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Abstract

Causal inference from observational data—that is, data that did not come from an experiment—is
notoriously difficult: because the probability distribution of the treatment variable Z is unknown,
measured or unmeasured variables that correlate with both Z and the outcome Y may confound
causal estimates. This thesis will present methods for designing and modeling causal observational
studies that combine design-based techniques with regression to account for measured covariates X.

Regression discontinuity designs occur when treatment assignment is a function of a variable T:
when T exceeds a threshold c, treatment is assigned. Conventionally, researchers analyze RDDs
by regressing Y on both T and Z. This thesis argues for modeling RDDs as naturally-randomized
experiments in two steps: modeling the relationship between Y and T, and using that design to infer
and estimate effects of Z on Y. We illustrate this approach by reanalyzing a dataset used to estimate
the effects of academic probation on students’ grade point averages.

The rest of the thesis focuses on propensity-score stratification with high-dimensional data
(p >> n). If treatment assignment is a random unknown function of X, researchers can adjust causal
estimates for X by estimating propensity scores: subjects’ respective probabilities of treatment
assignment conditional on X. Researchers then stratify subjects based on their propensity scores
and model the data as if treatment were randomized within strata. However, when the dimension
of X is large, propensity-score estimation is impossible. We propose a method in which a subset
of X is used to estimate propensity scores. Next, the entire matrix X can be used to model Y,
using a high-dimensional regression technique; the model is trained on subjects excluded from the
stratification. The model’s predictions of Y can then be used to test balance on, and adjust for, the
entire set of covariates in X. We illustrate this method by evaluating two high-school educational
programs.

xiii



Chapter 1

Introduction

Methods for causal inference from data have, roughly speaking, evolved along two somewhat sepa-
rate parallel tracks.1 One focuses on modeling the phenomenon of interest. Along these lines, Pearl
(1998, 2000, e.g.), following Haavelmo (1943), emphasizes detection of the “data generating model.”
This approach sees a “treatment” (a putative cause), an “outcome” (possible effect) and related
variables as part of a system, and models them as such. Of course, one of the most venerable, and
almost certainly the most common tools in statistical modeling is the linear regression model, which
models an outcome of interest, Y , as a function of a list of explanatory variables, often arranged in a
matrix X . Regression is much more than just a causal tool: regression was designed, and has the
power, to fully model phenomena: to estimate the function that relates one, or several, variables
to each other. Indeed, both Legendre (1805) and Gauss (1809) originally proposed least-squares
estimation to model astronomical phenomena. While regression estimates are not generally causal,
under certain sets of conditions—in particular, when the regression model is the data generating
model—they may be interpreted as such.

Another prominent trend, popularized by Fisher (1935) and Neyman et al. (1935), and epito-
mized by the randomized controlled experiment, is skeptical of researchers’ ability to estimate a
data generating model, and instead, designs experiments specifically to determine whether a causal
relationship exists. This approach does not promise a mathematical model of a natural system
(how does this system work) as much as one specific, if crucial, aspect of the system: if one were
to manipulate a treatment, to what extent would that affect a specific outcome? (see Pearl, 1994;
Gelman, 2011) While the goals of experimental inquiry are narrow, its conclusions are dependable.
Regression methods depend on sets of assumptions to derive their conclusions; in some scenar-
ios, these assumptions are well-founded, but in others they are not. In contrast, a well-designed
experiment, by virtue of its careful design, can be analyzed with virtually no assumptions beyond

1This is not intended to be a thorough overview of varying philosophies of causal inference, as much as a motivator
and (perhaps artificial) structure in which to view this report’s contributions.
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the design itself. That is, by randomly assigning a treatment to some subjects but not to others, an
experimenter knows enough to infer the existence of a causal effect, as well as a precise measure of
uncertainty.

Observational studies that seek to infer causation pose a dilemma: their narrow goals are the same
as those of an experiment: the existence and extent of a causal relationship between two variables.
The data setting, however, more closely resembles the setting for which regression—especially
multiple regression—was developed: a natural system with many interacting and uncontrolled
factors. Which paradigm is appropriate? Which methods of analysis are more likely to give rise to
believable and useful results?

Some statisticians (Rubin, 2008; Rosenbaum, 2010; Holland, 1986), in some circumstances,
argue for expanding the experimental paradigm to include observational studies as well. That is,
while some of the advantages of experiments do not extend to observational studies—the mecha-
nism to assign subjects to particular treatment conditions is generally unknown—other advantages,
perhaps more subtle, persist into the observational realm. This approach can be referred to as
“randomization inference” or “experimental modeling.” However, other statisticians (Yule, 1899;
Spirtes et al., 2000; Gelman and Hill, 2007; Bang and Robins, 2005) and allied social scientists
(Rindfuss et al., 1980; Tinbergen, 1940; Dielman, 2001, e.g.) believe that the power and flexibility
of regression makes it the optimal choice for causal modeling of observational data (see Freedman,
1997, for a broader discussion).

This report argues that, in effect, the dilemma is a false one: at least in some situations,
researchers can harness the benefits of regression modeling, while firmly adhering to the design-
based logic of experimental modeling. Chapter two addresses the regression-discontinuity design
(Thistlethwaite and Campbell, 1960), the common scenario in which treatment assignment is de-
termined as a known function of a continuous “running” variable, which may be correlated with
the outcome of interest. When a subject’s running variable is above (or below) a known cutoff,
the subject is assigned to the treatment condition. As its name implies, regression—modeling
the relationship between the running variable, the outcome, and the treatment—is central to the
conventional method of analyzing regression discontinuities. However, following Lee (2005),
which argued that in a neighborhood around the cutoff, treatment assignment is random as in
an experiment, Cattaneo et al. (2012) has suggested shifting to a strict randomization-inference
analysis, essentially excluding regression modeling from the picture. This report, in agreement with
Cattaneo et al. (2012), will argue for the benefit of using local randomization to analyze regression
discontinuities; it will argue, though, that doing so does not necessitate the abandonment of the
conventional regression modeling.
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The following three chapters suggest an approach to causal inference in a scenario that will
likely prove increasingly common in the “big data” era: more variables than units. Several effective
and useful regression methods exist for modeling such data, and chapters three, four and five
of this report will suggest a suite of methods, in different scenarios, for harnessing this power
in a randomization-inference propensity score design (Rosenbaum and Rubin, 1983a). Chapter
three will, in the course of evaluating a high school mathematics enrichment program, propose a
theoretical framework for combining high-dimensional regression adjustment and propensity score
matching, focusing on principal components regression. Chapters four and five will expand those
methods: chapter four will consider more recently-developed high dimensional techniques, along
with some methods for choosing which regression strategy to use. Chapter five will, in the course of
a preliminary evaluation of another high-school educational program, discuss the use of multi-level
data in propensity score and regression studies.

Of course, the distinction between experimental reasoning and regression is not nearly as stark
as the discussion here implies. Firstly, across scientific disciplines, randomized experiments are
commonly analyzed using regression techniques2 (Tang and Tu, 2013; Abdulkadiroğlu et al., 2011;
Chattopadhyay and Duflo, 2004; Gerber and Green, 2000, e.g.). Indeed, Fisher himself (Fisher et al.,
1970) suggested using analysis of variance modeling, which is essentially a regression technique, to
estimate effects in agricultural experiments.3 In regards to observational data, Angrist and Imbens
(2002), expressing a common attitude in econometrics, argued for “agnostic regression,” the idea that
regression can be effectively used to estimate the narrow causal goals of experiments, provided its
results are interpreted carefully. On the other end, randomization-inference proponents commonly
use logistic regression or probit regression in the design phase of their studies (Rosenbaum, 2002a).

The approach to be developed here has some precedents in the randomization-inference literature
as well. Rosenbaum (2002b), Hansen and Bowers (2009) and Ho and Imai (2006) have suggested
methods for regression-based covariance adjustment to increase the precision of randomization-
inference estimators. In addition, Rubin (1979, 1973) and Hansen (2008a) have suggested a
regression approach to reducing bias in randomization inference based observational studies. This
report will build on those methods.

2Freedman (2008) argues against this approach, that multiple linear regression of experimental data can lead to
slightly biased estimates and severely biased standard error estimates; see, however, Lin (2013), which argues that these
problems are small or easy to fix.

3Pitman (1938), however, derived distribution-free inferential methods for this technique that are explicitly based on
the randomization design.
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1.1 The Rubin Causal Model and Randomization Inference

1.1.1 Notation for Experiments and Observational Studies

A common and useful approach to formalizing notions of causation and causal inference is called
the “Rubin Causal Model” (Holland, 1986; Imbens and Rubin, 2008). Following the framework for
randomized experiments in Splawa-Neyman et al. (1990), Rubin (1974) suggested conceptualizing
causal effects as comparisons between counterfactual outcomes: between what is, and what could
have been. For simplicity, this report will focus on studies with exactly two treatment conditions, re-
ferred to as the “treatment” and “control” conditions. Formally, let Zi ∈ {0,1} be a random variable
coding subject i’s treatment status (Z = 1 signifies treatment). Let Y represent an outcome of interest.
Then each subject has two (possibly random) values: YCi is subject i’s outcome if subject i is not

treated and YTi is subject i’s outcome if subject i is treated. For each i, only one of these two values
is observed, dependent on Zi; subject i’s observed outcome is Yi = ZiYTi +(1−Zi)YCi. According to
a term coined in Holland (1986), the unobservability of both YCi and YTi, for a particular subject
i, is the “fundamental problem of causal inference”: it is impossible to know, for an individual,
what would have been without treatment. The values YTi and YCi are called “counterfactuals” or
“potential outcomes.”

This notation implicitly assumes non-interference (Cox, 1958) (also referred to as the “stable
unit treatment value assumption (SUTVA)” in Rubin 1978):

Assumption (SUTVA). If i 6= j, then subject i’s treatment does not affect subject j’s response, or

Yj ⊥⊥ Zi ∀ j 6= i. (1.1)

Assumption (1.1) is necessary for unbiased estimation of treatment effects, but is not necessary for
certain inferences.

Subject i’s “treatment effect” τi is defined as YTi−YCi, the difference between subject i’s treat-
ment and control potential outcomes.4 The values τi are not observed, or, in general, identifiable;
instead, analysts will often estimate aggregate quantities such as the average treatment effect (ATE)
τ̄ . Alternatively, analysts may assume that τi = τ ∀i, that the treatment effect is identical for all sub-
jects; then, τ may be estimated. If the subjects are modeled as a random sample from a population,
the ATE is Eτ , a population mean.

4Different parameterizations are also possible, such as the ratio YT/YC; however, the difference YTi−YCi is the most
common, and will be the focus of this report.
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1.1.2 Analyzing Experiments and Observational Studies

Fisher’s “strict null hypothesis” (Fisher, 1935) is that τi = 0 ∀i, that is, that YCi = YTi = Y for all
subjects. Since the value of the vector Y for every possible random draw of Z is hypothetically
known, if the distribution of Z is is also known, researchers can compute an exact p-value. That
is, under the strict null, realized outcomes are invariant to Z, and counterfactual values of T , for
various drawings of Z, are also known exactly. Formally, the p-value testing Fisher’s strict null
hypothesis is

Pr(T (Z,Y )> t) = ∑
z∈Ω

1[T (z,Y )>t]Pr(Z = z) (1.2)

where 1[T (z,Y )>t] is equal to one when the hypothetical test statistic T , calculated using the observed
values for Y and a hypothetical random draw of Z, z, is greater than the realized value of T , t, and
Ω is the set of all possible draws of Z. This analysis ignores variation from randomness in {YC,YT};
a researcher may model potential outcomes as fixed, or, equivalently, condition her analysis on their
order-statistics, which are sufficient for their distribution (Romano, 2005). In some situations, it is
advantageous to estimate this conditional p-value by simulating values from the distribution of Z.

In a simple randomized experiment, the distribution of Z does not depend on the potential out-
comes, or on any other (relevant) variables. In that case, the values Y for control subjects—observed
YCi—are representative of the YC values in the entire sample, and the Y values for treated subject,
observed YTi, are representative of YT values for the entire sample. Formally, in a simple randomized
experiment, we have that

{YC,YT} ⊥⊥ Z. (1.3)

Scenarios in which the distribution of Z is unknown, and must be hypothesized or modeled,
but which seek to estimate parameters contrasting treatment and control potential outcomes, have
been and will be referred to as “observational studies.” In such settings, (1.3) cannot, in general, be
assumed to be true. In particular, there may be a variable W , measured or unmeasured, that correlates
with both Z and either YC or YT ; these relationships induce a “spurious” correlation between Z and
the measured outcomes, and violate (1.3). However, in some scenarios, it is reasonable to substitute
the following assumption for (1.3):

Assumption (Strong Ignorability).

{YC,YT} ⊥⊥ Z|X (1.4)

where X is a vector or matrix of variables to which the researcher has access—covariates—measured
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before (or known to be unaffected by) treatment assignment. Under (1.4), within level sets of
observed covariates X , there is no confounding, and the data may be modeled as if from a sim-
ple randomized experiment. This is referred to as “strong ignorability” (Rosenbaum and Rubin,
1983b), “no unmeasured confounding” (Greenland and Robins, 2009) or “selection on observables”
(Heckman and Robb, 1985).

Some more complex randomized experiments use observed covariates X to assign treatment;
in this case, strong ignorability (1.4) is known to hold. Either way, in a randomized experiment,
the fact that the probability distribution of Z is known exactly ensures not just researchers’ ability
to compute exact p-values, but their ability to compute an unbiased estimate of a treatment effect.
If (1.3) and (1.1) hold, a simple comparison between treated and untreated units is an unbiased
estimate of the sample-average treatment effect τ̄ , since the observed YC values are a simple random
sample of all of the sample’s YC values, and the same holds for the YT values. Therefore, ȲZ=0, the
average of observed control outcomes, is unbiased for ȲC, the sample average of all YC values, with
an analogous result for YT values. When (1.3) does not hold, but strong ignorability (1.4) is known
to hold, researchers can suitably adjust their analysis methods to produce unbiased estimates.

1.1.3 When are Observational Studies Believable?

The believability of strong ignorability (1.4) is, perhaps, the most vexing problem of causal inference
from observational studies. In some settings, it is eminently plausible: for instance, in a regression
discontinuity design, as the next chapter will discuss, the treatment assignment mechanism is known.
In a broad class of studies known loosely as “natural experiments,” researchers argue—with varying
levels of success—that treatment assignment is haphazard, or based (partially) on a variable that
is uncorrelated with the potential outcomes (an “instrument”; Angrist et al. 1996). In some other
studies, not much is known about the process of treatment assignment; in these scenarios, strong
ignorability can be a strong assumption indeed. However, there may be some mitigating factors.
The composition of X is surely an important factor: if X contains measures of the outcome variables
prior to treatment (pretests), for instance, the bias resulting from assuming strong ignorability may
be relatively small (e.g. Cook et al., 2008). Along similar lines, Heckman et al. (1997) emphasize
the importance of high quality data for both groups, that all subjects, treated and untreated, exist in
the same economic environment and that outcomes in both groups are measured in the same way. A
more specific and applied discussion of these and other criteria will appear in chapter three, in the
context of an education evaluation.

Even when criteria for a high-quality observational study obtain, and especially when they do
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not, causal estimates may be confounded and biased. Of course, one of the central aims of statistics
is to quantify uncertainty, and this situation is no exception. Several methods (e.g. Greenland,
2005; Robins et al., 2000; Rosenbaum, 1988; Altonji et al., 2000) are available to assess a studies’
sensitivity to departures from strong ignorability, which can help researchers gauge and calibrate
their uncertainty regarding this assumption. In chapters three and five, which rely most heavily on
strong ignorability, this report will employ the method suggested in Hosman et al. (2010).

1.1.4 Why Not Just Run Regressions?

With the notation here in place, a somewhat more formal account of the difference between the
“regression modeling” and the “experimental modeling” paradigms is possible. The distinction
comes about in the presence of covariates X ; X , of course, participates in two sets of relationships:
relationships between X and the potential outcomes YC and YT , and between X and Z. If either of
these relationships is severed, then X cannot confound a causal estimate of Z on Y ; that is, (1.4)
would imply (1.3).

In a simple ordinary least squares (OLS) regression observational study, a researcher will fit the
following model:

Y = α +βX + γZ + ε (1.5)

where α and γ are scalar parameters to be estimated, β is a vector parameter to be estimated, and
ε denotes regression errors independent of the regressors X and Z. The parameter γ , here, would
be interpreted as a treatment effect: the relationship between Z and Y given X . This regression
strategy models both relevant X relationships simultaneously. In fact, the regression estimate of γ is
equivalent to the result from the following three-step process:

1. Regress Y on X

2. Regress Z on X

3. Regress the residuals from regression 1 on those from regression 2.

So OLS simultaneously and implicitly models both X relationships in its effect estimate; more
complex regression models do the same, if not as neatly.

In contrast, proponents of the experimental modeling approach to observational studies focus
on modeling the relationship between Z and X (this is the goal of a propensity score design, as
will be discussed in greater detail in Chapter 3). In an experiment, as in an observational study, the
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distributions of the potential outcomes are unknown. However, in an experiment, the distribution of
Z is known exactly. Therefore, to design observational studies to mimic experiments, researchers
must first and foremost attempt to understand the observed distribution of Z. Furthermore, since
conditional p-values and hypothesis tests do not depend explicitly on the distribution of Y , the
relationship between Y and X is of secondary importance.

This outlook brings with it several distinct advantages (see Rubin, 2007, 2008). First, anal-
ogously to randomized experiments, it allows observational studies two distinct phases: design
and analysis. The design stage, in which researchers arrange the data so as to mimic data from an
experiment, makes use only of Z and X ; Y is unnecessary. This is the stage in which all model
building and checking occurs. Researchers can build and test several models without generating
several separate effect estimates, and researchers choose a model specification without knowledge
of the resulting effect estimate or inference. In this setup, researchers are less able to choose the
model whose estimate best confirms their predictions. The second stage is the analysis, in which
researchers estimate the effect of Z on Y , based on the design chosen in the first stage. These studies
only generate one central5 estimate, so some issues of multiple comparisons are avoided.

Another advantage is that a research design that mimics a randomized experiment automatically
leads to hypothesis tests that do not refer to Y ’s distribution. Hypotheses based on a randomization
scheme for Z can be tested with conditional p-values, which can, in turn, be computed exactly. In
these scenarios, large sample approximations are unnecessary (though they may, at times, be useful),
so small samples pose no inferential problems. For this reason, this style of statistical inference is
sometimes referred to as “distribution-free” (eg. Olson, 2013).

Finally, a design mimicking a randomized experiment is bound to be both simple and transparent.
For instance, in a propensity-score matching design, under this paradigm, researchers know, and can
explain, precisely which treated units are being compared to which untreated units. Then substantive
researchers or stakeholders can easily evaluate the design without having to refer to an obscure
statistical model (even if an obscure statistical model gave rise to the design in the first place).

One ostensible objection to randomization-based observational study design is that, in some
scenarios, there is much to be gained by modeling the relationship between Y and X , as in the
regression-based approach. Y -X models can serve two aims: variation in X may help explain
some variation in Y , and if this portion of Y ’s variance is modeled, effect estimates will be more
precise and hypothesis tests will be more powerful. In addition, researchers’ X-Z models may be

5Nothing stops researchers from checking their estimates’ sensitivity to other model specifications after generating
their main result; however, these are post-hoc, and their estimates are not of interest in themselves, but only as checks to
the main estimate. In addition, researchers can compute follow-up estimates, if their first result raises new questions or
hypotheses; this process, however, is transparent.
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incorrect or incomplete, and modeling Y in these scenarios may correct some of these deficiencies.
That is, modeling the relationship between Y and X can improve both the variance and bais of
treatment effect estimates. As mentioned, Rosenbaum (2002b), Hansen and Bowers (2009) and
Ho and Imai (2006) all suggest similar methods for using regression modeling in the analysis stage
of observational studies to reduce estimates’ variance. This report will suggest some methods for
modeling the X-Y relationship in the design stage to reduce both bias and variance. In the traditional
randomization-based observational study, the researcher has no access to Y values in the design
stage; the methods proposed here will slightly relax this rule, while preserving its spirit and its
advantages.

Randomization-based inference is not the only empirical causal inference strategy, nor is it the
only reasonable strategy. However, there are good reasons for researchers to conduct observational
causal inference by referencing randomized experiments, and this report will show that, in doing so,
they need not sacrifice the power of regression-style modeling.

1.2 Applications in Educational Program Evaluation

Recent decades have seen two important advances in educational program evaluation: first, follow-
ing a larger trend in the social sciences, education researchers have intensified their skepticism of
some statistical methods and, concurrently, use and development of more sophisticated strategies.
This trend has occurred at both the grassroots, among individual education researchers, and at higher
organizational levels, such as the United States federal government-funded What Works Clearing-
house.6 One of the most newly-popular approaches is the regression discontinuity design, which
will be applied to an educational question in chapter two. Secondly, as a result of technological
and cultural shifts as well as the No Child Left Behind act, there has been a proliferation of data
available for analysis. This embarrassment of riches leads to new statistical challenges, which will
be addressed in the context of education research in chapters three, four and five. These factors—the
need for rigor and the availability of data—make education research an interesting and conducive
field for the development of new statistical methods of causal inference, as well as the refinement
of existing methods. Academic factors aside, education is a valuable object of study since a good
education is both a powerful means towards personal and societal prosperity, equality and justice,
as well as an end in and of itself. While the overall focus of this report is methodological, the focus
of its applications is educational program evaluation. The methods discussed and developed here

6http://ies.ed.gov/ncee/wwc/ Accessed: 8/26/13.
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are designed to be well suited for for improving, by gauging effectiveness, the quality of education.
Chapter two, the next chapter, focuses on a question, and dataset, in higher-education: what is

the effect, if any, of academic probation? Academic probation, at its best, is a tool that colleges
use to help struggling students, with a combination of carrots and sticks. Lindo et al. (2010)
observed that, at one large Canadian university, academic probation was (almost) strictly a function
of students’ cumulative GPAs, and hence was a regression discontinuity design. This report will
re-analyze the data from Lindo et al. (2010), in the service of demonstrating its approach to similar
data scenarios in education research.

Chapters three through five use datasets from secondary school evaluations. Agile Mind is a
private corporation that offers middle schools and high schools educational enrichment programs
that are designed to boost students’ achievement—especially the achievement of students who are
struggling. Chapter two will attempt to estimate the effect of a school’s implementation of the
Agile Mind Algebra 1 program on its aggregated scores on standardized-tests . Other than usage
information, the evaluation will use exclusively publicly-available school-wide data, of which there
is a surfeit: hundreds of variables are available, while only tens of schools use the program. This
data scenario, referred to in the statistics world as p >> n, poses a statistical problem, since few
p >> n methods exist for causal inference. (This report, however, is not the only current attempt
at this problem; see Belloni et al. 2012 for a more-strictly regression-based approach, and Belloni
et al. 2011 for a high-dimensional instrumental-variables model.) In contrast, several p >> n

regression-based methods exist for the purpose of machine learning or prediction; adapting these
methods for use in causal inference will be the aim of chapters three, four and five.

Chapter five will present a preliminary analysis of a school-level intervention in six Kentucky
high schools, using hundreds of publicly available school-level variables, as well as over 100
student-level variables that have been provided by the Kentucky Department of Education. Al-
though, from a substantive perspective, this analysis is yet incomplete, the dataset will serve as a
useful demonstration of how to build on the methods of chapters three and four when student-level
variables are available.
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Chapter 2

Analyzing Regression-Discontinuity Designs
as Randomized Experiments

2.1 Introduction

Randomization of treatment assignment is the gold standard of causal inference in statistics: it is
the only way to ensure that there are no confounders biasing a causal estimate. Of the range of
options available when experiments are impossible, the “regression discontinuity design” (RDD)
(Thistlethwaite and Campbell, 1960; Cook, 2008) approach is among the most credible. In an
RDD, the treatment assignment mechanism is known: each subject i is characterized by a “running
variable” Ri, and those subjects for whom Ri is greater (or less) than a pre-determined constant
c are assigned to treatment. Under seemingly weak assumptions, Lee (2008) has shown that the
RDD features “local randomization” of treatment assignment, and is therefore “a highly credible
and transparent way of estimating program effects” (Lee and Lemieux, 2010). However, regression
discontinuity designs, like all causal analyses, require careful and explicit thought to analyze.

The conventional approach to RDDs attempts to estimate the average functional relationship
between the outcome Y , the running variable R and treatment assignment Z, and does not exploit
local randomization. Indeed, if local randomization is central to the identification strategy of an
RDD, then regression modeling can produce severely biased standard errors (Freedman, 2008).1 An
alternative set of assumptions models treatment assignment itself as random, as in an experiment.
A version of this approach appeared in Cattaneo, Frandsen, and Titiunik (2012) (hereafter CFT).
This “experimental” modeling approach allows for more explicit and intuitive assumptions, allows
analysts to test a wider variety of hypotheses, more-easily allows for small-sample inference, and
provides easier ways to test and detect violations of the assumptions and, in some cases, remedies
to those violations.

1See, however Lin (2013)
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This chapter will focus on an example of the regression discontinuity design found in Lindo,
Sanders, and Oreopoulos (2010) (hereafter LSO). In many colleges and universities, struggling
students are put on “academic probation” (AP); the school administration monitors and helps these
students more than those who are not struggling. But does AP actually help these students? What
is the effect of AP on students’ subsequent GPAs? LSO realized that at a certain large Canadian
university, AP was determined almost solely2 as function of students’ grade point averages (GPAs):
students with GPAs below 1.5 or 1.6, depending on the campus, were put on AP.

According to the formulation in Lee (2008), the RDD insight is that, presumably, there is a
random component to each student’s GPA each semester; therefore, for a subset of students whose
first-semester GPAs fell close to the cutoff, AP was effectively assigned randomly. Based on this
heuristic, CFT argued that analysts may use randomization inference techniques to estimate and
infer average treatment effects for this small group of students.3

Alternatively, the conventional approach, which Lee (2008) recommends, argues that one would
expect one semester’s GPA to rise, on average, with the previous (first) year’s GPA; if AP had an
effect, one would expect a (downward) jump in this relationship at the point at which the first year’s
GPA equals the AP cutoff. One could regress next semester’s GPA on the first year’s, and expect
the estimated slope to be positive; but if AP had a positive effect, it would provide an additional
bump to next semester’s GPA for students below the cutoff. In other words, if the treatment had an
effect, the regression line would jump down at the cutoff; by measuring the size of the discontinuity,
researchers can quantify the effect of the treatment on the outcome of interest. Figure 2.1 illustrates
this analysis.

This chapter proposes a dual approach, combining randomization inference and regression
adjustment, along with a procedure, analogous to one suggested in CFT, using pre-treatment covari-
ates to choose the region around the cutoff to study, or to test the validity of a region chosen for
substantive reasons. In addition, this chapter will provide a set of randomization-based assumptions
under which the conventional method unbiasedly estimates average treatment effects.

In general terminology, the variable upon which treatment assignment depends—in LSO, stu-
dents’ first-year GPAs—is referred to as the “running variable” (McCrary, 2008) (or “assignment
variable,” Berk and Rauma (1983) or “forcing variable” Imbens and Lemieux (2008); in this chapter,

2There are 35 cases, out of a total of 44,362, where students were not put on AP despite GPAs below the cutoff, and
three cases in which students were put on AP despite having GPAs above the cutoff. All told, there were 6330 students
on AP in this dataset. In this chapter, as in LSO, we will follow the “intent to treat” principle and estimate the effect of
treatment assignment—that is, having a GPA below the cutoff—instead of actual treatment (AP). Since the number of
cases in which these two disagree is such a small proportion of the total, we anticipate that this will have a minimal
impact on our estimates

3Some further developments in this direction, from a Bayesian perspective, can be found in Li et al. (2013).
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Figure 2.1 The RDD from LSO. The first-year GPAs were shifted so that the cutoff is at zero—that is, each
campus’ cutoff was subtracted from its students first-year GPAs. Subsequent GPA was “cell-mean smoothed”:
averaged according to first-year GPA (this causes residual variances to appear inflated towards the edges of
the graph; however, the appearance of heteroskedasticity is only because there are few subjects with extreme
first-semester-GPAs). The sizes of the plotted circles are proportional to the number of subjects at each value
of R. The lines are least-squares linear fits, the red line to the treatment group and the blue line to the control
group. The distance between the lines at the cutoff, along the dotted line, is the classic RDD estimate of the
“Local Average Treatment Effect.”

we will denote it as R), so the conventional, linear regression analysis of an RDD is:

Y = β0 +β1R+β21[R>c]+β3R : 1[R>c]+ ε (2.1)

where Y is the outcome of interest, c is the cutoff, and ε is a mean-0 error (Imbens and Lemieux,
2008).

Imbens and Lemieux (2008) condition their analysis on R, which is typical (Van der Klaauw,
2008; Imbens and Zajonc, 2011; Mealli and Rampichini, 2012, e.g.). In modeling the outcomes,
but not treatment status, as random, the conventional approach to RDD does not make use of local
randomization. To do so would require precisely selecting a region in which randomization is
assumed to take place, and justifying this assumption. Doing so would allow researchers to base
their conclusions on the randomization of treatment assignment, which Ronald Fisher famously
declared the “reasoned basis for inference,” (Fisher, 1935) and strengthen their causal conclusions.
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The question of selecting and verifying a region in which local randomization takes place is
related to a prominent discussion in the econometric literature surrounding RDDs. One flaw of
the conventional RDD methodology is that a linear model might not accurately account for the
relationship between R and Y —when either R < c or R > c. The RDD literature has discussed
this issue at length; see, in particular, Lee and Card (2008) and Imbens and Lemieux (2008). One
common solution is model the relationship with a polynomial (e.g. Oreopoulos 2006). This solution
has the disadvantage of allowing observations with large R values, which are generally far from the
cutoff, to disproportionately influence the model fit. Hahn et al. (2001) suggests a different approach:
fitting a kernel-based “local linear regression” to the data, that weights points closer to the cutoff
higher than points far away. Imbens and Lemieux (2008) points out that a simpler version of this
approach will work almost as well: simply discard all data outside a given bandwidth—everything
of distance h or more from the cutoff c—and fit lines to the data on either side of the cutoff. Making
a principled choice for h is still an open question, though recent efforts, particularly in Imbens and
Kalyanaraman (2009) (IK) and DesJardins and McCall (2008), have brought us closer to a solution.

This chapter will discuss an approach for selecting, and perhaps widening, a region in which
local randomization may take place. Essentially, randomization of treatment assignment, local or
otherwise, implies balance of pre-treatment covariates: the theoretical means (and higher moments)
of pre-treatment covariates of the subjects selected for treatment and subjects selected for control
are equal. Balance of pre-treatment covariates is testable, and will form the basis of our approach
to verifying randomization within a small interval around the cutoff. Unlike in CFT, the width
of the region of analysis will not depend on at what point random variation in R dominates any
relationship between R and Y ; it will, instead, depend on where the relationship between R and Y can
be effectively modeled, and suitably accounted for. The chapter will also provide a novel conceptual
framework for conducting a randomization-based analysis of RDDs within such a window.

The following section will explain this approach in a situation in which substantive theory
or prior research suggests a window. Section three will demonstrate the approach on the LSO
dataset, and section four will suggest two methods of accounting for treatment-effect heterogeneity.
Section five will discuss a data-driven method for choosing a window of analysis and section six
will conclude.
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2.2 Analyzing an RDD as a Randomized Experiment when b is
Given

The most straightforward randomization-based approach to RDDs is to assume that in a small
window around the cutoff c±b, subjects are randomized to treatment and control conditions as in
an experiment. This is roughly the approach discussed in CFT.

Formally, for some b > 0,

Assumption (Simple Randomization). (YCi,YTi,Xi)⊥⊥ Zi ∀i with Ri ∈ c±b.

Of course, a method is required of determining the region c±b for which this is true; the con-
ventional, OLS-based approach does not address this question. When pre-treatment covariates are
available, they may be useful in verifying the simple randomization assumption for an interval-width
b. Simple randomization posits that any particular pre-treatment covariate X is independent of
treatment assignment Z; therefore, the sample-means of the covariates in the control and treatment
groups,

X̄C =
∑i(1−Zi)Xi

∑i 1−Zi
; X̄T =

∑i ZiXi

∑i Zi
(2.2)

are equal in expectation—balanced. One can test this implication for a particular b or for several
possible choices of b, and choose a b in which simple randomization seems plausible. This can also
be done simultaneously with several pre-treatment covariates Xk k = 1, ..., p.

However, if the potential outcomes YC and YT and covariates X are correlated with the running
variable R, only data in very small windows will exhibit covariate balance. Depending on the
criterion for balance, in some cases balance might not be achievable at all. If balance is achievable,
it may only be at the expense of the vast majority of the data.

The OLS approach, by modeling the relationship between Y and R, is an attempt to solve
this second problem, which remains an issue for a straightforward application of randomization
inference ideas. However, as noted above, the OLS approach does not make any reference to or use
of randomization of treatment assignment.

A third approach, which combines regression modeling and randomization-inference, could
solve both problems. In this approach, we will assume a given b > 0 is given that will determine the
region of the analysis, and test its validity. The b value will be chosen based on substantive concerns:
for which subjects would an estimated treatment effect be interesting, reasonable or coherent? For
instance, it makes little sense to ask what the effect of academic probation would be on straight-A
students. In following sections, we will propose a data-driven method for choosing b.
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The combined approach involves three steps: first, model the relationship between the potential
outcomes and R, and use this model to transform potential outcomes YC into Y̌C that may be modeled
as independent of R. Next, test the validity of the method’s assumptions, which will be spelled out
shortly, within the given window. Finally, estimate or test the treatment effect using methods from
randomized controlled trials.

This approach distinguishes between a design step and an analysis step, as randomized ex-
periments do. However, unlike in a randomized experiment, or in an experimentally-modeled
observational study (Rubin, 2008), the design step here involves outcomes Y . However, no estimates
or inferences take place in the design stage, which preserves a study’s objectivity and avoids some
problems of multiple inferences.

The first step is to model the relationship between YC and R in order to transform YC into Y̌ :
transformed outcome values (hopefully) independent of R. Though other approaches are possible,
we will focus in this chapter on a simple-least-squares (SLS) linear regression approach to modeling
the relationship between R and YC. Under Fisher’s strict null hypothesis, YCi = YTi for all subjects
i, so the way to use SLS to model the R-YC relationship and construct Y̌ values is to regress Y on
R, and extract the residuals. That is, under the strict null hypothesis, if R is the matrix formed by
joining a column of 1’s to the column of R, then

Y̌C ≡ Y −R(R ′R)−1R ′Y (2.3)

The new Y̌ values can be used to estimate and infer causal effects, under the assumption necessary
for randomization-based inference:

Assumption (Transformed Ignorability). For all subjects i with Ri ∈ c±b, the distribution of Ri

is not degenerate, and conditional on the order statistics of R and the potential outcomes Y̌C, R and
Y̌C are independent:

R⊥⊥ Y̌C|(Y̌C(1), ...,Y̌C(n)),(R(1), ...,R(n)). (2.4)

For simplicity of notation, in the remainder of the chapter we will denote hypothetical Y̌C values
simply as Y̌ . Transformed ignorability (2.4), and conditioning on order statistics, implies that the
RDD can be treated as a randomized experiment. Specifically, with R random and Z = 1[R>c]

independent of Y̌ , every combination of R and Y̌ is equally likely under the null hypothesis—this, in
turn, implies the characteristics that recommend randomized experiments: there are no confounders,
and the randomization distribution is known.

Transformed ignorability (2.4) depends on picking a b: the width of the region of the analysis.
As mentioned above, b can be chosen based on substantive concerns. After choosing b, one can
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statistically assess the plausibility of transformed ignorability. If there are pre-treatment covariates
available, an analyst can use them to test the assumption. In classical randomized experiments,
treatment is assigned independently of pre-treatment covariates, which implies that the means of
pre-treatment covariates are balanced, in expectation, between the treatment and control groups.
This suggests a crucial test of transformed ignorability, given a procedure for transforming Y into
Y̌ and a region b: transform each covariate X into X̌ , in the same way the outcomes were transformed,
and test the hypothesis that E[X̌ |Z = 1] = E[X̌ |Z = 0]. In other words, analysts can argue for the
plausibility of (2.4) by checking the validity of its companion assumption:

Assumption (Transformed Ignorability for Covariates).

R⊥⊥ X̌ |(X̌(1), ..., X̌(n)),(R(1), ...,R(n)) (2.5)

Some classical SLS diagnostic tests can also test transformed ignorability; the following subsection
will list some examples.

For transformed ignorability to be plausible, the relationship between YC and R must be approxi-
mately linear in the region R ∈ c±b; if YC is modeled as random, and E[YC|R] is differentiable at
R = c, then Taylor’s theorem implies that for some region around c, the relationship is approximately
linear.

Transformed ignorability implies a test of the strict null hypothesis of no treatment effect
H0 : YCi = YTi for all i. Since, conditional on the order statistics, every combination of Y̌ and Z is
equally probable under the null hypothesis, a permutation test of H0 would achieve the nominal level.
In particular, the difference in the mean of Y̌ between the treatment (Z = 1) and control (Z = 0)
groups could be computed for every possible permutation of Z, holding the vector Y constant: this
is the randomization distribution of the difference in means test statistic (Pitman, 1937). For a given
α , if the achieved difference in means is greater in magnitude than 1−α proportion of these, then
the null hypothesis is rejected at level α . Formally, if D(Z∗) is the difference in means for a given
treatment-assignment vector Z∗, Z is the achieved treatment assignment vector, and nt = ∑i Zi, the
number of treated subjects, then the p-value testing H0 is

p = #{Z∗ : |D(Z∗)|> |D(Z)|}/
(

n
nt

)
(2.6)

In practice, p can be computed using monte-carlo methods, or based on a suitable normal approxi-
mation, when n is large enough (Good, 2000).

The difference-in-means test statistic is the most straightforward, and emerges most directly
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from the comparison with randomized controlled trials, but it is not necessarily the most powerful.
Under the alternative hypothesis of a positive additive treatment effect, for instance, so that for all
subjects i YCi-YTi=τ > 0, the slope estimate in equation (2.3) will be biased, so the mean difference
between treatment and control values for Y̌ will most likely be less than τ . A test statistic that may
be more powerful against such alternative hypotheses is the F-statistic from the following regression:

Y̌ = β0 +βRR+βZZ + ε (2.7)

If the model (2.7) is a significantly better fit than a grand mean model Y̌ = β0 + ε , then it may be
concluded that the null hypothesis is implausible. The randomization distribution of this test statistic
can be determined through enumeration of permutations of R and Y̌ , monte-carlo simulations or a
normal approximation (Pitman, 1937).

One approach to estimating the magnitude of the treatment effect assumes a constant additive
treatment effect, YTi−YCi = τ for all i. Under this assumption, for a hypothetical treatment effect τ0,
YCi can be computed for each i as Yi− τ0Zi. Then, the same permutation-based hypothesis test can
be performed for the hypothetical values of YCi: regressing YC on R, extracting the residuals, and
computing the F-statistic (2.7) for the new values Y̌τ (see Rosenbaum, 2002c). One can invert this
hypothesis test, testing a range of values for τ . Those values that are not rejected at level α form a
1−α confidence region for τ ; similarly, one can use the Hodges-Lehmann technique (Rosenbaum,
1993) to arrive at a point estimate for τ . Incidentally, the Hodges-Lehmann estimate for τ in this
setup is identical to the coefficient of Z from a regression of Y on R and Z (Rosenbaum, 2002c).

2.2.1 Testing Transformed Ignorability: Balance Tests and Diagnostics

The central test of the transformed ignorability assumption (2.4) is the test of covariate balance,
described above.4 If subjects are essentially randomized to treatment and control conditions, the
means of any pre-treatment covariates should be equal between the treatment and control groups:
covariates should be balanced. In other words, the analysis should detect no “treatment effect” on
pre-treatment covariates. Following this logic, to test transformed ignorability for covariates we
may begin by transforming pre-treatment covariates as outcomes were transformed, and testing the
strict null hypothesis of no treatment effect.

If several pre-treatment covariates are available, testing transformed ignorability for covariates
for each covariate separately could lead to problems of multiple testing, and overly-conservative

4CFT also discussed covariate balance as a factor in choosing b; however, CFT’s balance-assessment procedure
differs significantly from the one here.
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specification tests. One solution to this problem is to combine information from the covariates into
an omnibus test statistic (e.g. Hansen and Bowers, 2007). The appropriate null hypothesis to test
is that there is no treatment effect for any of the pre-treatment covariates; indeed, if there were a
treatment effect in any one covariate, that would imply a violation of transformed ignorability for
covariates. One omnibus test statistic is the maximum of the individual F statistics from testing
transformed ignorability for covariates for each of the covariates (see Westfall and Young, 1993).
Another possibility for the test statistic is a version of Hotelling’s T 2 statistic (Hotelling, 1931): the
sum of the individual F statistics. Formally, if k = 1, ..., p indexes p pre-treatment covariates, and
Fk is the F-statistic testing no treatment effect for covariate k, then let

Ftot =
p

∑
i=1

Fk (2.8)

be the test statistic for overall covariate balance.
As in the case of Y or an individual covariate, the randomization distribution for Fk can be

calculated by enumerating all possible permutations of R or approximated with monte carlo methods.
Covariate balance, while a necessary condition of local randomization, is not sufficient. If

analysts use regression to generate Y̌ , as in (2.3), tests of the conventional OLS assumptions (e.g. as
in Weisberg, 2005) are in order. If the strict null hypothesis is false, the OLS assumptions in the
regression of Y on R will be violated; it is necessary to test transformed ignorability in the absence
of a treatment effect. The best way to conduct this test would be to compute the HL estimate of
the treatment effect τHL, subtract τHL from each of the Y values in the treatment group to calculate
YCi for each subject i under the null hypothesis that YTi-YCi= τHL for all subjects i. Under this null
hypothesis, transformed ignorability is most likely to be confirmed.5

In a conference talk, Cattaneo et al. (2010) also proposed subtracting a constant treatment
effect from the treatment group and examining the residuals. As in CFT, the paper that emerged
from the talk, regression adjustment was not involved. The approach in Cattaneo et al. (2010) was
somewhat more formal, involving a dual test of the acceptability of b and τ; that approach has
the advantage of formal hypothesis testing, whereas the approach suggested here is more flexible,
allowing researchers to choose their preferred OLS diagnostics, and appropriate interpretations.

The first assessment should be a visual inspection of residuals Y̌ for any structure. Next, there
are several tests in the literature for heteroskedasticity, for instance, such as the Cook-Weisberg test
(Cook and Weisberg, 1983) or the Levene test (Levene, 1961). If the variance of Y̌ is not equal

5Since a treatment estimate is necessary for these evaluations, they cannot strictly be considered part of the design
stage.
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Figure 2.2 A cell-means smoothed plot of logit(hsgrade pct) as a function of dist f rom cut

between the treatment and the control groups, there may be a violation of transformed ignorability,
or the heteroskedasticity may be a consequence of treatment-effect heterogeneity. Therefore, if het-
eroskedasticity is present, researchers can attempt to model possible treatment-effect heterogeneity
to remove the heteroskedasticity. This approach will be treated in section 2.4.1.

2.3 Randomization-Based RDD Analysis in the LSO Data

One of the outcomes that LSO measure is nextGPA, students’ subsequent GPAs, either for the
summer or fall term after students’ first years. Their causal question of interest is whether AP causes
a change, on average, in nextGPA: do students on AP tend to have higher (or lower) subsequent
GPAs? Recall that AP is determined almost exclusively by first-year cumulative GPA, which in
this case is R: students with GPAs below the cutoff are “treated” with AP, and students above the
cutoff are in the control group. One could argue that the most relevant region in which to estimate a
treatment effect is within 0.3 grade-points of the cutoff c, since 0.3 conventionally represents the
difference in grade points between a C-, say, and a D, or any other grade half-step.

First, we use a covariate, or several covariates, to test transformed ignorability. One suggestive
covariate that appears in LSO’s data is hsgrade pct, each student’s high school grade-point-average.
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Figure 2.3 A plot of residuals vs fitted-values for the regression of ˜nextGPA = nextGPA− 0.23 ∗Z on
dist f rom cut

Figure 2.2 plots hsgrade pct as a function of students’ first-year GPAs, the running variable, and it
seems to have an approximately linear relationship in a neighborhood around c. Linear variation in
hsgrade pct explains about eight percent of the variation in students’ first-year GPAs (ρ = 0.29)
and about four percent of the variation in their subsequent GPAs (ρ = 0.20). Since hsgrade pct

is coded with values that fall roughly uniformly between 0 and 100, we use a logit function to
transform them hsgrade pct→ log[0.01∗hsgrade pct/(1−0.01∗hsgrade pct)], to improve the
performance of SLS.

We begin by estimating the regression of hsgrade pct on dist f rom cut, and extracting the
residuals ˇhsgrade pct. Next, we can test the null hypothesis that ˇhsgrade pct is balanced between
treatment and control, using the F-test described above. The permutational p-value for that null
hypothesis is 0.22, which means that ˇhsgrade pct is more balanced than it would have been in
about 22% of hypothetical randomized experiments; at conventional levels, transformed ignorability
for covariates is sustained.

For a stronger test, we can test covariate mean balance of several covariates simultaneously. LSO
exploits seven pre-treatment covariates to test the RDD assumptions in the AP case: hsgrade pct,
the total number of credits attempted in students’ first year and students’ age at college entry, which
are continuous, and dummy variables for campus (the university has three campuses), whether stu-
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dents’ first language is English, and whether students were born in North America. Using equation
(2.8) to simultaneously test balance on all of these covariates yields a permutational p-value of 0.78,
sustaining transformed ignorability for covariates.

The next step is to estimate a treatment effect, and to test the strict null-hypothesis of no effect.
To test the hypothesis that AP has no effect for b = 0.3 means that students whose first-year GPAs
were within 0.3 grade-points of the AP cutoff would have the same subsequent GPA regardless of
AP assignment. A permutation test of this hypothesis resulted in a p-value of less than 1/500, so
the strict null hypothesis is implausible.

But what is the treatment effect? Using this approach, a 95% confidence interval is the set of τ

values whose Hτ is not rejected—this is simply the dual of the hypothesis test if τ is constant. Using
this method, a 95% confidence interval for the effect of AP is 0.13–0.33 grade points. Similarly, one
would arrive at a point estimate of the effect by determining which hypothetical value of τ0 produced
the highest p-value: this is the Hodges-Lehmann estimate. In the LSO data, the Hodges-Lehmann
point estimate was 0.23 grade points; that is, the treatment effect of academic probation is to increase
students’ subsequent GPA by 0.23 points.

Further tests of transformed ignorability are in order. Using the point estimate of 0.23, we can
examine the residuals for evidence against this assumption. Figure 2.3 shows a plot of residuals Y̌ ver-
sus fitted values of the regression in equation (2.3): the regression of ˜nextGPA = nextGPA−0.23∗Z

on dist f rom cut. No structure is readily apparent, so from figure 2.3 there is no reason to suspect
a violation of transformed ignorability.

However, it may be useful to statistically test some potential problems. Roughly following
Weisberg (2005), one could compare a group-wise model treating dist f rom cut as a factor or
grouping variable, to the linear model that treats it as continuous. The F-statistic from this ANOVA
comparison 0.92, corresponding to a p-value of 0.65, which also suggests that the residual variance
from the linear model is not higher than expected; in other words, the fit is good. The ability
to perform this ANOVA is a result of the discrete nature of dist f rom cut: in this case, it is an
advantage as opposed to a disadvantage.

Similarly, Weisberg (2005) recommends using the Cook-Weisberg test to test for non-constant
variance of ˇnextGPA. In essence, this regresses transformed residuals on the model fitted values
(which, since there is only one regressor in the model, is equivalent to regressing the transformed
residuals on dist f rom cut) and tests whether the slope on the fitted-values is equal to zero. With a
bandwidth of 0.3, the p-value from this test is 0.37, so there is no evidence of non-constant variance.

In the original paper by LSO, the standard errors were clustered by first-semester GPA. Since
GPA is essentially discrete, and a function of how many credits a student takes—or even which
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classes—it is plausible that students with the same first-semester GPA are similar to each other
and therefore have correlated ˇnextGPA values. There is a permutation test that is similarly robust
to this clustering: if, instead of allowing all permutations of the treatment variable, we only allow
permutations that preserve the grouping structure, the permutation test will be robust to within-group
correlation. This is equivalent to assuming that every combination of R and Y̌ that preserves the

grouping structure of R is equally likely; this is somewhat weaker than transformed ignorability
(2.4). Weakening transformed ignorability does not significantly change the p-value testing the
strict null hypothesis: it is still less than 1/500.

2.3.1 Testing Balance of Higher-Order Means

If transformed ignorability for covariates (2.5) holds and every pre-treatment covariate X̌ is indepen-
dent of treatment assignment Z, then X̌ should be balanced not only in its mean, or first moment, but
in all of its moments. Along these lines, some methodologists, such as Caughey and Sekhon (2011),
have suggested testing balance of higher-order moments between treatment groups. Incorporating
this suggestion into the randomization-based methodology is straightforward: raise the transformed
covariate to the specified power p, producing a covariate X̌k

p, and add test balance with X̌k
p as an

additional covariate.
In the LSO dataset, a test incorporating 2nd-order natural splines in the balance test for b = 0.3

results in a permutational p-value of 0.32.

2.4 Heterogeneous Treatment Effects: Two Approaches

The estimation approach of Section 2, which relies on permutation tests and HL estimates, assumes a
constant treatment effect: YCi−YTi = τ ∀ i. However, tests of the strict null hypothesis do not depend
on the form or distribution of the treatment effect: under the strict null hypothesis, YTi−YCi = 0 for
all i, so the “treatment effect” is a constant 0. Also, under the simple randomization assumption,
the difference in means between the treatment and control groups is unbiased for the average-
treatment effect. Here we present two approaches to estimating treatment effects under transformed
ignorability (or similar assumptions) when the homogeneity assumption is implausible. The first
approach continues to rely on permutation tests and HL estimates, but models the treatment-effect
heterogeneity. If researchers are confident in their model for the treatment effect, this approach
will shed light on how the treatment effect varies. The second approach, in Section 2.4.2, is also
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randomization based, but is fairly different from Section 2.2. We show there that an OLS estimate
of an average treatment effect will be unbiased given reasonable randomization assumptions.

2.4.1 Modeling Treatment Effect Heterogeneity

The randomization-based approach to RDDs is flexible in that it allows researchers to model the
effect of treatment in varying ways, not simply as an additive effect. Given a model for the effect of
treatment, an analyst would apply the method suggested above by subtracting the model’s hypothet-
ical treatment effect from Y before constructing Y̌ values. In addition, the analyst must choose the
hypothesis test with care, to test the equivalence of the treatment and control groups.

For instance, the methodological RDD literature frequently recommends allowing the slope of
the relationship between R and Y to vary from the control group to the treatment group (Lee and
Lemieux, 2010). In practice, this means including an interaction term in the linear regression (2.1)
interacting Z with R. The randomization-based approach allows researchers to not only estimate but
infer the effect of Z on the slope between Y and R. In this more complex model, there are two causal
parameters to be estimated: a constant additive effect τ , and an effect that increases (or decreases)
linearly with R, that we will denote ν . Therefore, we have that

YTi = YCi + τ +νRi. (2.9)

For a particular null hypothesis Hτν , the analyst would subtract τ +νRi from each member of
the treatment group, creating the new variable

Ỹi = Yi−Zi(τ +νRi)
Hτν= YC.

Under Hτν , the slope of the relationship between Ỹ and R should be constant throughout the sample,
with no discontinuity, allowing the analyst to use SLS to construct Y̌ values that satisfy transformed
ignorability. Finally, under transformed ignorability, a level-α randomization test designed to test
the absence of a treatment of the form (2.9) should reject with probability α .

The challenge, then, is to select a hypothesis tests no treatment effect of the form (2.9). Figure
2.4 illustrates the importance of choosing the right hypothesis test. The difference-in-means test
statistic, ¯̌YT − ¯̌YC, tests strictly for a difference in means between the control and treatment groups;
the parameter ν , however, provides an additional degree of freedom that the difference-in-means
does not take into account.
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Figure 2.4 Cell-means smoothed plots of (a) nextGPA and (b) ˇnextGPA versus first-year college GPAs
(centered at the cutoff). At each first year college GPA R, this figure plots the average of the nextGPAs of
students with first-year college GPA R. The bandwidth for b = 1.12; b = 0.3 does not include enough unique
values of first-year GPA for an easily-interpretable figure.

In Figure 2.4, the Y values are transformed with ν =−2 (which seems impossible) and τ = 0.4,
resulting in an permutational p-value p> 0.6, with an observed difference in means of approximately
0.009. While the difference-in-means test, as used, fails to reject this pair of values, Figure 2.4
clearly shows that τ = 0.4 and ν =−2 do not suitably transform the data to be roughly equivalent
on either side; they are not values a researcher would want in her 1−α confidence region.

Fortunately, an alternative hypothesis test performs better. One hypothesis test that directly tests
both equal slopes and equal intercepts in the treatment and control groups is a classical analysis-
of-variance F-test. After transforming the data with a hypothetical τ and ν pair and computing
Y̌ , an analyst would use a permutational F-test to compare a model regressing Y̌ on a constant, R,
Z and the interaction R : Z with the regression of Y̌ on just a constant. This test would reject if it
found that either the slope or the intercept varied from one group to another. It would not reject,
however, if other parameters in the two groups differed, such as the residual variance. Inverting
this testing procedure, by sweeping over values of both τ and ν simultaneously, yields a 1−α

confidence region for τ and ν .
The results of this procedure, applied to the LSO dataset, appear in figure 2.5; the green region

is a 90% confidence region, the yellow is 95%, and the red is 99%.
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Figure 2.5 Confidence regions for ν and τ from model (2.9). The green region is a 90% confidence region,
the yellow is 95% and the red is 99%.

Marginally, τ varies, at most, from 0.1 to 0.35, with 95% confidence, and ν varies from −0.96
to 0.82, also with 95% confidence. Apparently, allowing the slope to vary from treatment to control
does not substantially change our conclusion about τ , but the data are, somewhat surprisingly, fairly
uninformative about ν .

2.4.2 Estimating Randomization-Based Average Treatment Effects

To discuss the average of heterogeneous treatment effects, let~τ represent the vector YT −YC. Let τ̄

be the average of~τ , the average treatment effect in the sample. If one subtracts τ̄ from the Y value
of the treatment group, one will still have failed to recover the values YCi, so if one constructs Y̌ as in
Section 2.2, transformed ignorability will not hold for the transformed outcomes. Therefore, it is
not clear if the method outlined in Section 2.2 can be used to estimate an average treatment effect in
the presence of heterogeneity (though, as mentioned, heterogeneity does not affect the validity of
tests of the strict null hypothesis).

A slightly different approach to estimation is necessary in the presence of heterogeneous treat-
ment effects. This approach begins by specifying some alternative, but similar, assumptions to
transformed ignorability:6

Assumption (ATE-1). ∀ i with Ri ∈ c±b, with constants αi and τi, i = 1, ...,n:

1. The distribution of R is not degenerate

6While this approach is similar in spirit to the approach in Section 2.2, it is technically incompatible: transformed
ignorability conditions on the order statistics of Y̌ , whereas this approach treats Y as fixed; under those conditions there
are often not enough degrees of freedom for R and Y̌ to vary independently, as transformed ignorability demands.
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2. yCi = αi +βRi

3. Yi = yCi + τi ∗1[Ri>c].

Following the lead of Freedman (2008), it is possible to re-write Assumptions ATE-1 in a more
familiar form. For ease of notation, let Zi = 1[Ri>c]. Represent αi as ᾱ + ε̃i and τi as τ̄ +ηi, and let
εi = Ziηi + ε̃i. Note that the only random quantity in this set-up is R, and by extension Y , Z, and ε .
The vectors ε̃ and η , however, are not modeled as random.

Then, we can re-write assumption ATE-1 as

Yi = ᾱ +βRi + τ̄Zi + εi. (2.10)

Here, τ̄ , the average treatment effect (ATE), is the target estimand. Unlike in the classical OLS
setup, εi’s randomness is purely a function of Zi; it is not homoskedastic and for i 6= j it cannot be
assumed that εi ⊥⊥ ε j.

However, it is still desirable that ∑i E[Ziεi|nt ] = 0; for that to be true, another assumption is
necessary:

Assumption (ATE-2). Let nt = ∑i Zi, the number of treated subjects. Then, for all subjects i with
Ri ∈ c±b

∑
i

E[Zi|nt ]ηi = 0 (2.11)

and

∑
i

E[Zi|nt ]ε̃i = 0. (2.12)

Equation (2.11) puts a limit on the extent of the treatment-effect heterogeneity: in aggregate, the
random assignment of treatment cannot correlate with the effect of treatment. Equation (2.12)
is basically a no-confounding assumption: there can be no correlation between YC and treatment
assignment, other than the component of YC explained by R. All told, Assumption ATE-2 ensures
that ∑i E[Ziεi|nt ] = 0.

Under these assumptions, the OLS estimator for τ̄ is unbiased:

Proposition 1. Let R be the n×3 matrix formed by joining a n×1 column of 1s, a column of R

and a column of Z. Then, under Assumptions ATE-1 and ATE-2, the OLS estimator is unbiased:

E(R ′R)−1R ′Y3 = τ̄ (2.13)
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Proof. Let ~β = {ᾱ,β , τ̄}′. So Assumption ATE-1 is that Y = R~β + ε . We have that

(R ′R)−1R ′Y = (R ′R)−1R ′(R~β + ε)

= ~β +(R ′R)−1R ′ε

To show that the third element of E(R ′R)−1R ′ε , corresponding to the error in the estimate of τ̄ , is
0, condition on {R(1), ...,R(n)}, and note that R ′R is invariant to permutations of R or Z. This is
because Z is a deterministic function of R. Also, note that E[Zi|{R(1), ...,R(n)}] = E[Zi|nt ], since Zi

is binary.

E(R ′R)−1R ′ε = EE[(R ′R)−1R ′ε|{RP(1), ...,R(n)}]

= E(R ′R)−1 E[R ′ε|{RP(1), ...,R(n)}]

= E(R ′R)−1(∑
i

E[εi|nt ],∑
i

E[Riεi|{RP(1), ...,R(n)}],∑
i

E[Ziεi|nt ])
′

Assumption ATE-2 guarantees that the third element above, corresponding to error in the estimate
for τ̄ , is equal to zero.

A stronger assumption would be necessary for unbiasedness in β , but since this is not the target
of estimation, strengthening the assumption would be unnecessary.

In principal, it is also possible to calculate conservative randomization-based standard errors
in the manner of Freedman (2008) or Gadbury (2001); however, this is beyond the scope of this
chapter. Similarly, the same approach as above shows that that the OLS estimate of τ̄ from equation
(2.1) is also unbiased, since both R and R : Z are deterministic functions of R.

2.5 A Data-Driven Approach to Choosing b

If theory or past research do not suggest a bandwidth b, one can sweep over the set of possible
bs to find one.7 As b increases, so does sample size, and hence power and precision. Therefore,
the optimal bandwidth b∗ is the maximal b such that the RDD estimator, applied to data within
the window of analysis, has approximately zero bias. In other words, b∗ is the largest b for which
transformed ignorability is plausible. To choose an optimal b∗, perform the balance test on ever-

7CFT discusses an approach similar in spirit, if not in detail, to the one here.
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expanding data sets, letting b vary over its entire range. By examining the p-values from this set
of hypothesis tests, one should be able to identify at which b the X̌s exhibit enough imbalance to
render transformed ignorability implausible. For instance, an analyst might decide, in advance, that
she would be willing to tolerate covariates that are more balanced than, say, 10% of randomized
experiments—in other words, reject a balance hypothesis with a p-value of 0.1 or smaller. Then,
she would incrementally increase b, and at each b test covariate balance as described in Section
2.2.1. She could pick b∗ as the largest b corresponding to a p-value above 0.1.

There are two issues with this approach: the first is the arbitrariness involved in picking the level
of the test at which to reject. The second is that p-values naturally fluctuate; indeed, under the null
hypothesis a p-value is drawn from a uniform (0,1) distribution, and, of course, will fall below 0.1
10% of the time. This is related to the problem here of multiple-comparisons, one for each possible
bandwidth.

A different, though equally valid approach is to choose an data-driven bandwidth on a case-by-
case basis, by inspecting the pattern of p-values at different bandwidths. For instance, if the graph of
p-value versus bandwidth shows a fluctuating pattern followed by a steeply decreasing pattern, the
b at which the pattern changes would be a reasonable choice for b∗; for values of b greater than b∗,
there may be patterns in the data, reflected in the covariates, that increasingly invalidate transformed
ignorability.

Regardless of the method analysts use to pick b∗, it is good practice to estimate the treatment
effect or ATE at several plausible b values, as a sensitivity analysis. If the ATE estimates vary
considerably—that is, show a high sensitivity to b—there may be deeper problems with the model.

Figure 2.6 shows the p-values that form successive balance tests at each possible bandwidth
b ranging from 0.01 to 1.0. Based on Figure 2.6, one could choose a b∗ as 0.6, since this seems
to be approximately where the downward trend in p-values begins. At b = 0.6, the HL estimate
of a treatment effect is 0.23 grade points, with a p-value of less than 1/500 and a 95% confidence
interval of 0.16–0.29, roughly the same as the estimate in Section refLSOsec.

2.5.1 The Relationship between b∗ and the IK Bandwidth

As noted above, the problem discussed in this chapter bares a close similarity to the problem in
conventional RDD analysis of choosing a bandwidth h for a local-linear regression in an RDD. The
approaches in IK and DesJardins and McCall (2008) seek to minimize the mean-squared-error of
the RDD estimate. IK bases its approach on the RDD analysis based on local linear regression
(Porter, 2003), which uses a kernel to weight points closer to the cutoff more than points farther,
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Figure 2.6 P-values from successive balance tests of pre-treatment covariates, one for each possible
bandwidth b.

and runs a linear regression on the weighted data. The trade-off in their approach is that as the
bandwidth increases, so does the sample size, so the standard error of the estimate decreases. On
the other hand, as h increases, so does the potential bias from a non-linear relationship between R

and Y , the outcome. The IK bandwidth procedure non-parametrically estimates the curvature of
the relationship and balances that against the standard error improvements that accompany a wider
bandwidth.

One potential problem with this approach is that mean-squared-error is a sum of the variance
(squared standard error) and squared bias of the estimator. While decreasing the standard error is
indeed a worthwhile aim, it is questionable whether doing so at the expense of incurring substantial
bias is advisable. Standard error is a quantity that is estimable from the data, and can be quantified
and accounted for in the presentation of the data’s results; this is not the case with bias, which might
cause hypothesis tests and confidence intervals to depart from their nominal levels.

The approach outlined here seeks to avoid these problems by constraining bias to be close to
zero. Covariate balance, indeed, may be interpreted as an assessment of the validity of the linear
approximation to the relationship between R and Y : if we assume that the relationship between
at least one of the covariates and Y has a similar form to the relationship between R and Y , then
departures from linearity in the former relationship would indicate similar departures in the latter.
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Conversely, if at a particular bandwidth b a linear regression correctly estimates the discontinuities
of the covariates at the cutoff of R (that is, zero), then it is reasonable to assume that, within b of the
cutoff, the relationship between R and Y is also approximately linear. Imbens and Lemieux (2008)
suggests that fitting simple linear regressions to only the data within b of the cutoff is a simple
way to estimate a local linear regression, so using b∗ as this chapter has suggested may be roughly
equivalent to estimating a local linear regression RDD analysis with a bandwidth that constrains
bias at approximately zero. This argument may serve as an additional, secondary justification for
using covariate balance tests to choose a bandwidth for an RDD analysis.

2.6 Discussion

This chapter presents a novel interpretation and modeling approach to regression discontinuity
designs. The new approach has several advantages over the conventional approach. Its assumptions
are (arguably) more intuitive than the conventional RDD assumptions (see eg. Imbens and Lemieux,
2008). Transformed ignorability speaks directly to the data’s similarity to a randomized experiment,
which should stand at the heart of causal inference. This approach is robust for to small-sample
inference, since it relies on permutation tests, as was demonstrated in CFT. Similarly, the conceptual
approach does not demand continuity in the running variable R, since it does not rely on taking limits
of continuous functions of R. Finally, the approach presented here suggests two simple and intuitive
ways to choose a bandwidth for the RDD analysis: preferably, to use prior substantive knowledge to
choose a region in which an estimated treatment effect or ATE is desirable and interpretable (and
then to validate this bandwidth with a balance test) or, alternatively, to use sequential balance tests
to allow the data to suggest a bandwidth.

The approach presented here may have some weaknesses as well. Firstly, it requires a set of
covariates in the data whose relationships to the outcome of interest are similar to the running
variable R’s. Not only are such covariates not always available, but even in a rich dataset it may
be hard to assess the covariates’ usefulness. Secondly, there may be some scenarios in which the
conventional RDD assumptions are more plausible than those presented here.

These issues suggest some further opportunities for future research. Researchers should test the
new method, both on additional datasets that have already been analyzed in the conventional manner
and with monte-carlo simulation methods. Hopefully, these studies could clarify the new method’s
relationship to the conventional method: is one method more powerful than the other? Under which
scenarios do the two methods differ, and under which scenarios do they produce similar estimates?
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Which method tends to perform better?
Though starting from a similar point, this chapter’s approach differs in some important ways

from the approach in CFT. CFT suggests assuming that subjects in a window close to the cutoff
are randomized, with equal probabilities to various treatment conditions. In particular, within the
window of analysis, the potential outcomes are not related to treatment assignment—and, therefore,
the running variable R. In contrast, this chapter allows a relationship between potential outcomes
and R in the window of analysis. The question of which set of assumptions is more plausible
will depend on the substantive question of interest. CFT’s approach allows more flexibility in the
choice of estimands, whereas the approach here is limited to estimating mean-based estimands. This
chapter’s approach will hopefully be attractive to researchers who are drawn to randomization-based
arguments, but are reluctant to abandon the familiar trappings of the conventional RDD approach.

Finally, since the methods presented here come from the family of randomization-inference
statistical methods, the Rosenbaum-bound sensitivity analysis techniques (Rosenbaum, 2002a) may
apply. A sensitivity analysis tailored to RDDs, along with an appropriate interpretation, would
bolster the believability of the resulting statistical estimates.
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Chapter 3

Propensity-Score Matching with Very High
Dimensional Data: A School-Level

Evaluation of a Mathematics Enrichment
Program

3.1 Introduction

The No Child Left Behind Act (NCLB) of 2001 mandated the collection and recording of large
amounts of data, and has left educational researchers with a dilemma: are these newly (or, in
some cases, not-so-newly) available data useful? If so, new statistical techniques are necessary to
optimally incorporate all available data into causal estimates. This is a concern, in particular, in ob-
servational causal inference, when there may be a large number of observed, potential confounders.
Inferences from observational studies are susceptible to bias from confounders; hence, the question
of how to best adjust causal estimates for observed, pre-treatment covariates is a central question in
educational studies. Of course, almost any dataset can become high dimensional, as researchers
can examine the raw covariates themselves, along with functions of the covariates, such as splines,
polynomials, or interactions. In this sense, high-dimensional data has always been available, but,
perhaps, out of reach.

Indeed, in some publicly-available, school-level education datasets—including those that are
analyzed in this chapter as well as in Chapter 5—much of the high-dimensionality is due to disaggre-
gation. That is, where a smaller school-level dataset would include, for instance, school average test
scores and simple demographic breakdowns (percent Black, percent economically disadvantaged
and the like), larger datasets, because of statutory and administrative factors, include interactions
between these variables (such as average test scores for particular subgroups of students). In that
sense, these new variables do not provide any new information that would not be available in a
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student-level dataset. However, as mentioned, researchers may be interested in these interactions,
and want to include them in their models, as the approaches that will be presented here allow. In
addition, in some cases even student-level data, without interactions between variables, contain
enough variables to stymie a regression when the sample size is small or moderate. This is all
to say that the question of high-dimensional data is not only a result of researchers’ reliance on
school-level data, but also must be addressed when student-level data are available. Chapter 5 of
this report addresses an example in which this is the case.

This paper follows a long tradition in statistics of modeling observational data as emerging from
a hypothetical and unobserved—but hopefully reconstructible—block-randomized experiment (see
Rubin, 1977, 2008; Rosenbaum, 2010). That is, similar subjects were grouped into strata, and a
randomly-selected subset of each stratum was assigned to treatment. Of course, this model is not
literally true, in the sense that such a deliberate randomization did not take place; that being said,
it may be quite useful (á la Box and Draper 1987). In particular, if treatment status is a random
function of observed variables (”selection on observables,” Heckman and Robb 1985) then this
experimental modeling approach is likely to yield nearly unbiased estimates of treatment effects
under a lucid and transparent framework. Further, this approach comes with natural extensions that
relax the selection-on-observables assumption (eg Rosenbaum, 1987; Hosman et al., 2010).

Under this model, the central challenge in an observational study is to reconstruct the design of
the block-randomization; that is, to reconstruct the strata. When treatment assignment depends on
one observed covariate x, reconstructed strata will also depend on that covariate (Rubin, 1977). In
other words, an analyst would assume that subjects with similar values of x were placed in the same
stratum, and that treatment was randomized within these strata.

When treatment assignment may have been a function of several “assignment” covariates, the
curse of dimensionality makes direct stratification very difficult, or impossible. In such situations,
analysts can attempt to reconstruct the hypothetical strata by estimating subjects’ propensity scores:
their respective probabilities of treatment, conditional on the assignment covariates (Rosenbaum
and Rubin, 1983b, 1984). Then, analysts would group subjects with similar estimated propensity
scores, and posit a block randomization within those strata.

Actual propensity scores, though, are estimates, and estimating propensity scores can be a
challenge. Conventionally, researchers will use logistic regression or a variant thereof (Rosenbaum,
2002d), modeling treatment assignment as a function of the covariates. A surfeit of covariates
can doom this modeling step, as well: the propensity score estimates lose stability as the number
of covariates grows relative to the number of observations, and becomes impossible when the
number of covariates is greater than the number of observations. This paper suggests an approach
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to overcoming this difficulty, based on one common multivariate statistical analysis technique:
principal components analysis (PCA).

Previously, the standard approach to causal inference with many covariates was theory-based
covariate selection: choosing a small number of covariates that substantive theory and prior knowl-
edge suggest to be important predictors of both treatment assignment and outcomes. In many
applications, this approach may be sufficient. In particular, if the researcher has, either because of a
robust, thorough and (sufficiently) correct theory or because of luck, chosen the correct subset of
covariates, a treatment-assignment or outcome model based on this subset will sufficiently eliminate
confounding bias. However, when a researcher is not entirely confident in his model, a method that
attempts to account for all available covariates may be attractive.

This chapter suggests beginning an analysis in the traditional way, with theory-based covariate
selection, but then augmenting the analysis with PCA-based multivariate techniques to account for
all of the available covariates.

3.1.1 Application: an Evaluation of the Agile Mind Algebra 1 Program

Agile Mind, a company founded in 2001, produces tools to help secondary science and mathematics
teachers achieve better outcomes, particularly for “at-risk” students. Among other products, AM
offers a suite of online tools to supplement middle and high school Algebra 1 curricula. These
include lesson planning guides for teachers, computer applets and animations for students and
tests and other assessments of the material. Schools individually choose to buy the AM program,
and within those schools math teachers are free to use AM as little or as much as they choose.
Importantly, the AM staff is able to observe the amount of time teachers and students at particular
schools use the online AM resources.

The Agile Mind company contracted with the Educational and Well Being (EWB) division
of the University of Michigan Institute for Social Research, to evaluate their Algebra 1 program;
EWB, in turn, hired this report’s author to perform the statistical analysis. This evaluation acts as
a motivation and an illustration of the methods proposed in this chapter. This chapter will model
AM Algebra 1 usage as a school-level intervention, and attempt to estimate the effect of high AM
Algebra 1 implementation on schools’ aggregated Algebra 1 end-of-course standardized test scores.
To define “high implementation,” we will exploit the AM staff’s data on online AM usage and
focus on estimating the effect of the online components of AM. A previous AM report (Correnti
et al., 2008) was unable to detect any effects; it did, however, discover that many schools which
had bought the AM curriculum did not contain any teachers who used it. In contradistinction,
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this chapter, pursuant to the AM staff’s request, will consider “treated” AM schools those schools
containing teachers who used the online AM tools for at least 70 hours over the course of a school
year. We will also consider only schools in Indiana and Texas. Section 3.4 will provide a more
complete description of the AM Algebra 1 program.

To conduct this causal estimation, we will use propensity score matching, using publicly-
available school-level covariates, which will be described in Section 3.5. However, there are merely
38 high and middle schools in Indiana and Texas which use AM to this extent, and thousands
of covariates, such as student demographics, several years of standardized test achievement mea-
sures, disaggregated into demographic groups, and school finances; hence, high dimensional causal
inference techniques will be necessary.

The small number of AM schools poses an additional problem, aside from the difficulty of
fitting a high-dimensional model: 38 schools may not provide enough power to detect a small effect.
However, rather than dismissing the data offhand, it may be profitable to attempt the best analysis
possible: is there information about AM to be gleaned from these data? Indeed, the multivariate
techniques that this chapter will advocate may improve standard errors as well as biases, by using
covariates to model some of the variance in the outcome. Even if the resulting standard errors are
not small enough to detect a small effect, they may still yield informative confidence intervals,
which will, in turn, limit the range of possible effects.

The following section will review the three principal techniques that form the basis of our
method: propensity score matching, prognostic scores, and principal component analysis. Section
3.3 will introduce the novel statistical methods, focusing on principal components analysis as the
main multivariate tool. Sections 3.4–3.6 will comprise the actual evaluation of AM: Section 3.4 will
provide some background for the analysis, Section 3.5 will describe the data in depth, and Section
3.6 will carry out the analysis. Section 3.7 will conclude.

3.2 Propensity Scores, Prognostic Scores, and Principal Com-
ponents: A Toolbox for Observational Causal Inference

This section will review three important methodological tools, each of which is useful in high-
dimensional propensity-score causal inference. No novel results are present in this section.
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3.2.1 Overview: Propensity-Score Matching

Recall the Rubin Causal Model (Section 1.1): each subject i has two potential outcomes, YCi and YTi:
subject i’s outcomes if he is untreated or treated, respectively; a treatment assignment Zi ∈ {0,1};
a vector of covariates Xi measured before treatment (or unaffected by treatment). Also recall that
when the treatment assignment mechanism is unknown, the following assumption, labeled in section
1.1 as (1.4) and called strong ignorability, aides causal inference:

{YCi,YTi} ⊥⊥ Zi|Xi. (3.1)

For subjects with identical values of Xi, potential outcomes are independent of treatment assignment,
and effect estimates comparing treated and untreated subjects are unconfounded.

There are experiments in which strong ignorability (1.4) is known to hold: experiments in which,
for reasons of feasibility or to improve estimates’ precision, researchers stratify random assignment
on a set of covariates. One approach to an observational study which assumes (1.4) is to model the
data as if they emerged from such an experiment, which researchers must then reconstruct (see,
eg. Rubin, 2008). That is, assume that within certain unknown groups of subjects, determined by
measured covariates, treatment was assigned randomly. The challenge, then, is to use the observed
relationships between X and Z to reconstruct those groups. This approach follows the reasoning in
Section 1.1.4: that the best way to analyze an observational study is by mimicking a randomized
experiment. The attempt to reconstruct this hypothetical experiment is the “design” stage of the
study, which is where most of the interesting work takes place: establishing and justifying an
identification strategy, and modeling the crucial relationship between X and Z. Outcome data and
causal estimates first appear in the analysis stage, after the modeling is done.

Given (1.4), the most straightforward approach to estimating average treatment effects τ̂ is to
match subjects exactly on all of the measured covariates X : that is, identify the level sets of X within
which (1.3)—independence of potential outcomes and treatment assignment—is assumed to hold.
However, with many covariates, this becomes difficult or impossible (Cochran, 1953).

Rosenbaum and Rubin (1983b) proposed a solution to the multivariate matching problem: the
propensity score. Define the subject i’s propensity score, πi as

πi(X) = Pr(Zi = 1|X). (3.2)

The propensity score is a dimension-reduction technique with an attractive property; conditioning
on π—one dimension—is equivalent to conditioning on multi-dimensional X . That is, if strong
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ignorability (1.4) holds, then
{YC,YT} ⊥⊥ Z|π(X). (3.3)

In the presence of heterogeneous treatment effects—when YT −YC is not constant—one may distin-
guish between the “average treatment effect,” E[YT −YC], and the average “effect of the treatment on
the treated,” (ETT) or E[YT −YC|Z = 1]. For unbiased estimation of the latter quantity, a somewhat
weaker form of (3.3) will suffice: YC ⊥⊥ Z|π(X); for the remainder of the paper we only assume this
weaker form, and attempt to estimate the effect of the treatment on the treated.

There are two practical steps that researchers must take in order to reconstruct a hypothetical
stratified randomized experiment using (3.3). Firstly, in observational studies, π(X) is unknown,
and must be estimated; secondly, in a finite sample exact propensity-score matches are generally
impossible, so approximate matching must suffice. Despite these practical issues, approximate
propensity-score-matching can often remove a large portion of the bias that would result from an
unadjusted causal comparison. To check the plausibility of the experimental model, after estimating
propensity scores and choosing a match, researchers can check the match for covariate balance. In
particular, the definition of propensity scores implies, analogously to (3.3), that

X ⊥⊥ Z|π. (3.4)

This suggests that testing covariate balance, stratified by propensity score matches, serves as a
diagnostic test. When covariates are balanced within matched sets, the data resemble data from a
stratified randomized experiment, which would also have this property.

Of course, to effectively match treated subjects to control subjects on the propensity score,
treated and control groups must have overlapping propensity-score distributions, leading to a second
assumption necessary for propensity-score analysis:

Assumption (Overlap).
∀ i 0 < πi < 1. (3.5)

There can be no subjects in the sample, with propensity scores of zero or one. If some such subjects
exist, they may be removed from the analysis; matching with “calipers” will be discussed below.

While propensity scores are a powerful dimension reduction technique, very high dimension can
still overwhelm them. Conventionally, propensity scores are estimated with a general linear model,
such as logistic regression or probit regression (Rosenbaum, 2002a). For this reason, estimating
propensity scores in a high-dimensional setting is itself a challenge; in particular, when there
are more covariates than treated or untreated subjects, it may be impossible to incorporate every
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covariate into a propensity score model.

Other Propensity Score Techniques

The approach to propensity score matching presented here—which is roughly equivalent to the
approach favored by its discoverers, Rubin (2008) and Rosenbaum (2002c)—is not the only way
propensity scores are used in the interdisciplinary causal inference literature. In particular, dif-
ferent academic disciplines tend to approach propensity score estimation differently. A thorough
discussion of propensity score methods, including an assessment of their respective strengths and
weaknesses, would be out of place here—some overviews are Heinze and Jüni (2011), Austin and
Mamdani (2006) and Heinrich et al. (2010)—but a brief mention of two popular alternatives is in
order.

The most straightforward use of propensity-scores would be to use them as weights in a weighted
average. This approach builds on ideas from survey sampling: if some subjects are sampled with a
higher probability than others, an unbiased estimate of population averages weights each subject by
the inverse of his probability of selection (Horvitz and Thompson, 1952). Similarly, the average
YT and YC values in a sample—and hence, the sample-average treatment effect—can be estimated
unbiasedly, in theory, by computing weighted averages, with the reciprocals of the propensity
scores serving as weights. This inverse-probability weighting approach is relatively popular in
epidemiology, and has been developed extensively by Robins (e.g. Hernán and Robins, 2006)
who has suggested combining propensity score weighting and linear regression in “doubly-robust”
estimators (Bang and Robins, 2005). These strategies suffer from two weaknesses: first, they depend
on correct estimation of propensity scores; in contrast, it is not hard to imagine how, in the method
preferred here, propensity scores could be estimated incorrectly, yet produce a reasonable matched
design that would lead to approximately unbiased estimates. Such a case would arise, for instance,
if the estimated propensity scores were, in expectation, a monotonic transformation f of the true
propensity scores, E π̂ = f (π). Secondly, these methods lack the advantages of models that seek to
mimic randomized experiments: the objectivity that comes with a clear division between design
and analysis, small-sample robustness and transparency.

Another set of methods, more common in economics, bears more similarity to the methods
discussed here. Smith and Todd (2005) and Heckman et al. (1998) suggest kernel-weighted match-
ing estimators, in which researchers match treated subjects to (possibly overlapping) groups of
untreated subjects, weighted by their distances to the treated subjects in propensity scores. This
can be expressed as a kernel-weighted local linear regression. This has the advantage, over the
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method here, of accounting for differing levels of similarity between treated and untreated subjects
within matched sets. Similar to inverse-probability weighting approaches, but unlike approaches
that attempt to mimic randomized experiments, weighted-matching estimators may not be robust
for small-samples, and lack the degree of transparency that accompanies the ability to enumerate
the members of matched sets. See Section 1.1.4, above, for more details.

3.2.2 Overview: Principal Components Analysis

The problem of very high dimensional datasets calls for an additional dimension reduction technique.
One of the most popular and oldest of these is principal components analysis. PCA can be thought
of as the solution to a linear algebraic optimization problem. Let Xn×p be a (covariate) matrix, in
which each column (covariate) has been studentized: transformed so that its sample mean is zero
and its sample variance is one. Then the first principal component is Xu1, with u1 defined as

u1 = argmax
u:u′u=1

u′X ′Xu. (3.6)

If X is a matrix of n samples of p covariates, each with mean 0, then X ′X is the sample covariance
matrix of X . Similarly, u′X ′Xu is the variance of a linear combination of the covariates in X ,
with coefficients u. The first principal component Xu1 represents the linear combination with the
maximum variance. If variance is considered as a proxy for information, then Xu1

i is the linear
combination of covariates providing the maximal information about subject i.

Similarly, higher principal component coefficients uk are defined as

uk = argmax
u:u′u=1,u′ui=0,i<k

u′X ′Xu (3.7)

This is the linear combination of variables in X with maximal variance with coefficients orthogonal
to the coefficients in all the previous principal components. For the right choice of K, informa-
tion from a high-dimensional dataset can often be effectively summarized in the first K principal
components.

Expressions (3.6) and (3.7) turn out to be eigen-value problems. That is, u1, ...,umax{n,p} are the
eigenvectors of X ′X ordered according to the magnitude of their corresponding eigenvalues. Then
the objective equation u′X ′Xu = λ 2u′u = λ 2.

In high-dimensional datasets, and, in particular, when p >> n, a computationally-efficient
method of solving equations (3.6) and (3.7) is the singular-value decomposition (SVD) (Mandel,

40



1982): any matrix Xn×p, with rank r, can be decomposed as

X ′ =USV ′ (3.8)

where Un×r and Vp×r are orthogonal, and Sr×r is diagonal. Following (3.8),

X ′X =USV ′V SU ′

=US2U ′.

Then (3.6) becomes
u′X ′Xu = u′US2U ′u

with U orthogonal.
As mentioned, the vectors uk are eigenvectors of X ′X =US2U ′. It turns out that the eigenvectors

uk are the columns of U, U1, ...,Un. To see this, consider,

US2U ′Uk =Usk (where sk is a vector with S2
k,k in the kth place and 0s elsewhere)

=UkS2
k,k.

Therefore, the principal components uk are actually the columns of U , Uk, and the corresponding
eigenvalues are the squared “singular values,” the diagonal entries of S.

The singular values themselves contain useful information about the structure of the dataset.
If X ′X is the empirical covariance matrix of the set of covariates in X , then the diagonal entries
of X ′X are the sample variances of its component covariates. The sum of these variances is the
trace of X ′X , which is also equal to the sum of its eigenvalues, the squared singular values S2. Each
squared singular value, divided by the sum of S2, can be thought of as the proportion of X’s total
variance that can be attributed to that singular value’s eigenvector. Often, a large proportion of a
matrix’s variance can be attributed to a relatively small number of principal components: this is the
case, for instance, if the variables in X are highly correlated with each other. In such a case, one
compound variable can capture much of the information in several separate highly collinear raw
variables. By plotting the singular values in order, an analyst can check to see if this is the case: if it
is, the singular values will decrease rapidly before leveling out near zero.

In such situations, PCA can be a useful dimension-reduction technique. By focusing on the
first K principal components and discarding the rest, an analyst can capture a large proportion
of the information in a dataset in few dimensions. This has implications for causal inference in
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high-dimensional data: if the covariate matrix X could be effectively summarized in a much smaller
matrix of principal components, the problem of high-dimensional data would be mostly solved.
How to choose which principal components to use, and how to incorporate them into a matching
scheme, are not trivial questions; prognostic scoring, an analogue to propensity scoring, may be an
important part of the solution.

3.2.3 Overview: Prognostic Scores and Principal Components Regression

Strong ignorability asserts that, conditional on X , treatment assignment Z and potential outcomes
{YC,YT} are independent. In order for a potential confounder W to cause a violation of strong
ignorability, and to induce a dependence between Z and {YC,YT}, W must share a dependence with
both Z and {YC,YT}.

Propensity scores are attempts to model the first of these possible dependences, between covari-
ates X and Z, and, indeed, under strong ignorability, at level sets of propensity scores, {YC,YT}and
Z are independent, as in equation (3.3).

Alternatively, analysts can model the possible relationship between X and YC, and estimate
“prognostic scores” (Hansen, 2008b).1 In the same sense that propensity scores capture the rela-
tionship between covariates X and treatment assignment Z, prognostic scores ψ(X) capture the
relationship between X and control potential outcomes YC. More precisely, ψ(X) is a prognostic
score if

YC ⊥⊥ X |ψ(X) (3.9)

that is, ψ(X) captures all of the information X holds about YC; it is, in this sense, a sufficient statistic.
Conceptually, ψ(X) can be thought of as a prediction of YC given X .

In practice, analysts can estimate ψ(X) by modeling YC as a function of X , often using linear
regression. In a case in which the number of covariates p is much greater than the sample size n,
ordinary least squares (OLS) is impossible; fortunately, there is a range of options for predicting a
continuous response as a function of covariates when p >> n. One of these methods is principal
components regression.

After computing the principal components of X , an analyst can construct a matrix of k principal
components, Uk, and treat them as regressors, in the regression model

YC = α +UkβPCR + εC (3.10)

1As mentioned above, we will focus on confounding with YC, and not YT , and attempt to estimate the ETT.
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Figure 3.1 A possible pitfall of prognostic-score matching: If prognostic model (3.10) is fit to the control
sample but not to the treated sample, overfitting can cause spurious prognostic-score differences between
treated and untreated subjects. Here, 100 “treated” and 100 “untreated” observations Y were drawn from the
same standard normal distribution, as were 50 “covariates,” which were, in fact, independent of both Z and Y .
An OLS model Y ∼ X was fit to the control set. The fitted values in the control set were plotted against the
model’s predictions in the treated set: in some regions, significant differences in prognostic scores between
treated and untreated observations appear, even though all observations were independent and identically
distributed. Overfitting is to blame.

where α is a fixed intercept term and εC is a vector of mean-0 errors, observed under the control
condition. Predictions from this regression, ŶC, can serve as estimates of prognostic scores ψ(X).2

If ŶC is balanced, within matched sets, then it is unlikely that variables in X are confounding the
causal estimate: the values of YC one would have predicted, based on X , are approximately equal in
treated and untreated subjects.

One potential pitfall of prognostic score-matching—analyzed in Hansen (2008b)—is avoidable
in this context. If model (3.10) is fit to the entire dataset, including both treated and untreated sub-
jects, then the fitted values are not necessarily predictive of YC. When treated subjects are included
in the model fit, the fitted values can depend on treatment assignment; therefore, conditioning on
them can bias the causal estimate.

Alternatively, a statistician can fit model (3.10) to only the untreated sample. However, this

2Unlike propensity scores, prognostic scores may be multidimensional (Hosman, 2011); here, however, we will
consider one-dimensional estimates of ψ(X).
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leads to another, more subtle problem: due to inevitable overfitting, the model will fit the data in
the untreated sample more closely than in the treated sample. This is illustrated in a toy example
in Figure 3.1. In the example, there are 100 treated and 100 untreated subjects. Each subject has
a vector xi of p = 50 covariates, which are mutually independent and generated from a standard
normal distribution; together, they form matrix X . The outcome Y is also generated from a standard
normal distribution, and independent of both X and treatment assignment. The upper plot in Figure
3.1 plots Y against prognostic scores Ŷ : fitted values from regressing Y on X . Even though Y is
independent of X , the least squares algorithm produced a fit with an impressive within-sample
prediction: the coefficient of determination R2 = 0.51. However, this is not due to any inherent
pattern in the data, but is the result of overfitting. This can be seen by inspecting the bottom plot of
Figure 3.1 which plots prognostic scores—predictions from the same model—in the treated group
against actual values of Y —there is no apparent relationship, and R2 = 0.0002. While overall the
fitted values have the same population mean in the treated and control groups—zero—if one were to
compare the fitted values between treated and control subjects in some subsets of the data spurious
treatment-control differences would appear. Even though the data from the treatment and control
groups were drawn from the same distribution, prognostic score overfitting here would lead an
analyst to reject a comparison of the groups.

One way to avoid this potential pitfall is to set aside a portion of the dataset to fit the prognostic
model, and use the remainder of the dataset to estimate treatment effects. In that case, rather than
a comparison of within-sample fitted values in the control group to out-of-sample predictions in
the treated group, the comparison would be between out-of-sample predictions in both groups. In
general, this approach is unappealing because discarding data may reduce the power of a hypothesis
test and widen confidence intervals. However, the following section will show that when combining
prognostic score modeling with propensity score matching, a subset of the control group that can be
used to fit prognostic models emerges naturally.

3.3 Combining Principal Components with Propensity Scores:
Matching, Evaluating and Estimating

A propensity-score analysis involves three stages: estimating and matching on the propensity scores,
evaluating the match and analyzing the outcome. When p >> n, PCA has a role to play in each
of those steps: principal components can be included as variables in a propensity-score model,
a prognostic model based on principal components regression can be used to test the success of
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the propensity-score match, and principal components regression can be used to adjust final effect
estimates.

3.3.1 Estimating Propensity Scores

We will focus on propensity-score estimation based on logistic regression. Let logit(Z) be the
log-odds a subject is assigned to treatment, and let W1, ...,Wk be potential pre-treatment predictors
of treatment assignment. Then we fit the model

logit(Z) = αP +βP1W1 + ....+βPkWk =WβP (3.11)

where αP and βP are parameters of the propensity model; without subscripts, W should be inter-
preted as an n× (k+ 1), with the first column a vector of ones, and βP a vector of coefficients
{αP,βP1, ...,βPk}. The vector βP is estimated as β̂P, yielding fitted values, or linear predictors

p̂lin =W β̂P. (3.12)

When the number of predictors k meets or exceeds the number of treated or untreated subjects,
a classical logistic model will find a separating hyperplane—i.e. a vector of estimated coefficients
β̂P, such that there is no overlap between the linear predictors p̂lin for the treatment and control
groups (Hastie et al., 2005). Such a model predicts treatment status perfectly, but only within the
sample used to fit the model. This only seemingly violates the overlap assumption (3.5) and is really
a symptom of overfitting, not (necessarily) a property of the underlying covariate distribution: even
a set of n randomly-generated covariates, independent of Z, would yield a perfect model.

A bayesian approach to logistic regression relaxes this property somewhat (Gelman et al., 2008);
if weakly-informative priors on β encourage β̂ to fall close to zero, it is harder to generate a sepa-
rating hyperplane. With very small treatment or control groups, using bayesian logistic regression
allows some extra leeway (Kleyman, 2009).

To estimate propensity scores when the total covariate matrix X has very high dimension, one
could use substantive knowledge to choose a set of variables W—whose size depends on the sample
size—which have the largest potential to confound a causal analysis. In the AM example, as
following sections will discuss in detail, one could use student demographics, pretreatment exam
passing rates, and, perhaps, school characteristics such as the size of the school. These variables,
socioeconomic status, ethnicity, and prior performance, are the most likely confounders in an
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educational causal analysis.
But what of the rest of the variables? PCA constructs small-dimensional summaries of the

matrix of covariates: including one or a few of these summaries in the propensity score model would
allow some information from the covariates that were not already included in the match to play a
role. The strategy, then, would be to include some principal components as columns in the matrix W

in the propensity-score model (3.11). The number of principal components may be chosen based on
the constraints of the data: more components are preferable, so long as model (3.11) converges and
does not produce degenerate fitted values. Further, analysts can choose the number of components
by inspecting the properties of various fitted models and the matches that result from them, the
same criteria by which other propensity model specification choices are judged.

But which principal components should be included? The goal, of course, is to satisfy (3.3):
to assure that, within level sets of π̂ , treatment assignment is independent of potential outcomes.
Equation (3.3) will hold if π predicts either Z or the potential outcomes YC and YT ; it follows that
the most important components to include are those that most highly correlate with the observed
outcomes (see Steiner et al., 2010). This, however, raises a dilemma: conditioning a causal esti-
mate on covariates that may, themselves, be effects of treatment assignment can induce “included
variable bias” (Rosenbaum, 1984; Ayres, 2005); in other words, all adjustment covariates must be
pre-treatment. So how does one determine which principal components most highly correlate with
potential outcomes? Estimating the correlation between each of the principal components and all
of the measured outcomes would induce included variable bias. On the other hand, if an analyst
estimates correlations between the principal components and YC scores—that is, using only data
from the control group—the resulting bias is likely to be small or non-existent.3 An analyst can
include information from the entire covariate matrix X in the propensity-score model by including
the few principal components that correlate, in the control group, most highly with Y .

3The bias that results from this maneuver may not be exactly zero; although the treatment itself did not affect the
outcomes in this calculation, treatment assignment determined which outcomes to include in the calculation. However,
since the choice of which components to use is a discrete choice, it is likely that, under alternative treatment assignments,
the choice would remain the same. Even if that is not the case in a particular analysis, and a component is included
in the logit model (3.11) that would not have been included under alternative treatment assignments, that component
would have to substantially influence the propensity-score estimation in order to substantially bias the outcome. This
procedure, therefore, seems more likely to reduce bias—by including information from more, and more important,
variables in the propensity-score estimation—than to increase it.
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3.3.2 Evaluating the Match

The ignorability assumption mathematically implies equation (3.3); however, a practical propensity
score analysis is less straightforward. In virtually every propensity score study, the propensity
scores π themselves must be estimated as π̂ . Furthermore, in a finite sample, no treated or untreated
subjects will have precisely the same estimated propensity score, so conditioning on π̂ must be
approximate. Specifically, in a propensity-score matching design, a statistician assumes that

Assumption (Matched Ignorability). Subjects i and j are in the same matched set implies that
πi = π j, so that

YC ⊥⊥ Z|m(π̂) (3.13)

where m(π̂) represents the matched sets based on estimated propensity scores π̂ .
One compelling approach to assessing the accuracy of these two approximations is to check

that equation (3.4) holds. In particular, an analyst can test whether, within matched sets, the means
of pre-treatment covariates are equal between the untreated and treated subjects (Rosenbaum and
Rubin, 1984). The logic behind this approach is that if there is evidence for imbalance—the means
of a covariate are unequal between treated and untreated observations in a matched set—then
matched ignorability is unlikely to hold, especially if the imbalanced covariates correlate with
YC or YT . Conversely, if covariates are balanced, then the most straightforward confounding, in
which monotonic relationships between Z and X , and X and YC or YT bias the causal estimate, is
impossible (however, more subtle types of confounding, involving non-monotonic relationships or
interactions, are still possible).

When the observed covariate matrix X is high dimensional, there is an additional layer of
separation between (3.3) and an applied analysis: only a subset of available pre-treatment covariates
contributed to the match. A strong analysis, however, would attempt to gauge the plausibility of
bias resulting from this omission.

After matching on a propensity score π̂ , an analyst can use estimated prognostic scores ŶC

to check if the matching scheme effectively balanced not just the subset of variables used in the
propensity score model (3.11), but the entire covariate matrix X . In other words, he can fit a
prognostic model to the entire set of pre-treatment covariates X and the outcome Y , and check if
there is imbalance between the predictions of the prognostic model in the control and treatment
groups. Recall that prognostic modeling can suffer from a pitfall if the model is fit using data from
either the whole sample or just the control sample. In particular, if the prognostic model is fit using
data from the control group, then overfitting can cause spurious differences to appear between the
groups, even if no actual difference exists—this is illustrated in Figure 3.1.

47



In this case, however, a solution to the overfitting problem may emerge naturally from the
data setup. Often, a propensity match will involve the use of calipers: only control subjects with
propensity scores within a pre-specified distance from treated subjects are included as candidates for
a match. Calipers prevent a matching routine from matching two subjects who are wildly different,
in an over-zealous attempt to use the entire dataset in the estimating procedure; it sacrifices the
power that would come from using the entire dataset to mitigate the bias that would result from
unrealistic matches. The use of calipers in constructing propensity-score matches causes a portion of
the data—often a sizable number of control subjects—to be discarded from the analysis, and hence
solves the overfitting problem that potentially plagues prognostic scores. Furthermore, marginal
returns to power and efficiency diminish as match sizes grow; in particular, the gains in efficiency
from adding more untreated subjects to a matched set that already includes five or so untreated
subjects are modest. For the sake of simplicity, as well as for other reasons, researchers may want
to limit the sizes of their matched sets; this adds more subjects to the pool of discarded controls.
If a prognostic score model is fit to the discarded portion of the dataset, then its predictions suffer
from overfitting in neither the treatment group nor the matched-controls.

In other words, the propensity score matching routine with calipers divides the dataset into
three groups: the treatment group, the control subjects that are matched to treatment subjects,
and the control subjects which are not included in the match due to their dissimilarity with the
treated subjects or their superfluousness. The prognostic model would be fit in this third group. A
balance test could then compare the model’s predictions in the treated group to its predictions in the
matched-control group; both of theses sets of predictions would be “out of box”—that is, using data
that was not involved in the fitting procedure—so overfitting would not be present.

If a prediction algorithm based on pre-treatment covariates predicts no difference in YC values
between the control and treatment groups, the potential bias that may result from these covariates
must be severely limited in scope. Of course, this depends on the quality of the prognostic fit, which
may be measured in mean-squared-error (MSE), E(YC− ŶC)

2. This can be estimated with cross-
validation within the unmatched control subjects. However, it may be the case that MSE estimates
from cross-validation are biased downwards, because the matched controls are not representative of
the entire control population. Nevertheless, balanced prognostic scores present valuable evidence
against confounding from any of the measured covariates. This issue is discussed more fully in the
following chapter.

When p >> n, prognostic scores become particularly valuable in the evaluation of a propensity-
score match. Since the propensity score model (3.11) can only include a small subset of measured
covariates, there is a potential for substantial confounding from the rest of the covariates not included
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in W . However, prognostic score estimation is not as severely limited: prognostic scores may be
estimated using high-dimensional prediction techniques such as principal components regression.4

Then, principal-components regression and prognostic scores strengthen the believability of a
propensity-score design in a high-dimensional dataset.

3.3.3 Estimating Effects with Propensity and Prognostic Scores: A Peters-
Belson Approach

Even if imbalance in prognostic scores between treatment and control subjects is statistically unde-
tectable, it will generally be non-zero. In this case, an additional bias-correcting step may be useful.
Following Peters (1941) and Belson (1956), decompose each observed outcome Yi into the portion
predicted by the prognostic model and prediction error:

YC = ŶC + eC (3.14)

and
YT = ŶC + eT = ŶC + eC + τ (3.15)

where eC and eT represent prediction errors and τ is a vector of possible treatment effects. Prog-
nostic predictions ŶC are pre-treatment, in the sense that they are functions only of pre-treatment
covariates and outcomes from un-treated subjects not involved in the assumed pseudo-experiment.
That being the case, treatment assignment could not affect ŶC; any effect of treatment must be
entirely present in the difference between prediction errors eC and eT . Hence, we may write, as
in (3.15), τ = eT − eC. Therefore, causal estimation may be based only on the values eC; in other
words, instead of treating Y as the dependent variable, researchers may treat e = ZeT +(1−Z)eC

as the dependent variable.
Replacing Y with e in the outcome analysis may reduce both the bias and the variance of a

resulting estimate. Indeed, doing so replaces the ignorability-after-matching assumption (3.13) with
the following:

Assumption (Adjusted Ignorability).

eC = YC− ŶC ⊥⊥ Z|m(π̂) (3.16)

4More modern techniques, such as the LASSO, may perform as well or better than PCR in some cases; this
possibility will be discussed in Chapter 4.
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In other words, the potential prediction residuals, not the actual potential outcomes, must be
independent of Z. This assumption is somewhat weaker than (3.13), in a sense described below.

The Peters-Belson-propensity ETT estimate is

τ̂PBP = ∑
m

wm

(
e′mZm

1′Zm
− e′m(1−Zm)

1′(1−Zm)

)
(3.17)

where m = 1, ...,M indexes the matched sets, em and Zm are vectors of prognostic residuals and
treatment status for subjects in set m, and 1 is a vector of 1s. Strata weights wm may be chosen
flexibly, in such a way that they sum to one; when wm = nm/n, with nm the size of matched-set m,
then τ̂PBP reduces to a simple difference in means between treated and untreated subjects (in such
cases, the impact of the propensity score matching on the estimate would come from selecting a
subset of controls from a larger control pool that are similar to the treated subjects). Generally, τ̂PBP

is an average of the average differences between treatment and control subjects within each matched
set.

For the following, it will be convenient to replace (3.10) with a more general form,

YC = f (X)+ εC (3.18)

for some function f .
Under strong ignorability, in addition to certain known, though perhaps idealized, conditions,

conducting analysis on prediction residuals rather than on outcomes—that is, replacing Y with
e—leads to an attractive property, which we will call “double unbiasedness.” This condition states
that if either the prognostic model or the propensity-score match is correct, then the resulting
estimate of the average effect of the treatment on the treated will be unbiased. Double-unbiasedness
is analogous to “double-robustness” (Bang and Robins, 2005; Neugebauer and van der Laan, 2005),
the property of some estimators that combine an outcome regression with propensity scores: if either
an outcome model or a propensity-score model is valid, the resulting estimate will be consistent. As
its name suggests, double-unbiasedness suggests conditions under which τ̂PBP will be unbiased; it
does not refer to consistency.

Double unbiasedness holds for Peters-Belson propensity modeling if the method for estimating
f (X) in (3.18) is unbiased. It is also necessary to choose wm in such a way so that wm = Pr(M = m),
the probability of an observation falling in matched-set m. This is dependent on the sampling and
conditioning model chosen by the researcher; in general, a reasonable choice is wm = nm/n, so
wm = Pr(M = m) is the proportion of all the subjects in set m.
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Proposition 2. If strong ignorability (1.4) holds, and if, in addition, either

1. YC = f (X)+ εC, with {YC,X} ⊥⊥ εC (the prognostic model is correct) or

2. i, j ∈ m⇒ πi = π j (the propensity-score match is correct)

and f (X) is estimated as Ŷ = f̂ (X), from a separate, independent sample, with E[ f̂ (X)|X ] = f (X),

then

E τ̂PBP = τET T (3.19)

where τET T is the ETT, E[YT −YC|Z = 1].

Proof. Assume the prognostic model is correct. Then we will show first that E[eC|Z] = EeC, i.e.
that eC is mean-independent of Z, and then that τ̂PBP is unbiased for the ETT. Since f̂ was estimated
unbiasedly from a separate, independent sample, E[eC|X ] = EeC:

E[eC|X ] = E[ f̂ (X)− f (X)|X ]+E[ε|X ]

= E[ f̂ (X)− f (X)|X ]+EeC = EeC

Due to ignorability (1.4), eC ⊥⊥ Z|X (since X ⊥⊥ Z|X trivially and eC is a function of YC and X). Then

E[eC|Z] = EE[eC|Z,X ] = E[eC|X ] = E[eC]

So eC is mean-independent of Z. The prediction error eT is observed for the treatment group, for
which Z = 1. For subject i let eTi = eCi + τi. The treatment effect τi can be negative, positive or
zero, and can vary between subjects. Let constants nT m = 1′Z and nCm = 1′(1−Z) be the numbers
of subjects in the treatment and control groups of each matched set m. Finally, denote by eCm and
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τm the vector of eCi and τCi in each matched set m. Then

E τ̂PBP = E∑wm

(
(eCm + τm)

′Z
nT m

−
e′Cm(1−Z)

nCm

)
= ∑wm

(
E(eCm + τm)

′Z
nT m

−
Ee′Cm(1−Z)

nCm

)
= ∑wm(E[eC|Z = 1,m]−E[eC|Z = 0,m]+E[τ|Z = 1,m])

= E
m
(E[eC|Z = 1,m]−E[eC|Z = 0,m]+E[τ|Z = 1,m]) for correctly chosen wm

= E[eC|Z = 1]−E[eC|Z = 0]+E[τ|Z = 1] by smoothing

= EeC−EeC +E[τ|Z = 1] since eC is mean-independent of Z

= E[τ|Z = 1]

Which is the ETT. The other direction is simpler: if i, j ∈ m⇒ πi = π j, then eC ⊥⊥ Z|m(π̂) as well,
since eC = YC− ŶC and ŶC ⊥⊥ Z|m(π̂) since ŶC is a function of independent YC values and X , which
is independent of Z given π by (3.4).

Proposition 2 motivates the combination of Peters-Belson adjustment and propensity-score
matching; however, generally, neither the propensity-score matches nor the prognostic model will
be entirely correct. Indeed, when p >> n, unbiased estimation of f (X) in (3.18) may be impossible.
However, Proposition 2 may indicate that if either model is somewhat close to the truth, then τ̂PBP

will be approximately unbiased.
Indeed, this intuition may be made more precise. As a first step, it is possible to construct a

bound on the squared bias of a Peters-Belson estimate, given the prognostic model’s prediction
mean-squared-error (MSE) E(YC− ŶC)

2. The intuition behind this approach is that the more accu-
rately the prognostic model predicts YC values, the more accurate, and hence unbiased, the resulting
ETT estimate will be. Without propensity-score stratification, a Peters-Belson ETT estimate is

τPB = ēT − ēC = τ̄Z=1 + ēCZ=1− ēCZ=0

where ēCZ=0 is the sample mean of the prognostic model’s error in predicting YC among subjects
for whom Z = 0; other sample means above are defined analogously. Since τ̄Z=1 is unbiased for the
ETT, the bias of τPB is the expected difference between average prognostic estimation error in the
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treatment group and in the control group. If we assume that E[ēCZ=1ēCZ=0]≥ 0, then

bias(τPB)
2 =(E(ēCZ=1− ēCZ=0))

2

≤ E(ēCZ=1− ēCZ=0)
2 by Jensen’s inequality

= E[ēC
2
Z=1 + ēC

2
Z=0−2ēCZ=1ēCZ=0]

≤ E[ēC
2
Z=1]+E[ēC

2
Z=0]

≤ E[e2
C|Z = 1]+E[e2

C|Z = 0]

= E[(YC− ŶC)
2|Z = 1]+E[(YC− ŶC)

2|Z = 0] (3.20)

which is the sum of the MSE for the treated subjects and the MSE for the control group. As
noted, this does not account for propensity-score stratification, and may be considerably tightened.
However, it suggests that for prognostic models with low prediction MSE, the bias of τ̂PBP may be
small, even if neither the prognostic nor propensity models is entirely correct.

Peters-Belson adjustment may also improve the estimated ETT’s standard error, as well as its
bias. In many applications, a large proportion of the variance in YC can be explained by covariates
X . In such cases, the residuals e from the prognostic models may be more stable than the outcomes
themselves, so treating e as the outcome will lead to higher power. This is, at least informally,
testable: using cross-validation, researchers can estimate the prediction R2 of a prognostic model
in the set of unmatched schools. A high cross-validated R2 indicates substantial standard-error
improvements from Peters-Belson covariance adjustment. This parallels the covariance adjustment
suggested in Rosenbaum (2002c) and in Hansen and Bowers (2009).

3.4 Evaluating Agile Mind: Background

3.4.1 The Agile Mind Algebra 1 Program

Agile Mind, Inc. (AM) is a company based in Austin, TX, whose stated goal “is to provide the
programs, the tools, and the instructional improvement systems you need to transform student
engagement and achievement through exemplary, sustainable teaching.”5 In collaboration with
education researchers at the Charles A. Dana center at the University of Texas, they have created sets
of tools for nine courses: Biology, Middle School Math, Algebra 1, Intensified Algebra, Algebra

5 Agile Mind website: http://www.agilemind.com. Accessed: 1 July, 2013.
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2, Geometry, Pre-calculus, Advanced Placement Calculus and Advance Placement Statistics. In
addition, they provide a program called “Academic Youth Development,” which is not tied to
any particular school course. These services are meant to supplement, not replace, the standard
curriculum in Texas and Indiana schools. That said, they are designed to cover the state standards
in these states; however, since the program is identical in the two states, the services cannot be
precisely aligned with state standards.

The details of the AM Algebra 1 program have been thoroughly described in a report by Correnti
et al. (2008), and on the AM website;5 in addition, there are various other sources of information
currently available on the internet, including a demonstration video,6 an Institute of Education
Sciences “Small Business Innovation Research Success Stories” press release7 and a qualitative
evaluation from the Indiana Department of Education “Indiana Education Roundtable” along with
the Charles A. Dana Center at the University of Texas, Austin.8 Like Correnti et al. (2008), this
report will focus on the AM Algebra 1 program.

The AM programs have roughly two parts: a set of online “high-tech” tools, and face-to-face
“high-touch” services. The “high-touch” tools include a two-day seminar for teachers beginning to
use AM, seminars for administrators and district leaders, customized individual or school-based
mentoring, and an AM guidebook.

The online tools attempt to teach students to “use algebraic tools to represent problem situa-
tions,”5 understand functions and rate of change, and model problems with linear, quadratic and
exponential functions. The set of tools includes course content and assessments for students as well
as planning tools and professional development for teachers. The course content is composed of
“animations, simulations, in-depth exploration and practice.”5 The assessments include multiple-
choice options, to prepare students for standardized tests, and are graded in real time, providing
students with immediate feedback and teachers with guidance on student understanding. The online
planning tools for teachers include “customizable lesson plans, teaching tips, and research-based
strategies for improving student performance”5 which are aligned with state standards.

In particular, teachers have access to topic overviews and animations or applets to use in group
instruction, topic summaries, guided assessments, self tests and multiple choice tests for assessments
and planning tools (Correnti et al., 2008). The planning tools include help topics called “planning
the course,” “scope and sequence,” “goals and objectives,” “topics at a glance,” “prerequisite skills”
and “language support,” along with activity sheets.6 According to Correnti et al. (2008), teachers

6http://http://www.youtube.com/watch?v=FNe8VjMmuOo. Accessed: 1 July, 2013
7http://ies.ed.gov/sbir/agile.asp. Accessed: 1 July, 2013
8http://www.doe.in.gov/sites/default/files/curriculum/agilemindalgebrai1.pdf,

Accessed: 1 July, 2013
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tend to spend almost three quarters of their AM time on the overviews and animations—the direct
instructional resources—and most of the remainder on assessment resources, though the proportion
of time spent on assessment tends to increase with each additional school year teachers spend
using AM. Students, on the other hand, spent most of their time on assessment functions, and the
remainder on the animations and applets (students, of course, do not have access to teacher planning
functions). Correnti et al. (2008) does not present any evidence that within an AM classroom,
certain types of students (for instance, low- or high-performing students) used AM more than others.

3.4.2 Defining The Agile Mind Algebra 1 Treatment

The definition of AM implementation—what it means to be “treated”—was determined by the
AM staff, who requested the analysis, and this was the treatment information that they provided.
Correnti et al. (2008) found a high level of variability in teachers’ use of AM Algebra 1 services; in
particular, that report divided Texas schools into three categories, high, medium and low, based on a
teacher-level score composed of four factors: “the count of number of curricular topics teachers used,
the average number of minutes teachers spent per curriculum topic, the logarithmic transformation
of the total number of minutes teachers used AM services of all kinds, and the maximum percent of
time teachers spent on a single curricular topic” (Correnti et al., 2008). Each school’s implementa-
tion index was aggregated from its teachers’ scores. First year AM teachers in low-implementing
schools used online AM functions for about three hours over the course of a school year on average;
first year AM teachers in high-implementing schools used these functions for about twenty-five
hours. Correnti et al. (2008) attempted to measure the effect of AM Algebra 1 usage using “high
implementation” classification as its treatment measure, and failed to detect an effect.

Perhaps in reaction to this result, the AM staff decided to commission an evaluation using a
somewhat more stringent measure of usage: treated schools were those that employed a teacher
who used AM online tools for at least 70 hours over the course of an academic year. AM provided
the research team with a list of schools in Texas and Indiana which met this criterion, and requested
that this list be considered the list of “treated” schools. To be sure, there are some statistical and
substantive issues with this definition, mostly because the motivation for the choice of 70 hours
as a cutoff is unclear. Nevertheless, these were the data that the research team had at its disposal,
reflecting the wishes of the AM corporation which commissioned the study; it is with this definition
that this report will proceed.
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3.4.3 Selection into the Agile Mind Treatment

There are two levels of selection involved in our AM analysis: some schools buy the AM curriculum,
and some teachers within those schools tend to use it. For the purposes of this study, we conflate
those two into a binary variable that divides schools into those which use AM extensively and those
which do not. Extensive use here means that a school contains a teacher who uses AM for at least
70 hours over the course of a school year. This selection mechanism, then, seems to hinge more on
individual teachers’ teaching decisions than on administrative decisions, since a small percentage of
schools which have bought AM are classified as extensive users.

Unfortunately, we do not have direct information as to how those decisions are made; such
data would be difficult to collect and even more difficult to interpret.9 However, certain aspects
of the design of the AM program suggest some of the factors in its uptake. One of the principal
aims of the AM program is educational “equity”;5 this suggests an emphasis on under-served
student populations. Indeed, the AM website trumpets its emergence from research on under-served
students:

The design of the Agile Mind AP support system builds on the work of Philip Uri
Treisman, professor of mathematics and of public affairs at The University of Texas at
Austin and executive director of the Charles A. Dana Center. In particular, it draws on
his early research at the University of California at Berkeley investigating the factors
that support minority student high achievement in calculus.

The website further states “Our work builds on Dana Center studies of high-performing, high-
poverty schools.”5 These stated aims and design factors suggest that school level variables, such as
ethnic makeup and socioeconomic status, could be important predictors of school-level selection
into treatment.

To be sure, it is likely that there are unmeasured, or unmeasurable predictors of treatment
assignment that also predict potential outcomes, that is, confounders; this, of course, is the principal
disadvantage of observational studies over randomized experiments. We will attempt to account for
this possibility, as part of our uncertainty assessment, in a sensitivity analysis below.

9In addition, I am told, interviewing teachers would require an amendment to the Institutional Review Board
agreement, which I am unable to obtain.
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3.5 Evaluating Agile Mind: Data

Broadly speaking, our method requires three categories of variables: variables recording informa-
tion about “treatment,” i.e. AM implementation, “outcomes,” i.e. school-average test-scores, and
“covariates,” such as student demographics and scores for tests taken prior to the introduction of
AM (“pre-tests”). Both Texas and Indiana provide school-level data for the latter two categories.
Texas’ “Academic Excellence Indicator System” (AEIS)10 provides information both on school-
level passing rates for tests—which can serve as outcomes of interest—and thousands of covariates.
The Texas Education Agency also provides school average scores on the Texas Assessment of
Knowledge and Skills (TAKS) standardized tests. The Indiana Department of Education provides
similar data for download from its website11 in the form of Microsoft Excel “Data Reports.”

Information on school-level treatment status was provided by the Agile Mind staff. Because
AM course-content is delivered online, AM staff are able to monitor each teacher’s usage; therefore,
data are available on how many hours each Algebra 1 teacher has used AM. Agile Mind provided us
with a spreadsheet listing schools employing teachers who used the AM Algebra 1 course for more
than 70 hours of instruction. The spreadsheet also contains information on what proportion of these
school’s teachers are under an AM contract,12 what proportion of AM-contracted teachers used AM
for more than 70 hours, what proportion of all school teachers used AM for more than 70 hours and
at what date the school started using the AM curriculum. Finally, the spreadsheet includes a list of
teachers who used AM Algebra 1 for more than 70 hours, along with the actual number of hours
they were used.

We model treatment status as binary: every school with a teacher who used AM for more than
70 hours is considered a “treatment” school, and the rest are considered “control.”

3.5.1 Texas AEIS

The Texas Education Agency makes publicly available thousands of school-level variables for each
of its public and charter schools. Data are available for each academic year from 1992–1993 through
2010–2011; while the form of the data (i.e. which variables are available) changes from year to
year, it is mostly consistent. For pre-treatment covariates, we relied mostly on the 2009–2010 data,
which included 3890 variables for each of 8322 schools of all levels and types.

10http://ritter.tea.state.tx.us/perfreport/aeis/, accessed 11/08/2012
11http://www.doe.in.gov/improvement/accountability/find-school-and-corporation-data-reports, Accessed 11/8/12
12Schools or districts chose whether to adopt AM treatment, but in some cases the contracts were limited to particular

teachers.
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AEIS includes data on college-readiness,13 standardized tests such as TAKS, SAT and ACT,
completion and dropout rates, school finance, student demographics—including data on English
language learners (ELLs), special education students, student ethnicities and students’ economic
backgrounds—advanced courses and instruction, and staff and class-size. Where applicable, each
variable was disaggregated both by school and by 10 school subgroups: Black, Hispanic, Native
America, Asian or Pacific Islander, White, Male, Female, ELL, economically disadvantaged and
special education students. Each dataset contains both current data and data from the previous year;
therefore, there is some overlap between AEIS datasets of different years.

Many variables are not applicable to every school: for instance, data on 9th-grade TAKS tests
only apply to schools that contain a 9th grade; for all other schools, these variables are coded
as NA. Similarly, when there are too few students of a particular subgroup at a school to ensure
confidentiality and “statistically reliable information,” test-score data for that subgroup are masked
in order to preserve confidentiality.14 Also, schools that were recently built do not have historical
data—these schools will have NAs for certain historical variables.

Some AM schools began treatment before 2009, so some variables in the 2009–2010 AEIS
dataset are not pre-treatment, and including them in an analysis may bias the results. We therefore
deleted certain suspect data values from the dataset for schools that began treatment early enough.
We assumed that the AM treatment would only affect mathematics test scores and those variables
directly related to test scores—that is, we assumed data on language or social studies tests, student
and staff demographics and school finances were causally prior to AM instruction, even if they
were measured after AM instruction began.

In summary, there are four well-defined reasons for missing data: inapplicability of the vari-
able to the school, small student subgroups, newly-built or founded schools, and the requirement
for variables to be pre-treatment. Importantly, there is no missing data for the main student de-
mographic variables: a school’s percent economically disadvantaged, percent English-language
learners, percent special-education and ethnic/racial composition.

We removed all variables that were more than two-thirds missing, as well as, for each outcome
of interest, removing schools with no data on that outcome. The latter step served to limit each
analysis to schools that catered to students of the same age group: schools that do not have a
9th grade, for instance, do not have data for the 9th-grade TAKS test. In addition, we appended
school-average TAKS results from 2006 and 2010 as a pre-tests (schools that started using AM
curriculum before 2010 could not use 2010 TAKS results as pre-test variables, whereas schools that

13for precise definitions, see the glossary on the TEA website, http://ritter.tea.state.tx.us/perfreport/aeis/2010/glossary.html
14http://www.tea.state.tx.us/index4.aspx?id=4638. Accessed: August 26, 2013.
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did not exist in 2006 had no 2006 TAKS data—hence both pretests are necessary), with indicators
for missingness for both variables. The rest of the missing values were imputed with their variables’
grand means. After processing, 2330 variables remained in the dataset.

There are three AM schools that are not represented in the 2009–2010 AEIS dataset. The
Estrada Achievement Center in San Antonio is specialized for students with serious disciplinary
issues, and students attend Estrada only temporarily, for varying periods of time. The Pickett Center
in San Antonio has fewer than 40 students, and covers grades 7–12; therefore, no grade is large
enough to report average test scores. These two schools not only do not have sufficient data, but are
likely to be exceptional, and are left out of the analysis. The third missing high-school, the College
Transitional Academy of La Joya Independent School District (now renamed Jimmy Carter Early
College High School) was established in 2010, for the 2010-2011 school year, and did not exist in
the 2009-2010 school year.

3.5.2 Indiana Data

The Indiana Department of Education provides “data reports” for each of its public schools.15 Most
variables relate to tests: the number of students who took the test, the number who passed and the
passing rate for Advanced Placement tests, the ISTEP+ test, the IREAD-3 test, the International
Baccalaureate test, End-of-Course Assessments (ECA), college placement exams and alternative
assessments. Results from these tests were disaggregated (separately) into grade level, ethnicity
(American Indian, Asian, Black, Hispanic, Multiracial and White), free or reduced-price lunch (FL)
status, English-language-learner (ELL) status and special education status. Historical data are also
available, starting as early as 2006 for some variables.

There were also variables with information on school demographics, enrollment, and graduation
rates; Table 3.1 shows what proportion of the dataset is devoted to each type of variable.

Proportion
demographics 0.25

enrollment 0.10
grad rate 0.02
test score 0.64

Table 3.1 A breakdown of Indiana School-level covariates into types

15Publicly available for download at http://www.doe.in.gov/improvement/accountability/find-school-and-corporation-
data-reports. Accessed 1/1/2013
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Results from math tests cannot be considered as pre-treatment if they record data from after the
adoption of the Agile Mind curriculum; these data were deleted for treated schools.

We took similar steps to process the Indiana covariates as we did the Texas covariates: first,
we removed many redundant or uninformative covariates, such as school names and IDs. We
also removed variables that could not be considered pre-treatment, variables with no variance and
variables which were more than 90% missing. We imputed the remaining missing values with their
variables’ grand means. The raw data contained 2126 variables; after processing, 1210 variables
remained for 864 schools, 10 of which were treated. One of the treated schools, New Augusta
Public Academy-North, administered the ECA in the summer, and therefore does not have publicly
available outcome data and was excluded from the analysis.

3.5.3 Outcomes

The outcomes of interest are all standardized test results. In Texas, there are two tests of interest:
the Texas Assessment of Knowledge and Skills (TAKS) and the End-of-Course STAAR (State of
Texas Assessments of Academic Readiness) test (EOC). The TAKS is divided into mathematics and
reading sections, one for each grade-level. For younger grades, there is a Spanish version, but for
high school only an English version is available. The content of the TAKS mathematics test is based
not on course content but on grade-level; therefore, it covers more mathematical topics than just
Algebra, which was the target of AM curricula. In particular, the test for middle-schools that use AM
was the 8th-grade TAKS, which, though it contained some Algebra content, is mostly pre-algebra
and arithmetic. The last TAKS test for High-School students is the 2011 TAKS test. For two reasons,
we do not expect to detect an effect of the AM curriculum on this variable: first, as noted, the TAKS
test is not specifically tailored to Algebra 1, especially for eighth-grade; second, eight out of the 28
Texas schools which used AM began using it in the spring or summer of 2011—too late for it to
affect the 2011 TAKS scores.

The EOC, by contrast, is based on course content: there is an EOC Algebra 1 test, which is our
outcome of interest. The EOC focuses on understanding and representing functions, and solving
and graphing linear and quadratic equations and inequalities.16 Graduation depends on students’
cumulative scores over all of their EOCs. The STAAR tests are administered by Pearson Testing,

16A more complete list of tested concepts is available at http://www.tea.state.tx.us/WorkArea/
linkit.aspx?LinkIdentifier=id&ItemID=2147488337&libID=2147488336. Accessed 7/24/13.
A brochure explaining the STAAR is available (also accessed 7/24/13) at http://www.tea.state.tx.us/
WorkArea/linkit.aspx?LinkIdentifier=id&ItemID=2147502688&libID=2147502682.
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which hires graders to grade the tests.17 To date, there is no easily accessible school-level EOC
data online. There are, however, school-by-school reports that can be downloaded one at a time.
For each test, there are three outcomes of interest: the number of students who took the test, the
percent/number of students who passed and the average score.

In Indiana, the main outcomes of interest in this study are the 2012 percents of eighth and ninth
grade students who passed ECA Algebra 1. The numbers of students who took the exams and who
passed are also available as outcomes. However, average scale scores are not available. The ECA
Algebra 1 test is a standardized end-of-course test which mostly focuses on solving and graphing
linear equations and inequalities, and solving quadratic inequalities.18 It is graded by “trained
evaluators,” not the students’ teachers.

One Indiana school was missing outcome data: New Augusta Public Academy North ad-
ministered its ECA over the summer, instead of in the spring, so the scores were not available
online.

3.6 Evaluating Agile Mind

Now, we apply the methods outlined above to evaluate the AM Algebra 1 online program, estimating
the ETT of AM usage. Technically, as mentioned above, and as will be described in some more
detail below, we consider “treated” schools to be those schools in which at least one teacher used
the AM Algebra 1 online resources for at least 70 hours over the course of a school year. The causal
question here is whether such usage causes a change in those schools’ Algebra 1 end-of-course
exam passing rates.

There are three stages to the analysis: designing the hypothetical stratified experiment by identi-
fying a group of non-AM-using schools that highly resembles the sample of “treatment” schools,
checking that the identified comparison group is indeed similar to the treatment group, and analyzing
the difference in test-scores between the two groups of schools.

17Apparently it recruits on craigslist.com, among other venues, and pays $12.00 an hour. http://www.
myfoxdfw.com/story/20662399/craigslist-ad-solicits-staar-test-graders. Accessed
7/24/2013.

18An example, with scoring rubrics, is available at http://www.doe.in.gov/sites/default/files/
assessment/2012-algebra.pdf. Accessed 7/24/2013.
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Figure 3.2 Distributions of propensity-score linear predictors for each stratum of the dataset, by AM usage

3.6.1 The Matching Process

Following Section 3.4.3, we selected a small set of school-level covariates that would pose the
most concern as potential confounders, including student demographics: percent African-American,
percent Hispanic, percent special-education and percent economically disadvantaged, and pre-test
information: for Texas schools, school-average TAKS score from 2006 and 2010 and for Indiana
schools, prior ECA passing-rates. To balance the rest of the covariates, we included principal
components in the propensity-score model.

Next, for each treatment school we tried to find a set of control schools with approximately
matching propensity scores. We only allowed matched schools to differ by at most 1–10% of
the overall standard deviation of the total set of linear predictors; this is referred to as a “caliper”
(Rosenbaum and Rubin, 1985). Within that restriction, we used the fullmatch() command
from the R package optmatch (Hansen, 2007) to construct a match.

Texas Schools

We matched schools and evaluated school-level matches separately for each Algebra 1 grade, 8th
or 9th, in each state. To perform the matching for the Texas high-schools, we chose to include
the four principal components that most highly correlated with the average 2011 TAKS score.
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These were the fist, the fourteenth, the eighteenth, and the sixth. The first principal component
primarily distinguished schools with high historical TAKS scores against those with low scores and
high at-risk student populations. The fourteenth primarily distinguished schools with high African
American student populations and high school-leadership funding but low dropout rates against
those with high dropout rates and high GED rates. The eighteenth primarily distinguished schools
with high dropout rates and low historical TAKS scores and passing rates against schools with low
dropout rates and high TAKS scores. Finally, the sixth component primarily contained information
on TAKS participation rates (that is, what proportion of students took the TAKS exam). Together,
these four PCs account for 10% of the variation in the dataset, but about 64% of the variation in
2011 TAKS passing rates for unmatched control schools. To find a comparison group for the middle
schools, we only included one principal component, since there are fewer AM middle schools than
high schools. The first principal component—which is also the principal component that most
highly correlates with 8th grade 2011 TAKS scores—is similar to the first principal component in
the high-school sample. It contributes 7% of the total variation in the sample, and about 54% of the
variation in 2011 8th-grade TAKS passing rates among unmatched control schools.

For practical reasons—we needed to manually record EOC data for each of the matched schools
in Texas—we did not want the total number of matched schools in Texas to be too high. To limit
the total number of matched schools without sacrificing too much effective sample size and the
quality of the match, we varied the maximum number of controls matched to each treatment and the
maximum allowable difference in propensity scores between the treatment and control schools in
the same matched set (the caliper).

For Texas middle schools, the optimal configuration was a caliper of 5% of the overall standard
deviation of the propensity scores between the treatment and control groups (so AM and non-AM
schools in the same matched set could differ by at most 0.0875 in their estimated log-odds of being
treated). Also, the maximum number of control schools for each AM-school was set to five. With
this configuration, the analysis will include nine matched sets, each of which contains one AM
school and varying numbers of non-AM schools. The total number of matched schools, including
AM and non-AM schools, was 43, with an effective sample size of 13.3.

In the high-school sample, we chose a caliper of 10% of the standard deviation of propensity
scores (allowing schools in the same matched set to differ by 0.12 in their estimated log-odds of
being treated) and a maximum of seven non-AM schools matched to each AM school. This resulted
in 16 matched sets (one for each AM school), with a total of 110 matched schools, and an effective
sample size of 26.7.

Before matching, the covariate profiles of the treated and control schools were significantly
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different; the differences are displayed in Tables 3.2 through 3.5. In particular, in the Texas high-
school sample, the AM schools had, on average, lower pre-test scores and higher Hispanic and
economically-disadvantaged student populations. The samples also differed significantly on the first
and fourteenth principal components of the covariates. Also, the prognostic scores (see below) were
imbalanced between the AM-using and non-AM-using schools.19 The probability of a randomized
experiment resulting in this (or higher) magnitude of covariate imbalance is less than 10−8. The
imbalance pattern in the middle-school sample is similar, although in the prognostic scores do not
appear significantly imbalanced.

Propensity-score matching significantly improved the balance of the pre-treatment covariates
between the treatment and control groups, as Figure 3.3 and Tables 3.2 through 3.5 show. None
of the covariates used in the matching were significantly different between the AM schools and
the matched non-AM schools. In fact, the covariate balance achieved between the treatment and
matched controls was better than would be expected in over 90% of randomized experiments.

Indiana Schools

The AM schools were matched to sets of similar non-AM schools within the same grade-level: that
is, schools that administered the Algebra 1 ECA in eighth grade were matched to other schools
with eighth-grade Algebra 1 ECA data, and schools that administered the test in ninth grade were
matched to other similar schools. Operationally, we divided the data into two sets: “middle schools”
with 8th-grade ECA data and “high schools”20 with 9th grade ECA data. There were four AM
schools in the middle school set, and five in the high school set.

Within each dataset, propensity scores were estimated based on the following covariates: per-
cent FL, percent ELL, percent Black, percent Hispanic, percent special education, total enrollment,
percent of eighth- or ninth-grade students who passed the 2010 Algebra 1 ECA, and the first two
principal components, which had the highest correlation with the outcomes. In 8th grade schools,
26% of the data’s variance was attributable to these two components, and 8% of the variance in
ECA passing rates, in the unmatched control schools, was attributable to these components. In 9th
grade schools, 29% of the data’s variance was attributable to the first two components, and about
27% of the variance in ECA passing rates, in the unmatched control schools, was attributable to
these components. The distributions of propensity score linear predictors are shown in figure 3.2.

19Comparing prognostic score balance between the matched set and the entire sample is somewhat problematic, for
reasons discussed in Section 3.2.3.

20“middle schools” and “high schools,” here, are in quotes since not all “middle schools” are necessarily actually
middle schools—they are just schools with 8th grade data.
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Next, we used the R function fullmatch() from the optmatch package to find propensity
score-based matches. We varied the caliper to optimize effective sample size and covariate balance.
In the high school sample, we settled on a caliper of 0.05 of the pooled standard deviation of the
propensity score linear predictors, which yielded a match with an effective sample size of 8.15 and
an xBalance χ2 p-value of 0.90. In the high school sample, we settled on a caliper of 0.1 of the
pooled standard deviation of the propensity score linear predictors, which yielded a match with an
effective sample size of 6.25 and an xBalance χ2 p-value of 0.76.

Testing the Matches

After the matches were specified, we used PCR to model the outcomes of the non-matched schools.21

Next, we computed the predicted values of each of those models for the matched schools, and
computed balance statistics. The results, before and after matching, are in Tables 3.2, 3.3, 3.4 and
3.5; these tables also contain overall χ2 p-values, which indicate that matching drastically improved
covariate balance. A graphical representation of covariate balance before and after matching appears
in Figure 3.3.

Some of the matched schools in Texas did not have EOC data available, and were dropped from
the dataset; as can be seen from the omnibus p-values, excluding these schools degrades balance
slightly, but not to a degree that may be worrisome. This missing data, however, may be worrisome
for another reason: the fact that the outcomes were missing could, conceivably, be influenced by
AM usage. If that were the case, outcome missingness would not be causally prior to treatment,
and conditioning on it, which is the effect of conducting analysis without these schools, would bias
the result. For instance, if AM caused the potentially highest-performing schools to decide not to
hold an exam in 2012, the estimate would be biased downwards. On the other hand, if some control
schools would have conducted exams had they used AM, and this subset of schools would have had
potentially higher test scores, then the estimate would be biased upwards. One approach to solving
this problem would be to apply partial identification methods (Horowitz and Manski, 2000; Tamer,
2010), which attempt to bound the size of a treatment effect given the observed data and minimal
assumptions about the data’s distribution (such as the distribution’s support). This is beyond the
scope of the present study, but would be a fertile area for future research. We will assume that
missingness in EOC passing rates is not affected by AM, and that conditioning on it would not bias
causal estimates.

21Following the results of Chapter 4, we also used ridge regression for similar calculations; the results were similar
to those with PCR.
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Full Sample Matched Sets
std.diff z std.diff z

black 1.64 3.23 ** -0.11 -0.19
hispanic 0.33 0.66 -0.64 -0.77
freeLunch 0.73 1.44 -0.39 -0.62
ell 1.27 2.51 * -1.08 -1.13
specialEd 0.76 1.52 0.23 0.29
totalEnrollment 0.32 0.63 -0.10 -0.18
pretest 0.08 0.17 0.02 0.06
X1 0.08 0.16 0.45 0.76
X2 1.35 2.66 ** -0.18 -0.30
prog -1.16 -2.30 * 0.12 0.17
p-value 0.02 0.72

Table 3.2 Covariate balance before and after matching for Indiana middle schools. X1 and X2 are the
first two principal components, prog denotes prognostic scores, and p-value denotes omnibus xBalance() χ2

p-values. There are 505 schools in this stratum, with four treated schools matched to a total of 109 untreated
schools.

Full Sample Matched Sets
std.diff z std.diff z

black 0.46 1.02 -0.19 -0.37
hispanic 0.16 0.37 -0.08 -0.22
freeLunch 0.08 0.18 -0.21 -0.63
ell 0.45 1.00 -0.05 -0.10
specialEd 0.69 1.54 -0.45 -0.57
totalEnrollment 0.64 1.43 0.02 0.03
pretest -0.89 -1.96 * -0.03 -0.07
X1 0.73 1.61 0.21 0.38
X2 -0.64 -1.42 0.09 0.21
prog -0.28 -0.61 0.65 1.26
p-value 0.10 0.85

Table 3.3 Covariate balance before and after matching for Indiana high schools. X1 and X2 are the first two
principal components, prog denotes prognostic scores, and p-value denotes omnibus xBalance() χ2 p-values.
There are 400 schools in this stratum, with five treated schools matched to a total of 132 untreated schools.
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Figure 3.3 Covariate balance before and after matching (and with and without schools with missing
outcomes—without denoted “CCA”—for Texas schools)

Since End-of-Course (EOC) data is only available for the matched schools in the Texas samples,
the cross-validation used to specify the PCR for the Texas samples was done using TAKS data as an
outcome.

3.6.2 Outcome Analysis

To estimate the effect of AM on learning, we focused on the percent of a school’s 8th or 9th grade
students who passed the Algebra 1 ECA or EOC, for Indiana and Texas, respectively. Unfortunately,
average scale scores, which may contain more aggregate information, were not available in Indiana,
so when we aggregated the data across state and grade-level, we could only use percent passing as
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Full Sample Matched Sets Matched Schools with Outcomes
std.diff z std.diff z std.diff z

black -0.60 -1.80 . 0.02 0.26 -0.01 -0.15
hispanic 1.55 4.61 *** -0.03 -0.49 -0.05 -0.75
freeLunch 1.24 3.69 *** 0.14 0.94 0.12 0.80
ell -0.87 -2.58 ** 0.27 0.72 0.40 1.13
specialEd -0.28 -0.84 0.06 0.23 -0.04 -0.15
pretest06 -0.54 -1.61 0.06 0.19 0.23 0.75
pretest -0.58 -1.74 . 0.09 0.23 0.20 0.60
pretest06NA 0.37 1.10 0.09 0.18 0.26 0.57
pretest09NA -0.19 -0.57 -0.10 -0.38 0.00 0.00
X1 0.96 2.87 ** -0.04 -0.17 -0.17 -0.75
prog -0.37 -1.11 0.24 0.78 0.29 1.20
p-value 0.00 0.96 0.66

Table 3.4 Covariate balance before and after matching for Texas middle schools. X1 is the first principal
component, prog denotes prognostic scores, and p-value denotes omnibus xBalance() χ2 p-values. The third
column assesses the match after removing schools for which there was no outcome data available. There are
539 schools in this stratum, with nine treated schools matched to a total of 44 untreated schools

an outcome.
The following results assume that, after accounting for all measured covariates—the matrix

X—AM and non-AM schools are directly comparable: there is no statistical relationship between
AM usage and test scores other than whatever effect AM may have had on test scores. As in any
study based only on observational data, there is a possibility of hidden bias: if an unmeasured
variable is correlated with both test scores and AM usage, our results may be skewed. Below,
in subsection 3.6.4, we will attempt to directly assess this possibility, and adjust our estimates
accordingly.

Table 3.6 shows the results of the outcome analysis. Averaging across Texas and Indiana, and
across 8th and 9th grades, we estimate the effect of a teacher using AM for at least 70 hours as
increasing the number of students who pass the Algebra 1 End-of-Course exam by about one
percentage point; however, this estimate was statistically indistinguishable from zero (p=0.63).
Indeed, due to limitations in the available data, we were unable to reach any firm conclusions about
the nature and extent of AM’s effectiveness in improving end-of-course test scores. In Indiana, in
Texas high schools and overall, we were unable to detect any statistically-significant effects. In
Texas middle schools, there is a significant negative effect on the percent of students who passed.
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Full Sample Matched Sets Matched Schools with Outcomes
std.diff z std.diff z std.diff z

black 0.10 0.39 -0.19 -0.56 -0.32 -0.88
hispanic 0.70 2.78 ** -0.08 -0.31 -0.01 -0.02
freeLunch 1.01 4.01 *** -0.07 -0.37 -0.12 -0.59
ell -0.18 -0.72 0.03 0.11 -0.16 -0.65
specialEd 0.04 0.15 -0.05 -0.17 -0.04 -0.12
pretest06 -1.02 -4.03 *** 0.11 0.41 -0.00 -0.00
pretest -1.59 -6.22 *** 0.08 0.39 0.02 0.10
pretest06NA 0.17 0.66 -0.20 -0.56 -0.43 -1.07
pretest09NA -0.00 -0.02 -0.15 -0.46 -0.30 -0.99
X1 1.50 5.91 *** -0.13 -0.61 0.02 0.09
X2 -0.64 -2.53 * -0.28 -0.84 -0.36 -1.00
X3 0.35 1.39 -0.18 -0.43 -0.38 -0.79
X4 0.26 1.02 -0.08 -0.32 -0.25 -0.92
prog -0.97 -3.85 *** 0.21 1.13 -0.04 -0.22
p-value 0.00 0.91 0.76

Table 3.5 Covariate balance before and after matching for Texas high schools. X1,...,X4 are the first four
principal components, prog denotes prognostic scores, and p-value denotes omnibus xBalance() χ2 p-values.
The third column assesses the match after removing schools for which there was no outcome data available.
There are 1371 schools in this stratum, with 16 treated schools matched to a total of 94 untreated schools.

Raw Passing Rates Peters-Belson-Adjusted
Effect Estimate p Effect Estimate p

Indiana 8th 2.86 0.78 1.04 0.92
9th 11.45 0.27 -1.62 0.75

Texas 8th -9.59 0.03 -8.94 0.02
9th 4.47 0.41 2.56 0.59

Overall 2.12 0.52 1.28 0.63

Table 3.6 Test statistics (weighted difference-in-means averaged over matched pairs) and p-values for the
effect of AM in each of the datasets and overall.
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3.6.3 Does AM Affect the Number of 8th-Grade Students Who Pass?

Effect: % Took Test p-value. Effect: % Passed Test p-value
IN 8 -0.02 0.83 0.00 0.97
IN 9 -0.03 0.71 0.04 0.57

TX 8 0.10 0.55 11.58 0.42
TX 9 0.02 0.81 0.44 0.91

Combined 0.03 0.66 3.19 0.48

Table 3.7 Estimates and p-values for the effect of AM on the number of students who took Algebra 1 and
the percentage of the total cohort who passed, in each stratum.

Table 3.6 shows that, for Texas middle schools, AM seems to decrease the percentage of students
passing the EOC exam, by about 9 percentage points (p=0.02). This may be a result of random
chance (indeed, Gelman and Weakliem (2009) cautions that statistically-significant effects that are
surprisingly large should be interpreted with extra caution, especially when sample sizes are small).
An alternative explanation is that AM causes more eighth-grade students to attempt the EOC exam;
these “marginal” students have a lower passing rate than the students who would have taken the
exam anyway, and pull down the school’s overall passing rate.

State-Grade TZ ρ Effect Estimate Margin of Error

IN
8th 3.00 0.20 1 21
9th 3.00 0.50 -1.6 23

TX
8th 2.00 0.30 -8.9 9.9
9th 4.00 0.40 2.6 17.5

Overall 4.00 0.50 -1.3 10.8
Overall 2.00 0.20 -1.3 6.8

Table 3.8 Estimates and with 95% margins of error for the effect of AM on the percent of students who
passed EOC exams. These margins of error account for possible hidden bias, the hypothetical extent of which
is quantified in ρ and TZ .

This raises the question: does AM tend to increase the absolute number of students who take or
pass the exam? The size of the 8th- or 9th-grade class was not a matching variable, but would be
highly relevant to this question. To solve this problem, we divided the number of students passing
the EOC (in Texas) and ECA (in Indiana) by the size of the 8th- or 9th-grade class, which we
assume is unaffected by AM. Then, we tested the effect of AM on this ratio, using both raw ratios
and Peters-Belson-adjusted ratios, as above. We used the same number of principal components
in the prognostic models as above. The results of the tests are found in Table 3.7: we estimate
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that AM increased the percentage of students taking algebra 1 by 0.03 percentage points, and the
percent of the cohort who passed by about 3 percentage points, averaging over states and grades.
However, these results also failed to achieve statistical significance: we are unable to reach any firm
conclusions about whether AM affected the percentage of students who took Algebra 1 in 8th or 9th
grade, or the percentages of the total classes who passed the Algebra 1 end-of-course exams.

IN 8th IN 9th TX 8th TX 9th
ρ Tz ρ Tz ρ Tz ρ Tz

%Black -0.12 2.77 -0.06 0.73 -0.07 -1.18 -0.08 -1.59
%Hispanic 0.03 -1.43 -0.07 0.01 -0.12 1.33 0.04 -1.61

% Free Lunch -0.04 -0.43 -0.04 -1.27 0.30 1.05 -0.13 1.50
% ELL -0.06 1.89 0.05 0.44 -0.05 -1.57 -0.13 1.82

% SpecialEd 0.00 1.04 -0.08 1.56 -0.19 -0.68 -0.09 -1.75
Total Enrollment 0.15 -0.34 0.04 -1.79

pretest 0.03 0.46 0.43 -2.38 -0.11 0.34 -0.14 1.25
pretest09 -0.10 0.95 0.11 -3.39

pretest06NA 0.12 1.28 0.03 0.84
pretest09NA 0.00 -0.81 -0.01 0.22

PCs

1 0.09 0.81 0.06 2.64 -0.26 0.61 -0.37 1.73
2 -0.18 0.69 0.09 -0.90 -0.27 -3.06
3 0.25 1.43
4 0.06 -0.39

Table 3.9 Benchmarks to choose appropriate values for TZ and ρ in the sensitivity analysis.

3.6.4 Sensitivity Analysis

Since, in this case, the treatment assignment mechanism is unknown, there is a possibility of hidden
bias in this analysis; there may be an unmeasured variable U that correlates with both AM usage and
the outcome, and biases the causal estimate. To assess this risk, we conducted a sensitivity analysis
of the result—an attempt to include uncertainty about hidden bias in the final estimates. The method,
following Hosman et al. (2010), parameterizes the extent of possible confounding in terms of two
parameters: ρ , which represents the hypothetical confounding variable U’s relationship with the
outcome Y , and TZ , which represents U’s relationship with the Agile Mind usage. Given values for
TZ and ρ , the method produces a “sensitivity interval”: an interval of plausible values for the causal
effect, given the presence of a confounder with relationships with Z and Y no greater than TZ and ρ ,
respectively.

71



First, to gauge which values of TZ and ρ are plausible, we calculate real values of these pa-
rameters for some of the most important measured variables in the dataset. Based on the results
of this study, shown in Table 3.9, we decided on a set of values for TZ and ρ , for each state-grade
combination, and calculated sensitivity intervals. These choices, and the resulting intervals, are
displayed in Table 3.8. The sensitivity intervals strengthen the conclusion that, given the limitations
of the data, it is impossible to precisely estimate the effect of AM. Indeed, the effect of a teacher
using AM for at least 70 hours, averaged across 8th and 9th grade schools in Texas and Indiana
could be as low as -12.1 percentage points (that is, lowering the passing rate by 12.1 points) and as
high as 9.5 percentage points, using conservative criteria to account for possible hidden bias. With
less conservative criteria, effects are estimated as being between -8.1 and 6.8 percentage points. An
additional notable conclusion is that the negative, statistically significant result for Texas 8th grade
students ceases to be significant when possible hidden bias is included in the analysis; this indicates
that the result may be a result of such bias.

3.7 Discussion

As more data becomes available, social scientists interested in questions of causation will need
methods to incorporate large numbers of covariates into their causal models. Propensity scores,
themselves powerful dimension-reducers, can be inadequate to the task, especially when the number
of covariates is large compared to the number of treated or control units. Some variants of regression
adjustment, however, can accommodate arbitrarily large numbers of covariates; these methods,
though, are designed not to unbiasedly estimate treatment effects, but to build predictive models.

This chapter bridged some of the gap between a particular high-dimensional multivariate
technique—principal components analysis—and causal inference with propensity score matching.
The central idea is that researchers seek to estimate treatment effects unbiasedly, but the relation-
ships between covariates and outcomes need not be estimated correctly; only prediction accuracy
is necessary. Therefore, principal components regression modeling of the relationship between
covariates and outcomes can assist propensity score matching when many covariates are present.

Three separate, if synergistic, uses of principal components appeared in this chapter. The first
was to include principal components in a propensity score model, along with a small set of variables
thought, based on substantive background, to be important to selection into treatment and predictive
of outcomes. The second and third depended on estimating prognostic scores: predictions of control
potential outcomes from pre-treatment covariates. Prognostic models were trained on a set of control
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units not included in the propensity-score match. This chapter suggests using these predictions to
test the propensity score match’s validity, as well as adjust the propensity score analysis. If either
the propensity score match or the prognostic score estimation were sufficient to eliminate bias, their
use together produces unbiased treatment effect estimates. Even if this is not the case, prognostic
score potential outcome predictions with low mean-squared-errors can limit the bias of a causal
analysis.

Next, this chapter attempted to use these new statistical methods to estimate the effect of the
Agile Mind Algebra 1 mathematics enrichment program on school-level standardized test passing
rates. One contribution of this paper over Correnti et al. (2008) is that we accounted for the fact that
most teachers under AM contract do not seem to take full advantage of AM services. By considering
only schools whose teachers use AM for more than 70 hours as “AM schools,” we increased the
likelihood of finding a significant effect. Another important difference is that this paper uses EOC
data in Texas and ECA data in Indiana as the outcomes of interest. These tests directly measure
Algebra 1 skills, and are more likely than the TAKS to capture the effects of AM usage.

The causal-inference technique used, propensity score matching, was successful, yielding large
matched samples containing schools using AM and extremely similar sets of schools that did not use
AM. We were able to implement novel methods to reduce or eliminate bias resulting from thousands
of covariates that did not appear directly in the matching algorithm. In particular, any information
we were able to extract from these covariates that would have predicted schools’ outcomes without
AM usage was well-balanced between treatment and control groups. The techniques applied in this
paper were designed to maximize the chances of detecting an effect of AM without incurring bias
from omitted variables.

Both the methodological and substantive contributions in this chapter may be strengthened by
future analysis. A simulation study, or an analysis of a dataset with a known treatment effect, would
shed light on the extent of the ability of principal components analysis to help propensity score
matched designs accurately estimate treatment effects. Some weaknesses in the analysis of Agile
Mind could also be corrected with access to better data: the measure of implementation that we had
access to—whether a teacher in each school used AM for at least 70 hours—may be overly simplistic
and arbitrary; access to better implementation data may lead to a more informative estimate. Also,
school-average test scores, instead of passing rates, would likely be a more informative outcome to
measure.
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Chapter 4

Multivariate Statistics and Machine
Learning for Causal Inference: Modern

Regression Prognostic Scores

4.1 Introduction

Machine learning, and, in particular, high-dimensional data analysis, has been one of the most
productive areas of statistics in the past two or three decades. However, few of its contributions
have been adapted to causal inference. This is not surprising: machine learning, for the most part, is
concerned with prediction more than with inference; its goal is not to learn correct relationships
or models, but to predict outcomes reliably. That is to say, in machine learning, correlation and
causation are of equal value. In causal inference, of course, this is not the case. Furthermore, high-
dimensional data—the fodder for machine learning—has, until recently, been fairly uncommon in
causal inference settings.

Now, however, high-dimensional data is poised to become more common in causal inference,
and, in particular, in educational evaluations, due to the increasing availability of educational
data. Some recent attempts at integrating machine learning and multivariate techniques into causal
inference are Schneeweiss et al. (2009); Belloni et al. (2011, 2012).

The previous chapter has suggested a causal-inference application in which prediction is the
(proximate) goal: prognostic scoring in a propensity-score matching design. Say a researcher has
used a small number of covariates to estimate propensity scores and reconstruct a hypothetical
stratified experiment, and she has set aside a portion of the untreated group—perhaps a portion
that was not sufficiently similar to the treated group—and excluded it from her matched design.
However, she has access to a large number of additional covariates, and she is concerned that their
omission from the propensity score model will bias her causal estimates. Then the prognostic-score
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solution is to use a high-dimensional regression technique, along with the full set of covariates,
to train a prediction model on the set of units that were excluded from the match. This model’s
predictions in the matched sample are prognostic scores: researchers can use them to test overall
covariate balance among matched units, or to adjust causal estimates, as described above.

Section 3.3 suggests estimating prognostic scores with principal components regression. This
approach is attractive for a number of reasons. These include the fact that principal components can
give insight into possible underlying structure in the covariate matrix X , and, in some instances,
analysts can interpret principal components as new variables. Further, using principal components
regression dovetails nicely with the method in Section 3.3.1, in which principal components are
added to the prognostic model.

However, several other prediction methods in high dimensional data are available. In particular,
motivated, perhaps, by the rise of genomics and facilitated by the explosion of computing power,
the the past two decades have seen rapid development in high-dimensional data analysis, including
regression methods such as the LASSO (Tibshirani, 1996), the Elastic Net (Zou and Hastie, 2005)
and Supervised Principal Components Regression (Bair et al., 2006). Of course, these methods
join some other, older high-dimensional regression methods, including ridge regression (Hoerl and
Kennard, 1970) and partial least squares regression (Wold, 1966).

Proposition 2, double unbiasedness, requires that the prognostic model (3.18) unbiasedly es-
timate β , or unbiasedly predict YC.1 Further, the proposition suggests that the model must be
correct—that is, account for the entire relationship between YC and X—in order to improve the
validity of ETT estimate τ̂PBP. However, when p >> n, these conditions will be extremely difficult,
if not impossible, to fulfill. On the other hand, (3.20) suggests that a model that reliably predicts
YC, even if it is neither an unbiased technique nor does it replicate the data-generating-model, may
go a long way towards reducing the bias of τ̂PBP. In particular, (3.20) suggests that the prediction
mean-squared-error (MSE) of the prognostic model is an important criterion for its usefulness.
An analyst can, on a case-by-case basis, choose the optimal regression technique from among the
possibilities in the literature. Given the difficulty of finding the correct model, this choice may be
motivated purely by prediction-accuracy.

This chapter will suggest some possible approaches to investigating various high-dimensional
modeling techniques and choosing one for causal inference. To do so, we will focus on the data
from our study of Agile Mind, described in Section 3.5.

The following section suggests some descriptive multivariate techniques to explore the structure

1I believe that the proposition would still hold if the bias in the model’s prediction of YC were independent of
treatment status Z, but I have not proven that to be true.
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of the covariate matrix X , which may be helpful for high-dimensional modeling (and interesting
in its own right). Section 4.3 will briefly describe several high-dimensional modeling techniques.
Section 4.4 will discuss model selection by cross-validation (CV), and use CV to determine which
modeling technique would perform optimally for the AM data. Section 4.2 will present an alterna-
tive validation technique for choosing a model and estimating prediction MSE. Finally, Section 4.6
will conclude.

4.2 The Multivariate Structure of X

Before choosing a multivariate method, it may be reasonable to examine the multivariate structure
of the covariate matrix X , and its relationship to the control outcomes, YC. One of the first steps in
this direction is, of course, the singular value decomposition and principal components analysis
already computed. As mentioned in subsection 3.2.2, the squared singular values S2—eigenvalues of
X ′X , the observed covariance matrix for studentized X—summarize information about the dataset’s
collinearity and variance structure. In particular, the sum of S2 is equal to the sum of the variances
of X’s variables, and each squared singular value Sk, divided by this sum, S2

k/∑S2, is a measure of
the proportion of X’s variance is attributable to the kth principal component. Figure 4.1 displays the
cumulative proportion of variance explained by the first p proportion of principal components in
each stratum of the dataset. So, for instance, the first 20% of principal components in the Indiana
strata explain about half of the total variance in their respective strata, but the first 20% of Texas
PCs explain almost 70% in their own strata. This suggests that the underlying structure in the
Texas strata has a lower dimension than in the Indiana strata. In other words, more information is
summarized in fewer principal components.2

Next, it may be useful to examine the pattern of correlations between the variables in X and the
control outcomes YC. The Fisher transformation (Fisher, 1915) of the pearson correlation coefficient,
which is identical to the inverse hyperbolic tangent function, transforms correlation coefficients
so that, if the two correlated variables are jointly normal and their observations are independent,
their distribution will be approximately normal. By calculating the Fisher transformations of the
correlations between each of the covariates and the outcomes, and plotting their quantiles against
the quantiles of a normal distribution, researchers can often observe interesting patterns. Figure 4.2
does just that. Since, with jointly normal variables, the standard deviation of the Fisher-transformed

2The same pattern is present when the variable on the x-axis is the number of principal components, not the
proportion of the total.
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Figure 4.1 The cumulative proportion of total variance explained by proportion of principal components,
for each stratum of the AM dataset

correlation is approximately 1/
√

n, where n is the sample size, the transformed correlations here
are multiplied by

√
n, giving them an approximate standard deviation of one, so they are, roughly,

Z-scores; the corresponding raw correlations are also marked, on the right-hand side of the plot.
In both datasets, but especially in Texas, the correlations of the covariates with the outcomes

are almost all highly significant, with Z-scores as high as 40 and as low as -40. In Indiana, the
correlations are also significant, but to a lesser extent; in addition, a few variables stand out as
being unexpectedly highly correlated with the outcomes. In other words, the Indiana plots suggest
that there are a few variables that correlate very strongly with the outcomes, and that a prediction
strategy that relies on identifying and focusing on those variables would bear the most fruit. On the
other hand, the distribution of correlations in the Texas data suggests that predictive information
about Texas outcomes is more smoothly distributed among the covariates.

Does this point in a different direction than the information from Figure 4.1? The distribution of
singular values indicates that the underlying structures of the Texas strata have lower dimension than
the Indiana strata; the distribution of bivariate correlations with the outcome indicates that, possibly,
a small number of covariates are necessary to optimally predict outcomes in Indiana, but not in
Texas. Two differences between the plots resolve this apparent contradiction: the singular values
refer to variation explained by principal components, which themselves are combinations of many
covariates, whereas the bivariate correlations refer to specific, raw covariates. It may be, for instance,
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Figure 4.2 Normal quantile-quantile plots of Fisher-transformed correlation coefficients, multiplied by√
n, between individual covariates and outcomes, for each AM dataset stratum, along with a line of slope 1.

Corresponding raw correlations are available to the right of the plots.

that a large number of highly-correlated covariates (such as measures of pretest scores) are all
similarly correlated with outcomes, but can all be roughly summarized in one principal component.
In such a case, the underlying structure would have low dimension, but many covariates would be
highly correlated with the outcomes. In addition, the correlations refer to the relationships between
the covariates and the outcomes, whereas the principal components refer to the relationships among
the covariates.

This information from the distribution of singular values and of correlations between covariates
and outcomes suggests that, perhaps, the LASSO will perform well for Indiana schools by identify-
ing a few important covariates. On the other hand, principal components regression will require
fewer components for accurate predictions in Texas than in Indiana.

4.3 Short Overviews of Models to be Considered

A host of techniques for high-dimensional regression are available; Hastie et al. (2005) provides
a nice survey, from which much of this sub-section is drawn. In this paper, we will consider a
subset of those techniques, which we feel roughly represents the field. We have attempted to include
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the most well-known and popular techniques: ridge regression, the LASSO, partial-least-squares
regression and Random Forest prediction.

The LASSO and ridge regression emerge from the same principle, but with a subtle yet impor-
tant difference. Ordinary least squares (OLS) attempts to find a vector of estimated coefficients β̂

such that the sum of squared differences between the actual data values and the predicted values,
‖Y − Ŷ‖2, is minimized. When variables in the dataset are collinear, the OLS estimates β̂ can be-
come unstable. Penalized least squares techniques, such as ridge regression and the LASSO, attempt
to limit this instability, at the price of some bias, by introducing a penalty on large coefficients:

β̂PR = argmin
β̂

‖Y − Ŷ
β̂
‖2 +λ‖β̂‖l (4.1)

where λ is a tuning parameter which controls the amount of shrinkage, or the strength of the
penalty. In ridge regression, the penalty is a multiple of the L2 norm of β̂ : the sum of squared β̂

coefficients. In the LASSO, the penalty is a multiple of the L1 norm: the sum of the absolute values
of β̂ coefficients. This subtle mathematical difference has an important practical effect: the LASSO
will shrink some variables’ coefficients all the way to zero, effectively removing them from the
model. For that reason, it is often conceptualized as a variable selection technique(Meinshausen
and Bühlmann, 2006; Tibshirani et al., 1997, e.g.). Ridge regression does not share this property,
and every variable contributes to a ridge model. For this reason, it seems likely that when an
outcome can be predicted best from a small subset of covariates, the LASSO would outperform
ridge regression, whereas when a large proportion of available coefficients covary with the outcome
at similar scales, ridge regression may carry the day.

Ridge regression, in fact, can be conceptualized as a smoothed version of PCR. Hastie et al.
(2005) rewrite the ridge fitted values, X(X ′X +λ I)−1X ′Y substituting the SVD, USV ′, for X , and
show that

Ŷridge = ∑
i

ui
d2

i

d2
i +λ

u′iY (4.2)

meaning that principal components with lower eigenvalues are shrunk more, and vice-versa. This
suggests that PCR and ridge regression will produce similar results.

Partial least squares regression (PLS) is also similar to PCR, in that it involves constructing
composite variables, and regressing Y on them. In the case of PLS, however, the derived variables
are constructed with reference to covariates’ relationship with Y , not only on their relationships to
each other. While PCR finds mutually orthogonal derived variables with maximal variance, PLS
finds mutually orthogonal derived variables that maximize the product of the variable’s variance,
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and its squared correlation with Y (Frank and Friedman, 1993). Just like in PCR, performing PLS
regression requires choosing the number of composite variables to include as regressors.

A final option, Random Forests (RF) (Breiman, 2001) fully replaces the parametric assump-
tions in the linear regression models with increased computational cost. RF builds on another
non-parametric prediction algorithm, the regression-tree (Morgan and Sonquist, 1963; Breiman and
Ihaka, 1984). A RF predictor repeatedly (B times) randomly sub-samples from the dataset, each
time drawing, with replacement, a sample the same size as the dataset itself. In each sub-sample,
the algorithm grows a regression tree: repeatedly, it randomly chooses a subset of size m of the
available predictors, and partitions the subjects on those predictors in a way that minimizes the
within-partition variance of the sample. This process is repeated, in each tree, until each partition
fits the sub-sampled data perfectly: the within-partition variances are all zero. The result is B trees,
each of which can predict an outcome for a new case, using that case’s predictors to choose an
appropriate partition, and predicting the value of the training set in that partition. The RF algorithm
improves on the predictions of the individual trees by averaging their respective predictions.

4.4 Which Models Win? A Cross-Validation Exercise

Perhaps the most powerful technique to determine which high-dimensional modeling technique
will yield estimated prognostic scores with the lowest mean-squared-error is cross-validation (CV)
(Kohavi et al., 1995; Efron and Gong, 1983). To implement k-fold CV, a researcher randomly
divides the rows of X , corresponding to subjects, into k roughly equal parts. Then, k times, use
k−1 of those sections (the “training set”) to estimate a model, and use the remaining section (the
“testing” set) to test the model’s predictions. The mean of the squares of the estimation errors is an
estimate for the model’s MSE.3

The choice of k is, like many choices in statistics, a trade-off between bias and variance. The
highest possible value of k is k = n, the sample size; this is referred to as leave-one-out cross-
validation, and has the lowest possible bias: it almost exactly replicates the process of using the
full dataset to predict new values. However, because in this case the training sets resemble each
other so strongly, the variance of the CV estimate is high. Conversely, for lower values of k, the
variance of the CV estimate is lower, at the expense of some bias. Kohavi et al. (1995) recommends
using k = 10, and Hastie et al. (2005) similarly recommends k =5–10; for our study, based both on

3More complicated, and perhaps slightly more accurate, methods of CV are available (Efron and Tibshirani, 1997,
e.g.), but here we restrict ourselves to the old-fashioned version.
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computational concerns and on observed variance of CV estimates we used k = 5.
Cross-validation would be extremely expensive for the RF algorithm, but also, fortunately,

unnecessary. RF grows a separate regression-tree in each of B random sub-samples of the data.
Each subsample will, with very high probability, exclude certain subjects, and the MSE of that
subsample’s tree can be estimated as its empirical MSE when predicting the excluded cases. The
average of these MSEs, over all B trees, referred to as the out-of-box (OOB) error estimate, is an
estimate of the model’s prediction MSE.

To examine various high-dimensional prognostic-score estimation techniques, we conducted
a 5-fold CV in each stratum of the AM dataset. Figures 4.1 and 4.2 suggest that estimators may
perform differently on datasets from different states, but similarly within states. Each modeling
technique involves a tuning parameter, denoted here as λ . For PCR and PLS, we tried from 1 to
101 components in the CV. To choose the tuning parameters for ridge regression, we first narrowed
the options down by randomly splitting each stratum half-way into training and a testing set, and
estimating the MSE for a very wide range of parameters: a sequence of λ values ranging from 1
to 5000, with step sizes of 10. We then chose the a range of 101 values of λ that contained the
best-performing λ from the initial pass-over. The statistical package we used to estimate LASSO
models automatically chose a set of tuning parameters to try. We chose to grow 10,000 trees for RF,
since p >> n, and used the function tuneRF() from the R package randomForest to choose
the number of variables to try in each tree.

To ensure that only pre-treatment information informed our modeling choices, and that the
models were not tuned more closely to the control sample than to the treated sample, the cross-
validation was performed using only unmatched schools. In the Texas samples, only TAKS scores
were available for the entire sample of schools, since EOC scores needed to be recorded by hand.
Therefore, the CV is based on TAKS passing rates, which may lessen the CV MSE estimates’
accuracy when predicting MSEs for EOC scores. Since the prognostic model would need to be fit
to TAKS scores, and then used to predict EOC scores, it seems likely that the MSE estimates are
biased downward in the Texas sample.

All of the estimators were implemented in R (R Development Core Team, 2011), some using
specialized packages. In particular, the LASSO estimate was implemented using the glmnet
package (Friedman et al., 2010), PCR and PLS regressions were implemented by the pls package
(Mevik et al., 2011), and RF was implemented by randomForest (Liaw and Wiener, 2002).
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TX 8th TX 9th IN 8th IN 9th
MSE SE R2 DF MSE SE R2 DF MSE SE R2 DF MSE SE R2 DF

LASSO 42.59 4.21 0.69 101 101.79 8.07 0.75 101 53.30 9.27 0.81 101 80.72 8.12 0.84 101
PCR 42.57 4.46 0.69 101 101.18 7.41 0.75 101 129.18 12.27 0.54 101 244.05 14 0.50 101

Ridge 43.31 3.70 0.69 167 98.58 7.41 0.76 175 112.76 13.20 0.59 307 224.27 30.18 0.54 133
PLS 44.06 4.19 0.68 4 98.10 6.95 0.76 6 101.83 11.96 0.63 58 207.11 16.17 0.58 14
RF* 40.28 0.71 50 87.18 0.79 500 68.27 0.75 500 106.13 0.78 500

5-fold Cross Validation estimates, except (*) OOB error estimates

Table 4.1 Results from the CV experiment: for each model, LASSO, PCR, Ridge regression or PLS, and for each stratum of the AM dataset,
we used 5-fold cross-validation to estimate the optimal tuning parameter λ , and its associated MSE (with standard error SE) and R2. We also
estimated these quantities (except for the standard errors) for the Random Forest algorithm, using out-of-box error estimates. The table also
displays the effective degrees of freedom for each optimal model. For PCR and PLS, this is equal to the number of components in the model;
for LASSO this is equal to the number of non-zero coefficients (Zou et al., 2007); for ridge regression, it is the trace of the penalized design
matrix and for RF, it is the number of variables considered in each tree.
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Table 4.1 displays the best estimated prediction MSE and R2 that were observed for each model
type, for each stratum. Figure 4.3 displays each model’s CV curve in each stratum. In the Indiana
strata, LASSO and Random Forests outperformed the rest—this may be related to our observations
in Figure 4.2, that a few variables in the Indiana datasets are very highly correlated with outcomes.
In contradistinction, all models performed approximately equally well in the Texas strata. We
estimated standard errors for all of the cross-validated models, LASSO, PCR, Ridge and PLS, by
computing the standard deviation of the estimated MSEs from each of the folds, divided by the
square root of 5, the number of folds.4 Unlike the predictions in Section 4.2, that fewer principal
components would be necessary in Texas than in Indiana, the CV preferred 101 components (the
maximum allowed in this CV setup) for PCR in all strata; this indicates that there was enough useful
information in the 101st component, even in Texas strata, for that component to be included in an
optimal PCR model. That is, apparently, its usefulness outweighed the additional variance it would
add, as an additional covariate, to the model’s predictions.

4.5 Test-Sets for Choosing Prediction Models with Less Extrap-
olation

The theory of cross validation is that the model is validated based on a set of observations which is
a simple random sample of the larger training set. If the training set is itself a random sample from
a larger population, then the CV validation samples are random samples from the larger population,
as well. Cross-validation, then, is well suited to estimate a model’s performance when predicting
outcome values for new subjects drawn from this population.

In the Peters-Belson-adjusted propensity score case, however, the training set is the set of
untreated subjects which were not included in the propensity-score match, but the model is expected
to predict values from the set of matched treated and untreated subjects. It cannot, in general, be
assumed that the set of matched observations and the set of unmatched observations are random
samples from the same population. Indeed, one of the advantages of propensity-score matching is
that it identifies the set of untreated subjects most similar, in relevant ways, to the treated subjects;
this advantage is most pronounced when treated subjects, and hence matched controls, are not
representative of the entire population. The validation samples from CV are, on the other hand,
representative of the rest of the training sample. This all adds up to the fact that conventional CV

4This is the default SE estimation method for the CV routine in the R package lars, on which we based our CV code
(Hastie and Efron, 2011).
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estimates of MSE are likely to underestimate a model’s true prediction MSE, when it is applied to
matched subjects. On the other hand, if there are outlier schools that were not included in the match,
and the matched schools are relatively typical, the CV MSE estimates may be biased upwards.
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Figure 4.3 CV curves for four models, LASSO, PCR, PLS and ridge regression, in each of the four AM
strata, clockwise from top left, Texas middle schools, Texas high schools, Indiana high schools and Indiana
middle schools.

Some matching designs may allow for a better—or, at least, less-biased—-estimate of the MSE.
As matched-sets grow in size, with greater numbers of untreated subjects matched to each treated
subject, the power from resultant hypothesis tests increases. However, the marginal returns diminish:
after each treated subject is already matched to four or five untreated subjects, adding more untreated
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subjects to the matched sets does little to increase power. That being the case, researchers sometimes
find it advantageous to limit the sizes of the matched sets, which increases the simplicity, and hence
transparency, of the estimation technique. This situation offers analysts an unmatched sample that
is statistically similar to the matched sample: the set of untreated subjects who would have been
matched to treated subjects, but were not, due to the limit placed on the sizes of matched sets.

In other words, to construct this sample, a statistician would first match subjects without limiting
the size of matched sets, and record which control subjects were included in the match. Next, she
would match again, this time limiting the size of the matched sets. This divides the sample into four
groups: (1) treated subjects, (2) untreated subjects that were included in the original, larger match
but excluded from the final trimmed match, (3) untreated subjects included in the final match and
(4) untreated subjects that could not be matched to any treated subjects. The untreated subjects that
were included in the first match but not in the second (group 2) form a “matching validation” sample,
which will presumably be more similar to the matched sample than the rest of the untreated sample.
However, the second match will choose, from among the pool of matchable untreated subjects,
those subjects which are most similar to the treated subjects; therefore, the matching validation
sample will not be strictly representative of the matched sample. In summary, a researcher would fit
the candidate models in group (4) and test their performance in group (2); as in the CV case, the
actual prognostic model would then be fit using subjects from both groups (2) and (4), and generate
predicted YC values for subjects in groups (1) and (3).

There is another disadvantage to validating models with the potential matches, relative to cross-
validation: CV takes several random samples of the training set, and estimates the MSE from each
of them. This maneuver serves to lessen the variance of CV estimates of MSE. In contradistinction,
estimates from the matching validation result from only one sample, and will therefore vary more.
For this reason, it may be best to use both CV and matching validation, and accounting for the
standard error of the MSE estimate when comparing the respective results.

In the Texas strata, outcomes were only available by downloading individual files, one for
each school, and copying values by hand from those files. For that reason, it was advantageous to
limit the sizes of the matched sets; in this case, only up to 10 untreated schools could be matched
to each treated school. The matched sets, however, could have been bigger, without within-set
propensity-score differences exceeding the caliper. In the Texas middle school sample, out of a
total of 1539 schools, 641 were included in the full match, which was pared down to only 57
schools, leaving 584 schools as a matching validation set. In the high school sample, the full match
included 616 schools, and was pared down to 113 schools, out of a total of 1371. These larger
matched sets allowed a matching validation exercise. First, all of the schools in the eventual matched
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pseudo-experiment were excluded from the sample. Then, each model was fit to the set of schools
that were never part of a match, and each model’s prediction was compared to actual values for the
schools that were in the full match, but not in the final, pared-down match. The results are in Table
4.2.

TX 8th TX 9th
MSE R2 DF MSE R2 DF

LASSO 38.10 0.73 81 146.32 0.65 81
PCR 41.99 0.70 81 160.45 0.61 81

Ridge 41.11 0.70 137 160.31 0.61 134
PLS 41.60 0.70 6 152.95 0.63 6
RF 38.81 0.72 50 141.46 0.66 500

Table 4.2 A potential-match validation of LASSO, PCR, Ridge regression and PLS models in the two
Texas strata. The validation uses TAKS scores as outcomes, since EOC scores are not easily accessible for
every school.

It is apparent from Table 4.2 that not much, in terms of prediction accuracy, is lost due to
extrapolation; the MSE estimates, and resulting R2 values, are basically the same.

4.6 Conclusion

Chapter three of this report discussed some advantages to predicting units’ YC values from pre-
treatment covariates. Those advantages scale with the prediction accuracy of the model. This
chapter gave some suggestions for how to choose a modeling strategy to maximize prediction
accuracy in this case.

First, an inspection of some of the multivariate properties of the covariate matrix X can yield
useful information for building prediction models; in particular, if a small number of covariates
seems unusually highly correlated with outcomes, LASSO regression may be an effective modeling
technique. Secondly, cross-validation can yield precise, if somewhat biased, estimates of each
model’s prediction mean-squared error. Lastly, if the sizes of the matched sets in a matching design
were artificially restricted, a researcher can use the units that would have been matched, but were
excluded, as a test-set to estimate prediction MSE.

Somewhat surprisingly, there does not seem to be a large amount of extrapolation bias in the
MSE estimates for the Texas strata.

The broader significance of this project is that it serves as a bridge between machine-learning,
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one of the fastest-growing sub-disciplines in statistics, and causal inference. New machine learning
algorithms can help boost traditional propensity-score designs, and possibly correct for residual
bias if not all covariates could be included in propensity models.
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Chapter 5

Multilevel Propensity and Prognostic Score
Analysis: An Evaluation of A School-Wide

Curricular Program with School- and
Student-Level Data

5.1 Introduction

Quantitative researchers in general, and educational program evaluators in particular, often face
multilevel or hierarchical data structures (Gelman and Hill, 2007; Raudenbush and Bryk, 1986).
Further, researchers in possession of aggregated group-level data occasionally face the question of
whether the collection of individual-level data (“microdata”) is worth the (often quite substantial)
cost.

Some questions are impossible, or near-impossible, to answer with only group-aggregated
data, such as some subgroup effects. However, given sufficient identification assumptions (such
as random treatment assignment or strong ignorability (1.4)) overall average treatment effects are
estimable with only group-aggregated variables. Indeed, Jacob et al. (2013) argues based, in part,
on simulations, that “public-use aggregate school-level achievement data are, in fact, sufficient
to address a wide range of evaluation questions.” That is, the bias and standard errors of effect
estimates based on publicly available school-level data are quite similar to those based on individual-
(student) level data.

Does this hold true using the setup presented in this report? In an observational study de-
sign, assessing a group-level treatment, that combines propensity-score matching with prognostic
score/Peters-Belson adjustment, do individual-level data help? Can individual covariates and out-
comes improve the accuracy of prognostic predictions in such a way to lessen the bias of an effect
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estimate? Is there a way to use individual outcomes to design more powerful test statistics? This
paper will attempt to answer both questions.

First, however, a more fundamental question arises: ought researchers, who are in possession of
individual-level data, model a treatment assignment as group-level or individual-level? The next
section will address this question, and argue that in many cases, a group-level assignment model is
most appropriate. Section three will suggest a heuristic for developing a powerful test statistic for a
causal effect of a group level treatment that exploits individual-level data, and discuss the use of
individual-level covariates in a prognostic model. Section four will apply the methods developed to
a preliminary evaluation of a school-level educational program, for which both school-level and
individual-level variables are available.1 The preliminary evaluation will illustrate the use of this
report’s statistical techniques, as well as a possible advantage to individual-level data.

5.2 Modeling a Multilevel Experiment from Observational Data

How can statisticians incorporate micro-data into an observational study of a group-level treatment?
When not every individual in treated groups receives treatment, one possibility is to model the
intervention as if it were randomized not at the group level, but at the individual level. This would
significantly increase the sample size, and hence, the power of the study. In some cases, therefore,
this will be an attractive option. Instead of matching similar groups to each other, and estimating
a group-level effect, statisticians can match individuals to each other—possibly constraining the
matches to be within-group—and calculate the average difference in outcomes between treated and
untreated individuals within each match.

However, this approach involves a different set of assumptions, which in some scenarios may
be implausible. First, strong ignorability 1.4 would have to hold for individuals, not for groups.
In some cases, individual-level ignorability may be more plausible than group-level ignorability,
but in some cases the opposite will be true. In some cases, for instance, it is reasonable to assume
that both schools and students within schools choose to adopt a program so as to maximize their
expected test scores; this would a serious challenge to the ignorability assumption if schools can
anticipate their potential outcomes with and without the intervention. However, strong ignorability
seems more plausible at the school level than at the student level. Students, in consultation with
their teachers, may have a reasonably good sense of what educational strategies work the best

1To make clear that the evaluation is preliminary, and strictly for purposes of illustration, this report will omit the
name and any unnecessary description of the treatment program.
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for them, based heavily on unmeasured, or unmeasurable, self-knowledge. On the other hand,
schools, which are made up of many students, may have a harder time predicting a program’s
treatment effect. Furthermore, schools’ decisions are likely to be based more heavily on measured
data than students’ decisions; this suggests that the treatment assignment mechanism can be better
modeled as a function of measured pre-treatment covariates for schools than for students. Finally,
for the portion of the treatment decision that cannot be explained by covariates—that is, variation in
treatment assignment within level sets of covariates or propensity scores—there is likely to be more
haphazardness in school-level treatment decisions than in student-level decisions. Since schools are,
to an extent, bureaucracies, it is likely that factors unrelated to outcomes played important roles in
schools’ decisions to opt in or out of an intervention.

Additionally, for valid statistical inference, it is necessary to model the mutual dependence of
subjects’ random treatment assignment. The simplest way to do so is to assume that, by design, one
subject in each matched set is randomly selected for treatment, and that treatment assignment is
independent between matched sets. Like the first half of this assumption, that treatment assignment
is random within matched sets, the second part of this assumption, that treatment assignment is
independent across matched sets, may be more plausible if applied to groups rather than to indi-
viduals. For instance, in an educational program in which not every student within treated schools
participates, it is hardly unreasonable to suppose that students consult each other, and follow each
others’ examples, when deciding whether or not to opt in.

Following this reasoning, in many cases researchers will choose to model two-level observational
data as emerging from a stratified, cluster-randomized experiment, rather than from individual-level
randomization. However, individual data can still play a helpful role in three ways: microdata can
help researchers design more powerful statistical tests, estimate more precise prognostic scores and
account better for individual-level non- or partial-compliance.

5.3 Designing a Powerful Test Statistic Using Microdata

5.3.1 Multilevel Modeling of Group-Level Treatments with Individual-Level
Outcomes

A common approach to analyzing multilevel data, especially in an educational context, is by us-
ing a multilevel model (Gelman and Hill, 2007) (such as a Hierarchical Linear Model, or HLM;
Raudenbush and Bryk 2002; HLMs and multilevel models are types of mixed models; Hartley and
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Rao 1967). A standard HLM evaluating a group-level treatment combines two models: one for
individuals, and one for groups (of course, there can be more than two levels). Let i index groups,
and s index individuals. Then a simple HLM individual-level model would be:

Yis = αi +βXis + εis (5.1)

where Xis is a vector of individual-level covariates, and εis
iid∼N(0,σ2

Y ). The values αi are group-level
intercepts, themselves modeled as random in the group-level model:

αi = α +δXi + γZi +νi (5.2)

where α , δ and γ are parameters to be estimated, Xi is a vector of group-level covariates, Zi is the
group’s treatment assignment, and νi

iid∼N(0,σα). Here, the coefficient γ is the treatment effect.
HLM estimation can be a very useful modeling tool; however, it involves several parametric

assumptions, such as parametric distributions of random effects or residuals, which cause some
researchers pause. In addition, an HLM-based observational study is not an “experimental” ap-
proach, as discussed in Section 1.1.4, and does not share the advantages discussed there, such
as small-sample robustness or the objectivity that results from separating design from analysis.
However, HLMs can boast some other advantages: for instance, they can accommodate both group-
and individual-level covariates, and they adaptively weight observations to maximize estimates’
efficiency and tests’ power. This section will show how, in an experimental-style propensity score
observational study, researchers can adapt some of the power-maximizing properties of HLMs,
without committing fully to the HLM modeling assumptions.

As discussed, this report’s matching approach models the treatment as group-level, and con-
ceives of a hypothetical group-level experiment. That being the case, the possible treatment effect
will be an effect on group-level outcomes; that is, individual-level outcomes aggregated to the group
level. The aggregation process is where HLM insights can play a role.

5.3.2 Adapting HLM Reasoning to Propensity-Score Designs: Aggregating
Outcomes

Adapting HLM ideas to the Rubin Causal Model necessitates adapting HLM notation. Let YCis be
the control potential outcome of individual s (for “student”) in group i; let~YCi be the vector of YCis

values for a particular group i. Then, for some aggregation function g(·), the potential outcome
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for group i is YCi = g(~YCi). So if, for instance, group-level outcomes are means of individual level
outcomes, then YCi = (1/ni)∑sYCis =~YCi.

If only group-level data is available, researchers have little choice in aggregation function g(·);
individual data allows for more flexibility. For instance, researchers can choose to estimate a
program’s average effectiveness on a group’s median outcome, or on outcomes for some subgroup
of students. These choices can be based on either substantive or statistical concerns; in particular,
some aggregation functions g(·) may allow more powerful hypothesis tests, or more precise effect
estimates.

We will offer a heuristic for choosing g(·), based on HLMs, that may maximize power. We will
consider aggregating functions g(·) which are a school-level constant times the sum of Y values
in a school, that is, g(~YCi) = wi ∑sYCis. Two possible values of wi here are wi ≡ 1, in which case
YCi would be the sum of individual outcomes in group i, or wi = 1/ni, in which case YCi would be
the mean of individual outcomes. It is likely that the function g of this class that maximizes power
chooses weights wi between 1/ni and 1.

The simplest multilevel model for this data setting, with treatment administered at the group
level, but outcomes measured at the individual level, excludes covariates Xsi and Xi, and is

Yi j = αi + εsi (5.3)

with ε
iid∼N(0,σ2

Y ), and level-2 model

αi = α + τZi +νi (5.4)

with νi
iid∼N(0,σ2

α). To estimate the treatment effect τ , when σY and σα are known, let Ȳi be the
mean outcome in group i. Then regress Ȳ on a constant and Z, weighting each observation with
weight ∆i, a function of the size of group i, ni and the within- and between-group variances, σ2

Y and
σ2

α . Then the treatment-effect estimate is (Raudenbush and Bryk, 2002)

τ̂ =
∑(Z j− p∗)(Ȳi− Ȳ ∗)∆−1

i

∑(Zi− p∗)2∆
−1
i

(5.5)

with weights
∆i = σ

2
Y/ni +σ

2
α (5.6)
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and

Ȳ ∗ =
∑i Ȳi∆

−1
i

∑i ∆
−1
i

; p∗ =
∑i Z̄i∆

−1
i

∑i ∆
−1
i

. (5.7)

Given that Z is binary and only takes values 0 and 1, the estimate (5.5) becomes

∑
Zi=1

Ȳi∆
−1
i

∑
Zi=1

∆
−1
i
−

∑
Zi=0

Ȳi∆
−1
i

∑
Zi=0

∆
−1
i

(5.8)

a difference in weighted means between treated and untreated groups, with weights

∆
−1
i =

1
σ2

α +σ2
Y/ni

=
ni/σ2

Y

1+ σ2
α

σ2
Y

ni

. (5.9)

Since the 1/σ2
Y in the numerator is common to all terms in the numerators and denominators of

(5.8), the weighted difference in means becomes

∑
Zi=1

Ȳini

1+σ2
α/σ2

Y ni

∑
Zi=1

ni

1+σ2
α/σ2

Y ni

−
∑

Zi=0

Ȳini

1+σ2
α/σ2

Y ni

∑
Zi=0

ni

1+σ2
α/σ2

Y ni

. (5.10)

This estimator treats groups as units, and estimates the difference between their aggregate out-
comes. However, how their outcomes are aggregated depends the multilevel properties of the
data, and, in particular, the ratio σα/σY , which is, roughly, the group effect. When σα << σY ,
an individual’s group membership is not terribly predictive of her individual outcome Yis. Then,
ni/(1+σ2

α/σ2
Y ni)≈ ni, and (5.10) is approximately a comparison of group sums, not means. The in-

tuition is that as group membership matters less, the optimal estimate increasingly ignores grouping
and simply compare treated and untreated individuals (though treatment is still modeled at the group
level). When σα ≈ σY , then (5.10) uses group means as group-level outcomes. When σα >> σY ,
groups are relatively homogeneous, so group membership is highly predictive of an individual’s
outcome. In that case, conceptually, the multilevel model considers each group’s outcome to be its
theoretical mean EYis; the groups’ “sample” means are estimates of these expectations. The higher
ni, the better the group-level mean estimates for group i, so groups with low values for ni are shrunk
towards the grand mean more so than groups with high ni.
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Estimating Within- and Between-Group Variance, σ2
Y and σ2

α

In an HLM, σ2
Y and σ2

α are unknown, and must be estimated; indeed, this is often one of the aims
of multilevel modeling (Gelman, 2005). This is often accomplished using maximum-likelihood
techniques with the EM algorithm (Dempster et al., 1977) or Fisher scoring (Harville, 1977).
However, if a researcher has set aside part of the untreated sample—the subset that was unfit to
match—estimation of σ2

Y and σ2
α is simpler. An estimate of σ2

α would be the empirical variance
of group means in the unmatched sample, and an estimate of σ2

Y would be the average of groups’
variances. Granted, for these estimates to be approximately unbiased for the variance components
in the matched sample requires a uniformity assumption that may not be true. However, the stakes
are relatively low: σ2

Y and σ2
α are useful for improving treatment effect estimates’ efficiency. Mis-

estimating the variance components will not lead to bias, but may lead to somewhat sub-optimal
efficiency.

However, if the outcomes are Peters-Belson adjusted using prognostic scores, as described in
Section 3.3.3, then the variance components must take the adjustment into account. The between-
group variance σα is the variance of the prediction errors Y − Ŷ , which may be estimated with
cross-validation. Similarly, cross validation can be used to estimate within-group variance σY , when
the prediction model is designed to estimate individual-level outcomes.

5.3.3 Using Group- and Individual-Level Covariates

Another advantage of multilevel modeling is its ability to incorporate variables that are measured at
both the individual and group levels. Without HLM technology, doing so in the regression-modeling
paradigm can be vexing. One possible approach would be to combine both sets of covariates in the
same OLS model:

Yis = α +βXis +δXi + γZi + εis (5.11)

This model, however, ignores the grouping structure, which can lead to severely biased standard
errors. (Indeed, combining equations (5.1) and (5.2) gives a very similar expression, except that
there is additional modeled error due to νi.) A generalized-least-squares estimate of model (5.11)
which allows for within-group correlation is roughly equivalent to a HLM design. Adding group
dummy variables to (5.11) will not work either, since these will be exactly collinear with group-level
covariates Xi.

Using propensity score matching with prognostic-score Peters-Belson adjustment, however,
as in Section 3.3.3, avoids this problem. In prognostic score estimation, prediction accuracy is
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important, but uncertainty estimation is unnecessary: inference for treatment effect estimators will
emerge from permutation tests based on the modeled hypothetical experiment. Therefore, fitting
equation (5.11) as a prognostic model, in the unmatched group, and using it to predict YC values
for the matched groups, is not problematic. Of course, the propensity-score matching itself already
adjusts for some group-level covariates.

5.4 Example Dataset: Preliminary Investigation of A School-
Level Educational Program

The educational program that this report will attempt to evaluate, for illustrative purposes, is a new
program recently adopted by six rural Kentucky high schools; as will be seen, these schools are
fairly typical for Kentucky. Within each school, a subset of students participates in the program; this
report will, however, model the treatment at the school level, for reasons discussed in Section 5.2.
An instrumental variables approach (see, eg. Angrist et al., 1996; Imbens and Rosenbaum, 2005)
would perhaps sharpen the analysis, but is ancillary to the illustrative purposes here, and will be
omitted.

Not much is known about why each school chose to adopt the system; however, the choices
were made by the schools’ boards, and this illustration will assume that the factors that led to the
choices were complex and haphazard enough to be modeled as random, conditional on, or within
level sets of, some measured covariates. All covariate data came from the Kentucky Department of
Education: there is a matrix X of publicly-available school-level data, with each row representing a
school and each column a variable. The matrix X contains data on demographics, standardized-test
scores, enrollment, and graduation and dropout rates. Many variables contain historical data, going
back to as early as 2008. In addition, we have access to approximately 100 student-level covariates,
including demographic information (ethnicity, school-lunch status, homelessness, special education
status and language knowledge) as well as detailed prior achievement measures from previous years.

The causal modeling assumption is, then, that if we can identify groups of schools which are
similar on all of the relevant measured covariates but not on treatment status, that within those groups
selection into treatment is random or haphazard. Specifically, we will focus on prior achievement,
the proportions of schools’ students that are members of minorities, economically disadvantaged
or specially-educated, and school location, rural versus urban. These variables have a fairly high
potential to confound a causal estimate—for instance, if schools with low prior test scores are more
likely than others to adopt the program, but also more likely to exhibit low test scores in the future,
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then estimates of the program’s effects will be biased downwards. However, our modeling strategy
will, hopefully, alleviate those problems: treated schools will be compared only to schools with
similar prior testing records. Another concern our strategy will explicitly address is differing test
score trends between schools. For instance, if schools whose test scores have been increasing over
the past few years are more likely than others to adopt the program, and if those trends continue after
the program’s adoption, causal estimates will be biased upwards. To address this problem, we will
compare treated schools to untreated schools that not only recorded similar test scores immediately
prior to treatment, but which also exhibited similar test score trends. The same reasoning holds
for important student demographics. In addition, the high-dimensional multivariate techniques
discussed in Chapters 3 and 4, and expanded here, will alleviate possible confounding from other
measured variables, both student- and school-level. Finally, we will conduct a sensitivity analysis to
check our results’ sensitivity to confounding from variables which were not measured or included
in our dataset.

No variables from later than the 2010-2011 school year are included, since any later variables
may have been affected by the presence of the program. There is a small amount of missing data—
though none in the most important variables—that was imputed with a random forest algorithm
(Stekhoven, 2012). All in all, there are 760 variables for 214 high schools.

The outcomes we will study are student scores on a statewide standardized test.

5.4.1 Multidimensional Analysis:
Principal Components Analysis and Fisher-Transformed Bivariate
Correlations

We conducted a principal components analysis (PCA) of the school-level dataset to help the propen-
sity scores account for all of the possible measured confounding variables. This process yields a
side benefit: the PCA provides graphical information about the multivariate structure of the dataset.

Figure 5.1 shows the cumulative proportion of the total variation in the dataset (the sum of the
variances of all of the data’s variables) accounted for by each principal component. For instance,
the first three components, together, account for a little less than 40% of the variation in the entire
dataset. Also, the first 16 principal components account for about 60% of the total variance. After
the 16th PC, the marginal contribution of individual PCs decreases rapidly.

Figures 5.2 and 5.3 plot Kentucky high schools according to their values for the first and second,
and first and third PCs, respectively. The treated schools are labeled, and the top three positive
and negative variables that define each of the plotted PCs are indicated with arrows. The first PC
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Figure 5.1 The cumulative proportion of the data’s total variance accounted for by the first k principal
components
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Figure 5.2 Kentucky High Schools, arranged according to the first two PCs. The treated schools are labeled,
and the top three positive and negative variables that define the each PC are plotted as arrows. The top
positive and negative variables for the first component are in red, and those for the second component are in
blue. For clarity, some outlying schools were excluded.
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Figure 5.3 Kentucky High Schools, arranged according to the first and third PCs. The treated schools are
labeled, and the top three positive and negative variables that define the each PC are plotted as arrows. The
top positive and negative variables for the first component are in red, and those for the third component are in
blue. For clarity, some outlying schools were excluded.

discriminates, roughly speaking, between large schools and mostly white schools. The second
discriminates between schools with high free and reduced-price lunch populations and schools with
high standardized test scores and passing rates. The third distinguishes mostly white schools from
mostly black schools. For clarity, some outlying schools were excluded from these plots. These
plots indicate that four of the treated schools are roughly typical. Two of the high schools, though,
are somewhat atypical, though they are not entirely isolated.

In addition, after deciding on a propensity-score matching design, to be described in the next sec-
tion, and excluding all schools that were assigned a matched set, we compared Fisher-transformed
bivariate correlations between both school- and student-level covariates and test scores; the result is
Figure 5.4. Similar to the AM data in Texas schools in Section 4.2, almost all of the variables here
are highly significant, with Z-scores ranging from around -50 to above 100.

5.4.2 The Propensity Model

We estimated propensity scores using a Bayesian logistic regression, which can accommodate
a greater number of covariates. However, even a Bayesian logistic regression cannot possibly
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Figure 5.4 Fisher-transformed bivariate correlations between each school-level covariate and the school-
mean tests scores.

accommodate anywhere near all of the 760 variables. In the logit model, we included a small subset
of variables that seemed most important in the selection process, and for predicting outcomes. In
addition, we included two principal components of the entire dataset in the logit model.

The dependent variable in the logit model was whether or not the school was treated (1= it was,
0 it wasn’t). The pre-treatment variables included in the model were: percent free or reduced-price
lunch (FreeLunch), percent White, a dummy variable indicating if the school was urban or suburban
versus rural, and prior achievement measures. Prior achievement was measured by 2010 school
mean ACT and PLAN scores (ACTm and PLANm) and estimated mean ACT trends (ACT.Trend).
The ACT trends are the ordinary-least-squares slope estimates from the school-level regressions of
school mean ACT scores from 2007–2010 on a linear time variable. In addition to these variables,
we included the two principal components that most highly correlated with spring 2012 ACT
composite averages. All told, the logistic model was

log−odds(Treatment) =α +β1FreeLunch+β2White+β3ACT m+β4PLANm (5.12)

+β5SpecialEd +β6Urban+β7ACT.Trend +β8PC1+β9PC2.

Figure 5.5 shows the linear predictors from the logit model as a function of treatment assignment.
The linear predictors are larger for treated schools, indicating that the model predicts treatment
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Figure 5.5 The distributions of linear predictors from model (5.12)

assignments, but the distributions of linear predictors overlap between the groups, so propensity
score matches should be available (that is, assumption 3.5 holds).

With the fitted values (actually, linear predictors) of the logistic propensity model, we constructed
an optimal match, using the R optmatch package (Hansen, 2007).

To achieve the covariate balance that we desired, we simultaneously matched on estimated
propensity scores and on prior achievement measures: mean ACT scores and ACT trends. To do
so, we computed the squared mahalanobis distance—computed using propensity scores and the
two prior achievement measures—between each treated school and each untreated school.2 The
match was selected to minimize the sum of the squared mahalanobis distances within matched
sets. Combining propensity scores with other variables in a mahalanobis distance has the effect
of emphasizing certain important covariates; because prior achievement measures are the most
important covariates to balance, this balancing algorithm puts extra effort into producing a match in
which these covariates are balanced. In addition, we imposed a caliper on the match of 0.5 standard
deviations of the propensity scores (linear predictors), ensuring that no two matched schools would
differ in estimated propensity scores by more than half a standard deviation. We also instructed
the matching algorithm to restrict the size of each matched set to five—one treated school matched

2The squared mahalanobis distance for several variables is the sum of squared distances on each of the variables,
weighted by the variables’ standard deviations and covariance. Weighting by covariance means that if a pair of variables
(e.g. PLAN and ACT means) are highly collinear, the pair is down-weighted.
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to up to four untreated schools—to ensure that a large enough reservoir was available for later
steps in the analysis; specifically, the prognostic score model. For comparison purposes, we also
constructed matches based only on the propensity scores and on the propensity scores and on mean
ACTs. (Several other configurations were tried, but are not shown here.)

PS PS+ACTm PS+ACTm+ACT.Trends
Marion County High School 2 3 5
Boone County High School 3 3 2

Somerset High School 4 5 3
Estill County High School 5 5 5
Prestonsburg High School 3 3 2

Highlands High School 5 3 5
Effective Sample Size 8.37 8.53 8.13

Table 5.1 Sizes of each of the optimal matches for the following matching schemes: matching on only the
propensity scores and matching on combinations of the propensity scores and mean ACT composite scores
and ACT trends. The last row displays the matches’ effective sample sizes.

Table 5.1 displays the sizes, and effective sample sizes, of each of these matches.

5.4.3 Evaluating the Match: Balance Tests

One of the objectives, and tests, of propensity score matching is covariate balance. To that end,
we tested whether there was a difference in means of each covariate between treated and control
members of each match, combined across matches and covariates.

The results of a balance test are on display in Table 5.2. This balance assessment includes
several new variables, in addition to the covariates that were included in the propensity-score model:
percent Black, Hispanic, Asian, Male, and English-Language-Learners, dropout rate, teachers’
average experience, teachers’ average base salary, the schools’ counties’ 2004 crime rates (FBI data
from ICPSR, U.S. Dept. of Justice 2007) and indicators for whether the school is urban, suburban,
rural, or located in a town. Overall, the p-value for the null hypothesis that all the balance variables
have equal means between treated and untreated schools within each matched set is p = 0.45, so
the null hypothesis is not rejected; there is no evidence of imbalance. The p-value for overall imbal-
ance, including the entire dataset without stratifying by the propensity-score match, is p = 0.65,
slightly higher. The match that we prefer, denoted PS+ACT+Slopes in Table 5.2, did produce one
statistically significant imbalance, on the schools’ passing rates in the ACT English exam—the
treated group was 0.35 standard differences lower than the untreated group. However, the match
improved balance, over the unmatched set, on ACT mean scores and ACT trends.
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Variable Unmatched PS PS+ACT PS+ACT+Slopes
std.diff std.diff std.diff std.diff

ACTm -0.20 -0.26 -0.06 -0.17
PLANm 0.01 -0.20 -0.08 -0.29
ACT.Trend -0.38 0.41 0.35 -0.16
Urban.BinaryTRUE 0.17 0.00 0.04 0.33
FreeLunch -0.27 -0.06 -0.01 0.19
Black 0.04 0.05 0.14 0.18
Hispanic 0.20 0.24 0.63 . 0.30
Asian -0.25 -0.09 -0.02 0.05
Male -0.29 -0.23 0.02 -0.03
ACTengB -0.31 -0.60 -0.22 -0.35 *
ACTmathB 0.07 -0.08 0.17 0.16
ACTreadB -0.21 -0.21 -0.08 -0.20
SpecialEd -0.56 0.21 0.06 0.00
ELL -0.05 0.19 0.29 * 0.13
Urbancity -0.41 -0.28 -0.14 0.00
Urbanrural 0.03 -0.12 0.28 0.10
Urbansuburb -0.39 -0.24 -0.84 -0.52
Urbantown 0.59 0.54 0.43 0.28
dropout -0.46 -0.78 . -0.26 -0.56
CrimeRate04 -0.09 -0.07 0.01 0.28
teaching.experiance 0.58 -0.03 0.32 -0.14
base.salary 0.40 -0.14 0.25 0.20
PC1 -0.28 0.21 -0.15 -0.17
PC2 0.01 -0.12 0.20 0.06
CrimeRate04.NATRUE -0.19 0.00 0.00 -0.28

Table 5.2 Covariate balance (standardized differences) for matching, in four scenarios: the unmatched
sample, the sample matched using only propensity scores (PS), the sample matched using both propensity
scores and ACT prior achievement (PS+ACT) and the match using propensity scores, ACT prior achievement
and schools’ estimated ACT trends (PS+ACT+Slopes).

5.4.4 Prognostic Models

To test and correct for possible imbalance on the entire set of student- and school-level covariates,
we constructed prognostic scores. As described in Section 3.3, the prognostic models were to be fit
using data from the schools that were not either treated schools themselves, nor matched to treated
schools; so for the model-fitting stage, data from all schools involved in the match were set aside.

In order to choose a model, we first conducted a five-fold cross validation (CV), as described
in Section 4.4. We fit four different models: the LASSO, ridge regression, partial least squares
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(PLS) and principal components regression (PCR). To illustrate the multilevel structure of the data,
we fit each model to three different sets of data: a set containing just school-level covariates, one
containing only student level covariates, and one containing all of the data. As described in Section
5.3.3, fitting a model to both student- and school-level covariates is not problematic when the goal
is simply prediction accuracy, and when school-level fixed-effects are not included. The goal of the
prognostic models is to model school-mean test scores, not individual test scores. That being the
case, the CV was conducted in a somewhat unconventional manner. First, in a conventional CV, each
case is sampled individually; that is, in a five-fold CV, the individual cases are randomly divided
into five groups, each of which has its turn as a test-set, while the others serve to train the model.
In this CV, however, the sampling was done on the schools: the schools were randomly divided
into five groups to serve as each other’s training and testing sets. Next, the mean-squared-error
(MSE) calculations were performed at the school-level: the MSE is the average squared difference
between each school’s mean predicted score and actual mean score. Similarly, the prediction R2

values considered represent the proportions of school-level variance the respective models explain.
School-Level Student-Level Total

MSE SE R2 DF MSE SE R2 DF MSE SE R2 DF
LASSO 0.56 0.07 0.66 15.00 1.09 0.06 0.34 101.00 0.27 0.03 0.83 101.00

PCR 0.71 0.13 0.57 41.00 1.11 0.07 0.32 101.00 0.44 0.03 0.73 101.00
Ridge 0.55 0.06 0.66 27.00 1.09 0.06 0.34 136.00 0.54 0.08 0.67 234.00

PLS 0.71 0.12 0.57 5.00 1.07 0.06 0.35 68.00 0.43 0.06 0.73 10.00

Table 5.3 Results of a school-level cross-validation study of four modeling strategies, LASSO, PCR, ridge
regression and PLS, modeling school-level outcomes. The MSE estimates estimate the MSE of school mean
test scores, not individual test scores; similarly, the R2s represent the proportions of school-level variation
that the models explain.

The results of the CV appear in Table 5.3. In this case, it seems, school-level covariates are
much more powerful for predicting school-aggregated outcomes than student-level covariates. For
instance, the best prediction MSE using school-level covariates is 0.55 points2 (SE 0.06), compared
to 1.07 (SE 0.06) using student-level covariates—almost twice as high. However, models that
combine both levels of data do the best, uniformly; in particular, the LASSO achieved a prediction
MSE of 0.27 points2 (SE 0.03), roughly half of the best MSE using only school-level data. While
this somewhat dramatic result comes from one particular case, it is not far-fetched to expect similar
gains in other contexts.

The MSEs reported in Table 5.3 are much lower than those in Table 4.1, which compared
prediction strategies using data from Texas and Indiana for evaluating Agile Mind. The main
explanation for this discrepancy is that Table 4.1 compared predictions of the percentage of students
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passing an exam (i.e. meeting a benchmark) rather than average scale scores. This is partly an
issue of scale: the ACT PLAN test scores range from 4–32, whereas passing rates range from
0–100. In addition, however, average scale scores tend to be more informative—passing rates rely
on an artificial dichotomization—and therefore easier to predict. In some situations, this serves as
an additional advantage of microdata: if average scale scores are not publicly available, they are
certainly computable from individual outcomes (see Jacob et al., 2013).

School-Level Student-Level Total
MSE Rˆ2 DF MSE Rˆ2 DF MSE Rˆ2 DF

LASSO 0.83 0.49 36.00 0.36 0.78 48.00 0.30 0.82 84.00
PCR 1.00 0.39 21.00 0.42 0.74 21.00 0.74 0.55 21.00

Ridge 0.84 0.49 39.00 0.40 0.76 126.00 0.73 0.56 273.00
PLS 0.99 0.40 6.00 0.41 0.75 14.00 0.38 0.77 13.00

Table 5.4 A comparison of modeling strategies LASSO, PCR, ridge regression and PLS, trained on school-
or student-level data or both, using matching validation, as proposed in Section 4.2

Table 5.4 compares models across various levels of data using matching validation, the vali-
dation method proposed in Section 4.2: using schools that were potential, yet rejected, matches
for treated schools. In contrast with traditional CV, matching validation estimates smaller MSEs
using student-level data than using school-level data; combining the two levels still performs best,
but now by a small margin. The reason for this discrepancy is unclear; since standard errors are
not available for matching validation MSE estimates, the difference between matching validation
and CV may be a result of sampling error. Another explanation is that extrapolation is a larger
problem with school-level data than with student-level data. Since the propensity-score match
was based on school-level covariates, it is on school-level, rather than student-level, covariates
that matched and unmatched schools differ most. So too, the functional relationship between
school-level covariates and outcomes may differ more between matched and unmatched schools
than the analogous relationships at the student level. The best-performing predictive model was the
same regardless of validation technique: the LASSO on the combined data. In fact, the estimated
MSE for this model was roughly the same between validation techniques: 0.28 with CV and 0.30
with matching validation.

Following the validation results, the LASSO, with 101 degrees of freedom, using both student
and school data, was chosen as the prognostic modeling technique.
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5.4.5 Outcome Analysis

With the match selected, and prognostic scores computed (using the LASSO on combined student-
and school-level covariates), the design stage of the analysis is complete. What remains is an
outcome analysis: testing Fisher’s strict null hypothesis of no effects, estimating ATEs or ETTs and
estimating confidence intervals.

The operative model here is stratified, cluster randomization: within matched sets of schools,
one school was randomized to the treatment condition, and the rest of the schools were randomized
to a control condition. As described in Section 1.1.2, randomness, in this model, is purely a function
of Z, the treatment assignment variable, which is a stratified-random sample. For a given test
statistic T , with a realized value of t, the p-value testing Fisher’s strict null hypothesis—that the
treatment had no effect on any school’s average test score—would be the proportion of possible
realizations of Z that would lead to a values of T greater than the realized value, t. T , of course,
is a function of both Z and Y ; however, under Fisher’s strict null, Z has no effect on Y , so T (Z,Y )

may be computed exactly for any value of Z. In the model here, any one school could have been
chosen, with equal probability, from each of the matched-sets. Since the sizes of the matched sets
are {5,2,3,5,2,5}, there are 5× 2× 3× 5× 2× 5 = 1500 possible random draws of Z, each of
which is equally likely. To estimate p-values, we drew randomly from the distribution of Z; for each
random draw z, we computed T (z,Y ); since every random draw was equally likely, the estimated
p-value was the proportion of random draws whose values of T exceeded the realized test statistic t.

The test statistic T (Z,Y ) that we used is the statistic discussed in Section 5.3.2, equation
(5.5). (In order to compute two-sided p-values, the test statistic was, more accurately, the absolute
value of (5.5).) To compute the weights, estimates for σα and σY were extracted from the cross-
validation of the LASSO model. Since the model was approximately unbiased in its prediction
of outcomes Y , the variance of the predictions is approximately equal to the estimated MSE, so
σα ≈ 0.3. Within schools, the variance of the prediction error for the optimal LASSO model was
calculated as σY ≈ 5.4. Therefore, the ICC is approximately 0.3/(5.4+0.3) = 1/19, and the ratio
σα2/σ2

Y ≈ 1/18.
Table 5.5 displays results using these data and methods. The first row actually more appro-

priately belongs to the design stage: a hypothesis test treating prognostic scores, which are based
entirely on pre-treatment covariates, as outcomes yields an approximate “effect” of -0.17 with a
p-value of 0.62 and a 95% confidence interval of (-1.00,0.69). There is no evidence of confounding
from measured, but omitted variables.

The next row conducts a hypothesis test using raw outcomes. The estimate from this row is
also insignificant: a point-estimate of an effect of -0.43, p = 0.30 and a 95% confidence interval
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Outcome Estimate Effect Size p-value %95 CI
Prognostic (Ŷ ) -0.17 -0.01 0.62 (-1.00,0.69)

Y (raw) -0.43 -0.03 0.30 (-1.60, 0.64)
Y (PB adjusted) -0.26 -0.02 0.42 (-1.1, 0.46)

Table 5.5 Estimates, effect sizes, permutation p-values and 95% confidence intervals for the three different
outcomes: prognostic scores (which are not, technically, an outcome, so a null result upholds the model)
and unadjusted and adjusted composite average test scores. The test statistic is (5.5). The effect size is the
estimate, in points on the test, divided by the overall standard deviation of student scores among the matched
group.

of (-1.60,0.64). The central estimate of the preliminary evaluation uses Peters-Belson adjusted
outcomes; this estimate is also insignificant: a point estimate of -0.26, p = 0.42, with a 95%
confidence interval of (-1.1,0.46).

The result from the confidence interval is the most substantively interesting: although it is
impossible to tell, from these data, if the program has an effect, these results seem to rule out a
large, substantively significant effect. In particular, the Peters-Belson adjusted outcomes give a
confidence interval of (-1.1,0.46) points, which severely limits the size of an effect.

Sensitivity Analysis

Could these results be an artifact of hidden bias? To assess this possibility, as in Section 3.6.4,
we followed the methodology of Hosman et al. (2010), which parametrizes hidden bias from an
unobserved variable U in terms of two parameters: ρ , the partial correlation between U and the
outcome (in this case, Peters-Belson adjusted) Y , and TZ , the standardized association between U

and Z. To roughly calibrate TZ and U , we estimated these parameters for a set of measured covari-
ates, with results displayed in Table 5.6. We estimated sensitivity intervals for omitted variables
U with a variety of different ρ and TZ parameters: a worst-case scenario, with the highest ρ and
TZ parameters among the benchmark variables, and scenarios in which variables similar to prior
achievement, race, special-education and free or reduced-price lunch variables were omitted. The
substantive conclusions remained roughly intact in each of these analyses: the average effect of the
treatment seems to be quite limited.
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TZ rho Interval
Worst Case -1.40 0.30 −0.20±0.8
Prior ACT -0.40 0.20 −0.20±0.6

% White -0.60 -0.01 −0.20±0.6
% Free Lunch 0.3 0.2 −0.2±0.6
% Special-Ed -0.7 0.2 −0.2±0.6

Table 5.6 The estimate’s sensitivity to hidden bias: sensitivity intervals, accounting for the possible omis-
sion of a variable similar to prior ACT scores, % White, % Free or Reduced-Price Lunch, % Special Education,
in terms of two parameters: TZ , which measures a variable’s relationship with treatment assignment, and ρ ,
which measures a variable’s conditional relationship with the outcome Y . We also considered a “worst case”
scenario, with the highest values for TZ and ρ observed among important covariates.

5.4.6 Did Individual-Level Data Help?

To examine the usefulness, in this case, of microdata, we repeated the analysis above using only
school-level covariates (we continued to use the school-average scale scores computed from individ-
uals’ scores, under the assumption that these data—the school-level averages—would be obtainable).
Table 5.7 contains point estimates, p-values and confidence intervals using the LASSO prognostic
model chosen in Table 5.3. Of course, the results remain insignificant; however, confidence intervals
are wider: the Peters-Belson-adjusted method, using only school-level covariates, is unable to rule
out effects of greater than one point.

Outcome Estimate Effect Size p-value %95 CI
Prognostic (Ŷ ) -0.26 -0.02 0.40 (-0.92,0.57)

Y (raw) -0.52 0.04 0.36 (-1.76, 0.72)
Y (PB adjusted) -0.26 -0.02 0.64 (-1.65, 1.18)

Table 5.7 With only school level data, Estimates, effect sizes, permutation p-values and 95% confidence
intervals for the three different outcomes: prognostic scores (which are not, technically, an outcome, so a null
result upholds the model) and unadjusted and adjusted composite average ACT PLAN test scores. The test
statistic is (5.5). The effect size is the estimate, in points on the test, divided by the overall standard deviation
of student scores among the matched group.

5.5 Summary

This chapter addressed a common question in educational evaluations: would microdata improve the
evaluation? It did so by suggesting some ways that microdata may be exploited in a Peters-Belson
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propensity-score design: by computing test statistics based on multilevel modeling logic, and by
estimating more accurate prognostic scores.

These methods were illustrated in a preliminary analysis of a new school-level intervention. The
analysis here suggests that these interventions have at most a small effect on student achievement,
as measured by standardized tests. The microdata that were available slightly reduced the size of
the confidence intervals, and ruled out some moderate effects.

Further work could bolster, or add nuance, to the methodological conclusions presented here.
Analytical power calculations, along with simulations, could give precise results on the extent of
the power gain from microdata. In addition, a dataset with an actual effect may be useful fodder for
examining the effectiveness of these methods.
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workers, volume 14. Oliver and Boyd Edinburgh, 1970.

lldiko E Frank and Jerome H Friedman. A statistical view of some chemometrics regression tools.
Technometrics, 35(2):109–135, 1993.

D. Freedman. From association to causation via regression. Advances in applied mathematics, 18:
59–110, 1997.

111



David A Freedman. On regression adjustments to experimental data. Advances in Applied Mathe-

matics, 40(2):180–193, 2008.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. URL
http://www.jstatsoft.org/v33/i01/.

Gary L. Gadbury. Randomization inference and bias of standard errors. The American Statistician,
55(4):310–313, 2001. ISSN 0003-1305.

Carl Freidrich Gauss. Theorie der Bewegung. 1809.

Andrew Gelman. Analysis of variancewhy it is more important than ever. The Annals of Statistics,
33(1):1–53, 2005.

Andrew Gelman. Causality and statistical learning1. American Journal of Sociology, 117(3):
955–966, 2011.

Andrew Gelman and Jennifer Hill. Data analysis using regression and multilevel/hierarchical

models. Cambridge University Press, 2007.

Andrew Gelman and David Weakliem. Of beauty, sex, and power: statistical challenges in estimating
small effects. American Scientist, 97:310–316, 2009.

Andrew Gelman, Aleks Jakulin, Maria Grazia Pittau, and Yu-Sung Su. A weakly informative default
prior distribution for logistic and other regression models. The Annals of Applied Statistics, pages
1360–1383, 2008.

Alan S Gerber and Donald P Green. The effect of a nonpartisan get-out-the-vote drive: An
experimental study of leafletting. Journal of Politics, 62(3):846–857, 2000.

P.I. Good. Permutation tests: a practical guide to resampling methods for testing hypotheses,
volume 2. Springer New York, 2000.

Sander Greenland. Multiple-bias modelling for analysis of observational data. Journal of

the Royal Statistical Society, Series A: Statistics in Society, 168(2):267–306, 2005. URL
http://www.blackwell-synergy.com/toc/rssa/168/2.

Sander Greenland and James M Robins. Identifiability, exchangeability and confounding revisited.
Epidemiologic Perspectives & Innovations, 6(1):4, 2009.

112

http://www.jstatsoft.org/v33/i01/
http://www.blackwell-synergy.com/toc/rssa/168/2


Trygve Haavelmo. The statistical implications of a system of simultaneous equations. Econometrica,

Journal of the Econometric Society, pages 1–12, 1943.

J. Hahn, P. Todd, and W. Van der Klaauw. Identification and estimation of treatment effects with a
regression-discontinuity design. Econometrica, 69(1):201–209, 2001.

B.B. Hansen. Optmatch: Flexible, optimal matching for observational studies. New Functions for

Multivariate Analysis, page 18, 2007.

B.B. Hansen. The prognostic analogue of the propensity score. Biometrika, 95(2):481–488, 2008a.

Ben B. Hansen. The prognostic analogue of the propensity score. Biometrika, 95(2):481–488,
2008b. doi: 10.1093/biomet/asn004.

Ben B. Hansen and Jake Bowers. Covariate balance in simple, stratified and clustered comparative
studies. Technical Report 436, University of Michigan, Statistics Department, 2007.

Ben B. Hansen and Jake Bowers. Attributing effects to a cluster randomized get-out-the-vote
campaign. Journal of the American Statistical Association, 104(487):873–85, 2009. DOI:
10.1198/Journal of the American Statistical Association.2009.ap06589.

Herman O Hartley and JNK Rao. Maximum-likelihood estimation for the mixed analysis of variance
model. Biometrika, 54(1-2):93–108, 1967.

David A Harville. Maximum likelihood approaches to variance component estimation and to related
problems. Journal of the American Statistical Association, 72(358):320–338, 1977.

Trevor Hastie and Brad Efron. lars: Least Angle Regression, Lasso and Forward Stagewise, 2011.
URL http://CRAN.R-project.org/package=lars. R package version 0.9-8.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements of statistical
learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2):83–85,
2005.

James J Heckman and Richard Robb. Alternative methods for evaluating the impact of interventions:
An overview. Journal of Econometrics, 30(1):239–267, 1985.

James J. Heckman, Hidehiko Ichimura, and Petra E. Todd. Matching as an econometric evaluation
estimator: Evidence from evaluating a job training programme. Review of Economic Studies, 64
(4):605–654, October 1997.

113

http://CRAN.R-project.org/package=lars


James J Heckman, Hidehiko Ichimura, and Petra Todd. Matching as an econometric evaluation
estimator. The Review of Economic Studies, 65(2):261–294, 1998.

Carolyn Heinrich, Alessandro Maffioli, and Gonzalo Vazquez. A primer for applying propensity-
score matching. Technical report, Inter-American Development Bank, Office of Strategic Planning
and Development Effectiveness (SPD), 2010.
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