to account for function 

uncertainty.  For example, if the designer feels that one function has more uncertainty 

associated with it than another function, a path along the Pareto front that has a higher 

robustness value for that function would be preferred.  The Pareto front plots add an even 

higher degree of robustness identification and the ability to identify customized decisions 

based on what the designer truly cares about. 

 

Similar to the discussion in the previous section, the designer does not want to ignore the 

actual function values associated with given paths, which led to the development of LoA 

curves.  This concept can be extended into the third dimension to present a likelihood of 

attainment curve for a combination of optimal paths associated with both functions.  Two 

examples of the multi-objective likelihood of attainment curves are provided in Figure 

6.35.  The paths correspond to two of the paths in the Pareto front provided in Figure 

6.33.  The 1-3-6-10 path is associated with a reduction in length values between 250 and 

300 first, then beam values between 25 and 30.  The 1-4-6-10 path is associated with a 

reduction in beam values between 25 and 30 first, then a reduction in length values 

between 250 and 300.  It can be seen that there is a drop in likelihood for Path 1-3-6 at an 

LB value of 7,500.  A similar drop occurs for Path 1-4-6, but that drop occurs at an LB 

value of 6,000.  A designer can use these contour plots to better understand the risk 

associated with attaining a requirement or function value given a reduction decision or 

path.   
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Figure 6.35: Multi-Objective Likelihood of Attainment Contour Plots for Two Unique 

Optimal Paths 

 

The ability to interpret and understand set reduction decisions from multiple perspectives 
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metrics are used as inputs into the LPP MDP formulation.  One of the main objectives 

when guiding design reduction is to maximize the reward associated with eliminating a 

certain area of the design space, while considering the risk associated with that decision.  

The MDP formulation is able to model the reduction path problem through the use of a 

risk-adjusted reward evaluated over the complete set reduction process.  Additionally, a 

novel approach to automatically generate reduction graph structures is introduced.  The 

final component of the method utilizes the MDP outputs to conduct a series of preference 

structure simulations.  The goal of conducting simulations is to better understand the 

impacts of potential preference structures, both changing requirements and variable 

preferences throughout the reduction process.       

 

There are a number of factors that make the set reduction problem unique from typical 

MDP and LPP formulations.  Therefore, various representations of the framework’s 

results that can be used by the designer to make set reduction decisions were developed.  

These considerations included determining the link between preference structures and 

optimal reduction policies, identifying robust decision paths, determining if alternative 

paths exist if a selected path failed to remain feasible, and determining the impact of 

uncertainty on meeting a specific function value or obtaining a specific variable value.  

Additionally, multi-objective trade-offs were considered by providing Pareto fronts that 

describe the robustness of common decision paths for multiple functions.  The 

visualization of uncertainty in both objectives using contour plots was presented. 

 

Finally, individual pieces of the developed method are combined together during a 

discussion on the overall execution strategy.  The execution strategy can be broken down 

into a series of distinct steps that occur during a single round of negotiation, or time-step 

in the decision making process.  The proposed method is designed for use at every 

negotiation round.  The reduction structure used in this dissertation and reasoning behind 

its selection is then presented.  While this chapter covered a wide array of topics, the 

execution strategy is able to consolidate all aspects into an understandable and executable 

strategy that is utilized in the next chapter when demonstrating the proposed method and 

validating its usefulness.  



238 

 

Chapter Citations 

1. Antonsson, E.K., & Otto, K.N. (1995). Imprecision in Engineering Design. ASME 

Journal of Mechanical Design, 117(B), pp. 25-32. 

2. Bellman, R. (1957). A Markovian Decision Process. Journal of Mathematics and 

Mechanics, 6. 

3. Bertsekas, D. P., & Tsitsiklis, J. N. (1991, August). An Analysis of Stochastic 

Shortest Path Problems. Mathematics of Operations Research, 16(3), pp. 580-595.    

4. Briggs, A. J., Detweiler, C., Scharstein, D., & Vandenberg-Rodes, A. (2002, 

December). Expected Shortest Paths for Landmark-Based Robot Navigation. Paper 

presented at the Fifth International Workshop on Algorithmic Foundations of 

Robotics, Nice, France. 

5. Briggs, A.J., Detweiler, C., & Scharstein, D. (2004). Expected Shortest Paths for 

Landmark-Based Robot Navigation. International Journal of Robotics Research, 

23(7-8), pp. 717-728. 
6. Hopp, W. (1988). Sensitivity analysis in discrete dynamic programming. Journal of 

Optimization Theory Applications, 56, pp. 257-269.  

7. Huang, B. & Fery, P. (2005). Aiding route decisions for hazardous material 

transportation. Transportation Research Board. 

8. Law, W.S., & Antonsson, E.K. (1994). Implementing the Method of Imprecision: An 

Engineering Design Example. Proceedings of the Third IEE International Conference 

on Fuzzy Systems, 1, pp. 358-363. 

9. Miller-Hooks, E. & Mahmassani, H. S. (1998). Optimal Routing of Hazardous 

Materials in Stochastic, Time-Varying Transportation Networks. Transportation 

Research Record, Vol. 1645, pp. 143-151. 

10. Niese, N. D. (2012). Life Cycle Evaluation under Uncertain Environmental Policies 

Using a Ship-Centric Markov Decision Process Framework. (Doctoral dissertation). 

University of Michigan, Ann Arbor, MI. 

11. Nikolova, E., & Karger, D. R. (2008, July). Route Planning under Uncertainty: The 

Canadian Traveller Problem. Paper presented at the Twenty-Third Conference on 

Artificial Intelligence, Chicago, IL.  

12. Papadimitriou, C. H., & Yannakakis, M. (1991). Shortest paths without a map. 

Theoretical Computer Science, 84, pp. 127-150. 

13. Polychronopoulos, G. H., & Tsitsiklis, J. N. (1996). Stochastic Shortest Path 

Problems with Recourse. Networks, 27, pp. 133-143. 

14. Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic 

Programming. Hoboken: John Wiley & Sons. 

15. Russel, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach. 2nd ed. 

New York: Prentice Hall.  
16. Tan, C., & Hartman, C. (2011). Sensitivity analysis in Markov Decision Processes with 

uncertain reward parameters. Journal of Applied Probability, 48, pp. 954-967.  

17. Wallace, S. (2000). Decision-making under uncertainty: Is sensitivity analysis of any 

use? Operations Research, 48, pp. 20-25.  

18. Wang, X. (2003). Set Mapping in the Method of Imprecision. (Doctoral dissertation). 

California Institute of Technology, Pasadena, CA. 
19. White, C., & El-Deib, H. (1986). Parameter imprecision in finite state, finite action 

dynamic programs. Operations Research, 34, pp. 120-129.  



239 

 

20. Wood, K.L., Otto, K.N., & Antonsson, E.K. (1992). Engineering Design Calculations 

with Fuzzy Parameters. Fuzzy Sets and Systems, 51(1), pp. 1-20. 

21. Zadeh, L.A. (1965). Fuzzy Sets. Information and Control 8, pp. 338-353. 

22. Bellman, R. (1957). Dynamic programming. Princeton: Princeton University Press.  

 



240 

 

Chapter 7: Evaluation and Comparison Studies 

 

 

The developed framework presented in the previous chapter provides a designer within a 

SBD environment an understanding of time-dependent relationships through design space 

mapping, the impact of reducing areas of the design space using the MDP framework, 

and identifies robust decision paths from preference change simulations.  While both 

design space mapping and MDPs have proved to be effective for certain applications 

individually, the combination of the two has yet to be studied.   

 

In order to establish the link between mapping outputs and the rewards associated with 

the MDP framework, the reduction metrics presented in the previous chapter are 

evaluated to determine their combined effectiveness.  After an initial evaluation of all 

combinations between the reward and risk metrics, two were selected to be analyzed in 

more detail.  After a more detailed evaluation including how the two selected metrics 

represent design changes, a single metric is selected as the most compatible for the SBD 

reduction problem.   

 

This chapter also presents a series of studies conducted to determine the value associated 

with using the MDP formulation with the developed metrics over reduction methods 

based solely on current in-state knowledge.  While mapping information can be useful, 

there is still no consideration of future scenarios.  Design requirements and relationships 

are constantly changing through time, especially for organizations such as the U.S. Navy.  

By having the ability to understand potential outcomes and identifying paths more robust 

to changing conditions through preference change simulations, the designer has 

additional and valuable information to make sound decisions. 
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Novel contributions presented in this chapter include: 

 

 An evaluation of the developed metrics within the MDP formulation and the 

identification of a single metric best suited for the set reduction problem 

 A demonstration of the advantage of considering future state prediction versus the 

use of in-state knowledge 

 

7.1 Metrics Evaluation 

As described in the previous chapter, reduction metrics are used to make the link between 

the DM method and the MDP formulation.  The risk and reward metrics selected are 

multiplied together to form the risk-adjusted rewards used in the MDP.  In order to better 

understand the implications of using different combinations of the risk and reward 

metrics, a series of studies were conducted using the LPP MDP SBD formulation.  Based 

on the emphasis of each metric, it was determined that certain combinations of risk and 

reward metrics made more intuitive sense and produced more reasonable results when 

used within the MDP formulation.  This section first discusses an initial evaluation of the 

potential combinations used to identify the most promising reward and risk combinations.  

From this evaluation, two combinations were analyzed in further detail to identify their 

strengths and weaknesses.  This comparative evaluation uses likelihood of attainment 

curves in both the function and variable space to compare the two combined metrics. 

 

7.1.1 Initial Evaluation 

An initial evaluation of the risk and reward metric combinations was completed using the 

length-to-beam problem.  The purpose of this evaluation was to identify metric 

combinations that complemented each other and produced reasonable and intuitive results 

for a simple problem.  The length-to-beam problem with two variable partitions each and 

a single-reduction graph structure were used.  The graph structure is provided in Figure 

7.1 for reference, which is a duplicate of the one provided in the previous chapter.   
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Figure 7.1: Length-to-Beam Single Reduction Graph (Two Partitions) 

 

The initial variable preferences used for the evaluation were triangular with peaks at the 

middle of the set-ranges and endpoints at the set-range limits.  The initial state (State 1) 

mapping of these preferences with an assumed function preference is provided in Figure 

7.2.  The overall preferences with the initial variable preferences are provided in Figure 

7.3.  The risk-adjusted rewards associated with State 1 used in the MDP framework are 

calculated using a combination of risk and reward metrics, which are based on the areas 

associated with these figures.  For the function risk metric, additional function space 

mappings are required, which are not shown here.  
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Figure 7.2: Combined and Function Preferences in Function Space (State 1) 

 

 

Figure 7.3: Variable and Overall Preferences in Variable Space (State 1) 
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simulations.  The decision to reduce to State 3 is associated with reducing length values 

between 250 and 300.  The decision to reduce to State 4 is associated with reducing beam 

values from 25 to 30.  These two options are logical when considering all of the variable 

preferences in Figure 7.3. 

  

Table 7.1: Risk/Reward Combinations Evaluated 

 

 

The most significant result, seen in Table 7.1, is the reduction reward with variable risk 

combination.  In this case, there is little emphasis placed on meeting the desired function 

preference.  This led to reduction decisions that were infeasible (no overlap in function 

space), and did not have an overlap with the function preference.  When using this metric 

combination, certain regions with a little or no overall preference ranked high.  This 

produced false results that signified a favorable region, that in reality, was infeasible.  

Another combination with notable results is the satisfaction reward with function risk, 

where State 3 was 100% optimal.  Both satisfaction reward and function risk describe the 

similar aspect of meeting the desired function preference, except for the fact that one is in 

the function space and the other is in the variable space.  Results of the analysis show 

little conflict between these two metrics, which caused State 3 to be optimal for all 

simulations.  These two metrics were eliminated from consideration for use in the MDP 

framework due to their inconsistences and singular focus. 

 

The satisfaction reward and variable risk metrics complement each other well by 

identifying unpreferred regions while at the same time balancing the desire to remain in 

an unconstrained area of the design space.  Results favor State 3 approximately two-

thirds of the time.  A similar conclusion regarding the reduction reward and function risk 

combination can be seen, however in this case the results favor State 4.  The reduction 

3 4

1 Satisfaction Variable 0.67 0.33

2 Satisfaction Function 1 0

3 Reduction Variable

4 Reduction Function 0.44 0.56

Robust Decision (% Opt)
Combination Reward Risk

Infeasible
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reward emphasizes the gap between desired and obtainable variable values, while 

function risk ensures overlap.  It cannot be determined from this initial analysis whether 

one combined metric is better than the other, however, as identified in Chapter 5, the 

reduction path taken does have an impact on the ability to handle changing conditions.  In 

order to better understand the implications of the two combined metrics remaining, 

further analysis is required.  For notational purposes, from this point forward, the 

satisfaction reward scenario refers to the combination with variable risk, and the 

reduction reward scenario refers to the combination with function risk.   

 

7.1.2 Reward Type Comparison 

After identifying the two combinations that were the most compatible, further analysis 

was completed to better understand the implications of using each type.  The two 

combinations analyzed were the satisfaction reward with variable risk and reduction 

reward with function risk.  Initially, a series of baseline reductions using each reward 

type was completed using the length-to-beam function with different initial preference 

structures.  A triangular function preference is assumed with a range of     [     ] 

and peak at      .  In an effort to move away from the simplicity associated with 

using only two partitions for each variable, four partitions were used.  Assuming the 

single reduction scenario, a total of three reductions for each variable is required to 

reduce to the final partition ranges.  This is associated with a total of 8 epochs, including 

the initial and terminal states.  A total of nine different initial preference structures were 

used as part of the analysis.  For each initial preference structure, a series of simulations 

were completed that solved the LPP MDP problem using different future preference 

structures.  The initial preference structures were triangular and fully spanned the initial 

set-ranges.  The peak of the triangle was either at the left (L), center (C), or right (R) of 

the set-range.  A list of the cases analyzed and their initial preference structures are 

provided in Table 7.2.  The L/B value associated with the peak preferences is also 

provided for reference. 
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Table 7.2: Initial Preference Structures and Peak Function Values 

 

 

To simplify the interpretation of the results, only the robust decision paths and the 

number of alternative paths were used to make reduction decisions.  Specifically, the 

percentage that a state was optimal for epoch 1 was used along with the average number 

of alternative paths for a given state.  The number of alternative paths is averaged for the 

simulations that resulted in the state being optimal in epoch 2.  There were certain 

situations where the optimal percentage was the same for multiple states.  In these 

situations, the most robust reduction decision was considered the state containing a 

higher average number of alternative paths.  The results of the initial analysis for the 

satisfaction and reduction rewards are provided in Table 7.3 and Table 7.4, respectively. 

 

Table 7.3: Satisfaction Reward Initial Results 

 

 

Case # Length Beam Peak L/B

1 L C 6.67

2 L R 5.71

3 L L 8

4 C C 8.33

5 C R 7.14

6 C L 10

7 R C 10

8 R R 8.57

9 R L 12

4 11 31 4 11 31

1 0.67 0.33 0 3.67 3 0

2 0.67 0.33 0 3.67 3 0

3 0.67 0.33 0 3.67 3 0

4 0.67 0.33 0 3.67 3 0

5 0.67 0.33 0 3.67 3 0

6 0.67 0.33 0 3.67 3 0

7 0.67 0.33 0 3.67 3 0

8 0.56 0.44 0 3.67 4 0

9 0.67 0.33 0 3.67 3 0

Case #
Robust Decision (% Opt.) Alternative Paths (Avg. #)
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Table 7.4: Reduction Reward Initial Results 

 

 

The states with the highest optimal percentage for each initial preference structure are 

shaded in the tables above.  One note is that for preference structure 9, three states 

resulted in the same percentage; the state with the largest number of average alternative 

paths is shaded.  When comparing the results of the two metrics, preference structures 1-6 

have the highest optimal percentage at State 4.  These results differ for preference 

structures 7-9.  The satisfaction reward shows State 4 being more robust, while the 

reduction reward shows State 11.  State 4 is associated with a reduction in length from 

275-300 and State 11 is associated with a reduction in beam from 25 to 27.5.  Similar to 

the analysis conducted in the previous section, the two metrics suggest different paths be 

taken for three initial preference structures.  These three preference structures are 

associated with a length preference peak to the right.  Also, referring to Table 7.2, these 

three preference structures are also associated with large peak length-to-beam ratios 

outside the range of the function preference.  This means that it is difficult to obtain 

variables that both overlap with the desired function preference and high variable 

preference values. 

 

To better understand the implications of the different paths identified by the two metrics, 

a complete reduction analysis was completed for each preference structure.  The values 

presented in Table 7.3 and Table 7.4 only show the results associated with analyzing 

potential outcomes from the perspective of being in epoch 1.  Similar to how the method 

would be used at each negotiation round with updated preferences, a simulation is 

2 4 11 31 2 4 11 31

1 0.11 0.89 0 0 1 7.83 0 0

2 0 0.67 0.33 0 0 6.20 6 0

3 0.11 0.89 0 0 1 7.83 0 0

4 0 0.78 0 0.22 0 6.5 0 2

5 0 0.56 0.22 0.22 0 7.5 7 3

6 0 0.78 0 0.22 0 6.5 0 2

7 0 0.11 0.56 0.33 0 6 8.5 5

8 0 0.00 0.67 0.33 0 0 8.4 4

9 0 0.33 0.33 0.33 0 8 9 5

Alternative Paths (Avg. #)Robust Decision (%)
Case #
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completed at each epoch for this problem.  The reduction decision at each epoch is based 

on the optimal percentage and alternative path information, while the updated preferences 

are clipped versions of the initial preference structure.  As set reduction occurs, the 

preference structures for the states at previous epochs are set based on the initial 

preference structure and future epoch preferences that are defined based on the 

simulations.  In the end, a robust reduction path is identified for each initial preference 

structure and reward type.  The best way to compare the two metrics is using the 

composite likelihood of attainment curves in both the function and variable space 

associated with the robust set reduction path.  These curves can identify the impact of 

taking one reduction path over another.  

 

7.1.2.1 Unconstrained Scenario 

Before looking at the scenarios where the two reward types identified different robust 

paths, a study of a preference structure that had similar robust paths for both metrics was 

completed.  An unconstrained scenario is when the combined preference in the function 

space, which is based on initial preferences, has a large amount of overlap with the 

function preference.  Preference structure 2 is associated with a left length peak 

preference and right beam peak preference.  The peak L/B is equal to 5.71, closest to the 

function preference peak of 6.  The reduction plots for preference structure 2 are provided 

in Figure 7.4.  It can be seen that the reduction paths are similar for the early rounds, but 

differ in reduction order later.  Also, while the final set-range for length was the same, the 

final beam set-range was shifted lower for reduction reward.  
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Figure 7.4: Reduction Plots for Initial Preference Structure 2 

 

The composite likelihood of attainment curves for all the states associated with the robust 

paths can be calculated and compared in order to identify the impacts of the different 

reduction paths.  Figure 7.5 and Figure 7.6 provide the likelihood of attainment curves for 

preference structure 2 in the function and variable space, respectively.  Results show that 

the two reward types produce similar results when the likelihood of attainment is 

relatively high.  Also, the attainment curves are similar to the function and variable 

preferences, which are the solid black lines in the figures.  This is associated with a high 

likelihood of meeting the desired function preference, or requirement.   
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Figure 7.5: Function Space Robust Path Likelihood of Attainment Curves (Preference 

Structure 2) 

 

 
Figure 7.6: Variable Space Robust Path Likelihood of Attainment Curves (Preference 

Structure 2) 

 

For the relatively unconstrained problem associated with preference structure 2, 

additional preference change studies were completed to better understand how each 

reward type manages changing conditions.  These studies are similar to the detailed 

design experiments presented in Chapter 5.  When making a preference change within the 

developed structure, the preferences for the prior epochs are set to clipped versions of the 
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initial preference structure.  During the round when a change occurs, the preferences 

change to the new preference structure.  To evaluate the actual impact of the change, the 

new preference structure is used for the future state mappings.  This is associated with the 

preferences staying at the new preference structure for the remainder of the reduction.  If 

all simulations are considered, the result would be the robust decision path moving 

forward after the change occurs.  Identifying this robust decision path is important, but 

for a more direct comparison, the preferences are fixed for the remainder of the reduction 

process. 

 

The first change study completed for preference structure 2 was a change in the length 

peak from the left to the right during round or epoch 5.  Figure 7.7 and Figure 7.8 provide 

the likelihood of attainment curves for preference structure 2 with the length change.  The 

black solid lines show the new preference structures after the change was implemented.  

Notice the shift in the length preference.  The most obvious difference from the 

unchanged scenario is the dramatic decrease in likelihood of attainment.  This confirms 

that the problem was further constrained by the change in preference.  Again, in this 

scenario, the likelihood of attainment curves are similar.  One important observation is in 

the length variable space where the change occurred.  The black solid line shows the 

changed preference structure where the satisfaction reward is able to attain higher 

likelihoods for larger length values.  When this change occurs, the set-ranges are identical 

for both reward types.  This means that the reduction path identified by satisfaction 

reward after the change was more successful at attaining higher likelihood values.   
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Figure 7.7: Function Space Likelihood of Attainment Curves (Preference Structure 2 with 

Length Change) 

 

 
Figure 7.8: Variable Space Likelihood of Attainment Curves (Preference Structure 2 with 

Length Change) 

   

The second change study completed for preference structure 2 was a variance in the beam 

peak from the right to the left during round 5.  Figure 7.9 provides the likelihood of 

attainment curves for preference structure 2 in the variable space with the beam change.  

In the function space, the likelihood of attainment curves were similar and the level of 
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attainment was comparable to that of the length change.  In Figure 7.9, the curves are 

almost identical for both variables.  Unlike the length change, the paths identified by each 

reward type produced similar results.  This shows that in certain scenarios (but not all), 

satisfaction reward can potentially attain higher likelihood values in preferred regions 

after a change occurs.  

 

 
Figure 7.9: Variable Space Robust Path Likelihood of Attainment Curves (Preference 

Structure 2 with Beam Change) 

 

7.1.2.2 Constrained Scenarios 

With an understanding of unconstrained situations where both reward types have the 

same solution, the scenarios where the reward types produced different results can be 

analyzed.  It is important to first determine how the reduction paths differ from the 

preference structures with a peak length preference to the right.  Table 7.5 provides the 

reduction paths for preference structures 7, 8, and 9 for both reward types.  Each number 

is associated with a state.  State 1 is associated with the initial set-ranges and state 101 is 

associated with the artificial terminal node.  The reduction paths for preference structures 

7 and 8 within each reward type are exactly the same.  Preference structure 9 has a 

different robust path, but does not differ substantially.  The differences are associated 

with the order in which a set-range is reduced.  The reduction plots associated with 
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preference structure 7 for both reward types are provided in Figure 7.10.  In this case, the 

satisfaction reward path reduces length initially, while the reduction reward path reduces 

the beam completely.  The reduction plots associated with preference structure 9 for both 

reward types are provided in Figure 7.11.  The states associated with a specific case’s 

robust path, seen in Table 7.5, correspond to variable set-ranges in the reduction plots 

provided in Figure 7.10 and Figure 7.11.  The trends in these figures are similar when 

comparing the 7 and 8 paths to the 9 path with minor changes in the order of the 

reduction and shifts in the end set-ranges for satisfaction reward.  The key distinction 

between the paths for the two reward types is which variable is reduced in the early 

rounds.     

 

Table 7.5: Robust Reduction Paths for Initial Preference Structures 7, 8, and 9 

 

 

Case 7 Case 8 Case 9 Case 7 Case 8 Case 9

1 1 1 1 1 1 1

2 4 4 4 11 11 11

3 6 6 6 21 21 21

4 16 16 10 61 61 24

5 26 26 40 64 64 26

6 66 66 50 66 66 30

7 69 69 80 70 70 70

8 101 101 101 101 101 101

Satisfaction Reward Reduction Reward
Epoch



255 

 

 
Figure 7.10: Reduction Plot for Initial Preference Structure 7 

 
Figure 7.11: Reduction Plot for Initial Preference Structure 9 

 

After understanding how the reduction paths differ, a comparison using likelihood of 

attainment curves can be completed.  Figure 7.12 and Figure 7.13 provide the likelihood 
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of attainment curves for preference structure 9, in the function and variable space, 

respectively.  It can be seen that the likelihood of attainment in the function space is 

similar for both reward types; however, in the variable space there are some key 

differences.  Reduction reward is able to attain slightly higher length likelihoods, but less 

beam likelihoods for the lower beam values that are preferred.  This is due to the 

emphasis of the reduction reward on a single variable set-range at a time.  While 

reduction reward can attain more values for one variable, the other variable is more 

negatively affected.  Also, the initial reduction of beam values for the reduction reward 

led to low attainment in lower beam values.  From this analysis, the satisfaction reward is 

able to select the path that impacts the attainment the least.  Similar results were found 

for preference structures 8 and 9 as well.  The results show that for situations where the 

peak combined preference is distant from the preferred function preference, reduction 

reward can potentially cause a decrease in attainment for certain values.   

 

 
Figure 7.12: Function Space Robust Path Likelihood of Attainment Curves (Preference 

Structure 9) 
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Figure 7.13: Variable Space Robust Path Likelihood of Attainment Curves (Preference 

Structure 9) 

 

Another study using preference structure 9 was also conducted, which has the opposite 

structure of 2.  The preference changes instituted included a peak length change from 

right to left, and a peak beam change from left to right.  Similar to the previous studies, 

the likelihood of attainment curves in the function space were close and showed the same 

trends.  Figure 7.14 provides the likelihood of attainment curves in the variable space for 

the length change instituted in round 4.  Similar to the robust path results for preference 

structures 7, 8, and 9, reduction reward attainment is higher in one variable, while at the 

same time satisfaction reward attainment is higher in the other, where higher preferences 

exist.  These differences are circled in Figure 7.14.  Figure 7.15 provides the likelihood of 

attainment curves in the variable space for the beam change instituted in round 4.  When 

the change occurs within the non-reduced variable in the reduction reward path, its 

attainment is higher in both variable regions where higher preferences exist.  The areas 

where reduction reward has higher attainment, also where the higher variable preferences 

are after the change, are circled in Figure 7.15.  This illustrates the situation where the 

one-sided leaning emphasis reduction reward places lines up with a change scenario that 

is benefitted. 
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Figure 7.14: Variable Space Likelihood of Attainment Curves (Preference Structure 2 

with Length Change) 

 

 
Figure 7.15: Variable Space Likelihood of Attainment Curves (Preference Structure 2 

with Beam Change) 
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constrains the design space.  The usefulness of using the reward metrics, even though 

results differ between them, can be seen, particularly in the case of a designer that 

currently uses a heuristic or clipping reduction method.       

 

More detailed observations include the difference in results between the two reward 

metrics.  First, when the problem is unconstrained, meaning the peak variable preferences 

align with the preferred function values, both reward metrics produce similar results.  If 

the problem is unconstrained and a constraining change is instituted, the satisfaction 

reward that considers all variable spaces is either the same or better at attaining higher 

likelihoods.   

 

For the constrained problems, where the peak variable preferences did not match the 

function peak preference, the reward metrics identify initial reductions of different 

variables.  The results show that the reward types have higher attainment for opposite 

variables.  However, the lower attainment values associated with reduction reward in 

beam were relatively smaller when compared to the same satisfaction reward values in 

length.  It is not clear if this would be the case for other functions.  Finally, when an 

unconstrained problem became less constrained by a preference change, the scenario that 

occurred in the constrained case also occurs for the length change.  For the beam change, 

reduction reward had higher attainment values in both variables, where higher 

preferences existed.  These observations indicate that, in general, for situations where the 

potential changes are unknown, satisfaction reward is a better choice.  Even though 

reduction reward can be better under specific circumstances, the potential change will 

never be certain.  Therefore, the risk associated with using this metric would be higher.  

The benefits of using satisfaction reward over reduction reward stems from the fact that 

information from all variables is being incorporated into the reward calculation. 

 

The results of the studies presented in this section highlight the value of using the DM 

method in conjunction with the developed metrics.  Designers can identify potential 

reductions associated with meeting specific function values to gain a better understanding 

of variable/function interactions that would normally have to be done in a designer’s 
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head.  The studies also observed that the satisfaction reward is able to identify reduction 

paths that are able to better handle changing conditions associated with the types of 

design problems considered.  The next step in the evaluation process involves a better 

understanding of the implications associated with using the metrics in combination with 

the MDP framework.      

 

7.2 Future State Prediction versus In-State Knowledge 

The major advantage associated with the use of a SBD MDP framework is the 

consideration of potential future outcomes.  While using the mapping metrics provides 

additional information to a designer over heuristic or clipping reduction methods, 

utilizing the combination of the mapping metrics and the MDP framework provides even 

more insight into the reduction process.  In an effort to evaluate the effectiveness of the 

combined method, a series of studies were completed that compares it against making a 

decision based solely on the mapping information associated with the current state and 

epoch.  Utilizing the knowledge obtained from the previous section, both unconstrained 

and constrained initial preference structure problems were evaluated and compared for 

the two reduction approaches.  For this study, the satisfaction reward metric is solely 

used.  The MDP output using the satisfaction reward metric is called the robust path for 

the analysis presented in this section.  These paths were previously calculated when 

comparing the two reward metrics.  The paths based solely on in-state knowledge are 

defined as current paths for the analysis presented in this section.  These paths are 

determined by calculating the maximum risk-adjusted reward for the current state, which 

is generated from the mapping results using the initial preference structure of interest. 

 

7.2.1 Unconstrained Scenario 

The first initial preference structure considered was the unconstrained case, preference 

structure 2 defined in the previous section, where lower length values and higher beam 

values are preferred.  Reduction plots for both the robust path and current path for 

preference structure 2 are provided in Figure 7.16.  As seen below, the only major 

difference occurs in the earlier rounds.   
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Figure 7.16: Reduction Plots for Initial Preference Structure 2 

 

To better understand the implications of the paths shown in Figure 7.16 for the 

unconstrained case, the likelihood of attainment curves must be analyzed.  Figure 7.17 

shows the likelihood of attainment curves for preference structure 2 in the function space.  

In the function space, the current path has higher attainment values than the robust path.  

This shows the cost associated with using a robust path over what is believed to be the 

“best” for the current preference structure.  For example, if the variable preferences did 

not change throughout the entire reduction process, the path identified using current 

mapping information for the unconstrained problem would produce better results.  These 

results indicate that for an unconstrained problem with no changes, taking a robust 

reduction path is, in most cases, not required.  However, this scenario is rarely the case in 

real-world design efforts.  The results for the unconstrained case also show that different 

reduction paths, although similar, can produce feasible designs that meet requirements.  

These results are seen in the detailed experiments discussed in Chapter 5 as well.  While 

a change study can be completed for the unconstrained case, the results under more 

constrained scenarios are of particular interest. 
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Figure 7.17: Function Space Likelihood of Attainment Curves (Preference Structure 2) 
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discussed above.  Again, both paths conclude in the same regions for both variables, but 

take significantly different paths to get there.  
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Figure 7.18: Reduction Plots for Initial Preference Structure 8 

 

The likelihood of attainment curves in the function space for preference structure 8 are 

provided in Figure 7.19.  In this case, the current path curve is lower for the highly 

preferred function values.  This indicates that for constrained problems, path dependence 

does have an impact.  Also, the identified robust path was able to handle a more 

constrained problem than the path based only on current time step information.  In 

contrast to the findings of the detailed experiments, when the problem was more 

constrained (change in requirement occurred), certain paths were able to handle the 

situations better than others.  Unfortunately, at that time, there was no way to identify 

which path was better until after the change occurred.   
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Figure 7.19: Function Space Likelihood of Attainment Curves (Preference Structure 8) 

 

An additional study for preference structure 8 was conducted to identify the impact of a 

further constraining design change on the attainable function and variable values.  During 

round 5, the beam peak preference was changed from the right to the left of the set-range.  

Figure 7.25 and Figure 7.26 provide the likelihood of attainment curves for preference 

structure 8 with a beam change in the function and variable space, respectively.  In this 

case, the attainment values are lower than when a change does not occur.  Also, the 

current path attainment curve is lower than the robust path for most of the function range.  

In the variable space, the beam attainment values are most affected by taking the current 

path.  This study identifies that the identified robust path is able to handle changes better 

than the current path. 
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Figure 7.20: Function Space Likelihood of Attainment Curves (Preference Structure 8 

with Beam Change) 

 

 
Figure 7.21: Variable Space Likelihood of Attainment Curves (Preference Structure 8 

with Beam Change) 
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peak was evaluated next.  For this preference structure, the current path led to an 

infeasible region in round 6.  This means that the combined preference did not overlap 

with the function preference.  In an actual design effort, this would be associated with all 

currently considered solutions being infeasible.  Figure 7.22 provides the reduction paths 

for this preference structure.  The cause of the failure is quite obvious and can be seen in 
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the length reduction plots.  The current path continued to reduce lower length values, 

which are critical for feasibility.  With no information about potential futures or the 

impact of reducing higher length values, the current information continued to lead the 

design down dead design directions.  This can potentially indicate variables that are 

drivers of function space overlap. 

 

Figure 7.22: Reduction Plots for Initial Preference Structure 9 

 

A comparison of the likelihood of attainment curves up to the point of failure is provided 

in Figure 7.23.  In this scenario, the current path has even lower attainment values for a 

wider range than preference structure 8.  This study shows the importance of accounting 

for future scenarios when dealing with constrained problems.  The likelihood of failure 

greatly increases when only current information is considered.   
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Figure 7.23: Function Space Likelihood of Attainment Curves up to Round 6 (Preference 

Structure 9) 

 

The results of the studies presented in this section highlight similar observations seen 

during the detailed experiments presented in Chapter 5.  Two observations of note from 

both sets of experiments is that multiple reduction paths can be successfully taken when 

the problem is unconstrained, and reduction paths become more important as the problem 

becomes more constrained.  These similarities suggest that the developed metrics, in 

combination with the MDP framework, properly demonstrate the issues that arise during 

various types of reduction processes.  The detailed experiments also revealed that certain 

paths are more robust to changes than others.  Using the developed metrics with the 

developed MDP method, the robust paths can now be identified prior to set reduction, as 

opposed to finding out only after a change is implemented.  Gray (2011) provided an 

alternative approach to dealing with more constrained situations by introducing type-2 

fuzzy logic uncertainty modeling, which was discussed in Chapter 4.  A natural extension 

of this work would be combining the work completed by Gray (2011) with identifying a 

robust reduction path.  

 

7.3 Chapter Summary 

Multiple combinations of the developed reduction metrics were evaluated, and two were 

selected for further analysis.  Both metrics identified valid reduction paths that resulted in 
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feasible final set-ranges, and their value was apparent when handling more constrained 

problems.  The satisfaction reward metric was able to manage more situations than the 

reduction reward, mainly due to the fact that information from all variables is 

incorporated into the reward calculation.  The results of the studies presented in this 

section highlight the value of using the DM method in conjunction with the developed 

metrics.  Designers can identify potential reductions associated with meeting specific 

function values to gain a better understanding of variable-function interactions that would 

normally have to be done in a designer’s head.  The developed decision support 

framework is utilized at each negotiation round of a SBD execution so the updated 

variable preferences, or JOPs, can be included in the analysis. 

 

The other major conclusion drawn from the series of studies is that the developed 

framework is able to identify robust reduction paths that can handle constrained problems 

and changing preferences.  When compared to a method that only uses current in-state 

knowledge, the developed framework was able to attain a wider range of both function 

and variable values.  The results of the studies also highlight similar observations from 

the detailed experiments presented in Chapter 5.  These similarities suggest that the 

developed metrics, in combination with the MDP formulation, properly demonstrate the 

issues that arise during various types of reduction processes.  Additionally, instead of 

using lag indicators, such as set reduction failures to identify poor reduction paths, the 

developed framework can be used as a lead indicator to provide the designer with 

information regarding future outcomes before reduction decisions need to be made.   
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Chapter 8: Reduction Demonstration 

 

 

The developed decision support framework aids a designer in making reduction decisions 

within a SBD environment.  This framework was specifically developed for chief 

engineers or design managers to understand the implications associated with variable 

preferences (JOPs) provided by functional design groups.  During each SBD negotiation 

round, variable preferences, which are based on analysis completed by the functional 

design groups, are provided to the chief engineer.  The chief engineer then uses the 

developed framework to gain a better understanding of reduction decisions associated 

with the current design effort.  Using its results, the chief engineer makes a reduction 

decision.  The updated variable set-ranges are then communicated to the functional 

design groups and the process begins again using the reduced set-ranges.   

 

When utilizing the developed framework, the chief engineer must select one or more 

functions of interest.  The specific functions and the reasoning for their selection can vary 

widely.  So far in this dissertation, the length-to-beam ratio has been used to illustrate the 

developed methods and conduct comparative studies.  To demonstrate the use of the 

decision support framework with more complicated functions, this chapter presents a ship 

design case study.  More than one function is also considered to describe the multi-

function interpretation process.  The case study focuses on a basic container ship design.  

Details of the case study formulation and the selected functions are first discussed, 

followed by a complete reduction demonstration using the developed decision support 

framework.
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8.1 Container Ship Design Case Study 

This section presents the formulation of the container ship design case study.  First, the 

functions of interest are selected.  Next, the required inputs, outlined by the execution 

strategy presented in Chapter6, are provided for the case study.   

 

8.1.1 Functions of Interest 

The first step was selecting functions of interest.  One type of function that a chief 

engineer would be interested in is one that has not been calculated by any of the 

functional design groups during their analyses.  This would allow the chief engineer to 

gain additional insight about the design that is not captured by the functional design 

groups in their provided preferences.  For the SSC SBD execution, these types of 

functions were called craft level impact equations, and included functions such as cost.  

For the case study, a function was developed based on regression analysis using historical 

container ship data.  Analysis using the developed framework would indicate to the chief 

engineer if the design solutions are similar to those of previous efforts.  The database 

used for the regression analysis included data for 82 ships and was obtained as a part of 

the NA 470 Ship Design course materials at the University of Michigan.  Table 8.1 shows 

the minimum and maximum values of the provided ship characteristics, which included 

deadweight (DWT), length between perpendiculars (LBP), beam (B), depth (D), and 

speed (Vk).  Based on the table values, it can be seen that this database included mainly 

smaller ships, compared to the more modern container ships currently being built.  The 

database entries are provided in the Appendix.   

 

Table 8.1: Minimum and Maximum Design Values in Container Ship Database 

 
 

Based on the available data and typical considerations made during a container ship 

design, speed was selected as the first function of interest for the chief engineer.  A ship’s 

speed is based on many aspects of the design, but can be correlated with basic ship 

characteristics, such as the ones provided in the database.  An equation for speed as a 

DWT (T) LBP (m) B (m) D (m) Speed (kt)

Minimum 2,800 84.7 13.2 5.6 12.5

Maximum 83,826 302.3 42.8 24.4 26.3
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function of DWT, LBP, B, and D (defined variables) was calculated based on regression 

analysis of the container ship data.  The most rigorous method to obtain a regression 

equation for speed as a function of the defined variables would be to develop a multiple 

regression model.  For this case study, a simplified approach is taken, as focus is on the 

development of a more complicated function, not the most accurate regression model for 

the given data.     

 

The simplified approach uses a combination of single regression equations to 

approximate the speed for given variable values.  This approach has been used in 

situations where raw data is not available, but the associated regression equations are.  A 

polynomial curve with degree two was fit to the data points associated with the function 

and each variable.  For example, one curve fit was calculated for the relationship between 

speed and length.  A total of four polynomial curves and associated equations were 

calculated: one for each relationship between a function and variable.  To link these four 

relationships together, an average of all four individual calculations for the function was 

taken.  A single equation for the speed function was then determined as a function of the 

four variables.  Equation 8.1 is the developed speed regression function.         

 

                                          
    

      
           

    

             
                         

 (8.1) 

 

After the function is defined, ensuring that function inverses can be calculated is the next 

step.  The inverses are used for the backward calculation of the overall preference in the 

function space to the individual variable spaces using the DM method.  While direct 

inverses of the equation above can be found, the inverse cannot be calculated for every 

value and execution times are relatively longer compared to the forward calculation.  An 

alternative approach for this problem is to develop an approximation method for the 

inverse calculations using additional regression analysis.  Instead of calculating 

polynomial fit equations for the function, equations can be determined by solving for 
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each variable and its relationships with the other variables and the function.  An equation 

representing the average these regressions for each variable is determined.  These 

equations are provided in the Appendix.  While this method does not provided an exact 

inverse of the function equations provided earlier, the equations provide close estimates 

and substantially faster execution time. 

 

In addition to the speed function, three other functions were selected:      ,    , and 

     .  Each ratio is used by designers at the early stages of design to gain some initial 

insight on a different design issue.  There are also general guidelines for what these ratios 

should be, which can be used to develop the function preference.  Typically, these ratios 

are considered constraints in engineering analysis completed by functional design groups.  

Using these three functions, a chief engineer can validate that these constraints.  

Validation can be completed by checking if the variable preferences, when combined for 

a particular constraint function, produce the desired results.  A better understanding of the 

risks associated with the constraint can also be determined.   

 

The length-to-beam ratio (     ) affects both the powering and directional stability.  

Directional stability is equivalent to maneuvering or the ability to turn.  Smaller ratio 

values increase the required powering and directional stability.  In an effort to reduce 

cost, the ratio can be made smaller by increasing the beam.  For container ships, larger 

beams are also able to hold more cargo.  In order to ensure proper inflow to the propeller 

with the larger beams, Watson and Gilfillan (1977) recommend the ratio be between 5 

and 7 for the types of ships considered in the case study.  Typical values for container 

ships are around 6.25 (Watson, 1998).   

 

The beam-to-depth ratio (   ) mainly affects stability.  Transverse stability is a function 

of both the buoyancy, which beam has an impact on, and the vertical center of gravity, 

which depth has an impact on.  Similar to the beam-to-draft ratio, smaller ratio values 

result in less stability.  Container ships typically have ratios around 1.7.  It is not 

recommended to go below a ratio of 1.55 (Watson, 1998).   
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The length-to-depth ratio (     ) is a primary factor in determining longitudinal 

strength.  The higher the value, the longer and more slender the structure is.  This means 

that higher ratios are associated with more required longitudinal strength.  Container 

ships typically have a ratio around 10.6.  Special consideration by classification societies 

is generally required for ratios greater than 15 (Watson, 1998).   

 

8.1.2 Problem Formulation 

After identifying the four functions and their associated variables, the remaining inputs to 

the decision support framework are required.  Referring back to Figure 6.2, which 

presents the execution strategy of the framework, these inputs can be identified for the 

container ship case study.  The required inputs include: 

 

 Variables and associated set-ranges, 

 Number of set-range partitions for each variable, 

 Function, 

 Function preferences, 

 Variable preferences, 

 Simulation variation strategy (how preference structures vary), and 

 Type of reward. 

   

Initial set-ranges for the variables must also be determined.  The selected functions have 

a total of four variables in common (DWT, LBP, B, and D).  Table 8.2 provides the 

variable set-range values used for the case study.  The variable set-ranges were selected 

based on their associated ranges in the database. 

 

Table 8.2: Variable Set-Range Values 

 
 

The next required value is the number of partitions for each variable.  It is assumed that 

all variables start with two partitions.  This effectively sets the goal of the reduction 

DWT (T) LBP (m) B (m) D (m)

Min 10,000 100 15 10

Max 80,000 300 40 20
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process to reduce half of each variable’s initial set-range.  Due to the use of the single 

reduction scenario, the developed framework aids in selecting the order that the variables 

are reduced.  The number of partitions for a variable that is reduced lowers by one.  This 

approach is assumed to keep the partition set-ranges the same throughout the reduction 

process. 

 

Next, the function preferences can be defined.  For this case study, the function 

preferences remain the same throughout the reduction process.  For speed, the function 

preference can describe the desired speed values, or speed requirement expressed as a 

preference function.  Figure 8.1 shows the assumed speed function preference used in the 

case study.  The preferred speed range is at the higher end of the ship data values 

provided in the database.  

 

 

Figure 8.1: Speed Function Preference 

 

The function preference for the three ratio functions can be developed based on the 

guidelines provided in the previous section.  Function preferences for the length-to-beam, 

beam-to-depth, and length-to-depth ratios are provided in Figure 8.2, Figure 8.3, and 

Figure 8.4, respectively.  
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Figure 8.2: Length-to-Beam Function Preference 

 

 

Figure 8.3: Beam-to-Depth Function Preference 
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Figure 8.4: Length-to-Depth Function Preference 

 

The generation of variable preferences for the case study can be discussed as well.  One 

of the assumptions associated with the work presented in this dissertation is that JOPs for 

the negotiated variables have already been determined for a given negotiation round.  

While assumed initial preferences can be used to conduct studies such as the ones 

presented in the previous chapter, realistic preferences for case studies are preferred.  The 

variable preferences for the container ship case study are based on trends identified 

through engineering analysis completed for a single functional design component.  This 

analysis is used to simulate the work completed to develop JOPs.  The design component 

considered is powering, which calculates the resistance using speed, variable values, and 

approximated or assumed parameters.  The main goal of the powering component is to 

minimize the resistance while meeting the desired speed values.   

 

The method used for the powering calculations was developed by Hollenbach (1999) for 

single screw vessels.  The draft for the calculations was approximated as      , and the 

block coefficient was calculated using the deadweight and principal dimensions.  The 

ranges of the three ratios introduced earlier were also used as guidelines when generating 

the variable preferences.  For example, a variable value that did not meet the ratio ranges 

for any combination of the other variables was assigned a preference level of zero.  Using 

the Hollenbach method, various combinations of variable values were used to calculate 
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the resistance.  Under the triangular preference function assumption, the preferences are 

mainly able to describe identified trends.  Also, the preferences are modified downward 

for areas where the ratio constraints were active.  The variable preferences associated 

with the negotiation rounds are provided in Section 8.3.   

 

While most aspects of the case study are representative of how a typical SBD reduction 

effort is conducted, there is an important difference that should be made clear.  As 

mentioned in Chapter 2, the increase in the fidelity of analysis as set-ranges are reduced 

is crucial to the success of a SBD effort.  The dynamics associated with fidelity increases 

are simulated by the changing variable preferences as reduction decisions are made 

during the demonstration.    

 

Finally, the simulation variation strategy, including the number of preference variation 

combinations, are defined.  For the case study, a total of three variations for each variable 

is considered (peak at the lower bound, middle, and upper bound).  This variation 

strategy dictates a total of 81 simulations.  This total number of simulations is calculated 

by taking the number of variations (3) to the power of the number of variables (4) to 

equal 3
4
=81.  Also, the satisfaction reward metric is used to calculate the risk-adjusted 

rewards. 

 

8.2 Initial Understanding 

Before initial variable preferences are provided, the decision support framework provides 

a chief engineer with certain pre-reduction indicators.  As described in Chapter 6, optimal 

strategies given potential initial preferences are determined before the set reduction effort 

begins.  The initial preference structures are varied to identify their impact on the optimal 

policy.  All future state preferences are based on the assumed initial preference structure 

for a given simulation.  Utilizing a triangular preference shape for variable preferences 

associated with the speed function, the peak variable preference values can be linked to 

the optimal policy associated with that preference structure.  Unlike the length-to-beam 

example problem presented in the previous chapter, there are four variables.  This means 

that when two variables are being compared, there are multiple combinations of the other 
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variable values for the given two variables of interest.  To simplify the results, the 

optimal strategies for all combinations are calculated and the one with the most 

occurrences is plotted on the table.  Due to there being four variables, a total of six 

optimal strategy tables are generated.  The optimal strategy tables for the speed function 

during epoch 1 are provided in Table 8.3.   

 

Table 8.3: Optimal Strategy Given Peak Preferences for Speed (Epoch 1) 

 
 

It can be seen in Table 8.3 that for most combinations of variable peak values, the 

optimal action is to reduce to State 3 in epoch 1.  State 3 is associated with a reduction of 

DWT values from 45,000 to 80,000.   For certain combinations, the optimal action is to 

move to State 28.  State 28 is associated with a reduction of D values from 10 to 15.  It is 

important to note, however, that some of these peak combinations are not realistic from a 

ship design perspective.  For example, when the peaks are at            and 

        or at         and     .  When the variable preferences are provided 

and other functions considered, these combinations would be eliminated from 

consideration. 

 

The optimal strategy tables can also be generated for the three ratios introduced in the 

previous section.  Table 8.4 provides the tables for all three ratios.  It is important to note 

that the state numbers in the tables are not the same between tables.  This is also true 
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when comparing these tables to the speed optimal strategy table.  For example, State 3 for 

the length-to-beam ratio is a reduction of length values from 200 to300.  State 3 for the 

beam-to-depth ratio is a reduction of beam values from 27.5 to 40.  The ratio optimal 

strategy tables can identify where certain variable peak preferences are associated with a 

single path or various paths.  It can be seen that high beam and depth preferences lead to 

different strategies with respect to length.  The same is true for depth with respect to 

beam.  

 

Table 8.4: Optimal Strategy Given Peak Preferences for Ratios (Epoch 1) 

 
 

The optimal strategy tables provide the chief engineer with a better understanding of the 

relationships between variables for a particular function.  This is valuable during the pre-

reduction stage of design to gain initial insight into the relationship between potential 

variable preference peaks and reduction decisions.      

 

8.3 Reduction Demonstration 

While the identified optimal strategies can provide an initial and basic understanding of 

the problem, it does not provide direct guidance on set-reduction decisions for design 

efforts with variable preferences provided.  This section provides a demonstration of the 

reduction process for the container ship case study, using updated variable preferences at 
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each negotiation round.  First, the structure of the reduction process for the given 

functions is presented.  The method used to generate variable preferences at each 

negotiation round is then discussed.  Next, each negotiation round is reviewed 

individually, including the rationale for the selected reduction decision.  An evaluation of 

the final reduction path is also provided using likelihood of attainment curves. 

 

8.3.1 Reduction Graph Structures 

Before the reduction process can be initiated, the function graph structures are generated 

to identify the acceptable decision paths.  The graph structures associated with functions 

are different depending on the number of variables and partitions.  As presented earlier, 

two partitions for each variable are used for all functions.  This mean that for the speed 

function, there are more potential reduction decisions, therefore, more nodes in the graph 

structure.  The initial graph structures are automatically generated using the developed 

method outlined in the Chapter 6.  The graph structure for the speed function is provided 

in Figure 8.5.  The graph structure for the ratio functions is provided in Figure 8.6.  The 

speed graph structure has a total of 82 nodes, including the artificial terminal node.  It can 

be seen that there are eight potential actions that can be made in the first epoch.  Each is 

associated with a reduced region of a particular variable set-range.  The ratio graph 

structures have a total of 10 nodes, including the artificial terminal node.  The variable 

set-ranges associated with the state numbers in the figures below, as well as all future 

graph structures, are provided in the Appendix.     

 

 

Figure 8.5: Initial Speed Graph Structure 
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Figure 8.6: Initial Ratio Graph Structure 

 

A total of four negotiation rounds are required to reduce the variables.  After four rounds, 

all four variable set-ranges will be reduced in half.  Which halves of the set-ranges that 

are reduced are based on the analysis completed using the developed method.  After each 

negotiation round when a reduction decision has been made, a branch of certain graph 

structures is followed and a modified graph structure is created.  The graph structure for a 

particular function does not necessarily have to change every negotiation round, however.  

This is because not every function has all the variables in them.  For example, if a 

reduction in beam is selected, the graph structure for the length-to-depth ratio remains 

unchanged.  This situation highlights the importance of understanding the relationships 

between states of different graph structures, which is discussed during the reduction 

process described in the next section. 

     

8.3.2 Reduction Round Analysis and Decisions 

This section discusses each negotiation round individually and provides the justification 

for making the selected reduction decision. 

 

8.3.2.1 Negotiation Round One 

Using the variable set-ranges from Table 8.2 and the initial variable preferences 

generated from the powering analysis, the developed method can be used to complete 

reduction analysis for the identified functions.  Round one variable preferences are 
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provided in Figure 8.7.  The trends do make intuitive sense from a naval architecture 

viewpoint.  For example, larger deadweight, beam, and depth values increase resistance.  

Larger length values are preferred because they reduce resistance.   It can be seen that the 

preferences for length and beam are both cut off at certain values.  These points are 

associated with values that do not meet the specified ratio ranges for any variable 

combination.  These being active constraints, a penalty is place on being at these ends, 

even though these values are more preferred based on the identified trends.  

 

Figure 8.7: Round One Variable Preferences 

 

The developed method was used to analyze each of the four functions individually to 

identify robust reduction decisions from each perspective.  In an effort to more easily 

compare reduction decisions between functions, a new notation scheme was instituted.  

An example of the scheme for a reduction of deadweight between 10,000 and 45,000 (the 

lower region of the set-range) would be DWT/L.  The letter before the forward slash 

describes the variable being reduced and the letter after describes the region being 

reduced.  For this two partition problem, L is used to describe the lower region of a set-

range, and U is used to describe the upper region of a set-range.   

 

The key piece of information that should be analyzed first when dealing with multiple 

functions is the percentage optimal values from the simulations.  As described in Chapter 
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6, the optimal percentages, or robustness values, are the percentages that a given path or 

reduction decision is optimal for the simulations.  A percentage of 1 would mean that the 

given reduction decision, or path, was optimal for all simulations, or variations of the 

initial variable preference structures.  The results can be summarized and presented in a 

table, provided in Table 8.5 for the first negotiation round.  The reductions are presented 

using the scheme described above.  The first line describes the optimality of reducing the 

upper region of the deadweight variable for all functions.  For the speed function, this 

reduction decision was optimal 93% of the simulations, but is 0% for all the other 

functions because deadweight is not a variable in those functions.  Table 8.5 provides the 

designer with a limited number of reduction decisions deemed the best, based on the 

developed method and a description of the robustness associated with each decision.      

 

Table 8.5: Round One Robust Reduction Decisions 

 
 

The value in Table 8.5 that stands out is the percentage associated with the DWT/U 

decision for the speed function.  This is a relatively high value that identifies this 

reduction as a safe decision.  Also, the deadweight variable is only in the speed function; 

therefore, a reduction in deadweight would not affect any of the other functions.  The 

three-dimensional decision path output with the top two optimal policies can be used to 

gain further insight into the speed function decision paths.  This graph is provided in 

Figure 8.8.  Again, the black lines are associated with the top two optimal paths.  It can 

be seen that these two paths are similar, except for the final states before the artificial 

terminal node.  This further demonstrates the robustness associated with the DWT/U 

reduction decision.   

Reduction Speed L/B B/D L/D

DWT/U 0.93 0 0 0

L/L 0 0.11 0 0.11

L/U 0.01 0.44 0 0.33

B/L 0.02 0.11 0 0

B/U 0 0.33 0.67 0

D/L 0.04 0 0 0

D/U 0.01 0 0.33 0.56
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Figure 8.8: Three-Dimensional Decision Path Output of Speed Function in Round One 

 

For the first round of negotiation, the decision to reduce deadweight values between 

45,000 and 80,000 was made.  This decision was based on the optimal percentage 

information in Table 8.5, as well as further investigation of the speed function using 

decision path outputs.   

 

8.3.2.2 Negotiation Round Two 

Variable preferences did not change much compared to round one, mainly because of 

deadweight only being part of the speed function.  Also, the same trends were identified 

through additional powering calculations for the updated set-ranges.  Figure 8.9 provides 

the variable preferences for negotiation round two. 
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Figure 8.9: Round Two Variable Preferences 

 

The updated graph structure associated with the speed function is provided in Figure 

8.10.  The graph structures for the ratio functions remain unchanged.  Also, the results 

from round one for the ratio functions can be reused, because none of their variables were 

reduced.  In a more realistic SBD environment, the preferences for the variables not 

reduced could change between rounds, even if their set-ranges are not reduced.  This 

could be due to a fidelity of analysis increase, or a design relationship with the reduced 

variable that changes functional design group’s perspectives. 

2 4 6 8

x 10
4

0

0.2

0.4

0.6

0.8

1

DWT(T)

P
re

fe
re

n
c
e
 L

e
v
e
l

100 200 300
0

0.2

0.4

0.6

0.8

1

LBP(m)

P
re

fe
re

n
c
e
 L

e
v
e
l

20 30 40
0

0.2

0.4

0.6

0.8

1

B(m)

P
re

fe
re

n
c
e
 L

e
v
e
l

10 15 20
0

0.2

0.4

0.6

0.8

1

D(m)

P
re

fe
re

n
c
e
 L

e
v
e
l



287 

 

 

Figure 8.10: Speed Round Two Graph Structure 

 

The developed method was used to analyze the updated speed function problem to 

identify new potential robust reduction decisions.  A robust reduction decision summary 

table similar to round one can be generated, which is provided in Table 8.6.  It can be 

seen that the columns for the ratios have remained the same.  The optimal percentages for 

the speed function have changed, however, and the results are not as easy to interpret as 

in round one.  For this type of situation, the multi-objective representations, presented in 

Chapter 6, can be helpful. 

 

Table 8.6: Round Two Robust Reduction Decisions 
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Reduction Speed L/B B/D L/D

L/L 0.19 0.11 0 0.11

L/U 0.16 0.44 0 0.33

B/L 0.09 0.11 0 0

B/U 0.11 0.33 0.67 0

D/L 0.30 0 0 0

D/U 0.16 0 0.33 0.56
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The robustness results provided in Table 8.6 can be graphically shown by comparing 

reduction decision robustness values for two functions at a time.  A Pareto front of 

reduction decisions can then be identified for the given two functions.  Figure 8.11 

provides the reduction decision robustness values for the speed and L/B functions, Figure 

8.12 provides the robustness values for the speed and B/D functions, and Figure 8.13 

provides the robustness values for speed and L/D  For speed and L/B, the Pareto front 

consists of the D/L, L/L, and L/U reductions.  For speed and B/D, the Pareto front 

consists of D/L, D/U, and B/U.  Finally, the Pareto front for speed and L/D consists of 

D/L, L/L, and D/U.  Through the identification of the Pareto front points, it can be seen 

that there are conflicting reduction decisions for the depth and length variables.  This 

means that from certain perspectives, the lower region of a variable is along the Pareto 

front, while from another perspective, the upper region is along the Pareto front.  

However, the beam variable only has a single reduction decision, which is reduce the 

upper beam region.  Also, referring back to Table 8.6, it can be seen that the B/U 

reduction has consistently high robustness values for most of the functions. 

 

 

Figure 8.11: Reduction Decision Robustness for Speed and L/B 
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Figure 8.12: Reduction Decision Robustness for Speed and B/D 

 

 

Figure 8.13: Reduction Decision Robustness for Speed and L/D 

 

To further explore the beam reduction decisions, multi-objective likelihood of attainment 

contour plots can be generated and compared.  Two reduction decisions, B/U and B/L, 

are compared from the speed and L/B perspective.  The optimal path with the highest 
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seen that the shapes of the contour plots are similar, but the B/U reduction decision has 

higher attainment values for most of the plot.  A significant increase in preference for the 

B/U reduction decision occurs around 22.5 knots, which is where the improvement in 

robustness can be attributed to.  

 

 

Figure 8.14: Speed and L/B Likelihood of Attainment Contour Plots for B/U and B/L 

 

For the second round of negotiation, the decision to reduce beam values between 27.5 

and 40 was made.  This decision was based on the relatively low risk associated with the 

decision.  While other reductions had higher robustness values from certain perspectives, 

the B/U reduction decision had moderate robustness for three of the functions, and no 

conflicts with the B/L reduction decision, unlike the other two remaining variables.  

While the B/U decision had high robustness values for the B/D and L/B ratios, it was 

relatively low for the speed function.  It is important to note, however, that the reduction 

decision with highest robustness for the speed function had zero robustness in all the 

other ratios.  When dealing with multiple functions, there are tradeoffs that a designer 

must understand and interpret.  The final reduction decision is placed in the hands of the 

designer, with the aid of the results provided by the developed method.   
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8.3.2.3 Negotiation Round Three 

After the beam reduction made during round two, powering analysis revealed that to 

remain within the ratio ranges, particularly L/B, the length values had to remain below 

192.  There was also a restriction on higher depth values.  The variable preferences for 

round three are provided in Figure 8.15. 

 

Figure 8.15: Round Three Variable Preferences 

 

The graph structures for the speed, L/B, and B/D functions were also updated, while the 

L/D graph structure remained the same.  Figure 8.16 provides the updated speed graph 

structure and Figure 8.17 provides the graph structure associated with the L/B function. 
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Figure 8.16: Speed Round Three Graph Structure 

 

 

Figure 8.17: L/B Round Three Graph Structure 

 

Similar to the previous two rounds, the robustness values associated with the remaining 

reduction decisions can be determined, which are provided in Table 8.7.  It can be seen 

that the L/U reduction decision has the highest robustness values for the functions, with 

length as a variable.  Also, there are no conflicting decisions associated with length, as 

seen for depth.  Without conducting further analysis, the decision to reduce the upper 
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region of the length set-range can be made.  This reduction decision is associated with 

reducing length values between 200 and 300. 

 

Table 8.7: Round Three Robust Reduction Decisions 

 
 

8.3.2.4 Negotiation Round Four 

The final round of negotiation deals with the final variable reduction, which based on the 

previous reduction decisions is the depth variable.  The updated variable preferences for 

round four are provided in Figure 8.18.  Most variable preferences remained the same.  

The major difference is a change in the depth preference back to larger values.  This was 

caused by the length reduction made in the previous round.  The L/D ratio no longer is 

restricting the higher depth values.  

 

Figure 8.18: Round Four Variable Preferences 

 

The reduction decision in this round is also relatively straight forward.  Table 8.8 

provides the robust reduction decisions for round four.  It can be seen that the D/U 

reduction decision is the most robust, compared to the D/L decision.  The simulations for 
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the final reduction using the developed method vary the preferences associated with the 

final reduced regions, which would be associated with a final analysis of the reduced 

regions.  For round four, the decision to reduce the upper region of depth, associated with 

depth values between 15 and 20, was made.   

 

Table 8.8: Round Four Robust Reduction Decisions 

 
 

8.3.3 Final Reduction Path 

Likelihood of attainment curves can be used to understand the implications of the 

reduction path taken, using robustness as a guide.  Figures 8.19-8.22 provide the function 

likelihood of attainment curves associated with the selected reduction path.  It can be 

seen that lower speed values can be attained easier than higher values, based on the 

regression model.  This makes sense, as the upper regions of all the variables were 

reduced, limiting the final regions to smaller values.   

 

 

Figure 8.19: Speed Likelihood of Attainment 
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length and beam set-ranges were reduced, which kept the ratios similar.  If an upper 

region of one and a lower region of the other were reduced, the L/B attainment curve 

would likely not be as flat. 

 

 

Figure 8.20: L/B Likelihood of Attainment 

 

The B/D function did not factor much in the reduction decisions, as it did not cause the 

beam or depth values to be restricted.  This can be seen in the likelihood of attainment 

curve, as the shape closely follows the initial function preference.  

 

 

Figure 8.21: B/D Likelihood of Attainment 
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The likelihood of attainment curve for the L/D ratio showed a favor towards higher 

values.  This can be attributed to the round three reduction in the upper length region.  

Smaller length values, in combination with the entire depth set-range, led to higher L/D 

ratio values for the final negotiation round.  

 

 

Figure 8.22: L/D Likelihood of Attainment 

 

The reduction demonstration provides a better understanding of the intricacies associated 

with using the developed method.  Also, potential uses of the method by designers are 
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value associated with the representation methods presented in Chapter 6 is shown through 

the ability to aid a designer in making reduction decisions.  Finally, likelihood of 

attainment curves associated with a given path can be used to easily understand the 

implications associated with certain reduction decisions, and the ability to achieve 

function or requirement values.   
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demonstrated the use of the developed framework throughout the reduction process 

during each negotiation round.  Additionally, it was shown that functions can be analyzed 

together in a unified framework based on a common reduction decision notation scheme.  

Reduction decisions from different function analyses can be related and compared using 

the multi-objective tradeoff methods presented in Chapter 6.  Both robustness Pareto 

fronts and multi-objective likelihood of attainment contour plots were used to gain insight 

on potential reduction decisions. 
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Chapter 9: Conclusion 

 

 

It is not the most intellectual of the species that survives; it is not the strongest that 

survives; but the species that survives is the one that is able best to adapt and adjust to 

the changing environment in which it finds itself. 

–Leon C. Megginson (1963) 

 

Megginson’s paraphrase of Darwin’s Theory of Evolution highlights an observation seen 

in nature.  The meaning, however, can be extended to other environments, such as design.  

Throughout a design effort, decisions are made regarding the solutions being considered.  

Design solutions are selected based on being the “best” in a particular attribute, such as 

cost, or eliminated based on dominance or infeasibility.  SBD intentionally avoids 

defining the “best” solution and in the process becomes robust to changing conditions.  

As Darwin points out, it is not the best in one particular attribute that survives, but the 

one most responsive to change.  If the “best” solution changes after the decision to select 

it has already been made, the solution becomes infeasible, which is the equivalent of not 

surviving in nature.  The developed decision support framework aids designers in 

understanding reduction decisions within a SBD environment to ensure the design 

process is as adaptable to the changing environment as possible.     

 

This final chapter is divided into four sections.  The first relates the research 

contributions back to the original problem statements, and summarizes how the presented 

solutions address these concerns.  Novel contributions of the research presented in this 

dissertation are then presented.  The third provides direction for future work and more



300 

 

advanced formulations of the set reduction problem.  Finally, potential alternative 

applications of the developed framework for similar problems from different perspectives 

are presented. 

 

9.1 Problem Statement Review 

The three major research problems, originally presented in Chapter 1, and then seen with 

their proposed solutions in Chapter 6, are revisited to summarize how each problem was 

specifically addressed.  Table 9.1 provides the original problem statements and proposed 

solutions, which combined, constitute the developed framework.    

 

Table 9.1: Research Problem Statements and Proposed Solutions Revisited 

 
 

The remainder of this section discusses each research problem individually and outlines 

how the problem was specifically addressed using the developed framework. 

 

9.1.1 Time-Dependent Design Relationships 

The first research problem is the issue of time-dependent design relationships and how to 

handle changing dependencies as the design process progresses.  During the initial SBD 

research conducted, the design change case study revealed the difficulty associated with 

both preference generation and understanding changing design relationships.  In an effort 

to mitigate these difficulties, the design facilitation tool was developed.  While the 

method was able to aid designers in set-based thinking and the generation of preferences, 

Problem Research Question Developed Solution

Time-dependent design 

relationships

How can a designer 

understand changing 

dependencies as the design 

progresses?

Extension of Design Space 

Mapping

Determining impact of 

reducing certain areas of the 

design space

How can a designer organize 

reduction decisions to 

account for total design 

process impacts?

Longest Path Problem (LPP) 

formulated as a Markov 

Decision Process

Identifying robust decision 

paths

What decision paths are 

flexible to changing design 

conditions?

Preference Change 

Simulations
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it lacked the ability to be extended to larger-scale problems.  For simple problems, the 

design relationship analysis was able to provide a good understanding of the impact of 

variables on functions and the feasibility of solutions.  However, in order to link the 

analysis of different functions together and determine the same design relationships for 

larger-scale problems, an increased level of synthesis and decreased level of fidelity of 

analysis would be required.  As one of the major goals of the research presented in this 

dissertation was to develop a structure that supported concurrent engineering, this 

research direction was not extensible.  Both increasing the level of synthesis and 

decreasing the level of fidelity are counter to the original goal of supporting a CE 

approach. 

 

After identifying the limitations of the design facilitation tool for understanding large-

scale design relationships for team-based design, the explicit goal of identifying 

relationships through the use of preferences, not synthesis, was defined.  Design space 

mapping (DM) was identified as a more applicable method based on this research’s 

newly defined goal.  DM methods are consistent with and a natural extension of previous 

work on preference facilitation.  DM is used to determine relationships between the 

various design spaces, including variable, constraint, and objective spaces.  These 

mapping techniques also facilitate human designer preferences for variable and function 

values.  Using the preferences provided at each SBD negotiation round, a series of 

mappings are completed to determine the influence of variables for different set-ranges.  

Preferences are updated as the design process continues and the mappings are repeated to 

gain an updated view of design relationships. 

 

9.1.2 Impact of Reduction Decisions 

The second research problem deals with the difficulty of determining when and where to 

make design reduction decisions.  While DM methods provide information on design 

relationships for changing preferences and set-range values, there still needs to be a 

framework to use the DM information to understand reduction decisions.  As part of the 

initial SBD research, the design change case study revealed that using SBD, there is the 

ability to handle changing conditions and understand the impact of a change using 
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designer provided preferences.  However, there was no direct understanding of how 

reduction decisions were related to the ability to handle changes.  The detailed design 

experiment, presented in this dissertation, was completed to gain a better understanding 

of the types of relationships and important considerations made during a set reduction 

process.  Results showed that reduction rate and path were strongly related to the success 

or failure of a reduction effort.  This both validated the importance of design decisions, 

and identified the importance of understanding design relationships through time.  

 

In an effort to turn the lag indicators seen in the detailed experiment into lead indicators 

to avoid making poor reduction decisions, a framework that models and analyzes the set 

reduction problem was developed.  The longest path problem (LPP) was used to model 

the set reduction problem, where instead of traveling along a physical path such as a road, 

the path was related to the variable set-ranges through time.  In order to analyze this 

structure to identify the impacts of reduction decisions, the LPP was formulated as a 

Markov Decision Process (MDP).  This method is able to balance the risk and reward of 

reducing certain areas of the design space and used to determine the impact of these 

decisions on the overall design process.  Using information provided by the design space 

mappings, the MDP is used every round of the SBD effort to identify optimal decision 

paths, while incorporating future reduction decisions.  The MDP results provide the chief 

engineer, or design manager, with valuable guidance on how to reduce the design space 

from the perspective of the identified function.  This process is completed for multiple 

functions of interest to provide a clearer design reduction strategy for the overall design 

effort.    

 

9.1.3 Identification of Robust Decision Paths 

The third research problem focuses on the identification of robust decision paths.  It was 

identified during the detailed design experiments that certain paths were able to handle 

changes better than others.  The goal is to avoid failure opportunities and potential 

situations where the current set-ranges cannot handle a changing design relationship.  

Identifying potential decision paths that are more robust to changing design conditions 

would be preferred.  As a type of sensitivity analysis, preference change simulations are 
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used to identify these robust decision paths.  The LPP MDP problem is solved using 

various design preference structures representing potential future changes in preferences.  

Additionally, the likelihood of a certain path being able to handle varying magnitudes of 

changing conditions, including preference changes, is determined. 

 

As the developed LPP MDP formulation has never been used to analyze set reduction 

problems, a series of metrics and representations using the MDP and simulation results 

were developed.  Optimal strategy tables are used prior to variable preferences being 

provided to gain an initial understanding of the potential reduction strategies given 

various preference structures.  The robust decision paths are identified by determining the 

reduction decisions that occur most frequently in the simulation results for various 

preference structures.  A decision path output is also generated to determine optimal 

reduction decisions for a given epoch, or time-step.  An alternative path analysis is 

completed to identify the number of optimal secondary connections if the primary path 

fails.  The reward over time is used to establish trends, or compare the rewards associated 

with different paths.  Also, likelihood of attainment curves for both the variable and 

function space are generated to gain an understanding of the risks associated with 

meeting certain variable or function values.  These simple and easy to understand curves 

are used to visually describe how certain areas of the design space are constrained.  The 

developed metrics and representations provide various types of information desirable to a 

designer under different circumstances.  The designer has the freedom and power to pick 

and choose the pieces of information most useful for the problem at hand. 

 

9.1.4 Unified Framework 

While each research question was addressed by an aspect of the developed framework, a 

substantial amount of effort went into the unification of these three different components.  

The first important linkage was between the DM method and the MDP framework.  

Reduction metrics based on DM results for the various set-range combinations were 

developed and evaluated using the MDP framework.  The two reduction metrics that 

adequately represented reduction considerations were further considered and a single 

metric was identified as being able to better describe the conditions that deal with 
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changing conditions.  Using the identified reduction metric, in combination with the 

MDP formulation, a series of simulation studies were completed to determine the value 

of accounting for potential future scenarios.  By adding the sensitivity analysis generated 

through the preference change simulations to the MDP formulation, all three components 

were combined.  It was shown through a series of studies that the framework is able to 

better handle situations with changing conditions, as well as better accommodate more 

constrained problems compared to a method based solely on current in-state knowledge.  

This observation solidifies the advantages associated with the unified framework, and its 

potential advantages in more complicated reduction efforts.   

 

Another important aspect is utilizing the unified framework for multiple functions.  

Additional representations are introduced, including robustness Pareto fronts and multi-

objective likelihood of attainment contour plots.  As part of the reduction demonstration, 

presented in Chapter 8, the development of a reduction notation scheme was used to link 

states between multiple functions with different variables.  The ability to analyze multiple 

functions at the same time is critical for a designer, as there is never just one perspective 

to consider.  The ability of the framework to be used for multiple functions further 

extends its applicability and increases its value to a designer during a set reduction effort.   

 

9.2 Novel Contributions 

The primary contribution of this dissertation is the development of a set reduction 

decision support framework within a SBD environment that accounts for future changing 

conditions.  The framework provides the designer with valuable and easy to understand 

information that is used to make better informed reduction decisions within a SBD 

environment.  The specific contributions demonstrated through the successful 

development of a framework that addresses the posed research problems are as follows: 

 

1. Aided in the development of a rigor standard that can be used to evaluate a design 

activity and determine the degree of adherence to five major SBD elements.  

Standards enable proper and repeatable execution of SBD principles. 
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2. Developed a design facilitation tool that aids in understanding design 

relationships at the functional design level, thereby, improving the preference 

generation process for designers. 

3. Conducted a series of experiments with human designers that validated the ability 

of the SBD method to handle changes, and identified two elements, reduction path 

and reduction rate, as key factors in successful reduction efforts. 

4. Developed a novel approach to generate automatically set reduction graph 

structures.  This approach avoids the need to manually generate a graph for every 

problem. 

5. Developed an MDP formulation of the longest path problem for SBD reduction 

decision making, providing both a structure for the problem and a method for 

analysis. 

6. Created novel visual representations of the support framework results in simple 

and understandable formats so that SBD reduction decisions are presented to the 

designer. 

7. Developed a series of DM reduction metrics utilized within the support 

framework to describe quantitatively the impact of reducing certain regions of the 

design space. 

8. Through simulation, demonstrated the advantage of considering potential future 

outcomes versus the use of current in-state knowledge. 

 

Although the developed framework was applied to the field of early-stage ship design, 

application to other fields that involve complex design processes and systems can be 

easily accomplished.  Additionally, the principles and insights gained from the 

framework’s development can be utilized for any type of design effort. 

 

9.3 Future Work 

Within the reduction decision making component of SBD execution, there are three 

major areas where further research can be completed.  First, the developed method’s 

applicability can be extended to more reduction scenarios.  Second, additional value can 

be introduced through the incorporation of separate MDP reward and probability values.  
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Third, the simulation structure can be tuned to more accurately represent the likelihoods 

of certain design aspects changing.  This section discusses each area in more detail and 

proposed approaches to accomplishing the research. 

 

9.3.1 Reduction Scenarios 

As discussed in Chapter 6, only the single reduction scenario was considered for the 

research presented in this dissertation.  Two other potential scenarios can provide 

additional options and insight to the designer.  The first is the multiple reduction scenario, 

which allows the designer to reduce multiple variables and variable set-ranges at each 

epoch.  The second is the potential reopening scenario, which allows a designer to reopen 

set-ranges already reduced if a reduction path becomes infeasible, an error occurs, or an 

improved reduction path is identified. 

 

The multiple reductions scenario is a natural progression from the single reduction 

scenario.  Instead of being restricted to only reducing one variable and set-range at a 

time, any combination of variable and set-range reductions can occur, in addition to the 

decision to remain at the current set-ranges.  This presents the classic problem of 

exploration versus exploitation, “in which one must decide whether to exploit the 

(possibly suboptimal) information acquired so far, or invest further cost in exploration in 

the hope of acquiring better information” (Nikolova &  Karger, 2008).  For the set-

reduction application, this problem presents itself to the chief engineer making the design 

decision.  The chief engineer must decide whether to reduce multiple set-ranges using 

current preferences, or pay the cost to ask for a new round of negotiations from designers. 

 

When comparing these two scenarios, the multiple reductions graph structure is different 

from the single reduction case.  With the ability to move to any current or future state at 

every epoch, the graph structure technically goes on for an infinite amount of epochs.  

This is because a decision can be made to remain at the current set-ranges at every epoch.  

A multiple reductions graph structure for the length-to-beam function with two partitions 

and four epochs is provided in Figure 9.1.  It can be seen that after the second epoch, 

there is an artificial terminal node at every epoch.  This means that the designer can 
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choose to finish the reduction process with only one decision.  The automatic graph 

generation can be completed for the multiple reductions scenario, similar to the single 

reduction case, but with different logical arguments to the ones provided in Equation 6.16 

for single reduction.   

 

 
Figure 9.1: Multiple Reductions Graph Structure 

 

The MDP formulation is required to be slightly different for the multiple reductions 

scenario due to its infinite nature.  There are two ways to ensure that the problem is 

solved in a finite amount of time.  The first way is to formulate the problem using a finite 

horizon.  This means that there is a fixed time after which nothing matters (Russell & 

Norvig, 2003).  The second way is to use a discount factor, which describes the 

preference for current or future rewards.  With discounted rewards, the infinite 

sequence’s utility becomes finite (Russel & Norvig, 2003).  While the formulation is not 

challenging, tuning the factors to properly address the exploration versus exploitation 

problem can be challenging for guiding set reduction.   

 

The second scenario, potential reopening, describes the situation that this dissertation’s 

developed method attempts to avoid.  In certain instances, however, the reopening of a 

set might be required.  Valid reasons for set-range reopening include design errors and 

innovative or new ideas.  Also, the set-ranges can be reopened if a high risk/reward 

technology pans out.  Initially, the high risk would have resulted in a low variable 

preference and possibly result in a set reduction.  Once the risk of the new technology is 

significantly reduced, one could see a different preference curve for multiple variables.  

The graph structure for this scenario would include the use of undirected arcs, allowing 

movement back and forth between states.  This formulation does make the problem 

[1] L:200-300, B:25-35

[2] L:200-300, B:25-35 [3] L:250-300, B:25-35[4] L:200-250, B:25-35 [5] L:200-300, B:30-35 [6] L:250-300, B:30-35 [7] L:200-250, B:30-35[8] L:200-300, B:25-30 [9] L:250-300, B:25-30[10] L:200-250, B:25-30

[11] L:200-300, B:25-35 [12] L:250-300, B:25-35[13] L:200-250, B:25-35 [14] L:200-300, B:30-35[15] L:250-300, B:30-35[16] L:200-250, B:30-35 [17] L:200-300, B:25-30[18] L:250-300, B:25-30[19] L:200-250, B:25-30 [20] Artificial Terminal Node

[21] L:200-300, B:25-35 [22] L:250-300, B:25-35[23] L:200-250, B:25-35 [24] L:200-300, B:30-35 [25] L:250-300, B:30-35[26] L:200-250, B:30-35 [27] L:200-300, B:25-30 [28] L:250-300, B:25-30[29] L:200-250, B:25-30[30] Artificial Terminal Node
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difficult to solve using popular dynamic programming algorithms.  Within the MDP 

framework, the ability to revisit states and update rewards can potentially mitigate some 

difficulties present in other algorithms.  An additional challenge, which future research 

should address, is how to properly determine edge weights and probabilities when 

describing the reduction process via an undirected graph.   

 

9.3.2 MDP Formulation 

As described in Chapter 6, the rewards for the MDP formulation are risk-adjusted 

rewards, and the probabilities are either zero or one depending on if two states are 

connected by an arc.  To improve the formulation for the set reduction problem, a 

separate probability matrix can be calculated that describes the likelihood a set-range 

contains feasible solutions.  This type of problem can be considered an expected longest 

path problem formulated as an MDP.  A similar type of formulation is used for landmark-

based robot navigation (Briggs, Detweiler, Scharstein, & Vandenberg-Rodes, 2002).  In 

the robot navigation case, the edge weights (or rewards) are distance traveled or time and 

the probabilities are likelihoods that edges are passable.  For the set reduction problem, 

the rewards would remain the same, and the probabilities would represent the likelihood 

that a solution exists at a given set-range.  

 

9.3.3 Simulation Tuning 

The simulation structure presented in this dissertation takes multiple combinations of 

potential preference changes.  In an effort to improve the simulation results to make them 

more realistic, additional information can be provided to make the predictions of 

potential future outcomes more accurate.  For example, historical data of design changes, 

and the likelihood of certain changes occurring, can be added to the simulation structure 

to more adequately reflect real-world scenarios.  Additionally, a feedback mechanism can 

be put in place to determine if the predictions of future preference structures are valid.  A 

better understanding of the impact of a set reduction on design relationships can be 

recorded and factored into the simulation structure as well.  With the simulation structure 

more representative of the specific problem at hand, improved results and consideration 

of potential future outcomes can be obtained.  
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9.4 Alternative Applications 

It is worth mentioning, briefly, the alternative applications of the developed framework 

for similar types of problems.  The first is related to the distinction between design 

variable set-ranges and design alternatives or solutions.  For the framework presented in 

this dissertation, the variable preferences describe the preference for design solutions 

within a given range.  However, the same method can be used with specific design 

solutions.  The major difference would be instead of providing preferences for a variable 

set-range, a different metric would have to be used by functional design groups to 

describe their preferences. 

 

Another application of the developed framework is its use as a post design evaluation of 

set reduction decision making.  For design activities that have already been conducted, 

the method can be used to compare the actual reduction path to the robust path identified 

by the method.  The comparison analysis can be used to improve future design efforts or 

to tune the MDP formulation to properly reflect what are considered valid reduction 

decisions.   
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Appendix 

 

Container Ship Database 

 

 

Identification DWT(T) LBP(m) B(m) D(m) Vk(kt)

Bermuda Islander 2800 84.7 13.75 5.55 13.5

Batavier VI 3480 85.0 15.85 6.18 15.0

Pacheco 4200 98.0 15.90 8.50 14.7

A.B. Bilbao 4210 85.0 13.17 7.15 12.5

Leknes 4226 84.8 13.80 7.15 12.5

Cari Sea 4766 93.0 16.50 7.50 14.0

Ute Johanna 4855 91.5 16.90 7.55 15.3

Clipper Confidence 5264 95.0 20.40 11.10 16.5

Sloman Challenger 5665 94.7 17.80 8.20 14.5

Flinterzee 5820 105.3 14.50 8.25 14.5

Celtic Monarch 6250 94.3 17.00 8.20 19.8

Sietas 1 6650 103.4 19.00 8.50 15.6

Duro-Felg 7000 94.5 16.50 9.70 13.3

Singapore 7800 112.6 18.40 9.00 15.0

Hanjin Bangkok 8075 114.0 20.00 8.80 14.0

Secil Angola 8371 115.5 20.80 10.80 15.0

Sea Arctica 8500 118.5 24.00 15.10 17.0

Germania 8790 117.0 19.00 13.50 16.0

Markborg 8950 127.2 16.50 9.80 15.6

Cape Bonavista 10410 126.4 22.70 10.80 16.6

Carmen Dolores H 11004 125.7 20.50 10.50 18.8

Jork 11870 147.0 23.50 12.80 19.9

Kairo 12580 140.1 22.30 11.10 18.5

Cape Hatteras 12855 134.0 23.50 11.50 18.1

CMBT Endurance 13100 145.0 24.00 13.90 18.7

Sea Nordica 13248 135.9 23.28 11.70 19.0

Frotasantos 13270 158.3 27.80 13.50 18.4

Oren & K 13800 142.8 22.80 11.10 16.4

Ganta Bhum 15027 141.2 25.00 13.60 19.0

San Lorenzo 17205 156.0 27.40 13.20 19.5

Uni-Crown 17446 141.0 25.60 12.70 16.0

Westerdeich 17600 156.0 26.70 14.40 20.0

Cecilie Maersk 19530 180.2 27.80 15.23 19.0

Kota Wijaya 20755 174.0 27.60 14.00 19.1

Bunga Kenari 21571 165.0 27.30 13.90 18.0

Taixing 22271 162.5 27.50 13.80 16.2

Nordlake 22450 167.3 25.30 13.50 19.0

Contship Pacific 23276 153.7 27.50 14.30 19.4

Nedlloyd Amazonas 23793 172.7 29.80 15.60 20.0

Muscat Bay 23805 172.0 28.40 15.60 18.7
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Speed Function Inverse Equations 
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Identification DWT(T) LBP(m) B(m) D(m) Vk(kt)

CGM Provence 26288 167.0 27.50 14.30 18.6

Marwan 27200 156.7 25.00 13.40 18.6

Sea-Land Argentina 27290 196.0 29.80 16.40 21.0

Patricia Rickmers 28274 185.5 30.20 16.60 20.5

Hanjin Zenoa 29800 190.0 32.25 19.00 22.0

Cap Polonio 33205 188.2 32.20 18.80 18.5

OOCL Canada 33640 203.8 32.20 19.00 20.0

Canmar Fortune 33800 204.0 32.20 19.00 19.9

Tokyo Senator 35734 206.2 32.20 19.40 20.5

Nuevo Leon 36887 191.0 32.20 19.40 20.0

Villa De Vela 37128 225.2 32.20 19.00 22.5

Chesapeake Bay 37500 232.0 32.20 18.80 23.5

Zim Hong Kong 37865 224.5 32.20 18.80 21.0

Vladivostok 40250 225.3 32.20 18.80 22.0

Trade Sol 41700 190.8 30.60 16.00 19.5

Zhonghe 44037 264.2 32.20 21.50 24

NYK Procyon 47300 283.0 37.10 21.80 23.5

APL Korea 49350 262.0 40.00 24.30 24.6

Hanjin London 49390 265.0 40.30 24.10 26.3

OOCL California 50037 262.0 40.00 24.30 24.6

Sea-Land Mistral 51900 230.0 32.20 19.00 24.0

Neptune Sardonyx 53320 281.6 32.25 21.40 24.5

Pusan Senator 55543 283.2 32.20 21.80 23.7

Luhe 55988 267.0 39.80 23.60 24.5

Ever Racer 56100 281.0 32.22 21.25 22.7

NYK Antares 72097 283.8 40.00 23.90 23.0

P&O Nedlloyd Southhampton 83826 283.8 42.80 24.40 24.5

Arktis Fighter 5212 93.6 18.80 9.30 15.7

Acadian Faith 5273 96.7 16.40 8.30 16.0

Bunga Mas Satu 10400 124.6 20.80 10.50 17.0

Haneburg 11187 125.2 21.00 11.50 17.0

Mukaddes Kalkavan 12292 136.8 22.70 11.30 19.3

Nadir 18000 164.2 28.20 16.80 21.0

Cathrin Oldendorff 18242 145.8 23.60 13.50 16.7

Nedlloyd River Platt 19762 158.0 27.20 13.80 19.4

Pegasus 21400 180.2 28.20 16.80 21.0

Clipper Fantasy 28000 172.0 26.00 14.40 14.0

Sea Excellence 30554 197.1 32.20 19.40 23.0

MSC Alexa 36606 230.0 32.25 21.50 23.0

Hyundai Independence 51120 263.0 40.00 24.20 25.8

Hannover Express 55590 281.6 32.25 21.40 23.8

Regina Maersk 65610 302.3 42.80 24.10 25.0
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Associated Graph Structure Set-Ranges 

 

Speed Function 

 

 
 

'[1] DWT:10000-80000, LBP:100-300, B:15-40, D:10-20' 

'[2] DWT:45000-80000, LBP:100-300, B:15-40, D:10-20' 

'[3] DWT:10000-45000, LBP:100-300, B:15-40, D:10-20' 

'[4] DWT:10000-80000, LBP:200-300, B:15-40, D:10-20' 

'[5] DWT:45000-80000, LBP:200-300, B:15-40, D:10-20' 

'[6] DWT:10000-45000, LBP:200-300, B:15-40, D:10-20' 

'[7] DWT:10000-80000, LBP:100-200, B:15-40, D:10-20' 

'[8] DWT:45000-80000, LBP:100-200, B:15-40, D:10-20' 

'[9] DWT:10000-45000, LBP:100-200, B:15-40, D:10-20' 

'[10] DWT:10000-80000, LBP:100-300, B:27.5-40, D:10-20' 

'[11] DWT:45000-80000, LBP:100-300, B:27.5-40, D:10-20' 

'[12] DWT:10000-45000, LBP:100-300, B:27.5-40, D:10-20' 

'[13] DWT:10000-80000, LBP:200-300, B:27.5-40, D:10-20' 

'[14] DWT:45000-80000, LBP:200-300, B:27.5-40, D:10-20' 

'[15] DWT:10000-45000, LBP:200-300, B:27.5-40, D:10-20' 

'[16] DWT:10000-80000, LBP:100-200, B:27.5-40, D:10-20' 

'[17] DWT:45000-80000, LBP:100-200, B:27.5-40, D:10-20' 

'[18] DWT:10000-45000, LBP:100-200, B:27.5-40, D:10-20' 
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'[19] DWT:10000-80000, LBP:100-300, B:15-27.5, D:10-20' 

'[20] DWT:45000-80000, LBP:100-300, B:15-27.5, D:10-20' 

'[21] DWT:10000-45000, LBP:100-300, B:15-27.5, D:10-20' 

'[22] DWT:10000-80000, LBP:200-300, B:15-27.5, D:10-20' 

'[23] DWT:45000-80000, LBP:200-300, B:15-27.5, D:10-20' 

'[24] DWT:10000-45000, LBP:200-300, B:15-27.5, D:10-20' 

'[25] DWT:10000-80000, LBP:100-200, B:15-27.5, D:10-20' 

'[26] DWT:45000-80000, LBP:100-200, B:15-27.5, D:10-20' 

'[27] DWT:10000-45000, LBP:100-200, B:15-27.5, D:10-20' 

'[28] DWT:10000-80000, LBP:100-300, B:15-40, D:15-20' 

'[29] DWT:45000-80000, LBP:100-300, B:15-40, D:15-20' 

'[30] DWT:10000-45000, LBP:100-300, B:15-40, D:15-20' 

'[31] DWT:10000-80000, LBP:200-300, B:15-40, D:15-20' 

'[32] DWT:45000-80000, LBP:200-300, B:15-40, D:15-20' 

'[33] DWT:10000-45000, LBP:200-300, B:15-40, D:15-20' 

'[34] DWT:10000-80000, LBP:100-200, B:15-40, D:15-20' 

'[35] DWT:45000-80000, LBP:100-200, B:15-40, D:15-20' 

'[36] DWT:10000-45000, LBP:100-200, B:15-40, D:15-20' 

'[37] DWT:10000-80000, LBP:100-300, B:27.5-40, D:15-20' 

'[38] DWT:45000-80000, LBP:100-300, B:27.5-40, D:15-20' 

'[39] DWT:10000-45000, LBP:100-300, B:27.5-40, D:15-20' 

'[40] DWT:10000-80000, LBP:200-300, B:27.5-40, D:15-20' 

'[41] DWT:45000-80000, LBP:200-300, B:27.5-40, D:15-20' 

'[42] DWT:10000-45000, LBP:200-300, B:27.5-40, D:15-20' 

'[43] DWT:10000-80000, LBP:100-200, B:27.5-40, D:15-20' 

'[44] DWT:45000-80000, LBP:100-200, B:27.5-40, D:15-20' 

'[45] DWT:10000-45000, LBP:100-200, B:27.5-40, D:15-20' 

'[46] DWT:10000-80000, LBP:100-300, B:15-27.5, D:15-20' 

'[47] DWT:45000-80000, LBP:100-300, B:15-27.5, D:15-20' 

'[48] DWT:10000-45000, LBP:100-300, B:15-27.5, D:15-20' 

'[49] DWT:10000-80000, LBP:200-300, B:15-27.5, D:15-20' 

'[50] DWT:45000-80000, LBP:200-300, B:15-27.5, D:15-20' 

'[51] DWT:10000-45000, LBP:200-300, B:15-27.5, D:15-20' 

'[52] DWT:10000-80000, LBP:100-200, B:15-27.5, D:15-20' 

'[53] DWT:45000-80000, LBP:100-200, B:15-27.5, D:15-20' 

'[54] DWT:10000-45000, LBP:100-200, B:15-27.5, D:15-20' 

'[55] DWT:10000-80000, LBP:100-300, B:15-40, D:10-15' 

'[56] DWT:45000-80000, LBP:100-300, B:15-40, D:10-15' 

'[57] DWT:10000-45000, LBP:100-300, B:15-40, D:10-15' 

'[58] DWT:10000-80000, LBP:200-300, B:15-40, D:10-15' 

'[59] DWT:45000-80000, LBP:200-300, B:15-40, D:10-15' 

'[60] DWT:10000-45000, LBP:200-300, B:15-40, D:10-15' 

'[61] DWT:10000-80000, LBP:100-200, B:15-40, D:10-15' 

'[62] DWT:45000-80000, LBP:100-200, B:15-40, D:10-15' 

'[63] DWT:10000-45000, LBP:100-200, B:15-40, D:10-15' 

'[64] DWT:10000-80000, LBP:100-300, B:27.5-40, D:10-15' 
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'[65] DWT:45000-80000, LBP:100-300, B:27.5-40, D:10-15' 

'[66] DWT:10000-45000, LBP:100-300, B:27.5-40, D:10-15' 

'[67] DWT:10000-80000, LBP:200-300, B:27.5-40, D:10-15' 

'[68] DWT:45000-80000, LBP:200-300, B:27.5-40, D:10-15' 

'[69] DWT:10000-45000, LBP:200-300, B:27.5-40, D:10-15' 

'[70] DWT:10000-80000, LBP:100-200, B:27.5-40, D:10-15' 

'[71] DWT:45000-80000, LBP:100-200, B:27.5-40, D:10-15' 

'[72] DWT:10000-45000, LBP:100-200, B:27.5-40, D:10-15' 

'[73] DWT:10000-80000, LBP:100-300, B:15-27.5, D:10-15' 

'[74] DWT:45000-80000, LBP:100-300, B:15-27.5, D:10-15' 

'[75] DWT:10000-45000, LBP:100-300, B:15-27.5, D:10-15' 

'[76] DWT:10000-80000, LBP:200-300, B:15-27.5, D:10-15' 

'[77] DWT:45000-80000, LBP:200-300, B:15-27.5, D:10-15' 

'[78] DWT:10000-45000, LBP:200-300, B:15-27.5, D:10-15' 

'[79] DWT:10000-80000, LBP:100-200, B:15-27.5, D:10-15' 

'[80] DWT:45000-80000, LBP:100-200, B:15-27.5, D:10-15' 

'[81] DWT:10000-45000, LBP:100-200, B:15-27.5, D:10-15' 

'[82] Artificial Terminal Node' 

 

L/B Ratio Function 

 

 
 

'[1] LBP:100-300, B:15-40' 

'[2] LBP:200-300, B:15-40' 

'[3] LBP:100-200, B:15-40' 

'[4] LBP:100-300, B:27.5-40' 

'[5] LBP:200-300, B:27.5-40' 

'[6] LBP:100-200, B:27.5-40' 

'[7] LBP:100-300, B:15-27.5' 

'[8] LBP:200-300, B:15-27.5' 

'[9] LBP:100-200, B:15-27.5' 

'[10] Artificial Terminal Node' 
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B/D Ratio Function 

 

 
 

'[1] B:15-40, D:10-20' 

'[2] B:27.5-40, D:10-20' 

'[3] B:15-27.5, D:10-20' 

'[4] B:15-40, D:15-20' 

'[5] B:27.5-40, D:15-20' 

'[6] B:15-27.5, D:15-20' 

'[7] B:15-40, D:10-15' 

'[8] B:27.5-40, D:10-15' 

'[9] B:15-27.5, D:10-15' 

'[10] Artificial Terminal Node' 

 

L/D Ratio Function 

 

 
 

'[1] LBP:100-300, D:10-20' 

'[2] LBP:200-300, D:10-20' 

'[3] LBP:100-200, D:10-20' 

'[4] LBP:100-300, D:15-20' 
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'[5] LBP:200-300, D:15-20' 

'[6] LBP:100-200, D:15-20' 

'[7] LBP:100-300, D:10-15' 

'[8] LBP:200-300, D:10-15' 

'[9] LBP:100-200, D:10-15' 

'[10] Artificial Terminal Node' 
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