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Abstract 

 

As the complexity of human-machine systems grows rapidly, there is an 

increasing need for human factors theories and computational methods that can 

quantitatively model and simulate human performance and mental workload in complex 

multi-task scenarios. In response to this need, I have developed and evaluated an 

integrated cognitive architecture named QN-ACTR, which integrates two previously 

isolated but complementary cognitive architectures – Queueing Network (QN) and 

Adaptive Control of Thought-Rational (ACT-R). Combining their advantages and 

overcoming the limitations of each method, QN-ACTR possesses the benefits of 

modeling a wider range of tasks including multi-tasks with complex cognitive activities 

that existing methods have difficulty to model. These benefits have been evaluated and 

demonstrated by comparing model results with human results in the simulation of multi-

task scenarios including skilled transcription typing and reading comprehension (human-

computer interaction), medical decision making with concurrent tasks (healthcare), and 

driving with a secondary speech comprehension task (transportation), all of which 

contain important and practical human factors issues. QN-ACTR models produced 

performance and mental workload results similar to the human results. To support 

industrial applications of QN-ACTR, I have also developed the usability features of QN-

ACTR to facilitate the use of this cognitive engineering tool by industrial and human 

factors engineers. Future research can apply QN-ACTR – which is a generic 

computational modeling theory and method – to other domains with important human 

factors issues.  
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Chapter 1. Introduction 

 

Chapter Summary 

 

How to computationally model human performance in complex cognitive and 

multi-task scenarios has become an important yet challenging question for human 

performance modelling and simulation. This chapter introduces existing cognitive 

architectures and the benefits of integrating Queueing Network and Adaptive Control of 

Thought Rational architectures. This integration can overcome the limitations in each 

method and model a wider range of tasks including cognitive multi-task scenarios that 

contain important and practical human factors issues.  

 

 1. Human Performance Modeling (HPM) 

 

The analysis and evaluation of human performance have become increasingly 

crucial in the design and control of complex systems in a wide range of industrial and 

system engineering domains including healthcare, human-computer interaction, 

transportation, manufacturing, and aviation. System designers and policy makers have an 

increasing need for cognitive engineering methods that can quantitatively model and 

simulate human performance. Addressing this need, Human Performance Modeling 

(HPM) research focuses on the use of mathematical algorithms and computational 

simulation to model and simulate human performance. In this dissertation, the scope of 

human performance (i.e., behavioral results) focuses on the cognitive aspects rather than 

the physical aspects of performance. For example, the models in this dissertation work 
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produce decision choice, reaction time, and correct rate results but do not simulate human 

motion trajectory, postures, the senses of touch and proprioception, the force of motor 

activities, or biomechanics. This cognitive focus is selected to address the rapidly 

increasing need for cognitive models in both the research field and the industry. In recent 

years, major challenges in the HPM research field were created by the increasingly 

complex human-machine interactions that are often required by complex human-machine 

systems being used or developed. Common tasks in the workplace today often require 

multi-task performance and complex cognitive activities in addition to physical activities. 

For example, a typist often needs to type quickly on the keyboard and comprehend the 

typing materials, while responding to incoming short text messages. An automobile 

driver often needs to control the vehicle’s lane position and speed while communicating 

on a mobile phone. A physician in an emergency department needs to monitor multiple 

vital signs of multiple patients and make critical decisions under time pressure. The 

increased task complexity raises an important yet challenging human factors question: 

How to model and simulate human performance in complex cognitive and multi-task 

scenarios?  

One answer to this question comes from developing integrated computational 

cognitive architectures. A cognitive architecture is a comprehensive representation of the 

human mind and possesses the following properties.  

First, a cognitive architecture integrates isolated cognitive theories under the same 

framework – a unified theory of cognition – where different mental modules execute 

different aspects of mental functions. Since human performance involves all aspects of 

cognition including perception, memory, and response selection, a general human 

performance model needs to unify all the underlying cognitive mechanisms (Newell, 

1990, 1973). For instance, in a study that reviewed existing models related to helicopter 

pilot performance, researchers found hundreds of isolated models and concluded that the 

central problem is to integrate them into a coherent unity that works together (Elkind, 

Card, Hochberg, & Huey, 1989). 

Second, the modules of a cognitive architecture and their computational 

mechanisms are biologically inspired, based on psychological and neurological evidence 

of how the human brain works. Previous studies have identified the correspondence 
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between the functional areas in the human brain and the information processing modules 

of cognitive architectures (J. R. Anderson, Fincham, Qin, & Stocco, 2008; Liu, Feyen, & 

Tsimhoni, 2006). 

Third, a cognitive architecture can be implemented as a computerized simulation 

program to generate simulated behaviors and quantitatively model human performance. 

In a cognitive architecture, the human mind is represented as an information processing 

system. Mental representations and knowledge are programmed as symbols with their 

own data structures, and mental processing is programmed as computational functions 

applied to the symbols. The parameters of the architecture can represent human factors 

such as visual processing speed and working memory capacity. System inputs include 

task description and task-specific knowledge description, and outputs include simulated 

performance such as the contents of responses, processing time, correct rates, mental 

workload, and strategies. In this dissertation, as well as many cognitive-architecture-

based modeling studies, the term ―model‖ often refers to a set of task-specific 

information, including the tasks to be performed, the knowledge required to perform the 

tasks, and the parameters. On the other hand, the term ―architecture‖ often refers to the 

generic cognitive framework representing non-task-specific information processing 

capabilities and mechanisms of the human mind in general.  

Over the past several decades, numerous efforts have been made in developing 

unified theories of cognition and led to the creation of several important cognitive 

architectures including Adaptive Control of Thought-Rational (ACT-R; J. R. Anderson et 

al., 2004), Executive-Process Interactive Control (EPIC; D. E. Meyer & Kieras, 1997), 

Soar (Laird, Newell, & Rosenbloom, 1987), and Queueing Network-Model Human 

Processor (QN-MHP; Liu et al., 2006). The evolution of these architectures is a testimony 

to model integration. ACT-R originally focused on modeling pure cognitive activities and 

later acquired perceptual-motor modules conceptually based on EPIC’s perceptual-motor 

processors (Byrne & Anderson, 1998). Soar’s declarative memory modeling mechanisms 

are inspired by ACT-R’s declarative knowledge representation and computations (Laird, 

2008). QN-MHP integrates mathematical Queueing Network (QN) modeling with Model 

Human Processor and GOMS (Goals, Operators, Methods, and Selection rules) models 

(Card, Moran, & Newell, 1983; John & Kieras, 1996); QN modeling itself has integrated 
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a wide range of mathematical models of mental processes (Liu, 1996, 1997). Although 

previous work of model integration has significantly expanded the scope of tasks that can 

be modeled by a cognitive architecture, existing architectures still have difficulties in 

modeling human performance in multi-task scenarios involving complex cognitive 

activities. ACT-R and Soar have the capability to model complex cognition such as 

reading comprehension, learning, and decision making, but they lack a mechanism that 

can schedule multi-task processing at the local module level. EPIC focuses on modeling 

perceptual-motor tasks but lacks the mechanisms to model complex cognitive activities 

that involve declarative memory, for example, language learning and sentence 

comprehension. QN-MHP uses queueing as a multi-task coordination mechanism but is 

limited in modeling complex cognition. These limitations indicate the need for further 

model integration. 

This dissertation research focuses on the integration of QN and ACT-R, because 

the two previously isolated cognitive architectures have many complementary properties 

(Liu, 2009). An integration of the two architectures could take the advantages and 

overcome the limitations of each in modeling cognitive multi-task scenarios. The 

following sections will introduce QN and ACT-R in more details and then introduce the 

theoretical values of the integration.   

 

2. Queueing Network (QN) Architecture of Human Performance 

 

Queueing theory is the mathematical study of waiting before processing. In a 

queueing system, customers/entities arrive at the system, get processed in servers, and 

leave the system. If a server’s capacity is reached, incoming entities wait in a queue until 

the server is free. Queueing network (QN) is a network of servers connected by paths. 

Since the early 20
th

 century, QN has been widely used in system engineering, such as 

telecommunications, traffic engineering, and product line design, to evaluate system 

performance including processing time, waiting time, and server utilization. Although 

QN and queueing theory are well-established mathematical formulations that have been 

widely used in the modeling and simulation of complex engineering systems, they were 

not explicitly used in the modeling and simulation of human mental performance until 
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recently. Nevertheless, there have been evidences that suggest the existence of queues in 

the cognitive system. At the neuron and synapse level, it has been found that the 

mobilization of synaptic vesicles (which store and release neurotransmitters to transfer 

information between neurons) follows a queueing mechanism that gives some vesicles 

higher priority than others (Holt & Jahn, 2004). At the cortex level, motor commands are 

also believed to form queues in the human brain before their execution. 

 

―A sequence of different isolated finger movements requires programming 

in the supplementary motor areas. I suggest that the supplementary motor 

areas are programming areas for motor subroutines and that these areas 

form a queue of time-ordered motor commands before voluntary 

movements are executed by way of the primary motor area‖ (p. 118, P. E. 

Roland, Larsen, Lassen, & Skinhøj, 1980). 

 

QN can be used to model human performance in two ways, as a mathematical tool 

and as a computerized simulation framework. As a mathematical tool, QN can be used to 

derive a closed-form expression of reaction time, given inter-arrival time distributions 

and service time distributions. Despite of being widely used in system engineering, QN is 

not among the first models selected by mathematical psychologists to represent and 

analyze the human mind. Instead, isolated mathematical methods and models for reaction 

time were developed (for a review, see Liu, 1996), including the subtractive method 

(Donders, 1868), the additive factors method (Sternberg, 1969), the cascade model 

(McClelland, 1978), the queue-series model (Miller, 1993), and the Critical Path Network 

model (Schweickert, 1978). These methods and models were later proved to be special 

cases of QN (Liu, 1996), and QN was further shown to be able to represent cognitive 

structures (such as feedback and bypass structures) that cannot be modeled by the 

previous methods. Therefore, QN is a more general mathematical tool for reaction time 

modeling and has more explanatory power than the previous mathematical models.    

As a framework in computerized simulation of HPM, QN has been used in the 

recent work of QN-MHP (Liu et al., 2006). QN serves as the structural framework. 

Natural Goals, Operators, Methods, and Selection rules Language (NGOMSL) is the task 

analysis method. Model Human Processor (MHP) provides the empirical data for 

processing logics and model parameters. The task representations of stimuli and task 

http://en.wikipedia.org/wiki/Neurotransmitter
http://en.wikipedia.org/wiki/Explanatory_power
http://en.wikipedia.org/w/index.php?title=Model_Human_Processor&redirect=no
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procedures are stored in spreadsheets as well as the entity attributes and array variables 

used in the simulation platform (ProModel
TM

). Compared with MHP’s three processors 

of perception, cognition, and motor, QN-MHP has a finer granularity. The granularity of 

QN-MHP was set at a level where each server represents millions of neurons from a 

certain functional field of the brain. This server selection was strongly biologically-

inspired and followed the cortical field and neuronal population activation theory (P. 

Roland, 1993). Figure 1 illustrates QN-MHP’s server network and the functional 

mapping onto the corresponding brain areas. QN-MHP has successfully modeled 

laboratory tasks like the psychological refractory period (Wu & Liu, 2008a) and real-

world tasks like driving and in-vehicle map reading (Liu et al., 2006) and transcript 

typing (Wu & Liu, 2008b).  

 

 

Figure 1. The server structure of QN-MHP (from Wu & Liu, 2007). 

 

An advantage of the QN architecture is modeling human multitasking 

performance, as explained in details as follows. First, QN does not need executive control 
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to model multitasking performance, for example, as demonstrated in the modeling of the 

sub-additive effect of psychological refractory period (Wu & Liu, 2008a). In contrast, 

EPIC and ACT-R both need executive control (strategic response deferment) that 

strategically locks and unlocks a task to explain the effect. Executive control is not a 

preferred method for HPM, because it strongly depends on the task characteristics and an 

individual’s strategy, and needs to be customized for different tasks and different 

individuals. QN’s method to model multitasking is a generic one independent from task 

characteristics and strategies, because it resolves resource confliction at the local server 

level rather than high-level executive control.  

Second, QN has a hybrid central cognitive processing system containing both 

serial and parallel servers. In contrast, other architectures assume a single central 

cognitive processor that is either serial (ACT-R and Soar) or parallel (EPIC). Dual-task 

results from experiments involving simple cognition are more in favor of a parallel 

processor, but results from experiments involving complex cognition (e.g., arithmetic 

computation, Byrne and Anderson, 2001) are more in favor of a serial one. Results from 

both sides can be easily explained by the QN architecture, which has a multiple-capacity 

Server C and a single-capacity (serial) Server F (see Figure 1). Server C can process 

several low-level cognitive operations in parallel, but Server F has to serially process 

multiple high-level cognitive operations. Predicted by this hybrid system, a simple task 

and a complex task are likely to be processed in parallel, given no bottlenecks in the 

perception and the motor sub-networks; multitasking involves two or more complex 

cognitive tasks are likely to be processed in serial. It is important to note that this two-

server formalization was not specifically designed to explain the mixed empirical results. 

Instead, it was inspired by the cortical field theory to match human brain cortical 

functions.  

Third, since QN has a finer granularity in the cognitive sub-network, the same 

task may be processed through different paths, which may be used to model the effect of 

secondary task demands and the effect of learning. For example, the processing path at 

the novice level may go through servers A-C-F-C-W, and the processing path at the 

expert level may go through A-C-W. The expert process may not need Server F and is 

therefore faster.  
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Another advantage of QN is its ability to model mental workload using the 

concept of utilization. In queueing theory, utilization is the proportion of the system’s 

resources that is used by the entities in the system. Considering server capacities in QN as 

mental resources in the brain, one can intuitively link utilization with mental workload. 

Previous QN-MHP studies have successfully modeled workload measurements including 

both an objective measurement of P300 in Event-Related Potential (Wu, Liu, & Quinn-

Walsh, 2008) and a subjective measurement of NASA-task load index (Wu & Liu, 2007).  

 

3. Adaptive Control of Thought-Rational (ACT-R) 

 

ACT-R (J. R. Anderson et al., 2004) is a cognitive architecture implemented as a 

production rule system. It assumes two types of knowledge representations: chunks and 

production rules (rules, for short). Chunks represent declarative knowledge such as the 

fact that the sum of 3 and 4 is 7. In contrast, rules represent procedural knowledge of how 

to do things and are executed to produce actions (Squire, 2004). Rules are coded in ACT-

R as condition-action (if-then) pairs. For example, a simple rule could be, if seeing a light 

is illuminated, then press a button. A rule can only be executed or fired when it is 

matched, which means its condition part matches the agent’s current ―mental state‖. A 

mental state consists of the state of each mental module. ACT-R’s module structure is 

illustrated in Figure 2. Each ACT-R module has a buffer that can hold only one chunk at 

a time. As a production rule system, ACT-R ―thinks‖ and ―acts‖ by firing production 

rules until a pre-defined goal state is reached.  
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Figure 2. Module structure of ACT-R version 6.0. Circles represent buffers for each 

module (adapted from J. R. Anderson et al., 2004). 

 

For chunks, ACT-R has algorithms for calculating chunk retrieval time and 

retrieval probability based on chunk activation and association in its declarative module, 

which stores and retrieves declarative knowledge. Larger values of chunk activation lead 

to faster and more successful retrieval. For rules, ACT-R has algorithms for rule selection 

and learning based on rule utility in its production module, which matches, selects, and 

executes rules. Every production rule in ACT-R has a firing cycle of 50 ms (by default) 

and a utility value that represents the relative desirability to fire the rule. Since only one 

rule is allowed to fire within a firing cycle, multiple rules matched in the same cycle will 

compete. Rules with greater utilities have greater chances of being fired, determined by a 

soft-max function (for details, see J. R. Anderson et al., 2004; J. R. Anderson & Lebiere, 

1998). These algorithms are part of the general architecture that is the same for modeling 

different tasks, whereas task-specific knowledge of chunks and production rules need to 

be specified individually for each task in each model.  

Previous studies using ACT-R have modeled complex cognitive tasks including 

reading comprehension (J. R. Anderson, Budiu, & Reder, 2001), decision making (Fu & 

Anderson, 2006), and language learning (Taatgen & Anderson, 2002). However, these 

tasks are mostly single-tasks. Recently, a multi-task scheduling mechanism called 

threaded cognition has been reported and tested (Salvucci & Taatgen, 2008). Threaded 
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cognition is a general theory about the mechanisms of human multitasking and can be 

implemented in ACT-R. The term thread is borrowed from computer technology where a 

single central processing unit (CPU) fast switches between different task threads. Each 

thread represents the task demands from each task. On the basis of ACT-R’s assumption 

of a serial central cognitive processor, threaded cognition has two additional assumptions 

for multitasking mechanisms. First, it assumes that the goal buffer can hold more than 

one goal simultaneously. Second, ―Conflict Resolution Assumption: When multiple 

threads contend for the procedural resource, the least recently processed thread is allowed 

to proceed‖ (Salvucci & Taatgen, 2008, p. 111). In essence, the conflict resolution 

assumption is a type of queueing scheme (Liu, 1997). As described in a previous QN-

MHP study, ―If more than one goal may be executed (i.e., a multiple task scenario), …, 

three schemes have been included: one, randomly select between the various goals; two, 

choose the goal which has waited the longest since its last execution; or three, select the 

goal with the highest priority value in the goal list array‖ (Feyen, 2002, p. 138). 

 

 4. An Integrated Cognitive Architecture to Model Cognitive Multitasking 

Performance 

 

Existing HPM architectures have difficulties and limitations in modeling complex 

cognitive multi-task scenarios. QN-MHP lacks a sophisticated declarative memory 

reflecting activation and association; therefore, it lacks the ability to model complex 

cognitive tasks involving long-term memory retrieval, such as reading comprehension, 

problem solving, and decision making. On the other hand, symbolic production rule 

architectures like ACT-R can model (i.e., can be used to model, the same below) complex 

cognitive tasks but have limitations in modeling multi-task scenarios. The focus of this 

dissertation research is to develop and examine an integrated cognitive architecture that 

combines the advantages of QN-MHP’s server network and queueing mechanisms and 

ACT-R’s algorithms for complex cognition. Among several symbolic production rule 

architectures, ACT-R is chosen because of its well-developed declarative memory 

retrieval algorithms based on chunk activation and association and also its production 
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rule selection algorithms based on utility. Previous single-task models using ACT-R are 

great resources for developing multi-task models in the integrated architecture.  

As discussed by Liu (2009), the further integration of the QN mathematical 

architecture and symbolic architectures continues along the line of work using QN to 

model and simulation human performance (Liu, 1996, 2009; Liu et al., 2006; Wu & Liu, 

2008a) and can examine and potentially resolve several theoretical and methodological 

issues in human performance modeling. In particular, the integration of QN and ACT-R 

architectures has the potential to model performance and mental workload in multi-tasks 

with complex cognitive components (Cao & Liu, 2011a, 2011b, 2012c). Continuing 

model integration and the development of a unified theory of cognition, the goals of the 

present study are to integrate QN and ACT-R by merging their structures and modeling 

mechanisms and build a cognitive architecture that can model a wider range of cognitive 

and concurrent tasks. This integration also allows the examination of several important 

theoretical issues in ACT-R – including concurrent goal scheduling and module jamming 

– from the QN perspective.  

Modeling complex cognitive and multi-task scenarios. The integration of QN and 

ACT-R combines QN’s strength in modeling multi-task performance and ACT-R’s 

strength in modeling complex cognition. Two unique theoretical positions in QN are the 

queueing mechanism and the hybrid server network (Liu et al., 2006; Wu & Liu, 2008a). 

The queueing mechanism can serve as a natural multi-task coordination mechanism at the 

local server level, and the hybrid network with both serial and parallel processing servers 

can model multi-task processing with a finer granularity. Previous studies using the QN 

architecture (i.e., QN-MHP) have modeled multi-task scenarios including the 

psychological refractory period dual-tasks (Wu & Liu, 2008a) and a driving and map 

viewing dual-task (Liu et al., 2006). On the other hand, ACT-R’s strength lies in its 

symbolic knowledge representations and sub-symbolic computations that can model 

memory retrieval and learning. Since QN and ACT-R possess unique and complementary 

modeling capabilities, the integration of the two architectures can benefit from their 

strengths and overcome the limitations of each one.  

Concurrent goal scheduling. In ACT-R, each module has a buffer as an interface 

to connect with other modules. One of ACT-R’s theoretical positions is that each buffer 
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(e.g., the goal buffer storing the information about the current task) can hold only a single 

chunk at a time (J. R. Anderson et al., 2004). This theoretical position, although without 

clear neurological evidence, has been shown to be suitable in the modeling of single-tasks. 

However, in dual-task models, this position often requires dual-task models in ACT-R to 

combine the two goals from the two task components into one task-specific goal for the 

dual-task in question (e.g., Byrne & Anderson, 2001). This task-specific modeling 

method makes it difficult to model a wide range of dual-task scenarios, because modelers 

must define the task-specific knowledge for each scenario. From the QN perspective, 

multiple goals can co-exist in the goal buffer, and multi-task performance emerges as the 

behavior of multiple streams of information flowing through a network, with no need for 

multitask-specific goals to interleave production rules into a serial program or for an 

executive process to interactively control task processes (Liu, 1997; Liu et al., 2006). 

Encouragingly, this QN position has been adopted in recent ACT-R based threaded 

cognition work for multi-task scheduling (Salvucci & Taatgen, 2008). In fact, the core 

mechanism of threaded cognition can be represented as a special type of queueing with a 

serial server (i.e., the production module in ACT-R) that gives priority to the longest 

waited task entity. The full integration of QN and ACT-R can further test and examine 

different queueing scheduling mechanisms to model a wider range of multi-task scenarios, 

especially those involving dynamic and complex cognitive tasks and producing high 

mental workload.  

Module jamming. Another theoretical assumption in ACT-R is that a module 

processes one request at a time, and its buffer content is limited to a single declarative 

chunk (ACT-R Tutorial Unit 2; J. R. Anderson et al., 2004). As a result of this serial 

assumption, if a module is busy processing a request and receives another request at the 

same time, the module will be jammed. Technically, the handling of module jamming is 

not included in the theory of ACT-R, and the programming consequences of jamming 

may vary (e.g., removing the first request, ignoring the second request, or stopping the 

whole simulation), so the modeling guideline is to avoid it. To avoid this jamming issue, 

ACT-R modeling requires modelers to ―query the state in every production that makes a 

request that could potentially jam a module‖ (ACT-R Tutorial Unit 2, p. 9). From the QN 

perspective, this module jamming issue can be naturally resolved by adding queues to the 
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modules. When a request arrives at a busy module, the request can wait in a queue until 

the module is free. This QN method does not require a production rule to query the state 

of the module or wait for the process in the module to finish, and therefore it is more 

suitable to model fast motor performance such as skilled transcription typing. The 

existence of queues in the motor processors has also received neurophysiological support 

from previous research (P. E. Roland et al., 1980). 

 

5. Thesis Structure 

 

The value of integrating QN and ACT-R in multitask modeling is demonstrated in 

this dissertation, and the resulting architecture is named QN-ACTR.  

Chapter 2 introduces the theoretical assumptions and implementation of QN-

ACTR and describes the verification of QN-ACTR. Then the benefits of the integration 

are demonstrated in the simulation of transcription typing tasks involving multi-task 

performance and reading comprehension, showing QN-ACTR’s improved modeling 

capabilities in complex cognitive and multi-task scenarios.  

Chapter 3 reports a laboratory experiment that examined the effects of concurrent 

tasks on diagnostic decision making, which is an important human factors issue in the 

healthcare work environment. The human data collected from this experiment will be 

compared with model simulation results in Chapter 4. 

Chapter 4 describes the evaluation of cognitive models built in QN-ACTR to 

model cognitive multitasking performance in diagnostic decision making tasks, 

demonstrating that the models can produce performance and mental workload results 

very similar to the human results reported in Chapter 3. 

Chapter 5 and 6 describe a simulated driving experiment and the corresponding 

model simulation conducted to further examine QN-ACTR’s modeling capability in the 

transportation domain. The experiment collected detailed human performance and mental 

workload results in a driving and speech comprehension dual-task scenario. Then QN-

ACTR model was built to simulate these human results.  

Chapter 7 describes the usability development of QN-ACTR for cognitive 

engineering applications. These usability features improve the accessibility for industrial 



14 

 

engineers who are not experts of human performance modeling to use QN-ACTR as a 

cognitive engineering tool. 

Chapter 8 summarizes the results and conclusions from this dissertation research 

and discusses future research directions.  
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Chapter 2.  Framework and verification of Queueing Network – Adaptive Control 

of Thought Rational (QN-ACTR)  

 

Chapter Summary 

 

This chapter introduces the theoretical assumptions and implementation of the 

integrated cognitive architecture Queueing Network–Adaptive Control of Thought 

Rational (QN-ACTR) and describes the verification of QN-ACTR by testing and 

examining it in the simulation of 20 typical tasks from the ACT-R literature and 

comparing the results. After the verification, the benefits of the integration are 

demonstrated in the simulation of transcription typing tasks involving multi-task 

performance and reading comprehension, showing QN-ACTR’s improved modeling 

capabilities in complex cognitive and multi-task scenarios that are difficult to model by 

either QN or ACT-R alone. 

 

1. Queueing Network-Adaptive Control of Thought Rational (QN-ACTR) 

 

Theoretically, the structure of QN cognitive architecture and ACT-R cognitive 

architecture can be merged to form an integrated architecture. Figure 3 shows the current 

mental structure of QN-ACTR resulting from merging QN and ACT-R architectures. The 

servers in QN-ACTR correspond to ACT-R’s modules and buffers, some of which are 

grouped to match the corresponding servers of the QN structure as in QN-MHP. Entities 

travelling between these servers correspond to ACT-R’s information units including 

buffer requests, chunks, and production rules. Table 1 shows the functional 

correspondence between ACT-R modules and QN servers that supports the integration of 
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their structures. The processing logics in each QN-ACTR server are identical to the 

algorithms in the corresponding ACT-R module, including the sub-symbolic 

computations in the production and the declarative modules. As previously described in 

Chapter 1, ACT-R modules do not have queueing mechanisms, but queues can be added 

from the QN perspective to support the scheduling of multi-tasks at the local server level. 

In QN-ACTR, queues are added to the modules that have non-zero processing time and a 

limited capacity. Currently, I do not apply any constraint to the capacity of queues and 

assume no time is needed for an information entity to enter or leave a queue. These 

assumptions are the same as the ones in previous QN modeling work (Liu et al., 2006; 

Wu & Liu, 2008a).  

 

 

Figure 3. Server structure of QN-ACTR. Queue symbols (shown as two circles) mark the 

servers where queues are added from the QN’s perspective. All the server processing 

logics in the QN-ACTR are identical to the corresponding algorithms in ACT-R (adapted 

from Cao & Liu, 2012c). 

 

As shown in Figure 3, the servers are mainly based on ACT-R’s modules and 

buffers. In ACT-R, there is no special module of working memory. Instead, ―working 

memory can be equated with the portion of declarative memory above a threshold of 

activation‖ (p. 221, J. R. Anderson, Reder, & Lebiere, 1996), and the chunks that are 

temporarily held in the cognitive subnetwork (e.g., in the goal buffer) may provide a 

context and spread activation to the chunks in declarative memory, facilitating the 

retrieval of context-relevant declarative chunks. In this regard, entities (e.g., chunks) in 
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the queues of the cognitive subnetwork may provide sources of activation for the working 

memory. In the perceptual subnetwork, there may be a connection between the queues 

and short term sensory storages, including the visual sensory memory (Dick, 1974) and 

the auditory sensory memory (Darwin, Turvey, & Crowder, 1972), because they both 

have the functionality of temporarily storing information. In the motor subnetwork, 

queues are believed to temporarily store time-ordered motor  commands (P. E. Roland et 

al., 1980). The correspondence between queues and cognitive or neurological constructs, 

however, is not the focus of the current study. Instead, I focus on the verification of QN-

ACTR in terms of human performance modeling capabilities and demonstrate the 

importance of the theoretical concepts of ―queueing‖ in understanding cognitive 

architecture and multi-task performance. 

 

Table 1. Correspondence between ACT-R modules and QN servers (from Cao & Liu, 

2012c). 

ACT-R modules and buffers 
Corresponding QN servers. 

See (Wu & Liu, 2008a) for server details. 

Vision module Server 1 – 4 

Audio module Server 5 – 8 

Visual and visual-location buffers Server A 

Aural and aural-location buffers Server B 

Production module Server C, D, F 

Intentional and imaginal modules and buffers Server E, G 

Declarative module and buffer Server H 

Manual and speech modules and buffers Server V, W, X, Y, Z, 21 – 25 

 

At the implementation level, QN-ACTR is a computerized program built on a 

discrete event simulation platform Micro Saint
®
 Sharp (http://www.maad.com). A full 

integration was implemented, which means that all the data structures and the functions 

in ACT-R have been ported from the original Lisp implementation to Micro Saint
®
 Sharp. 

This programming platform is selected because of three major reasons. First, this 

platform provides graphical interfaces for easy QN construction and simulation and also 

supports the visualization of server network and task interaction. Second, this C# based 

platform supports C# programming plug-in functions and the connection with other C# 

applications, which help the development of QN-ACTR as an easy-to-use cognitive 

engineering tool with features such as model building assistants and human experiment 
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platforms.  Third, it is the same platform on which IMPRINT (Allender, Kelley, Archer, 

& Adkins, 1997) is implemented and therefore supports future seamless integration 

between QN-ACTR and IMPRINT – a widely used system and task analysis tool that has 

its unique features in mental workload modeling. 

For modelers using QN-ACTR, the model development process includes the steps 

of task setup, task-specific knowledge setup, and parameter setup (Figure 4). The task 

setup refers to the specification of display and control mechanisms in the task or 

experiment. The task-specific knowledge setup refers to the specification of knowledge, 

i.e., declarative chunks and production rules, required to perform the task. The parameter 

setup adjusts parameters that control the model performance. QN-ACTR provides two 

methods to build a model – a text-based syntax method and a click-and-select interface 

(Cao & Liu, 2012b). The syntax method supports fast and direct model editing (i.e., copy 

and paste), which is designed for advanced users. Since the syntaxes for the task-specific 

knowledge and the parameter setups are identical to ACT-R syntaxes, available ACT-R 

codes can be directly used for QN-ACTR models. The click-and-select interface assists 

novice users and allows them to describe the model following experiment logic and 

knowledge by selecting from menu items and filling in blanks using a natural language 

(English), without the need to learn any special programming or cognitive engineering 

language.  
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Figure 4. Flow chart showing the model development process in QN-ACTR (from Cao & 

Liu, 2012b). 

 

QN-ACTR’s modeling results include the trace of simulated mental activities, 

behavioral results, reaction times, correct rates, and mental workload. These results can 

be visualized while the model is performing the task and recorded for future analyses. 

QN-ACTR also has an integrated human experiment platform for human data collection. 

For example, a modeler can use QN-ACTR to conduct simulated driving experiments 

with steering wheels and pedals. This feature allows models and humans to perform and 

be compared in the same tasks with identical interfaces, with no need to replicate the real 

world experiment system in the modeling platform for models to interact with. Using the 

same experiment platform saves programming work and, more importantly, avoids any 

discrepancy between human and model tests caused by different experiment setups. 
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2. Model Verification 

 

2.1 Method 

After merging the structures and functions of QN and ACT-R architectures, I 

conducted a verification study with the purpose of examining whether the ACT-R 

functions built in QN-ACTR are accurate and complete. I tested QN-ACTR in the 

simulation of 20 tasks (summarized in Table 2) that have been modeled by ACT-R and 

threaded cognition. Among these tasks, 17 tasks were selected from ACT-R 6.0 (v1.3) 

tutorial to cover all ACT-R modeling mechanisms/algorithms and a wide range of typical 

single-tasks modeled in ACT-R, including visual-motor, auditory-vocal, declarative 

learning, procedural learning, and decision making tasks. The other three tasks were 

selected from dual-task experiments (Schumacher et al., 2001) using the psychological 

refractory period paradigm and have been modeled by threaded cognition implemented in 

ACT-R. As previously described, threaded cognition can be considered as a special type 

of queueing mechanism applied to ACT-R’s production module, giving priority to the 

longest waited task. All together, these 20 tasks provide a thorough test bed to verify the 

implementation and programming of QN-ACTR, and this work of verification has been 

presented to and passed the review of the research community (Cao & Liu, 2011a, 2012a). 

Models for the 20 tasks were developed strictly following their corresponding 

ACT-R models. The task displays and controls were modeled using QN-ACTR’s 

syntaxes and templates. The codes specifying task-specific knowledge and parameters 

were directly copied from the codes used in the original ACT-R models. In addition, I 

also used the Common Random Numbers technique (McGeoch, 1992) to assign ACT-R 

and QN-ACTR models the same randomization method and the same seeds in order to 

further control the sources of variance in the verification. Table 3 shows excerpts from 

the QN-ACTR model codes for the Demo task. This task presents a random letter on the 

screen and requires a key press response corresponding to the displayed letter.  
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Table 2. Descriptions of the 20 tasks modeled to verify QN-ACTR (adapted from Cao & 

Liu, 2011a). 
Model Description 

 ACT-R 6.0 (v1.3) tutorial models 

Addition Compute 5 + 2 by counting 5, 6, and 7. 

Count Count from 2 to 4. 

Semantic Judge if an animal belongs to a category. 

Tutor-model Compute 36 + 47 by first adding the single digits and then the ten digits. 

Demo See a letter. Press the key for the letter. 

Unit-2-assignment See three letters. Two are the same. Press the key of the single letter. 

Sperling 
Briefly see 12 letters in three rows. Press keys for letters in the target row, which is indicated by 

the pitch of a tone. Higher pitch = higher row. 

Subitize See several ―x‖s. Say how many ―x‖s there are. 

Paired Memorize and recall 20 word-number pairs, one pair a trial. 

Zbrodoff 
Judge alphabetic arithmetic problems by pressing keys. For example, A + 2 = C is correct, but B 

+ 3 = F is not.   
Fan Remember a set of people-location facts. Answer queries such as ―is the captain in the park?‖ 

Group Imperfect recall of 9 numbers in three groups, 123-456-789. 

Siegle Imperfect single-digit addition due to number similarity. 

Bst-learn 
Create a stick of a particular target length by selecting building sticks with three different lengths 

using the mouse. 

Choice Repetitively guess a biased coin. 

Paired-learning 
Same as the paired model except starting the task-specific knowledge from descriptive 

instructions instead of procedural rules. 

Past-tense Learn English past tenses from examples, demonstrating the overregularization of irregular verbs. 

 Schumacher et al. (2001) experiments modeled by threaded cognition 

Exp. 1 
Psychological refractory period, visual-motor and auditory-vocal dual-task. No specific response 

order.  

Exp. 2 Same as Exp. 1 except prioritizing on the auditory-vocal task. 

Exp. 3 
Same as Exp. 1 except using incompatible stimulus-response associations instead of compatible 

ones.  

 

2.2 Results 

Both the mental activity results recorded in the model output traces and the 

behavioral results such as reaction times and correction rates were compared between 

QN-ACTR and ACT-R models. Output traces were compared line by line to examine 

both the time and event contents. For example, the following line of trace, 

 

222.423 DECLARATIVE RETRIEVED-CHUNK pair18-0 

 

from the Paired model results in QN-ACTR showed that at clock time 222.423 

second, the model’s declarative module retrieved the chunk pair18-0. This trace was 

identical to the corresponding ACT-R trace. For the tasks with quantitative behavioral 
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results, mean absolute percentage error (MAPE), root mean square error (RMSE), and 

coefficient of determination (R
2
) were computed between QN-ACTR and ACT-R results.  

 

Table 3. Model code excerpts from a QN-ACTR model for the Demo task in ACT-R’s 

tutorial. The syntaxes specifying task-specific knowledge and parameters are identical to 

the ones used in ACT-R (from Cao & Liu, 2013c). 

Model setup step Model codes 

Task description 

(use_task_dbt_template   :method     

discrete_display_feedback_two_stages_method) 

(add_trials_from_discrete_display_feedback_two_stages_method 

:add_number_of_trials_per_block            1 

:number_of_responses_per_trial    1 

( :item_type       display_item_visual_text 

        :visual_text        ("B" "C" "D" "F" "G" "H" "J" "K" "L" "M" "N" "P" "Q" 

"R" "S" "T" "V" "W" "X" "Y" "Z") 

        :correct_response_to_each_visual_text    (b c d f g h j k l m n p q r s t v w 

x y z) 

:text_randomization         without_replacement 

:display_item_screen_location_x      (125) 

:display_item_screen_location_y      (150)  )  ) 

Declarative 

knowledge 

description 

(chunk-type read-letters state) 

(chunk-type array letter) 

(add-dm  

    (start isa chunk)     (attend isa chunk)    (respond isa chunk)     (done isa 

chunk) 

    (goal isa read-letters state start)) 

Procedural 

knowledge 

description 

(P find-unattended-letter 

   =goal> 

      ISA        read-letters 

      state       start 

 ==> 

   +visual-location> 

      ISA         visual-location 

      :attended    nil 

   =goal> 

      state       find-location ) 

Parameters (sgp :v t :needs-mouse nil :show-focus t :trace-detail high) 

 

As summarized in Table 4, the verification results showed that QN-ACTR models 

generated the same results as the original ACT-R models. Results from 15 of the 20 tasks 

were identical between QN-ACTR and ACT-R. For the other five models, results were 

very similar (MAPE < 5.0% and R
2
 > 0.9). The sources of the remaining variances 

include the difference of built-in random number functions between Lisp and C#, which 

were used in randomly focusing visual attention on a visual item, and the difference in 

rounding digits between Lisp and C#. These results support the conclusion that the ACT-

R functions built in QN-ACTR are accurate and complete. 
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Table 4. QN-ACTR verification results (adapted from Cao & Liu, 2011a).  
Model  Results 

 ACT-R 6.0 (v1.3) tutorial models 

Addition Same output traces ended at 0.5 s. 

Count Same output traces ended at 0.3 s. 

Semantic Same output traces for test 1 (ended at 0.15 s), test 2 (0.25 s), and test 3 (0.35 s). 

Tutor-

model 
Same output traces ended at 0.45 s. 

Demo2 Same output traces for both home-location key condition (ended at 0.785 s) and other key condition (1.035 s). 

Unit-2-

assignment 
Same output traces for both home-location key condition (ended at 1.055 s) and other key condition (1.305 s). 

Sperling 1000 run results (numbers of correct responses): MAPE = 1.4%, RMSE = 0.032, R2 = 0.997. 
Subitize 

Same output traces. 1 run results (both reaction time and correction rate): MAPE = 0%, RMSE = 0, R2 = 1.  
Paired 

Zbrodoff 

Fan 

Group Same output traces ended at 18.535 s. 
Siegle Same output traces. 500 run results (response distribution): MAPE = 0%, RMSE = 0, R2 = 1. 

Bst-learn Same output traces. 5 run results (overshoot chances and rule utilities): MAPE = 0%, RMSE = 0, R2 = 1.  
Choice Same output traces. 1 run results (rate of guessing heads): MAPE = 0%, RMSE = 0, R2 = 1. 
Paired-

learning 
Same output traces. 1 run results (both reaction time and correction rate): MAPE = 0%, RMSE = 0, R2 = 1. 

Past-tense Same production rules composed and same output traces over 10 trials, except for a 0.001% time difference.  
 Schumacher et al. (2001) experiments modeled by threaded cognition 

Exp. 1 1 run results (reaction time): MAPE = 1.3%, RMSE = 7.554, R2 = 0.998. 
Exp. 2 30 run results (reaction time): MAPE = 2.3%, RMSE = 10.851, R2 = 0.983. 
Exp. 3 3 run results (reaction time): MAPE = 4.0%, RMSE = 37.742, R2 = 0.939. 

 

 

3. QN-ACTR Simulation of Transcription Typing and Reading Comprehension 

Tasks 

 

The verification of QN-ACTR described in the previous section established the 

basis for further incorporating unique QN mechanisms into QN-ACTR. In this section, I 

demonstrate the improved modeling capability of QN-ACTR after adding QN 

mechanisms. A model was built using QN-ACTR to simulate transcription typing tasks 

involving dual-task performance and reading comprehension, illustrating the benefits of 

the integrated cognitive architecture in modeling complex cognition and multi-task 

scenarios and resolving the concurrent goal scheduling and the module jamming issues in 

ACT-R. The transcription typing tasks were selected, because (1) previous studies about 

transcription typing have accumulated numerous detailed empirical results that are very 

useful for comparing models, (2) the previous QN architecture (i.e., QN-MHP) has 
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modeled many transcription typing phenomena but has difficulty in modeling the 

phenomena that involve reading comprehension, and (3) skilled transcription typing and 

related dual-task scenarios may cause the concurrent goal scheduling issue and the 

module jamming issue in ACT-R and have not been modeled in ACT-R.  

 

3.1 Method 

Transcription typing is one of the most common activities in human-computer 

interaction. It involves complex interaction of a series of perception, cognition, and motor 

processes each assumed to be in the scale of tens to hundreds milliseconds. A 

considerable amount of phenomena in transcription typing has been studied and 

documented, including basic behavioral performance and the effects of skills, typing 

contents, and concurrent tasks (Gentner, 1983; Inhoff & Wang, 1992; Rayner, 1998; 

Salthouse, 1984, 1986; Salthouse & Saults, 1987). It has been regarded as one of the 

major tasks to test cognitive architectures (Newell, 1990). Several qualitative and 

quantitative models have been developed to model transcription typing, and a recent 

study using QN-MHP has modeled most of the phenomena in the literature but cannot 

model the two phenomena that involve reading comprehension (Wu & Liu, 2008b).  

The integrated QN-ACTR cognitive architecture can model reading 

comprehension using ACT-R’s declarative memory mechanisms. In ACT-R, sentence 

memory can be modeled as declarative chunks of syntactic and semantic representations, 

and reading comprehension can be modeled as memory retrieval and 

inference/interpretation (J. R. Anderson et al., 2001; Budiu & Anderson, 2004; Lewis & 

Vasishth, 2005). Also, QN-ACTR can model transcription typing and concurrent task 

scheduling using QN mechanisms that have been demonstrated in QN-MHP. These 

mechanisms are not included in ACT-R but are necessary for modeling skilled 

transcription typing phenomena and dual-task coordination.  

First, queueing mechanisms coordinate multi-task performance at the local server 

level without the need to define any multitask-specific knowledge or any executive 

process. In QN-ACTR, the goal buffer of the intentional module can hold multiple goal 

chunks simultaneously representing the concurrence of multiple task components, and a 

sorted queue is implemented in the production module to coordinate concurrent tasks. 
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The queue consists of entities each representing a task component and sorts entities based 

on their waiting time. The waiting time of a task component is initialized as zero at the 

beginning of the simulation and is reset to zero each time when the task component is 

processed by the production module executing a production rule. If multiple task 

components are competing for the limited production module resource, the task 

component closest to the front of the queue will receive priority. In the motor subnetwork, 

first-in-first-out queues are implemented in the servers of preparation, initiation, and 

execution. These servers explicitly represent the three processing stages in ACT-R’s 

motor module, but in ACT-R they have no queue. Without any queue, an ACT-R model 

would execute a production rule and query the state of the manual module before typing 

each key to avoid jamming the module (e.g., the Sperling model in ACT-R Tutorial Unit 

3). This modeling method has difficulty in modeling fast and skilled typing performance. 

In QN-ACTR, a production rule can execute a manual action to type in the unit of a word. 

Motor servers still process one letter at a time, but extra letters in a word can wait in a 

queue, as a way to model skilled typing performance and avoid the module jamming 

issue.  

Second, parallel processing is created in the motor execution server, allowing 

parallelism between individual motor effectors. For example, a hand can move 

simultaneously with another hand or a foot. This parallel processing has not been 

included in ACT-R but is necessary for modeling the parallelism of motor movements 

evidenced in transcription typing. For instance, a typist’s concurrent task of pressing a 

foot pedal as soon as they heard a tone did not affect typing performance (Salthouse & 

Saults, 1987). In addition, successive keystrokes from fingers on alternate hands are 

faster than successive keystrokes from fingers on the same hand (Wu & Liu, 2008b). The 

motor servers of QN-ACTR follow the corresponding parallel processing implementation 

in QN-MHP.  

Third, the learning effect on server processing time is mathematically modeled in 

two motor servers – preparation and initiation, modeling motor learning. For example, 

one of the typing phenomena shows that repetitive one-finger tapping time decreases with 

typing skills (Salthouse, 1984). In the QN architecture, the effect of motor skill learning 

on reaction time is modeled mathematically using an exponential function (Feyen, 2002). 
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Although the power function was also used to model practice and learning effects (A. M. 

Anderson, Mirka, Joines, & Kaber, 2009; Newell & Rosenbloom, 1981), research has 

shown that the exponential function is a better candidate for the law of practice than the 

power function (Heathcote, Brown, & Mewhort, 2000). As a result, in QN-ACTR, the 

server processing time (Ti) is modeled as an exponential function of the number of 

entities (Ni) processed by the server (i), 

 

)( iiiii NExpBAT  .        (1) 

 

Ai represents the expected minimal processing time after intensive practice; Bi is 

the change in the expected processing time from the beginning to the end of practice; αi 

represents the learning rate. This equation has been used in QN-MHP and successfully 

modeled the effects of motor skill learning in psychological refractory period 

experiments (Wu & Liu, 2008a) and transcription typing experiments (Wu & Liu, 2008b). 

QN-ACTR has implemented this equation in two motor servers to model motor learning. 

Currently, the four parameters in this equation are the only parameters that have been 

integrated into QN-ACTR from the QN architecture. The other parameters in QN-ACTR 

are from the ACT-R architecture. Detailed descriptions are not included here but can be 

found in the ACT-R reference manual (ACT-R Group, 2011). 

The integrated QN-ACTR architecture was tested in the simulation of 29 

transcription typing phenomena, particularly the two phenomena involving reading 

comprehension and a phenomenon involving concurrent tasks. The descriptions and 

empirical results of these phenomena are summarized in Table 5. Salthouse (1984) tested 

skilled typists using the Nelson-Denny Reading Test and found that the typing speed in 

the typing-and-reading condition (58 words-per-minute) was much slower than the 

reading speed in the reading-only condition (253 words-per-minute). The accuracy of 

reading comprehension was lower in the typing-and-reading condition (44.7%) compared 

with the reading-only condition (58.1%). The typing interkey time (177 ms) in the 

typing-and-reading condition was similar to the time in the typing-only condition (181 ms; 

Salthouse & Saults, 1987). In another study, the author found that the correlation between 

typing speed and comprehension scores obtained when typing was not significant 
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(Salthouse, 1986) and concluded that the typing skill and the comprehension skill are 

independent. Another important phenomenon is that a concurrent task does not affect 

typing performance. Salthouse and Saults (1987) added a secondary task in parallel with 

the primary task of transcription typing. Instructions asked typists to press a foot pedal as 

soon as they heard a tone signal but prioritize the typing task as the primary task. The 

results showed that this concurrent auditory-pedal task did not affect typing performance, 

as the typing interkey time was 185 ms in the concurrent-task condition versus 181 ms in 

the typing-only condition.  

In the model, the task displays and controls were coded using QN-ACTR’s task 

template for discrete and trial-based experiments. The declarative and procedural 

knowledge for typing was modeled following the Demo model in ACT-R Tutorial Unit 2. 

Four production rules were defined to model the procedure of typing, including find-

unattended-word, attend-word, encode-word, and type-word. Queues in the motor servers 

allow skilled typing performance to be modeled in the unit of a word rather than a letter. 

Reading comprehension was modeled following similar models in ACT-R (J. R. 

Anderson et al., 2001). When reading a word in a sentence, the model retrieves the 

semantic meaning of the word. After the retrieval, the meaning is stored in a slot of a 

chunk representing sentence semantics. After finishing a sentence, the model memorizes 

the sentence semantics in declarative memory. Several comprehension questions in the 

form of propositions are asked after the model finishes reading a passage. For each 

proposition, the model searches its declarative memory for any chunk encoding the 

related semantic information. The model can answer the question correctly if the retrieval 

succeeds, but it cannot answer if the retrieval fails. Since memory limitations such as 

forgetting are modeled in the sub-symbolic computations of the declarative module, the 

model can capture comprehension errors caused by forgetting. For the concurrent task 

phenomena, the secondary auditory-pedal task was modeled following the Sperling task 

in ACT-R’s tutorial. When a tone is presented, the model first detects the sound and then 

responds by issuing a pedal-pressing action. The goal chunk of this secondary task co-

exists with the goal chunk of the primary typing task in the goal buffer. The queueing 

mechanism in the production module coordinates multiple tasks without the need to 

define any multitask-specific knowledge or any executive process. Since the primary 
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typing task was stressed by instructions in the original experiment, the typing task was 

assigned a higher priority than the auditory-pedal task in the queueing mechanism. All 

related parameters used values from previous studies (Table 6), with all other parameters 

at their default values. As shown in Equation 1, the parameters Ai, Bi, αi, and Ni affect 

how the motor servers’ processing time decreases with practice. The other parameters are 

integrated from the ACT-R architecture, and Table 6 provides a brief description (see 

ACT-R reference manual for details, ACT-R Group, 2011). The Nelson-Denny Reading 

Test was used in the simulation as in the empirical experiments.



29 

 

Table 5. Summary of transcription typing phenomena modeled in QN-ACTR (from Cao & Liu, 2013c). 
 

Phenomena description Empirical human results QN-ACTR simulation results 

 Phenomena involving complex cognition  

Typing is slower than 

reading. 

Reading speed = 253 words-per-minute (wpm); typing speed = 58 wpm; comprehension 

accuracy is 58.1% for reading only and 44.7% for reading while typing. Results from 74 

typists typing or reading passages with about 1200 characters. (Salthouse, 1984) 

Reading speed = 267 wpm (absolute percentage error, 

APE = 5.4%); typing speed = 69 wpm (APE = 19.0%); 

comprehension accuracy is 55.3% (APE = 4.9%) for 

reading only and 44.9% (APE = 0.4%) for typing and 

reading. 

Typing skill and 

comprehension are 

independent. 

No significant correlation (i.e., r = - 0.169, p > 0.15). 74 typists. Passage with about 1200 

characters. (Salthouse, 1986) 
The correlation r = 0.042, p = 0.80 > 0.15. 

 Dual-task phenomena  

A concurrent task does not 

affect typing performance. 

The interkey time in the concurrent task situation (185 ms) was not significantly longer 

than that in single-task typing (181ms). 40 typists. Passage with about 1250 characters. 

(Salthouse & Saults, 1987) 

Interkey time in the concurrent task situation was 177 

ms (APE = 4.3%), similar to typing only (172 ms). 

 Other phenomena  

Typing is faster than choice 

reaction time. 

Typing interkey time (median) = 177ms for skilled typists; choice reaction time = 560 

ms. 74 typists. Passage with about 1200 characters. (Salthouse, 1984) 

Typing interkey time (median) = 182 ms (APE = 

2.8%); choice reaction time = 495 ms (APE = 11.7%). 

Typing rate is independent of 

word order. 
Qualitative phenomena (Wu & Liu, 2008b) 

Typing interkey time = 172 ms for normal order and 

172 ms for randomized word order, t (6601) = 0.001, p 

= 0.999. 

Typing speed is slower with 

random character order. 

Interkey time in typing increased to 454 ms when typing materials composed of words 

with random characters. 5 subjects (3 typists). 220 words. (Hershman & Hillix, 1965) 

Typing interkey time = 172 ms for normal order and 

373 ms  

for random character order (APE = 17.8%). 

Typing rate is impaired by 

restricted preview. 

Typing rate decreases with smaller preview window of the material to be typed. 8 typists. 

6 passages each with about 74 words. (Inhoff & Wang, 1992) 
R2 of simulated interkey time is 0.98 (APE = 9.2%). 

Alternate-hand advantage 
Alternate-hand keystrokes are about 45ms faster than the same-hand keystrokes (Wu & 

Liu, 2008b)  
78 ms faster (APE = 73.6%). 

Digram frequency effect 
Digram (letter pairs) that occur more frequently in normal language are typed faster than 

less frequent digram. 45 typists. Passage with about 1250 characters. (Salthouse, 1984) 
Significantly faster, t (197) = -11.062, p < 0.001. 

Interkey time is independent 

of word length. 

No significant difference between long and short words. 74 typists. Passage with about 

1200 characters. (Salthouse, 1984) 
No significance, t (387) = 0.381, p = 0.70. 

Word initiation effect 
The first keystroke in a word is about 45ms slower than the subsequent keystrokes. 74 

typists. Passage with about 1200 characters. (Salthouse, 1984) 
53 ms slower (APE = 17.1%). 
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Phenomena description Empirical human results QN-ACTR simulation results 

Context phenomenon 
The time for a keystroke is dependent on the specific context in which the character 

appears, especially keyboard topography (Wu & Liu, 2008b) 

Interkey time for the same key can range from around 

60 ms to 200 ms, depending on the context of the 

previous key. 

Copying span 14.6 characters. 29 typists. 8 sentences, each about 75 characters. (Salthouse, 1985) 10.9 characters (APE = 25.5%). 

Stopping span 2.16 characters. 12 secretaries. 300 sentences, each about 28 characters. (Logan, 1982) 1.8 characters (APE = 16.7%). 

Eye-hand span 5.25 characters, averaged from multiple studies (for details, see Salthouse, 1986). 6.1 characters (APE = 16.0%). 

Eye-hand span is smaller for 

randomly ordered letters. 
1.75 characters. 74 typists. Passage with about 1200 characters. (Salthouse, 1984) 1.0 characters (APE = 42.9%). 

Replacement span 
2.8 characters. 85 typists. Passages with about 1200 characters. (Salthouse & Saults, 

1987) 
4.5 characters (APE = 60.7%). 

Detection span 
8.1 characters. 85 typists. Passages with about 1200 characters. (Salthouse & Saults, 

1987) 
9.1 characters (APE = 12.3%). 

Two-hand digrams or two-

finger digrams exhibit greater 

changes with skills than do 

one-finger digrams.  

The slope of the regression equations relating the digram interval (ms) to typing speed of 

two-hand digrams (-2.08) and two-finger digrams (-2.38) were greater than that of one-

finger digrams (-1.38). 74 typists. Passage with about 1200 characters. (Salthouse, 1984) 

Two-hand (-6.05) and two-finger (-4.06) are greater 

than one finger (-2.92 on average). 

Repetitive tapping rate 

increases with skill. 

Significant positive correlation between the tapping rate and the net typing speed (p < 

0.01). 74 typists. Passage with about 1200 characters. (Salthouse, 1984) 
r = 0.81 (p < 0.01). 

The variability of interkey 

time decreases with the 

skills. 

Inter-keystroke variability correlated - 0.69 with the net typing speed; intra-keystroke 

variability correlated - 0.71 with the net typing speed. 74 typists. Passage with about 

1200 characters. (Salthouse, 1984) 

Inter-key r = - 0.85 (p < 0.05); intra-key r = - 0.90 (p < 

0.05) 

Eye-hand span is larger with 

increased skills. 

The correlation between the eye-hand span and net words-per-minute was significant 

with p < 0.01. 74 typists. Passage with about 1200 characters. (Salthouse, 1984) 
r = 0.99 (p < 0.05). 

Replacement span is larger 

with more skills. 

The correlation between net words per minute and the replacement span was 0.80 (p < 

0.01). 29 typists. 8 sentences, each about 75 characters. (Salthouse, 1985) 
r = 0.61 (p < 0.05). 

Interkey time decreases with 

practice. 
Qualitative phenomena (see Gentner, 1983) R2 = 0.94 with significant correlation, p < 0.05. 

Eye gaze duration-per-

character decreases with 

increased preview window 

size. 

(see Figure 2 in Wu & Liu, 2008b). 
R2 of the simulated fixation time is 0.97 (APE = 

21.6%). 

Eye saccade size 4 characters, averaged from multiple studies (for details, see Rayner, 1998). 4.1 characters (APE = 2.5%). 

Eye fixation duration 400 ms, averaged from multiple studies (for details, see Rayner, 1998). 705 ms (APE = 76.3%). 
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Table 6. Descriptions, values, and sources of parameters used in the transcription typing 

model. The first four parameters are from the QN-MHP architecture, whereas the other 

parameters are from the ACT-R architecture (adapted from Cao & Liu, 2012c). 
Parameter Description Value and source 

αi Learning rate alpha 0.001 (Heathcote et al., 2000; Wu & Liu, 2008b) 

Ai 
Expected minimal processing time after intensive 

practice 

21.5 ms (J. R. Anderson & Lebiere, 1998; Card et 

al., 1983) 

Bi 
Change of expected processing time from the 
beginning to the end of practice 

50 ms (J. R. Anderson & Lebiere, 1998; Card et 
al., 1983) 

Ni Total number of digrams that have been processed 15,000,000 for skilled typists (Wu & Liu, 2008b) 

:imaginal-delay 
Determine the time for the imaginal module to form 

a chunk of imaginal representation. 
0.100 s (Mehlhorn & Marewski, 2011) 

:lf 
Latency factor for declarative retrieval time. Larger 

values lead to longer memory retrieval time. 
0.003 (Budiu & Anderson, 2004) 

:bll 
Base level learning parameter for chunk activation. 

Larger values lead to faster activation decay. 
0.3 (Pavlik & Anderson, 2005) 

:rt 
Retrieval threshold. Set the minimum activation a 

chunk must have to be able to be retrieved. 
-0.704 (Pavlik & Anderson, 2005) 

:ans 
Set the instantaneous noise added to chunk 

activation. 
0.5 (J. R. Anderson & Matessa, 1997) 

:tone-recode-

delay 

Determine the auditory perception time to recode a 

tone sound. 
0.05 s (Byrne & Anderson, 2001) 

saccade 

duration 
Saccade movement duration 

20 ms for saccade execution, plus an additional 2 

ms for each degree of visual angle (Salvucci, 
2001) 

 

3.2 Results 

The model simulated various transcription typing tasks and generated 

performance results that can be compared with the human results. While the model is 

performing the task, the task visualization feature in QN-ACTR can show the simulated 

typing behavior in real time, as illustrated in the screenshot of Figure 5. Modeling results 

include text output traces for module activities, typing performance such as finger 

movement and eye movement, and reading comprehension performance such as reading 

speed and comprehension accuracy. The absolute percentage error (APE) and 

the coefficient of determination (R
2
) were computed between QN-ACTR’s results and the 

human results. These results are summarized in Table 5. The modeling results were 

similar to the human results from the experiments. It is particularly important to note that 

the modeling results captured the phenomena involving reading comprehension (i.e., 

typing is slower than reading; typing skill and comprehension are independent) that is 

difficult to model by the QN architecture alone and the phenomena involving concurrent 

tasks and skilled typing (e.g., a concurrent task does not affect typing performance) that 

is difficult to model by ACT-R alone. To examine whether an ACT-R model without 

queues can produce similar results, I repeated the QN-ACTR simulation without the QN 
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mechanisms that were introduced previously in the method section. In this case, the 

reduced version of QN-ACTR became the same as ACT-R. This simulation not using the 

QN mechanisms produced a much longer typing interkey time of 500 ms. In comparison, 

the result from the simulation using the QN mechanisms was just 182 ms, much closer to 

the human result of 177 ms. Removing the QN mechanisms did not change choice 

reaction time (still 495 ms).  

 

 

Figure 5. Visualization of the task interaction in QN-ACTR. The visual display section 

shows the texts on the screen and the location of visual attention (represented by a circle). 

The manual response section shows that the index finger of the right hand is pressing key 

―y‖ while other fingers are resting at the home locations (from Cao & Liu, 2013c).  

 

4. Discussion  

 

QN-ACTR is an integrated cognitive architecture that unifies the QN 

mathematical architecture and the ACT-R symbolic architecture. Regarding 

programming and implementation, model verification showed that QN-ACTR has 

successfully ported ACT-R from Lisp to C#, providing an alternative programming 

platform for modelers. The translation to C# will support future integration between QN-

ACTR and IMPRINT, and the use of the discrete event simulation software Micro Saint
®
 

Sharp provides practical and useful features including visualization of entity flows and 
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mental status as well as a build-in tool for parameter optimization. However, since this 

simulation software works only for Windows systems, future work is needed to port QN-

ACTR to other languages such as Java to support cross-platform programming and 

applications. Continuing along the line of model integration, QN-ACTR combines QN’s 

unique queueing mechanisms and hybrid server network and ACT-R’s unique symbolic 

knowledge representations and sub-symbolic computations. This integration allows QN-

ACTR to model a wider range of tasks, especially complex cognitive and multi-task 

scenarios.  

The current study is the initial step of QN-ACTR work. Before this study, it was 

unclear whether such integration is feasible. I focus on the verification of the integration 

and the demonstration of the improved modeling capability in the simulation of 

transcription typing and reading comprehension scenarios. The results show that the 

integrated QN-ACTR is able to model what have been modeled by ACT-R alone (e.g., 

paired learning) and QN-MHP alone (e.g., skilled typing). In addition, QN-ACTR can 

also model concurrent performance involving both typing and reading comprehension, 

which previous methods have difficulty to model. In this study, reading comprehension 

was modeled following previous ACT-R models of sentence comprehension, which 

utilized ACT-R’s advantages of the declarative memory and subsymbolic computations. 

Skilled typing was modeled following previous QN-MHP models, which utilized QN’s 

advantages of queues and hybrid server network. 

I also find that without the QN mechanisms, it is difficult for ACT-R mechanisms 

alone to simulate skilled typing performance. Without any queue in the motor 

subnetwork, the production module can only send motor typing commands in the unit of 

a single letter and wait for the completion of the previous typing action before issuing the 

next motor command. As a result, the typing interkey time became much longer (500 ms) 

than the human result (177 ms) and was similar to choice reaction time (495 ms for 

models; 560 ms for human), where responses were made one at a time. This comparison 

demonstrated the added value of QN-ACTR to human performance modeling and 

simulation.  

The verification results in the current study provide support for future work to 

examine other novel aspects of the integration, such as the use of queues in the perceptual 
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modules. In addition, future studies can further investigate the cognitive and neurological 

bases of queues. There may be a connection between short term sensory storages and the 

queues of the perceptual modules, in the sense that the queues can temporarily store 

sensory information when the stimuli just disappear and the modules are still busy. The 

models in the current study did not use the queues in the visual and auditory modules (i.e., 

the visual and auditory modules worked the same as in ACT-R), but the queues in the 

motor subnetwork were used in the simulation of typing and reading comprehension to 

store time-ordered motor commands of finger movement. As in previous QN modeling 

work, QN-ACTR currently does not apply any constraint to the capacity of queues. The 

models under this assumption have produced results similar to the human results. Future 

studies are needed to investigate the capacity of queues and its implication to human 

performance modeling. In addition, the current study focused on typing time performance 

and did not simulate typing errors. Future study can continue to test models to capture 

typing error phenomena. 

In conclusion, QN-ACTR is an integrated cognitive architecture and a 

computerized simulation program that combines the benefits of QN and ACT-R. ACT-

R’s modules and buffers are implemented as QN servers with their processing logics 

identical to the corresponding ACT-R algorithms. This QN representation of ACT-R has 

been verified in the simulation of 20 typical tasks from the ACT-R literature using the 

same task setups and codes from the original ACT-R models. From the QN perspective, 

three unique QN positions have also been implemented in QN-ACTR, including the 

queueing mechanisms to coordinate multi-task performance at the local server level, the 

hybrid server network to model parallel processing between individual motor effectors, 

and the mathematical function to model motor skill learning. The benefits of the 

integration have been demonstrated in the simulation of 29 transcription typing 

phenomena. In particular, QN-ACTR accounted for both the phenomena involving the 

complex cognitive activities of reading comprehension and the phenomena involving 

concurrent tasks and skilled typing, showing the improved modeling capability in 

complex cognitive and multi-task scenarios that have not been modeled by either QN or 

ACT-R. 
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Chapter 3. An Experimental Investigation of 

Effects of Concurrent Tasks on Diagnostic Decision Making 

  

Chapter Summary 

 

Physicians’ decision making performance is one of the most important human 

factors in healthcare system engineering. Multitasking and interruptions while making 

diagnostic decisions have been frequently observed in the healthcare work environment. 

However, little evidence from controlled experiments is available to determine whether 

physician multitasking affects the quality and timely performance of diagnostic decisions. 

In the current study, a diagnostic task was designed to examine the effects of concurrent 

tasks on diagnostic decision making using a controlled laboratory experiment, in which 

potential confounding factors were controlled to allow the quantification of diagnostic 

performance and strategies. The results showed that diagnostic performance was 

negatively affected (in terms of increased decision time) by a complex concurrent 

memorization task that required participants to listen to verbal updates and remember 

information about other patients while performing the diagnostic task. In contrast, a 

simple concurrent sound monitoring task did not affect diagnostic performance. Both 

types of concurrent tasks significantly increased mental workload. Diagnostic decision 

strategies were not significantly different between the single- and dual-task conditions. 

These findings provide new insights into the cognitive mechanisms underlying diagnostic 

decision and physician multitasking and can serve as the human data for the validation of 

computational human performance models. Implications for the control and improvement 

of healthcare quality are discussed.  
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1. Introduction 

 

Physicians’ decision making performance is one of the most important human 

factors in healthcare system engineering. As the recent prevalence of multitasking and 

interruptions observed in the healthcare work environment, a growing concern is how the 

multitasking working style affects decision making performance. Although field 

observations and cognitive psychology theories suggest that increased mental workload 

from multitasking may degrade decision making performance, there is still a lack of 

controlled experimental studies rigorously examining such effects in diagnostic decision 

making scenarios. To fill this gap, I designed a diagnostic decision making task and 

conducted an experiment to investigate the effects of concurrent tasks on diagnostic 

decision making. The results and their implications are reported and discussed in this 

chapter. These results also provide the human data to test and examine QN-ACTR 

models, which will be introduced in the next chapter. 

Crowding in hospitals, for example in emergency departments (EDs), has been 

frequently reported in recent years and created a significant challenge to physicians and 

nurses. The total number of ED visits in the U.S. in 2005 was estimated to be more than 

109 million (Owens et al., 2010). Facing the excessive number of patients waiting for 

care, ED professionals often must perform multiple tasks at the same time. Typically, an 

ED attending physician’s tasks include stabilizing patients, ordering tests, diagnosing 

diseases, conducting treatment, teaching, and discussing issues with other physicians. In 

general, multitasking refers to performing two or more tasks simultaneously or switching 

frequently between them. For example, a physician may be ―inserting a central venous 

line while answering a nurse’s question about another patient‖ (Chisholm, Collison, 

Nelson, & Cordell, 2000, p. 1240). Observation-based studies have shown that 

multitasking and interruptions are prevalent in the healthcare work environment (Alvarez 

& Coiera, 2005; Coiera, Jayasuriya, Hardy, Bannan, & Thorpe, 2002; Collins, Currie, 

Patel, Bakken, & Cimino, 2007). It has been reported in some cases that an ED physician 

simultaneously attended to 5.1 patients on average and was interrupted every 9 minutes 
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(Chisholm et al., 2000; Laxmisan et al., 2007). Frequent interruptions have also been 

reported in hospital nursing (Tucker & Spear, 2006). The most frequent sources of 

nurses’ work interruptions include nurse colleagues and system or equipment failures 

(Biron, Lavoie-Tremblay, & Loiselle, 2009). How to properly manage the increased 

workload caused by multitasking and interruptions has become a major challenge for 

both healthcare providers and researchers (Carayon et al., 2011).  

The goal of the current study is to increase the knowledge base on healthcare 

human factors by examining the effects of concurrent tasks on diagnostic decision 

making using a controlled experiment. I examined three important aspects of human 

factors in diagnostic decision making including strategy, performance, and mental 

workload. Strategy may vary between different decision makers or for the same person in 

different task conditions. Strategy affects decision making performance, and performance 

is often measured by both the time used to reach a decision and the correctness of the 

decision. Both decision time and correctness need to be considered because one measure 

alone is not sufficient to examine performance due to the existence of speed-accuracy 

tradeoff (Wickens, Lee, Liu, & Becker, 2004). Decision correctness is often 

quantitatively measured by the rate of diagnostic errors, where an error can be 

operationally defined as  

 

―a diagnosis that was unintentionally delayed (sufficient information was 

available earlier), wrong (another diagnosis was made before the correct 

one), or missed (no diagnosis was ever made), as judged from the eventual 

appreciation of more definitive information.‖ (Graber, Franklin, & Gordon, 

2005, p. 1493) 

 

Since the use of the term ―human error‖ has been criticized to be vague in terms 

of denoting both causes and results of human actions (Hollnagel, 2007), it is important to 

note that the above operational definition of diagnostic error focuses on the undesired 

results of an erroneous action without implying anything about the cause, as in the 

definition of erroneous action by Hollnagel, 

 

―an erroneous action is an action which fails to produce the expected result 

and which may lead to unwanted consequences.‖ (Hollnagel, 1993, p. 2) 
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Finally, mental workload is another important measure different from 

performance. Performance is about work accomplished utilizing mental resources, 

whereas mental workload is about the relative amount of resources utilized in mental 

processing. 

Diagnostic decision strategies are commonly categorized into two groups – 

analytical strategies and heuristics – based on the widely adopted dual-process (or dual-

system) model of decision making (Evans, 2008; Kahneman, 2003; Norman, 2009; 

Reyna, 2008; Shiffrin & Schneider, 1977; Sloman, 1996). The model proposed two 

distinct cognitive processes that are often labeled as System 1 and System 2. System 1 

represents the automatic process that is intuitive, fast, parallel, and heuristic, whereas 

System 2 represents the controlled process that is deliberate, slow, serial, and analytic. 

Skill development theories assumed that learning is a progress from the controlled to the 

automatic process (J. R. Anderson, 1982; Fitts, 1964). Novice medical students 

characteristically use the deliberate and controlled analytical strategies, examining a large 

number of hypotheses before making a diagnostic decision. Experienced physicians, in 

contrast, tend to use heuristics or short-cuts such as learned patterns of symptoms to 

reduce the number of hypotheses and generate diagnoses with less effort (Elstein & 

Schwarz, 2002). Heuristics may speed up decision making but do not guarantee an 

optimal diagnosis, because heuristics reflect personal experience, rules-of-thumb, and 

assumptions that do not necessarily follow probability rules or have statistical 

significance. Although many researchers have emphasized the failure of heuristics 

(Brewer, Chapman, Schwartz, & Bergus, 2007; Kovacs & Croskerry, 1999; Wallsten, 

1981), it is important to note that heuristics can be both erroneous and useful in 

diagnostic decision making (Eva, Hatala, LeBlanc, & Brooks, 2007; Kulatunga-Moruzi, 

Brooks, & Norman, 2001; Norman, 2009). For example, the tendency to test hypotheses 

that are expected to have the property of interest rather than those expected to lack the 

property can be very useful, thus labeled as a positive test strategy; the same tendency, 

however, can lead to systematic errors, thus labeled as confirmation bias (Klayman & Ha, 

1987). 

Cognitive factors have been identified to be able to affect decision-making 

strategies. Some of these factors, including aging, experience, stress, and time pressure, 
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have been found to be able to shift strategies toward more use of automatic and heuristic 

thinking (Keinan, 1987; Patel, Gutnik, Karlin, & Pusic, 2008; Peters, Diefenbach, Hess, 

& Västfjäll, 2008; Wright, 1974). But few studies have been conducted to examine the 

effects of concurrent tasks. A concurrent task increases the overall task demands and 

therefore may increase perceived stress and time pressure. I hypothesized that a 

concurrent task would affect the selection of strategies similar to these cognitive factors 

such as time pressure. When decision makers realize the increased task load, they may 

choose to use more heuristics that can help them reach a diagnosis faster.  

In addition to the potential effect on diagnostic strategies, concurrent tasks may 

also have effects on diagnostic performance (Burgess, 2010). Human cognitive system 

has limited working memory and attentional resources for controlled processing (Fougnie, 

2008; Wickens, 2008). When two tasks competing for the same resources are performed 

concurrently, the performance of one or both tasks is likely to suffer. Such dual-task 

interference has been found in numerous experiments in the fields of cognitive 

psychology and human factors (Engström, Johansson, & Östlund, 2005; Lamble, 

Kauranen, Laakso, & Summala, 1999; McKnight & McKnight, 1993; Pashler, 1994; 

Welford, 1952; Wu & Liu, 2008a). For example, texting messages is very difficult to be 

performed simultaneously while driving without impairing driving performance, because 

the two tasks both require significant amounts of visual attentional resources (Drews, 

Yazdani, Godfrey, Cooper, & Strayer, 2009). In contrast, a concurrent speech 

comprehension task has little effect on the primary driving task, because the two tasks 

use different resources from the visual and auditory channels (Cao & Liu, 2013a). In 

other cases when two tasks significantly compete for the same processing resources such 

as working memory, people have to switch between the tasks and focus on one task at a 

time. Task switching has also been found to reduce performance, because 

reconfiguration of task-related information in the mind takes extra time and also suffers 

from interference (Altmann & Gray, 2008; Monsell, 2003). Studies have shown that 

practice can significantly reduce dual-task interference (Hazeltine, Teague, & Ivry, 2002; 

Oberauer & Kliegl, 2004; Ruthruff, Johnston, & Van Selst, 2001). An explanation is that 

after practice, the mental processes become more automatic and require less mental 

resources, thus reducing the conflict between concurrent tasks. Strong negative 
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interference exists between two controlled processes but not between a controlled and an 

automatic process (Schneider & Shiffrin, 1977).  

Previous studies of dual-task performance mostly focused on perceptual-motor, 

working memory, speech generation, and speech comprehension tasks. Only a few 

studies have examined decision making performance in a dual-task paradigm. These 

studies found that multitasking or interruptions had detrimental effects on decision 

performance (Gonzalez, 2005; Speier, Valacich, & Vessey, 1999; Speier, Vessey, & 

Valacich, 2003). But it is difficult to tell which mental mechanism causes the interference, 

that is, whether the conflict lies in the visual perception process or the central cognitive 

process. Since both tasks in these dual-task experiments used visual stimuli, the existence 

of central cognitive conflict cannot be clearly tested. Moreover, these previous studies did 

not examine any diagnostic decision making task. In the present study, I focused on the 

examination of cognitive interference involving diagnostic decision making. The two 

concurrent tasks in the dual-task paradigm were separately presented in the visual and 

auditory channels, avoiding perceptual interference. Based on the theories about 

automatic and controlled processes described above, I hypothesized that a complex 

concurrent task would degrade diagnostic performance, but a simple task would not. A 

simple task refers to one that requires little controlled processing and can be easily 

learned to become automatic. In contrast, a complex task refers to one that requires 

significant amounts of controlled processing, working memory, and attentional resources.  

Finally, I hypothesized that concurrent tasks would increase mental workload 

experienced by decision makers. Mental workload is often operationally defined as the 

ratio of task demands to the capacity of human information processing (Hancock & 

Meshkati, 1988; Xie & Salvendy, 2000). Performing multiple tasks concurrently 

increases task demands, so it should increase mental workload by its definition. It is 

important to measure and control mental workload, because if task demands exceed the 

cognitive capacity, a situation referred to as mental overload, some tasks will be delayed 

or processed with reduced quality. Prolonged work under high levels of mental workload 

also accelerates the accumulation of fatigue and adversely affects subsequent 

performance. Mental workload measures include performance-based measures, 

physiological measures, and subjective ratings (Wierwille & Eggemeier, 1993). Among 
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these measures, subjective assessment measures are often favored by many researchers 

because of their demonstrated sensitivity to demand manipulations, low intrusion to the 

primary task, and convenience to use. One of the most widely used mental workload 

measures is the NASA-Task Load Index (NASA-TLX; Hart & Staveland, 1988). It 

assesses mental workload on six scales: mental demand, physical demand, temporal 

demand, performance, effort, and frustration level. The overall mental workload can then 

be quantified as the weighted average score over all these scales. NASA-TLX has been 

shown to be sensitive to the change of task demands in a wide range of tasks, from 

laboratory cognitive judgment tasks to real-world driving and aviation tasks (Cao & Liu, 

2013a; Colle & Reid, 1998; Hart, 2006; Lee & Liu, 2003; Wu & Liu, 2007). A recent 

study has shown that NASA-TLX is also reliable and valid to measure mental workload 

in the healthcare domain (Hoonakker et al., 2011). The current experiment used the raw 

NASA-TLX measure, which simplifies the rating procedure by eliminating the weighting 

process and using the sum of ratings from the six scales as the estimation of overall 

workload (Byers, Bittner, & Hill, 1989; Hart, 2006; Hoonakker et al., 2011). 

In summary, the current experiment examined the effects of concurrent tasks on 

diagnostic decision strategies, performance, and mental workload. I also expected the 

dependence of these effects on the type of the concurrent task – a simple task (automatic 

process) or a complex task (controlled process). Since the goal of this study is to examine 

the general mechanism of diagnostic multitasking independent of domain-specific 

knowledge, I used a controlled experiment with abstract diagnostic tests. Using 

laboratory tasks has the advantages of providing control of potential confounding factors 

such as individual knowledge and experience and allowing the quantification of decision 

strategies and performance that previous field observation studies cannot offer.  

 

2. Methods 

 

2.1 Participants 

Thirty adults (20 males and 10 females, mean age = 21.4 years, standard deviation 

of age = 2.3 years), all of whom were students or recent graduates recruited from a 

university in the United States, were paid for their participation. They were informed that 
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if their performance was among the top 20% of all the participants of this experiment, 

they could receive an extra monetary bonus. Six of the 30 participants received the bonus 

after all of them completed the experiment.  

 

2.2 Tasks and materials 

The experiment was computerized as a Personal Computer (PC) program using 

C# and had five task conditions – three single-task conditions and two dual-task 

conditions. The three single-tasks included an abstract diagnostic decision making task 

(visual), a sound monitoring task (auditory), and a memorization task (auditory).  In each 

trial of the decision task, participants needed to diagnose what kind of disease a simulated 

patient had. Patients’ identification number and gender were visually displayed for each 

trial. Each patient must have one of the eight diseases represented by eight numbers (1-4 

and 6-9), as shown in Figure 6. Participants reported their diagnostic decision by clicking 

a number using a computer mouse. Three diagnostic tests were provided to facilitate their 

decision. The Small-Large test examined whether the true disease number was in the 

range of the smaller (1, 2, 3, and 4) or larger (6, 7, 8, and 9) half. The Odd-Even test 

examined whether the true disease number was odd (1, 3, 7, and 9) or even (2, 4, 6, and 

8). The Blue-Red test examined whether the true disease number was in color blue (1, 2, 

6, and 7) or red (3, 4, 8, and 9). For example, if the true disease number is 6, the results of 

the three tests would be Large, Even, and Blue. Only one test result could be displayed at 

a time, and there was a brief delay (four seconds) between issuing a test and the 

appearance of its result. Tests could be performed in any order or repeated. A decision 

could be made with or without the completion of all three tests. The three tests are an 

abstract representation of a physician asking three questions, for example, whether the 

patient has a high or low blood pressure, a positive or negative fungal infection test result, 

and high or low white blood cell count. 
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Figure 6. Display of the diagnostic decision making task. The three tests each reveal a 

property of the number representing the true disease. Number 1, 2, 6, and 7 are blue. 

Number 3, 4, 8, and 9 are red (from Cao & Liu, in press). 

 

One of the benefits of using an abstract diagnostic task is to rigorously examine 

the effects of multitasking while minimizing the effects of potential confounding factors 

such as domain-specific knowledge and experience. If real disease names and real 

diagnostic tests were used, the difference in familiarity and personal experience with 

these diseases and tests would become very difficult to control and confound the 

interpretation of the results, because heuristics depend heavily on individual experience 

that may vary significantly from person to person. Another benefit of using an abstract 

diagnostic task is to allow the quantification of decision strategies and performance. In 

contrast, diagnostic strategies and performance in real-world healthcare settings often 

cannot be quantified easily due to the lack of a consensus on what constitutes best 

practice and the lack of definitive methods to identify the true causes of symptoms. 

In the abstract diagnostic task used in this study, strong links between patients’ 

gender and the true disease were embedded in the program but not explicitly disclosed to 

the participants. It was designed that 90% of male patients all had one typical disease 

(e.g., Number 7), and 90% of female patients all shared a different typical disease (e.g., 

Number 8). For the remaining 10% of patients in either gender group, the probability of 

the true disease was uniformly distributed among the other seven atypical diseases. The 

actual numbers representing typical diseases were randomly selected for each participant. 

This design created two types of strategies. First, the controlled and analytic strategy was 
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to complete all three tests, gradually eliminate alternatives, remember the remaining 

choices, and finally reach a diagnosis. On the other hand, participants might learn the 

strong links hidden between the gender and the true disease and form their heuristics. The 

resulting automatic and heuristic strategy was to take a short-cut and directly choose a 

diagnosis based on personal experience without completing all three tests. Instructions 

told participants that their top priority was to make their diagnosis as accurate as possible. 

Secondly, they should diagnose as many patients as possible within the limited time 

period. After they gave their diagnostic decision for a trial, the next trial would start 

shortly in three seconds.  

The sound monitoring task required participants to monitor the vital signs of a 

simulated patient in an intensive care unit by listening to an auditory display. There were 

two types of sounds – Normal and Target. Both of them resemble warning signals from 

patient monitoring systems. The Normal sound was composed of consecutive beeps that 

resemble the beeping sound from a cardiac monitor. The Target sound was a long and flat 

tone that is often used to indicate a stopped pulse. Participants were asked to respond 

correctly as fast as possible by pressing the space bar on a keyboard when a target was 

presented and not to press it when no target was presented. Pressing the key during 

Normal sound was recorded as an incorrect response. After a correct response, which 

must be made during Target sound, the sound would turn back to Normal. The interval 

before the onset of the next Target was uniformly distributed between 4 and 14 seconds.  

The memorization task required participants to remember the emergency levels of 

three simulated patients named Alpha, Bravo, and Charlie in an intensive care unit. The 

emergency levels included the three levels of Low, Medium, and High. All patients’ 

status started at the Medium level and would be constantly updated verbally through a 

speaker in every 4 to 14 seconds. This task represented the verbal communication 

between physicians and nurses. Speech used in the experiment was synthesized from 

texts using Microsoft Speech Platform. For example, participants might hear: ―Update. 

The emergency level of Patient Charlie has changed to High.‖ After a random number 

(one to three, uniformly distributed) of status updates, a question would be asked about a 

patient’s status. For example, participants might hear: ―Question. Is the emergency level 

of Patient Bravo at the Low level?‖ Patient names and their status in both updates and 
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questions were randomly selected. Participants were asked to respond correctly as fast as 

possible by pressing keys (d and f) as their answers for yes and no (key order balanced 

across subjects).  

The two dual-task conditions were formed by combining the decision task with 

each of the two auditory tasks. In the decision-and-monitoring condition, the diagnostic 

decision task (visual) and the sound monitoring task (auditory) were presented 

simultaneously. In the decision-and-memorization condition, the diagnostic decision task 

(visual) and the patient status memorization task were presented simultaneously. The 

instruction for dual-tasks was to treat both tasks as equally important.  

 

2.3 Design and measures 

The experiment used a within-subject design. Each participant experienced all 

five conditions in an order balanced across subjects. The independent variable was task 

condition. For the diagnostic decision task, the number of tests issued in a trial (min = 0 

and max = 3) was recorded. If all three tests were consulted before a decision, the 

strategy was categorized as analytic. If less than three tests were used, the strategy was 

categorized as heuristic. The rate of using the analytic strategy was used as a dependent 

variable. Correct decision/reaction rate and decision/reaction time were recorded for the 

decision task as well as the monitoring and memorization tasks. Mental workload was 

measured by raw NASA-TLX for each experimental condition. The raw NASA-TLX 

overall score was examined as a dependent variable. Statistical analyses using repeated 

measures ANOVA and paired t-test were conducted in SPSS. 

 

2.4 Procedure 

Participants completed a consent form and a demographic questionnaire before 

the experiment. They first adjusted the sound volume to a comfortable level and practiced 

each single- and dual-task condition following instructions displayed on a computer 

screen. To pass the practice, they must reach a correct decision/reaction rate of no less 

than 0.8 for each task. The practice section took approximately 35 minutes. During the 

practice, immediate feedback was given to each participant response, telling the 

participants whether their response was correct or wrong. Such immediate feedback has 
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also been used in real-world healthcare training. For example, new methods such as 

interactive simulated training can give immediate feedback on trainees’ diagnostic 

performance (Olsen & Sticha, 2005). In real-world healthcare practice, there is also 

feedback but delayed feedback. For example, when an earlier diagnosis did not lead to 

successful treatment, a later re-evaluation might correct the earlier misdiagnosis and 

serve as feedback to a doctor. 

Each participant practiced a total of at least 60 trials of the diagnostic decision 

making task. After the practice, participants completed the formal experiment section for 

the five task conditions in a balanced order. No feedback was provided during the formal 

experiment section. Among the decision making trials in both practice and formal 

sections, 90% of the trials were typical cases where patients’ gender could be used as the 

indicator of the true disease, and the remaining 10% were atypical cases where the true 

disease was randomly distributed among the seven diseases other than the typical one. 

The practice section with feedback provided all participants with the same experience 

that the link between gender and the true disease was not perfectly reliable. They were 

able to experience both successes and failures for using the gender as a short-cut of 

diagnosis. After each task condition in the formal section, participants completed a raw 

NASA-TLX mental workload assessment for the task condition. Short breaks were given 

between task conditions, and the formal experiment section took approximately 45 

minutes. Incentives were used to motivate high performance in both single- and dual-task 

conditions. Participants were informed that they could win an extra bonus if their 

performance was ranked among the top 20% of all participants.  

 

3. Results 

 

3.1 Effects on strategy 

Concurrent tasks had no significant effect on the strategy of diagnostic decision in 

this experiment, as shown in Table 7, in terms of neither significant difference in the rate 

of using the analytic strategy (F(2, 58) = 1.225, p = 0.301, η
2
 = 0.040) nor significant 

difference in the number of tests used (F(2, 58) = 2.452, p = 0.095, η
2
 = 0.078). On 

average over all trials from all participants, 69% of the diagnostic strategies were  
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categorized as the analytic strategy, and 2.48 of the three diagnostic tests were issued 

before making a decision. Thirteen participants (43% of all participants) always 

completed all three diagnostic tests before making their decisions (i.e., categorized as the 

analytic strategy group); the rest 17 participants used only the heuristic strategy or a mix 

of the analytic and heuristic strategies (i.e., categorized as the heuristic strategy group). 

  

Table 7. Diagnostic decision results in different task conditions (from Cao & Liu, in 

press). 

Mean ± Standard 

deviation 
Decision-

only 
Decision and 

monitoring 
Decision and 

memorization 
p η

2 

Analytic strategy rate 0.68 ± 0.39 0.67 ± 0.40 0.72 ± 0.40 0.301 0.040 

Number of tests used  2.45 ± 0.80 2.43 ± 0.87 2.55 ± 0.77 0.095 0.078 

Decision time (s) 12.98 ± 3.89 12.98 ± 4.26 16.12 ± 5.28 < 0.001 0.510 

Correct rate  

(ranging from 0 to 1) 
0.96 ± 0.05 0.96 ± 0.06 0.97 ± 0.04 0.123 0.079 

 

3.2 Effects on performance 

As shown in Table 7, the effect of concurrent tasks on diagnostic decision time 

was significant (F(1.428, 41.398) = 30.222, p < 0.001, η
2
 = 0.510; using the Greenhouse-

Geisser correction  = 0.714, because Mauchly’s Test showed that the Sphericity 

assumption was violated, p = 0.001). Pairwise comparisons showed that decision time 

was significantly longer by about 3.1 s in the decision-memorization dual-task condition 

than both the decision-only and decision-monitoring conditions (all p values < 0.001). 

Decision times were not significantly different between the decision-only and decision-

monitoring conditions (p = 1.000). Concurrent tasks showed no significant effect on the 

rate of correct diagnostic decision (F(2, 58) = 2.170, p = 0.123, η
2
 = 0.079). 

Regarding the performance of the monitoring and memorization tasks, paired t-

test revealed significant effects of task condition, showing impaired performance in the 

dual-task conditions. For the monitoring task, reaction time increased from 0.57 s in the 

single-task condition to 0.65 s in the dual-task condition (t(29) = 8.616, p < 0.001, d = 

0.907), but the correct response rates were not significantly different between the single- 

(0.99) and the dual-task conditions (0.98; t(29) = 1.507, p = 0.143, d = 0.277). For the 

memorization task, reaction time significantly increased from 5.04 s in the single-task 

condition to 5.38 s in the dual-task condition (t(29) = 5.379, p < 0.001, d = 0.793), 
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whereas the correct response rate decreased from 0.97 in the single-task condition to 0.93 

in the dual-task condition (t(29) = 2.337, p = 0.027, d = 0.634). 

 

3.3 Effects on mental workload 

As shown in Figure 7, the effect of task condition on mental workload (measured 

by the raw NASA-TLX overall rating) was significant (F(4, 116) = 58.037, p < 0.001, η
2
 

= 0.667). Pairwise comparisons showed that mental workload was significantly different 

for all the condition pairs (all p values < 0.05) except for the pair of the decision-only and 

monitoring-only conditions (p = 1.000). When comparing between the analytic strategy 

group (13 participants) and the heuristic strategy group (17 participants; defined 

previously in Section 3.1), no significant difference was found for mental workload in 

any of the five task conditions (t-test p values ≥ 0.248). 

 

 

Figure 7. Raw NASA-TLX mental workload overall rating in different task conditions. 

D. = Decision-only; Mo. = Monitoring-only; Me. = Memorization-only; D-Mo = 

Decision-monitoring dual-task; D-Me = Decision-memorization dual-task. Error bars 

represent 95% confidence intervals (from Cao & Liu, in press). 
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4. Discussion 

 

The quality and timely performance of diagnostic decisions is a critical factor in 

healthcare delivery. The prevalence of multitasking and interruptions observed in the 

healthcare work environment has raised concerns about the potential detrimental effects 

of the multitasking working style. Although dual-task effects on human performance 

have been extensively studied in cognitive psychology and human factors, there is a lack 

of controlled experimental studies rigorously examining such effects in diagnostic 

decision making scenarios. In the current study, I designed a diagnostic decision making 

task in order to control potential confounding factors such as previous knowledge about 

diseases and allow the quantification of decision strategies and performance. The effects 

of performing concurrent tasks on diagnostic decision making were examined in a 

controlled laboratory setting. There were two different types of tasks to be paired with the 

decision task in the dual-task paradigm. The sound monitoring task represented simple 

tasks that mainly use automatic processing, whereas the memorization task represented 

complex tasks that mainly use controlled processing.  

This experiment generated several important results about the characteristics of 

diagnostic decision making and concurrent task performance. First, the experiment results 

confirmed the existence of a strong tendency of decision makers to rely on heuristics in 

diagnostic decision making. The instructions emphasized that the top priority should be 

given to diagnostic accuracy rather than speed. Since there was a 10% chance that the 

heuristics would fail, as the participants learned in the practice, the normative and 

rational strategy would be to follow the standard procedures and complete all three tests 

before making a decision. However, only 69% of the diagnoses were made by following 

this analytic and controlled strategy. This finding indicates that participants’ reliance on 

heuristics in diagnostic decision is a strong disposition inherent in the human cognitive 

system. 

Second, diagnostic strategies did not significantly differ between the single- and 

dual-task conditions. This result is different from our expectation. It indicates that 

concurrent tasks may affect diagnostic decision in a way different from stress and time 

pressure that have been found to be able to change decision strategies, as introduced 



50 

 

previously in the introduction section. It might also be possible that participants in this 

experiment did not have the need to change strategies, because the relatively short 

duration of the experiment (about 80 minutes) was not very fatiguing or the relatively 

simple diagnostic task has only a limited number of factors to consider.  

Third, the concurrent memorization task significantly reduced diagnostic 

performance, but the concurrent sound monitoring task did not. Since diagnostic 

strategies did not significantly differ between conditions, the concurrent task was likely 

to be the only factor that was identified to account for the reduced diagnostic 

performance. These results are in line with our hypothesis and provide evidence 

supporting the two-system theory from the decision making and cognitive psychology 

literature (e.g., Kahneman, 2003). Both the memorization task and the diagnostic decision 

task required controlled processing. Performing both tasks at the same time created the 

competition for the limited working memory and attentional resources (Wickens, 2008). 

The detrimental effects were indicated by the increased decision time, increased 

memorization response time, and reduced memorization correctness. On the contrary, the 

simple sound monitoring task that required little controlled processing did not affect 

diagnostic performance. This finding may provide some guidance to the design of 

multitasking and interruption policies in the medical care work environment. When a 

physician is actively focusing on a time-critical diagnostic decision, other information 

such as warnings, reminders, or situation updates should be delivered through automatic 

processing as much as possible. The results from this study show that verbal 

communication regarding other patients’ information while decision making will lead to 

decreased performance in both tasks. Determining the best way and the best time to 

interrupt is difficult, especially when the communication is not face-to-face but mediated 

via machine interfaces such as broadcasts, pagers, and mobile phones. Medical 

professionals and interface designers should be aware of the cognitive mechanisms of 

multitasking interference.  

Finally, performing a concurrent task significantly increased mental workload 

measured by raw NASA-TLX; no matter whether the concurrent task was a simple or a 

complex one. The highest level of mental workload among all task conditions came from 

the decision-memorization dual-task, which was about twice as high as the mental 
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workload in the decision-only condition. It is interesting to note that the concurrent sound 

monitoring task also significantly increased mental workload, although it did not affect 

diagnostic performance. Increased mental workload may aggravate the accumulation of 

fatigue and reduce performance in prolonged work. This finding reveals the potential 

latent effects of multitasking on diagnostic decision making, which should also be 

considered for the control and improvement of healthcare quality. In addition, no 

significant difference was found for mental workload between the analytic strategy group 

and the heuristic strategy group of participants. A reason may be that the diagnostic 

decision task in the current study did not use fixed trial duration. Instead, after a decision 

trial was finished, the next trial would start shortly in three seconds. Each task condition 

had a fixed total duration, so participants who completed each trial faster would 

experience more trials. Future studies may use fixed trial duration to test the hypothesis 

that participants using the heuristic strategy and completing trials faster may experience 

lower mental workload. 

A limitation of this study is that the abstract diagnostic decision task is simplified 

for a laboratory experiment setting, whereas medical diagnostic decision making in the 

real-world is much more complex due to, for example, a large number of possible 

diseases, uncertainty in diagnostic tests, and the requirement for complex cognitive and 

perceptual skills. Some diagnostic tasks, such as interpreting an x-ray image, require 

perceptual pattern recognition skills that were not examined in the current study. 

However, the abstraction and simplification used in this experiment is necessary to 

rigorously control potential confounding factors such as domain-specific knowledge and 

experience that vary significantly from person to person and allow the quantification of 

decision strategies and performance. Another limitation of this study is that the 

participants were not medical professionals and were generally younger than doctors. The 

participants’ lack of medical-domain-specific knowledge was not a concern in this 

experiment because of the use of an abstract diagnostic task, but there may be some 

problem-solving skills that are special in healthcare personnel, and there is also a 

possibility that an elder population may have different multitasking capabilities. Based on 

the findings of the current study, future studies are needed to further investigate the 
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effects of concurrent tasks on diagnostic decision in medical professionals from a specific 

field of practice using domain-specific materials from the field. 

 

5. Conclusions 

 

This study examined the effects of concurrent tasks on diagnostic decision 

making using a controlled laboratory experiment. The results showed that the diagnostic 

strategies used by the participants did not significantly differ between the single- and 

dual-task conditions. Diagnostic performance was negatively affected by a complex 

memorization task that required participants to listen to verbal updates and remember the 

emergency levels of three other patients concurrently while performing the diagnostic 

decision task. In contrast, a simple sound monitoring task did not affect diagnostic 

performance. Both types of concurrent tasks significantly increased mental workload 

measured by raw NASA-TLX. These findings provide new insights into the cognitive 

mechanisms underlying diagnostic decisions and physician multitasking, which should be 

considered in the design of multitasking and interruption policies for the control and 

improvement of healthcare quality. Future studies can further investigate the effects of 

concurrent tasks on diagnostic decision in medical professionals from a specific field of 

practice using domain-specific materials. The next chapter will introduce QN-ACTR 

computational models built to model and simulate the human results collected from this 

experiment. 
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Chapter 4. Modeling Cognitive Multitasking Performance in Diagnostic 

Decision Making Tasks 

 

Chapter Summary 

 

An important question in the research field of human performance modeling is 

how to model concurrent task performance and mental workload involving complex 

cognitive activities. Particularly in the healthcare domain, there is a strong need for 

computational methods to model and simulate diagnostic decision making performance 

and the effects of concurrent tasks. In this study, QN-ACTR computational models were 

built to simulate concurrent-task performance involving multiple controlled processes in 

need of dedicated cognitive resources, which previous methods have difficulties to model. 

The key concept is a filtering discipline implemented in QN-ACTR cognitive architecture 

that allows cognitive resources to be exclusively occupied by one of the concurrent tasks 

when necessary, instead of switching between the tasks as frequently as possible. In the 

simulations of dual-tasks involving diagnostic decision making and patient status tracking, 

I found that the new discipline seems to be necessary to model human performance and 

mental workload. Implications and practical applications of QN-ACTR in system 

evaluation and design are discussed. 

  

1. Introduction 

 

An important and challenging topic of human performance modeling is the 

modeling of concurrent multi-tasks involving complex cognitive activities.  Multi-task 

models must have mechanisms explaining how limited mental resources are scheduled 
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and utilized to meet multi-task demands. In this chapter, I describe a new filtering 

discipline from the QN theory that schedules mental resources in complex cognitive dual-

tasks. I have found that this mechanism is needed to model human results in concurrent 

tasks involving multiple controlled processes that existing methods have difficulties to 

model. Controlled processes refer to deliberate mental processing that is different from 

automatic processing. As described in the dual-process (or dual-system) model 

(Kahneman, 2003), there are two distinct cognitive processes—System 1 and System 2. 

System 1 represents the automatic process that is intuitive, fast, parallel, and heuristic, 

whereas System 2 represents the controlled process that is deliberate, slow, serial, and 

analytic. Since automatic processing requires very few mental resources, dual-tasks that 

consist of two automatic tasks, or an automatic task paired with a controlled task, are less 

likely to interfere. However, strong negative interference may exist between two 

controlled processes. 

Using queueing mechanisms or similar concepts, previous studies have modeled 

performance in dual-tasks that consist of two automatic tasks or an automatic and a 

controlled task, including the psychological refractory period (Wu & Liu, 2008a), driving 

and map reading (Liu et al., 2006), and tracking and choice tasks (Salvucci & Taatgen, 

2008). From the queueing network (QN) perspective, multiple goals can co-exist in the 

goal buffer, and multi-task performance emerges as the behavior of multiple streams of 

information flowing through a network, with no need for multitask-specific goals to 

interleave production rules into a serial program or for an executive process to 

interactively control task processes (Liu, 1997; Liu et al., 2006). However, few studies 

have modeled dual-tasks that both require controlled cognitive processing. To fill this gap, 

an approach is to combine the QN’s benefit in modeling multitasking performance and 

the benefit of Adaptive Control of Thought-Rational (ACT-R, J. R. Anderson et al., 2004) 

in modeling complex cognitive activities, as introduced in previous chapters.  

In QN-ACTR, the goal buffer can hold multiple entities simultaneously 

representing multiple concurrent tasks, which are coordinated by a queue sorting these 

tasks based on their waiting time. If multiple tasks are competing for limited mental 

resources, the task that is the closest to the front of the queue (i.e., longest waiting time) 

will receive priority. This simple queueing mechanism leads to alternation between tasks 
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whenever it is possible to switch tasks. When multiple production rules for different tasks 

are matched at the same time, the production module will choose the rule that processes 

the task different from the last processed one. This mechanism has been shown to be 

appropriate for dual-tasks with at least one automatic component, but as described in the 

modeling work reported in this chapter, it has difficulty to model controlled dual-tasks in 

which both tasks require a significant amount of cognitive processing (e.g., imaginal and 

declarative processing).  

Controlled cognitive processing usually requires a series of production rules to be 

executed as a continuous stream without interruption. For instance, in a single-digit 

addition task (ACT-R tutorial, http://act-r.psy.cmu.edu/), the model needs to retrieve the 

meaning of numbers, form a representation in the imaginal buffer, and manipulate the 

representation until an answer is found. If interruption happens, for example, the 

declarative retrieval result is harvested by another concurrent task, or the problem 

representation is changed to a different representation for another concurrent task, the 

controlled processing of the interrupted task will fail to reach its goal. As a result, the 

simple sorted queue scheduling method is not suitable to model dual-tasks that both 

require controlled processing because the frequent switching between tasks will interrupt 

the continuous flow of a controlled process. 

To address this interruption issue and improve the modeling capability of QN-

ACTR, I introduce a filtering discipline that allows cognitive resources to be exclusively 

occupied by one of the concurrent tasks when necessary. First, production rules are 

categorized into two groups—the ones that need follow-up processing and the ones do 

not. For example, if a production rule’s action part has a retrieval request to fetch a chunk 

from the declarative memory and put the chunk in the retrieval buffer, it requires follow-

up processing carried out by another rule to use the retrieved chunk for the same task. 

Then, if a rule that needs follow-up is executed, the next selected rule must process the 

same task as the previous rule. This filtering discipline is implemented in QN-ACTR’s 

production module. After a rule requiring follow-up is processed, the production module 

will start to exclusively accepting only the rules that follow up the same task. If there is 

no such rule matched and available, the module will be enforced to idle and ignore other 

rules. Such exclusive processing continues until a rule that does not require follow-up is 
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processed. Later in this chapter, I will show that models without this new discipline can 

only model dual-tasks with at least one automatic component but cannot model dual-tasks 

both involving controlled processing. In contrast, models with the new discipline can 

model all the scenarios. 

How to determine whether a rule requires follow-up? Based on simulation results, 

I have identified three conditions. A rule may be categorized as requiring follow-up, if at 

least one of the following three conditions is met. First, the rule’s action part has a 

declarative retrieval request. Second, the rule’s action part has an imaginal request, i.e., to 

create a chunk (problem state) in the imaginal buffer. Third, the rule processes aural 

information from a continuous stream of important audio stimuli, such as a question 

sentence. All these three conditions have been found to be necessary to model human 

performance in the simulation work of this study. 

This filtering discipline described above can help model dual-task performance 

where both tasks compete for the problem state (imaginal buffer) and the declarative 

(memory retrieval) resources. Each task can obtain a period of exclusive use of mental 

resources to complete its controlled cognitive process, avoiding endless task switching 

that happens when the simple queueing is the only scheduling discipline.  

The following sections describe a simulation using QN-ACTR to model 

diagnostic decision making dual-task scenarios. I first briefly describe the experiment 

conducted to collect human data and then describe the modeling results of both 

performance and mental workload. Implications and applications from the results are 

discussed.  

 

2. Method 

 

The human experiment – diagnostic decision making and concurrent tasks – was 

described in the previous chapter. This section focuses on the introduction of the 

modeling method. Since there were two types of diagnostic decision strategies, two 

models that each corresponded to a type of strategy were built in QN-ACTR to simulate 

the human results. The analytic model used all three tests before making a decision. The 

heuristic model followed a common short-cut strategy observed from the human results, 
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that is, after two tests, heuristically choosing a diagnosis based on the gender information. 

Production rules were defined for each task individually without using any executive 

control rule. In dual-task scenarios, a model simply used the rules combined from the two 

sets of rules for the two single-tasks. These rules, as shown in Figure 8, followed the 

model building principles and conventions in previous ACT-R and QN-ACTR studies. 

All parameters were in their default values, except for :lf (latency factor) that was set to 

0.106 (J. R. Anderson & Matessa, 1997). Mental workload was modeled by overall server 

utilization, which has been shown to have a linear relationship to NASA-TLX (Cao & 

Liu, 2011b). The previously described filtering discipline and the follow-up principles 

were implemented in QN-ACTR. The production rules that required follow-up are 

marked in Table 8. I also tested model performance without this new discipline in 

comparison.  

 

Table 8. Procedures and production rules for the diagnostic decision, sound monitoring, 

and patient status tracking tasks. The definition of these production rules follows the 

principles used in previous cognitive models (e.g., see models from http://act-

r.psy.cmu.edu/). Source: (Cao & Liu, 2013b). 
Step Task procedure Production rules 

 Diagnostic decision: Analytic strategy (i.e., using all tests) 

1 At the start of a new trial, create a problem state that all diseases are possible. start-trial 

2 Find the visual location of gender; move the mouse cursor to the first test button as 
preparation. 

find-patient-gender 

3 Visually attend the gender information. attend-gender 

4 Visually encode the gender information. encode-gender 

5 Decide to issue the next test. issue-test-small-large(odd-even, or 
blue-red) 

6 Find the visual location of the next test button. decide-test-small-large(odd-even, or 

blue-red) 

7 Move the mouse curser to the button. move-mouse 

8 Click the button. click-mouse 

9 Find the visual location of the test result. find-test-result / find-test-result-again 

(if failed)  

10 Visually attend the test result location (may fail if no word has been shown yet). attend-test-result 

11 See the word ―wait.‖ pre-encode-test-result-wait 

12 In case this is the last test of the three, move the mouse curser closer to the answer 

buttons as preparation. 

prepare-mouse-final-answer-find &  

prepare-mouse-final-answer-move 

13 In case the problem state in the imaginal buffer is empty or not for this task (e.g., 

caused by interruption from another concurrent task), retrieve the problem state from 

declarative memory.  

decision-attending-test-retrieval-

imaginal* 

14 When retrieved, recreate the problem state in the imaginal buffer.  decision-attending-test-recreate-

imaginal* 

15 Visually encode the test result; update the problem state by eliminating unsupported 
diseases. 

encode-test-result-large(small, even, 
odd, red, or blue) 

16 If there is still any remaining test to do, visually attend the next test button. (i.e., 

back to Step 10.) 

attend-test-result 

17 If this is the last step, notice that all tests have been done. all-test-done 

18 In case the problem state is empty or not for this task (e.g., caused by interruption 

from another concurrent task), retrieve the problem state from declarative memory.  

decision-decide-number-retrieval-

imaginal* 

19 When retrieved, recreate the problem state in the imaginal buffer.  decision-decide-number-recreate-

imaginal* 
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20 Make the decision based on the problem state (with only one possible disease 

remaining); find the visual location of the decision number button. 

decide-number-1 / decide-number-2 

/ … / decide-number-8 

21 Move the mouse cursor to the button. (same rule as Step 7) move-mouse 

22 Click the button. (same rule as Step 8) click-mouse 

23 Finish a trial; restart the goal for the next trial. trial-done 

 Diagnostic decision: Additional procedure and rules for heuristic strategies 

A1 Heuristic decision. After completing the first two tests, heuristically diagnose based 

on the gender information. 

issue-test-blue-red-competing-short-

cut-male /  

issue-test- blue-red -competing-short-
cut-female 

 Sound monitoring 

1 Whenever a sound is detected, start processing it in the aural module. detected-tone 

2 Hear a target sound encode-target-tone 

3 Manually press the key as a response.  respond-target-tone 

 Patient status tracking (memorization) 

1 Create the initial problem state that all patients have a medium emergency level. memory-pre-start 

2 Whenever perceptual, imaginal, and retrieval modules are free and buffers are 
empty, rehearse the problem state; retrieve the state from the declarative memory. 

memory-rehearse-memory* 

3 Rehearse the problem state; put the retrieved state back to the declarative module. memory-rehearse-memory-return 

4 Whenever a sound is detected, start processing it in the aural module. memory-hear-sound* 

5 Start hearing the update of patient status. memory-hear-update 

6 Hear the name of the patient. memory-hear-update-patient* 

7 In case the problem state in the imaginal buffer is empty or not for this task, retrieve 
the problem state from declarative memory.  

memory-hear-update-retrieval-
imaginal* 

8 When retrieved, recreate the problem state in the imaginal buffer.  memory-hear-update-recreate-

imaginal* 

9 Hear the updated level for a patient; update the problem state accordingly. memory-hear-update-a(b, or c)-level 

10 Start hearing the question of patient status. memory-hear-question* 

11 Hear the name of the patient. memory-hear-question-patient* 

12 In case the problem state in the imaginal buffer is empty or not for this task, retrieve 

the problem state from declarative memory.  

memory-hear-question-retrieval-

imaginal* 

13 When retrieved, recreate the problem state in the imaginal buffer.  memory-hear-question-recreate-

imaginal* 

14 If the patient status is same as the one in the problem state, answer yes; if not the 

same, answer no. 

memory-hear-question-a(b, or c)-

level-yes(or no) 

15 Press the corresponding key as the answer. memory-press-key-yes / memory-

press-key-no 

*: marks the production rules require follow-up. 

 

3. Results 

 

The human results showed that the effect of concurrent tasks on diagnostic 

decision time was significant (F(1.428, 41.398) = 30.222, p < 0.001, η
2
 = 0.510). 

Decision time was significantly longer in the decision-memorization (i.e., the decision 

and patient status tracking) dual-task condition than other conditions (ps < 0.001). The 

monitoring and memorization tasks also had impaired performance in terms of time delay 

in the dual-task conditions. On average, 69% of the diagnoses were made following the 

analytic strategy (i.e., use all three tests). For participants used heuristic short-cuts, 2.1 of 

the three tests, on average, were issued before making a decision. The effect of task 

condition on mental workload (measured by the raw NASA-TLX overall rating) was 

significant (F(4, 116) = 58.037, p < 0.001, η
2
 = 0.667). Pairwise comparisons showed that 
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mental workload was significantly different between all condition pairs (ps < 0.05) 

except for the pair of decision-only and monitoring-only (p = 1.000). 

The simulation was repeated six times, reaching a 95% confidence interval 

smaller than 5% for each measurement. The model results were similar to the human 

results for both types of strategies, as shown in Figure 8. For the analytic strategy, mean 

absolute percentage error (MAPE) = 2.31%, root mean square error (RMSE) = 0.24 s. 

For the heuristic strategy, MAPE = 2.01%, RMSE = 0.32 s. In contrast, models without 

the filtering discipline could only simulate the decision-monitoring task but could not 

complete the decision-memorization task, because the controlled processes were 

interrupted by task switching. All three follow-up principles were necessary. Without the 

retrieval request principle, models would stop in the middle of simulation, because the 

retrieval buffer was filled with an inappropriate chunk for the other task that prevented 

further processing. Without the imaginal request principle, the two tasks would endlessly 

compete and recreate the imaginal buffer chunk and could not complete any task. 

Without the auditory stream principle, models can only perform the decision task but 

would stop performing the memorization task, because they missed important auditory 

information. 
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(a) Analytic strategy (use all three tests) 

 

 

(b) Heuristic strategy (use two tests and short-cut) 

 

Figure 8. Effects of concurrent tasks on the decision/reaction time performance of each 

task component for both the human and model results. Error bars 

represent 95% confidence intervals (from Cao & Liu, 2013b). 

 

Using overall utilization, the simulation also captured the difference of mental 

workload between task conditions, as shown in Figure 9, MAPE = 9.5%, β = 0.938 (p < 

0.001), intercept = 6.3, slope = 437.1, R
2 

= 0.879 (p < 0.001). 
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(a) Analytic strategy (use all three tests) 

  

  

(b) Heuristic strategy (use two tests and short-cut) 

 

Figure 9. Effects of concurrent tasks on mental workload for both the human and model 

results. Error bars represent 95% confidence intervals (from Cao & Liu, 2013b). 
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4. Discussion 

 

The modeling results from this study showed that the proposed filtering discipline 

implemented in QN-ACTR is necessary to successfully model human performance and 

mental workload in concurrent tasks involving two or more controlled processes. This 

filtering discipline allows cognitive resources to be exclusively utilized by one of the 

concurrent tasks when necessary, resolving the interruption issue that exists when the 

simple queueing is the only scheduling mechanism. Currently, three conditions have been 

identified regarding which production rules require follow-up processing. Since multi-

task modeling is still a new topic in human performance modeling, more studies are 

needed to examine whether these mechanisms are sufficient and whether additional 

mechanisms are needed to model a wider range of cognitive multi-task scenarios. 

A limitation of the present study is that only the overall NASA-TLX rating is 

modeled but not each individual dimension of NASA-TLX scores. As previously 

introduced, NASA-TLX has six dimensions of workload rating scores. In particular, the 

effort dimension is described as how hard a person has to work (mentally and physically) 

to accomplish the level of performance. This effort issue is currently not included in the 

QN-ACTR architecture, but intuitively, working harder may be modeled as assigning 

more processing resources to a task. Future research may test the use of a mind-

wandering concurrent process (i.e., task-unrelated thought) to model effort. 

Hypothetically, the mind-wandering concurrent process, as an extra task not required by 

formal task instructions, may compete with other concurrent tasks but does not create 

mental workload related to any required task. Higher effort may reduce the proportion of 

mind-wandering and therefore increase resource utilization and mental workload of the 

required tasks.  

Modeling methods capable of simulating cognitive multi-task scenarios are 

valuable for the design, evaluation, and improvement of complex human-machine 

systems, such as healthcare, transportation, and plant operation control. These complex 

and concurrent tasks are characterized by having complicated dynamics and multiple 

components that require controlled processing. Human performance modeling using QN-

ACTR can support the selection of design alternatives and the examination of what-if 
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scenarios. The mental workload modeling capability of QN-ACTR can also support the 

development of workload management systems that help control mental workload within 

a suitable range to improve system performance and efficiency, while controlling fatigue 

that can be caused by prolonged work. 
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Chapter 5. An Experimental Investigation of Concurrent Processing of Vehicle 

Lane Keeping and Speech Comprehension Tasks 

 

Chapter Summary 

 

To further examine QN-ACTR’s modeling capability in complex multi-task 

scenarios, the work reported in this chapter collected detailed human performance and 

mental workload results in a driving and speech comprehension dual-task scenario. Then 

the next chapter will introduce the QN-ACTR model to simulate these human results. 

With the growing prevalence of using in-vehicle devices and mobile devices 

while driving, a major concern is their impact on driving performance and safety. 

However, the effects of cognitive load such as conversation on driving performance are 

still controversial and not well understood. In this study, an experiment was conducted to 

investigate the concurrent performance of vehicle lane keeping and speech 

comprehension tasks with improved experimental control of the confounding factors 

identified in previous studies. The results showed that the standard deviation of lane 

position (SDLP) was increased when the driving speed was faster (0.30 m at 36 km/h; 

0.36 m at 72 km/h). The concurrent comprehension task had no significant effect on 

SDLP (0.34 m on average) or the standard deviation of steering wheel angle (SDSWA; 

5.20 degree on average). The correct rate of the comprehension task was reduced in the 

dual-task condition (from 93.4% to 91.3%) compared with the comprehension single-task 

condition. Mental workload was significantly higher in the dual-task condition compared 

with the single-task conditions. Implications for driving safety were discussed. 
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1. Introduction 

 

The use of in-vehicle information systems and mobile devices has increased 

rapidly over the past few decades. For a long time, drivers’ interaction with in-vehicle 

systems has been limited to radio and air-condition controls by pressing buttons and 

turning knobs. Then drivers started to use cell phones for telephone conversation while 

driving. With the growing prevalence of mobile devices or smartphones in recent years, 

drivers are surrounded by more distractions than ever before. A major concern about the 

use of in-vehicle devices and mobile devices is their impact on driving performance and 

safety. The work reported in this paper is an experimental investigation of the impact of 

concurrent speech comprehension on vehicle lane keeping performance using improved 

experimental control of the confounding factors identified in previous studies.  

Using in-vehicle or mobile devices while driving can create two types of load, 

including visual load and cognitive load. Visual load is produced by tasks that require 

drivers to move their visual attention away from the driving scene, for example, text 

messaging. Such visual tasks compete with driving for the limited visual attention 

resource. The effects of concurrent visual tasks on driving performance have been 

relatively well-established. Since driving requires continuous visual processing, it is not 

surprising that a visual task almost always degrades driving performance to some extent. 

Numerous studies have found negative effects of visual load, including increased reaction 

time and decreased correct rate in response to traffic events (Lamble et al., 1999; 

McKnight & McKnight, 1993), increased lateral position variation (Engström et al., 

2005), and degraded car following performance (Drews et al., 2009). With converging 

evidence, 39 states in the U.S. have banned text messaging for all drivers up till 

November 2012.  

Compared with visual load, the effects of cognitive load on driving performance 

are still controversial and not well understood. Cognitive load in this research field often 

refers to the mental demand from a concurrent auditory task, such as voice control and 

telephone conversation. As predicted by multiple resource theory (Wickens, 2008), a 

secondary task using the auditory channel (e.g., speech conversation) should have less 

http://en.wikipedia.org/wiki/Mobile_devices
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interference with the primary task using the visual channel (e.g., driving), compared with 

a secondary task that also uses the visual channel (e.g., text messaging). Still, 

epidemiological surveys of traffic accidents have found association between increased 

cell phone calls and higher risk of accidents (Redelmeier & Tibshirani, 1997; Violanti & 

Marshall, 1996). To examine the effects of cognitive load, numerous experiments have 

been conducted in both simulated and real-world driving scenarios. The results of traffic 

event reaction performance showed mostly negative effects of cognitive load, but the 

results of speed control (i.e., longitudinal control) and lane keeping (i.e., lateral control) 

are mixed and inconclusive.  

Effects of cognitive load on event reaction performance. Most studies have shown 

that cognitive load degrades event reaction performance. Recarte and Nunes (2003) found 

that conversations, no matter by phone or with a passenger, impaired visual detection of 

flashing targets in the driving scene. McKnight and McKnight (1993) asked their subjects 

to respond to video-recorded traffic situations and found that cell phone conversations 

significantly reduced the number of vehicle control responses. In addition, both abstract 

mental tasks (Alm & Nilsson, 1995; Lamble et al., 1999) and naturalistic conversations 

(Strayer, Drews, & Johnston, 2003) performed over the phone have led to increased brake 

reaction time to the braking maneuver from the lead vehicle. There are a few studies that 

failed to find any significant effect. In these cases, the phone task was often less 

demanding, requiring only passive listening without the need for immediate action 

(Recarte & Nunes, 2003; Strayer & Johnston, 2001). Overall, as suggested by Horrey and 

Wickens (2006) in a meta-analysis study, the negative effects of cell phone conversations 

on traffic event reaction performance are significant and relatively well-established. 

Effects of cognitive load on speed control performance. Few studies have 

examined whether conversations affect speed control performance. Rakauskas, Gugerty, 

and Ward (2004) found that conversations caused larger variations in both accelerator 

pedal position and driving speed (i.e., degraded performance). Similarly, Kubose et al. 

(2006) found more variable velocity in both concurrent speech production and 

comprehension conditions compared with driving only. However, a recent study found 

the opposite effect – that is, drivers exhibited smaller variability in velocity (i.e., 

improved performance) when driving with concurrent speech tasks (Becic et al., 2010). 
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Regarding average driving speed, some studies found that conversations led to slower 

driving speed (Rakauskas et al., 2004), but other studies found no significant effect 

(Engström et al., 2005). These mixed results indicate the existence of confounding factors 

such as the strategic tradeoff between driving and conversation tasks. A better 

understanding of this issue requires further experiments with these confounding factors 

controlled, which will be discussed in more detail later in this paper. 

Effects of cognitive load on lane keeping performance. Another important 

component of driving is to steer the vehicle and maintain lane position. In contrast to the 

discrete nature of traffic event reaction, lane keeping is a continuous task that requires 

uninterrupted visual-manual control. The cognitive load involved in lane keeping may be 

high for novice drivers but can decrease with the development of driving skills (Groeger, 

2000). After fully mastering the skills, experienced drivers may perform lane keeping 

automatically with very little conscious control and attention. One may then expect little 

or no effect of conversations on lane keeping performance; however, it is difficult to 

draw any conclusion from existing empirical findings, which are mixed with seemingly 

contradictory results. There have been studies showing that concurrent cognitive load 

improved lane keeping performance (Becic et al., 2010; Brookhuis, de Vries, & de Waard, 

1991; Engström et al., 2005; Kubose et al., 2006; Liang & Lee, 2010), degraded lane 

keeping performance (Just, Keller, & Cynkar, 2008; Strayer & Johnston, 2001), or had no 

significant effect (Alm & Nilsson, 1995; Kubose et al., 2006; Rakauskas et al., 2004). 

With a closer look, I have identified several confounding or uncontrolled factors (as 

summarized in Table 9) that may offer explanations to these contradictory results. A 

confounding factor is a variable that is not included in an experimental design but may 

vary systematically between different experimental conditions and affect a dependent 

variable.  
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Table 9. Comparison of studies investigating effects of concurrent vehicle lane keeping and cognitive tasks (from Cao & Liu, 2013a).  

Study 
Driving task 

component 

Lane keeping 

difficulty 
Cognitive task 

Priority 

instruction 
Incentive 

Cognitive 

performance* 

Lane keeping 

performance** 
SDLP (m)** 

SDSWA 

 (degree)** 

Mental 

workload** 

This study 
Lane keeping 

only (steering) 

Zigzag curves, fixed-
base simulator (f-sim.) 

(36 and 72 km/h) 

Speech 

comprehension 

Safe 

driving first 
Used Examined Examined Examined Examined 

NASA-TLX 

Examined 

(Brookhuis 

et al., 1991) 
Multiple 

Driving  calmly  on  a 

quiet motorway, field 
(95 km/h) 

Paced serial 

addition 
- - - Improved 

From about 0.21 

to 0.20 

No sig. 

About 1.6 

Physiological 

and subjective. 
Increased 

(Engström 
et al., 2005) 

Multiple 
Motorway, f-sim., m-
sim., & field (110 km/h) 

Auditory 
continuous memory 

- - - 

Improved  

(f-sim. & m-sim.);  

No sig. (field) 

From about 0.30 to 

0.25 (f-sim.); 0.23 
to 0.20 (m-sim.); 

No sig. (field) 

No sig. 
Physiological. 

No sig. 

(Becic et al., 

2010) 
Multiple 

Straight road, f-sim. 

(48 km/h) 

Story retelling and 

recall 
- - 

Degraded. 

Accuracy from 
68% to 62%  

Improved From 0.16 to 0.10 - - 

(Liang & 
Lee, 2010) 

Lane keeping 
only (steering) 

Straight road with 

continuous external 
disturbance force, f-sim. 

(72 km/h) 

Speech 
comprehension 

- - - Improved 
From about 0.24 to 

0.22 
- - 

(Kubose et 
al., 2006) 

Multiple 

Straight road with 

random side wind, f-

sim. (89 km/h) 

Speech production; 

Speech 

comprehension 

Safe 
driving first 

- 

No sig. 

Accuracy 88% 
(production), 

86% (compreh.) 

Improved 

(production); 

No sig. (compreh.) 

From 0.38 to 0.35 

(production); 
No sig. 0.35 

(compreh.) 

- - 

(Alm & 
Nilsson, 

1995) 

Multiple 
Rather straight and 
easy-to-follow road, m-

sim. (90 km/h) 

Working memory 
span test with 

sentence judgement 

- - - No sig. - - 
NASA-RawTLX 

Increased 

(Rakauskas 

et al., 2004) 
Multiple 

Circle, rural road, f-

sim. (72 km/h) 
Speech production - - - No sig. - 

No sig. 

About 2.1 

Rating Scale of 

Mental Effort. 
Increased 

(Strayer & 

Johnston, 

2001) 

Lane keeping 

only (joystick 

tracking) 

Unpredictable sin wave 
movement 

Word generation - - - Degraded - - - 

(Just et al., 

2008) 

Lane keeping 
only (mouse or 

trackball) 

A curving virtual road 
Speech 

comprehension 

Attend 
equally to 

both tasks 

- - Degraded - - - 

-: not reported 

*: how cognitive performance is affected by the introduction of the concurrent lane keeping task 
**: how it is affected by the introduction of the concurrent cognitive task 

SDLP: Standard deviation of lane position 

SDSWA: Standard deviation of steering wheel angle 
f-sim.: fixed-base simulator; m-sim.: motion-base simulator; field: real-world field driving
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The first potential confounding factor is the strategic tradeoff between different 

tasks. Driving is a task that has multiple components by itself, including traffic event 

reaction, speed control, and lane keeping. It is possible that drivers choose different 

strategies and allocate attention resources differently among these components in 

different driving scenarios. As shown in Table 9, most of the existing experimental 

designs used driving tasks with multiple components, and the potential strategic tradeoffs 

were not controlled. A method to control such tradeoffs is to confine driving to a single-

task of lane keeping only, while vehicle speed is automatically control like in cruise 

control modes. In addition, the potential strategic tradeoff between the driving task and 

the phone task also needs to be controlled, because the strategy about which task should 

take priority may reasonably affect the performance of each task. However, most of the 

existing experiments did not report the instructions regarding the assignment of priority 

and did not examine the performance of the speech task, both of which are necessary for 

improved experimental control.  

The second factor is lane keeping difficulty, which is determined by both driving 

speed and the type of roads used in an experiment. If a road is straight and easy to follow, 

as in some of the previous experiments, a lane keeping task may not require frequent 

steering corrections, and therefore its performance may become insensitive to (i.e., not 

affected by) a concurrent conversation task. When a lane keeping task is very easy and 

the resulting mental workload is very low, the performance may also be low because of 

the lack of excitement and motivation (White, 1959), which may explain why lane 

keeping performance was found to be improved by a concurrent task in some of the 

previous studies. To examine drivers’ performance capability, the lane keeping task in the 

current study needs to be sufficiently difficult. The difficulty level also needs to be 

consistent between the driving-only and dual-task conditions, because otherwise the 

change in lane keeping performance may be due to the change in lane keeping difficulty 

rather than the interference from the concurrent cognitive task. This requires vehicle 

speed to be controlled, because slower speed simplifies the lane keeping task, while faster 

speed makes it more difficult. 

The third factor is the effort to actively process the cognitive task. Some of the 

previous studies did not report cognitive task performance. To properly evaluate the 
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effect of speech comprehension on lane keeping, an experiment needs to show 

sufficiently high performance of the comprehension task in the dual-task condition, in 

order to ensure that drivers are indeed actively engaged in speech comprehension. 

Another issue is the type of cognitive tasks. There are mainly three types of cognitive 

tasks used in the previous studies: numerical calculation, speech production, and speech 

comprehension, which may involve different brain mechanisms. Studies have suggested 

that numerical calculation and speech or language skills rely on different neural bases 

(Gelman & Butterworth, 2005). Brain imaging results have also shown that language 

production and comprehension involve different brain regions (Price, 1998). These 

different mechanisms may not interact with the concurrent lane keeping task in the same 

way, which may be a cause of the contradictory results in the previous studies. 

Experiments are needed to examine these different types of tasks separately. 

The fourth factor is motivation. Several previous studies found a counter-intuitive 

result: lane keeping performance was improved by a concurrent cognitive task. As 

discussed by Becic et al. (2010), an explanation of these results may be the lack of 

motivation in the driving-only condition, especially when the task difficulty was low and 

no incentive was used to promote high performance. A concurrent cognitive task may act 

as an excitement to increase drivers’ motivation and effort in the dual-task condition, 

thereby improving performance. To examine drivers’ multi-task capability, incentives 

should be used to promote best performance in both single and dual-task conditions. 

The goal of the present study is to carefully investigate the effects of concurrent 

vehicle lane keeping and cognitive tasks with improved experimental control of the 

confounding factors previously described. Table 9 compares the experimental control in 

this study with the previous studies. In the current experiment, the strategic tradeoff 

between different driving components was controlled by confining driving to a single 

task of lane keeping only, while driving speed was automatically kept constant. 

Instructions requiring the subjects to give priority to safe driving (i.e., lane keeping) were 

explicitly given in order to control the tradeoff between the two concurrent tasks. The 

lane keeping task was designed to be sufficiently difficult and challenging by using 

zigzag curves that require frequent steering corrections. Driving speed was kept the same 

between the single and dual-task conditions so that it could not affect the difficulty of 
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lane keeping. Among different types of cognitive tasks, this experiment focused on 

speech comprehension, because it is one of the most common tasks involved in the 

interaction with in-vehicle and mobile devices and a more natural task in contrast to 

numerical calculation. Knowledge about the effect of speech comprehension on lane 

keeping can help designers develop safety counter-measures to control the amount and 

level of in-vehicle speech interaction, for example, by controlling when and how 

information should be verbalized to drivers. Finally, this experiment used monetary 

incentives to promote best performance in order to investigate drivers’ multi-task 

performance capability rather than satisfactory performance. 

The specific research question of the present study is:  

What are the dual-task effects of concurrent vehicle lane keeping and speech 

comprehension tasks?  

These effects include the dual-task effects on lane keeping performance, 

comprehension performance, and mental workload. In recent years, as the prevalence of 

cruise control and adaptive cruise control technologies (Jenness, Lerner, Mazor, Osberg, 

& Tefft, 2008), driving on highways and rural roads has often been reduced to a single 

task of lane keeping. Since workload is reduced, a question is whether drivers could or 

should perform a concurrent task while driving. Drivers have the desire to improve 

productivity while commuting. For example, a student may want to listen to a recorded 

lecture while driving. An office worker may want to check emails through a speech 

interface while driving. An investor may want to listen to news about the stock market 

while driving. The results of this study can help further develop the empirical data and 

knowledge base in answering this question. The following sections describe the 

experiment, report the results, and discuss the new insights that can be drawn from the 

results.  

 

2. Method 

 

2.1. Participants 

Twenty-four participants (17 males, 7 females, mean age = 29.6 years, standard 

deviation of age = 6.7 years), all of whom were native Mandarin Chinese speakers 
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recruited in China, were paid for their participation. They all had a valid driver license, at 

least 8000 km of driving mileage (mean driving mileage = 44800 km), and normal or 

corrected-to-normal visual and auditory acuities.  

 

2.2. Tasks and materials 

The simulated driving environment was developed with Animator3D simulation 

in Micro Saint
®
 Sharp (www.maad.com). Simulation was performed on a PC computer 

with a 24‖ LCD monitor and a force-feedback steering wheel (fixed-base simulation). In 

order to confine the driving task to lane keeping only, driving speed was automatically 

controlled at constant, and no mirror or speedometer was displayed. The simulated road 

had two lanes in the same direction, and the driver’s car started in the center of the right 

lane. Each lane was occupied by a program-controlled car driving in front of the driver’s 

car at the same constant speed. The road had abundant left and right curves with different 

curvatures so that frequent steering corrections were necessary to maintain lane position. 

As shown in Figure 10, the road has the following sequence of segments: 100 m straight, 

three left curves of 80 m each (with radii of 458 m, 229 m, and 458 m respectively), 20 m 

straight, three right curves of 80 m each (with the same radii of the three left curves), and 

repeated correspondingly. The task was to steer the car and maintain as close to the center 

of the lane as possible. 

 

 

Figure 10. Section of the road map used in this experiment (from Cao & Liu, 2013a). 

 

The speech comprehension task and its sentence materials were developed 

following a previous study (J. R. Anderson, 1974). The task required participants to listen 

to a series of sentence pairs and judge whether the two sentences in a pair (called the 

input sentence and the probe sentence) had the same meaning by pressing buttons on the 

steering wheel. A previous study has shown that the motions of pressing buttons on the 

steering wheel did not affect the performance of lane keeping (Kubose et al., 2006). Each 

sentence contained a subject noun, a verb, and an object noun. Depending on the voice of 
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the two sentences, either active or passive, and the order of the nouns, there were eight 

types of combinations of input and probe sentences. Table 7 illustrates these 

combinations and the correct response for each combination. The materials were 

presented to the participants in Mandarin Chinese, and the English translations are as 

follows. The verbs included follow, block, pass, and hit. The nouns included bus, car, van, 

SUV, truck, bicycle, motorbike, ambulance, fire truck, touring coach, and minibus. These 

words and the sentences formed by them were carefully selected so that all sentences 

within the same voice category contained the same number of syllables and were relevant 

to driving. For example, ―the bicycle blocked the car.‖ Microsoft Speech Platform was 

used to synthesize speeches from texts. Each trial of the comprehension task took seven 

seconds. First, a low frequency tone was played, followed by an input sentence. Then a 

high frequency tone was played to signal the start of the corresponding probe sentence. A 

correct response must be made after the high tone and before the end of the trial, which 

created a response window of 3.5 s. There was no delay between consecutive trials. In the 

comprehension single-task condition, a white screen was shown with engine noise played 

through loud speakers in the same volume as in the corresponding dual-task conditions. 

 

Table 10. Types of combinations of input and probe sentences. A and B represent nouns 

(from Cao & Liu, 2013a). 

Input Probe Correct response 

The A verbed the B. The A verbed the B. Yes 

The A verbed the B. The B was verbed by the A. Yes 

The A verbed the B. The B verbed the A. No 

The A verbed the B. The A was verbed by the B. No 

The B was verbed by the A. The A verbed the B. Yes 

The B was verbed by the A. The B was verbed by the A. Yes 

The B was verbed by the A. The B verbed the A. No 

The B was verbed by the A. The A was verbed by the B. No 

 

2.3. Design and measures 

This experiment used a within-subject design. An independent variable was task 

condition with two levels: single-task and dual-task. The single-task condition could be 

either lane keeping or speech comprehension. Another independent variable was driving 

speed with two levels: 36 and 72 km/h. Table 11 shows the sequence of experimental 

conditions experienced by each participant. Each block (either single or dual-task) lasted 
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two minutes, and the 24 blocks were divided into four sessions, two with low speed and 

two with high speed. The order of speed levels was balanced across subjects. Each 

experimental condition (e.g., lane keeping single-task at the lower speed level) had four 

repetitions, whose results were averaged before analyzing the effects of independent 

variables. In the speech comprehension task, the correspondence between buttons (left or 

right) and responses (yes or no) was also balanced across subjects.  

 

Table 11. Sequence of experimental conditions experienced by each participant (from 

Cao & Liu, 2013a). 

Session Vehicle speed Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 

1 Level 1 LK SC LK+SC LK+SC SC LK 

2 Level 2 LK SC LK+SC LK+SC SC LK 

3 Level 2 LK SC LK+SC LK+SC SC LK 

4 Level 1 LK SC LK+SC LK+SC SC LK 
Level 1 and 2: 36 and 72 km/h, or 72 and 36 km/h (order balanced across subjects) 

LK: Lane keeping single-task 

SC: Speech comprehension single-task  

LK+SC: Dual-task condition 

 

Lane keeping performance was measured by both the standard deviation of lane 

position (SDLP), i.e., lateral deviation, and the standard deviation of steering wheel angle 

(SDSWA). SDLP and SDSWA values averaged from each experimental session were also 

analyzed to examine the carryover effect, e.g., learning and fatigue. Speech 

comprehension performance was measured by both reaction time and correct rate (i.e., 

accuracy). Mental workload was measured by NASA-Task Load Index (NASA-TLX; 

Hart & Staveland, 1988) for each experimental condition. 

 

2.4. Procedure 

Participants completed a consent form and demographic and general driving 

background questionnaires before the experiment. For the lane keeping task, participants 

were instructed to remain as close to the center of the lane as possible. For the speech 

comprehension task, they were instructed to give the correct answer as quickly as 

possible. For the dual-task conditions, they were instructed to first ensure safe driving 

and then complete the comprehension task as well as they can, assigning priority to the 

lane keeping task. Incentives were used to motivate high performance in both single and 
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dual-task conditions. Participants were informed that they could win an extra bonus 

(equivalent to about 25 U.S. dollars) in addition to their compensation (equivalent to 

about 20 U.S. dollars), if their performance was ranked among the top 20% of all 

participants. The overall ranking, which was used to determine the top 20%, was 

averaged from the ranking of individual task conditions. Lane keeping performance was 

ranked by smaller SDLP. Comprehension performance was ranked by the average of 

reaction time ranking and correct rate ranking. In the dual-task condition, performance 

was ranked first by lane keeping and second by comprehension, because priority was 

given to lane keeping. Each participant spent about six minutes in practicing all task 

conditions. During the practice, immediate feedback was given to each comprehension 

response, telling the participants whether their response was correct or incorrect. 

However, no feedback was provided during the formal experiment. Participants 

completed a NASA-TLX survey for each experimental condition and a debriefing 

questionnaire at the completion of all task procedures. Short breaks were given between 

sessions, and the whole experiment took about 80 minutes. 

 

2.5. Statistical analysis 

Repeated measures analysis of variance (ANOVA) was carried out using SPSS 

version 20.0. All the independent variables (i.e., task condition and driving speed) were 

within-subject factors, and there was no between-subject factor. Full factorial models 

were used to test all possible main effects and interactions. When Mauchly’s Test showed 

that the Sphericity assumption was violated, the Huynh-Feldt correction and the 

Greenhouse-Geisser correction were consulted (Field, 2009). Effect sizes were measured 

by eta-squared (η
2
), which is defined as the proportion of the variance associated with a 

factor among the total variance of all factors (i.e., main effects, interactions, and errors) 

in an ANOVA study (Field, 2009). 
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3. Results 

 

3.1. Lane keeping performance (SDLP) 

Across all conditions, the participants’ standard deviation of lane position (SDLP) 

had a mean value of 0.34 m with a standard deviation of 0.16 m. As shown in Figure 11, 

repeated measures ANOVA revealed a significant effect of vehicle speed on SDLP (F(1, 

23) = 16.181, p = 0.001, η
2
 = 0.224). Average SDLP at the high speed (0.36 m) was 

larger than the value at the low speed (0.30 m). The effects of task condition (F(1, 23) = 

3.303, p = 0.082, η
2
 = 0.046) and interaction (F(1, 23) = 0.730, p = 0.402, η

2
 = 0.003) 

were not significant. Note that the p value of the task condition factor was 0.082, which is 

close to the significance level of 0.05. One may speculate that removing any outlier from 

the data may make this effect significant. However, there is no firm reason to remove any 

data point, because all participants’ SDLP values were within the range of three times the 

standard deviation. Nevertheless, I re-analyzed the data with the largest SDLP data point 

(0.74 m) removed, and the results were still the same, with the p value of the task 

condition factor increased to 0.099.  

 

 
Figure 11. Effects of task condition and vehicle speed on lane keeping performance 

(standard deviation of lane position, SDLP). Error bars represent 95% confidence 

intervals (from Cao & Liu, 2013a). 
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3.2. Steering wheel control (SDSWA) 

Repeated measures ANOVA found no significant effect on SDSWA, including 

task condition (F(1, 23) = 1.942, p = 0.177, η
2
 = 0.021), vehicle speed (F(1, 23) = 2.426, 

p = 0.133, η
2
 = 0.041), or interaction (F(1, 23) = 0.079, p = 0.781, η

2
 = 0.001). Overall, 

SDSWA had a mean value of 5.20 degree and a standard deviation of 1.35 degree. 

 

3.3. Carryover effect on driving performance 

The analyses using repeated measures ANOVA found no significant carryover 

effect on any of the driving performance measures. SDLP values from the four 

experimental sessions were not significantly different (F(2.675, 61.527) = 0.088, p = 

0.955, η
2
 = 0.003; using the Huynh-Feldt correction  = 0.892, because Mauchly’s Test 

showed that the Sphericity assumption was violated, p = 0.030). SDSWA values from the 

four sessions were also not significantly different (F(2.082, 47.884) = 0.545, p = 0.590, 

η
2
 = 0.023; using the Huynh-Feldt correction  = 0.694, because Mauchly’s Test showed 

that the Sphericity assumption was violated, p = 0.001). 

 

3.4. Speech comprehension performance 

Repeated measures ANOVA found no significant effect of task condition, vehicle 

speed, or interaction on the reaction time performance (all p values >= 0.135, η
2
 <= 

0.043), as shown in Figure 12 (a). The overall average reaction time was 1.951 s. For 

correct rate, only the effect of task condition was significant (F(1, 23) = 8.168, p = 0.009, 

η
2
 = 0.098) , as shown in Figure 12 (b). Correct rate in the dual-task condition (91.3%) 

was reduced by 2.1% compared with the comprehension-only condition (93.4%). No 

other effect was significant (all p values >= 0.507, η
2
 < 0.001). 
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Figure 12. Effects of task condition and vehicle speed on speech comprehension 

performances of (a) reaction time and (b) correct rate. Error bars represent 95% 

confidence intervals (from Cao & Liu, 2013a). 

 

3.5. Mental workload 

Before the repeated measures ANOVA, Mauchly’s Test showed that the 

Sphericity assumption for the task condition factor was violated (p = 0.023). With the 

Huynh-Feldt correction (  = 0.820), the effect of task condition on mental workload 

(NASA-TLX overall rating) was found to be significant (F(1.641, 37.738) = 39.381, p < 

0.001, η
2
 = 0.574), as shown in Figure 13. The result from the more conservative 

Greenhouse-Geisser correction (  = 0.775) was also significant (p < 0.001). Pairwise 

comparisons showed that mental workload was significantly different between any two 

conditions of lane keeping only (29.9), comprehension only (50.3), and dual-task (60.6; 

all p values <= 0.001). No other effect was significant (driving speed, F(1, 23) = 2.307, p 

= 0.142, η
2
 = 0.003; interaction, F(2, 46) = 0.185, p = 0.832, η

2
 < 0.001). 
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Figure 13. Effects of task condition and vehicle speed on mental workload (NASA-TLX). 

Error bars represent 95% confidence intervals (from Cao & Liu, 2013a). 

 

4. Discussion 

 

4.1. Experimental control 

The current experiment examined drivers’ capability to concurrently perform a 

vehicle lane keeping task and a speech comprehension task. Improved experimental 

control was used to address four potential confounding factors including strategic 

tradeoff, lane keeping difficulty, effort in the cognitive task, and motivation.  

First, the potential strategic tradeoff between different components of the driving 

task was eliminated by confining driving to lane keeping only. The tradeoff strategy 

between lane keeping and speech comprehension was controlled by instructions telling 

the participants to give priority to lane keeping in the dual-task condition, which follows 

the common requirement of driving safety in real-world driving. It is difficult to 

guarantee that all participants have followed the instruction in the experiment as in the 

real-world where many car accidents were caused by drivers failing to focus on driving 
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but distracted by other tasks. But at least regarding the experimental design, all 

participants were explicitly instructed to use the same strategy of prioritizing on lane 

keeping in this experiment.  

Second, the lane keeping difficulty was guaranteed to be the same in both the 

single and dual-task conditions, because the same road and the same vehicle speed were 

used. Vehicle speed was controlled automatically at either 36 or 72 km/h. The results 

showed that SDLP was significantly larger when the speed was faster, which proves the 

necessity to control vehicle speed for equal lane keeping difficulty.  

Third, the effort to actively process the reading comprehension task was 

demonstrated by the high correct rate (91.3%) in the dual-task condition. The 

comprehension task was designed to require frequent and active processing. The 

participants’ reading comprehension was examined by a question every seven seconds. 

Mental workload results showed that the comprehension task produced a workload level 

much higher than the lane keeping single task. These evidences indicate that the 

participants were actively engaged in speech comprehension concurrently with lane 

keeping in the dual-task condition.  

Fourth, motivation was controlled by incentives to promote best performance in 

both single and dual-task conditions. Although it is difficult to measure motivation 

directly, the amount of effort spent on steering control is related to the standard deviation 

of steering wheel angle (SDSWA). When the standard deviation of lane position (SDLP) 

is the same, a larger SDSWA value often means more steering corrections. The results 

showed that both SDLP and SDSWA were not significantly different between the single 

and dual-task conditions. This fact indicates that the participants tried equally hard to 

control the steering wheel in both conditions.  

In addition, the results showed no significant carryover effect on any of the 

driving performance measures, which indicates that the effect of learning or fatigue is 

none or minimal and should not affect the interpretation of the effects of current tasks. 

 

4.2. Representing real-world driving 

The goal of this study is to examine drivers’ dual-task processing capability with 

a strictly controlled experiment. Since the experiment needs to ask participants to 
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perform difficult tasks under high workload conditions, it is dangerous and unethical to 

test them in real-world driving. Driving simulation also makes it possible to control 

experimental conditions (e.g., minimal traffic and constant driving speed) and to design a 

road that contains balanced left and right curves with different curvatures. The driving 

task in this study contains only the component of lane keeping, but it is not necessarily 

easy to perform. The results showed an average SDLP of 0.34 m and an average SDSWA 

of 5.20 degree, both of which are at the larger ends of the values found in the previous 

studies (Table 9). The lane keeping task used in this experiment represents a major 

component in real-world driving. Particularly, it represents driving while using cruise 

control or adaptive cruise control. With these technologies, driving on low-traffic 

highways and rural roads has often been reduced to a single task of lane keeping.  

Several studies have compared driving performance measured in simulators with 

real-world driving (Blaauw, 1982; Engström et al., 2005; Reed & Green, 1999). In 

general, they found that performance was poorer in simulated driving (e.g., larger SDLP).  

One explanation is the lack of driver motivation in simulation studies because of the lack 

of risk. In the current study, I used monetary incentives (about $25 awarded to the top 

20% participants) to enhance motivation in driving simulation. Since the overall ranking 

determining who could receive the award was averaged across the rankings in all task 

conditions, the participants had a reasonable motivation to perform well in both single 

and dual-task conditions. 

In this experiment, I designed a zigzag road to increase the sensitivity of 

identifying the effect of a concurrent task on lane keeping performance, because driving 

on such a road requires more steering corrections and continuous attention than driving 

on a straight road. The route, as shown in Figure 10, is more difficult to follow but not 

unrealistic. In comparison, previous driving simulation studies often used the external 

disturbance force method, for example, adding crosswind force that follows a 

combination of three sine waves. The zigzag road method should be more realistic. 

Participants may not have any experience with the continuous and unpredictable 

disturbance force, but they probably have experience with zigzag roads. The disturbance 

force cannot be seen and therefore is hard to predict. It may cause driver frustration when 

large disturbance is needed to create a difficult task. In contrast, a zigzag road can be seen 
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and predicted by drivers. Based on the above discussion, the experiment used in this 

study can represent real-world driving.  

 

4.3. Comparison with previous findings 

Before comparing the results from this study with previous studies, it is necessary 

to point out that although these studies were designed to examine similar research 

questions, they are often different in many details, including experimental scenarios (e.g., 

road, speed, and other vehicles) and equipment configurations (e.g., data sampling rate, 

vehicle dynamics, and motion feedback). These factors may be potential causes of 

difference in the results, so one must be aware of them and be cautious when interpreting 

the results. On the other hand, if some common trends can be found from different 

studies, the variation in these factors can strengthen the validity of the results. With these 

considerations in mind, I compared the results from this study with previous studies and 

found several interesting trends.  

First, as shown in Table 9, most of the studies found lane keeping performance 

not affected or improved by a concurrent cognitive task. The two studies that found 

degraded lane keeping performance both used unconventional driving devices – that is, 

joystick, mouse, or trackball devices rather than a steering wheel that was used in the 

other studies including the present study. While drivers are very familiar with a steering 

wheel and can use automatic processing, they may have to use controlled processing with 

the unconventional devices. Then the dual-process model (Kahneman, 2003; Shiffrin & 

Schneider, 1977) may provide an explanation to the degraded lane keeping performance. 

As it predicts, strong interferences exist between a controlled process (comprehension) 

and another control process (lane keeping with unconventional devices) but not between 

a controlled process and an automatic process (lane keeping with a steering wheel). In 

addition, the instruction used by Just et al. (2008) is also a potential explanation for the 

degraded performance. Since participants were required to attend to both tasks equally, 

some of their mental processing resources could be shifted to the comprehension task. 

Second, among the studies that found unaffected or improved lane keeping 

performance by a concurrent speech comprehension task, the magnitude of difference is 

relatively small compared with the effects of other factors such as vehicle speed, a 
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concurrent visual task, or alcohol consumption. For example, the improvement of SDLP 

by concurrent speech comprehension is small, in the magnitude of 0.02 m (Liang & Lee, 

2010), 0.01 m (Brookhuis et al., 1991), or not significant (the current study, and Kubose 

et al., 2006). In contrast, the degradation of SDLP caused by some established risk factors 

is much larger, in the magnitude of 0.06 m by faster speed (the current study), 0.08 m by 

a concurrent visual-manual task (Tsimhoni, Smith, & Green, 2004), and 0.06 m by 

alcohol (Lenné et al., 2010). There are two simulation studies that found larger 

improvement of SDLP by concurrent speech comprehension in the magnitude of 0.06 m 

(Becic et al., 2010) and around 0.04 m (Engström et al., 2005). However, these two 

results should be interpreted with caution, because the experiments used relatively easy 

and straight roads possibly without external disturbance force and did not introduce any 

control of motivation or potential strategic tradeoffs. The previously discussed issue of 

the lack of risk and driver motivation in simulation studies may explain these two larger 

values of SDLP improvement, especially considering that the same study conducted by 

Engström et al. (2005) did not find any significant effect in a real-world driving test. 

Besides SDLP, SDSWA was also not affected by concurrent speech comprehension in 

the current study as well as in the previous studies (Table 9). In summary, the converging 

evidence seems to show that a concurrent speech comprehension task has a very small or 

no effect on lane keeping performance.  

Third, most of the studies found that mental workload is increased by the 

concurrent cognitive task, as shown in Table 9. This effect was reproduced in the current 

study. The absolute values of overall NASA-TLX ratings are greater in the current study 

than previous studies. In the current study, the overall NASA-TLX ratings ranged from 

29.9 (lane keeping only) to 60.6 (dual-task condition), whereas the values in two previous 

studies were around 3.5 to 10.8 in a field study of driving and cell phone use (Matthews, 

Legg, & Charlton, 2003) and around 20 to 40 in a simulation study of driving and button 

pressing (Wu & Liu, 2007). The larger NASA-TLX ratings in the current study indicate 

that the design to make the tasks difficult is effective. Therefore, the absence of strong 

interference in this study is not likely to be caused by a low difficulty level or a lack of 

work demand.  
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4.4. Implications 

The results obtained from this study provide some insights into the mechanism of 

drivers’ concurrent task performance and the design of driver workload management 

systems. In recent years, as the prevalence of cruise control and adaptive cruise control 

technologies, driving on highways and rural roads has often been reduced to a single task 

of lane keeping. Since workload is reduced, a question is whether drivers could or should 

perform a concurrent task while driving. Drivers sometimes choose to perform a 

secondary task concurrently because of the desire to increase productivity (e.g., checking 

emails through a speech interface) or to counter drowsiness (e.g., listening to the car 

radio). The current study suggests that performing a secondary speech comprehension 

task for a limited period of time may not immediately affect the primary task 

performance (i.e., lane keeping), but it increases drivers’ mental workload and reduces 

drivers’ capability to comprehend speech. No significant effect of fatigue was found 

during the current experiment that lasted about 80 minutes; since fatigue is not the focus 

of the current study, I did not test the participants for a longer period of time. 

Nevertheless, the increased mental workload indicates the potential of increased risk 

when the dual-task is performed for a longer time period, because increased mental 

workload may aggravate the accumulation of fatigue and reduce driving performance. A 

proper workload management strategy should consider all the factors including the 

effects on the performances of the primary task (i.e., driving) and the secondary task (e.g., 

speech comprehension) as well as the effects on mental workload and fatigue.   

In addition, drivers should always be aware of the change of driving scenarios and 

give priority to driving. When the work demand of the driving task increases, for example, 

when the driving task requires not only lane keeping but also lane changing, route 

selection, and speed control, drivers should stop any secondary task, because many 

studies have shown that cognitive load degrades event reaction performance and may also 

affect speed control performance. The requirements of situation awareness and being able 

to stop the secondary task when necessary create a new task of workload management, 

which is the third one in addition to driving and the secondary task. The development of 

intelligent workload management systems and driver assistance systems may help reduce 

mental workload caused by multi-task scheduling (Wu & Liu, 2007). The use of 



85 

 

automation is more crucial for the tasks that cannot be performed concurrently by a 

human operator without significantly losing performance. In this regard, drivers may 

benefit more from collision avoidance warning and blind spot assistance systems that 

help detect hazard events than from lane departure assistance systems that help maintain 

lane position. 

The results from the present study accumulate empirical data for the examination 

of human concurrent processing capability, which has been one of the research focuses of 

cognitive psychology. Previous studies in this field of cognitive psychology research 

have focused on discrete tasks such as simple reaction tests (Wu & Liu, 2008a). In 

contrast, the present study examined a continuous task of lane keeping and found that its 

performance was not affected by a concurrent speech comprehension task. The results 

from the current study and previous studies together support a multi-dimensional view of 

human concurrent processing capabilities (e.g., Wickens, 2008). Future studies are 

needed to identify all major factors that affect the concurrency of multi-task processing.  

 

4.5. Future studies 

Future studies are needed to examine drivers’ workload management capability, 

for example, switching back from performing multiple tasks to focusing on driving. In 

addition, future studies with improved experimental control are also needed to examine 

the effect of cognitive tasks on longitudinal control (e.g., speed control and car following) 

and the potentially different effects between different types of cognitive tasks (e.g., 

numerical computation, speech comprehension and production). Conventional wisdom 

may believe that concurrent tasks would always degrade driving performance; however, 

the results from the current study, combined with previous study findings, showed that 

the whole story may depend on the kinds of concurrent tasks and the types of driving 

performance measures. Although the present study of speech comprehension effects on 

lane keeping performance did not find any significant effect of comprehension on lane 

keeping performance, future studies, for example, investigating the effects of speech 

production on hazard response performance, may find significant effects of concurrent 

tasks as suggested by previous studies. Another potential reason for the lack of 

interference in the current results may be the use of non-spatial coding of the speech 
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contents. Future research using spatial coding in speech tasks may find stronger 

interference with driving that also involves spatial coding. As described in the 

introduction section, previous studies have mixed results, indicating the need for more 

research and proper experimental control of potential confounding factors such as 

strategic tradeoff and task difficulty. Future studies can also examine the combined 

effects of fatigue and concurrent tasks using experiments with fatigue manipulation.  

 

5. Conclusions 

 

This study examined the concurrent performance of vehicle lane keeping and 

speech comprehension tasks with improved experimental control of the confounding 

factors identified in previous studies. The results suggest that performing a secondary 

speech comprehension task for a limited period of time may not immediately affect the 

primary task performance (i.e., lane keeping), but it increases drivers’ mental workload 

and reduces drivers’ capability to comprehend speech. The significantly increased mental 

workload during the concurrent task condition indicates the potential of increased risk 

when the dual-task is performed for a longer time period. These findings provide some 

new insights into the mechanism of drivers’ concurrent task performance and the design 

of driver workload management systems. 
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Chapter 6. QN-ACTR Modeling and Simulation of Lane Keeping and Speech 

Comprehension Dual-task Performance 

 

Chapter Summary 

 

This chapter introduces the QN-ACTR model built to simulate the human results 

collected from the lane keeping and speech comprehension dual-task reported in the 

previous chapter. I want to demonstrate that QN-ACTR is a generic method that can be 

applied to a wide range of human factors domains also including transportation human 

factors. Through the modeling of the driving dual-task, it has been confirmed that the QN 

disciplines previously examined in modeling the medical diagnostic decision 

multitasking performance are also necessary in modeling driving dual-task performance.  

 

1. Introduction 

 

The previous chapters have demonstrated the advantages of integrating QN and 

ACT-R in modeling cognitive multitasking performance in the human-computer 

interaction domain and the healthcare domain. Another domain to test and examine the 

modeling capability of QN-ACTR is ground transportation, where the potential 

interference and distraction from using in-vehicle devices have been a focus of human 

factors research with increasing importance, as the usage of such devices while driving 

become more and more prevalent. 

Several previous studies have tested computational simulation models of human 

driving performance. Salvucci (2006) proposed and examined a driver model in ACT-R, 

utilizing a two-level control model (Salvucci & Gray, 2004) that determines the change 
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of the steering angle (∆φ) based on the near point visual angle (θnear) and the far point 

visual angle (θfar) as in,   

 

tkkk nnearInearnearfarfar  ),min( max ,                 (2) 

 

where θnmax (set to 0.07) controlled the maximum of θnear. The near point is set as 

the middle point of the lane 10 m ahead, and the far point is one of (a) the vanishing point 

of a straight road, or (b) the inner tangent point of an upcoming curve, or (c) the lead 

vehicle when there is one. In a typical control cycle (∆t), three production rules fire 

consecutively in 150 ms, perceive visual information and issue a motor control action 

turning the steering wheel to maintain lateral position in the center of the lane.  

This driving model has been demonstrated to be able to model driving 

performance in lane keeping and lane change single-tasks (Salvucci, 2006) and also 

model dual-task performance of lane keeping and digit rehearsal (Salvucci & Beltowska, 

2008). Using similar methods, a recent study also modeled the effect of driving 

experience on lane keeping performance by assigning a closer visual attention focus point 

(i.e., far point) to the novice-driver model than the experienced-driver model (Cao, Qin, 

& Shen, 2013).  

Computational simulation models of human driving performance have also been 

proposed and examined in QN-MHP. Liu, Feyen, and Tsimhoni (2006) developed a QN-

MHP model of driving and map reading. The modeling algorithms simulating lane 

keeping/steering control performance were similar but different from Salvucci’s model in 

ACT-R (2006). Instead of using a continuous equation (Equation 2) to describe the 

relationship between visual perceptual input and manual steering action, the QN-MHP 

model used three discrete levels of steering actions including no action, normal action, 

and imminent action. 

 

―Steering actions are selected based on the orientation of the vehicle 

within a look-ahead time (a parameter currently defined as 1 s) as 

calculated in server F using the following logic: If the vehicle’s orientation 

within the look-ahead time is close to the center of the lane (±0.1 m), no 

action is taken. Otherwise, if it is within the lane boundaries, a normal 
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steering action is initiated, or if it is outside the lane boundaries, an 

imminent steering action is initiated.‖ (Liu et al., 2006, p. 56) 

 

In addition to modeling lane keeping and map reading, this QN-MHP model has 

also simulated lane keeping and button pressing dual-task scenarios and been 

demonstrated to be able to integrate with physical digital human models to simulate both 

cognitive and physical performance (Fuller, Reed, & Liu, 2012; Wu & Liu, 2007) 

Previous studies have modeled driving single-task and simple dual-task scenarios; 

however, there is still a lack of computational simulation models that can model dual-task 

performance involving more complex cognitive tasks such as speech comprehension. 

Since drivers in the real-world not only perform perceptual-motor tasks such as map icon 

reading and button pressing but also complex cognitive tasks such as speech 

comprehension and decision making, it is important to model and simulate driver 

performance in such complex dual-tasks for the analysis and evaluation of driving safety 

issues regarding the use of in-vehicle devices. To fill this research gap in the field of 

HPM, I built a computational model in QN-ACTR to simulate human performance and 

mental workload in the dual-task of lane keeping and speech comprehension. The human 

experiment and results to be simulated have been introduced in the previous chapter. 

Since the simulated driving environment was developed using Animator3D simulation in 

Micro Saint
®
 Sharp that is also the implementation platform of QN-ACTR, QN-ACTR 

models can be seamlessly connected with the simulated driving environment to test and 

examine simulated performance and mental workload. This integration of human 

experiments with model simulation on the same platform allows the model and the 

human to perform and be compared in the same tasks with identical interfaces, with no 

need to replicate the real world experiment system in the modeling platform for the 

model to interact with. It provides the benefit of avoiding any potential discrepancy 

between human and model tests due to the experiment setup. 

Modeling complex multi-task scenarios in the transportation domain is a further 

demonstration that QN-ACTR is a generic computational simulation theory and method 

that can be applied to a wide range of human factors domains. The unique features of 

QN-ACTR were tested and examined in this lane keeping and speech comprehension 
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dual-task that contains important and practical human factors issues for driving 

performance and safety.  

 

2. Method 

 

The human experiment – lane keeping and speech comprehension dual-task – was 

described in the previous chapter. The experiment results showed that the standard 

deviation of lane position (SDLP) was increased when the driving speed was faster (0.30 

m at 36 km/h; 0.36 m at 72 km/h). The concurrent comprehension task had no significant 

effect on SDLP (0.34 m on average) or the standard deviation of steering wheel angle 

(SDSWA; 5.20 degree on average). The correct rate of the comprehension task was 

reduced in the dual-task condition (from 93.4% to 91.3%) compared with the 

comprehension single-task condition. The reaction time of the comprehension task was 

not significantly different between the single- and dual-task conditions (1.95 s on 

average). Mental workload was significantly higher in the dual-task condition compared 

with the single-task conditions. 

This section focuses on the introduction of the QN-ACTR modeling method. 

Since the model can directly interact with the experiment platform used in the human 

study, the task setup was identical as the human experiment, just substituting human 

steering wheel and button press control signals with the model’s simulated control signals. 

The task-specific knowledge and parameters are introduced below in details. Following 

the same principle of using generic production rules for dual-task modeling used in 

previous QN-ACTR dual-task models, the production rules were defined for each task 

individually without using any executive control rule in this modeling work. It means that 

the knowledge of dual-task model is simply the combination of the knowledge of the two 

single-task models. 

The modeling of the lane keeping task closely followed previous ACT-R models 

of driving performance (Salvucci, 2006). In particular, three production rules fires 

consecutively to complete a control cycle including (1) look for the visual-location of a 

near-point; (2) update near-point information in the goal buffer, and look for the visual-

location of a far-point; and (3) update far-point information in the goal buffer, and send a 
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manual command to steer the wheel based on Equation 2. Since the human driving task 

focused on lane keeping only without other driving components such as mirror checking 

or lane changing, as described in the previous chapter, the model of lane keeping 

performance did not include any other production rules. English descriptions of the rules 

are summarized in Table 12. 

The modeling of the speech comprehension task closely followed previous ACT-

R models of reading comprehension (J. R. Anderson et al., 2001), which was also one of 

the bases of the typing and reading comprehension model introduced in previous chapters. 

In essence, the model’s comprehension process of the input and probe sentences used in 

the task can be summarized as follows. When the input sentence is played through the 

loud speaker, the model attends to each audio event and encodes the meaning of each 

word. The meanings of the words are stored in a sentence representation formed in the 

imaginal buffer. Each sentence representation has the following slots or attributes 

including subject, aux, verb, and object. The aux slot represents the auxiliary verb, for 

example ―was,‖ in a passive sentence. A sentence with an active voice will have no 

auxiliary verb so an empty aux slot. After the input sentence is fully encoded, the model 

stores the sentence representation in its declarative memory. When a high pitch tone is 

played to signal the start of the probe sentence, the model retrieves the sentence 

representation from its declarative memory, which can be erroneous. Then the model 

examines whether the subject from the probe sentence matches the subject from the input 

sentence, and also whether the auxiliaries from the two sentences match. Since the two 

nouns are always the same in both the input and probe sentences, responses can be made 

without checking whether the second nouns match or not. For example, if the input 

sentence is ―the car hit the bicycle‖ and the probe sentence is ―the bicycle was hit by the 

car,‖ the facts that (1) the subjects do not match (car vs. bicycle) and (2) the auxiliaries 

do not match either (hit vs. was hit) imply that the two sentences must have the same 

meaning, without the need to further check the objects (bicycle vs. car). This strategy was 

used to built the cognitive models and successfully modeled human results in the 

previous study (J. R. Anderson et al., 2001) and also reflected in the comments from the 

subjects’ debrief survey in the human experiment reported in the previous chapter. 

Finally, the model retrieves the key association from the declarative memory for yes or 
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no and presses the key as a response. English descriptions of the rules are summarized in 

Table 12. In dual-task scenarios, a model simply used the production rules combined 

from the two sets of rules for the two single-tasks.  

The model parameters are summarized in Table 13. All other model parameters 

were in their default values. For the parameters used in this modeling work, all the values 

followed the values used in previous studies, except for one parameter estimated to fit the 

human lane keeping performance data and two parameters estimated to fit the human data 

of speed-accuracy tradeoff in the speech comprehension task (i.e., single-task vs. dual-

task condition speed-accuracy tradeoff). I assumed that the human results of unaffected 

reaction time and reduced correct rate were caused by a speed-accuracy tradeoff in the 

dual-task. Human factors studies have identified speed-accuracy tradeoff effects as a 

common characteristic of human performance that people may sacrifice response 

accuracy for faster speed of reaction, or vice versa (Fitts, 1954; Fitts & Peterson, 1964; 

David E. Meyer, Abrams, Kornblum, Wright, & Keith Smith, 1988; Woodworth, 1899). 

Under high workload or time stress, people often sacrifice response accuracy for faster 

speed of reaction to meet task time requirement. I assumed that the lane keeping task 

component in the dual-task scenario would have increased comprehension response time, 

but the response time was compensated by a speed-accuracy tradeoff that reduced the 

processing time of speech comprehension at the cost of the reduced correct rate. 

This speed-accuracy tradeoff effect was modeled by adjusting a set of architecture 

parameters in QN-ACTR. Such method of modeling behavior moderators has been used 

in previous ACT-R literature and was called the overlay method. ―An overlay is a 

technique for including a theory of how a behavioural moderator, such as stress, 

influences cognition across all models within a cognitive architecture‖ (Ritter & Reifers, 

2007). At the implementation level, the overlay technique adjusts architecture parameters 

to model the effects of behavioural moderators and does not modify any task-specific 

knowledge. The speed-accuracy tradeoff effect is modelled in QN-ACTR using the 

overlay method, as shown in Table 13 for the dual-task (speed-accuracy tradeoff). In 

addition, mental workload was modeled by overall server utilization, which has been 

shown to have a linear relationship to NASA-TLX (Cao & Liu, 2011b). 
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Table 12. Procedures and production rules for lane keeping and speech comprehension 

tasks. The definition of these production rules follows the principles used in previous 

cognitive models (e.g., see models from http://act-r.psy.cmu.edu/). 

 
# Task procedure Production rules 

 Lane keeping 

1 At the start of a steering control cycle, look for visual-location of near-point. drive-control-attend-near 

2 If a near-point is focused in visual-location buffer, update near-point information in the goal 
buffer, and look for visual-location of far-point. 

drive-control-process-near-
attend-far 

3 If a far-point is focused in visual-location buffer, update far-point information in the goal 

buffer, and send a manual command to steer the wheel. 

drive-control-process-far 

 Speech comprehension 

1 If there is an audio-event in aural-location buffer, encode the event in the aural buffer. detected-sound 

2 If a low frequency tone is encoded in aural buffer, create a sentence representation in the 

imaginal buffer, enter the input phase. 

heard-low-beep* 

3 If a word is encoded in aural buffer, retrieve the meaning of the word. heard-word-sound-retrieve-

meaning* 

4 If retrieval is done, attend to the next audio-event. find-next-sound 

5 If it is the input phase, a noun is retrieved, and the subject slot of sentence representation in 
the imaginal buffer is empty, store the noun’s meaning in the subject slot, and attend to the 

next audio-event. 

find-next-sound-phase-
input-subject 

6 If it is the input phase, an auxiliary verb is retrieved, and the aux slot of sentence 
representation in the imaginal buffer is empty, store the auxiliary verb’s meaning in the aux 

slot, and attend to the next audio-event. 

find-next-sound-phase-
input-aux 

7 If it is the input phase, a verb is retrieved, and the verb slot of sentence representation in the 
imaginal buffer is empty, store the verb’s meaning in the verb slot, and attend to the next 

audio-event. 

find-next-sound-phase-
input-verb 

8 If it is the input phase, a noun is retrieved, and the subject slot of sentence representation in 

the imaginal buffer is not empty, but the object slot is empty, then store the noun’s meaning 
in the object slot, and attend to the next audio-event. 

find-next-sound-phase-

input-object 

9 If a high frequency tone is encoded in aural buffer, retrieve a sentence representation. heard-high-beep* 

10 If a sentence representation is retrieved, create a copy of the representation in the imaginal 

buffer, enter the probe phase. 

start-recognition* 

11 If it is the probe phase, subject has not been tested, a noun is retrieved, the noun’s meaning is 

the same as the subject’s meaning of the representation in the imaginal buffer, then check the 

goal’s subject-match as yes, and attend to the next audio-event. 

find-next-sound-phase-

probe-subject-match-yes* 

12 If it is the probe phase, subject has not been tested, a noun is retrieved, the noun’s meaning is 
not the same as the subject’s meaning of the representation in the imaginal buffer, then check 

the goal’s subject-match as no, and attend to the next audio-event. 

find-next-sound-phase-
probe-subject-match-no* 

13 If it is the probe phase, auxiliary has not been tested, an auxiliary verb is retrieved, the 
auxiliary verb’s meaning is the same as the auxiliary verb’s meaning of the representation in 

the imaginal buffer, then check the goal’s aux-match as yes, and attend to the next audio-

event. 

find-next-sound-phase-
probe-aux-match-yes-type-

1* 

14 If it is the probe phase, auxiliary has not been tested, an auxiliary verb is retrieved, the 
auxiliary verb’s meaning is not the same as the auxiliary verb’s meaning of the 

representation in the imaginal buffer, then check the goal’s aux-match as no, and attend to 
the next audio-event. 

find-next-sound-phase-
probe-aux-match-no-1* 

15 If it is the probe phase, auxiliary has not been tested, a verb is retrieved (which means that 

there is no auxiliary verb in the probe sentence), and the sentence representation in the 

imaginal buffer does not have an auxiliary verb, then check the goal’s aux-match as yes, and 
attend to the next audio-event. 

find-next-sound-phase-

probe-aux-match-yes-type-

2* 

16 If it is the probe phase, auxiliary has not been tested, a verb is retrieved (which means that 

there is no auxiliary verb in the probe sentence), and the sentence representation in the 
imaginal buffer has an auxiliary verb, then check the goal’s aux-match as no, and attend to 

the next audio-event. 

find-next-sound-phase-

probe-aux-match-no-1* 

17 If the goal’s subject-match value is the same as aux-match, retrieve the key for yes. response-yes 

18 If the goal’s subject-match value is not the same as aux-match, retrieve the key for no. response-no 

19 If the key is retrieved, press the key. press-key 

*: marks the production rules require follow-up. 
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Table 13. Descriptions, values, and sources of parameters used in the lane keeping and 

speech comprehension model. 

 

Parameter Description Value and source 

 Lane keeping  

kfar Parameter in the steering control equation (Equation 2) 20 (Salvucci & Gray, 2004) 

knear Parameter in the steering control equation (Equation 2) 9 (Salvucci & Gray, 2004) 

kI Parameter in the steering control equation (Equation 2) 1.5, estimated to fit the human data 

 Speech comprehension (single-task)  

:lf Retrieval time latency factor. Affect retrieval time. 0.3 (J. R. Anderson et al., 2001) 

:bll 
Chunk base-level learning decay. Affect the rate of 

declarative activation decay. 
0.5 (J. R. Anderson et al., 2001) 

:rt 
Chunk retrieval threshold. The minimum activation a 

chunk must have to be able to be retrieved. 
-1.5 (J. R. Anderson et al., 2001) 

:ans 
Chunk activation noise. Affect the noise of chunk 

activation. 
0.05 (Jones & Ritter, 1998) 

sdp :references   
Set the reference history of chunks. Affect chunk 

activation. 
1000 (J. R. Anderson et al., 2001) 

sdp  

:creation-time  

Set the initial creation time (s) of chunks. Affect chunk 

activation. 
-10000 (J. R. Anderson et al., 2001) 

spp start-

recognition :at  
Set the production execution time duration (s) of the rule. 0.2 (J. R. Anderson et al., 2001) 

spp find-next-

sound-phase-

probe-subject-

match-

yes/no :at 

Set the production execution time duration (s) of the rule. 0.1 (J. R. Anderson et al., 2001) 

spp find-next-

sound-phase-

probe-aux-

match-yes-

1/2 :at 

Set the production execution time duration (s) of the rule. 0.1 (J. R. Anderson et al., 2001) 

spp find-next-

sound-phase-

probe-aux-

match-no-1:at 

Set the production execution time duration (s) of the rule. 0.2 (J. R. Anderson et al., 2001) 

spp find-next-

sound-phase-

probe-aux-

match-no-2:at 

Set the production execution time duration (s) of the rule. 0.15 (J. R. Anderson et al., 2001) 

 Dual-task (speed-accuracy tradeoff)  

:lf Retrieval time latency factor. Affect retrieval time. 0.01, estimated to fit the human data 

:ans 
Chunk activation noise. Affect the noise of chunk 

activation. 
0.20, estimated to fit the human data 

 

The model formed by simply combining the two sets of single-task knowledge 

and parameters with the mechanisms described so far could simulate single-task 

performance; however, it could not model the dual-task performance properly. The major 
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reason is that the two task components significantly interfere with each other in the 

production module so that both tasks are frequently interrupted. This observation showed 

that the basic queueing mechanism used in previous studies, i.e., first-in-first-out 

queueing, is not sufficient to model complex cognitive multitasking performance. As a 

result, I used two more sophisticated cognitive mechanisms in the model of this lane 

keeping and speech comprehension dual-task. The first mechanism is the visual-motor 

pathway used in previous QN-MHP studies, and the second mechanism is the filtering 

discipline used in the previous chapters of QN-ACTR work to model the diagnostic 

decision and current task scenarios.  

In the framework of QN-MHP, there is an information pathway/link between 

Server A (visuospatial sketchpad) and Server V (Sensorimotor integration) (Liu et al., 

2006; Wu & Liu, 2008a). The assumption is that some part of routine performance, such 

as skilled typing or driving, may be performed through this pathway without the need of 

central executive processing. Adopting the same assumption in QN-ACTR, I assume that 

the rule drive-control-process-far (#3) in the lane keeping model could be performed 

without using the production module resource. Instead, information will pass directly 

from the visual module to the motor module to issue the motor command of steering 

control.  

The other mechanism that is important to the simulation of this dual-task 

performance is the filtering discipline. Recall this mechanism that has been described in 

previous chapters. First, it categorizes production rules into two groups—the ones that 

need follow-up processing and the ones do not. After a rule requiring follow-up is 

processed, the production module will start to exclusively accepting only the rules that 

follow up the same task (i.e., to work as a filter). If there is no such rule matched and 

available, the module will be enforced to idle and ignore other rules. Such exclusive 

processing continues until a rule that does not require follow-up is processed. A rule may 

be categorized as requiring follow-up, if at least one of the following three conditions is 

met. First, the rule’s action part has a declarative retrieval request. Second, the rule’s 

action part has an imaginal request, i.e., to create a chunk (problem state) in the imaginal 

buffer. Third, the rule processes aural information from a continuous stream of important 

audio stimuli, such as a question sentence. After applying this filtering discipline, several 
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rules were categorized as requiring follow-up, as marked in Table 12. Models without the 

two extra QN mechanisms were also tested as a comparison. 

 

3. Results 

 

The simulation in QN-ACTR was repeated 15 times, reaching a 95% confidence 

interval within a ±5% range for each measurement. Across all conditions, the model’s 

standard deviation of lane position (SDLP) had a mean value of 0.34 m same as the 

human value (0.34 m). As shown in Figure 14, the model’s average SDLP at the high 

speed (0.37 m) was larger than the value at the low speed (0.30 m). The model results 

were very similar to the human results, producing SDLP results that showed only 

difference between the low and high speed conditions but not between the single- and 

dual-task conditions. The mean absolute percentage error (MAPE) was 3.8%, and the root 

mean square error (RMSE) was 0.02 m. 

 

 
 

Figure 14. Model simulation results of lane keeping performance (standard deviation of 

lane position, SDLP) in comparison to the human results. Error bars represent 95% 

confidence intervals of the human results.  
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The model results of standard deviation of steering wheel angle (SDSWA) showed 

no difference between all task conditions (low speed driving only, 3.9 degree; low speed 

dual, 3.9 degree; high speed driving only, 3.8 degree; high speed dual, 3.9 degree), which 

was the same as the no significant effect of the human results, although the overall 

average SDSWA of the model (3.9 degree) was smaller than the human value (5.2 degree). 

MAPE was 25.0%, and RMSE was 1.3 degree. 

The model simulation results of speech comprehension performance also have 

values very similar to the human results. The overall speech comprehension reaction time 

was 1.916 s for the model, similar to the human results of 1.951 s, as shown in Figure 15. 

MAPE was 1.8%, and RMSE was 0.04 s. The speech comprehension correct rate in the 

dual-task condition (89.0%) was reduced by 5.4% compared with the comprehension-

only condition (94.4%) for the model, which was also similar to the reduced correct rate 

in the human results, as shown in Figure 16. MAPE was 2.0%, and RMSE was 2%. 

 

 

Figure 15. Model simulation results of speech comprehension reaction time in 

comparison to the human results. Error bars represent 95% confidence intervals of the 

human results.  
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Figure 16. Model simulation results of speech comprehension correct rate in comparison 

to the human results. Error bars represent 95% confidence intervals of the human results.  

 

The model simulation results of mental workload were 32.0 for the lane keeping 

only, 46.3 for the comprehension only, and 62.4 for the dual-task conditions, which were 

very similar to the human results, as shown in Figure 17. The linear relationship between 

overall utilization and overall workload is  

 

Overall Workload = Overall Utilization * 228.6 + 6.7   (3). 

 

The linear relationship was significant (β = 0.972, t(4) = 8.329, p = 0.001) and 

also explained a significant proportion of variance in NASA-TLX overall workload 

scores (R
2
 = 0.945, F(1, 4) = 69.371, p = 0.001). 
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Figure 17. Model simulation results of mental workload in comparison to the human 

results. Error bars represent 95% confidence intervals of the human results. 

 

In addition, I also examined model performance without using the visual-motor 

pathway or the filtering discipline. When only the visual-motor pathway mechanism was 

removed, the comprehension reaction time at the low speed condition became much 

longer (2.146 s), showing strong interference caused by the lane keeping task component 

that did not occur in the human results. At the high speed condition, the model without 

the visual-motor pathway drove out of the road and failed to complete the task, again 

showing strong interference that did not occur in the human results. On the other hand, 

when only the filtering discipline was removed, the comprehension reaction times were 

also much longer than the human results. The values were increased to 2.436 s in the low 

speed condition and 2.369 s in the high speed condition, showing strong interference that 

did not occur in the human results. These results demonstrated that both the visual-motor 

pathway and the filtering discipline from the QN perspective were necessary to model 

this dual-task performance of lane keeping and speech comprehension.  
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4. Discussion 

 

In this chapter, I further demonstrated the benefits of integrating QN and ACT-R 

in the simulation of a dual-task scenario involving lane keeping and speech 

comprehension. The QN-ACTR computational model successfully produced similar 

results as the human participants in both performance and mental workload results. The 

modeling results also showed that both the visual-motor pathway mechanism, previously 

used in QN-MHP, and the filtering discipline, proposed and examined in previous QN-

ACTR research (Chapter 4) , were both necessary to model the dual-task performance of 

lane keeping and speech comprehension. 

Together with previous QN-ACTR models built for the simulation of skilled 

transcription typing and reading comprehension concurrent tasks (human-computer 

interaction) and medical diagnostic decision making concurrent tasks, this modeling work 

of driving with a secondary speech comprehension task (transportation) further 

demonstrated that QN-ACTR is a generic method and can be applied to a wide range of 

human factors domains containing important and practical human performance and 

mental workload issues. In addition, it is important to note that the filtering discipline was 

demonstrated again to be necessary in the simulation of complex cognitive multitasking 

performance and mental workload.  

A limitation of the current model of lane keeping is that the overall average 

SDSWA results produced by the model were smaller than the human value. This 

difference may be caused by the fact that the model did not use any parameter to account 

for random movement errors in manual movements, which is also the case in previous 

QN and ACT-R driving simulation studies. To address this limitation, future research can 

add parameters to the motor module mechanisms to account for the errors of steering 

wheel control movement.  
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Chapter 7. Usability Development of Queueing Network-ACTR for Cognitive 

Engineering Applications 

  

Chapter Summary 

 

The increasing complexity of computational cognitive architectures may increase 

the difficulty for industrial and human factors engineers to learn and use them as 

cognitive engineering tools. This chapter reports the work to enhance the usability and 

the cognitive engineering applicability of QN-ACTR. The aim is to provide an easy-to-

use interface and intuitive modeling that support both inexperienced and experienced 

users in using this complex and powerful architecture. The process of model development 

is greatly simplified with improved visualization and validation methods. The results 

were examined using heuristic evaluation. The benefits and practice implications are 

discussed. 

 

1. Introduction 

 

Cognitive models can be used to support cognitive engineering. Compared with 

other forms of cognitive models such as verbal frameworks and pure mathematical 

models, cognitive architectures are particularly useful for complex cognitive engineering 

applications, because they unify a wide range of cognitive theories (Newell, 1990) and 

can computationally simulate human-machine interactions (Byrne & Pew, 2009; Schunn 

& Gray, 2002).  

In the recent years, cognitive architectures are becoming increasingly integrated 

and complex in terms of having more components and interactions between components, 
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requiring the use of knowledge description languages, and involving a large number of 

parameters. This complexity may increase both modeling capabilities and the difficulty to 

learn and use them as cognitive engineering tools. For example, building useful models in 

ACT-R requires a considerable amount of training and practice. The basic theory and 

syntaxes of ACT-R can be learned by reading a seven-unit tutorial and practicing with 

examples, which are often covered in a seven-day short course. The model description of 

displays and controls is written in the Lisp language, and therefore a modeler must also 

gain reasonable Lisp programming skills. Adjusting model parameters could also be very 

difficult, because the effect of changing a parameter may be buried deep in the text-based 

output traces. Currently, most users of cognitive architectures are expert researchers of 

cognitive modeling. The usage among cognitive engineers in the industry is very limited. 

 Emphasizing the need for the usability development of cognitive architectures for 

cognitive engineering, Pew (2008) pointed out three challenges for researchers in this 

field, including the needs for (1) simplified model development, (2) better capabilities for 

articulating and visualizing how the models work, and (3) model validation.  

Recently, several efforts have been made to address these challenges. G2A 

(Amant, Freed, & Ritter, 2005) and ACT-Simple (Salvucci & Lee, 2003) were developed 

to automatically translate GOMS (Goals, Operators, Methods, and Selection rules) style 

operators into ACT-R production rules. Incorporating ACT-Simple, CogTool (John, 

Prevas, Salvucci, & Koedinger, 2004) simplified the construction of human-computer 

interaction tasks, allowing the modeling of web browsing tasks by user demonstration 

with the mouse and the keyboard. Integrating ACT-Simple and an ACT-R driving model 

(Salvucci, 2006), Distract-R (Salvucci, 2009) simplified the construction of models for 

human interaction with in-vehicle devices in driving scenarios. Using Visual Basic 

Application in Excel, a click-and-select user interface has been developed in Queueing 

Network-Model Human Processor (QN-MHP, Wu & Liu, 2008a). It allows users to build 

QN-MHP models without learning any simulation language. Usability tests showed that 

this click-and-select interface can save time and reduce errors in model development (Wu 

& Liu, 2009). In addition, easy-to-use user interfaces have also been developed in E-

GOMS (Gil, 2010) and SANLab-CM (Patton & Gray, 2010).  
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The previous efforts have simplified model development, reducing or eliminating 

the need for learning a modeling language. However, each of them still has limitation in 

one or more of the following aspects.  

 

 The simplification of modeling work comes at the cost of limiting the task 

displays and controls that can be model to a limited set of tasks.  

 The flexibility to construct customized models with customized parameters is 

limited, for example, not being able to define the road curvature of each road 

segment as in a human driving experiment.  

 Human information processing that can be modeled is limited to procedural and 

perceptual-motor processes, lacking the capabilities to model complex cognitive 

tasks such as learning, decision making, and sentence comprehension. 

 The visualization of how the model works can be improved to include both the 

visualization of mental information processing and task interaction. 

 Model simulation and its validation with human experiments use different 

platforms. The potential discrepancies between human and model tests (display 

and control mechanisms) may confound the validation results. 

 

Considering these aspects where improvements can be made, the work reported in 

this chapter develops the usability of QN-ACTR and addresses Pew’s three challenges 

(2008), including (1) the two methods of building a model to simplify model 

development, (2) the visualization of modeling results to articulate how the model works, 

and (3) an integrated human experiment interface for model validation. These features are 

evaluated using Nielsen’s ten heuristics for user interface design (1994), which is one of 

the best-known methods of usability assessment (Hollingsed & Novick, 2007). The 

benefits and practice implications are discussed. 

 

2. Method 

 

Further developed on the basis of a previous version (Cao & Liu, 2011a), QN-

ACTR is implemented in Micro Saint
®
 Sharp, a C#-based discrete event simulation 
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software package, which is also the platform for IMPRINT (Allender et al., 1997). Micro 

Saint
®
 Sharp provides built-in features that support the usability development of QN-

ACTR such as easy-to-use model setup and visualization. 

 

2.1 Simplified model development 

Two methods for model setup have been developed in QN-ACTR: a basic method 

using text-based syntaxes and a click-and-select interface. 

The basic syntax method supports fast and direct model editing (i.e., copy and 

paste), which is designed for advanced users. Among the three parts of a QN-ACTR 

model (i.e., the task, the knowledge, and the parameters), syntaxes for the knowledge and 

the parameters are the same as in ACT-R. ACT-R syntaxes for the task are essentially 

Lisp codes, which supports the modeling of a wide range of tasks but requires users to 

learn the Lisp programming language. To simplify task building while keeping the 

capability to model a wide range of tasks, I have developed QN-ACTR task syntaxes that 

include different templates to model typical tasks. A task template is a general description 

for a type of experiments. A modeler can build a task by setting the template’s parameters 

according to the experiment setup. For example, the Day-Block-Trial template can be 

used to define discrete-event experiments. This template has been used to replicate 17 

models from the ACT-R 6.0 (v1.3) tutorial and three dual-task models from threaded 

cognition, as introduced in chapter 2. The World3D template can be used to define 

dynamic tasks such as driving. When combined, the two templates can define a dual-task 

of driving and another mental task such as arithmetic computation. These modeling 

syntaxes cover both static tasks, where display stimuli are not affected by previous 

responses, and dynamic tasks, where display stimuli are affected by previous responses. 

Although the syntax method has its advantages, it may take a long time for novice 

users to learn. To support novice users, I have developed a click-and-select interface 

named Model Setup Assistant (MSA) that can help user generate model syntaxes. MSA is 

programmed in C# and added to Micro Saint
®
 Sharp as a plug-in module. Providing both 

the syntax and the click-and-select interfaces can meet the needs of both novice and 

advanced users. This dual-mode method has been implemented in scientific software 

such as SPSS
®
.  
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Similar to the user interface in QN-MHP (Wu & Liu, 2009), MSA in QN-ACTR 

allows users to define a model by writing texts in tables and selecting options from 

menus. Users start from selecting the single or dual task scenario or loading 

demonstrations (Figure 18). Previous research models are included as demos (samples), 

such as ACT-R Tutorial models, driving models, and a transcription typing and reading 

dual-task model. New models can be made by modifying existing demos. 

When a single task is selected with a template such as the Day-Block-Trial 

template for discrete-event experiments or the World3D template for driving, a task setup 

window will appear, asking users for the information needed in the experiment setup. 

When a dual-task is selected, two windows will appear each defining a task. For example, 

the Day-Block-Trial template in MSA asks for configuration settings such as whether a 

display stage in a trial will be terminated when all responses are detected (Figure 19) and 

setup details such as the number of trials in a block and the type of a display item (e.g., 

text, line, button, and tone) (Figure 20). The World3D template defining a driving task 

asks for road and car details such as lane width, road type, road length, and other cars’ 

speed (Figure 21). 

 

 

 

Figure 18. Screenshot of selecting a task using Model Setup Assistant (from Cao & Liu, 

2012b). 
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Figure 19. Screenshot of selecting task configuration options using Model Setup 

Assistant (from Cao & Liu, 2012b). 

 

 

 

 

Figure 20. Screenshot of defining a discrete task using Model Setup Assistant (from Cao 

& Liu, 2012b). 
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Figure 21. Screenshot of defining a driving task using Model Setup Assistant (from Cao 

& Liu, 2012b). 

 

After defining the task, MSA can also assist users to define the knowledge and the 

parameter parts of a model. Since these syntaxes in QN-ACTR are the same as in ACT-R, 

if existing ACT-R codes are available, users can simply copy the ACT-R codes and paste 

into a QN-ACTR model. If no existing code available, users can define the knowledge, 

including chunks (Figure 22a) and production rules (Figure 22b), and set parameters 

(Figure 22c) with the assistance of MSA, by filling in tables and selecting from lists 

without the need to learn the knowledge description language used in ACT-R.  

The model generated by MSA is also written in syntaxes. The resulted syntaxes 

can be saved, edited, or directly used to run the model. Simple modification of a model 

such as changing a few parameters can be easily achieved by directly editing the syntax 

file.  
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2.2 Visualization of 3D dynamic tasks 

Previous work has developed the visualization of mental information processing, 

discrete experiment displays and controls, and the multi-dimensional mental workload 

(Cao & Liu, 2011a, 2011b). A new feature added to the visualization capabilities of QN-

ACTR in this study is visualizing 3D dynamic tasks.  

 

(a) 

 

 
(b) 

 

 
(c) 

 

Figure 22. Screenshot of defining the knowledge and the parameter parts of a model 

using Model Setup Assistant, including (a) chunks, (b) production rules, and (c) 

parameters (from Cao & Liu, 2012b). 
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Using Animator3D in Micro Saint
®
 Sharp, 3D dynamic tasks such as driving in 

single or dual task scenarios can be visualized in real time while the model is performing 

the task, which allows intuitive observation of model performance. The system refresh 

rate can be set by the user (10 ms by default). System dynamics such as speed, steering 

angle, and lateral deviation are visualized and recorded. Figure 23 illustrates that the 

model is driving a car while performing an arithmetic addition task. The model is 

following the car in the right lane and is visually focusing on the car. At the same time, 

the model is speaking ―three‖ in response to the question of ―1 + 2,‖ which is displayed 

through the auditory channel and visualized on the right hand side of the figure. 

 

 

Figure 23. Visualization of a driving and arithmetic addition dual-task in QN- ACTR 

(from Cao & Liu, 2012b). 

 

2.3 Integrated human experiment interface  

The same task interface with which the model interacts can also serve as the 

interface for human participants to complete the same tasks. I have developed a human 

driving interface in QN-ACTR that supports simulated driving experiments with steering 

wheels and pedals. This feature allows the model and the human to perform and be 

compared in the same tasks with identical interfaces, with no need to replicate the real 

world experiment system in the modeling platform for the model to interact with (e.g., 
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Salvucci, 2006). Using the same experiment platform avoids any discrepancy between 

human and model tests due to the experiment setup. 

 

3. Findings 

 

The usability development of QN-ACTR is evaluated using Nielsen’s ten 

heuristics for user interface design (1994).  

Visibility of system status. MSA always shows the stage of model development at 

the top-left corner. The visualization of the knowledge and the task keeps users informed 

about what is going on in the model during the simulation. Buttons in MSA are dimmed 

and disabled when their actions cannot be performed in some cases. Program responses 

and feedbacks are immediate with no delay. 

Match between system and the real world. All the column headers in MSA tables 

and the items in menus use self-explanatory phrases without abbreviation. The steps of 

modeling in MSA follow the logical order shown in Figure 4. Full names and detailed 

descriptions are shown for each abbreviated ACT-R parameter name (Figure 22c).  

User control and freedom. MSA supports undo (e.g., change the road name, 

delete a chunk, and reset a table) and redo (e.g., go back to the previous stage, and then 

go next again). A cancel button is provided at each stage to exit the setup at any time, and 

then users can restart MSA if needed.  

Consistency and standards. Definitions and names are used consistently 

throughout all modeling steps. Tables and menus follow similar layouts and styles. 

Button position is the same between templates and stages. 

Error prevention. The use of menu selection in MSA tables prevents the input of 

invalid items. Table cells automatically perform validation check, and users are notified 

when an input is of an invalid type or out of the valid range. Duplicated names assigned 

by users (e.g., chunk names) are automatically revised to prevent run-time errors. Syntax 

errors are also reported before the simulation starts. 

Recognition rather than recall. MSA provides menus for users to select their 

options and tables to fill in. Model developing knowledge is provided to users in the 

interface. For example, users do not have to learn any modeling syntax. Instead, they can 
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describe the model in natural language and fill in blanks or select items (Figure 22a, b). 

The default value, valid range, and description of model parameters are displayed for the 

users (Figure 22c). 

Flexibility and efficiency of use. The syntax method and MSA cater to both 

inexperienced and experienced users. Experienced user can speed up the modeling work 

by directly copying and editing syntaxes. Syntaxes for the knowledge and the parameters 

can also be directly copied from ACT-R codes. 

Aesthetic and minimalist design. MSA tables and menus are organized and 

aligned in groups. Introductions and explanations are concise.  

Help users recognize, diagnose, and recover from errors. Error messages are 

expressed in plain language (no codes) and precisely indicate the problem. For example, 

―Error! Set General Parameters needs para_name: :lf  to be a double rather than: nil.‖   

Help and documentation. Help information is embedded in MSA. For example, 

the corresponding help information is shown when the mouse rests on the question mark 

beside a task configuration item (Figure 19). A QN-ACTR user manual has also been 

developed to provide detailed instructions. 

 

4. Discussion 

 

A cognitive architecture is both an integrated theory of cognition and a 

computerized simulation platform that can be used for cognitive engineering applications. 

The complexity of cognitive architectures allows the modeling of complex cognitive 

mechanisms, but at the same time, increases the difficulty to learn and use them as 

cognitive engineering tools. The work reported in this chapter developed the usability of 

an integrated general-purpose cognitive architecture, QN-ACTR, which integrates two 

complementary cognitive architectures QN and ACT-R. The aim is to provide easy-to-

use modeling for both inexperienced and experienced users while keeping the capability 

to model a wide range of tasks.  

This chapter reports the usability development in QN-ACTR that addresses the 

three challenges in human performance modeling (Pew, 2008). The completed work 

includes (1) the two methods of building a model to simplify model development, (2) the 
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visualization of modeling results to articulate how the model works, and (3) an integrated 

human experiment interface for model validation.  

Evaluated using heuristic evaluation for user interface design (Nielsen, 1994), the 

usability development of QN-ACTR has met the usability guidelines. In particular, 

Model Setup Assistant, a click-and-select user interface, simplifies model development 

and allows model setup by selecting from menu items and filling in blanks. Users can 

describe the model following natural language and experiment logic without the need to 

learn any programming or cognitive engineering language. Auto-check functions have 

also been developed to prevent modeling errors. In addition, a new feature of visualizing 

3D dynamic tasks is added to the visualization capabilities of QN-ACTR. Dynamic tasks 

such as driving in single or dual task scenarios can be visualized in real time, which 

allows intuitive observation of model performance. 

A human experiment interface has also been integrated into QN-ACTR, which 

allows the model and the human to perform and be compared in the same tasks with 

identical display and control setups. This method helps eliminate the need to replicate the 

real world experiment system in the modeling platform for the model to interact with and 

therefore avoids any discrepancy between human and model tests due to the experiment 

setup. 

In conclusion, the usability development of QN-ACTR supports easy-to-use 

modeling for cognitive engineering applications. It allows users who are not experts of 

cognitive modeling to explore its application in human factors tests and evaluation. Since 

QN-ACTR uses the same syntaxes as ACT-R to define chunks and production rules and 

set parameters, Model Setup Assistant in QN-ACTR can also generate modeling codes 

for ACT-R models and help simplify the model development in ACT-R. Future studies 

will further improve the usability of QN-ACTR as a cognitive engineering tool and 

examine the results with empirical usability tests.  
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Chapter 8. Conclusions and Future Research 

 

1. Summary of Thesis 

 

As the complexity of human-machine systems grows rapidly, there is an 

increasing need for human factors theories and computational methods that can 

quantitatively model and simulate human performance and mental workload in complex 

multi-task scenarios. In response to this need, I have developed and evaluated an 

integrated cognitive architecture named QN-ACTR, which integrates two previously 

isolated but complementary cognitive architectures – Queueing Network (QN) and 

Adaptive Control of Thought-Rational (ACT-R). Combining their advantages and 

overcoming the limitations of each method, QN-ACTR possesses the benefits of 

modeling a wider range of tasks including multi-tasks with complex cognitive activities 

that existing methods have difficulty to model.  

QN-ACTR is currently implemented in Micro Saint
®
 Sharp, a general purpose 

discrete event simulation platform based on C# language. The source codes currently 

have about 30,000 lines. The implementation of ACT-R functionality has been verified in 

the simulation of 20 typical cognitive tasks that have been modeled by ACT-R. It has 

been shown that QN-ACTR can produce the same performance results as ACT-R did. In 

addition, QN-ACTR has successfully modeled skilled transcription typing that was 

previously modeled by QN-MHP and, more importantly, modeled multitasking 

performance involved in typing and reading comprehension or a concurrent foot pedal 

reaction task. These results showed that QN-ACTR can model what have been modeled 

by ACT-R or QN-MHP and have advantages in modeling cognitive multitasking 

performance that each previous method alone has difficulty to model. 
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After the programming and verification of QN-ACTR, I conducted a laboratory 

experiment to examine medical diagnostic decision making with concurrent information 

tasks, which contains critical and practical human factors issues in the healthcare work 

environment. The results showed that diagnostic performance was negatively affected by 

a complex concurrent memorization task that required participants to listen to verbal 

updates and remember information about other patients while performing the diagnostic 

task. In contrast, a simple concurrent sound monitoring task did not affect diagnostic 

performance. Both types of concurrent tasks significantly increased mental workload. 

The human results were then compared with QN-ACTR simulation results of the 

same tasks. During the development of computational models for the diagnostic decision 

multi-tasks, a new concept from the QN perspective was implemented in QN-ACTR to 

allow the modeling of the concurrent tasks that involve multiple controlled processes. 

The key concept is a filtering discipline that allows cognitive resources to be exclusively 

occupied by one of the concurrent tasks when necessary, instead of switching between 

the tasks as frequently as possible as used in previous modeling methods. The simulations 

of dual-tasks involving diagnostic decision making and patient status tracking showed 

that the new discipline is necessary to model human performance and mental workload, 

demonstrating the improved modeling capability of QN-ACTR.  

The benefits of QN-ACTR in modeling cognitive multitasking performance were 

further demonstrated in the simulation of lane keeping and speech comprehension dual-

task scenarios from the ground transportation domain. The modeling results were similar 

to the human results for both performance and mental workload. The previously proposed 

filtering discipline from the QN perspective was again shown to be necessary to model 

complex cognitive multitasking performance.  

All together, these models that covered a wide range of human factors domains 

including human-computer interaction, healthcare, and transportation demonstrated the 

advantages of integrating QN and ACT-R, the two previously isolated but 

complementary cognitive architectures. ACT-R’s symbolic mechanisms provided the 

bases to model complex cognitive activities such as diagnostic decision and reading 

comprehension, whereas QN mechanisms provided the bases to model multi-task 

scheduling at the local server level without the need of any executive control rule. 
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Theoretically, there has been a long debate regarding the use of executive control rules in 

modeling human performance, especially dual-task performance (Byrne & Anderson, 

2001; D. E. Meyer & Kieras, 1997; Wu & Liu, 2008a). Since human experimental results 

have not been sufficient to verify the existence of executive control rules, a simpler 

theory that can explain the same amount or more human results without using the 

assumption of task-specific executive control rules is generally preferred. 

In particular, the filtering discipline, which has not been used in cognitive 

modeling or human performance modeling before this dissertation study, was validated in 

both the diagnostic decision making dual-task and the driving dual-task scenarios. In 

essence, the filtering discipline allows mental resources to exclusively process one of the 

multiple concurrent tasks when necessary. It is different from the first-in-first-out 

queueing discipline used in some previous studies that always alternates the allocation of 

mental resources between concurrent tasks when possible. This filtering discipline is the 

only new mechanism proposed and examined in this dissertation study that was not 

previously used in either QN or ACT-R cognitive architectures. Future research is needed 

to collect more evidence and further examine this filtering discipline, especially 

establishing a set of consistent principles regarding how to determine the rules that 

require follow-up processing. Nevertheless, as examined and demonstrated in modeling 

both the diagnostic decision dual-task and the driving dual-task with complex cognitive 

activities, the filtering discipline has been shown to be necessary to successfully simulate 

human performance and mental workload in this dissertation study. Besides the cognitive 

engineering values of the QN perspective in terms of human performance modeling, the 

findings from this dissertation also support a theoretical speculation that queueing 

mechanisms may have their deeper roots in human brain neurology. The QN perspective 

may guide future studies to look for potential neurological evidence with the collection of 

neurobiological data such as neuroimaging and electroencephalography. Although very 

limited previous work has been conducted to examine queueing mechanisms in the 

human brain, a recent study has shown that at the micro level of synapses and vesicles, 

the human brain indeed exhibits some QN mechanisms (Holt & Jahn, 2004).  

Finally, to support industrial applications of QN-ACTR, such as interface 

evaluation and rapid design prototyping, and to allow industrial engineers who are not 
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experts of human performance modeling to use this promising computational modeling 

method, I have developed the usability features of QN-ACTR to facilitate the use of QN-

ACTR as a cognitive engineering tool. 

 

2. Conclusions 

 

 Literature review of previous human performance modeling methods identified 

the need for integrated cognitive architectures to model cognitive multitasking 

performance involved in human-machine interactions that are becoming 

increasingly complex and demanding. 

 QN-ACTR, which integrates two previously isolated but complementary 

cognitive architectures – Queueing Network (QN) and Adaptive Control of 

Thought-Rational (ACT-R), was developed and programmed to address the 

challenge of how to computationally model cognitive multitasking performance. 

 Verification process showed that QN-ACTR can model cognitive single-tasks that 

have been modeled by ACT-R and perceptual-motor multi-tasks that have been 

modeled by QN-MHP. QN-ACTR can also model cognitive multitasking 

performance involved in typing and reading comprehension that previous 

methods have difficulty to model. 

 A laboratory experiment was designed, programmed, and conducted to examine a 

common cognitive multitasking scenario in the healthcare domain, i.e., medical 

diagnostic decision making with concurrent information task performance. The 

results provided new insights into the cognitive mechanisms underlying 

diagnostic decision and physician multitasking, which have important 

implications for the control and improvement of healthcare quality. The results 

also provided human data to test and examine QN-ACTR cognitive models. 

 Computational models built in QN-ACTR have successfully modeled the human 

data collected from the diagnostic decision multi-task experiment. QN theory 

played an important role in the modeling of cognitive multitasking performance 

and mental workload. 



117 

 

 To further examine QN-ACTR’s modeling capability in complex multi-task 

scenarios, a simulated driving experiment was conducted to collected detailed 

human performance and mental workload results in a lane keeping and speech 

comprehension dual-task scenario. The results showed that the concurrent 

comprehension task had no significant effect on lane keeping performance, 

whereas the correct rate of the comprehension task was reduced in the dual-task 

condition compared with the comprehension single-task condition. Mental 

workload was significantly higher in the dual-task condition compared with the 

single-task conditions.  

 A QN-ACTR model simulated the human results collected from the lane keeping 

and speech comprehension experiment, producing results similar to the human 

data for both performance and mental workload measures.  

 The filtering discipline from the QN perspective proposed and examined in this 

dissertation study has been shown to be necessary to model complex cognitive 

multitasking performance, as demonstrated in both the diagnostic decision dual-

task and driving dual-task scenarios. It is a more detailed account for multi-task 

scheduling at the local server level than the previously used simple first-in-first-

out queueing discipline. The results also suggest that QN mechanisms may be one 

of the fundamental mechanisms of cognitive psychology. The QN-ACTR 

architecture evaluated in this dissertation could be used to guide future research 

looking for neurological evidence of information queues in the brain. 

 The integration of QN and ACT-R moves one step forward towards a unified 

theory of cognition (Newell, 1990), which is essential for understanding all 

aspects of the human mind as a whole.  

 Usability features of QN-ACTR have also been developed and programmed to 

support industrial applications of QN-ACTR for industrial engineers to use this 

promising computational modeling method as a cognitive engineering and design 

tool. 
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3. Future Research 

 

3.1 Modeling human performance in other domains 

This thesis has tested and examined QN-ACTR in two domains – human-

computer interaction and healthcare. Other human factors domains can also be the arena 

to apply this computational modeling method, because QN-ACTR is a generic method 

without any specific domain. The task and knowledge used to setup a model can be from 

any domain and any interface with which human operators are able to interact.  

In ground transportation, future research can connect QN-ACTR with driving 

simulation programs such as TORCS (http://torcs.sourceforge.net/) that has been used to 

conduct human driving experiments (Cao et al., 2013). A platform integrating TORCS 

and QN-ACTR will allow humans and models to perform and be compared in identical 

driving scenarios. 

In the area of uninhabited vehicle supervisory control, there is also a need for 

computational modeling methods to explain cognitive mechanisms underlying human 

performance and evaluate designs and new policies. Future research can connect QN-

ACTR with uninhabited vehicle simulators such as RESCHU (MIT Humans and 

Automation Laboratory, 2009). QN-ACTR’s capability in modeling complex cognitive 

multitasking can be used to model operators’ performance and mental workload in the 

uninhabited vehicle supervisory control tasks, which are often very demanding and 

stressful.  

QN-ACTR can also be applied in aerospace cockpit control scenarios to model 

and simulate the performance and mental workload of pilots and astronauts. In such high-

stake safety domains, erroneous actions and reaction in the scale of milliseconds are very 

critical to system performance and safety.  

In all these human factors domains, domain-specific tools can be developed and 

designed to meet the need of human factors engineers working in the specific domain. 

For example, future work can establish connection protocols between QN-ACTR and 

websites to allow rapid prototyping and evaluation of website interface design. 
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3.2 Modeling human-human and human-automation trust in multi-operator systems 

The current version of QN-ACTR contains only one mental structure representing 

one human operator. Future research can make another duplication of the mental 

structure and form a two-operator framework. Such multi-operator framework will allow 

the examination and simulation of human-human communication and human-automation 

trust in an integrated computational architecture.  

 

3.3 Modeling haptic/tactile perception and proprioception 

The current version of QN-ACTR, as well as other cognitive architectures, is 

limited in perceptual channels, containing only the visual and auditory perceptual 

modules. The lack of haptic/tactile modeling mechanisms becomes an increasingly 

important issue, because more and more empirical studies have been conducted to 

explore the haptic/tactile channel as an additional information pathway to deliver 

information to operators, when their visual and auditory channels are occupied by other 

necessary information. In addition, proprioception is critical to the control and execution 

of accurate body movements but is also not covered in QN-ACTR. The lack of 

proprioception mechanisms may also be a reason of the remaining difference between the 

model and human results. There is a strong need for these other mechanisms beyond 

traditional cognitive aspects to be added in this integrated cognitive architecture. 

 

3.4 Integrating cognitive and physical models 

The current version of QN-ACTR focuses on the cognitive aspects of human 

factors and ergonomics. Another important aspect is physical ergonomics, which includes 

research areas such as anthropometry and biomechanics. Previous research has 

demonstrated the possibility and initial work to integrated QN cognitive models with 

physical ergonomic models (Fuller, Reed, & Liu, 2010). Future research can integrated 

QN-ACTR with physical ergonomics models to form a holistic view of the entire human-

machine interaction. 
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3.5 QN-Java project 

The current implementation of QN-ACTR is in a commercial program. Although 

it provided the convenience for mental structure setup and some visualization features, it 

is not ideal for the future academic development of QN-ACTR, which needs to be 

publicly and freely available and accessible for all researchers around the world. We are 

in the process of porting QN-ACTR to a Java implementation. Java is selected because it 

is open-sourced, free, and cross-platform. Many researchers around the world have used 

and developed their human factors projects in Java, such as the uninhabited vehicle 

supervisory control simulator RESCHU (MIT Humans and Automation Laboratory, 

2009). There is also an open-sourced QN simulation program available in Java called 

Java Modelling Tools (http://jmt.sourceforge.net/), which serves as the foundation to 

build QN-ACTR cognitive architecture and implement cognitive algorithms.  

 

3.6 Looking for neurological evidence of queueing mechanisms in the brain 

The modeling results from this dissertation showed the necessity of queueing 

mechanisms to simulate human behavioral performance. A reasonable theoretical 

speculation is whether such queueing mechanisms exist in the brain from the cognitive-

neuroscience point of view. QN-ACTR with its QN perspective may serve as a 

theoretical framework to guide future studies in the search for potential neurological 

evidence of queueing mechanisms with the collection of neurobiological data such as 

neuroimaging and electroencephalography data. Future studies along this direction have 

important values for cognitive psychology. Although QN has been used to model and 

simulate human behavioral performance, there is still a lack of neurological studies 

examining queueing mechanisms in the brain.  

 

3.7 Modeling effort and mind-wandering 

Effort was not included in the experimental designs of this dissertation but may 

have effects on performance and mental workload. Future research may test the use of a 

concurrent process of mind-wandering (i.e., task-unrelated thought) to model effort. 

Hypothetically, the mind-wandering concurrent process, as an extra task not required by 

formal task instructions, may compete with other concurrent tasks but does not create 
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mental workload related to any required task. Higher effort may reduce the proportion of 

mind-wandering and therefore increase resource utilization and mental workload of the 

required tasks. 



122 

 

 

References 

ACT-R Group. (2011). ACT-R 6.0 Tutorial: ACT-R Web site: http://act-r.psy.cmu.edu/. 

Allender, L., Kelley, T., Archer, S., & Adkins, R. (1997). IMPRINT: The transition and 

further development of a soldier-system analysis tool. MANPRINT Quarterly, 

5(1), 1-7. 

Alm, H., & Nilsson, L. (1995). The effects of a mobile telephone task on driver 

behaviour in a car following situation. Accident Analysis and Prevention, 27(5), 

707-715. 

Altmann, E. M., & Gray, W. D. (2008). An integrated model of cognitive control in task 

switching. Psychological Review, 115(3), 602-639. 

Alvarez, G., & Coiera, E. (2005). Interruptive communication patterns in the intensive 

care unit ward round. International Journal of Medical Informatics, 74(10), 791-

796. 

Amant, R. S., Freed, A. R., & Ritter, F. E. (2005). Specifying ACT-R models of user 

interaction with a GOMS language. Cognitive Systems Research, 6, 71–88. 

Anderson, A. M., Mirka, G. A., Joines, S. M. B., & Kaber, D. B. (2009). Analysis of 

alternative keyboards using learning curves. Human Factors, 51(1), 35-45. 

Anderson, J. R. (1974). Verbatim and propositional representation of sentences in 

immediate and long-term memory. Journal of Verbal Learning and Verbal 

Behavior, 13, 149-162. 

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369–

406. 

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). 

An integrated theory of the mind. Psychological Review, 111(4), 1036–1060. 

Anderson, J. R., Budiu, R., & Reder, L. M. (2001). A theory of sentence memory as part 

of a general theory of memory. Journal of Memory and Language, 45(3), 337–

367. 

Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A. (2008). A central circuit of the 

mind. Trends in Cognitive Sciences, 12(4), 136-143. 

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: 

Erlbaum. 

Anderson, J. R., & Matessa, M. (1997). A production system theory of serial memory. 

Psychological Review, 104(4), 728-748. 

Anderson, J. R., Reder, L. M., & Lebiere, C. (1996). Working memory: Activation 

limitations on retrieval. Cognitive Psychology, 30(3), 221-256. 

Becic, E., Dell, G. S., Bock, K., Garnsey, S. M., Kubose, T., & Kramer, A. F. (2010). 

Driving impairs talking. Psychonomic Bulletin & Review, 17(1), 15-21. 

Biron, A. D., Lavoie-Tremblay, M., & Loiselle, C. G. (2009). Characteristics of work 

interruptions during medication administration. Journal of Nursing Scholarship, 

41(4), 330-336. 



123 

 

Blaauw, G. J. (1982). Driving experience and task demands in simulator and 

instrumented car: A validation study. Human  Factors, 24(4), 473–486. 

Brewer, N. T., Chapman, G. B., Schwartz, J. A., & Bergus, G. R. (2007). The influence 

of irrelevant anchors on the judgments and choices of doctors and patients. 

Medical Decision Making, 27(2), 203-211. 

Brookhuis, K. A., de Vries, G., & de Waard, D. (1991). The effects of mobile 

telephoning on driving performance. Accident Analysis and Prevention, 23(4), 

309-316. 

Budiu, R., & Anderson, J. R. (2004). Interpretation-based processing: A unified theory of 

semantic sentence comprehension. Cognitive Science, 28(1), 1–44. 

Burgess, D. J. (2010). Are providers more likely to contribute to healthcare disparities 

under high levels of cognitive load? How features of the healthcare setting may 

lead to biases in medical decision making. Medical Decision Making, 30(2), 246-

257. 

Byers, J. C., Bittner, A. C., & Hill, S. G. (1989). Traditional and raw task load index 

(TLX) correlations: Are paired comparisons necessary? In A. Mital (Ed.), 

Advances in Industrial Ergonomics and Safety (pp. 481-485): Taylor & Francis. 

Byrne, M. D., & Anderson, J. R. (1998). Perception and action. In J. R. Anderson & C. 

Lebiere (Eds.), The Atomic Components of Thought (pp. 167-200). Mahwah, NJ: 

Lawrence Erlbaum. 

Byrne, M. D., & Anderson, J. R. (2001). Serial modules in parallel: The psychological 

refractory period and perfect time-sharing. Psychological Review, 108(4), 847-

869. 

Byrne, M. D., & Pew, R. W. (2009). A history and primer of human performance 

modeling. Reviews of Human Factors and Ergonomics, 5, 225-263. 

Cao, S., & Liu, Y. (2011a). Integrating Queueing Network and ACT-R cognitive 

architectures. Proceedings of the Human Factors and Ergonomics Society Annual 

Meeting, 55(1), 836-840. 

Cao, S., & Liu, Y. (2011b). Mental workload modeling in an integrated cognitive 

architecture. Proceedings of the Human Factors and Ergonomics Society Annual 

Meeting, 55(1), 2083-2087. 

Cao, S., & Liu, Y. (2012a). ACTR-QN: Integrating Queueing Network and ACT-R 

cognitive architectures. In W. D. Gray (Organizer), Symposium on human 

performance modeling. The 11th International Conference on Cognitive Modeling, 

Berlin, Germany. 

Cao, S., & Liu, Y. (2012b). An integrated cognitive architecture for cognitive engineering 

applications. Proceedings of the Human Factors and Ergonomics Society Annual 

Meeting, 56(1), 323-327. 

Cao, S., & Liu, Y. (2012c). QN-ACTR modeling of multitask performance of dynamic 

and complex cognitive tasks. Proceedings of the Human Factors and Ergonomics 

Society Annual Meeting, 56(1), 1015-1019. 

Cao, S., & Liu, Y. (2013a). Concurrent processing of vehicle lane keeping and speech 

comprehension tasks. Accident Analysis and Prevention, 59, 46-54. 

Cao, S., & Liu, Y. (2013b). Queueing Network-ACTR modeling of concurrent tasks 

involving multiple controlled processes. Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting, 57(1), 768-772. 



124 

 

Cao, S., & Liu, Y. (2013c). Queueing network-adaptive control of thought rational (QN-

ACTR): An integrated cognitive architecture for modelling complex cognitive 

and multi-task performance. International Journal of Human Factors Modelling 

and Simulation 4(1), 63-86. 

Cao, S., & Liu, Y. (in press). Effects of concurrent tasks on diagnostic decision making: 

An experimental investigation. IIE Transactions on Healthcare Systems 

Engineering. 

Cao, S., Qin, Y., & Shen, M. (2013). Modeling the effect of driving experience on lane 

keeping performance using ACT-R cognitive architecture. Chinese Science 

Bulletin (Chinese Version), 58(21), 2078-2086. 

Carayon, P., Bass, E. J., Bellandi, T., Gurses, A. P., Hallbeck, M. S., & Mollo, V. (2011). 

Sociotechnical systems analysis in health care: A research agenda. IIE 

Transactions on Healthcare Systems Engineering, 1(3), 145-160. 

Card, S., Moran, T. P., & Newell, A. (1983). The Psychology of Human-Computer 

Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Chisholm, C. D., Collison, E. K., Nelson, D. R., & Cordell, W. H. (2000). Emergency 

department workplace interruptions: Are emergency physicians "interrupt-driven" 

and "Multitasking"? Academic Emergency Medicine, 7, 11. 

Coiera, E. W., Jayasuriya, R. A., Hardy, J., Bannan, A., & Thorpe, M. E. C. (2002). 

Communication loads on clinical staff in the emergency department. Medical 

Journal of Australia, 176(9), 415-418. 

Colle, H. A., & Reid, G. B. (1998). Context effects in subjective mental workload ratings. 

Human Factors, 40(4), 591-600. 

Collins, S., Currie, L., Patel, V., Bakken, S., & Cimino, J. J. (2007). Multitasking by 

clinicians in the context of CPOE and CIS use. Studies in Health Technology and 

Informatics, 129(Pt 2), 958-962. 

Darwin, C. J., Turvey, M. T., & Crowder, R. G. (1972). An auditory analogue of the 

sperling partial report procedure: Evidence for brief auditory storage. Cognitive 

Psychology, 3(2), 255-267. 

Dick, A. O. (1974). Iconic memory and its relation to perceptual processing and other 

memory mechanisms. Perception and Psychophysics, 16(3), 575-596. 

Drews, F. A., Yazdani, H., Godfrey, C. N., Cooper, J. M., & Strayer, D. L. (2009). Text 

messaging during simulated driving. Human Factors, 51, 762-700. 

Elkind, J. I., Card, S. K., Hochberg, J., & Huey, B. M. (1989). Human Performance 

Models for Computer-Aided Engineering. Washington, D.C.: National Academy 

Press. 

Elstein, A. S., & Schwarz, A. (2002). Clinical problem solving and diagnostic decision 

making: Selective review of the cognitive literature. BMJ (Clinical Research Ed.), 

324(7339), 729-732. 

Engström, J., Johansson, E., & Östlund, J. (2005). Effects of visual and cognitive load in 

real and simulated motorway driving. Transportation Research Part F, 8, 97–120. 

Eva, K. W., Hatala, R. M., LeBlanc, V. R., & Brooks, L. R. (2007). Teaching from the 

clinical reasoning literature: Combined reasoning strategies help novice 

diagnosticians overcome misleading information. Medical Education, 41(12), 

1152-1158. 



125 

 

Evans, J. S. (2008). Dual-processing accounts of reasoning, judgment, and social 

cognition. Annual Review of Psychology, 59, 255-278. 

Feyen, R. (2002). Modeling human performance using the queuing network-model 

human processor (QN-MHP). Doctoral Dissertation. Department of Industrial and 

Operations Engineering. University of Michigan. 

Field, A. (2009). Discovering Statistics Using SPSS (3rd ed.). London: SAGE 

Publications. 

Fitts, P. M. (1954). The information capacity of the human motor system in controlling 

the amplitude of movement. Journal of Experimental Psychology, 47(6), 381-391. 

Fitts, P. M. (1964). Perceptual-motor skill learning. In A. W. Melton (Ed.), Categories of 

human learning. New York: Academic Press. 

Fitts, P. M., & Peterson, J. R. (1964). Information capacity of discrete motor responses. 

Journal of Experimental Psychology, 67(2), 103-112. 

Fougnie, D. (2008). The relationship between attention and working memory. In N. B. 

Johansen (Ed.), New Research on Short-Term Memory: Nova Science Publishers, 

Inc. 

Fu, W.-T., & Anderson, J. R. (2006). From recurrent choice to skill learning: A 

reinforcement-learning model. Journal of Experimental Psychology: General, 

135(2), 184-206. 

Fuller, H. J. A., Reed, M. P., & Liu, Y. (2010). Integrating physical and cognitive human 

models to represent driving behavior. Human Factors and Ergonomics Society 

Annual Meeting Proceedings, 54, 1042-1046. 

Fuller, H. J. A., Reed, M. P., & Liu, Y. (2012). Integration of physical and cognitive 

human models to simulate driving with a secondary in-vehicle task. IEEE 

Transactions on Intelligent Transportation Systems, 13(2), 967-972. 

Gelman, R., & Butterworth, B. (2005). Number and language: How are they related? 

Trends in Cognitive Sciences, 9(1), 7-10. 

Gentner, D. R. (1983). The acquisition of typewriting skill. Acta Psychologica, 54(1-3), 

233–248. 

Gil, G.-H. (2010). An accessible cognitive modeling tool for evaluation of human-

automation interaction in the systems design process. Doctoral Dissertation. 

North Carolina State University. 

Gonzalez, C. (2005). Task workload and cognitive abilities in dynamic decision making. 

Human Factors, 47(1), 92-101. 

Graber, M. L., Franklin, N., & Gordon, R. (2005). Diagnostic error in internal medicine. 

Archives of Internal Medicine, 165(13), 1493-1499. 

Groeger, J. A. (2000). Understanding Driving: Applying Cognitive Psychology to a 

Complex Everyday Task. Philadelphia: Psychology Press. 

Hancock, P. A., & Meshkati, N. (1988). Human mental workload. New York: North-

Holland. 

Hart, S. G. (2006). NASA-task load index (NASA-TLX): 20 years later. Human Factors 

and Ergonomics Society Annual Meeting Proceedings, 50, 904-908. 

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): 

Results of experimental and theoretical research. In P. A. Hancock & N. Meshkati 

(Eds.), Human mental workload (pp. 139-183). New York: North-Holland. 



126 

 

Hazeltine, E., Teague, D., & Ivry, R. B. (2002). Simultaneous dual-task performance 

reveals parallel response selection after practice. Journal of Experimental 

Psychology: Human Perception and Performance, 28(3), 527-545. 

Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case 

for an exponential law of practice. Psychonomic Bulletin and Review, 7(2), 185–

207. 

Hershman, R. L., & Hillix, W. A. (1965). Data processing in typing: Typing rate as a 

function of kind of material and amount exposed. Human Factors, 7(5), 483-492. 

Hollingsed, T., & Novick, D. G. (2007). Usability inspection methods after 15 years of 

research and practice. SIGDOC '07: Proceedings of the 25th Annual ACM 

International Conference on Design of Communication, 249-255. 

Hollnagel, E. (1993). The phenotype of erroneous actions. International Journal of Man-

Machine Studies, 39(1), 1-32. 

Hollnagel, E. (2007). Human Error: Trick or Treat? In Handbook of applied cognition (pp. 

219-238). Chichester, UK: Wiley. 

Holt, M., & Jahn, R. (2004). Synaptic vesicles in the fast lane. Science, 303(5666), 1986-

1987. 

Hoonakker, P., Carayon, P., Gurses, A. P., Brown, R., Khunlertkit, A., McGuire, K., et al. 

(2011). Measuring workload of ICU nurses with a questionnaire survey: The 

NASA Task Load Index (TLX). IIE Transactions on Healthcare Systems 

Engineering, 1(2), 131-143. 

Horrey, W. J., & Wickens, C. D. (2006). Examining the impact of cell phone 

conversations on driving using meta-analytic techniques. Human  Factors, 48(1), 

196–205. 

Inhoff, A. W., & Wang, J. (1992). Encoding of text, manual movement planning, and 

eye-hand coordination during copytyping. Journal of Experimental Psychology: 

Human Perception and Performance, 18(2), 437-448. 

Jenness, J. W., Lerner, N. D., Mazor, S., Osberg, J. S., & Tefft, B. C. (2008). Use of 

Advanced In-Vehicle Technology by Young and Older Early Adopters. Survey 

Results on Adaptive Cruise Control Systems (DOT HS 810 917): National 

Highway Traffic Safety Administration. 

John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis 

techniques: Comparison and contrast. ACM Transactions on Computer-Human 

Interaction, 3(4), 320–351. 

John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K. (2004). Predictive human 

performance modeling made easy. Paper presented at the Proceedings of the 

SIGCHI conference on Human factors in computing systems, Vienna, Austria. 

Jones, G., & Ritter, F. E. (1998). Simulating development by modifying architectures. 

Proceedings of the Twentieth Annual Conference of the Cognitive Science 

Society. , 543-548. 

Just, M. A., Keller, T. A., & Cynkar, J. (2008). A decrease in brain activation associated 

with driving when listening to someone speak. Brain Research, 1205, 70-80. 

Kahneman, D. (2003). A perspective on judgment and choice: Mapping bounded 

rationality. American Psychologist, 58(9), 697–720. 



127 

 

Keinan, G. (1987). Decision making under stress: Scanning of alternatives under 

controllable and uncontrollable threats. Journal of Personality and Social 

Psychology, 52(3), 639-644. 

Klayman, J., & Ha, Y.-w. (1987). Confirmation, disconfirmation, and information in 

hypothesis testing. Psychological Review, 94(2), 211-228. 

Kovacs, G., & Croskerry, P. (1999). Clinical decision making: An emergency medicine 

perspective. Academic Emergency Medicine, 6(9), 947-952. 

Kubose, T. T., Bock, K., Dell, G. S., Garnsey, S. M., Kramer, A. F., & Mayhugh, J. 

(2006). The effects of speech production and speech comprehension on simulated 

driving performance. Applied Cognitive Psychology, 20, 43-63. 

Kulatunga-Moruzi, C., Brooks, L. R., & Norman, G. R. (2001). Coordination of analytic 

and similarity-based processing strategies and expertise in dermatological 

diagnosis. Teaching and Learning in Medicine, 13(2), 110-116. 

Laird, J. E. (2008). Extending the Soar Cognitive Architecture. Proceedings of the First 

Conference on Artificial General Intelligence (AGI-08). 

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general 

intelligence. Artificial Intelligence, 33(1), 1–64. 

Lamble, D., Kauranen, T., Laakso, M., & Summala, H. (1999). Cognitive load and 

detection thresholds in car following situations: Safety implications for using 

mobile (cellular) telephones while driving. Accident Analysis and Prevention, 31, 

617–623. 

Laxmisan, A., Hakimzada, F., Sayan, O. R., Green, R. A., Zhang, J., & Patel, V. L. 

(2007). The multitasking clinician: Decision-making and cognitive demand 

during and after team handoffs in emergency care. International Journal of 

Medical Informatics, 76, 801–811. 

Lee, Y.-H., & Liu, B.-S. (2003). Inflight workload assessment: Comparison of subjective 

and physiological measurements. Aviation, Space, and Environmental Medicine, 

74(10), 1078-1084. 

Lenné, M. G., Dietze, P. M., Triggs, T. J., Walmsley, S., Murphy, B., & Redman, J. R. 

(2010). The effects of cannabis and alcohol on simulated arterial driving: 

Influences of driving experience and task demand. Accident Analysis and 

Prevention, 42, 859-866. 

Lewis, R. L., & Vasishth, S. (2005). An activation-based model of sentence processing as 

skilled memory retrieval. Cognitive Science, 29(3), 375–419. 

Liang, Y., & Lee, J. D. (2010). Combining cognitive and visual distraction: Less than the 

sum of its parts. Accident Analysis and Prevention, 42, 881–890. 

Liu, Y. (1996). Queueing network modeling of elementary mental processes. 

Psychological Review, 103(1), 116–136. 

Liu, Y. (1997). Queueing network modeling of human performance of concurrent spatial 

and verbal tasks. IEEE Transactions on Systems, Man, Cybernetics, 27(2), 195-

207. 

Liu, Y. (2009). QN-ACES: Integrating queueing network and ACT-R, CAPS, EPIC, and 

Soar architectures for multitask cognitive modeling. International Journal of 

Human-Computer Interaction, 25(6), 554–581. 

Liu, Y., Feyen, R., & Tsimhoni, O. (2006). Queueing Network-Model Human Processor 

(QN-MHP): A computational architecture for multitask performance in human-



128 

 

machine systems. ACM Transactions on Computer-Human Interaction, 13(1), 

37–70. 

Logan, G. D. (1982). On the ability to inhibit complex movements: A stop-signal study of 

typewriting. Journal of Experimental Psychology: Human Perception and 

Performance, 8(6), 778-792. 

Matthews, R., Legg, S., & Charlton, S. (2003). The effect of cell phone type on drivers 

subjective workload during concurrent driving and conversing. Accident Analysis 

and Prevention, 35, 451-457. 

McGeoch, C. (1992). Analyzing algorithms by simulation: Variance reduction techniques 

and simulation speedups. ACM Computing Surveys, 24(2), 195-212. 

McKnight, A. J., & McKnight, A. S. (1993). The effect of cellular phone use upon driver 

attention. Accident Analysis and Prevention, 25(3), 259-265. 

Mehlhorn, K., & Marewski, J. N. (2011). Racing for the city: The recognition heuristic 

and compensatory alternatives Proceedings of the Interdisciplinary Workshop on 

Cognitive Neuroscience, Educational Research and Cognitive Modeling. 

Delmenhorst, Germany. 

Meyer, D. E., Abrams, R. A., Kornblum, S., Wright, C. E., & Keith Smith, J. E. (1988). 

Optimality in human motor performance: Ideal control of rapid aimed movements. 

Psychological Review, 95(3), 340-370. 

Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive 

processes and multiple-task performance: Part 1. Basic mechanisms. 

Psychological Review, 104(1), 3–65. 

Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134-140. 

Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University 

Press. 

Newell, A. (Ed.). (1973). You can’t play 20 questions with nature and win: Projective 

comments on the papers of this symposium. New York: Academic Press. 

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of 

practice. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 1-55). 

Hillsdale, NJ: Erlbaum. 

Nielsen, J. (1994). Heuristic evaluation. In J. Nielsen & R. L. Mack (Eds.), Usability 

Inspection Methods. New York, NY: John Wiley & Sons. 

Norman, G. (2009). Dual processing and diagnostic errors. Advances in Health Sciences 

Education, 14(1), 37-49. 

Oberauer, K., & Kliegl, R. (2004). Simultaneous Cognitive Operations in Working 

Memory After Dual-Task Practice. Journal of Experimental Psychology: Human 

Perception and Performance, 30(4), 689-707. 

Olsen, D. E., & Sticha, D. (2005). Interactive simulation training: Computer simulated 

standardized patients for medical diagnosis. In Studies in Health Technology and 

Informatics. Medicine Meets Virtual Reality 14: Accelerating Change in 

Healthcare: Next Medical Toolkit (Vol. 119, pp. 413-415): IOS Press. 

Owens, P. L., Barrett, M. L., Gibson, T. B., Andrews, R. M., Weinick, R. M., & Mutter, 

R. L. (2010). Emergency department care in the United States: A profile of 

national data sources. Annals of Emergency Medicine, 56(2), 150-165. 

Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. 

Psychological Bulletin, 116(2), 220-244. 



129 

 

Patel, V. L., Gutnik, L. A., Karlin, D. R., & Pusic, M. (2008). Calibrating urgency: Triage 

decision-making in a pediatric emergency department. Advances in Health 

Sciences Education, 13(4), 503-520. 

Patton, E. W., & Gray, W. D. (2010). SANLab-CM: A tool for incorporating stochastic 

operations into activity network modeling. Behavior Research Methods, 42(3), 

877-883. 

Pavlik, P. I., & Anderson, J. R. (2005). Practice and forgetting effects on vocabulary 

memory: An activation-based model of the spacing effect. Cognitive Science, 

29(4), 559–586. 

Peters, E., Diefenbach, M. A., Hess, T. M., & Västfjäll, D. (2008). Age differences in 

dual information-processing modes. Cancer, 113(S12), 3556-3567. 

Pew, R. W. (2008). Foreword. In D. C. Foyle & B. L. Hooey (Eds.), Human Performance 

Modeling in Aviation. Boca Raton, FL: CRC Press/Taylor & Francis Group. 

Price, C. J. (1998). The functional anatomy of word comprehension and production. 

Trends in Cognitive Sciences, 2(8), 281-287. 

Rakauskas, M. E., Gugerty, L. J., & Ward, N. J. (2004). Effects of naturalistic cell phone 

conversations on driving performance. Journal of Safety Research, 35, 453– 464. 

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of 

research. Psychological Bulletin, 124(3), 372–422. 

Recarte, M. A., & Nunes, L. M. (2003). Mental workload while driving: Effects on visual 

search, discrimination, and decision making. Journal of Experimental Psychology: 

Applied, 9(2), 119–137. 

Redelmeier, D. A., & Tibshirani, R. J. (1997). Association between cellular-telephone 

calls and motor vehicle collisons. The New England Journal of Medicine, 336(7), 

453-458. 

Reed, M. P., & Green, P. A. (1999). Comparison of driving performance on-road and in a 

low-cost simulator using a concurrent telephone dialling task. Ergonomics, 42(8), 

1015-1037. 

Reyna, V. F. (2008). Theories of medical decision making and health: An evidence-based 

approach. Medical Decision Making, 28(6), 829-833. 

Ritter, F. E., & Reifers, A. L. (2007). Lessons from defining theories of stress. In W. D. 

Gray (Ed.), Integrated Models of Cognitive Systems (IMoCS) (pp. 254-262). New 

York: Oxford University Press. 

Roland, P. (1993). Brain Activation. New York: Wiley. 

Roland, P. E., Larsen, B., Lassen, N. A., & Skinhøj, E. (1980). Supplementary motor area 

and other cortical areas in organization of voluntary movements in man. Journal 

of Neurophysiology, 43(1), 118-136. 

Ruthruff, E., Johnston, J. C., & Van Selst, M. (2001). Why practice reduces dual-task 

interference. Journal of Experimental Psychology: Human Perception and 

Performance, 27(1), 3-21. 

Salthouse, T. A. (1984). Effects of age and skill in typing. Journal of Experimental 

Psychology: General, 113(3), 345-371. 

Salthouse, T. A. (1985). Anticipatory processing in transcription typing. Journal of 

Applied Psychology, 70(2), 264-271. 

Salthouse, T. A. (1986). Perceptual, cognitive, and motoric aspects of transcription typing. 

Psychological Bulletin, 99(3), 303-319. 



130 

 

Salthouse, T. A., & Saults, J. S. (1987). Multiple spans in transcription typing. Journal of 

Applied Psychology, 72(2), 187-196. 

Salvucci, D. D. (2001). An integrated model of eye movements and visual encoding. 

Cognitive Systems Research, 1(4), 201-220. 

Salvucci, D. D. (2006). Modeling driver behavior in a cognitive architecture. Human 

Factors, 48(2), 362–380. 

Salvucci, D. D. (2009). Rapid prototyping and evaluation of in-vehicle interfaces. ACM 

Transactions on Computer-Human Interaction, 16(2), 9: 1-33. 

Salvucci, D. D., & Beltowska, J. (2008). Effects of memory rehearsal on driver 

performance: Experiment and theoretical account. Human Factors, 50(5), 834-

844. 

Salvucci, D. D., & Gray, R. (2004). A two-point visual control model of steering. 

Perception, 33(10), 1233-1248. 

Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive modeling in a complex cognitive 

architecture. Paper presented at the Proceedings of the SIGCHI conference on 

Human factors in computing systems, Ft. Lauderdale, Florida, USA. 

Salvucci, D. D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of 

concurrent multitasking. Psychological Review, 115(1), 101–130. 

Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information 

processing: I. Detection, search, and attention. Psychological Review, 84(1), 1-66. 

Schumacher, E. H., Seymour, T. L., Glass, J. M., Fencsik, D. E., Lauber, E. J., Kieras, D. 

E., et al. (2001). Virtually perfect time sharing in dual-task performance: 

Uncorking the central cognitive bottleneck. Psychological Science, 12(2), 101-

108. 

Schunn, C. D., & Gray, W. D. (2002). Introduction to the special issue on computational 

cognitive modeling. Cognitive Systems Research, 3, 1–3. 

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information 

processing: II. Perceptual learning, automatic attending and a general theory. 

Psychological Review, 84(2), 127-190. 

Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological 

Bulletin, 119(1), 3-22. 

Speier, C., Valacich, J. S., & Vessey, I. (1999). The influence of task interruption on 

individual decision making: An information overload perspective. Decision 

Sciences, 30(2), 337-360. 

Speier, C., Vessey, I., & Valacich, J. S. (2003). The effects of interruptions, task 

complexity, and information presentation on computer-supported decision-

making performance. Decision Sciences, 34(4), 771-797. 

Squire, L. R. (2004). Memory systems of the brain: A brief history and current 

perspective. Neurobiology of Learning and Memory, 82(3), 171–177. 

Strayer, D. L., Drews, F. A., & Johnston, W. A. (2003). Cell phone-induced failures of 

visual attention during simulated driving. Journal of Experimental Psychology: 

Applied, 9(1), 23-32. 

Strayer, D. L., & Johnston, W. A. (2001). Driven to distraction: Dual-task studies of 

simulated driving and conversing on a cellular telephone. Psychological Science, 

12(6), 462-466. 



131 

 

Taatgen, N. A., & Anderson, J. R. (2002). Why do children learn to say ―Broke‖? A 

model of learning the past tense without feedback. Cognition, 86(2), 123–155. 

Tsimhoni, O., Smith, D., & Green, P. (2004). Address entry while driving: Speech 

recognition versus a touch-screen keyboard. Human Factors, 46(4), 600-610. 

Tucker, A. L., & Spear, S. J. (2006). Operational failures and interruptions in hospital 

nursing. Health Services Research, 41(3, Part I), 643-662. 

Violanti, J. M., & Marshall, J. R. (1996). Cellular phones and traffic accidents: An 

epidemiological approach. Accident Analysis and Prevention, 28(2), 265-270. 

Wallsten, T. S. (1981). Physician and medical student bias in evaluating diagnostic 

information. Medical Decision Making, 1(2), 145-164. 

Welford, A. T. (1952). The Psychological refractory period and the timing of high-speed 

performance - a review and a theory. British Journal of Psychology, 43(1), 2-19. 

White, R. W. (1959). Motivation reconsidered: The concept of competence. 

Psychological Review, 66(5), 297-333. 

Wickens, C. D. (2008). Multiple resources and mental workload. Human Factors, 50(3), 

449-455. 

Wickens, C. D., Lee, J. D., Liu, Y., & Becker, S. (2004). Introduction to Human Factors 

Engineering (2nd ed.): Prentice Hall. 

Wierwille, W. W., & Eggemeier, F. T. (1993). Recommendations for mental workload 

measurement in a test and evaluation environment. Human  Factors, 35(2), 263-

281. 

Woodworth, R. S. (1899). Accuracy of voluntary movement. The Psychological Review: 

Monograph Supplements, 3(3), i-114. 

Wright, P. (1974). The harassed decision maker: Time pressures, distractions, and the use 

of evidence. Journal of Applied Psychology, 59(5), 555-561. 

Wu, C., & Liu, Y. (2007). Queuing Network modeling of driver workload and 

performance. IEEE Transactions on Intelligent Transportation Systems, 8(3), 

528-537. 

Wu, C., & Liu, Y. (2008a). Queuing network modeling of the psychological refractory 

period (PRP). Psychological Review, 115(4), 913–954. 

Wu, C., & Liu, Y. (2008b). Queuing Network modeling of transcription typing. ACM 

Transactions on Computer-Human Interaction, 15(1), 6: 1-45. 

Wu, C., & Liu, Y. (2009). Development and evaluation of an ergonomic software 

package for predicting multiple-task human performance and mental workload in 

human–machine interface design and evaluation. Computers and Industrial 

Engineering, 56, 323–333. 

Wu, C., Liu, Y., & Quinn-Walsh, C. M. (2008). Queuing network modeling of a real-time 

psychophysiological index of mental workload—P300 in event-related potential 

(ERP). IEEE Transactions on systems, Man, and Cybernetics-Part A: Systems 

and Humans, 38(5), 1068-1084. 

Xie, B., & Salvendy, G. (2000). Review and reappraisal of modelling and predicting 

mental workload in single- and multi-task environments. Work and Stress, 14(1), 

74–99. 

 

 


