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ABSTRACT 

Algae are an appealing source of bioenergy due to their high yields relative to 

terrestrial energy crops. The high cost of production, however, has prohibited 

commercialization despite significant investment by the private sector. Three novel 

strategies and technologies encompassing algae production and conversion have been 

examined in terms of their life cycle environmental impacts and potential to achieve 

large scale production.  

Coupling algae cultivation ponds with flue gas emissions from power utilities to 

provide carbon dioxide and municipal wastewater to provide nutrients not only reduces 

the upstream impacts and costs associated with providing inputs, but also provides a 

credit for wastewater treatment. A geospatial economic overlay analysis was conducted 

to evaluate the abundance and relative location of the input resources of this co-

utilization strategy. Results of the analysis highlight the inability to scale beyond 1.7 

billion liters annually due primarily to the limited availability of nutrients in wastewater.    

Growing heterotrophic algae in fermenters with sugar as the energy and carbon 

source rather than sunlight and carbon dioxide is an approach being pursued in the 

private sector. Results of this study indicate that a reduction in the global warming 

potential and an improvement in the fossil energy ratio for algal biodiesel could be 

possible for the heterotrophic pathway relative to the phototrophic, but only if 

fermentation can be performed efficiently. The sugar crops used as feedstocks for 
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heterotrophic cultivation require more land, however, and introduce concerns about 

land constraints.  

Lastly, a life cycle assessment of an algal biorefinery featuring hydrothermal 

liquefaction is conducted. Recent experimental work providing insight into the HTL 

reaction networks is incorporated into an analysis that models the performance of an 

algal biorefinery. Results demonstrate a design trade-off, as the reaction conditions for 

minimizing the carbon footprint (0.74 kg CO2e at 250 °C, 60 minutes) are different than 

those found for minimizing cost ($1.72·L-1 at 400 °C, 5 minutes). A novel regrowth 

pathway featuring utilization of E. coli to boost oil yields is also explored. It was found 

that the pathway could further reduce costs but comes with an increased carbon 

footprint and reduced net energy ratio. 
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CHAPTER 1. INTRODUCTION 

1.1 Overview  

This dissertation explores three key life-cycle design opportunities to address 

challenges related to the production and conversion of algae into biofuel. The first 

opportunity relates to utilizing waste materials for input resources, the second includes 

alternative cultivation strategies that require less sophisticated technology, and the 

third features a novel biomass conversion strategy that produces more fuel per unit of 

algal biomass thereby reducing costs.  

The United States intends to increase domestic biofuel production in an effort to 

reduce dependence on imported petroleum and mitigate the impacts of global 

warming1. Since carbon dioxide from the atmosphere is sequestered via photosynthesis 

during feedstock production, biofuels have the potential to reduce the life-cycle 

emissions of greenhouse gases (GHGs) and the overall global warming potential (GWP) 

relative to conventional fossil fuels. However, life-cycle analyses (LCAs) of first-

generation biofuels such as corn ethanol and soy biodiesel indicate that these benefits 

can be greatly reduced by the impacts associated with the production of these energy 

crops and their conversion into liquid fuels2–4. Furthermore, the land required to 
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produce these crops could displace agricultural operations, negatively impacting the 

global food market5. 

Algae have been proposed as an alternative bioenergy feedstock because of their 

high growth rate and aerial productivity6. Estimates indicate that transport fuel needs 

for the United States could be met by algal bio-oil using 1/20th of current agricultural 

land area, whereas the equivalent yield from corn or soybean would be impossible to 

achieve due to land area constraints7. By growing algae in open ponds, biomass can be 

produced on marginal, non-arable lands that are not currently used for farming8. Studies 

indicate that producing bio-oil from algae with current technology has a low life cycle 

net energy ratio (NER), however, and sequesters less net greenhouse gases than 

biofuels produced with other crops 9–11. These findings are due partly to the carbon 

dioxide and fertilizer input requirements.  

Coupling algae cultivation ponds with flue gas emissions from power utilities to 

provide a source of carbon dioxide and municipal wastewater to provide a source of 

nutrients has been recommended in  several studies12–18. This flue gas and wastewater 

co-utilization (FWC) strategy not only reduces the upstream impacts and costs of 

supplying carbon dioxide and nutrients, but also creates environmental and economic 

credits by offsetting the aeration and nutrient removal impacts from wastewater 

treatment. Pilot facilities have demonstrated that algae are capable of growth in 

systems with concurrent removal of high levels of biological oxygen demand and with 

reduced aeration energy requirements 19,20. An analysis by Lundquist et al. (2010) 
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demonstrates that the economic credit for such a service is also a necessary revenue 

stream to bring production costs to a reasonable level 21.  

Regardless of whether or not FWC is implemented, achieving large-scale production 

of phototrophic algae has proven difficult due to the high capital and operational costs 

of open ponds21–25. Additionally, the relatively low biomass concentration requires 

significant energy inputs to circulate the large volumes of water and to concentrate the 

harvested biomass26.  These challenges have prompted exploration of an alternative 

approach to growing algae: heterotrophic cultivation. Unlike phototrophic algae, the 

metabolism of heterotrophic algae facilitates fast growth in unlit fermenters whereby 

energy is derived from an organic carbon source rather than sunlight27. Mixotrophic 

species of algae, which can use either sunlight or organic carbon for energy depending 

on their environment, have also been proposed as an option to be pursued within a 

hybrid pathway28–30.  

In addition to the need for reducing infrastructure costs, another looming technical 

hurdle is a means to convert the algal biomass into a usable transport fuel26,31. A 

technology called hydrothermal liquefaction (HTL) could address both of these obstacles 

by providing a means to convert wet algal biomass to biocrude oil while reducing the 

amount of pond infrastructure required to produce a given quantity of algal biofuel.  

A life cycle assessment (LCA) by Lardon et al. (2009) illustrated that the solvent-

based oil extraction technologies used for other energy crops such as soybean cannot be 

relied upon for algae; the amount of energy required to dry the biomass to levels typical 
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of terrestrial crops would exceed the energy content in the algal oil9. Several studies 

have examined the viability of “wet” solvent extraction strategies to separate the lipid 

fraction of the algal biomass as an oil that can be upgraded via transesterification to a 

biodiesel product9,32.  This approach still has not been implemented at commercial 

scale, however, and efficient recovery of the solvent has proven to be a challenge31. 

Another limitation of solvent extraction is that the yield of oil per unit of biomass is 

limited to the fraction of the biomass that is lipid. Currently the most economical 

strategy for cultivating phototrophic algae is an open, paddle-wheel mixed pond, and 

the species grown in these ponds typically have just 10-25% lipid content33.  

By contrast, HTL converts a portion of the carbohydrate and protein fractions of the 

algal biomass into oil in addition to the lipid fraction34. This process works by converting 

a wet algal slurry under high temperature and pressure into a variety of products 

including a biocrude oil. In addition to the oil that is formed, HTL produces solids, gas, 

and soluble products remaining in the water, or the “aqueous phase”. Nelson et al. 

(2013) demonstrated that E. coli can be grown on the aqueous phase products from HTL 

and Valdez et al. (2013) demonstrated recovery of crude bio-oil from E. coli biomass via 

HTL with yields similar to those of algae35. Therefore the proposed regrowth pathway 

could incorporate cultivation of microbial biomass such as E. coli to recycle carbon and 

thereby yield more oil per unit of initial algal biomass.  
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1.2 Life Cycle Design Framework 

LCA has emerged as a critical tool for evaluating a product’s environmental impact. 

By evaluating the inputs and outputs associated with each step of a product’s life from 

acquisition of the material through end-of-life disposal, metrics can be implemented to 

evaluate its sustainability.   Life cycle design (LCD), then, is the process of incorporating 

these LCA metrics into a framework for developing products that are optimized for 

objectives that extend beyond traditional metrics to include sustainability36. LCD is a 

complex process requiring systems-wide analysis and, ideally, interdisciplinary 

collaboration throughout the research and development process.  

 In practice design iterations generally happen at the product release cycle; an LCA is 

not performed (if at all) until the product has been released and in use, and results are 

incorporated into a redesign only when the subsequent product development cycle is 

initiated. By integrating LCD directly into the product conception stage rather than on 

the product release cycle time frame, considerable impact can be reduced in the 

avoidance of initial releases that are poorly optimized, particularly for products with 

complex environmental implications37.  

Biofuels are sufficiently complex to necessitate engaging in the LCD process early in 

the design process. The algal biofuel industry is striving to develop a cost-competitive 

product devoid of the indirect negative impacts associated with first generation 

biofuels. Preliminary LCAs have yielded widely varied results; the inconsistency in these 

results has provided a poor platform for decision-makers in both the private and public 
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sector to decide how and where funding should be allocated and, generally speaking, 

whether or not the technology is worth pursuing. This variability has emerged due to 

the huge uncertainties regarding operating assumptions, cultivation and harvesting 

methods used, processing technologies employed, geographic resource constraints, and 

the species of algae selected as the biomass feedstock. Even the ideal metabolism of the 

organism, phototrophic or heterotrophic, has yet to be settled upon.  In terms of the 

design process, then, this indeed represents a scenario with a high number of design 

degrees of freedom. 

The research conducted for this dissertation provided a unique opportunity to work 

collaboratively with research scientists to both guide experimental work toward 

development of the optimal process design as well as to produce a well-informed life 

cycle assessment framework to realistically assess the practicality of algal biofuels. 

1.3 Research Objectives 

1.3.1 Algal bio-oil production potential through flue gas and wastewater 

co-utilization 

While there is a substantial body of literature exploring methods to improve 

cultivation and processing such that algal bio-oil production could eventually thrive in a 

stand-alone facility, no comprehensive assessment has been done to assess the 

feasibility of large-scale bio-oil production using the FWC approach. This dissertation 

provides the first national assessment, which requires integration of spatial-temporal 

climate data with carbon dioxide and wastewater constraints.   
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This research aims to address the following questions on the topic: 

Q1. What quantity of algal biofuel could be produced using FWC in a manner that 
is cost-competitive with fossil fuel? 

Q2. Which resource constraint will become limiting (if any) as production scales? 
Q3. Which cost constraints are most significant? 
Q4. Where are the best locations for producing algal biofuel using FWC? 

1.3.2 Growing algae for biofuel on direct sunlight vs. sugars 

This dissertation features a comparative LCA evaluating algal biofuel production 

pathways featuring photo-, mixo-, and heterotrophic metabolisms.  This is the first such 

analysis of its kind outside of private sector studies which have not been made public. 

This gap in the literature is noteworthy given that several of the leading private firms in 

the algae industry, as well as numerous academic groups, are currently pursuing these 

approaches.  

This research aims to address the following questions on the topic: 

Q5. How do the life-cycle impacts of algal biodiesel produced heterotrophically 
compare to a phototrophic pathway featuring algae grown in ponds.  

Q6. Could a hybrid approach featuring mixotrophic algae provide relative 
benefits?  

Q7. How do the life cycle impacts of the heterotrophic/hybrid pathways vary 
depending on the sugar feedstock (i.e. sugar from sugarcane vs. sugar from 
sugar beet)? 

1.3.3 The effect of hydrothermal liquefaction (HTL) reaction conditions 

and an alternative pathway featuring microbial regrowth on the 

life cycle and economic performance of an algal biorefinery 

Recent research has enabled a more thorough understanding of HTL rooted in 

experimental results45.  This dissertation will incorporate the reaction network model 

developed by Valdez et al. (2013) into an LCA that evaluates the life cycle impacts of an 

algal biocrude oil from HTL across a range of reaction conditions46. Given the 
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importance of reducing costs to enable commercialization of algal biofuels, this analysis 

will evaluate an economic metric in addition to the life cycle metrics of net energy ratio 

(NER) global warming potential (GWP), and occupied land.  

In addition to being the first study to analyze the sensitivity of LCA performance to 

the HTL reaction conditions, this dissertation will examine the viability of a novel 

pathway for boosting oil yields proposed by Nelson et al. (2013)35. The proposed 

regrowth pathway incorporates cultivation of microbial biomass such as E. coli on the 

aqueous phase products of HTL to recover carbon and thereby boost oil yields.  

This research aims to address the following questions on the topic: 

Q8. How would varying the reaction conditions affect the system’s performance 
in terms of environmental impacts and economics? 

Q9. If a secondary biomass such as E. Coli were to be grown on the nutrients 
remaining in the aqueous phase, how would this affect the system’s 
performance in terms of environmental impacts and economics? 

1.4 Organization of Dissertation  

In addition to the specific research questions mentioned in the previous section, the 

overarching theme of the dissertation will focus on life cycle modeling strategies in 

pursuit of an algal biofuel that is sustainable, scalable, and salable. Simple metrics for 

these criteria are defined as follows: 

Sustainable: NER is greater than 1.0 and GWP is less than half that of conventional fuel.  

Scalable: Could theoretically meet the Energy Independence and Security Act (EISA) 
Renewable Fuel Standards (RFS) , requiring production of advanced biofuels on the 
order of billions of gallons annually1. 

Salable: Can compete with fossil fuels, so a total cost of less than less than $1·-L.   
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These metrics will be revisited in the final chapter of the dissertation. To guide 

research and development toward a biofuel that achieves these objectives, the life cycle 

design process outlined in this dissertation will begin by analyzing the resource 

constraints upstream of algae cultivation. The analysis will then incorporate these 

results into a review of pathways for producing algal biomass. Once these processes 

have been well characterized a pathway will be selected and adapted into an 

overarching LCA of a biorefinery featuring HTL. This final analysis includes a more 

detailed investigation into the sensitivity of results to design variables. A summary of 

this dissertation structure and general design framework is shown in Figure 1.1.  

Chapter 2 addresses questions 1-4 by examining the abundance and location of the 

two key input resources (flue gas and wastewater) on a broad, national basis. 

Preliminary techno-economic and energy balance calculations look promising, but the 

geographic information systems (GIS) economic overlay analysis indicates that resource 

constraints (nutrients in wastewater, specifically) are significantly limiting so scalability 

criteria fails. The dissertation moves forward with analysis of an alternative strategy that 

also boasts the potential to compete with fossil fuel prices. 
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Figure 1.1 - Dissertation structure and research framework. 

Chapter 3 addresses questions 5-7 by evaluating an approach that has proven to be 

appealing within the private sector: use of heterotrophic algae rather than 

phototrophic. This strategy was investigated as a means to cultivate a biomass 

feedstock to eventually be fed to through HTL for biomass conversion. The low cost of 

sugar signals the benefits of such an approach from the perspective of salability, but a 

more thorough LCA demonstrates that the strategy comes with drawbacks typical of 

first generation biofuels which suggest that use of terrestrial energy crops might not be 

sustainable. A GIS-based impact assessment was performed and concerns regarding 

indirect land use change (iLUC) and land footprint are brought into the fray. Growth 
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modeling results from Chapter 2 are incorporated to help identify the water stress and 

land footprint of the phototrophic and hybrid pathway. The dissertation moves forward 

using the assumption of phototrophic algae grown in open ponds as the feedstock most 

likely to meet the overarching objectives.  

Chapter 4 addresses questions 8 and 9 by incorporating the results of phototrophic 

pathway modeling with experimental data provided by collaborators exploring HTL. The 

benefits of the phototrophic pathway in terms of LCA metrics is confirmed in Chapters 2 

and 3, but the high costs of production remain an obstacle to commercialization. 

Varying the HTL reaction conditions and incorporating secondary biomass as a means to 

boost yields of biocrude oil yield is explored as a means to address these concerns.  

Key findings from each of the three studies will be highlighted in Chapter 5. Results 

will be interpreted in relation to the dissertation’s overarching themes of sustainability, 

scalability, and salability.  

1.5 Journal Submissions from Chapters 

Chapters 2, 3, and 4 each represent unique bodies of research that have been 

submitted to academic journals for publication. Chapter 2 was submitted to Biomass & 

Bioenergy in May of 2011, revised and resubmitted in April 2012, and revised again in 

December 2012. Additional collaborators on this article included Gregory Keoleian and 

Nancy Love. 

Chapter 3 was submitted to Environmental Science& Technology in April of 2013 and 

is in the process of being revised based on reviewer comments in addition to feedback 
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from this dissertation committee. Additional collaborators on this article included 

Robert Levine, Gregory Keoleian, Shelie Miller, and Phillip Savage. 

Chapter 4 was submitted to the journal Algal Research in September of 2013. 

Additional collaborators on this article included Andrew Fang, Gregory Keoleian, Peter 

Valdez, Michael Nelson, Xiaoxi (Nina) Lin, and Phillip Savage. The three bodies of 

research mentioned above are included in their complete form so some content 

included in this introductory section of the dissertation will be duplicated in Chapters 2-

4.  
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CHAPTER 2. A GIS BASED NATIONAL ASSESSMENT OF 

ALGAL BIO-OIL PRODUCTION POTENTIAL THROUGH FLUE 

GAS AND WASTEWATER CO-UTILIZATION 

2.1 Abstract 

The high theoretical productivity of microalgae makes it a promising energy crop, 

but economically viable large-scale production facilities have yet to emerge. Coupling 

algae cultivation ponds with flue gas emissions from power utilities to provide carbon 

dioxide and municipal wastewater to provide nutrients has been recommended as a 

solution. This flue gas and wastewater co-utilization (FWC) strategy not only reduces the 

upstream impacts and costs associated with providing inputs, but also provides a credit 

for wastewater treatment, a service currently required to reduce production costs to a 

viable level.  

This study provides the first national assessment of the potential for producing algal 

bio-oil in the United States using FWC. Spatial-temporal algae growth was simulated 

using solar radiation and temperature data to calculate the average annual algae yield 

for any location, which significantly impacts the feasibility. The results of this model 

were integrated into a geospatial overlay analysis which establishes the economically 

viable bio-oil production potential of FWC by accounting for the relative abundance of 
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the input resources and their proximity. At most, 1.7 billion liters of bio-oil could be 

produced annually in a manner economically competitive with crude oil prices of $80 

per barrel. The amount of nutrients in wastewater limits yields to 20.5 liters of bio-oil 

per capita annually, and climatic constraints further reduce this potential by nearly 60%. 

Carbon dioxide constraints play a negligible role. Although the bio-oil production 

potential of FWC is relatively small, it does provide an opportunity to increase national 

biofuel output while providing a needed service.  

2.2 Introduction 

The high areal productivity of microalgae makes it a promising energy crop. 

Estimates indicate that transport fuel needs for the United States could be met by algal 

bio-oil using 1/20th of current agricultural land area, whereas the equivalent yield from 

corn or soybean would be impossible to achieve due to land area constraints1. Despite 

increased recent investment from the public and private sector, however, economically 

viable large-scale production facilities have yet to emerge. Furthermore, studies 

examining life-cycle impacts indicate that producing bio-oil from algae with current 

technology has a low net energy ratio (NER) and sequesters less net greenhouse gases 

than biofuels produced with other crops 2–4. These findings are due partly to the carbon 

dioxide and fertilizer input requirements. Even so, the dramatically reduced land 

intensity for production of algal bio-oil makes it an attractive alernative to pursue.  

Coupling algae cultivation ponds with flue gas emissions from power utilities to 

provide a source of carbon dioxide and municipal wastewater to provide a source of 
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nutrients has been recommended in  several studies5–11. This flue gas and wastewater 

co-utilization (FWC) strategy not only reduces the upstream impacts and costs of 

supplying carbon dioxide and nutrients, but also creates environmental and economic 

credits by offsetting the aeration and nutrient removal impacts from wastewater 

treatment. Pilot facilities have demonstrated that algae are capable of growth in 

systems with concurrent removal of high levels of biological oxygen demand (BOD) and 

with reduced aeration energy requirements 12,13. An analysis by Lundquist et al. (2010) 

demonstrates that the economic credit for such a service is also a necessary revenue 

stream to bring production costs to a reasonable level 14.  

While there is a substantial body of literature exploring methods to improve 

cultivation and processing such that algal bio-oil production could eventually thrive in a 

stand-alone facility, no comprehensive assessment has been done to assess the 

feasibility of large-scale bio-oil production using the FWC approach. This study is the 

first national assessment, which requires integration of spatial-temporal climate data 

with carbon dioxide and wastewater constraints.  Wigmosta et al. (2011) demonstrated 

that algal bio-oil could theoretically be produced domestically in volumes sufficient to 

obviate nearly half of our country’s transportation petroleum imports 15. These findings 

provide an encouraging upper production limit, but as this study shows, the necessity to 

collocate with other resources dramatically reduces this production potential.   

The United States Department of Energy’s 20 + year research project, the Aquatic 

Species Program, provided a thorough examination of the technical aspects of 
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cultivating algae for bio-oil production. The project concluded that the most cost-

effective method for cultivating algae is the use of a high rate pond (HRP), an approach 

featuring a raceway configuration circulated via a paddlewheel, sparged with a carbon 

dioxide source to facilitate maximum growth16. A life-cycle assessment (LCA) by 

Stephenson et al. (2010) also concluded that this open pond strategy has significantly 

less environmental burden than the typical alternative, a tubular photo-bioreactor17. In 

his comparison of the two approaches, Grobbelaar (2009) acknowledges that while 

photo-bioreactors have many benefits (such as reduced water loss, less risk of 

contamination, and higher carbon dioxide use efficiency), open ponds have lower 

construction costs and are easier to maintain18. Given these considerations and the 

availability of data on the HRP approach, this cultivation strategy was modeled in this 

study. 

Many studies have explored the growth of algae on flue gas7,19–22. Weissman and 

Goebel (1987) showed that there are substantial economic benefits offered by avoiding 

the purchase of carbon dioxide23. Use of wastewater as a nutrient source would not only 

eliminate fertilizer costs, the treatment services provided yield an economic credit to 

offset the costs of operating the algae pond. Woertz (2009) demonstrated that algae is 

an effective means for removing nutrients from wastewater when sparged with carbon 

dioxide, removing more than 99% of ammonium and orthophosphate10. Ironically, the 

chief motivation for removing such nutrients is to prevent uncontrolled algae growth 
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that disrupts aquatic ecosystems. Growing algae on these nutrients in a controlled 

environment, conversely, enables the recovery of a valuable product. 

The purpose of this study is to identify the most viable regions for FWC and estimate 

the amount of algal bio-oil that could theoretically be produced in this manner cost-

competitively with fossil fuels. To this end an algae growth simulation is conducted to 

calculate average annual algae yield across the United States. The results of this model 

are then incorporated into an integrative climate and resource overlay analysis used to 

compare the economic viability of using FWC at any location throughout the country.  

2.3 Background 

Clarens et al. (2010) demonstrated in their LCA that more than half of the total 

upstream energy required for algal biomass production is from providing carbon dioxide 

and fertilizer. These inputs could theoretically be eliminated by utilizing anthropogenic 

resources. The results of an LCA performed by Lardon et al. (2009) emphasized the 

benefits of wet-harvesting rather than drying the algal biomass prior to conversion, but 

also clearly indicated the significance of energy burdens from fertilizer production2. 

These studies suggest that to achieve a net energy ratio (NER) greater than one for bio-

oil produced from algae grown under normal circumstances (i.e. not nutrient limited), 

not only would a wet-harvesting strategy be required, but also elimination of upstream 

energy burdens associated with fertilizer production.  

The NER could be further increased by assigning a credit for wastewater treatment 

services and reducing the amount of aeration energy required for traditional treatment 
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processes. Algae release oxygen during photosynthesis which is required during 

treatment to enable growth of heterotrophic bacteria that remove BOD. If the energy 

input requirement for aeration is assumed to be 0.2 kW·h of energy per cubic meter of 

wastewater treated, then 0.3 MJ of aeration energy would be offset per MJ of bio-oil 

produced24. An additional 0.5 MJ per MJ of bio-oil credit could also be applied for the 

service of nutrient removal based on data from Maurer et al. (2003) and assumptions 

about the composition of algal biomass25,26. The total amount of energy offset by 

providing wastewater treatment is therefore substantial, summing to a value that is 

nearly 80% of the energy content in the bio-oil produced. Refer to the Supporting 

Information for further details. 

In addition to the benefits observed from a life-cycle perspective, there are 

economic advantages.  From the perspective of wastewater treatment, Downing et al. 

(2002) found that HRPs provided treatment at a cost that was about 70% less than the 

conventional activated sludge approach27. Compared to algae cultivation without the 

feedstocks there are also significant savings. Weissman and Goebel (1987) provide a 

detailed account of the economics of constructing and operating a microalgal open 

pond23. The report included an economic comparison between a 1,000 acre pond base 

case, assuming a carbon dioxide cost of $35·t-1, and a scenario featuring free carbon 

dioxide.  It was found that nutrients and carbon dioxide represented nearly half of the 

total costs. Their analysis assumed an optimistic algae yield of 30 g·m-2
·day-1, so the cost 

per acre savings would be less for ponds with lower yields. According to the algae 
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growth model simulation presented later in this study, most locations will not perform 

as well.  

The costs for transporting these resources were investigated as part of the 

geospatial analysis presented later in this paper. Also, the opacity of sewage does not 

allow for deep light penetration and therefore phototrophic algae are photolimited10. 

Diluting the wastewater would not only increase the water input requirements, but in 

order to maintain the desired hydraulic residence time (HRT) the pond depth would 

need to be increased thereby increasing both the pond construction and operational 

expenses.  Furthermore, to fully treat the wastewater and obtain the necessary credit 

the HRP must be integrated into a more extensive process. This study assumes the HRP 

model configuration shown in Figure 1 which was developed by Lundquist et al. (2010) 

14. In their analysis this configuration is identified as the only approach in which algal 

bio-oil could be produced in an economically viable manner. This analysis, published by 

the Energy Biosciences Institute, does not appear in a peer-reviewed publication. It is 

the only such detailed analysis, however, and the authors are preeminent in the field of 

wastewater treatment using algae. The authors are the first to explore the techno-

economic feasibility of fully integrating wastewater treatment into the process design 

rather than using algae as a form of tertiary treatment for nutrient removal. Anaerobic 

digestion is used on site to produce electricity and process heat from the residual (non-

lipid) biomass along with solids collected from the wastewater in a primary clarifier 
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upstream of the cultivation ponds. Permitting and regulatory concerns regarding the 

capture and transport of flue gas are outside the scope of this analysis.  

 

Figure 2.1 - Wastewater treatment & bio-oil production process schematic. Source: Lundquist et al. (2010)[14]. 

2.4 Methods 

The availability of the flue gas and wastewater inputs for algae growth provide an upper 

limit for how much algae can be cultivated. Conversion factors are therefore 

determined to establish how the available quantities of these resources translate into 

bio-oil production. But even locations where these inputs are abundant may not be 

appropriate for FWC, as not all locations have suitable climates for algae cultivation. 

Climatic parameters determine pond size requirements and are therefore 

predominantly responsible for distinguishing economically viable locations from those 

that are not. A MATLAB® growth model is used to calculate an average annual algae 
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yield for any location across the contiguous United States based on the spatial-temporal 

parameters solar radiation and temperature. Finally, a GIS model is used to integrate 

the locations and quantities of the input resources with the findings of the algae growth 

model. The results of this overlay analysis are used to establish an estimate for the 

amount of algal bio-oil production that could be theoretically produced annually using 

FWC.  

2.4.1 Nutrient Availability 

The quantity of nutrients required per unit of biomass can be established by the 

molecular composition of algal biomass. Data from Grobbelaar (2004) suggests a 

stoichiometry of approximately C100H183O48N11P26. Crites and Tchobanoglous (1998) 

report that the average per capita Total Kjeldahl Nitrogen (TKN, sum of ammonia and 

organic nitrogen) mass loading rate is 4.85 kg·person-1·year-1, while Scheehle & Doorn 

(2001) estimate a higher value of 9.37 kg·person-1·year-1 28,29. These values were used as 

high and low scenarios for a sensitivity analysis and the average was implemented as 

the baseline. In their meta-analysis, Liu et al. (2012) report lipid contents ranging from 

21% to 40% 4, but to be consistent with the Lundquist et al. (2010) techno-economic 

analysis a lipid content of 25% was used for the baseline 14. A sensitivity analysis 

explores a range of values from 20% to 30%. Assuming an annual average nitrogen 

removal efficiency of 70%, the conversion rate can be established as 20.5 L-

oilalgal·person-1·year-1. This value determines the theoretical limit for production of bio-

oil from algae grown on wastewater, assuming no fraction of the nutrients is recycled.  



 

26 

 

Considering that the United States consumes 1.4 billion liters of motor gasoline daily30, if 

wastewater from all of the 226 million residents served by central facilities 31 could be 

captured and used for algae cultivation, only about 1% of this transport fuel demand 

could be met.  This provides an upper limit on the FWC scenario proposed.  

Based on the biomass composition assumptions, 1.88 kg of carbon dioxide is 

required per every kilogram of algal biomass grown. A substantial amount of carbon is 

delivered with the wastewater, however, and much of this material could be collected in 

the primary clarifier and processed in the anaerobic digester along with the non-lipid 

portions of the algal biomass. The carbon dioxide recycled from the combustion of 

biogas is sufficient to meet the algal growth requirements for much of the year, though 

during periods of high growth some carbon dioxide will need to be imported from an 

external source such as power utility flue gas 14. Based on approximations by Lundquist 

et al. (2010), this analysis assumes that an annual average of 8% of the carbon in the 

algal biomass will need to be supplemented by flue gas imports. Most of the carbon 

dioxide emitted from power utilities, however, will not be converted into biomass. It is 

assumed that no gas storage scheme is utilized and only 30% of the carbon dioxide is 

assimilated into biomass because the operating schedule of these facilities does not 

align with the algae growth profile within the ponds6. This parameter will be explored as 

part of a sensitivity analysis performed later in this study with values ranging from 20% 

to 40%. Maintaining the assumption of 25% lipid content the conversion rate can then 

be established as 540 L-Oilalgal per tonne CO2. This value compared to the nitrogen 
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limited conversion rate reveals that availability of carbon dioxide from flue gas is 

significantly less constraining than the availability of nutrients. The United States 

emitted more than two billion tonnes of carbon dioxide for energy from combustion of 

coal alone in 2008, indicating that nearly a fifth of our motor gasoline demand could be 

met from this supply alone, excluding the carbon available in wastewater, if there were 

no other limiting factors32. 

The GIS analysis implemented uses a dataset containing populations of “urban 

areas” from the 2000 United States Census33. Clusters of cities often containing 

surrounding suburbs are lumped into a single region, with boundaries of polygons 

designating the extent of the area with a sufficiently high population density. Only 

polygons with large populations (defined here as those containing more than 100,000 

people) were considered.  These 254 regions included more than 180 million people, or 

approximately 60% of the total population. A dataset including point locations of power 

utilities and their carbon dioxide emissions as reported under the EPA’s Acid Rain 

legislation was obtained from Purdue University’s Vulcan Project34. Only facilities that 

produce enough carbon dioxide to meet the equivalent bio-oil production from the 

population cutoff of 100,000 people were considered. A total of 948 power utilities 

matched this criterion, producing a total of more than 2.4 billion tonnes of carbon 

dioxide per year, or approximately 40% of total anthropogenic carbon dioxide emissions 

in the United States.  
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The GIS modeling assumes that at any point in the United States, wastewater will be 

transported from the edge of the nearest urban area polygon and carbon dioxide from 

the point of the nearest power utility. With this assumption, the zone assigned to each 

resource can be defined using Theissen polygons, which divide the terrain into regions 

such that any location within the polygon is closer to its associated point than to any 

other point. The urban area polygons were first converted to points prior to Theissen 

polygons. The total amount of bio-oil that can be produced based on these inputs can 

then be established by multiplying the conversion ratios from the previous section with 

the respective nutrient availability within each of the sets of zones. It will be the lesser 

of these two quantities that determines how much bio-oil can be produced at that 

point.   

The annualized cost for constructing and maintaining a pipe for carbon dioxide 

transport is included in Table 2.  The annualized cost for constructing and maintaining a 

trunk sewer for wastewater transport is also included in Table 2. The fact that the cost is 

proportional to the square root of the flow rate implies economies of scale. In this 

model it is assumed that only the amount of nutrient required to produce the bio-oil will 

be transported. So, for example, in a location that is limited by wastewater availability 

rather than carbon dioxide, all of the wastewater will be transported to that location but 

only the required fraction of the available flue gas.  
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2.4.2 Spatial-Temporal Algae Growth Model 

Because algae are photosynthetic organisms, biomass production is limited by the 

exposure to sunlight and hence the area of the cultivation pond.  Factoring climatic 

conditions and amount of solar radiation, the amount of algal biomass that can be 

cultivated per surface area of the pond, or areal yield, varies significantly by region. 

Predicting this areal yield, typically expressed in terms of g∙m-2∙day-1 or L∙ha-1∙year-1, is 

therefore a key aspect of locating optimal algae cultivation sites. Previous research has 

either compared a small sample of sites or distinguished preferred regions as those 

exceeding a particular average temperature and/or solar radiation threshold. Given non-

linear dependency of algae growth on temperature and insolation, however, using such 

approaches is an oversimplification.  

 Tamiya et al. (1953) focus on the growth kinetics of a species of Chlorella and 

investigate the dependence on temperature and light35. In this study an equation to 

describe the areal algae yield, Ya (measured in g∙m-2∙day-1) is empirically derived and 

reported to be  

    (
  

 
)  (   

  

 
)    (  

   

   
)   . (1) 

The parameters used in this formula along with their descriptions, units, and 

empirically derived values are included in Table 1.  
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Table 2.1 - Growth formula inputs [35]. 

Parameter Description Units Value 

L Solar radiation kilolux-hour∙day-1 
∙m-2 

Input, measured in 
field 

KG Kinetic parameter day-1∙m-2 0.07·Temp - 0.44 

γ Light intensity 
correction factor 

dimensionless 0.64 

ε Extinction 
coefficient 

ml-1 0.41 

α Rectangular 
hyperbola shape 
parameter 

day-1∙kilolux-1   0.45 

H Duration of sunlight hours∙day-1 12 

C Dry weight 
conversion 

g∙ml-1 0.25 

 

It is currently more common to report solar irradiance in the flux density units of 

kW·m
-2 rather than Kilolux (lux = lumen·m-2). Here it is assumed that the average sun 

and sky luminous efficiency is 108 lumens per watt36. The H parameter is used to 

convert daily quantities of sunlight to an average intensity; by assuming a constant value 

some error is introduced, particularly at higher latitudes where seasonal variation is 

more pronounced. This model assumes the culture is maintained with high population 

densities in the linear phase of growth (i.e. the biomass is harvested in an optimal 

fashion).  

The National Renewable Energy Laboratory (NREL) provides a GIS dataset containing 

average daily global horizontal insolation in the United States for each month37. This 

data was converted into a grid format with a resolution of approximately 1/10 of a 

decimal degree using ArcGIS® software and then imported into twelve 250×574 
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matrices within MATLAB®. The twelve values for each of the grid cells were then linearly 

interpolated to approximate values for the 365 days of the year.  The result is a 

250×574×365 matrix containing the estimated kW·hr·m-2 for each gridded region of the 

United States and for each day.  

The PRISM Climate Group at Oregon State University provides a dataset containing 

average daily maximum temperature for each month38. Using the same procedure 

described for the NREL data, a 250×574×365 matrix containing the estimated maximum 

temperature for each gridded region of the United States and for each day was 

established. It is assumed that the temperature of the water within the pond matches 

that of the ambient atmosphere. Heat transfer dynamics are neglected due to the 

relatively shallow depth of the pond. Average maximum temperatures were chosen 

because the majority of algae growth occurs during the periods of peak solar radiation 

which typically coincides with the warmest period of the day.  The growth model 

therefore presents an upper limit on algae yield. The results of a more conservative 

growth model, which uses the average of the daily maximum and minimum 

temperature, are included in the Supporting Information.   
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Figure 2.2 - Simulation results: A) Average annual yield, and B) Variation in yield, expressed as the maximum 
daily yield observed over the year minus the minimum yield observed over the year. 

The growth formula (Equation 1) was then used to estimate areal yield for each of 

the cell locations for every day of the year. The average annual algae yield determined 

by the simulation is shown in Figure 2a.  The results are within the range of values 

reported by other studies for specific sites. As expected, locations in the lower latitudes, 

where warmer temperatures and greater solar radiation prevail, tend to produce a 

higher average annual yield. While southern locations tend to outperform northern in 

general, however, there is a significant amount of variation in algae yield at any given 

latitude. This variation is due to the drastic differences in geography and climate across 

the breadth of the country. Latitude alone is an insufficient means for predicting algae 

production rates. In addition to geographic variation, seasonal variation in production is 

also noteworthy. Figure 2b illustrates this phenomenon, expressed as the difference 

between maximum and minimum algae yields over the course of the simulated 365 

days. While the arid regions of the southwestern United States exhibit a relatively high 

variation in output, Texas and the southeast have average yields that are nearly as high, 
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but with more consistent production throughout the year. The state of Florida has 

particularly stable output, as do portions of the western coastline where the thermal 

mass of the ocean helps regulate the temperature.  

The amount of algal biomass that can be cultivated and the rate of algae growth, as 

defined by the GIS growth model, have both been established and therefore the 

required pond size can be deduced. Here it is assumed that the size of the pond is 

simply the number of liters that can be produced divided by the average areal yield 

(when expressed as L·ha-1·year-1). So for example a site that could produce 10 million 

liters per year with an average productivity of 25,000 L·ha-1·year-1 would require a 400 

hectare pond.  According to the analysis by Lundquist et al. (2010), the annualized cost 

of the wastewater treatment facility incorporating a 100 hectare HRP is approximately 

$51,000 per hectare for both capital recovery and operational costs once carbon dioxide 

delivery costs have been removed. This value, which also includes oil extraction costs 

from a presumed shared facility, is used in the GIS analysis. It is likely that economies of 

scale could reduce this cost for larger facilities but this is not addressed. It is assumed 

that the costs of the entire treatment facility scale in proportion to the pond size. 

2.4.3 Integrative GIS Overlay Analysis 

Incorporating the values shown in Table 2 enables the transport costs and growth 

rate GIS layers to be summed in equal units, weighted according to the economic 

burdens. It is important to note that while evaluating the results in economic terms, 

ultimately expressed as dollars per liter, this is not a thorough economic analysis. The 
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results are a high-level comparison of economic feasibility across the expanse of the 

country. Factors such as costs of land and labor, for example, vary within the United 

States but are treated as constant in this analysis. But by expressing the results in terms 

of dollars the necessity to attribute arbitrary weighting schemes for combining the 

multiple data layers is avoided. An illustration of this GIS layering methodology is 

included in the Supporting Information. 

Table 2.2 - Economic assumptions incorporated into GIS overlay analysis. Inflation adjustments from the US 
Bureau of Labor Statistics. 

 Formula Reference Conversion Rate 

Treatment Facility Cost 
   

       

            
   

Adapted from 
[14] 

none 

Wastewater Sewage Linea 
      

      √ 

     
 

Adapted from 
[39] 

7.25 

Carbon Dioxide Pipeline 
       

      

        
 

Adapted from 
[14] 

none 

Wastewater Treatment 
Credit         

     

      
 

[14],[40] none 

2.5 Results and Discussion  

Figure 3 shows the graphical results of the economic overlay analysis. Locations 

within the urban areas originally appear to be the most viable because the distance for 

wastewater transport is taken to be zero within the boundaries of the polygons. These 

regions are assumed not to be candidates for large-scale algae cultivation because by 

definition they have a high population density and therefore a lack of undeveloped land 

for facility siting. For this reason these areas are whitened out and excluded from the 

quantitative analysis.  
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Figure 2.3 - Results of economic overlay analysis. The pond area shown to the right of the map is 
approximately 83,000 hectares, or the pond area required to produce 1.7 billion liters of algal bio-oil annually using 
FWC, the quantity that could be economically produced. 

The results indicate, predictably, that regions near the urban areas are more 

favorable than regions that require construction of longer sewer lines. Power utility 

locations had a less noticeable influence on the results. A band 10km wide was created 

around each of the urban areas as a means to evaluate average results within that 

surrounding region. The Spatial Analyst toolbox provided by ArcGIS® was used to 

perform this analysis. Chisti (2007) indicates that the required cost of producing algal 

bio-oil to be competitive with crude oil is  

                 
                (2) 

where Calgal oil is the cost to produce algal oil, expressed in dollars per liter, prior to taxes, 

marketing, and conversion to biofuel and Cpetroleum is the price of crude oil in dollars per 



 

36 

 

barrel1. With a cost of fossil crude oil of $80 per barrel, then, the cost to produce algal 

bio-oil would need to be less than $0.55 per liter to be considered viable. Using this 

cutoff to identify regions that would be competitive with fossil-derived petroleum 

suggests that approximately 1.7 billion liters of bio-oil could be produced. Using the 

more conservative pond temperature assumptions provided in the Supporting 

Information cuts these projections to less than half of the initial estimate. The true value 

is somewhere within this range. The average annual yield results used to project the 

upper limit, however, are more consistent with values observed in other literature for 

individual sites and therefore present a more likely scenario.  

Given that this is a macro-level analysis, the model is heavily driven by a number of 

parameter assumptions. A baseline and range of values for these key variables, shown in 

Table 3, was explored in a Monte Carlo analysis using RiskSim©, with triangular 

probability distributions for each.  A sensitivity analysis was also performed to better 

understand the individual effects of the variables. A boxplot of the 10,000 trial Monte 

Carlo analysis is shown alongside the results of the sensitivity analysis in Figure 4. The 

results are most sensitive to the economic variables of infrastructure cost and 

wastewater treatment (BOD removal) credit. If infrastructure costs were to be reduced 

by 25% the total production potential would increase to 2.9 billion liters annually. 

Increasing the wastewater treatment credit by 25% increases the production potential 

to 2.0 billion liters annually. The cost of crude oil had less of an impact because the shift 
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in the value used to identify economically viable regions was small relative to the shifts 

in cost and credit that arise from the other two economic variables. 

Table 2.3 - Range of values used in the sensitivity and Monte Carlo analyses. The references for the TKN per 
capita loading refer to the low and high scenarios, respectively, while the other references refer to the baseline 
value. 

Sensitivity Analysis 
Parameter 

Units Low Baseline High Reference 

CO2 Utilization 
Factor 

Dimensionless 20% 30% 40% [6] 

Lipid Content Dimensionless 20% 25% 30% [14] 

Infrastructure Costs $·ha-1·yr-1 for HRP 38,200 50,900 63,600 [14] 

TKN per capita Kg-TKN·person-1·yr-1 4.85 7.11 9.37 [28],[29] 

Fossil Oil Costs $·barrel-1 60 80 100  

BOD Removal Credit $·kg-BOD-1 .98 1.23 1.48 [14],[40] 

 

Of the six sensitivity variables explored, two manipulate the effective abundance of 

the two major resource constraints considered: nutrients from wastewater and carbon 

dioxide from flue gas. Adjusting the average TKN loading rate affects the potential yield 

of algal biomass per capita, and adjusting the CO2 utilization factor affects the yield per 

tonne of carbon dioxide in flue gas emissions. The results are much more sensitive to 

changes in the nutrient availability than to carbon dioxide availability, as represented by 

the slopes of the lines shown in Figure 4. For example, increasing the TKN loading rate 

boosted the production potential proportionally, while increasing the utilization of 

carbon dioxide had a negligible effect. This observation reinforces the notion that 

nutrient availability is a significantly more active constraint than flue gas availability.  
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Figure 2.4 - Results of the Monte Carlo and sensitivity analyses, created by implementing the range of values 
shown in Table 3. The lines of the sensitivity analysis cross each other at 100%, which represents the result 
featuring baseline values. The boxplot on the left shows the distribution of the 10,000 results outputted by the 
Monte Carlo simulation. The central box spans from the first quartile through the third quartile, with the horizontal 
line indicating the mean value. The whiskers extend from the box to the sample minimum and maximum. 

This analysis assumes there is no internal nutrient recycling loop occurring in the 

treatment scheme. Given that the facilities are heavily dependent up on the revenues 

from wastewater treatment to bring the cost of bio-oil to a competitive value, 

implementing high levels of nutrient recycling would require increased pond 

infrastructure to accommodate the boosted production yet would not receive increased 

revenue because the wastewater throughput would not change, thereby elevating the 

average cost per liter of algal bio-oil. It could still be possible, however, to recycle 

nutrients during portions of the year with peak algal growth rates without increasing the 

pond size or affecting the quality of treatment effluent14. Results of the sensitivity 

analysis demonstrate that increasing the effective availability of nutrients will bring a 
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proportional increase in production potential. For example, recycling 1/4 of the 

nutrients would bolster production potential by as much as a third; recycling 1/3 of the 

nutrients would increase production by as much as 50%. Optimizing the facility’s 

operation to maximize nutrient recycling without detrimentally impacting treatment 

efficiency is an area that deserves further research. 

The distribution of cost contributions for the production of a liter of algal oil using 

FWC is reported in Table 4. The predominant cost is the treatment facility, which varies 

greatly depending on the location. In cold climates like Duluth, MN, for example, the 

treatment facility contributes nearly $6 per liter while in Phoenix, AZ, it contributes less 

than $2 per liter. In the best location most, if not all, of this burden is offset by the $2.65 

per liter credit assigned for the treatment service. Wastewater and flue gas transport 

had less impact on the final cost, contributing on average $0.13 and $0.03 per liter, 

respectively. For 73 of the 254 urban areas considered the net cost was negative, 

meaning that no revenue from the production of algae is required for the facility to 

make a profit. This result is consistent with other claims that using algae for wastewater 

treatment can be economically preferable to conventional approaches.  

Table 2.4 - Distribution of costs and credits associated with the production of a liter of algal bio-oil using FWC 
for the 254 urban areas evaluated. 

 Infrastructure, 
HRP 

WW 
Transport 

CO2 
Transport 

Treatment 
Credit 

Total 
$/liter 

Average $ 3.27 $ 0.13 $ 0.03 $ (2.65) $ 0.78 

Minimum $ 1.98 $ 0.02 $ 0.01 $ (2.65) $ (0.61) 

Maximum $ 5.89 $ 0.20 $ 0.18 $ (2.65) $ 3.45 

St. Dev. $ 0.89 $ 0.05 $ 0.02 $   - $ 0.89 
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The Venn diagram in Figure 5 demonstrates that while the supply of carbon dioxide 

from flue gas is relatively vast, the supply of nutrients in wastewater limits the 

production potential to the order of billions of liters per year. This amount is further 

reduced by nearly 60% due to the inappropriate climate where most of the country’s 

population resides. 

 

Figure 2.5 - Relative abundance of inputs for FWC, and where losses in national production potential occur. 

2.6 Conclusion 

Cultivating algae for bio-oil using FWC is an economically and environmentally 

worthwhile pursuit that is feasible with current technologies, presenting an opportunity 

to immediately escalate the country’s biofuel production while providing the important 

service of removing nutrients from wastewater. But while this approach could have a 

relatively big impact relative to our current levels of renewable fuel production, 

limitations in the quantity of nutrients present in municipal wastewater prevent FWC 

from significantly reducing dependency on fossil-derived fuels. The amount of nutrients 

in wastewater limits yields to 20.5 liters of bio-oil per capita annually, and climatic 
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constraints further reduce this potential by nearly 60%. Flue gas supply constraints play 

a negligible role, though the proximity to flue gas emissions must not be overlooked nor 

should the technical and regulatory challenges associated with its transport. Nutrient 

recycle and use of animal feedlot wastestreams could increase this upper limit, but 

whether or not this could succeed economically has not been determined.  

Because transporting wastewater is more expensive than doing so for the equivalent 

requirement of carbon dioxide, the most viable locations tend to be located nearest 

urban areas, and the economies of scale for constructing sewer trunks make those 

urban areas with high populations most favorable. Climatic conditions such as 

temperature and solar radiation, however, establish the rate at which algae can grow 

and therefore the size of cultivation facilities required, the predominant economic 

hurdle. For this reason an accurate GIS model to interpret climate variations in terms of 

theoretical algae yield is crucial. The analysis included in this study provides initial 

results. 

Wastewater treatment is a needed service, so it makes sense to produce algal bio-oil 

as part of the process if it can be done in an economically competitive fashion. If 

eliminating dependence on fossil fuels is a priority of the country FWC should be 

employed in the near-term future, if not for the volume of immediate bio-oil production 

then for its potential to advance technologies that will enable algal bio-oil production 

that is not economically dependent on the revenue from wastewater treatment.   



 

42 

 

2.7 Chapter 2 References 

(1) Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007;25(3):294-306. 

(2) Lardon L, Helias A, Sialve B, Steyer JP, Bernard O. Life-Cycle Assessment of Biodiesel 
Production from Microalgae. Environ Sci Technol 2009;43(17):6475-81. 

(3) Clarens AF, Resurreccion EP, White MA, and Colosi LM. Environmental Life Cycle 
Comparison of Algae to Other Bioenergy Feedstocks. Environ Sci Technol 
2010;44(5):1813-19. 

(4) Liu X, Clarens AF, Colosi LM. Algae biodiesel has potential despite inconclusive 
results to date. Bioresource Technol 2012;104: 803–6. 

(5) Kadam KL. Power plant flue gas as a source of CO2 for microalgae cultivation: 
economic impact of different process options. Energ Convers Manage 
1997;38(1):505-10. 

(6) Benemann JR. Utilization of Carbon Dioxide from Fossil Fuel-Burning Power Plants 
with Biological Systems. Energ Convers Manage 1993;34(9-11):999-1004. 

(7) Zeiler KG, Heacox DA, Toon ST, Kadam KL, and Brown LM. The Use of Microalgae for 
Assimilation and Utilization of Carbon Dioxide from Fossil Fuel-Fired Power Plant 
Flue Gas. Energ Convers Manage 1995;36(6-9):707-12. 

(8) Green FB, Bernstone LS, Lundquist TJ, Oswald WJ. Advanced Integrated Wastewater 
Pond Systems for Nitrogen Removal. Water Sci Technol 1996;33(7):207-17. 

(9) Oswald WJ, Gotaas HB, Ludwig HF, Lynch V. Algae Symbiosis in Oxidation Ponds: III. 
Photosynthetic Oxygenation. Sewage Ind Wastes 1953;25(6):692–705. 

(10) Woertz I, Feffer A, Lundquist T, Nelson Y. Algae Grown on Dairy and Municipal 
Wastewater for Simultaneous Nutrient Removal and Lipid Production for Biofuel 
Feedstock. J Environ Eng-ASCE 2009;135: 1115. 

(11) Clarens AF, Nassau H, Resurreccion EP, White MA, Colosi LM. Environmental 
Impacts of Algae-Derived Biodiesel and Bioelectricity for Transportation. Environ Sci 
Technol 2011;45(17):7554-60.  

(12) Oswald WK. Advanced integrated wastewater pond systems. Proceedings of the 
ASCE Convention 1990: 73–80. 

(13) Noüe J, Laliberté G, Proulx D. Algae and waste water. J App Phycol 1992;4(3):247–
54. 

(14) Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR. A Realistic Technology and 
Engineering Assessment of Algae Biofuel Production. Energy Biosciences Institute, 
University of California, Berkeley; 2010. 



 

43 

 

(15) Wigmosta MS, Coleman MA, Skaggs RJ, Huesemann MH, Lane LJ. National 
microalgae biofuel production potential and resource demand. Water Resour Res 
2011;47(W00H04):13pp. 

(16) Sheehan J, Dunahay T, Benemann J, Roessler P. A Look Back at the U.S. Department 
of Energy’s Aquatic Species Program. Biodiesel from Algae. U.S. Department of 
Energy, Office of Fuels Development; 1998. 

(17) Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG. Life-Cycle 
Assessment of Potential Algal Biodiesel Production in the United Kingdom: A 
Comparison of Raceways and Air-Lift Tubular Bioreactors. Energ Fuel 
2010;24(7):4062-77. 

(18) Grobbelaar JU. Factors governing algal growth in photobioreactors: the ‘open’ 
versus ‘closed’ debate. J Appl Phycol 2008;21(5):489-92. 

(19) Matsumoto H, Shioji N, Hamasaki A, Ikuta Y, Fukuda Y, Sato M, Endo N, Tsukamoto 
T. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas 
discharged from a boiler. Appl Biochem Biotech 1995;51(1):681-92. 

(20) Vunjak-Novakovic G, Kim Y, Wu X, Berzin I, Merchuk JC. Air-Lift Bioreactors for Algal 
Growth on Flue Gas:  Mathematical Modeling and Pilot-Plant Studies. Ind Eng Chem 
Res 2005;44(16):6154-63. 

(21) Lee JS, Kim DK, Lee JP, Park SC, Koh JH, Cho H-S, Kim SW. Effects of SO2 and NO on 
Growth of Chlorella sp. KR-1. Bioresource Technol 2002;82(1):1-4. 

(22) Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM. Selection of microalgae for lipid production 
under high levels carbon dioxide. Bioresource Technol 2010;101(1):S71-4. 

(23) Weissman JC, Goebel RP. Design and Analysis of Microalgal Open Pond Systems for 
the Purpose of Producing Fuels. Golden, CO: Solar Energy Research Institute; 1987. 

(24) Nielsen PH, Jørgensen KR. Municipal wastewater treatment. LCA food database, 
2002. Available at: 
http://www.lcafood.dk/processes/wastetreatment/wastewatertreatment.htm 
[Accessed: 05.05.11]. 

(25) Maurer M, Schwegler P, Larsen T. Nutrients in urine: energetic aspects of removal 
and recovery. Water Sci Technol 2003;48(1):37-46. 

(26) Grobbelaar JU. Mineral Nutrition. in Richmond A (ed) Handbook of Microalgal 
Culture Biotechnology and Applied Phycology, Oxford, UK: Blackwell; 2004. 



 

44 

 

(27) Downing JB, Bracco E, Green FB, Ku AY, Lundquist TJ, Zubieta IX, Oswald WJ. Low 
cost reclamation using the Advanced Integrated Wastewater Pond Systems® 
Technology and reverse osmosis. Water Sci Technol 2002;45(1):117-25. 

(28) Crites RW, Tchobanoglous G. Small and Decentralized Wastewater Management 
Systems. McGraw-Hill; 1998. 

(29) Scheehle EA, Doorn MRJ. Improvements to the US Wastewater Methane and 
Nitrous Oxide Emissions Estimates. US EPA; 2001. 

(30) Oil: Crude and Petroleum Products - Energy Explained, Your Guide To 
Understanding Energy. Available at: 
http://www.eia.doe.gov/energyexplained/index.cfm [Accessed: 22.07.10]. 

(31) Clean Watersheds Needs Survey 2008. Report to Congress, U.S. Environmental 
Protection Agency; 2008. 

(32) EIA - Emissions of Greenhouse Gases in the U.S. 2008-Carbon Dioxide Emissions. 
Available at: http://www.eia.doe.gov/oiaf/1605/ggrpt/carbon.html [Accessed: 
03.08.10]. 

(33) United States Census 2000, United States Census Bureau. Available at: 
http://www.census.gov/main/www/cen2000.html [Accessed: 03.08.10]. 

(34) Gurney KR, Mendoza D, Zhou Y, Fischer M, Miller C, Geethakumar S, de la Rue S. 
The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for 
the United States. Environ Sci Technol 2009; 43(14):5535-41. 

(35) Tamiya H, Hase E, Shibata K, Mituya A, Iwamura T, Nihei T, Sasa T. Kinetics of 
Growth of Chlorella, with Special Reference to its Dependence on Quantity of 
Available Light and on Temperature. In Burlew JS (ed) Algal Culture, from 
Laboratory to Pilot Plant. 5th ed. Carnegie Institution of Washington Publication 
600; 1953. 

(36) Atkins WRG, Poole HH. Photoelectric measurements of the luminous efficiency of 
daylight. P Roy Soc Lond B Bio 1936; 121(820):1-17. 

(37) NREL: Dynamic Maps, GIS Data, and Analysis Tools. Available at: 
http://www.nrel.gov/gis/ [Accessed: 13.07.10]. 

(38) PRISM Climate Group, Oregon State University. Available at: 
http://www.prism.oregonstate.edu/ [Accessed: 13.07.10]. 

(39) Deininger RA, Su SY. Modelling Regional Waste Water Treatment Systems. Water 
Res 1973; 7(4): 633-46. 



 

45 

 

(40) The 2002 Financial Survey: A National Survey of Municipal Wastewater 
Management Financing and Trends. Association of Metropolitan Sewerage 
Agencies; 2002. 



46 
 

 

 

CHAPTER 3. GROWING ALGAE FOR BIODIESEL ON 

DIRECT SUNLIGHT OR SUGARS: A COMPARATIVE LIFE 

CYCLE ASSESSMENT 

3.1 Abstract 

Growing heterotrophic algae in fermenters with sugar as the energy and carbon 

source rather than sunlight and carbon dioxide is an approach being commercialized 

today. However, the full environmental impacts of this fuel pathway have not been 

explored. The objective of this analysis was to compare the life-cycle impacts of algal 

biodiesel produced heterotrophically to a phototrophic pathway featuring algae grown 

in ponds. A third, hybrid approach utilizing algae capable of both phototrophy and 

heterotrophy was also explored. Sugar beet and sugarcane were examined as 

feedstocks for the heterotrophic process. 

The results indicate that a reduction in the global warming potential (GWP) and an 

improvement in the fossil energy ratio (FER) for algal biodiesel could be possible for the 

heterotrophic and hybrid pathways relative to the phototrophic, but only if 

fermentation can be performed efficiently and with sugarcane as the feedstock. Sugar 

crops used as feedstocks for heterotrophic cultivation require more land and present 

concerns about land constraints that are not an issue for the phototrophic pathway. No 
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pathway presented a clear advantage for the water stress impact metric. Reductions in 

the impact of heterotrophic algal biodiesel could be achieved by using cellulosic sugars 

or waste feedstocks for fermentation. 

3.2 Introduction 

The United States intends to increase domestic biofuel production in an effort to 

reduce dependence on imported petroleum and mitigate the impacts of global 

warming1. Since carbon dioxide from the atmosphere is sequestered via photosynthesis 

during feedstock production, biofuels have the potential to reduce the life-cycle 

emissions of greenhouse gases (GHGs) and the overall global warming potential (GWP) 

relative to conventional fossil fuels. However, life-cycle analyses (LCAs) of first-

generation biofuels such as corn ethanol and soy biodiesel indicate that these benefits 

can be greatly reduced by the impacts associated with the production of these energy 

crops and their conversion into liquid fuels2–5. Furthermore, the land required to 

produce these crops could displace agricultural operations, presenting the possibility of 

land use change (LUC) and indirect land use change (iLUC)6–9.   

Phototrophic algae have been proposed as an alternative bioenergy feedstock 

because of its high growth rate and aerial productivity10. By growing algae in open 

ponds, biomass can be produced on marginal, non-arable lands that are not currently 

used for agriculture11. The proposed biofuels target of 36 billion gallons annually by 

2022 set by the US Energy Independence and Security Act means that land constraints 

will become more important as production volumes increase1. Furthermore, cultivation 
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in ponds on marginal land means that the potentially deleterious effects of LUC and 

iLUC can be minimized.  

Achieving large-scale production of phototrophic algae has proven difficult, 

however, primarily due to the capital and operational costs of open ponds12,13. 

Additionally, the relatively low biomass concentration (which typically does not exceed 

~0.5 g·L-1) requires significant energy inputs to circulate the large volumes of water and 

to concentrate the harvested biomass14.  These challenges have prompted exploration 

of an alternative approach to growing algae: heterotrophic cultivation. Unlike 

phototrophic algae, the metabolism of heterotrophic algae facilitates fast growth in 

unlit fermenters whereby energy is derived from an organic carbon source rather than 

sunlight15. Mixotrophic species of algae, which can use either sunlight or organic carbon 

for energy depending on their environment, have also been investigated as part of a 

hybrid pathway16–18.  

This study features a comparative life-cycle assessment (LCA) evaluating algal biofuel 

production pathways featuring photo-, mixo-, and heterotrophic metabolisms.  To our 

knowledge, this is the first such analysis of its kind outside of private sector studies 

which have not been made public. While several recent LCAs have evaluated algal 

biofuel19–22, compared biofuels from phototrophic algae to other biofuels23, examined 

various cultivation strategies for algal biofuels24,25, and focused on downstream 

conversion technologies26,27, none have evaluated heterotrophic or hybrid cultivation 

strategies. This gap in the literature is noteworthy given that several of the leading 
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private firms in the algae industry, as well as numerous academic groups, are currently 

pursuing these approaches.  

3.3 Methodology 

3.3.1 Modeling Framework 

Modeling was conducted using SimaPro LCA Software, Microsoft Excel spreadsheets, 

ArcMap spatial analysis software, and MATLAB. Phototrophic pathway process 

assumptions and operational parameters were based on Argonne National Laboratory’s 

Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) 

model, a well-established analytical tool for fuel LCA modeling28. This framework was 

expanded to model additional pathways and to consider the environmental impact 

metrics of land use and water stress through a geographic information systems (GIS) 

approach.  

The algal biofuel industry is still nascent and thus a variety of technologies are under 

development for nearly all major aspects of the production process (i.e., biomass 

cultivation, dewatering, biomass conversion, and nutrient recycling). The GREET model 

was selected for the baseline phototrophic pathway because it makes well-justified 

process technology selections and provides thorough supplementary resources that 

make the underlying computations transparent and replicable. The model’s process 

assumptions include use of lipid-extracted algae (LEA, which is the biomass remaining 

after the lipid has been removed) as a feedstock for anaerobic digestion. An advantage 
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of this approach is that electricity and heat are produced and used onsite to displace 

energy imports rather than utilizing the LEA as a co-product (e.g., animal feed).  

Another important assumption of the GREET model is that CO2 is provided from a 

power utility’s flue gas. The energy required to transport the flue gas is considered, but 

otherwise the CO2 is treated as atmospheric because that would have been its fate had 

it not been pumped to the algae pond. An implication of such an assumption is that a 

carbon sequestration credit cannot be applied for both the power utility and the biofuel.  

Here, the sequestration credit is assigned to the algae. This analysis incorporates the 

same impact factor and distance assumptions as the GREET model for modeling the 

transportation of the digestate to the field and handling of the extracted oil through 

refinement and distribution. This model also adheres to the same co-product allocation 

used by GREET for calculating the energy balance and carbon emissions. The impacts 

associated with lipid production are shared between the algal oil and any energy sent 

beyond the system boundary, such as surplus electricity generated on site. The 

distribution was based on energy content of the oil and that of the exported electricity 

and was only applicable for the highest efficiency scenario explored for the 

heterotrophic and hybrid pathways. An allocation was also used for the lipid conversion 

step based on the energy in the fuel and the glycerin co-product28,29.  

The phototrophic pathway model used in this analysis deviates from the GREET 

model in several ways. Most notably, the GIS analysis described later explores the effect 

of spatially variable climate parameters on algae yield and evaporative water loss rather 
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than using fixed values. This analysis also incorporates a biomass stoichiometry outlined 

by Lardon et al. (2009)26 and when applicable uses updated values provided in a 

harmonization study that was published more recently than the original GREET LCA30.  

 A summary of the process flow model is shown in Figure 3.1 and a list of key 

parameters used to generate the material and energy inventories for the three 

pathways is provided in Table 3.1.   

 

Figure 3.1 - Simplified process flow diagram summarizing the key inputs and outputs associated with the 
phototrophic, heterotrophic, and hybrid algal biodiesel production pathways. 
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3.3.2 Phototrophic Pathway 

For the phototrophic pathway, algae biomass is assumed to be produced in open 

raceway ponds and circulated with a horizontal paddlewheel with operational 

assumptions conforming to those outlined by GREET28.  While it is possible to cultivate 

algae in photobioreactors, recent analyses suggest that with current technologies this is 

impractical from both an environmental impact and economic perspective25. An average 

biomass yield of 25 g·m-2·day-1 for the baseline scenario allows for one fifth of the 

pond’s volume to be withdrawn daily at a concentration of 0.5 g·L-1. Regional variations 

of this average yield are also explored in the assessment of the land use and water 

stress impacts. The dilute biomass is pumped to a settling pond where the addition of 

flocculants allows a concentration of the biomass to 10 g·L-1; removed water is recycled 

back to the pond. Subsequent dewatering using dissolved air flotation (DAF) and 

centrifugation further concentrates the biomass to 200 g·L-1.  

This slurry is processed wet to extract to the oil because thermal drying would offset 

much of the energy content of the biodiesel product26. Algae cells are first lysed by 

pumping the slurry through a small orifice in a process called high-pressure 

homogenization and then contacted with hexane to extract the lipids.  Following 

removal of the solids (i.e., LEA), the hexane is evaporated and recovered, resulting in 

crude algae oil.  Removing the residual solvent from the solids yields the LEA. The crude 

oil is upgraded via transesterification with methanol to produce biodiesel while the LEA 

is sent to an anaerobic digester. The biogas produced from the digester is scrubbed to 

remove H2S and then utilized in a combined heat and power (CHP) system to produce 
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heat and electricity to be used on site.  The amount of energy recovered from the LEA is 

sufficient to meet all of the thermal energy demands for the phototrophic pathway and 

the majority of the electricity requirements. We assume here that approximately three 

quarters of the nitrogen and half of the phosphorus are recovered from the digester 

supernatant and recycled to the cultivation pond to reduce fertilizer inputs as outlined 

by the GREET process model28.   

Table 3.1 - Parameters used in biofuel process pathway modeling.  

   Pathways Used  

Step Value Units Photo. Hetero. Hybrid Ref. 

Open Pond Cultivation       

Paddle-Mixing Energy Inputs 2000 W·ha
-1 

✓  ✓ 
12,28,30

 

CO2 Uptake Efficiency 0.85 n/a   ✓ 
28

 

Evaporative Water Loss (Make-Up 
Inputs) 

GIS
λ 

m
3
·kg-algae

-1 
✓  ✓ 

31,32
 

Biomass Productivity 25
α
, GIS g·m

-2
·day

-1 
✓  ✓ 

12, 32–34
 

Phototrophic Biomass Lipid Content 0.25
δ 

n/a ✓  ✓ 
12,28,30

 

Operational Period, per Year 330 days ✓ ✓ ✓ 
30

 

Pumping, to Site 1.23 · 10
-4

 kWh·L
-1

    
30

 
       

Fermenter Cultivation       

Yield on Sugar 0.25
ζ
 kg-lipid·kg-glucose

-1 
 ✓ ✓ 

35
 

Aeration/Mixing Energy for 80 g·L
-1

 3
β
, 2, 1 kW·m

-3 
 ✓ ✓ 

18,36,37
 

Heterotrophic Biomass Lipid Content 0.5   ✓  
38

 

Hybrid Pathway Heterotrophic 
Biomass Lipid Content 

0.55
τ
    ✓ 

18
 

       

Harvesting/Dewatering       

Pumping, on Site 2.5 · 10
-5 

kWh·L
-1 

✓ ✓ ✓ 
30

 

Centrifugation Energy Inputs 1.93 · 10
-2

 kWh·kg-algae
-1 

✓ ✓  
30

 

DAF Energy Inputs 0.133 kWh·kg-algae
-1

 ✓   
28,39

 

Tangential Flow Filtration (TFF) 5 · 10
-4 γ

 kWh·L
-1

   ✓  

Secondary Centrifugation Energy 8 · 10
-3

  kWh·L
-1

  ✓ ✓ 
28,40,41

 
       

Cell Preparation       

Pressure Homogenization Energy 0.204 kWh·kg-algae
-1

 ✓ ✓ ✓ 
28,13,24 

Pressure Homogenization Mass Ret. 
Efficiency 

0.9  ✓ ✓ ✓ 
28

 

       

(Wet) Hexane Extraction       

Extraction Electricity Inputs 0.069 kWh·kg-oil
-1 

✓ ✓ ✓ 
30

 

Extraction Heat Inputs 3.09 kWh·kg-oil
-1

 ✓ ✓ ✓ 
30

 

Hexane Inputs (amount lost) 5.2 g-hexane·kg-oil
-1 

✓ ✓ ✓ 
28
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Transesterification       

Methanol Requirement 0.1001 kg-methanol·kg-
biodiesel

-1 
✓ ✓ ✓ 

29,42,43
 

Transesterification Heat Inputs 2.07 MJ·kg-biodiesel
-1 

✓ ✓ ✓ 
29,42,43

 

Transesterification Electricity Inputs 0.107 MJ·kg-biodiesel
-1 

✓ ✓ ✓ 
29,42,43

 
       

Anaerobic Digestion       

Digestion Heat Inputs 0.22 kWh·kg-TS
-1 

✓ ✓ ✓ 
30

 

Digestion Electrical Inputs 0.085 kWh·kg-TS
-1 

✓ ✓ ✓ 
30

 

CHP Electrical Efficiency 0.33  ✓ ✓ ✓ 
28

 

CHP Total Efficiency 0.76  ✓ ✓ ✓ 
28

 

Biogas Yield 0.45 L-biogas·g-TS
-1 

✓ ✓ ✓ 
28

 

Biogas Cleanup Electrical Inputs 0.25 kWh·m
-3 

biogas ✓ ✓ ✓ 
28,44  

       

Fertilizer Co-Product       

Fraction of N in Digestate 0.20  ✓ ✓ ✓ 
28

 

Fraction of P in Digestate 0.50  ✓ ✓ ✓ 
28

 

Nitrous Oxide Emissions 0.01 kg-N2O-N·kg-N
-1

 in 
fert. 

✓ ✓ ✓ 
28,45 

       

Sugar Sources       

Sugar Beet Crop Yield, Sucrose 
Content 

GIS tonnes·ha
-1

, %  ✓ ✓ 
46

 

Sugarcane Crop Yield, Sucrose Content GIS tonnes·ha
-1

, %  ✓ ✓ 
46

 

Sugar Beet, Sugarcane Irrigation 
Requirements  

GIS L-H2O·tonne
-1 

 ✓ ✓ 
47,48

 

Surplus Bagasse Electricity 135
ρ
 kWh·tonne-cane

-1 
 ✓ ✓ 

49
 

λ
The term GIS indicates that a variety of values were incorporated into the model using geographic information 

systems analyses conducted using the data sources referenced.  
α
A value of 25 g·m

-2
·day

-1
 was used as a baseline, but the GIS analysis was used for determining land occupation 

and water stress results. 
δ
For the hybrid pathway, algae are harvested from the pond with a lipid content of 25% prior to being cultivated in 

the fermenter where the lipid content reaches 55%. 
ζ
The reference’s authors state that 0.22 kg-lipid·kg-glucose

-1
 is a practical conversion limit with a maximum 

theoretical conversion limit of 0.33 kg-lipid·kg-glucose
-1

. The value of 0.25 kg-lipid·kg-glucose
-1

 was selected as 

an optimistic approximation. 
β
An average value of ~3 kW·m

-3
 for the entire duration of the fermentation batch was modeled based on 

derivations from the references listed.   More efficient technology scenarios of 2 and 1 kW·m
-3

 were also 

explored. 
τ
In the authors’ optimized scenario a maximum lipid content of 58% was achieved for this pathway. In a production 

setting the biomass would likely be harvested prior to achieving the maximum lipid content; the value of 55% 

was chosen as an approximation. 
γ
This value is for the volume of water processed, based on communications with an industry manufacturer for a 

40X concentration factor from 0.5 g·L
-1 

to 20 g·L
-1

. 
ρ
The authors cite this value as an achievable surplus of co-generated electricity (remaining after process 

requirements at the sugar plant) for the year 2020. In this model most or all of this electricity is used on-site for 

fermenter aeration/mixing and processing requirements.  
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3.3.3 Heterotrophic Pathway 

Heterotrophic biomass is cultivated in a cylindrical fermenter modeled with a height 

to width ratio of 2:1. The algal biomass is grown from an initial concentration of 20 g·L-1 

to 80 g·L-1 over a three day batch, approximations based on results from Xiong et al. 

(2010)18.  The two most significant inputs for this stage are the aeration & mixing 

electrical energy inputs required for operating the fermenter and the upstream impacts 

associated with producing the sugar source that is fed to the algae. Modeling the 

fermenter energy requirements for aeration and mixing proved to be a challenge; there 

are limited examples in literature and within this small sample there are significant 

discrepancies in the maximum biomass concentrations observed and the time required 

to achieve these concentrations. Uncertainty is exacerbated by the fact that the private 

sector does not publicize details about its technology’s performance. The 80 g·L-1 

concentration achieved by Xiong et al. is relatively high compared to results reported in 

other academic papers 15,17,50–52, but is likely still lower than concentrations achieved by 

private sector firms with the financial resources to pursue optimized operations and to 

employ genetic engineering.  Centrifugation is used to further concentrate the biomass 

to 200 g·L-1 prior to cell rupture and lipid extraction, which is modeled using the same 

process assumptions described above for the phototrophic pathway. The heterotrophic 

algal biomass is assumed to have 50% lipid content rather than the 25% lipids modeled 

for the phototrophic pathway. Studies have shown lipid content ranging from 15% to 

55%17,51–53, but 50% is typical. The high lipid content of heterotrophic algae means less 

total biomass must be processed to produce the same amount of fuel and less nitrogen 
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and phosphorus inputs are required, but also less energy can be recovered via anaerobic 

digestion due to reduced LEA yields.  

Fermenter aeration & mixing energy was calculated based on the oxygen uptake 

rate reported by Bottomley and Baalen (1978) for a heterotrophic alga Nostoc and 

energy calculations were conducted as prescribed by the Environmental Protection 

Agency (EPA) Design Manual for Fine Pore Aeration Systems (1989)36,37.  These energy 

inputs could most likely be reduced below our estimates by optimizing fermenter design 

and operation (e.g., impeller speed and blower size) as well as through the use of 

genetically engineered species with higher lipid content, increased glucose conversion 

efficiency, and lower oxygen requirements. Therefore the baseline fermenter aeration 

and mixing energy, determined to be ~3 kw·m-3 based on the outlined operating 

assumptions, was explored alongside two improved technology scenarios of 2 and 1 

kW·m-3.  Approximately 40% of this power is mechanical mixing and the remaining is for 

diffused air injection. A seed train has been modeled to provide the initial biomass for 

the production fermenter. This seed train is a fermenter vessel that is one-fifth the 

volume of the production fermenter, and it is assumed that a concentration of 100 g·L-1 

is achieved after four days of cultivation. The biomass slurry is then transferred to the 

production fermenter along with additional sterile media to provide the diluted initial 

concentration of 20 g·L-1. The impacts associated with providing the inoculum for the 

seed train are neglected, as is the case with the phototrophic and hybrid pathways.  
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Sugarcane and sugar beet were considered in this analysis, as these are the two 

primary sources of sugar produced within the United States46. An inventory for the 

agricultural operations and sugar processing was adapted from work by Macedo et al. 

(2008), which analyzed sugarcane production in Brazil and projected a scenario for the 

future that is feasible with existing technologies49. Crop yields, sucrose content 

fractions, and irrigation requirements are of course different in the United States than in 

Brazil (and in fact have significant variations within the United States), so domestic data 

were used for these aspects of the study. A significant amount of energy from the 

sugarcane crop resides in the bagasse, the fibrous material remaining after the juice has 

been extracted54. This analysis incorporates the assumption that the bagasse is 

combusted and used in a high-pressure cogeneration steam cycle system to produce 

electricity onsite, similar to how sugarcane is used at ethanol refineries in Brazil. The 

model assumes that a surplus electricity export of 135 kW·hr per tonne of sugarcane is 

produced (after on-site energy is utilized at the sugar plant), corresponding to the 

technology forecast for Brazil in the year 202049. This electricity export would be 

equivalent to 23% electrical efficiency if 28% of the sugarcane crop is bagasse with an 

energy content of 7.62 MJ·kg-1 (at 50% moisture), which are similar to values reported 

for a sugar plant in Florida55. The cogenerated electricity reduces the amount of 

electricity required to be imported from the grid. In the case of the 1 kW·m-3 

aeration/mixing energy scenario there is a surplus of electricity that is exported and 

assumed to displace grid electricity.  
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3.3.4 Hybrid Pathway 

The hybrid pathway is similar to the heterotrophic pathway but an open pond 

system is used in place of the seed train to provide the initial biomass.   Biomass is 

grown to 0.5 g·L-1 in the pond and 20% of the pond volume is harvested each day, as in 

the phototrophic case.  The harvested culture is concentrated by tangential flow 

filtration (TFF) to 20 g·L-1 and then pumped into a production fermenter. The two main 

rationales for exploring this pathway are that producing a fraction of the biomass 

photosynthetically reduces sugar demands and there is evidence to suggest the 

efficiency of heterotrophic growth can be improved by using a light-grown seed 

culture18.  Xiong et al. (2010) showed that Chlorella protothecoides grown 

phototrophically and then heterotrophically exhibited a higher sugar conversion 

efficiency and a higher lipid content than cells grown only heterotrophically (cf. 58%18 

vs. 50%38). They hypothesized that phototrophically grown cells retain the capacity to 

uptake CO2 released by heterotrophic metabolism after incubation with glucose, 

thereby more efficiently converting feedstock carbon into biomass. In a related work, 

Heredia-Arroyo et al. (2010) also demonstrated higher lipid content for mixotrophic 

biomass compared to heterotrophic biomass17.  

Therefore a lipid content of 55% is assumed rather than the value of 50% assumed 

for the heterotrophic system. Each pathway features the same processes mentioned 

previously for cell rupture, lipid extraction, oil upgrading, and energy recovery via 

anaerobic digestion. The composition of the biomass is different for each of the 

pathways, however, based on assumptions of the macromolecule composition (i.e. lipid, 
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carbohydrate, and protein fraction) provided by Lardon et al. (2009)26 and consequently 

the elemental mass flows (i.e. carbon, nitrogen, phosphorus) are unique to each 

process. The Supporting Information provides further detail about these assumptions.  

3.4 Spatial Analysis 

As with any bioenergy system, the environmental impacts vary greatly depending on 

the region. The locations where phototrophic algae grow most quickly, for example, also 

typically experience more evaporation than rainfall. If the make-up water is removed 

from a depleted resource, the stress to the aquifer can be substantial28,56. Similarly, the 

amount of occupied land and water use associated with cultivating algae on sugars 

depends largely on the type of crop used (sugarcane or sugar beet) to produce the 

sugar. The water stress depends on the crop’s yield, the amount of irrigation water 

required, and, as with the phototrophic pathway, the condition of the aquifer from 

which the water is withdrawn56,57. Therefore a GIS approach was used to evaluate the 

effect of these regional considerations toward the variability of the results.  

Annual pan evaporation data from the National Oceanic and Atmospheric 

Administration (NOAA) for several hundred specific sites31 was used in conjunction with 

a dataset of national average annual precipitation58 and overlaid with a GIS layer 

summarizing the average growth rate for algae grown in phototrophic ponds across the 

nation59. The average phototrophic growth rate data layer was built upon national 

historical solar insolation and temperature profiles and a growth model that predicts 

algae yield based on these criteria. The evaporation data was published by NOAA in 
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1982; it is possible that national climate trends have shifted slightly in the last three 

decades, but the dataset was chosen due to a lack of an alternate national data source. 

Statewide average crop-specific irrigation water use data47 was used with county-level 

crop yield estimates from the National Agricultural Statistics Service (NASS) 46 and 

previous research results outlining water stress indices for specific aquifers56 to derive 

the occupied land and water stress of the mixotrophic and heterotrophic pathways.  

Figure 3.2 illustrates the approach used to determine the water stress. On the lower 

tier of graphic A each point represents a location where evaporation rates have been 

measured; the difference between evaporation and precipitation at that location is 

indicated by the height of the bar extending from that point. Net losses (more 

evaporation than precipitation) are shown in red and net gains are in blue with the 

losses protruding downward and the gains upward. The top tier of graphic A indicates 

the average annual phototrophic algae yield, with red being the greatest yield and blue 

the least. The growth rate affects the water use because locations with high yields 

require smaller ponds and hence less area exposed to evaporative losses. The points 

that are emphasized with a black circle have average annual phototrophic biomass 

yields exceeding 20 g·m-2·day-1 and are therefore considered realistic sites for open 

pond cultivation; the other, less productive, sites are excluded from the analysis. In both 

graphics the grayscale shading indicates the water stress index (WSI) of the 

groundwater source at that location, with darker shades indicating the most stressed 

aquifers. The WSI values, which are derived from the ratio of water withdrawn from the 

aquifer to the total amount of water available, were obtained from Pfister et al. 
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(2009)56. To simplify the analysis it is assumed that the water withdrawn for power 

generation comes from the same aquifer used for algae and/or sugar cultivation for all 

three pathways. In graphic B, the counties shaded with red produce sugar from sugar 

beet and counties shaded with blue from sugarcane. The pie charts indicate the fraction 

of blue, green, and grey water required to produce the crop. Blue water refers to water 

that is withdrawn from a surface or groundwater source, as opposed to green water 

which is received from precipitation.  The size of the pie indicates the volume of sugar 

produced in that state as reported by the NASS46. The scale of production in each of the 

regions is significant because the results are reported by the volume-weighted average. 

 

Figure 3.2 - Summary of the GIS analysis used to determine the water stress impact of the phototrophic 
pathway (A) and heterotrophic pathway (B). Water stress for the hybrid pathway is derived from co-located results 
of the other two pathways.  
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Recall that a benefit of phototrophic algae is that it can be grown with higher aerial 

productivity than terrestrial crops and on marginal lands that could not be used for 

agriculture.  The arable land used to grow sugar for cultivation of algae in fermenters, 

conversely, is not exempt from the land constraint concerns that surround other 

biofuels. The effects of land use change must therefore also be discussed in the analysis. 

The premise of including effects of LUC and iLUC is that as food crops are diverted for 

use in biofuels, the global food market will respond by adding new agricultural capacity 

elsewhere to satisfy global demand60. As land is cleared to serve its new purpose 

substantial amounts of carbon emissions are released as organic carbon stocks, both 

above ground and below, are converted to GHGs by microbial decay and burning61,62. 

The amount of carbon emitted depends heavily on the type of land converted and the 

long-term accumulation or continued release of soil organic carbon depends on the 

vegetation type that is planted63.Plevin et al. (2010) evaluated the effects of iLUC with 

special attention to uncertainty64. Their model was only applied to US corn ethanol, 

however, and therefore cannot be directly incorporated into this study.  

Two agencies within the United States have published land use carbon emission 

factor values for sugarcane ethanol. The EPA implemented the model developed by the 

Food and Agricultural Policy and Research Institute in the Center for Agricultural and 

Rural Development (FAPRI-CARD) at Iowa State University65. The California Air Resource 

Board (CARB) implemented the Global Trade Analysis Project (GTAP) model developed 

by the Center for Global Trade Analysis at Purdue University66. The results obtained by 

these two models highlights the uncertainty associated with such calculations, as the 
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emissions reported by the CARB are nearly an order of magnitude greater than those 

reported by the EPA67–69. The discrepancy between the models is primarily due to 

differences in assumptions on volume of increased ethanol production, elasticity of 

input parameters, and the land conversion emission values67. Results from these models 

were adapted for this analysis to demonstrate the range of possible emissions from LUC 

and iLUC. The energy content of algal biodiesel is higher than that of ethanol while the 

yield of fuel per unit of sugar is lower, so adjustments to the emissions factors were 

required. Comparable studies for production of ethanol from sugar beets have not been 

conducted, so this analysis assumes that the carbon emissions from LUC and iLUC will be 

the same regardless of whether the sugar is sourced from sugarcane or sugar beet. This 

is an oversimplification, but regardless of the sugar crop used to source the sugar the 

effect on global demand is similar and therefore the implications on indirect land use 

are likely also similar.  

3.5 Results & Discussion 

3.5.1 Fossil Energy Ratio 

The fossil energy ratio (FER) was calculated for biodiesel produced from each 

pathway and the results are shown in Figure 3a.  It is apparent that biodiesel from each 

pathway, with the exception of the heterotrophic and hybrid pathways with the highest 

fermenter operational energy expenditure (3 kW·m-3), achieve a FER greater than unity 

and represent an improvement relative to fossil diesel.  For example, the baseline 

phototrophic case produces fuel with a FER that is about 2-fold higher than fossil diesel.  
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The sharp decline in FER with an increase in fermenter operational energy input suggest 

this is one of the key determinants of the impact of biodiesel arising from the 

heterotrophic and hybrid pathways.  Notably, the data presented in Figure 3a assumes 

sugarcane is the carbon feedstock. In contrast, when using sugar beet, a FER greater 

than one is not achieved in any of the technology scenarios (results provided in the 

Supporting Information).  

 

Figure 3.3 - Results of the life-cycle assessment for the fossil energy ratio (FER), occupied land, and water 
stress impact metrics. The dashed line on chart A indicates the baseline for conventional diesel fuel. The diamonds 
on charts B and C indicate high/low values based on the range of locations considered in the GIS analysis.  

3.5.2 Occupied Land 

The phototrophic pathway requires less land than the other pathways, as shown in 

Figure 3b. This result is not surprising because one of the appealing features of 

phototrophic algae is its fast growth rate relative to terrestrial bioenergy crops like 

sugar beet and sugarcane. In the United States, sugar beet and sugarcane have 

comparable sugar production per hectare, so the land footprint is similar. The diamond 

A B C D 



65 
 

points indicate the full range of values observed in the GIS analysis, with the labels 

indicating the state where the maximum or minimum value was observed. The occupied 

land associated with upstream fertilizer and electricity production accounted for less 

than 3% of the land footprint for the phototrophic pathway, with the rest of the impacts 

coming from the cultivation ponds. Land for growing the sugar crop dominated the 

footprint for the heterotrophic pathway, with the upstream impacts of the rest of the 

inputs contributing less than a percent of the total result.  

3.5.3 Water Stress 

Water stress results were highly geographically dependent, as shown in Figure 3c, 

with no clear difference among the three pathways. Sites with high precipitation relative 

to evaporation and access to aquifers that are not stressed will have a low water stress 

impact regardless of which pathway or sugar crop is used. Heterotrophic algae 

cultivated on sugar from sugar beet had the lowest average water stress, but, as with 

each of the scenarios, a range of results was observed depending primarily on the 

regional stress indices. Recall that blue water refers to withdrawn water while green 

water is that which is received from precipitation. Sugar beet or sugarcane cultivation 

sites that have sufficient precipitation require little or no blue water extraction for 

irrigation and hence inflict less water stress. This correlation is not always true, 

however. For example, sugar beet farms in Idaho require more blue water than farms in 

Colorado, but the aquifers in Idaho are under less stress and therefore the water stress 

impact of sugar from Colorado sugar beet is greater. For phototrophic cultivation, focus 

has typically been on the southwestern portion of the United States such as Arizona and 
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New Mexico, but these arid locations have high evaporative losses and the water 

resources are often stressed. For reduced water stress, open pond cultivation should 

shift toward southeastern locations like Louisiana and Alabama where the water stress 

is much lower despite the slightly lower average algal biomass yields. 

3.5.4 Global Warming Potential 

This analysis indicates that biodiesel produced from algae can reduce GHGs by more 

than 50% compared to conventional diesel, thereby meeting the definition of an 

advanced biofuel as stipulated by the National Renewable Fuels Standard program.  For 

example, when grown phototrophically, we predicted a 56% reduction in GHGs for algal 

biodiesel relative to fossil diesel. The utility of a heterotrophic algal production platform, 

either in isolation or as a hybrid system utilizing ponds to generate seed material, was 

analyzed to determine whether further reductions in life-cycle impacts could be 

achieved relative to the phototrophic scenario.  Figure 4 illustrates the results for the 

GWP metric. Reductions in GWP were predicated on fermenter efficiency and the sugar 

source; under the most optimistic case for the heterotrophic and hybrid pathways (i.e., 

high efficiency fermentation, sugarcane as the sugar source, and ILUC ignored), GWP 

was reduced 88% and 74% relative to conventional diesel or the phototrophic pathway, 

respectively. If sugar beet is used, none of the heterotrophic or hybrid pathways offer a 

GWP reduction relative to conventional diesel (Figure 4b).  

The ability to recover energy from bagasse makes sugarcane a more attractive 

option from the perspective of GWP and FER. In the most efficient fermentation 
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scenario (1 kW·m-3), there is a surplus of electricity from bagasse combustion, so all of 

the electricity input for the fermenter is offset and a portion of the electricity produced 

is returned to the grid. For the other scenarios, however, the electricity input 

requirements are reduced but not fully met. Sugar beets, conversely, do not have 

energy-rich residuals that can be utilized for energy production on site and 

consequently have a higher GWP. The GWP results featuring sugar from sugar beet are 

shown in Figure 4b, showing that in no scenario can GWP improve beyond that of fossil 

diesel. The Supporting Information contains a more detailed plot illustrating the impacts 

and credits toward the GWP results highlighting the significance of energy recovery 

from both anaerobic digestion of the LEA and cogenerated electricity from sugarcane 

bagasse.  

3.5.5 Indirect Land Use Change 

The potential of the most efficient heterotrophic or hybrid scenario to reduce GWP 

relative to the phototrophic model must be considered in light of the effects of LUC and 

iLUC. For example, if the values reported by CARB are used all GWP improvements are 

negated and the resulting release of GHGs is comparable to that of fossil petroleum-

derived diesel. The black squares in Figure 4 show the results with LUC and iLUC 

included if the adapted values from the EPA are used and the white squares include 

adapted values from CARB. 

The effects of LUC and iLUC are complex and therefore difficult to quantify. The 

concerns regarding land use as well as the uncertainties associated with the 
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methodologies for quantifying its impact are pursued in greater depth in academic 

literature elsewhere 60–62,64 and are beyond the scope of this work. The purpose of 

including the potential impacts from LUC and iLUC in this analysis is not to state the 

impacts definitively but rather to bring the topic into the discussion and provide an 

approximate scale of these impacts in terms of GWP. Notably, the hybrid pathway has 

less of a contribution to GWP from LUC and iLUC than the heterotrophic pathway 

because less sugar is required to produce the same functional unit of fuel due to the 

cultivation of a portion of the biomass in open ponds. 

 

Figure 3.4 - The global warming potential (GWP) metric considering both sugar from sugarcane (A) and sugar 
from sugar beet (B). The black squares show the results with ILUC included if the EPA value is used and the white 
squares include ILUC impacts if the CARB value is used. Phototrophic cultivation does not utilize sugar and is 
assumed to not compete with agriculture and therefore there are no ILUC impacts.   

3.5.6 Outlook 

The heterotrophic and hybrid pathways have the potential to produce an algal 

biodiesel with reduced GWP and an improved FER relative to the phototrophic pathway 
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and conventional diesel, but if these technologies are to be scaled to large production 

volumes the consumption of sugar could result in land use changes that cannot be 

overlooked. The use of waste feedstocks or cellulosic bioenergy crops as the carbon 

source for heterotrophic cultivation could reduce these concerns, but the availability of 

these feedstocks is limited today (e.g., glycerol) and the technology required to process 

them (e.g., cellulosic sugars) have yet to be reliably demonstrated at scale. This is an 

area of research that deserves further exploration.  

The high consumption rate of petroleum for transportation fuels suggests that 

purpose-grown bioenergy sources will be required if noticeable reductions in petroleum 

use are to be achieved. While the heterotrophic pathway is attractive since it utilizes 

well-established fermentation technologies, the land and resource constraints 

associated with producing the carbon source must be critically evaluated. The relatively 

small land footprint of the phototrophic pathway, conversely, facilitates scaling to large 

production volumes without being constrained by the availability of sugars or other 

carbon sources.  
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CHAPTER 4. LIFE CYCLE DESIGN OF AN ALGAL 

BIOREFINERY FEATURING HYDROTHERMAL 

LIQUEFACTION: EFFECT OF REACTION CONDITIONS AND 

AN ALTERNATIVE PATHWAY INCLUDING MICROBIAL 

REGROWTH 

4.1 Abstract 

Algae are an appealing source of bioenergy due to their high yields relative to 

terrestrial energy crops. The high cost of production, however, has prohibited 

commercialization despite significant investment by the private sector. Hydrothermal 

liquefaction (HTL) is a technology that converts a higher fraction of the algae into 

biocrude oil than alternative technologies, thereby reducing the amount of expensive 

pond infrastructure and energy required to cultivate the feedstock. Recent experimental 

work has provided insight into the HTL reaction pathways involved in the conversion of 

algal biomass to biocrude oil.  We incorporate these results into an analysis that models 

the performance of an algal biorefinery featuring HTL across a range of reaction 

conditions to explore the optimal scenario for the life cycle and economic objectives 

considered. Additionally, we explore a novel regrowth pathway that boosts oil yields by 
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cultivating E. coli on the aqueous phase products from HTL and recycling the additional 

biomass back through the reactor. 

We found that the life cycle results varied significantly depending on the HTL 

reaction conditions, with the net energy ratio (NER) ranging from 1.5 to 2.8 and the 

global warming potential (GWP) ranging from 0.85 to 1.4 kg CO2e·L-1. For both of these 

metrics the optimal HTL condition occurred at 250°C with a reaction time of either 57 

minutes for minimizing the GWP or 49 minutes for maximizing the NER. At these 

conditions a large amount of organic carbon is available in the aqueous phase, enabling 

substantial amounts of on-site electrical and thermal energy recovery. The optimal 

economic and occupied land results, conversely, corresponded to HTL conditions where 

oil yields were highest, at 400°C and 5 minutes. The cost of biocrude at these conditions 

was $1.64·L-1. For the regrowth pathway featuring E. coli, the optimal cost could be 

further reduced at these same conditions to $1.59·L-1. Disabling gasification in favor of 

boosting oil yields has a detrimental effect on other metrics, however, increasing the 

GWP to 1.66 kg CO2e·L-1 and decreasing the NER to 1.38. 

4.2 Introduction 

Algal biomass is a promising source of bioenergy that could potentially produce 

billions of liters of biofuel annually in the United States1,2. An appealing characteristic of 

algae is that they occupy significantly less land than terrestrial biofuel crops due to their 

high growth rate and that the use of engineered ponds enables algae to be cultivated on 

marginal land that could not otherwise be used for agriculture3–7. Despite substantial 
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investment from government and within the private sector, however, a scalable and 

economically viable means for producing algal biofuel has not emerged. The primary 

economical hurdle is the high cost to build and operate the ponds8–11, and a major 

technical hurdle is a means to convert the algal biomass into a usable transport fuel12,13. 

This article focuses on methods to advance a technology, hydrothermal liquefaction 

(HTL), that could address both of these obstacles by providing a means to convert wet 

algal biomass to biocrude oil while reducing the amount of pond infrastructure required 

to produce a given quantity of algal biofuel.  

A life cycle assessment (LCA) by Lardon et al. (2009) illustrated that the solvent-

based oil extraction technologies used for other energy crops such as soybean cannot be 

relied upon for algae; the amount of energy required to dry the biomass to levels typical 

of terrestrial crops would exceed the energy content in the algal oil14. Several studies 

have demonstrated the viability of “wet” solvent extraction strategies to separate the 

lipid fraction of the algal biomass as an oil that can be upgraded via transesterification 

to a biodiesel product14,15.  This approach still has not been implemented at commercial 

scale, however, and efficient recovery of the solvent (typically hexane) has proven to be 

a challenge12. Another limitation of solvent extraction is that the yield of oil per unit of 

biomass is limited to the fraction of the biomass that is lipid. Currently the most 

economical strategy for cultivating phototrophic algae is an open, paddle-wheel mixed 

pond, and the species grown in these ponds typically have just 10-25% lipid content16.  
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By contrast, HTL converts a portion of the carbohydrate and protein fractions of the 

algal biomass into oil in addition to the lipid fraction17. This process works by converting 

a wet (~15-20% solids) algal slurry under high temperature and pressure (e.g., 350 °C, 

16.5 MPa) into a variety of products including a biocrude oil. HTL mimics the way fossil 

crude oil was formed in nature, by geologic heat and compression of plant tissue, but 

does so in minutes rather than millions of years. In addition to the oil that is formed, 

HTL produces solids, gas, and soluble products remaining in the water, or the “aqueous 

phase”.  

Use of the non-product portions of the algal biomass (e.g., the lipid extracted algae 

(LEA) remaining after oil extraction or the aqueous phase products from HTL) is 

significant and has the potential to improve  the economics and life cycle impacts of the 

biorefinery. Frank et al. (2012) performed an LCA that demonstrated the benefits of 

solvent-based lipid extraction compared to HTL due to the relatively high amount of 

non-product portion of the algae available for energy recovery via gasification18. To date 

the work by Frank et al. has been the only LCA performed of an algal biofuel product 

featuring HTL, and the authors acknowledged the limitations of their analysis due to 

limited experimental results. 

Recent research exploring in detail the range of products from HTL across a range of 

conditions has enabled a more thorough analysis rooted in experimental results19. The 

objective of this study is to incorporate the reaction network model developed by 

Valdez et al. (2013) into an LCA that evaluates the life cycle impacts of an algal biocrude 
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oil from HTL across a range of reaction conditions20. The study will examine the effect of 

HTL reaction conditions ranging from 250-400°C and 5-90 minutes. Given the 

importance of reducing costs to enable commercialization of algal biofuels, this analysis 

will evaluate an economic metric in addition to the life cycle metrics of net energy ratio 

(NER, total energy produced divided by the total life cycle energy inputs), global 

warming potential (GWP), and occupied land.  

In addition to being the first study to analyze the sensitivity of LCA performance to 

the HTL reaction conditions, this study will examine the viability of a novel pathway for 

boosting oil yields proposed by Nelson et al. (2013)21. While several studies have 

theorized schemes for on-site energy recovery from the non-product portion of the algal 

biomass either by anaerobic digestion or hydrothermal gasification18,22,23, none has 

explored the possibility of utilizing the aqueous phase products from HTL to grow a 

secondary source of biomass for HTL processing. Nelson et al. (2013) demonstrated that 

E. coli can be grown on the aqueous phase products from HTL21 and Valdez et al. (2013) 

demonstrated recovery of crude bio-oil from E. coli biomass via HTL with yields similar 

to those of algae (i.e. 29% yield for E. coli compared to 38% for Nannochloropsis sp. for 

the same conditions)24. Therefore the proposed regrowth pathway could incorporate 

cultivation of microbial biomass such as E. coli to recycle carbon and thereby yield more 

oil per unit of initial algal biomass. Growth of microbial biomass on the aqueous phase 

could also serve as a pre-processing step enabling nutrient recycle back to the algae 

pond, as other HTL research has shown that direct recycle of aqueous phase to algae 
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growth operations can be problematic due to suspected toxicity25 and/or nutrient 

availability17,26,27.  

The Energy Independence and Security Act of 2007 (EISA) has targeted the 

production of 36 billion ethanol-equivalent gallons of biofuel annually by 2022. Of those 

targets, 21 billion gallons are to be non-corn starch derived “advanced biofuels”28. To 

qualify as an advanced biofuel the final product must have 50% less life cycle 

greenhouse gas emissions relative to conventional fossil gasoline. This analysis will 

therefore examine the life cycle performance of the biocrude oil produced by HTL in the 

context of these policy objectives.  

4.3 Methodology 

A challenge of conducting biofuel LCAs is that results and data from multiple sources 

must be aggregated into a single model with the premise that the results derived from 

the independent scenarios remain valid in the integrated system. In some key areas (i.e., 

energy recovery schemes and nutrient recycle) these assumptions must remain in 

question until they have been examined experimentally. This study features an 

interdisciplinary collaboration between experimentalists and environmental systems 

analysts in an attempt to derive results that are realistic. Not all aspects of the model 

have been verified in the laboratory, however, as processes such as algae cultivation 

and harvesting remain the specialty of others and have technical challenges that are 

independent of oil extraction and conversion.  
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4.3.1 Experimental Data Sources Used 

This research builds upon work performed by Valdez et al. (2013) characterizing the 

products from HTL19 and a recent study featuring a model that predicts the biocrude 

yield from Nannochloropsis sp. across the two dimensional design space of HTL 

performed between 250-400°C and from 5-90 minutes20. The model also calculates the 

yields of other HTL product fractions, such as gas, solids, and aqueous phase products. 

Accurate information about the aqueous phase is particularly important to this analysis 

as its constituents will be used either for energy recovery via gasification for the 

standard pathway or growth of secondary E. coli biomass for the regrowth pathway. 

Details about the two pathways considered in this analysis, the standard pathway and 

regrowth pathway, will be explained later in the report. Data from Valdez et al. allows 

for determination of the amount of carbon remaining in the aqueous phase and 

specifies the fraction that is organic vs. inorganic.  

In addition to the dataset characterizing HTL, this analysis also incorporates results 

from Nelson et al. (2013) for modeling the secondary growth of microbial biomass. 

Nelson characterized E.coli growth  on the aqueous phase products from an HTL reactor, 

specifically the fraction of organic carbon removed as a function of the level of 

dilution21. A separate study demonstrates the feasibility of converting the E. coli to 

biocrude via HTL. The microbial biomass exhibited biocrude yield of approximately 29% 

compared to a yield of 38% from Nannochloropsis from HTL at the same conditions24.  

There is no model that can predict a detailed product distribution from HTL of E. coli 

over the full design space of 250-400°C and 5-90 minutes so this study will assume the 
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oil yield and product distribution are the same for E. coli as the algal biomass. The 

elemental composition of the E. coli and algae will be used to determine the mass 

balance of elemental flows through the biorefinery.  

4.3.2 Data Sources for Life Cycle Modeling  

The upstream processes of algae cultivation and dewatering were based on the 

operational assumptions outlined by Frank et al. (2011) in the Greenhouse Gases, 

Regulated Emissions, and Energy Use in Transportation (GREET) model published by 

Argonne National Laboratory  and a subsequent report including collaboration from the 

National Renewable Energy Laboratory and the Pacific Northwest National 

Laboratory22,29. This harmonized study by Davis et al. (2012) assimilates data from 

multiple research institutions.  Though it does incorporate some assumptions that have 

not been validated empirically, it provides a foundation that has been cross-examined 

by the collaborators. To align with the aforementioned harmonized study the algal 

biomass is assumed to be grown in an open pond with circulation provided by a paddle-

wheel mixer, and flue gas is assumed to be the CO2 source.  

Algae yield is modeled as 13.2 g·m-2·day-1, which is also in alignment with the report 

by Davis et al. (2012) when seasonal variation in productivity is considered. The pond is 

harvested at a concentration of 0.5 g·L-1 and then concentrated to 10 g·L-1 by 

flocculation and settling. Dissolved air flotation and centrifugation accomplish 

secondary dewatering to ultimately achieve a final concentration of 150 g·L-1. This 

concentration deviates from that assumed by Davis et al. (2012), 200 g·L-1, but it aligns 
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with the experimental conditions used by Valdez et al. (2013). The authors found, 

however, that the yields of the HTL product fractions were not significantly affected by 

the concentration of the incoming algae slurry over this small range19.  Another 

deviation of this model from that of Davis et al. (2012) is the use of Nannochloropsis sp. 

which is the biomass source used by Valdez et al. (2013) in the generation of their 

predictive model. The biomass is therefore assumed to contain 14% lipid, 59% protein, 

and 20% carbohydrates19 to be consistent with the experimental work. 

Another important assumption for the standard pathway is that energy can be 

recovered from the organic carbon within the aqueous phase solution by catalytic 

hydrothermal gasification (CHG). In this process, the nutrients are, in principle, able to 

be nearly entirely recycled while the organic carbon is converted to biogas18. 

Combustion of the biogas in a combined heat and power (CHP) generator that allows for 

onsite production of thermal and electrical energy. This energy recovery scheme will be 

used for the standard pathway, but an alternative regrowth pathway featuring 

secondary biomass cultivation for boosted oil yields is also explored. The regrowth 

pathway is discussed later in this study.  

The biocrude recovered from HTL is assumed to be upgraded by hydrotreating. The 

crude oil is heated and processed with hydrogen for the removal of O and N as H2O and 

NH3, respectively18,30. The hydrogen demand is modeled on the formula outlined by Li 

and Savage (2013)31.  
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4.3.3 Modeling Framework 

Figure 1 illustrates the structure of the core model and the differences between the 

standard pathway and the regrowth pathway. Mass balances around each of the 

process units (represented by rectangles in Figure 4.1) serve to track nutrient flows and 

calculate energy and water demand. The core model was assembled in Microsoft 

Excel© but featured intermediate datasets that were derived in MATLAB©.  

Determining how the algal biomass was altered after undergoing the HTL process 

was crucial to the model.  To determine the yields of the product fractions from the HTL 

reactor, the predictive model derived by Valdez et al. (2013) was developed by solving a 

system of first-order differential equations to fit replicate sets of experimental data20. 

Valdez et al. used a constrained non-linear solver in MATLAB© to minimize the value of 

the squared difference between the experimental and predicted values. The resulting 

function was implemented to predict the distribution of the original algal biomass into 

the HTL products of light biocrude, heavy biocrude, solids, gas, and aqueous phase 

constituents. The elemental composition of the aqueous phase was calculated by 

difference for each combination of reaction conditions across the reaction temperature 

and duration design space.  

Solid products, though always in low yields, are more abundant at low temperatures 

and short reaction times.  These are considered as unconverted biomass and therefore 

assumed to have the same composition as the original biomass fed into the HTL reactor. 

Gas yields are also low, and the gas produced during HTL is assumed to be entirely CO2, 

which is consistent with other studies for gasification of biomass, particularly at lower 
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temperatures32. At higher temperatures, especially above the critical temperature of 

374°C, hydrocarbons such as methane, ethylene, and ethane are present. At the highest 

temperature considered, 400 °C, however, the gas phase is still primarily CO2 32. The 

elemental composition of the biocrude constituents is well-characterized33,34, meaning 

the elemental composition of the aqueous phase products can be calculated by mass 

balance. The Dulong formula was used to estimate the higher heating value (HHV) of the 

biocrude oil based on its elemental composition33.  

Only a portion of the carbon in the aqueous phase is available for gasification or 

secondary biomass growth and this fraction depends on the reaction conditions. For 

example more of the carbon is inorganic at the more severe reaction conditions, with a 

maximum inorganic fraction of 47% observed at the highest temperature and longest 

duration19. The study by Valdez et al. (2012) reported the fraction of carbon in the 

aqueous phase that is organic for 22 reaction conditions in the reaction design space. 

The MATLAB© curve fitting toolbox was then used to interpolate the results across the 

entire design space using a cubic spline. Details about this fitting technique can be found 

in the Supporting Information.  

Nelson et al. (2013) proposed utilizing a secondary microbial biomass pathway to 

recover carbon and nutrients in the aqueous phase products from the HTL. Because the 

HTL reaction is able to convert carbohydrates and proteins into biocrude in addition to 

the lipids, the secondary biomass could then also be converted into additional biocrude 

through the same HTL process used for the algal biomass. This secondary biomass 
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growth is therefore a means to boost the oil yield for the same unit of initial algal 

biomass. Nelson et al. demonstrated the feasibility of growing both E. coli and P. putida 

on the aqueous phase, but this report will focus solely on E. coli as it exhibited greater 

organic carbon uptake efficiency.  

After depressurization and separation from the biocrude, the aqueous phase 

solution is neutralized to a pH of 7 using hydrochloric acid (HCl) then diluted with a 

standard organic-buffered media for enterobacteria35. Upon addition of the HCl the 

inorganic carbon is off-gassed as CO2. Media varying between 10 and 50 vol% were 

tested  by Nelson et al. for various microbial growth characteristics, including the 

fraction of organic carbon removed by the cell culture. The maximum organic carbon 

removal (45%) occurred with E.coli growing in 10 vol% aqueous phase medium 21. 

Growth in concentrations above 40 vol%  aqueous phase was found to be too toxic for 

the E. coli, a higher tolerance threshold than has been exhibited by algae17,26.  

 Despite the dilution, the process of cultivating the E. coli in a continuous, fed-batch 

culture results in a harvested concentration projected to be 40-60 g·L-1. Therefore it is 

assumed that the microbial biomass can be combined with the final centrifugation step 

used for dewatering the algae for concentration to 150 g·L-1 prior to conversion in the 

HTL reactor. Fed-batch cultures of E. coli have been demonstrated to grow to 

concentrations denser than those projected in this analysis, with measurements in 

excess of 100 g·L-1 reported36. 
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The C:N:P ratio of the aqueous phase solution compared to that of the E. coli 

indicates that carbon will be the limiting nutrient, which was confirmed by Nelson et al. 

in their analysis. Of the fraction of organic carbon removed by the bacteria, a portion is 

respired as CO2 during cell maintenance rather than being synthesized directly into 

biomass. Modeling for this study was based on the yield to substrate removal ratios for 

carbon-limited E. coli reported by Chen and Strevett (2002)37. 

This analysis assumes that there will be no energy recovery from CHG in the 

regrowth pathway. Recall that the E. coli consume at most 45% of the organic carbon, 

meaning the majority is still theoretically available for energy recovery via a technology 

such as CHG or anaerobic digestion. However, unlike the standard pathway, the 

aqueous phase products were diluted and cooled for cultivation of the microbial 

biomass. The amount of energy required reheat and concentrate the solution to the 

level required for CHG was determined to be in excess of the energy recovered.  It was 

decided that CHG is not a viable option for the spent aqueous phase downstream of E. 

coli growth and the solution would instead be sent back to the pond for algae growth. 

The elemental mass flows through each of the processes were calculated by mass 

balance. Recall that the aqueous phase composition was calculated by difference given 

the biocrude and biomass compositions and assumptions about the solid and gas 

products from HTL. An illustration of the mass flows for the elements C, N, and P is 

shown for the standard pathway in Figure 4.1a and for the E. coli regrowth pathway in 
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Figure 4.1b.  The mass flows shown in Figure 4.1 represent baseline conditions of 350°C 

and 60 minutes. 

A) Standard Pathway B) Regrowth Pathway 

 

Figure 4.1 - A Sankey diagram illustrating the mass flows of carbon, nitrogen, and phosphorus for A) The 
standard pathway which assumes energy recovery from the aqueous phase products of HTL via catalytic 
hydrothermal gasification, and B) the regrowth pathway featuring cultivation of a secondary biomass, E. coli, on 
the nutrients available in the aqueous phase products which can be processed via HTL to boost the net oil yield.  

HTL reactions at 350°C for 60 minutes are commonly used in the literature, so this 

study will compare the life cycle impacts at these baseline conditions to those across the 

full design space (250-400°C, 5-90 minutes). Uncertainty was estimated by 

implementing a Monte Carlo simulation using the RiskSim Excel© plugin tool. Details 

about the parameters and the range of values incorporated into the simulation can be 

found in the Supporting Information. 
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Cost assumptions were adapted from the techno-economic model implemented in 

the harmonized study published Davis et al. (2012)29. Each line item in the harmonized 

model was normalized by the operational parameters of their baseline facility and then 

classified into three groups: Costs that scale in proportion to the 1) pond size, 2) algal 

biomass throughput, and 3) total oil produced. Costs for the HTL and CHG reactors38 

were added to the line items of the harmonized model while the cell rupture, solvent 

extraction, and anaerobic digestion costs were removed. The table showing the financial 

modeling details can be found in the Supplemental Information section. 

4.4 Results & Discussion 

4.4.1 Effect of Hydrothermal Liquefaction Reaction Conditions 

The NER for the standard pathway (without E. coli regrowth) is depicted in Figure 

4.2a for the full range of HTL reaction conditions. These results illustrate the significance 

of the HTL reaction conditions on the life cycle energy balance, with NER results varying 

from as low as 1.5 (at 250°C, 5 minutes) to as high as 2.8 (at 250°C, 57 minutes, marked 

with a black square). The GWP results (included in the Supporting Information) track 

closely to the NER, with the minimum value of 0.85 kg CO2e·L-1 occurring at 250°C and 

49 minutes. The highest oil yield from HTL is 42%, occurring at 400°C and 5 minutes, but 

at the higher temperatures a greater portion of the biomass is also converted to CO2. 

Furthermore, an increased oil yield results in less of the initial algal biomass ending up in 

the aqueous phase solution where it could be converted into useful energy via CHG 

when using the standard pathway. Displacing electrical energy in particular is beneficial 
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in terms of the GWP and NER impact metrics, as electricity has a relatively high life cycle 

energy burden.  

A biorefinery featuring HTL reaction conditions with relatively high temperatures 

and long reaction times results in an aqueous phase containing a higher fraction of 

carbon in the inorganic form rather than organic. Inorganic carbon is not available for 

energy recovery via CHG which is why the NER drops significantly as temperatures and 

reaction times are increased.  

Figure 4.2b illustrates the effect of the HTL reaction conditions on the economics of 

the biorefinery. Given that the pond costs dominate the economic model, the lowest-

cost scenarios occur where the oil yield is highest and therefore the least amount of 

pond is required per liter of biocrude produced. The lowest cost therefore occurs at 

reaction conditions of 400°C and 5 minutes (marked with a black square), where a liter 

of biocrude would cost $1.64·L-1. This cost represents a 9% reduction compared to the 

cost of $1.79·L-1 at standard conditions (350 °C, 60 min). Conditions with low 

temperatures and short reaction times, conversely, produce a biocrude with 

significantly higher costs because a relatively large portion of the initial biomass remains 

as solids and therefore the oil yields are low.  The land occupation metric tracks closely 

with the economic results because both are driven primarily by the size of the pond 

required for cultivation.  
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Figure 4.2 - The effect of hydrothermal liquefaction reaction conditions on the life cycle net energy ratio (NER, 
A) and cost of producing bio-crude oil (B). In both figures the optimal reaction condition for that metric is indicated 
with a black square. 

Figure 4.3 compares the four metrics over three sets of reaction conditions: 

standard conditions (350°C, 60 minutes), optimal conditions for the NER metric (250°C, 

57 minutes),  and optimal conditions for economics (400°C, 5 minutes). A design trade-

off is present, then, because the second set of conditions has the lowest energy input 

requirement but 7% more cost compared to the third set of conditions. 

 A B 
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Figure 4.3 - Comparison of all four metrics for the standard pathway at three sets of reaction conditions: 
Standard conditions, the optimal conditions for minimizing the global warming potential, and the optimal 
conditions for minimizing production costs.  

4.4.2 E. coli Regrowth Pathway Results 

The previous results illustrate the tradeoff between high oil yields (which minimizes 

the cost and land footprint) and high energy recovery via CHG of the aqueous phase 

(which minimizes the NER and GWP). A pathway featuring E. coli growth on the aqueous 

phase rather than energy recovery essentially amplifies this tradeoff. That is, using the 

aqueous phase to produce additional biomass boosts the total oil yield per unit of 

biomass but does so at the expense of energy recovery via CHG.  

The greatest boost to the oil yield, 21%, occurs at conditions of 250°C and 60 

minutes where the aqueous phase product fraction is large and the fraction of inorganic 

carbon present in the aqueous phase is low.  Adding E. coli regrowth in these conditions 

would increase the total oil yield from 39% to 46% of the initial algal biomass.  The 

greatest total oil yield for the regrowth pathway, however, occurs at 400°C and 5 
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minutes, where an 11% boost brings the initial yield of 42% up to 47% of the initial algal 

biomass.  

Given that on-site energy recovery is not considered for the regrowth pathway, 

then, the conditions for maximum total oil yield also correspond to the best 

performance for the four metrics considered in this analysis. The GWP results track 

closely with the NER results and the land occupation results track closely with the 

economic results, as was the case with the standard pathway.  In both Figure 4.4a and 

Figure 4.4b a line connects the optimal conditions for the regrowth pathway (marked 

with a circle) to the optimal conditions for the standard pathway (marked with a square) 

for clarity.  

 A B 

 

Figure 4.4 - A comparison of results for the standard pathway (the surface marked with a square at the 
optimal conditions) to the regrowth pathway (marked with a circle) across the full range of reaction conditions 
considered in the analysis. The net energy ratio (NER) is shown in plot A and the cost for producing the biocrude oil 
is shown in plot B. A line connects the optimal points on both surfaces for clarity.  
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Figure 4.5 compares two sets of reaction conditions for each of the two pathways. 

The first set of reaction conditions is the standard scenario (350°C and 60 minutes) and 

the second is the optimal for the regrowth pathway (400°C and 5 minutes). These 

results show that the lowest-cost scenario for the standard pathway can be further 

reduced from $1.64·L-1 to $1.59·L-1 by incorporating E. coli regrowth. Doing so, however, 

reduces the NER by 37% and increases the GWP 58% to 1.68 kg CO2e·L-1, again, due to 

the elimination of energy recovery via CHG. 

 

Figure 4.5 - Comparison of all four metrics representing two scenarios for each of the pathways considered: 1) 
Standard reaction conditions for the standard pathway, 2) Standard conditions for the regrowth pathway, 3) 
optimal economic conditions for the standard pathway, and 4) optimal economic conditions for the regrowth 
pathway. 

The greenhouse gas reduction threshold to qualify as an advanced biofuel for the 

EISA production targets require a 50% reduction in GHGs relative to conventional fossil 

fuels28. Adjusting for the energy intensity of the biocrude, the equivalent emissions from 
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fossil fuel is 3.0 kg CO2e·L-1, so the 58% increase caused by bypassing CHG to instead 

facilitate E. coli regrowth could jeopardize the fuel’s qualification as an advanced 

biofuel.  

Table 4.1 summarizes the optimal conditions for each of the metrics considered in 

this analysis.  

Table 4.1 - A summary of the optimal conditions for each of the metrics considered in this analysis and for 
both of the pathways examined. 

 Standard Pathway Regrowth Pathway 

 Opt. Conditions Value Opt. Conditions Value 

NER (Eout·Ein
-1) 250°C, 57m 2.8 400°C, 7m 1.4 

GWP (kg CO2e·L-1) 250°C, 49m 0.85 400°C, 6m 1.7 

Land Footprint (m2·L-1) 400°C, 5m 0.72 400°C, 5m 0.66 

Economics ($·L-1) 400°C, 5m 1.64 400°C, 5m 1.59 

 

4.5 Conclusions 

Previous studies have focused on HTL of algal biomass at a single reaction condition, 

but varying the reaction temperature and duration can have a profound influence on life 

cycle impacts of the final product in addition to its economic viability. To minimize the 

cost of producing an algal biocrude using HTL, conditions that maximize oil yield should 

be sought. To maximize the NER or minimize the GWP, conversely, conditions that 

produce high proportions of aqueous phase solution that is rich in organic carbon are 

ideal.  

Recovery of aqueous phase products from HTL is clearly instrumental to the overall 

life cycle performance and economics of the biorefinery, so the material should be used 
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prudently. If CHG of the aqueous solution is feasible it would be an attractive means to 

significantly offset the amount of electrical and thermal energy required to be imported 

onsite to run the biorefinery. This is an area that deserves further experimental 

validation.  

Preliminary experimental research indicates that a pathway featuring regrowth of 

biomass such as E. coli on the aqueous phase products from HTL enables boosting the 

yield of oil per unit of algal biomass by 10-20% without significant additional 

infrastructure investment. Doing so requires forgoing energy recovery via CHG and 

therefore reduces the NER by 37% and increases the carbon footprint of the fuel to 1.68 

kg CO2e·L-1.  

This study analyzed only the use of E. coli for boosting oil yields via a regrowth 

pathway, but other species could provide the same service and should therefore be 

examined. Examples of species that have been examined in other research include 

Pseudomonas putida and Saccharomyces cerevisiae. Ideal traits for these organisms are 

a high conversion efficiency of organic carbon into biomass, high oil yield of these 

organisms when processed via HTL, and a high toxicity threshold for regrowth on 

aqueous phase products20,21. This analysis did not consider energy recovery from the 

spent aqueous phase, or the solution remaining after E. coli growth which still contains 

valuable nutrients and organic carbon. If an organism were able to be grown on the 

aqueous phase without dilution it is possible that the carbon concentration would be 

sufficient to recover energy via CHG as was modeled for the standard pathway. 
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Alternatively it is possible that recycling the spent aqueous phase directly to the pond 

could induce mixotrophic algae growth providing another means for boosted yields, if 

the species were capable of such metabolisms.  In this model over half of the organic 

carbon present in the aqueous phase is unused, leaving a valuable substrate for more 

biomass growth in addition to the nitrogen and phosphorus that is recycled. This is 

another area that should be researched further. 

Oil from microalgae is currently too expensive to compete with fossil fuels, so 

technological advancements will be necessary to make the product commercially viable. 

The combined cost reductions that can be achieved by selecting HTL conditions for the 

highest oil yield and by recovering oil from a secondary biomass such as E. coli could 

exceed 11%. These reductions are insufficient to lower the cost to the point where oil 

from algae can compete with fossil fuel, but it provides a step in that direction.  
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CHAPTER 5. CONCLUSIONS 

The results of this dissertation indicate that while algal biofuels remain an alluring 

source of domestic biofuel, a technological breakthrough capable of propelling the 

industry into the production targets outlined by the EISA was not revealed. Using waste 

materials such as wastewater and flue gas as inputs for cultivating algae would reduce 

costs and the environmental footprint of the biofuel and is therefore an approach worth 

consideration. As Chapter 2 demonstrates, however, this strategy cannot be scaled to 

significant volumes due to the limited amount of nutrients in wastewater and an 

unsuitable climate where a large fraction of the population resides. 

Given the limitations in scalability found for flue gas and wastewater co-utilization 

(FWC), Chapter 3 of the dissertation shifted toward an alternative strategy, 

heterotrophic cultivation of algae, that is devoid of waste material as an input resource. 

While such an approach is less technically and economically challenging than using 

phototrophic algae grown in ponds, it introduces environmental concerns that were 

previously irrelevant. Chief among these concerns is the footprint associated with 

producing the sugar that is fed to the algae during fermentation. The advantages of 

algae relative to a terrestrial bioenergy source are diminished when a terrestrial energy 

crop is used to provide the foundational energy source for growing the algae.  
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Building on these results, Chapter 4 reverts to the assumption of open pond 

cultivation with flue gas as the carbon source but removes the wastewater input 

constraint and focuses instead on opportunities related to biomass conversion. 

Improving the economics of the algal biorefinery is critical to achieving national 

production targets. A fuel with a low life cycle impact but high cost will not contribute to 

these objectives, after all, if it is never commercialized. The opportunity to produce 

more fuel per unit of biomass afforded by hydrothermal liquefaction (HTL) allows the 

biorefinery to reduce the amount of infrastructure required and therefore reduce the 

costs of production. Investigating the specific conditions that will enhance these 

attributes revealed the importance of such process decisions. Furthermore, an analysis 

of a novel pathway featuring growth of E. coli to extract as much oil as possible 

demonstrated the potential to further reduce costs. 

5.1 Key Findings 

5.1.1 Algal bio-oil production potential through flue gas and wastewater 

co-utilization 

Chapter 2 featured an analysis of the national production potential of algal biofuel 

using FWC, the first such assessment in literature. The availability of the flue gas and 

wastewater inputs for algae growth provide an upper limit for how much algae can be 

cultivated, but even locations where these inputs are abundant may not be appropriate 

for FWC, as not all locations have suitable climates for algae cultivation. A MATLAB® 

growth model was used in to calculate an average annual algae yield for any location 

across the United States based on historical solar radiation and temperature records.  A 
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GIS economic overlay model was then used to integrate the locations and quantities of 

the input resources with the output from the algae growth model. The results of this 

overlay analysis highlighted the importance of siting the facilities near large cities to 

minimize the cost of transporting wastewater; power utility locations had a less 

noticeable influence on the results. The model also showed that while the supply of 

carbon dioxide from flue gas is relatively vast, the supply of nutrients in wastewater 

limits the production potential to the order of billions of liters per year. This amount is 

further reduced by nearly 60% due to the inappropriate climate where most of the 

country’s population is located. 

The predominant cost of producing algal biofuel using FWC is the pond and 

treatment facility, which varies greatly depending on the location. Costs for this 

infrastructure range from nearly $6 per liter in cool climates to less than $2 per liter in 

locations such as Arizona.  In the best location most, if not all, of this burden is offset by 

the $2.65 per liter credit assigned for the treatment service. Wastewater and flue gas 

transport had less impact on the final cost, contributing on average $0.13 and $0.03 per 

liter, respectively. 

In summary, FWC was found to be economical and sustainable largely because of 

the treatment service credited to the biofuel for removing nutrients from wastewater, 

but the limited availability of nutrients in wastewater prevent scaling production to 

more than 1.7 billion liters per year, or 0.45 billion gallons. The broad metrics outlined in 

Section 1.4 (sustainable, scalable, and salable) are reintroduced here to summarize the 
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results, as shown in Figure 5.1. Subtracting the cost from $2 for the “salable” metric 

allows for a target of 1.0 when the cost is $1·L-1 then reduces the score for amounts 

greater than that amount. A full score for the “scalable” metric corresponds to a 

production potential of at least 10 billion gallons annually. 

 

Figure 5.1 - Performance of flue gas and wastewater co-utilization (FWC) in terms of the overarching metrics 
considered in this dissertation. 

5.1.2 Growing algae for biofuel on direct sunlight vs. sugars 

Chapter 3 featured an analysis that compared an algal biofuel derived from 

phototrophic algae grown in open ponds to heterotrophic algae grown on sugars in unlit 

fermenters. The life cycle model assimilated data from literature for the baseline 

phototrophic pathway and to create the first-ever LCA of a heterotrophic algal biofuel. 

Given that this was a simulated system, extra attention was given to the sensitivity of 

results to key operational parameters such as the fermenter aeration/mixing energy 

input, the type of crop used for producing the sugar, and the fermentation batch length 

required to achieve the target cell concentration. As with Chapter 2, a GIS-based model 

was used to capture the spatial variability of results. The model therefore leveraged 
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historical climate, evaporation, water stress indices, and agricultural irrigation and yield 

data. Domestically produced sugar from both sugarcane and sugar beet were 

considered. A third, hybrid pathway was also investigated to explore potential benefits 

of mixotrophic algae that can be grown initially in sunlight then subsequently in a 

fermenter. 

The results of the analysis showed that heterotrophic and hybrid pathways have the 

potential to produce an algal biodiesel with reduced GWP and an improved FER relative 

to the phototrophic pathway and conventional diesel, but only if efficient fermentation 

technology, sugarcane is used as the sugar crop, and the sugarcane bagasse is used to 

recover energy on-site to reduce fossil energy inputs.  The water stress results were 

found to be widely geographically variable for all three pathways, with the sensitivity of 

results most dependent on the conditions of the aquifer from which the water was 

withdrawn. The amount of occupied land required for the heterotrophic and hybrid 

pathways, however, was definitively larger than the phototrophic pathway. Using 

terrestrial crops for biofuel also requires revisiting the “food vs. fuel” debate. Recall that 

a primary motivation for algal biofuel was that it could be grown on marginal lands that 

do not compete with agriculture; this remains valid for phototrophic but not 

heterotrophic nor hybrid algal biofuel. Furthermore, the potential carbon emissions 

caused by land use change must also be considered for the heterotrophic and hybrid 

pathways because diverting sugar for the purpose of producing biofuel could shift sugar 

production elsewhere to meet global demand.   
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Figure 5.2 summarizes the results in terms of the broad metrics of sustainability, 

scalability, and salability. Production scale was outside the scope of Chapter 3, but 

simple calculations indicate that given the current cost of sugar (~$0.30·kg-1) it is 

possible that hetotrophic algal biofuel could be produced for as cheap as $1.20·L-1, and 

current volumes of sugar production within the United States enable producing up to 2 

billion gallons per year if all sugar production is diverted for this purpose. With 

conventional fermenter performance, however, the NER is less than 1.0. The more 

complex issues regarding land use change and food vs. fuel are not captured in the 

sustainability metric of NER used here, but these issues must not be overlooked. 

 

Figure 5.2 - Performance of the heterotrophic and hybrid pathways in terms of the overarching metrics 
considered in this dissertation. 

 

 



108 
 

5.1.3 The effect of hydrothermal liquefaction (HTL) reaction conditions 

and an alternative pathway featuring microbial regrowth on the 

life cycle and economic performance of an algal biorefinery 

Chapter 4 featured the first life cycle assessment of phototrophic algal biofuel to 

focus specifically on the role of reaction conditions in the conversion of algal biomass 

into biocrude oil via HTL. The model includes recent experimental findings from 

collaborators in the Department of Chemical Engineering studying the yields of the 

various HTL products across a range of conditions and regrowth of E. coli biomass on the 

aqueous phase portion. The baseline model assumes that onsite electricity and heat can 

be recovered from the aqueous phase products via catalytic hydrothermal gasification 

(CHG) while the regrowth pathway replaces CHG with E. coli growth. The microbial 

biomass can be recycled back to the HTL reactor for boosted oil yields.  

Results of the model highlighted the importance of the HTL reaction conditions on 

the life cycle and economics of the biorefinery, with results varying significantly across 

the design space considered (250-400°C, and 5-90 minutes).  The GWP results track 

closely to the NER, with the minimum value of 0.74 kg CO2e·L-1 occurring at 250°C and 

60 minutes. The highest oil yield from HTL is 42% at conditions of 400°C and 5 minutes. 

An increased oil yield does not translate into a lower carbon footprint, however, for the 

standard pathway; high oil yields mean less of the algal biomass ends up in the aqueous 

phase solution where it could be converted into useful energy via CHG. Given that the 

pond costs dominate the economic model, however, the lowest-cost scenarios does 

correspond to where the oil yield is highest and therefore the least amount of pond is 



109 
 

required per liter of biocrude produced. Optimal conditions for the economic metric 

therefore occur at 400°C and 5 minutes where a liter of biocrude would cost $1.72·L-1. 

This cost represents a 9% reduction compared to the cost at standard conditions (350 

°C, 60 min). The land occupation metric tracks closely with the economic results because 

both are driven primarily by the size of the pond required for cultivation. 

The model also revealed that the greatest total oil yield for the regrowth pathway 

also occurs 400°C and 5 minutes.  At these conditions the additional E. coli biomass 

boost the oil yield from 42% up to 47% of the initial algal biomass and in doing so 

further reduce the costs to $1.67·L-1. These cost savings come at the expense of the 

carbon footprint of the fuel, however, as the GWP increases 80% relative to the 

standard pathway (to 1.49 kg CO2e·L-1) due to the elimination of energy recovery via 

CHG. Even so, this represents a 50% reduction in GWP relative to conventional fossil fuel 

and therefore still qualifies as an advanced biofuel.  

Figure 5.3 summarizes the results in terms of the broader metrics mentioned earlier. 

An algal biorefinery with the E. coli regrowth pathway optimized for the lowest cost 

(reaction conditions of 400°C, 5 minute) has a NER greater than one and can be scaled 

to high production volumes because it is dependent on neither waste resources nor a 

sugar source. This configuration produces an upgraded oil with the cost of $1.67·L-1 and 

therefore exceeds the target, but still represents a marginal improvement that could 

meaningfully contribute toward the commercial viability of algal biofuel in conjunction 

with other technological advancements.  



110 
 

 

Figure 5.3 - Performance of an algal biorefinery featuring HTL and an E. coli regrowth pathway in terms of the 
overarching metrics considered in this dissertation. 

5.2 Summary 

In summary, each of the three technologies explored in this dissertation had unique 

advantages, but none were found to exhibit high performance for each of the three 

overarching metrics explored, as shown in Figure 5.4. The approach for producing algal 

biomass using wastewater as the nutrient source and power utility flue gas as the 

carbon dioxide source is appealing from an environmental and economic perspective. 

But although incorporating waste materials into the biorefinery does provide distinct 

advantages, dependence on these feedstocks also limits the scalability. For FWC, then, 

while the technology could economically produce a biofuel that meets the sustainability 

metrics outlined previously, the availability of nutrients within wastewater prevented 

scaling beyond 0.5 billion gallons annually.  

Growing heterotrophic algae on domestically produced sugars presents an 

advantage over FWC in terms of scalability, as the total sugar production within the US 

could support up to 2 billion gallons annually. The current cost of sugar indicates that 
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while an algal biofuel could be produced more cheaply than an open pond system, it still 

could not compete with fossil fuels. Additionally, the environmental impacts of such an 

approach are questionable, particularly because of the reliance on a terrestrial food 

crop and the aeration/mixing energy required to run the aerobic fermentation process.  

Growing phototrophic algae in open ponds and then converting the biomass into oil 

using HTL, conversely, meets the sustainability criteria and can be scaled to significant 

production volumes because it does not rely on sugar or waste feedstocks. The cost of 

such an approach is greater than the two previous technologies that were explored, 

however, primarily because of the pond infrastructure. Optimizing the HTL reaction 

conditions to obtain the greatest amount of oil per unit of biomass grown can reduce 

these costs, as could recovering the non-fuel fraction of the carbon by growing a 

secondary type of heterotrophic biomass such as E. coli.   

Therefore the key to achieving an algal biofuel that is commercially viable and can 

also offer environmental benefits relative to fossil fuels is either to 1) identify waste 

feedstocks that will not become limiting at large production volumes, 2) develop less 

expensive pond and conversion infrastructure, or 3) extract more oil per unit of algal 

biomass thereby reducing the amount of infrastructure required. Designing an 

integrated biorefinery that features internal recycling loops to recover intermediate 

waste products will also be crucial to minimize the input requirements and therefore 

reduce the environmental and economic costs. 
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Figure 5.4 - A summary of the performance of the three technologies explored in this dissertation in terms of 
the overarching metrics of Sustainability, Scalability, and Salability. 

5.3 Future Work 

The RFS standards outlined by the US EPA stipulate that advanced biofuels must 

have life cycle carbon emissions that are at least 50% less than a baseline fossil fuel. The 

threshold is relaxed for corn ethanol (20% reduction) and stricter for ligno-cellulosic 

ethanol (60% reduction). These criteria present the only example of an LCA metric 

implemented within US public policy. As this dissertation has demonstrated, however, 

calculating the life cycle impacts of a biofuel is highly sensitive to process assumptions 

and can exhibit significant variation geographically. The GIS based methods 

implemented in Chapters 2 and 3 could be extended to evaluate regional variation in life 

cycle impacts and the national production potential of other, terrestrial bioenergy 

systems.  
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The models implemented as part of this dissertation could also be updated with 

values reported by the private sector to demonstrate qualification for the designation as 

an advanced biofuel. The private firms currently working toward commercialization 

have no motivation to publish academic literature because doing so would provide a 

competitive disadvantage. As a consequence, there is potentially a significant 

discrepancy between the values and process assumptions passed amongst academic 

LCAs and those that are actually being implemented by private companies. The models 

developed within this dissertation could be of particular value to companies leveraging 

genetic engineering and therefore have more control over the composition and growth 

behavior of their species.  

The LCA models developed to analyze the performance of HTL across a range of 

reaction conditions for Chapter 4 could also be repeated as more data emerges. The 

results indicated the economic benefits of achieving maximum oil yields that occurred at 

high temperatures with a low process time. Recall that the lowest cost scenario 

occurred at the limit of the design space for both design variables (400°C was the 

highest temperature and 5 minutes was the shortest reaction duration considered). A 

better understanding of what is capable at higher temperatures or faster reactions 

could reveal improved performance. The LCA results for the regrowth pathway could 

also be updated to explore the performance of a biorefinery featuring growth of 

alternative types of microbial biomass on the aqueous phase products. If other 

organisms can demonstrate higher organic carbon uptake efficiencies than E. coli the 

benefits of the regrowth pathway could be amplified.  
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APPENDIX 1. SUPPORTING INFORMATION FOR CHAPTER 2 

A1.1 Wastewater Treatment Energy Credit Calculations 

In the Background section of the article the overall energy benefits of treating 

wastewater in conjunction with algal bio-oil production are explored. To determine the 

effect of using flue gas and wastewater co-utilization (FWC) on the overall net energy 

ratio (NER), values for energy ‘credits’ must be identified. Using the stoichiometry of 

algal biomass shown in Table 1, a lower heating value (LHV) for algal bio-oil of 30 MJ·kg-

1, and the values for energy of nitrogen and phosphorus removal provided by Maurer et 

al. (2003) these credits can be calculated as shown in the following equations 1,2. The life 

cycle assessment performed by Lardon et al. (2009) assumes a lipid content of 18% 3, 

but to be consistent with the assumptions used later in the analysis a 25% lipid fraction 

will be used to deduce the energy credits. Lowering the lipid content from 25% to 18% 

would increase the total of these credits by 28% because more wastewater would be 

treated per unit bio-oil produced.   
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For Nitrogen Removal: 
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      (
    

     
) (

              

      
) (

          

                  
) (

                  

                
)

                            

For Aeration: 

The energy credit for providing aeration is based on the value of 0.20 kW·h required 

per cubic meter of wastewater treated, as reported by Nielsen and Jørgensen (2002)4: 
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The ratio of volumetric ratio of wastewater treated per volume of bio-oil produced is 

established by the following conversion: 
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The conversion assumes a nutrient uptake efficiency of 70%, toward the upper limit 

of what is deemed possible (80%) by Lundquist et al. (2010), who assumed just 44% 

removal in their baseline analysis 5. The nitrogen concentration in wastewater is 

assumed to be 30 mg·L-1 and the density of the bio-oil 0.92 kg·L-1.  

The energy credits for nitrogen removal, phosphorus removal, and aeration, can 

then be summed to determine a total energy credit, ECTOT: 

                                           

                            

A1.2 Algal Biomass Composition 

Data from Grobbelaar (2004) suggests a stoichiometry of approximately 

C100H183O48N11P, which results in the mass apportionment shown in Table A1.12.  

Table A1.1 - Assumed composition of algal biomass 
2
. 

Element Quantity Molecular 
Weight 

Total Percentage 
(by mass) 

Carbon  100   12   1,200  51.4% 
Hydrogen  183   1   183  7.8% 
Oxygen  48   16   768  32.9% 
Nitrogen  11   14   154  6.6% 
Phosphorus  1   31   31  1.3% 

    2,336  100% 
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A1.3 Nutrient Availability Conversions 

Crites and Tchobanoglous (1998) report that the average per capita Total Kjeldahl 

Nitrogen (TKN, sum of ammonia and organic nitrogen) mass loading rate is 4.85 

kg·person-1·year-1 , while Scheehle (1997) reports a higher value of 9.37 kg·person-1·year-

1 6,7. The average of these values, 7.11 kg-TKN·person-1·year-1 was used as the baseline. 

For simplicity, this analysis assumes 100% conversion of lipids to bio-oil. Maintaining the 

70% nutrient uptake efficiency, the conversion rate between the population and algal 

bio-oil can be established as: 
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Based on the biomass composition and simple stoichiometry, it follows that 1.88 kg 

of carbon dioxide is required per every kilogram of algal biomass grown. It is assumed 

that a substantial amount of carbon is collected in the primary sedimentation basin and 

processed in an anaerobic digester (along with the non-lipid algal biomass residuals). 

The carbon dioxide that is emitted from the combustion of the biogas is sufficient to 

meet the algal growth requirements for much of the year, though some carbon dioxide 

will need to be imported from an external source such as power utility flue gas 5. Based 

on approximations by Lundquist et al. (2010), this analysis assumes that an annual 

average of 8% of the carbon in the algal biomass will need to be supplemented by flue 

gas imports 5. Maintaining our assumption of 25% lipid content, therefore, and 
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assuming a carbon dioxide uptake efficiency of 30% due to nighttime losses and 

mismatch of production with algae growth cycles 8, the conversion rate can be 

established as:  
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A1.4 Algae Growth Model Calculations 

The growth model inputs were based on the data and formula from Tamiya et al. 

(1953) 9. The areal algae yield, Ya (measured in g∙m-2∙day-1) is reported to be  
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The parameters used in this formula along with their descriptions, units, and 

empirically derived values are included in Table 2.  

Table A1.2 - Growth formula inputs. Source: Tamiya et al. (1953) [9]. 

Parameter Description Units Value 

L Solar radiation kilolux-hour∙day-1 ∙m-2 Input, measured in 
field 

KG Kinetic parameter day-1∙m-2 0.07*Temp -0.44 
γ Light intensity correction 

factor 
dimensionless 0.64 

ε Extinction coefficient ml-1 0.41 
α Rectangular hyperbola 

shape parameter 
day-1∙kilolux-1   0.45 

H Duration of sunlight hours∙day-1 12 
C Dry weight conversion g∙ml-1 0.25 



119 
 

 
Current solar irradiance data sources are available in the flux density units of kW·m-2 

rather than Kilolux (lux = lumen·m-2). Here it is assumed that the average sun and sky 

luminous efficiency is 108 lumens per watt 10.  

The kinetic parameter, KG , is related to temperature by the formula listed for the 

parameter in Table 2. Values of KG for three temperatures experimentally determined 

by Tamiya et al. and are listed in Table 2.  The linear least-squares regression line used 

to define the relationship is shown in Figure A1.1. Note that this linear relationship 

suggests that increased temperature always results in increased productivity. In practice 

this is not always the case, depending on the species. Chlorella pyrenoidosa, for 

example, exhibits a higher growth rate at 25° C than at 20 or 30° C 11. In the referenced 

text, however, no such data points are available to establish such a trend for the model 

organism, Chlorella ellipsoidea. For a thermophilic Chlorella species (Tx 115), conversely 

a KG value is reported to be 2.7 day-1∙m-2 at 39° C which fits with the linear trend, as 

indicated by the fourth point in Figure A1.1. The general relationship between 

temperature, solar radiation, and estimated daily algae yield is shown in Figure A1.2. 

Table A1.3 - Relationship between kinetic parameter and temperature [9]. 

Temperature (° C) KG (day-1∙m-2) 

7° 0.092 
15° 0.52 
25° 1.34 
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Figure A1.1- Relationship between algae growth kinetic factor and ambient temperature, r
2
 = 0.987. 

 

Figure A1.2 - Algae growth rate formula illustrated as a function of radiation for multiple temperatures, and as 
a function of temperature for multiple daily radiation quantities.  
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A convenient way to visualize how algae biomass yield responds to climatic 

variations is by using what is here referred to as a “seasonal growth plot”. These plots 

display solar radiation on the x-axis, temperature on the y-axis, and the resulting algae 

yield by color. Sample seasonal growth plots are shown for four cities with distinct 

climates in Figure A1.3. In these figures the climatic coordinates throughout the year are 

traced with a line; markers denote the start of a new month. An interesting 

phenomenon is that for nearly all locations a counter-clockwise motion is observed as 

the climatic coordinates are traced. An explanation for this occurrence is that the 

thermal mass of the earth requires a lag time between solar radiation and the resultant 

increase in temperature. That is, the warmest period of the year is generally later in the 

season than the sunniest because it takes time for the landscape and atmosphere to 

absorb the radiation and heat up. Notice that the more fluctuating, desert-like setting of 

Phoenix, AZ, allows for periods of exceptionally high productivity when high 

temperatures and high solar radiation coincide. Pensacola, FL, conversely has a lower 

average yield but more consistent production throughout the seasons. A more thorough 

site selection process should include consideration of these seasonal attributes and an 

optimization of the algae pond size based on the length of the growing season. For the 

purposes of this basic assessment only the average annual output will be considered. 

This is a reasonable starting point, especially because the most likely “ideal” locations 

will be in regions where cultivation is viable throughout the year.  
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Figure A1.3 - Seasonal growth plots for four sample locations as produced by the simulation.  

As expected, locations in the lower latitudes tend to produce a higher average 

annual yield. As Figure A1.4 demonstrates, however, while southern locations tend to 

outperform northern in general, there is a significant amount of variation in algae yield 

at any given latitude. This variation is due to the drastic differences in geography and 

climate across the breadth of the country. The elevated cooler regions of the Rocky 

Mountains reside adjacent to the Great Basin Desert, for example, yet produce 
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dramatically different results. Therefore it is apparent that latitude alone is an 

insufficient means for predicting algae production rates.  

 

 

Figure A1.4 - Algae yield as a function of latitude (assuming a lipid content of 25%). 

A1.5 GIS Overlay Analysis 

The GIS analysis uses a dataset containing populations of “urban areas” from the 

2000 United States Census 12. Clusters of cities often containing surrounding suburbs are 

lumped into a single region, with boundaries of polygons designating the extent of the 

area with a sufficiently high population density. Only polygons with large populations, 

those containing more than 100,000 people, were considered.  These 254 regions 
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include nearly 180 million people, or approximately 60% of the total population. A 

dataset including point locations of power utilities and their carbon dioxide emissions as 

reported under the EPA’s Acid Rain legislation was obtained from Purdue University’s 

Vulcan Project 13. Only facilities that produce enough carbon dioxide to meet the 

equivalent bio-oil production from the population cutoff of 100,000 people were 

considered. This cutoff was implemented as a filter to remove small power utilities from 

the GIS algorithm. Doing so allowed the implementation of the assumption that any 

location uses the C resources from the nearest power utility and N resources from the 

nearest urban area. There were many small power utilities that portrayed some 

locations as being carbon-limited, even if a much larger utility was slightly farther away 

(thereby underestimating production potential). Creating the cutoff eliminated this 

issue.  

A total of 948 power utilities were therefore included, producing a total of more 

than 2.4 billion metric tons of carbon dioxide per year, or approximately 40% of total 

anthropogenic carbon dioxide emissions in the United States.  

The methodology employed here relies on the assumption that at any point in the 

United States, wastewater will be piped in from the edge of the nearest urban area 

polygon and carbon dioxide from the point of the nearest power utility. Because of this 

assumption, the zone assigned to each resource can be defined using Theissen polygons, 

which divide the terrain into regions such that any location within the polygon is closer 

to its associated point than to any other point. The urban area polygons therefore were 
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first converted to points prior to Theissen polygons. The total amount of bio-oil that can 

be produced based on these inputs can then be established by multiplying the 

conversion ratios from the previous section with the respective nutrient availability 

within each of the sets of zones. It will be the lesser of these two quantities that 

determines how much bio-oil can be produced at that point.   

 

Figure A1.5 - Summary of the GIS overlay analysis process. 

In summary, any point in the contiguous United States falls within a Theissen 

polygon indicating the nearest urban area and thus the bio-oil that can be produced 

based on the size of the population, and any point also falls within a separate Theissen 

polygon indicating the nearest power utility and thus the bio-oil that can be produced 

based on the carbon dioxide emissions. Neither of these two values alone determines 

the amount of bio-oil that can be produced at that location, however, but rather the 

minimum of the two. Figure A1.6 through Figure A1.11 outline the general process for 

arriving at this quantity, zoomed in on a region in Southern Louisiana for clarity.  
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Figure A1.6 - Large power utility locations in southern Louisiana.  

 
Figure A1.7 - Production of algal bio-oil in southern Louisiana 

assuming no nutrient limitations. 

 
Figure A1.8 - Urban area clusters in southern Louisiana. 

 
Figure A1.9 - Geographic center points of urban area clusters in 

southern Louisiana. 

 
Figure A1.10 - Production of algal bio-oil in southern Louisiana 

assuming no carbon dioxide limitations. 

 
Figure A1.11 - Maximum production of algal bio-oil in southern 

Louisiana based on relative abundance of nutrient and carbon dioxide 
availability. 
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While the populations of urban areas and quantities of carbon dioxide emissions 

from power utilities are useful for determining how much bio-oil can be created, their 

locations are also significant. When assessing potential algae cultivation sites, 

consideration must be given to the proximity to both of the resources providing the 

nutrients inputs. Figure A1.12 and Figure A1.13 depict the distance from any point to 

the nearest power utility and urban area, respectively. Transporting these nutrients this 

distance has an associated cost, as represented by the economic assumptions presented 

in the article text. 

 In this model it is assumed that only the amount of nutrient required to produce the 

bio-oil will be transported. So, for example, in a location that is limited by wastewater 

availability rather than carbon dioxide, all of the wastewater will be piped to that 

location but only the required fraction of flue gas.  

To locate the most ideal sites, however, neither nutrient availability data nor climatic 

parameters nor transport distances alone will reveal meaningful an answer. Rather, the 

multiple GIS datasets, or “layers”, must be combined into a single results calculation.  It 

is for this reason that the proximity and growth rate datasets were expressed in 

economic terms, enabling the layers to be summed in equivalent units. 
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To assign a wastewater treatment credit, a value was assigned based on the 

assumed BOD removal from 200 down to 14 mg/L and economic value of $1.23/kg  to 

be consistent with Lundquist et al. (2010) 14,15, as shown below: 

(
                

          
) (

                     

    
)(

      

          
)(

     

              
)

 
     

          
 

Figure A1.14 depicts the average annual algae yield, which is the output of the algae 

growth model presented earlier.  This value establishes the pond size (and hence cost) 

required for producing the quantity of bio-oil shown in Figure A1.11. The result of 

summing each of the aforementioned costs and dividing by the quantity of biooil 

produced is shown in Figure A1.15 and again in Figure A1.16 but with the interior of the 

“urban area” polygons whitened out. Figure A1.17 illustrates the 10km wide buffer 

created around each of the urban areas for analyzing the cost distribution of the region. 

Layer values were extrapolated and compiled to yield final results using the ArcGIS © 

Zonal Statistics tool within the Spatial Analyst toolbox.  
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Figure A1.12 - Distance to nearest large power utility in southern 

Louisiana. 

 
Figure A1.13 - Distance to nearest large urban area cluster in 

southern Louisiana. 

 

 
Figure A1.14 - Average areal algal bio-oil production in southern 

Louisiana. 

 

 
Figure A1.15 - Results of economic overlay analysis. 

 

 
Figure A1.16 - Results of economic overlay analysis with area 

defined as the urban area cluster concealed in white. 

 
Figure A1.17 - Results of economic overlay analysis with 10km 

buffer surrounding the urban area shown in a semi-transparent blue. 
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An example of a typical cost distribution for a location where producing algal oil is 

economically viable is shown in Figure A1.18.  

 

 

Figure A1.18 – Average costs and credits associated with the production of a liter of algal oil using FWC. The 
resulting average cost is $0.78/Liter.  

A1.6 Sensitivity of Results to Pond Temperature Assumption 

The article mentions that for the algae growth model simulation, average annual 

high temperatures for each location were used. This assumption was based on the 

premise that most of the algae growth will occur during the warmest portion of the day 

and that because of the shallow depth of the pond the water temperature can be 

assumed to match the ambient atmosphere. Such assumptions may overestimate the 

growth rate, so the analysis was repeated using an alternate scenario in which the pond 

temperature was modeled to be the average of the maximum and minimum historical 

averages for that location. That is, rather than using the average Tmax value to model the 

pond temperature, (Tmax+Tmin)·0.5 was used. The same historical average temperature 
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data source was used 15 . Figure A1.19 illustrates how such an assumption affects the 

average annual yield and Table 3 illustrates the bearing on total national production 

potential. The true value is somewhere within this reported range. The average annual 

yield results used to project the upper limit, however, appear more consistent with 

other literature and therefore present a more likely scenario. 

Using Tmax Using (Tmax + Tmin)/2 

 

 

Figure A1.19 - A comparison of the average annual algae yield growth simulation results based on different 
pond temperature algae growth model assumptions. 

 

Table A1.4 - A comparison of national production potential results based on different pond temperature algae 
growth model assumptions. 

 Using Tmax  Using (Tmax + Tmin)/2 

Pond Area 
Required (ha) 

83,000  29,000 

Liters of bio-oil 
(billions) 

1.68  0.54 
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APPENDIX 2. SUPPORTING INFORMATION FOR CHAPTER 3 

A2.1 Carbon Accounting 

As with all biofuels, the life cycle assessment of algal biodiesel requires close 

attention to both the biogenic carbon exchanges (i.e. sequestration and natural 

emissions in fermenters, anaerobic digesters, and farming emissions) and anthropogenic 

carbon emissions (i.e. from combusting natural gas for process heat or the emissions 

from the electrical grid and life cycle of other inputs). The waterfall plots shown in 

Figure A2.1 illustrate this carbon accounting. 
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Figure A2.1 - The contributions to the global warming potential (GWP) for two of the three pathways are 
illustrated in the above waterfall plot. Bars shown in the negative portion of the plots indicate biogenic carbon 
emissions, which balance to zero upon combustion of the fuel. Bars shown in the positive portion of the plots 
represent the anthropogenic emissions that contribute to the fuel’s net carbon footprint. Three fermenter 
technology scenarios (1, 2, & 3 kW/m

3
 for aeration/mixing) are illustrated for the heterotrophic pathway (right), 

illustrating the significance of these assumptions on the results. These plots do not include impacts from indirect 
land use change (ILUC). 

A2.2 Elemental Biomass Composition 

The composition of the algal biomass is important for a number of reasons. Most 

importantly, the lipid fraction of the algae determines how much biomass must be 

cultivated to produce the functional unit of algal biodiesel. A higher lipid fraction 

therefore implies that less nutrients and infrastructure is required (and hence less 

upstream embodied and operational energy). Another consequence, however, is that 
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after the lipid has been extracted there is less lipid extracted algae (LEA) leftover for 

energy recovery via anaerobic digestion.  

The distribution of the macromolecules (protein, carbohydrates, and lipids) was 

based on Frank et al. (2011) for the phototrophic and heterotrophic biomass (or the 

“baseline” and “high lipid” scenarios, respectively)16. The hybrid scenario, which 

contains 55% lipid rather than the 50% lipid selected for the heterotrophic biomass, was 

approximated by keeping the same 1:1 protein to carbohydrate ratio for the non-lipid 

portion. The macromolecule approximations of C40H74O5 for lipid, C4.43H7O1.44N1.16 for 

protein, and C6H12O6 for carbohydrate were based on Lardon et al. (2009)3. Although 

phosphorus is not represented in these formulae, a 10:1 ratio (by mass) of N:P was 

assumed, as recommended by the authors. A summary of these results is shown in 

Table A2.1 and Figure A2.2. 

Table A2.1 - Biomass composition assumptions for the three pathways. 

 
Phototrophic Heterotrophic Hybrid 

Macromolecule Composition 

Lipid:  C40H74O5 25.0% 50.0% 55.0% 

Protein:  C4.43H7O1.44N1.16 50.0% 25.0% 22.5% 

Carbohydrate:  C6H12O6 25.0% 25.0% 22.5% 

Elemental Composition 

C 54.68% 60.69% 62.18% 

H 7.96% 9.18% 9.43% 

O 27.59% 25.21% 23.96% 

N 7.99% 4.03% 3.63% 

P 1.77% 0.89% 0.80% 

Total: 100.00% 100.00% 100.00% 
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Figure A2.2 - Biomass composition assumptions for the three pathways. 

A2.3 Fossil Energy Ratio (FER) Results with Sugar from Sugar Beet 

Due to limited space, the primary article content did not display the FER results 

featuring Sugar Beet at the sugar source. In none of the fermenter aeration/mixing 

energy requirement scenarios do the heterotrophic or hybrid pathways provide a FER 

greater than one, as shown in Figure A2.3. Cultivation of sugarcane yields an abundance 

of bagasse which can be combusted to provide a substantial amount of energy on site; 

Sugar beet, conversely, does not. It is possible that an animal feed co-product could be 
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produced from sugar beet residuals, but this possibility was not explored in this analysis 

17.  

 

Figure A2.3 - Fossil Energy Ratio (FER) results comparing sugar from sugarcane and sugar beet. 

A2.4 Weighting Factors for Phototrophic Pathway 

One of the key variables used to determine the water stress impact of the 

phototrophic pathway is the rate of evaporation, as this determines the amount of 

make-up water that must be pumped into the pond to maintain the appropriate 

volume. The national data set used in this analysis was produced by the National 

Oceanic and Atmospheric Administration18. The agency did not provide a continuous 

coverage layer with predicted evaporation rates but rather reported empirical 

evaporation data recorded at several hundred weather stations across the country. The 

locations of these sites were not established systematically, however, and therefore 
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averaging the results from each of the locations would skew the results toward locations 

where the concentration of sites is higher. The sites are much closer together on the 

west coast, for example, than in the southeastern United States. To compensate for this 

non-uniform distribution, results from each of the sites were weighted according to the 

area of its Thiessen polygon. This approach assigns a polygon to each evaporation data 

site such that any location within that polygon is nearer to its associated point than to 

that of any other polygon19.  These polygons are shown in Figure A2.4. The sites that are 

highlighted in red are those that meet the minimum average annual productivity of 20 

g·m-2·day-1. 

 

Figure A2.4 - The Thiessen polygons associated with the NOAA evaporation data sites are outlined above, 
trimmed by the perimeter of the contiguous United States. Locations highlighted in red are those that meet the 
minimum average annual productivity cut-off of 20 g·m

-2
·day

-1
. 
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A2.5 Impact Factors 

A summary of the impact factors used in the analysis is included in Table A2.2. Recall 

that a geographic information systems (GIS) approach was used to explore the regional 

variations for the land use and water stress impact calculations based on yield data from 

the National Agricultural Statistics Service 20. 

Table A2.2 - Impact factors applied to the inventory of material and energy flows for the three pathways. 

Process/Input Value Units Reference 

Global Warming Potential    

Electricity, US Grid Average 0.216 Kg CO2e/MJ 
21

 

Sugar, from sugarcane 0.222
α 

Kg CO2e/kg 
22

 

Sugar, from sugar beet 0.505
β
 Kg CO2e/kg 

23
 

N Fertilizer (urea, as N) 3.3 Kg CO2e/kg 
23

 

P Fertilizer for cultivation,  (diammonia phosphate, per 
mass P2O5) 

1.57 Kg CO2e/kg 
23

 

Methanol 0.556 Kg CO2e/kg 
21

 

Hexane 0.898 Kg CO2e/kg 
23

 

Natural Gas, combusted in industrial equipment 2.4 Kg CO2e/m
3
 

21
 

Methane emissions (fugitive), CH4 25 Kg CO2e/kg 
24

 

Nitrous Oxide emissions (field), N2O (as N) 298 Kg CO2e/kg 
24

 

    

Fossil Energy    

Electricity, US Grid Average 3.03 MJ/MJ 
21

 

Sugar, from cane 1.834
α
 MJ/kg 

22
 

Sugar, from beet 6.49
β
 MJ/kg 

23
 

N Fertilizer (urea, as N) 65.4 MJ/kg 
23

 

P Fertilizer for cultivation,  (diammonia phosphate, per 
mass P2O5) 

22.12 MJ/kg 
23

 

Methanol 35.44 MJ/kg 
21

 

Hexane 60.89 MJ/kg 
23

 

Natural Gas, combusted in industrial equipment 42.1 MJ/m3 
21

 

    

Land Use    

N Fertilizer (urea, as N) 0.0856 m
2
/kg 

23
 

P Fertilizer for cultivation,  (diammonia phosphate, per 
mass P2O5) 

0.115 m
2
/kg 

23
 

    

Water Use    

Water consumption for electricity generation. 2.1
γ
 L/MJ 

25
 

αAdapted from the year 2020 scenario.  
βSugar from sugar beet was modeled based on a refinery in Switzerland. 
γNational weighted average for thermoelectric and hydroelectric power in the United 

States.
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A2.6 Inventory Tables 

Table A2.3 - A summary of the inventory of inputs required for the three pathways to produce 5 million liters of algal biodiesel annually. This table reflects the 1 kW/m
3 

fermenter 
aeration/mixing scenario with sugarcane as the feedstock. Recall that water inputs and land requirements were calculated independently based on a GIS analysis.  

 

 

Units Seed Train Pond Growth Dewatering
Fermenter 

Growth
Cell Separation Oil Conversion Digester Operation Digester Output

Excess Bagasse 

Cogeneration Used 

Onsite

Total

Electrical Energy MJ -                      21,772,622        21,719,608          -                          14,711,782        470,725               13,948,774                 (60,657,624)        -                                       11,965,886          

Heat Energy MJ -                      -                       -                         -                          48,989,207        9,087,036           15,597,104                 (79,038,722)        -                                       -                         

Sugar kg -                      -                       -                         -                          -                       -                        -                                -                         -                                       -                         

N Fertilizer (Urea, as N) kg -                      462,357              -                         -                          -                       -                        -                                -                         -                                       462,357                

P Fertilizer kg P2O5 -                      488,753              -                         -                          -                       -                        -                                -                         -                                       488,753                

Methanol kg -                      -                       -                         -                          -                       440,392               -                                -                         -                                       440,392                

Hexane kg -                      -                       -                         -                          22,900                -                        -                                -                         -                                       22,900                  

Natural Gas m3 -                      -                       -                         -                          1,628,089          301,995               518,348                       (2,232,732)           -                                       215,701                

Electrical Energy MJ 8,902,872          -                       3,708,564             33,388,668           7,902,858          470,725               4,177,304                   (20,698,088)        (37,852,902)                       -                         

Heat Energy MJ -                      -                       -                         -                          48,989,207        9,087,036           4,670,937                   (26,970,236)        -                                       35,776,943          

Sugar kg 5,150,784          -                       -                         15,452,351           -                       -                        -                                -                         -                                       20,603,135          

N Fertilizer (Urea, as N) kg 24,887                -                       -                         99,548                   -                       -                        -                                -                         -                                       124,435                

P Fertilizer kg P2O5 26,308                -                       -                         105,232                 -                       -                        -                                -                         -                                       131,539                

Methanol kg -                      -                       -                         -                          -                       440,392               -                                -                         -                                       440,392                

Hexane kg -                      -                       -                         -                          22,900                -                        -                                -                         -                                       22,900                  

Natural Gas m3 -                      -                       -                         -                          1,628,089          301,995               155,232                       (761,871)              -                                       1,323,446            

Electrical Energy MJ -                      2,410,049           13,895,527          33,388,668           7,902,858          470,725               4,177,304                   (20,698,088)        (41,547,041)                       -                         

Heat Energy MJ -                      -                       -                         -                          48,989,207        9,087,036           4,670,937                   (26,970,236)        -                                       35,776,943          

Sugar kg -                      -                       -                         18,027,743           -                       -                        -                                -                         -                                       18,027,743          

N Fertilizer (Urea, as N) kg -                      89,659                 -                         -                          -                       -                        -                                -                         -                                       89,659                  

P Fertilizer kg P2O5 -                      94,777                 -                         -                          -                       -                        -                                -                         -                                       94,777                  

Methanol kg -                      -                       -                         -                          -                       440,392               -                                -                         -                                       440,392                

Hexane kg -                      -                       -                         -                          22,900                -                        -                                -                         -                                       22,900                  

Natural Gas m3 -                      -                       -                         -                          1,628,089          301,995               155,232                       (761,871)              -                                       1,323,446            
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Table A2.4 A summary of the inventory of inputs required for the three pathways to produce 5 million liters of algal biodiesel annually. This table reflects the 2 kW/m
3 

fermenter 
aeration/mixing scenario with sugarcane as the feedstock. Recall that water inputs and land requirements were calculated independently based on a GIS analysis.  

 

 

Units Seed Train Pond Growth Dewatering
Fermenter 

Growth
Cell Separation Oil Conversion Digester Operation Digester Output

Excess Bagasse 

Cogeneration Used 

Onsite

Total

Electrical Energy MJ -                      21,772,622        21,719,608          -                          14,711,782        470,725               13,948,774                 (60,657,624)        -                                       11,965,886          

Heat Energy MJ -                      -                       -                         -                          48,989,207        9,087,036           15,597,104                 (79,038,722)        -                                       -                         

Sugar kg -                      -                       -                         -                          -                       -                        -                                -                         -                                       -                         

N Fertilizer (Urea, as N) kg -                      462,357              -                         -                          -                       -                        -                                -                         -                                       462,357                

P Fertilizer kg P2O5 -                      488,753              -                         -                          -                       -                        -                                -                         -                                       488,753                

Methanol kg -                      -                       -                         -                          -                       440,392               -                                -                         -                                       440,392                

Hexane kg -                      -                       -                         -                          22,900                -                        -                                -                         -                                       22,900                  

Natural Gas m3 -                      -                       -                         -                          1,628,089          301,995               518,348                       (2,232,732)           -                                       215,701                

Electrical Energy MJ 17,803,426       -                       3,708,564             66,765,746           7,902,858          470,725               4,177,304                   (20,698,088)        (70,158,322)                       9,972,212            

Heat Energy MJ -                      -                       -                         -                          48,989,207        9,087,036           4,670,937                   (26,970,236)        -                                       35,776,943          

Sugar kg 5,150,784          -                       -                         15,452,351           -                       -                        -                                -                         -                                       20,603,135          

N Fertilizer (Urea, as N) kg 24,887                -                       -                         99,548                   -                       -                        -                                -                         -                                       124,435                

P Fertilizer kg P2O5 26,308                -                       -                         105,232                 -                       -                        -                                -                         -                                       131,539                

Methanol kg -                      -                       -                         -                          -                       440,392               -                                -                         -                                       440,392                

Hexane kg -                      -                       -                         -                          22,900                -                        -                                -                         -                                       22,900                  

Natural Gas m3 -                      -                       -                         -                          1,628,089          301,995               155,232                       (761,871)              -                                       1,323,446            

Electrical Energy MJ -                      2,410,049           13,895,527          66,765,746           7,902,858          470,725               4,177,304                   (20,698,088)        (61,388,532)                       13,535,588          

Heat Energy MJ -                      -                       -                         -                          48,989,207        9,087,036           4,670,937                   (26,970,236)        -                                       35,776,943          

Sugar kg -                      -                       -                         18,027,743           -                       -                        -                                -                         -                                       18,027,743          

N Fertilizer (Urea, as N) kg -                      89,659                 -                         -                          -                       -                        -                                -                         -                                       89,659                  

P Fertilizer kg P2O5 -                      94,777                 -                         -                          -                       -                        -                                -                         -                                       94,777                  

Methanol kg -                      -                       -                         -                          -                       440,392               -                                -                         -                                       440,392                

Hexane kg -                      -                       -                         -                          22,900                -                        -                                -                         -                                       22,900                  

Natural Gas m3 -                      -                       -                         -                          1,628,089          301,995               155,232                       (761,871)              -                                       1,323,446            
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Table A2.5 - A summary of the inventory of inputs required for the three pathways to produce 5 million liters of algal biodiesel annually. This table reflects the 3 kW/m
3 

fermenter 
aeration/mixing scenario with sugarcane as the feedstock. Recall that water inputs and land requirements were calculated independently based on a GIS analysis.  

Units Seed Train Pond Growth Dewatering
Fermenter 

Growth
Cell Separation Oil Conversion Digester Operation Digester Output

Excess Bagasse 

Cogeneration Used 

Onsite

Total

Electrical Energy MJ -                      21,772,622        21,719,608          -                          14,711,782        470,725               13,948,774                 (60,657,624)        -                                       11,965,886          

Heat Energy MJ -                      -                       -                         -                          48,989,207        9,087,036           15,597,104                 (79,038,722)        -                                       -                         

Sugar kg -                      -                       -                         -                          -                       -                        -                                -                         -                                       -                         

N Fertilizer (Urea, as N) kg -                      462,357              -                         -                          -                       -                        -                                -                         -                                       462,357                

P Fertilizer kg P2O5 -                      488,753              -                         -                          -                       -                        -                                -                         -                                       488,753                

Methanol kg -                      -                       -                         -                          -                       440,392               -                                -                         -                                       440,392                

Hexane kg -                      -                       -                         -                          22,900                -                        -                                -                         -                                       22,900                  

Natural Gas m3 -                      -                       -                         -                          1,628,089          301,995               518,348                       (2,232,732)           -                                       215,701                

Electrical Energy MJ 26,703,980       -                       3,708,564             100,142,824        7,902,858          470,725               4,177,304                   (20,698,088)        (70,158,322)                       52,249,845          

Heat Energy MJ -                      -                       -                         -                          48,989,207        9,087,036           4,670,937                   (26,970,236)        -                                       35,776,943          

Sugar kg 5,150,784          -                       -                         15,452,351           -                       -                        -                                -                         -                                       20,603,135          

N Fertilizer (Urea, as N) kg 24,887                -                       -                         99,548                   -                       -                        -                                -                         -                                       124,435                

P Fertilizer kg P2O5 26,308                -                       -                         105,232                 -                       -                        -                                -                         -                                       131,539                

Methanol kg -                      -                       -                         -                          -                       440,392               -                                -                         -                                       440,392                

Hexane kg -                      -                       -                         -                          22,900                -                        -                                -                         -                                       22,900                  

Natural Gas m3 -                      -                       -                         -                          1,628,089          301,995               155,232                       (761,871)              -                                       1,323,446            

Electrical Energy MJ -                      2,410,049           13,895,527          100,142,824        7,902,858          470,725               4,177,304                   (20,698,088)        (61,388,532)                       46,912,666          

Heat Energy MJ -                      -                       -                         -                          48,989,207        9,087,036           4,670,937                   (26,970,236)        -                                       35,776,943          

Sugar kg -                      -                       -                         18,027,743           -                       -                        -                                -                         -                                       18,027,743          

N Fertilizer (Urea, as N) kg -                      89,659                 -                         -                          -                       -                        -                                -                         -                                       89,659                  

P Fertilizer kg P2O5 -                      94,777                 -                         -                          -                       -                        -                                -                         -                                       94,777                  

Methanol kg -                      -                       -                         -                          -                       440,392               -                                -                         -                                       440,392                

Hexane kg -                      -                       -                         -                          22,900                -                        -                                -                         -                                       22,900                  

Natural Gas m3 -                      -                       -                         -                          1,628,089          301,995               155,232                       (761,871)              -                                       1,323,446            
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Table A2.6 - A summary of the annual outputs for the three pathways assuming sugarcane is the feedstock.  

 

 

 

Units  1 kW/m3  2 kW/m3  3 kW/m3 

Fugitive Methane kg CH4 73,524                     73,524                     73,524                     

Fugitive N2O kg N2O-N 1,228                        1,228                        1,228                        

Biodiesel Liters 5,000,000               5,000,000               5,000,000               

N Fertilizer from Residue kg N 122,831                   122,831                   122,831                   

P2O5 Fertilizer from Residue kg P2O5 396,440                   396,440                   396,440                   

CO2 from biogas combustion kg CO2 15,157,619             15,157,619             15,157,619             

CO2 from fermenter kg CO2 -                            -                            -                            

Bagasse Elec Generation (consumed on site) MJ -                            -                            -                            

Surplus Bagasse Elec Generation MJ -                            -                            -                            

Fugitive Methane kg CH4 25,089                     25,089                     25,089                     

Fugitive N2O kg N2O-N 419                           419                           419                           

Biodiesel Liters 5,000,000               5,000,000               5,000,000               

N Fertilizer from Residue kg N 41,913                     41,913                     41,913                     

P2O5 Fertilizer from Residue kg P2O5 135,276                   135,276                   135,276                   

CO2 from biogas combustion kg CO2 5,172,206               5,172,206               5,172,206               

CO2 from fermenter kg CO2 7,292,813               7,292,813               7,292,813               

Bagasse Elec Generation (consumed on site) MJ 70,158,322             70,158,322             70,158,322             

Surplus Bagasse Elec Generation MJ 32,305,420             -                            -                            

Fugitive Methane kg CH4 25,089                     25,089                     25,089                     

Fugitive N2O kg N2O-N 419                           419                           419                           

Biodiesel Liters 5,000,000               5,000,000               5,000,000               

N Fertilizer from Residue kg N 41,913                     41,913                     41,913                     

P2O5 Fertilizer from Residue kg P2O5 135,276                   135,276                   135,276                   

CO2 from biogas combustion kg CO2 5,172,206               5,172,206               5,172,206               

CO2 from fermenter kg CO2 8,117,543               8,117,543               8,117,543               

Bagasse Elec Generation (consumed on site) MJ 61,388,532             61,388,532             61,388,532             

Surplus Bagasse Elec Generation MJ 19,841,490             -                            -                            

Aeration/Mixing Energy Scenario:
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Table A2.7 – Sensitivity of net energy ratio (NER) results to open pond algae yield and heterotrophic cultivation 
batch length. Results are unitless.  

Scenario Yield  
(pond growth) 

Batch Length 
(fermenter growth) 

Photo. Heterotrophic Hybrid 

1 kw·m
-3 2 kw·m

-3 3 kw·m
-3 1 kw·m

-3 2 kw·m
-3 3 kw·m

-3 

Low 12.5 g·m-2·day-1 4 days 1.05 1.66 1.48 0.95 1.69 1.55 1.10 

Baseline  25 g·m-2·day-1 3 days 1.54 1.59 1.12 0.60 1.62 1.09 0.66 

High 37.5 g·m-2·day-1 2 days 1.82 1.53 0.77 0.44 1.53 0.74 0.46 

 

Table A2.8 – Sensitivity of global warming potential (GWP) results to open pond algae yield and heterotrophic 
cultivation batch length. Results are in units of kg CO2e·L

-1
.  

Scenario Yield  
(pond growth) 

Batch Length 
(fermenter growth) 

Photo. Heterotrophic Hybrid 

1 kw·m
-3 2 kw·m

-3 3 kw·m
-3 1 kw·m

-3 2 kw·m
-3 3 kw·m

-3 

Low 12.5 g·m-2·day-1 4 days 2.14 1.42 1.63 2.50 1.38 1.53 2.13 

Baseline  25 g·m-2·day-1 3 days 1.46 1.48 2.14 3.86 1.45 2.16 3.52 

High 37.5 g·m-2·day-1 2 days 1.23 1.56 3.05 5.22 1.54 3.14 4.95 
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Figure A2.5 - Results of additional sensitivity analyses. The high performance scenario is marked with a white diamond, while the 
low performance scenario is marked with a black diamond. 
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Table A3.1 - A summary of the financial model implemented in the analysis, adapted from Davis et al. (2012) 
to distinguish costs that scale based on algal biomass, pond size, and oil produced. 

 

Adapted From: 

Davis, R.; Fishman, D.; Frank, E. D.; Wigmosta, M. S.; Aden, A.; Coleman, A. M.; Pienkos, P. T.; Skaggs, 
R. J.; Venteris, E. R.; Wang, M. Q. Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, 
Emissions, and Resource Potential from a Harmonized Model; Argonne, IL, 2012; p. 85.

DIRECT CAPITAL COSTS Cost ($MM)

D

e

p

r

N
o

te $/kg algal 

biomass $/ha $/L-Oil

Ponds & paddle wheels 138.6$                             3,178$          

Pond liners 205.2$                             4,705$          

Flue gas delivery & distribution 38.7$                               0.018$                

Water delivery & distribution 3.7$                                 85$                

Primary harvesting (settling) 47.0$                               1,078$          

Secondary harvesting (DAF) 1.7$                                 0.001$                

Tertiary harvesting (centrifuge) 4.4$                                 0.002$                

HTL reactor - Adapted from: Kasteren et al. (2007) 4.1$                                 1 0.002$                

Solvent extraction (LLE column, centrifuge, solvent stripper) n/a

Land costs 35.9$                               192$             

Gasification - Adapted from  Santosa et al. (2009) 16.5$                               2 0.003$                

Gen-Set - Using equation in Peters et al. (1968) 6.2$                                 3 0.001$                

Inoculum production system 50.2$                               0.024$                

Steam boiler 1.0$                                 0.000$                

Water pumps 13.2$                               0.006$                

Initial water charge -$                                 -$                    

Total Installed Depreciable Capital 530.5$                             

Total Installed Non-Depreciable Capital 35.9$                               

Total Installed Capital 566.4$                             

INDIRECT CAPITAL COSTS Cost ($MM)

Site development 12.9$                               296$             

Warehouse 4.9$                                 0.002$                

Total Direct Costs 548.3$                             

Pro-rateable costs 56.0$                               0.006$                

Field expenses 56.0$                               0.026$                

Home office and construction 56.0$                               0.026$                

Contingency 112.0$                             0.012$                

Other costs 28.0$                               0.003$                

Total Indirect Costs 308.0$                             

Fixed Capital Investment 856.3$                             

Working Capital 43.4$                               0.020$                

Total Capital Investment 935.6$                             

OPERATING COSTS Cost ($MM/year)

Power calc. separately

Nutrients (N,P) calc. separately

Flocculant 8.3$                                 0.027$                

Solvent (extraction) n/a

Waste disposal -$                                 -$                    

Utilities -$                                 -$                    

Labor and overhead 8.2$                                 1,316$          

Maintenance, tax, insurance 19.2$                               0.063$                

Net Operating Costs 35.7$                               

HYDROTREATING UPGRADING COSTS Cost ($/gallon)

Hydrotreating total cost per gallon of oil 1.382$                             0.365$     

Total Upgrading Costs 1.382$                             

Derivative Values  Implemented in Model

Table Data Adapted from Davis et al. (2012) - Numbers are based on a 10.4 million 

gallons oil/year facility

1 - Van Kasteren, J. M. N., & Nisworo, A. P. (2007). A process model to estimate the cost of industrial scale biodiesel production from 

waste cooking oil by supercritical transesterification. Resources, Conservation and Recycling, 50(4), 442-458.

2 - Santosa, D. M., Valkenburg, C., Jones, S. B., & Tjokro Rahardjo, S. A. (2009). Catalytic hydrothermal gasification of lignin-rich 

biorefinery residues and algae. Richland, WA: Pacific Northwest National Laboratory.

3 - Peters, M. S., Timmerhaus, K. D., West, R. E., Timmerhaus, K., & West, R. (1968). Plant design and economics for chemical 

engineers (Vol. 4). New York: McGraw-Hill.
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Figure A3.1 - A summary of the processes and inputs/outputs considered for the standard and regrowth 
pathway. 
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Figure A3.2 - The cubic interpolant curve that was fit to the experimental data using MATLAB© to predict the 
fraction of organic vs. inorganic carbon across the design space. 

 

Figure A3.3 - A comparison of Global Warming Potential (GWP) results for the standard pathway (the surface 
marked with a square at the optimal conditions) to the regrowth pathway (marked with a circle) across the full 
range of reaction conditions considered in the analysis. A line connects the optimal points on both surfaces for 
clarity. 
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Monte Carlo Sensitivity Analysis Parameters 

Table A3.2  - A list of the low, high, and median values used in the 10,000 trial Monte Carlo Simulation. 

Low Median High Parameter Unit Sources 

25 48 83 Paddle Energy kWh/ha/day 1 

0.75 0.85 0.95 CO2 Uptake Eff % 1 

0.06 0.21 0.36 Make-Up H2O m^3/kg 2 

0 0.000123 0.000246 To-Site Pumping kWh/L 3 

0 2.12E-05 4.24E-05 CO2 transport kWh/g CO2 1 

6.2 13.2 50 Biomass Yield g/m^2/day 3,4 

0 0.000025 0.00005 Pumping Energy (on site) kWh/L 3 

0 0.0193 0.0386 Centrifugation kWh/kg 
algae 

3 

0 0.133 0.266 DAF Energy kWh/kg 
algae 

3 

250 330 350 Days of Operation days/year 3 

0.009273 0.03175 0.056 H2 Demand g H2/g 
biocrude 

5-7 

0.8 0.95 0.99 Organic Carbon Utilized 
by CHG 

% 8-10 

0.28 0.33 0.38 CHP Electricity Efficiency % 1 
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