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Abstract 

 

This thesis focused on the regulation of glucose uptake in rat skeletal muscle.  Skeletal 

muscle plays a central role in the regulation of whole body glucose homeostasis.  Because 

skeletal muscle is a heterogeneous tissue, muscles are often categorized by fiber type (myosin 

heavy chain, MHC, expression).  MHC expression was determined at both the muscle tissue and 

single fiber levels, along with measurement of the abundance of multiple proteins relevant to 

glucose uptake, including the GLUT4 glucose transporter and Akt substrate of 160kDa (AS160).  

Key measurements included contraction-stimulated glucose uptake by single fibers from 

epitrochlearis muscles, and insulin-stimulated glucose uptake by whole epitrochlearis muscles 

from both normal rats fed low fat diet (LFD) and insulin-resistant rats (fed high fat diet, HFD, 

for 2 weeks).  Novel results included: 1) MHC-related differences in GLUT4, but not AS160, 

protein abundance were found in whole muscles and single fibers; 2) despite a four-fold range of 

GLUT4 abundance among fiber types, contraction-stimulated glucose uptake did not differ by 

MHC-expression; 3) immediately post-exercise, insulin-independent glucose uptake and 

phosphorylation of AMP-associated protein kinase and AS160 were not different for LFD versus 

HFD groups; 4) improved insulin-stimulated glucose uptake 3 hours post-exercise in both LFD 

and HFD groups was associated with greater pAS160 (phosphorylated AS160) with unaltered 

GLUT4 abundance and MHC-expression; and 5) values for both insulin-stimulated glucose 

uptake and pAS160 post-exercise were greater for LFD versus HFD rats.  Earlier studies 

suggested that muscle insulin resistance with HFD results from increased insulin receptor 

substrate-1 serine phosphorylation (pIRS-1
Ser

), thereby inhibiting proximal insulin signaling 

(including tyrosine phosphorylation of the insulin receptor, IRS-1-associated phosphatidyl-3-

kinase, and Akt activity), but exercise did not increase these proximal signaling steps in either 

diet-group.  Greater pIRS-1
Ser

 is believed to result from elevated diacylglycerol and ceramides 

leading to activation of serine kinases, including JNK, but exercise did not attenuate pIRS-1
Ser

, 



xvi 
 

diacylglycerol, ceramides or pJNK.  Results of this thesis indicate that exercise did not appear to 

act on several processes that are commonly linked to insulin resistance, suggesting that future 

experiments seeking to identify mechanisms for improved insulin-simulated glucose uptake post-

exercise should focus on distal signaling steps regulating pAS160. 
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Chapter I 

 

Introduction 

 

 

Insulin resistance, a subnormal response to a physiological dose of insulin, is an essential 

precursor for developing type 2 dependent diabetes mellitus (T2DM) and a risk factor for other 

prevalent diseases, including cardiovascular disease and some forms of cancer (20).  Skeletal 

muscle accounts for approximately 85 percent of insulin-stimulated glucose disposal, thus 

making skeletal muscle a prime target for combating insulin resistance (16-18).   Because 

glucose transport into the cell is a rate-limiting step for glucose disposal in skeletal muscle (27), 

understanding the regulation of glucose transport has great significance.   

Glucose transport in skeletal muscle can be modified by various physiologic 

interventions, including exercise and diet.  During and immediately after exercise, skeletal 

muscle glucose transport is increased independent of insulin (24, 28).  Additionally, a single bout 

of exercise can result in a subsequent increase in skeletal muscle insulin sensitivity (3, 12, 14, 

22).  The increased insulin sensitivity can be observed 3 to 4 hours following the exercise bout, 

once insulin-independent glucose transport has returned to baseline levels, and can last up to 48 

hours (14, 22, 35).   Although a high fat diet (HFD) can lead to insulin resistance in the skeletal 

muscle of rats, several studies have demonstrated that rats consuming a HFD can also respond to 

acute exercise with improved glucose uptake by insulin-stimulated glucose transport (36-37, 41, 

44).  The specific underlying mechanisms that account for improved insulin sensitivity after 

exercise by either normal or insulin resistant individuals remain to be clearly identified. 
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Skeletal muscle is a heterogeneous tissue, and different muscles in the same individual 

can vary greatly with regard to metabolic characteristics.  Evidence suggests that the variability 

in insulin-stimulated glucose uptake observed among skeletal muscles may be in part attributable 

to differences in muscle fiber type composition and the level of expression of the insulin 

responsive glucose transporter known as GLUT4 (26, 34).   Furthermore, it has been suggested 

that muscles with differing fiber type compositions may differ with regard to the extent of 

increased insulin-independent glucose uptake that occurs during and immediately after a 

muscular contraction (9, 19, 26, 32-33, 38-39).   

The research in this dissertation focuses on:  1) elucidating the relationship between 

muscle fiber type and the abundance of several key proteins that are implicated in the regulation 

of glucose transport; 2) identifying the relationship between muscle fiber type and contraction-

stimulated glucose transport; and 3) probing the potential mechanisms that underlie the benefits 

of acute exercise on insulin-stimulated glucose transport in muscle from both normal and insulin 

resistant rats. 

 

Study 1:  Clustering of GLUT4, TUG, and RUVBL2 Protein Levels Correlate with Myosin 

Heavy Chain Isoform Pattern in Skeletal Muscles, but AS160 and TBC1D1 Levels Do Not 

The relative expression of GLUT4 has been reported to differ in skeletal muscles of 

varying fiber type (26, 34), but the earlier studies that assessed the relationship between fiber 

type and GLUT4 abundance in more than three skeletal muscles failed to determine fiber type 

using the method that is widely acknowledged as the gold standard (myosin heavy chain, MHC, 

expression).  Furthermore, although GLUT4 is the ultimate mediator of muscle glucose transport 

capacity, a number of other proteins participate in insulin’s regulation of GLUT4 function.   

Among the proteins that are recognized or proposed to regulate GLUT4-mediated glucose 

transport are:  the Tethering protein containing an UBX-domain for GLUT4 (TUG) which is a 

putative GLUT4 tethering protein that functions as part of the system that retains GLUT4 

intracellularly in the absence of insulin (5-6, 52-53); two paralog Rab GTPase proteins (Akt 

substrate of 160 kDa, AS160 also known as TBC1D4, and TBC1D1) that are recognized as key 

signaling proteins that control GLUT4 trafficking and glucose transport (11, 13, 15, 42); and 

RuvB-like protein two (RUVBL2) that was found to physically associate with AS160, and 
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genetic depletion of RUVBL2 in cells resulted in reduced phosphorylated AS160 and insulin-

stimulated glucose uptake (51).   Data are currently lacking with regard to the relative protein 

abundance of AS160, TBC1D1, RUVBL2 and TUG in rat skeletal muscles of varying fiber type 

composition.  Therefore, the first major goal of Study 1 was to extend knowledge about the 

relationship between MHC isoform composition and the abundance of GLUT4 and four proteins 

(GLUT4, AS160, TBC1D1, RUVBL2 and TUG) that are either established or putative regulators 

of glucose transport in rat skeletal muscle.  In addition, because all of these proteins are proposed 

to participate in a common function (regulation of glucose transport), characterizing how their 

expression patterns converge or diverge with each other would provide useful information.  The 

second major goal of Study 1 was to determine if the abundance of any of these proteins are 

significantly associated with each other.   

 

Study 2: Myosin Heavy Chain Isoform Expression, Contraction-stimulated Glucose Uptake and 

Abundance of Proteins that Regulate Glucose Uptake and Metabolism in Single Skeletal Muscle 

Fibers 

Glucose transport into skeletal muscle is increased independent of insulin during and 

immediately following exercise or electrical stimulation.  Evidence suggests that the 

responsiveness of contraction-stimulated glucose uptake may be related to skeletal muscle fiber 

type.  Although extensive research has been performed in an effort to elucidate this relationship, 

the results are inconsistent.  The most conclusive data comes from ex vivo experiments in which 

isolated intact muscles of varying fiber type were electrically stimulated to contract (1-2, 26, 30-

31).  The major limitation of these studies is muscle differences (epitrochlearis versus soleus 

versus flexor digitorum brevis) versus fiber type differences (myosin heavy chain, MHC, 

expression) with respect to insulin-independent glucose uptake cannot be separated.  Therefore, 

Study 2 used our novel method for measuring glucose uptake by isolated single muscle fibers of 

known MHC fiber type to address these limitations.  The first major goal of Study 2 was to make 

direct fiber type comparisons for contraction-stimulated glucose uptake within the same intact rat 

epitrochlearis muscles (fiber type representative of the entire rat hindlimb), which were 

incubated ex vivo and electrically stimulated to contract prior to single fiber isolation and glucose 

uptake measurements.  The second major goal of Study 2 was to further investigate the fiber type 
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and protein co-expression patterns for GLUT4, TUG, AS160, TBC1D1 and RUVBL2 at the 

single fiber level.  The third major goal of Study 2 was to determine if the abundance of any of 

these proteins are significantly correlated with each other or with other metabolically relevant 

proteins (Cytochrome C oxidase IV, COX IV; glycogen phosphorylase; glyceraldehyde-3-

phosphate dehydrogenase, GAPDH; and filamin C). 

 

 Study 3: Acute Exercise Effects on Insulin Signaling and Insulin-Stimulated Glucose Uptake in 

Isolated Skeletal Muscle from Rats Fed either Low Fat or High Fat Diet   

 A single exercise bout is an effective stimulus for increasing insulin-stimulated glucose 

transport in skeletal muscle of humans (35, 46, 48, 50)  or rodents (12, 14, 22, 35, 40) with 

normal insulin sensitivity prior to exercise.  A single bout of exercise can also improve insulin-

stimulated glucose uptake in skeletal muscle of insulin resistant humans (10, 43) or rats (4, 23, 

36, 41, 44).  Available data suggest that improvements in insulin-stimulated glucose transport 

following a single session of exercise in both insulin sensitive and insulin resistant individuals 

may occur via distinct mechanisms.  In insulin sensitive rats or humans, the improved insulin-

stimulated glucose uptake following an acute exercise bout is apparently not due to improved 

proximal signaling (7-8, 25, 29, 45, 47, 49-50, 54), but may be associated with the sustained 

increase in phosphorylation of AS160 (pAS160) (3, 11, 21-22, 48).  In insulin resistant rats fed a 

HFD (an intervention that leads to increases in both caloric and dietary fat intake), limited data 

suggest that the improved insulin sensitivity following acute exercise may occur by reducing 

serine phosphorylation of insulin receptor substrate-1 (pIRS-1Ser) (36, 41) and restoring proximal 

signaling steps (36-37, 41), thereby reversing the inhibition induced by high fat feeding.  

However, in these studies on skeletal muscle from HFD fed rats, the effects of exercise on 

pAS160 were not determined, and most of the proximal insulin signaling measurements were 

made using a supraphysiologic insulin dose.  Therefore, Study 3 used LFD fed and HFD fed rats 

that either remained sedentary or performed acute exercise to investigate potential mechanisms 

that may be important for the post-exercise increase in insulin-stimulated glucose transport by 

skeletal muscle using a physiologic insulin dose.  The first major goal for Study 3 was to 

investigate the mechanism (measurements of proximal insulin signaling and AS160) for the 

exercise induced improvements for insulin-stimulated glucose uptake by skeletal muscle from 
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insulin sensitive and insulin resistant rats.  The second major goal of Study 3 was to identify 

possible changes in GLUT4, AS160, TBC1D1, TUG, RUVBL2 and muscle fiber type following 

2 weeks of high fat feeding.  The third major goal of Study 3 was to determine the effects of 

acute exercise on putative mediators of insulin resistance: lipid metabolites (acyl-CoA; 

diacylglycerol, DAG; ceramide), phosphorylation of the serine kinase c-Jun N-terminal (pJNK) 

and pIRS-1Ser. 
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Chapter II 

 

Review of Literature 

 

 

Importance of Skeletal Muscle Glucose Transport 

 It has been estimated that greater than 30 percent of the United States population will 

develop diabetes in their lifetime (119), with Type 2 diabetes mellitus (T2DM, also known as 

Non-Insulin Dependent Diabetes Mellitus) accounting for 90-95 percent of all individuals with 

diabetes (1).  Insulin resistance, a subnormal response to a physiological dose of insulin, is an 

essential precursor for developing T2DM, as well as a predictor of numerous other diseases (e.g., 

atherosclerosis, stroke, hypertension and some types of cancer) (46).  Skeletal muscle accounts 

for approximately 85 percent of insulin-stimulated glucose disposal, thus making skeletal muscle 

a prime target for combating insulin resistance (38-40).  Skeletal muscle is a heterogeneous 

tissue that is composed of different fiber types, and previous studies have reported differences in 

metabolic properties for muscles with differing fiber type composition.  

Glucose transport into the cell is a rate-limiting step for glucose disposal by skeletal 

muscle (65).  Glucose is a hydrophilic molecule and cannot freely pass through the plasma 

membrane (the hydrophobic lipid bilayer) to enter the cell.  Therefore, glucose transporter 

proteins (GLUTs) fuse with the plasma membrane in order to allow for glucose to enter the cell.  

In skeletal muscle, GLUT4 is the major glucose transporter that is regulated by both insulin and 

contraction.  In response to either stimulus, GLUT4 translocates from intracellular vesicles to 

cell surface membranes (sarcolemma and t-tubules) to allow for greater diffusion of glucose into 
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the cell (15, 52, 81, 98, 136-137, 189).  However, insulin- and contraction-mediated GLUT4 

translocation appear to occur via distinct mechanisms (30, 32, 35, 53, 120).  In addition to 

increased insulin-independent glucose uptake being elevated during and immediately after 

exercise, a single bout of exercise can result in subsequently increased skeletal muscle insulin 

sensitivity (8, 31, 33, 52, 55, 68).  The increased insulin sensitivity can be observed 3 to 4 hours 

following the exercise bout, once insulin independent glucose transport has returned to baseline 

levels, and can last up to 48 hours (33, 52, 112).  For insulin resistant individuals, improving 

insulin sensitivity with exercise can be very beneficial for regulating circulating glucose levels 

(93, 169).  Therefore, it is important to understand the mechanisms for the exercise induced 

improvements in insulin sensitivity to aid in the development of new therapies for insulin 

resistance and diabetes.  

 The exercise effects on skeletal muscle glucose transport and improved insulin sensitivity 

are also beneficial for healthy individuals.  Following strenuous exercise when muscle energy 

stores are low (depleted muscle glycogen), increased insulin-independent glucose transport 

facilitates greater glucose clearance from the blood to replete muscle glycogen.  In addition, the 

increased insulin sensitivity following exercise will increase postprandial glycogen storage.  

Quickly replenishing energy stores is important for athletes to maintain performance, or for 

individuals with labor intensive jobs (36, 77).  Improved insulin sensitivity, resulting in 

decreased circulating insulin concentrations, has also been associated with improved health and 

longevity (12, 21).     

       

Insulin-stimulated Glucose Transport 

 Insulin increases the translocation of GLUT4 from intracellular vesicles to cell surface 

membranes allowing for glucose to enter the cell (15, 98, 189).  While the entire mechanism for 

this process is not fully understood, the proximal signaling steps have been well characterized.  

The binding of insulin to its receptor initiates a signaling cascade beginning with conformational 

changes of the receptors cytosolic domain, resulting in autophosphorylation of the insulin 

receptor on multiple tyrosine residues (28, 163, 179, 190).  Insulin receptor tyrosine 

phosphorylation activates its kinase activity and promotes docking and tyrosine phosphorylation 
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on Insulin Receptor Substrate-1 (pIRS-1Tyr), as well as other proteins (118, 144, 161, 178).  

Activated IRS-1 then allows for phosphatidylinositol 3-kinase (PI3K) binding, resulting in 

conformational changes in PI3K thereby increasing its kinase activity (29).  PI3K, in turn, 

phosphorylates membrane-associated phosphatidylinositol-(4, 5)-bisphosphate converting it to 

phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) (172-173).  PIP3 then binds proteins containing 

pleckstrin homology (PH) domains, namely phosphoinositide-dependent kinases-1 (PDK1) and 

Akt (7, 99).  Akt is a key signaling protein, and its activation mediates a number of cellular 

functions including glucose transport, cell proliferation, proteins synthesis and apoptosis (142, 

147, 153, 160).  Although Akt has been well established for regulating glucose transport, the link 

between Akt and GLUT4 translocation was unknown until the relatively recent discovery of 

distal signaling proteins involved in regulating GLUT4 translocation. 

TBC1D4 (Tre-2/USP6, BUB2, cdc16 domain family, member 4), often referred to as 

AS160 (Akt Substrate at 160 kDa), is a Rab-GTPase protein that is phosphorylated on multiple 

residues in response to insulin and has been shown be important for glucose transport (83).  Rab-

GTPase proteins regulate membrane trafficking including vesicle formation, vesicle translocation 

and membrane fusion (70, 72).  When not phosphorylated, AS160 retains its target Rabs in their 

inactive GDP-bound form.   Phosphorylation of AS160, inhibits its GTPase activity and allows 

for the conversion of Rabs to their active GTP-bound form, thereby enabling GLUT4 vesicles to 

translocate to the cell surface and increase glucose transport (83, 146).  

Gustav Lienhard’s group identified AS160 in adipocytes as an insulin responsive Akt 

substrate by immunoprecipitating with the PAS antibody (Phosphor-Akt Substrate antibody that 

recognizes Akt phospho-motifs, RXRXXpT/S) followed by tandem mass spectrometry (83).  

Site-specific mutations of the four insulin-responsive phosphor-Ser/Thr residues on AS160 (4P-

AS160) in 3T3-L1 adipocytes, thereby inhibiting the insulin-stimulated phosphorylation of 

AS160 and deactivation of its GAP domain, resulted in an ~80% decrease of insulin-stimulated 

GLUT4 translocation to the plasma membrane (146).  Insulin-stimulated GLUT4 translocation 

was reduced by ~60% when only the Thr642 phospho-site was mutated, ~25% when only the 

Ser588 phospho-site was mutated on AS160, and the double mutant (2P-AS160 both Thr642 and 

Ser588 are mutated) resulted in similar reductions (~80%) in insulin-stimulated GLUT4 

translocation observed with the 4P-AS160.  These data suggest that Thr642 and Ser588 on AS160 
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are the primary regulatory residues for insulin-stimulated GLUT4 translocation recognized by 

the PAS antibody.  The attenuated GLUT4 translocation associated with 4P-AS160 was rescued 

with the overexpression of a mutant AS160 that had the 4P mutation in addition to an inactivated 

GAP domain (due to the mutation of a key arginine site Arg973, to a Lys; 4P + R/K-AS160; 

where R = Arg and K = Lys).  These data demonstrate the importance of a functional GAP 

domain for AS160’s restraint of GLUT4, and AS160’s importance for insulin-stimulated glucose 

uptake in adipocytes.   

AS160 has also been shown to be important for both ex vivo and in vivo insulin-

stimulated glucose transport in skeletal muscle (30).  For insulin-stimulated phosphorylation of 

AS160 to be physiologically relevant, the kinetics for the phosphorylation and dephosphorylation 

of AS160 must coincide with the rapid changes in glucose transport in the presence and absence 

of insulin.  Thus, kinetics experiments were performed ex vivo using isolated rat epitrochlearis 

muscles in order to test this hypothesis.  These experiments revealed that insulin rapidly 

increases AS160’s phosphorylation (within 10 minutes of exposure to insulin) in a dose-

dependent manner, which was consistent with insulin-stimulated increases in glucose transport 

and Akt phosphorylation (24).  When incubated muscles were pre-treated with insulin and 

subsequently transferred to a secondary vial containing media without insulin, the 

phosphorylation of AS160 was essentially fully reversed within 20 minutes, in coordination with 

reduced glucose uptake and Akt phosphorylation (154).  Additionally, when muscles were 

incubated with insulin and the PI3K inhibitor wortmannin, both AS160 phosphorylation and 

glucose transport were eliminated (24, 50).  In vivo experiments found that an 8-fold increase in 

the expression of wild-type (WT) AS160 in the mouse tibialas anterior compared with the 

control muscles had no effect on insulin-stimulated glucose uptake (96).  Overexpression of 4P-

AS160 mutant in the TA, thereby eliminating the ability of AS160 to be phosphorylated on four 

Akt responsive phosphomotifs, versus the control muscle resulted in a 50% reduction in insulin-

stimulated glucose uptake.  Insulin-stimulated glucose uptake was restored to control levels 

when the 4P + R/K-AS160 double mutant (mutated 4 Akt phosphor-motifs by substitution of 

alanine for serine or threonine and lacking a functional GAP domain) was over expressed, 

suggesting that the phosphorylation of the four Akt motifs are important for regulating AS160’s 

GAP activity in response to insulin.  These data provide evidence that AS160 is pertinent for 

regulation of insulin-stimulated glucose transport in skeletal muscle.   
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RuvB-Like Protein 2 (RUVBL2), also known as Reptin or Tip48, an ATP-binding 

protein that belongs to the AAA+ (ATPase Associated with diverse cellular Activities) family of 

ATPases (6), was identified as a protein that physically associates with AS160 in 3T3-L1 

adipocytes.  RUVBL2 complexes with Pontin to form a double hexamer complex.  Based on the 

structure of this complex, it is believed to act as a DNA helicase and play a role in DNA repair 

(56, 75, 84).  Often studied for its role in the development of cancer, RUVBL2 expression is 

greatly increased in tumors, has been shown to repress β-catenin-T-Cell Factor transcriptional 

activity and possibly regulate Wnt signaling (known for its role in embryogenesis and cancer) 

(13, 130, 177).  It was previously revealed that RUVBL2 expression and cellular localization in 

testicular germ cells was altered by media differing in glucose concentration, suggesting a 

possible relationship between glucose metabolism and RUVBL2 (113).   In 3T3-L1 adipocytes, 

genetic depletion of RUVBL2 was associated with both a decrease in insulin-stimulated AS160 

phosphorylation and glucose uptake (187).  This study also showed that epididymal fat pads 

from obese diabetic KKAy mice had dramatically reduced RUVBL2 expression compared to 

normal controls, but they did not measure insulin-stimulated glucose uptake in the fat pads from 

the KKay mice.  The available data suggest that the abundance of RUVBL2 may be related to 

insulin signaling and action in adipocytes, but data for RUVBL2 in skeletal muscle is lacking.  

The Tethering protein containing an UBX-domain for GLUT4 (TUG) has also been 

suggested as a possible regulator of insulin-stimulated glucose transport.  Bogan et al. identified 

TUG as a putative GLUT4 binding protein while performing a functional screen for insulin 

responsive proteins in Chinese Hamster Ovary cells (17).   They found that GLUT4 can be co-

immunoprecipitated with TUG, and results from immunohistochemistry experiments suggest that 

the two proteins are colocalized intracellularly.  It was determined that the UBX-C terminus 

fragment of TUG can bind GLUT4, but the UBX-C terminus fragment lacks the region of TUG 

that sequesters the TUG-GLUT4 complex intracellularly.  When the UBX-C terminus fragment 

is overexpressed it acts as a dominant negative regulator of full length TUG, binding with 

GLUT4 but not allowing GLUT4 to be retained intracellularly, resulting in increased GLUT4 

localized near the plasma membrane.  They determined that the UBX domain is necessary for the 

binding of GLUT4 and TUG does not bind GLUT1.  In addition, structural comparisons of 

TUG’s UBX domain with other proteins that have the ability to bind GLUT4 suggest that TUG 

binds GLUT4’s large cytoplasmic loop between the sixth and seventh transmembrane domains. 



14 
 

In the absence of insulin, TUG has been shown to bind and retain GLUT4 intracellularly 

in 3T3-L1 cells, and the addition of insulin results in a reduction of TUG’s intracellular retention 

of GLUT4 (17). The shRNA knockdown of TUG expression resulted in an increase in both basal 

and insulin-stimulated glucose uptake in adipocytes compared to control cells, and the 

overexpression of wild-type TUG in combination with shRNA knockdown was able to rescue 

both basal and insulin-stimulated glucose uptake to similar levels as control cells (192).  

Consistent with the data from adipocytes, in both L6 myotubes and mouse skeletal muscle 

overexpressing a myc-tagged GLUT4 (GLUT4myc), TUG associates with GLUT4 without the 

addition of insulin determined by co-immunoprecipitation (151).  When insulin was added to the 

L6 myotubes or injected into transgenic mice, there was a rapid decrease in the amount of TUG 

that co-immunoprecipitated with GLUT4myc in comparison to the non-insulin treated cells or 

mice.  A recent study using adipocytes expressing GLUT4-GFP confirmed previous studies in 

3T3-L1 cells, shRNA knockdown of TUG increased GLUT4-GFP near the plasma membrane 

and decreased the amount of intracellular bound GLUT4-GFP in the absence of insulin 

compared to control cells, and overexpression of TUG rescued the control phenotype (188).  

These data support the hypothesis that in the absence or low insulin concentration TUG restrains 

GLUT4 intracellularly, and addition of insulin result in the disassociation of GLUT4 from TUG 

allowing for increased GLUT4 translocation to the plasma membrane. 

To summarize, the proximal insulin signaling steps that regulate glucose transport have 

been relatively well characterized.  However, distal insulin signaling steps are not as well 

understood.  Evidence suggests that the phosphorylation of AS160 on key phospho-motifs in 

response to insulin is important for regulating GLUT4 translocation in both adipocytes and 

skeletal muscle.  In adipocytes the level of insulin-stimulated AS160 phosphorylation may be 

dependent on the total protein abundance of RUVBL2, but it is not known if this relationship 

holds true in skeletal muscle.  The GLUT4 binding protein TUG has been shown to physically 

associate with GLUT4 in both adipocytes and skeletal muscle, and evidence suggests that TUGs 

intracellular restraint of GLUT4 is insulin dependent.  However, the mechanism for the insulin-

stimulated release of GLUT4 from TUG is not known.      
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Contraction-stimulated Glucose Transport 

 It has been repeatedly shown that a muscular contraction can increase glucose transport 

into the muscle cell independent of insulin, and contraction and insulin-mediated glucose 

transport have been shown to occur via distinct mechanisms (16, 49, 52, 81, 97, 136-137, 186).  

It is generally well accepted that contraction-mediated glucose transport results from increased 

intracellular calcium concentrations and the activation of the AMP activated protein kinase 

(AMPK), independent of the activation of the IRS-1/PI3K pathway observed with insulin 

stimulation.  However, evidence suggests that the activation of the distinct insulin and 

contraction pathways may converge at AS160 and its paralog protein TBC1D1 (Tre-2/USP6, 

BUB2, cdc16 domain family, member 1).   

Muscle contraction (during in vivo exercise, in situ electrical stimulation, or ex vivo 

electrical stimulation) results in an increase in calcium release from the sarcoplasmic reticulum, 

increasing the concentration of calcium around the myofibrils.  Calcium then binds troponin, 

exposing myosin binding sites on actin, allowing for the myosin head to bind actin.  When 

adenosine triphosphate (ATP) binds to the myosin head it is hydrolyzed to adenosine 

diphosphate (ADP) and inorganic phosphate (Pi).  The energy released from the hydrolysis of 

ATP results in the disassociation of the myosin head from actin, “cocking” it in preparation for 

the “power stroke,” which results in muscle contraction.  Once the power stroke is complete, 

ADP is released from the myosin head and if calcium concentration remains elevated, then 

additional muscle contractions will occur.  With muscle contractions (during exercise or 

electrical stimulation), cellular adenosine monophosphate (AMP) concentrations can increase, 

leading to the activation of the AMP-activated protein kinase (AMPK).  AMPK is often 

described as an “energy sensing protein,” and is activated when the energy balance is disrupted 

(decreased ATP and increased AMP concentrations) (63, 139, 141).  Activation of AMPK is 

widely believed to play a key role in contraction-stimulated GLUT4 translocation, allowing for 

increased glucose uptake into the cell.  Although the exact mechanism is not known, AMPK may 

regulate glucose uptake independent of insulin by regulating the phosphorylation of AS160 

and/or TBC1D1 allowing for greater GLUT4 translocation (30, 32, 52, 63, 79).  AS160 and 

TBC1D1 are approximately 41 percent identical over the length of the entire proteins, and their 

GAP domains 79% identical (138).  TBC1D1, like AS160, retains its target Rabs in their inactive 
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GDP-bound form.  Phosphorylation of specific sites inhibit TBC1D1’s GTPase activity, allows 

for the conversion of Rabs to their active GTP-bound form and enables GLUT4 vesicles to 

translocate. 

Due to the structural similarity of AS160 and TBC1D1 and the fact that phosphorylation 

of both proteins is elevated in response insulin and contraction, it is has been suggested that 

AS160 and TBC1D1 may each participate in both insulin- and contraction-stimulated glucose 

uptake in skeletal muscle.  However, multiple lines of evidence suggest that increased AS160 

phosphorylation is not essential for contraction-mediated glucose transport.  In humans muscle, 

AS160 phosphorylation was not increased following 10 or 30 min of endurance exercise at 67% 

VO2Peak, when increase glucose uptake would be expected (167).   When isolated rat 

epitrochlearis muscles were electrically stimulated to contract ex vivo, glucose transport was 

increased in association with greater TBC1D1 and AS160 phosphorylation (24, 50).  However, 

in muscles that were incubated with wortmannin (an inhibitor of PI3K), contraction-mediated 

glucose uptake and TBC1D1 phosporylation were unaltered (50), but AS160 phosphorylation 

was eliminated (24, 50).  When muscles were incubated with Compound C (an AMPK inhibitor), 

contraction-induced increases in both TBC1D1 phosphorylation and glucose transport were 

eliminated, while AS160 phosphorylation remained elevated (50).  Similarly, incubation with N-

benzyl-p-toluenesulfonamide (BTS; a highly specific myosin type II inhibitor) resulted in a 57% 

reduction in contraction-stimulated glucose transport and eliminated TBC1D1 phosphorylation 

(16).  These data suggest that although both AS160 and TBC1D1 can both be phosphorylated in 

response to contraction, TBC1D1 phosphorylation may be required, but AS160 phosphorylation 

is not (30).   

 Regulation of insulin-independent glucose uptake in response to muscle contraction is 

complex, with multiple signaling pathways likely being important.  The elevated calcium levels 

that initiate muscle contraction can activate the signaling proteins calmodulin activated protein 

kinase II (CaMKII) and  calmodulin activated protein kinase kinase (CaMKK) via calmodulin, a 

calcium sensing protein, resulting in increased glucose transport independent of AMPK 

activation (16, 30, 79, 139, 141).  Both TBC1D1 and AS160 have calmodulin binding domains 

that may participate in their restraint on the GLUT4 vesicle in response to elevated calcium 

concentrations (30).  It should be noted that although calcium-calmodulin dependent processes 
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may be important for contraction-stimulated glucose uptake, it remains controversial whether 

increased calcium concentration alone is sufficient to increase skeletal muscle glucose transport 

(69, 79-80, 186).  

 Although calcium and AMPK are generally considered to be key stimuli for contraction-

stimulated glucose transport, other factors may also be important.  For example, reactive oxygen 

species, specific Protein Kinase C isoforms (PKC: α, β1, β2 and γ) and Sucrose Nonfermenting 

AMPK-Related Kinase (SNARK) have been implicated in possibly contributing to the complex 

regulation of contraction-mediated glucose uptake by skeletal muscle (10, 79, 94, 107-111, 139, 

141, 145).      

 

Increased Insulin Sensitivity Following Exercise in Insulin Sensitive Individuals  

 Immediately after an acute exercise bout, insulin-independent glucose transport is 

increased in skeletal muscle of healthy, insulin sensitive rats (8, 45, 137).  Within approximately 

1-3 hours after the cessation of exercise, most of the insulin-independent glucose transport by 

isolated muscles has returned to baseline levels.  At approximately 3-4 hours post-exercise 

skeletal muscle insulin sensitivity is increased compared to sedentary controls.  This increase in 

insulin sensitivity can be observed up to 48 hours following a single bout of exercise (33, 52, 

112).  The improved insulin sensitivity is the result of greater insulin-stimulated GLUT4 at the 

cell surface, rather than an increase in total GLUT4 abundance (62).  

Extensive research has been performed in insulin sensitive humans or rats to determine 

possible mechanisms that may account for the increased cell surface GLUT4 recruited by insulin 

following a single exercise bout.  Many studies have indicated that the improved insulin 

sensitivity is not due to amplification of proximal insulin signaling steps including: 1) the affinity 

of insulin binding to its receptor (18-19, 193), 2) IR tyrosine phosphorylation or kinase activity 

(164, 166, 181), 3) IRS-1 tyrosine phosphorylation (pTyr-IRS-1) (62, 71), 4) PI3K associated 

with IRS-1 (37, 44, 182-183) and 5) Akt activation (8, 47, 52, 58, 181).  Unlike proximal insulin 

signaling steps, AS160 has been shown to remain phosphorylated hours after a single session of 

exercise in insulin sensitive rats.  Arias and colleagues found that in rat epitrochlearis muscle 

taken 3-4 hours after acute exercise had increased basal (absence of insulin) AS160 
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phosphorylation, measured with the PAS antibody (PAS-AS160), compared to sedentary 

controls (8).  This sustained increase in basal PAS-AS160 was apparent despite both insulin-

independent glucose transport and the phosphorylation of upstream signaling proteins (pAkt, 

pGSK3 and pAMPK) having returned to baseline (unexercised) levels.  With added insulin, 

muscles from exercise versus muscles from non-exercised rats had greater PAS-AS160 and 

increased glucose transport.  It should be noted that the greater PAS-AS160 phosphorylation 

observed with insulin in muscles from exercised rats could be at least partly accounted for by a 

sustained increase in basal PAS-AS160 observed in the contralateral non-insulin treated muscle.  

In other words, if the basal PAS-AS160 was subtracted from the contralateral muscle’s PAS-

AS160 with insulin, there was no difference in delta PAS-160 [delta PAS-AS160 = (PAS-AS160 

with insulin) – (PAS-AS160 without insulin)] among the muscles from the exercised and 

sedentary rat.  This was the first evidence to show that elevated PAS-AS160 in the hours 

following exercise in muscle was associated with increased insulin sensitivity.   

In lean humans, Sriwijitkamol et al. found that in skeletal muscle PAS-AS160 was 

sustained 40 and 150 minutes following cycling exercise, but they did not measure glucose 

uptake (158).  Therefore, they were unable to determine if the increased PAS-AS160 was 

associated with increased insulin-stimulated glucose disposal or if the residual insulin-

independent glucose uptake was still present.  A subsequent study found a sustained increase in 

AS160 phosphorylation in skeletal muscle samples taken from healthy men four hours after 

performing one-legged knee extensor exercise compared to the muscle sampled from the 

contralateral resting leg (168).  Non-insulin-stimulated AS160 phosphorylation (pAS160) was 

increased in the exercised leg versus the non-exercised leg on four phospho-serine sites of 

AS160 (Ser-318, Ser-341, Ser-588 and Ser-751).  However, they did not observe a sustained 

increase on AS160 phosphorylation for PAS-AS160, Thr-642, or Ser-666.   Insulin increased 

AS160 phosphorylation measurements in both the sedentary and exercised leg for all of the 

separate phosphosites measured (Thr-642, Ser-666, Ser-318, Ser-341, Ser-588, Ser-751) and also 

using the PAS antibody.  In the exercised versus non-exercised leg, there was greater insulin 

phosphorylation observed on the Ser-318, Ser-341, Ser-588 and Ser-751 residues (sites that had 

sustained phosphorylation without insulin).  Consistent with the data from rats, the increased 

phosphorylation of AS160 with insulin in the exercised leg was due to the increased residual 
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phosphorylation, without greater sensitivity of AS160 phosphorylation to insulin (delta pAS160 

was not altered by exercise) (8, 168).  

The increased insulin sensitivity post-exercise can last as long as 48 hours (33, 52, 112), 

and the time-course of the reversal for the increased insulin sensitivity can be accelerated by 

post-exercise carbohydrate intake (33, 52).  Three hours after acute exercise rat epitrochlearis 

muscles had increased insulin sensitivity, measured by glucose transport (33).  However, 18 

hours after the exercise bout, muscles from rats that were fed either rat chow (~60% 

carbohydrate) or 100% carbohydrates no longer had increased insulin sensitivity.  On the other 

hand, muscles from rat that were not fed carbohydrate (fed lard or fasted) for the 18 hours 

following exercise retained the increased insulin sensitivity.  This phenomenon was revisited by 

Funai et al. to determine if the carbohydrate induced reversal of improved insulin sensitivity 

following exercise also reversed the sustained increase in pAS160 (52).  They observed in rats 

that were fasted following exercise, both insulin-stimulated glucose transport and pAS160 

(pThr642 and PAS) were elevated at 3 hours and 27 hours after exercise.  However, when rats 

were allowed free access to chow after exercise, both improved insulin sensitivity and AS160 

phosphorylation reversed to non-exercise levels.  Although these data did not prove that greater 

AS160 phosphorylation is necessary for increased insulin-stimulated glucose transport, they are 

consistent with this idea. 

TBC1D1 has also been assessed for its possible role in the post-exercise increase in 

insulin sensitivity using the PAS antibody.  Despite the evidence suggesting TBC1D1 

importance for contraction-stimulated glucose uptake and TBC1D1’s structural similarities to 

AS160, there was no sustained TBC1D1 phosphorylation without insulin nor was there elevated 

TBC1D1 phosphorylation with insulin 3-4 hours following exercise.  Therefore, it does not 

appear that TBC1D1 phosphorylation, at least not on sites recognized by PAS, is important for 

the improved insulin sensitivity following exercise.  

To summarize, skeletal muscle insulin sensitivity is improved in the hours following a 

single session of exercise.  Many studies have demonstrated the increased insulin sensitivity does 

not appear to be due to enhanced proximal insulin signaling or greater TBC1D1 phosphorylation.  

Interestingly, AS160 phosphorylation has been shown to be increased hours after the exercise 

bout.  AS160 is the only insulin signaling protein that has been identified to have greater 
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phosphorylation with insulin hours after the exercise bout. However, the mechanism for the 

sustained increase in AS160 phosphorylation after exercise has not been identified. 

     

Possible Mechanism for High Fat Diet-induced Insulin Resistance 

 High fat diet-induced obesity is accompanied by insulin resistance, but the mechanism is 

not fully understood (114).  Both obesity and insulin resistance are prevailing risk factors for 

developing T2DM (48, 132).  In the obese state, fatty acid availability is increased due to 

increased fatty acid flux (greater breakdown and uptake) compared to lean insulin sensitive 

individuals.  The greater fatty acid availability is associated with increased fatty acid storage in 

ectopic tissue (i.e., skeletal muscle, liver and pancreas).  In skeletal muscle the accumulation of 

fatty acids either induced by diet or lipid infusion is associated with insulin resistance (67, 86, 

148, 156, 191).  The decrease in insulin-stimulated glucose transport is believed to result from 

impaired insulin signaling leading to reduced translocation of GLUT4 to the cell’s surface.  A 

commonly cited model for fatty acid induced insulin resistance in skeletal muscle is that fatty 

acid accumulation results in increased fatty acid intermediates, primarily diacylglycerol (DAG) 

and/or ceramides.  Elevated DAG levels then activate serine kinases (Protein Kinase C-Theta, 

PKC-θ, and c-Jun N-terminal Kinase, JNK), which phosphorylate IRS-1 on inhibitory serine 

sites (pIRS-1Ser), thereby reducing subsequent steps of insulin signaling (decreased PI3K activity 

and association with IRS-1 and decreased Akt activation), resulting in less GLUT4 translocation 

and glucose transport.  Ceramides, on the other hand, appear to act downstream of IRS-1 and 

may increase the activity of Ser/Thr protein phosphatases responsible for dephosphorylating Akt.    

Although obesity results from chronic (months to years) energy surplus resulting from 

excessive caloric intake and/or inadequate physical activity leading to increased adiposity, 

insulin resistance can be observed with short term (days or weeks) high calorie feeding (typically 

via high fat diet; HFD) or acute lipid infusion (hours) (22, 91, 95, 102, 159, 170, 176, 191).  A 

study from Gerald Shulman’s group demonstrated that the insulin resistance observed with a 

lipid infusion was associated with increased DAG in skeletal muscle of rats (191).  They 

postulated that fatty acid accumulation was necessary for the lipid induced insulin resistance 

because reductions in insulin signaling (decreased pIRS-1Tyr, decreased PI3K associated with 
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IRS-1, and increased pIRS-1Ser) and glucose uptake were not apparent until five hours of lipid 

infusion.  Concomitant with the reduced insulin signaling they observed an increase in acyl-CoA, 

DAG and membrane associated PKC-θ, but no increases in ceramides or triacylglycerol (TG) in 

skeletal muscle.  They proposed that the rise in DAG was responsible for the activation of the 

serine kinase PKC-θ, leading to the increased pIRS-1Ser [which was previously shown to inhibit 

insulin signaling (2)] and fatty acid-induced insulin resistance.  In support of this hypothesis, in 

obese humans intramyocellular DAG concentrations obtained from skeletal muscle was shown to 

be a predictor of insulin resistance (116).  Additionally, insulin resistance in high fat fed mice 

was associated with the increased levels of DAG, PKC-θ and JNK (101).   

 DAG is a fatty acid intermediate that is composed of a glyceride backbone attached to 

two fatty acid chains and is produced through multiple mechanisms: 1) the addition of a fatty 

acid group from fatty acyl-CoA by the enzyme monoacylglycerol acyltransferase to 

monoacylglycerol to form DAG, 2) the hydrolysis of TG by lipases to form DAG and 

acylglycerol, 3) the hydrolysis of phosphatidylinositol-4,5-bisphosphate by phospholipase C to 

form DAG and inositol-1,4,5-triphospate (IP3) and 4) during the formation TG when 

lysophosphatidic acid is converted to phosphatidic acid by 1-acylglycerol-3-phosphate 

acyltransferase and either becomes a phospholipid or is converted to DAG by phosphatidic acid 

phosphatase to TG by DAG acyltransferase.  When fatty acids are available in excess, which 

occurs with HFD and obesity, it is hypothesized that the accumulation of DAG is attributable to 

incomplete fatty acid oxidation or incomplete conversion of fatty acids to TG for storage (11, 88, 

115, 117, 149-150).  Once formed, DAG can become embedded in the plasma membrane, 

thereby increasing the affinity of PKC-θ to the membrane and stabilizing PKC-θ in its active 

conformation (148, 156).  

PKC-θ is a novel isoform (characterized by a lack of a calcium-binding site in the C2 

domain of the regulatory N-terminal region) that can be maximally activated by DAG 

independent of calcium.  Because PKC-θ is a serine kinase that can increase pIRS-1Ser and PKC-

θ is activated by DAG, numerous studies have investigated PKC-θ role in diet induced insulin 

resistance (57, 100).  Oakes et al. found that high fat fed rats that had been treated with the 

thiazolidinedione BRL-49653 had improved insulin-stimulated glucose uptake and reduced 

circulating fatty acids compared to the control group (121).  It was later found that BRL-49653 
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reduces the amount of membrane associated PKC-θ (152).  Muscle PKC-θ activity was 

approximately 5-fold greater in type 2 diabetic patients compared to non-diabetic controls (76), 

and PKC-θ knockout mice were protected against insulin resistance induced by lipid infusion 

(90).   

JNK is a serine kinase that represents a subfamily of mitogen-activated protein kinases 

(MAPK) that are activated by specific MAPK kinases (MAPKK).  JNK activity is also believed 

to be increased by non-esterified fatty acids (57, 87) and it has been suggested that PKC-θ may 

also increase JNK activity (100) based on findings in T-cells (5).  However, the mechanism for 

this is not fully understood.  Several studies have shown that in conditions of increased fatty acid 

availability (high fat feeding, lipid infusion and genetic models of obesity), activation of JNK is 

increased along with elevated pIRS-1Ser, and these changes are accompanied by reduced insulin 

signaling (57, 66, 87).  Hirosumi et al. showed that both high fat fed and ob/ob (a genetic model 

of obesity) mice had significantly increased JNK activity in skeletal muscle, liver and adipose 

tissue, with reduced glucose and insulin tolerance and increased pSer-IRS-1 (66).  Heterozygote 

(JNK+/-) and homozygote JNK knockout (JNK-/-) were protected against insulin resistance 

associated with HFD, and ob/ob mice with JNK-/- had improved insulin tolerance (66).  

However, recent studies have demonstrated varying results with respect of muscle specific 

deletion of JNK.  Sabio and colleagues found that skeletal muscle specific ablation of JNK in 

mice protected skeletal muscle insulin-mediated glucose uptake in response to HFD (143).  On 

the other hand, results from Pal et al. show that skeletal muscle specific deletion of JNK did not 

improve glucose metabolism and insulin sensitivity in mice fed a HFD (124).  

In summary, skeletal muscle insulin resistance associated with excess dietary fat intake is 

believed to result from muscle lipid accumulation.  Particularly, increased concentrations of the 

fatty acid intermediates DAG and ceramides in muscle are believed to facilitate the activation of 

inhibitory serine kinases (JNK and PKC-θ).  These inhibitory kinases can lead to increased pIRS-

1Ser, thereby reducing downstream insulin-mediated GLUT4 translocation and glucose uptake.      
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Increased Insulin Sensitivity following Acute Exercise in Insulin Resistant Individuals  

Several studies have shown that acute exercise can improve insulin sensitivity in insulin 

resistant humans.  These studies demonstrated that different modes of acute exercise [cycle 

ergometer (43, 155), treadmill walking (27), and stair climbing (127)] can increase whole body 

glucose disposal measured by the hyperinsulinemic-euglycemic clamp.  However, none of these 

studies examined possible mechanisms that may account for improved insulin sensitivity.  

Apparently the only study to perform insulin signaling measurements in insulin-stimulated 

skeletal muscle following acute exercise in insulin resistant humans was performed by Cusi and 

colleagues (37).  Following a single session of exercise on a cycle ergometer, they found 

improved insulin-stimulated tyrosine phosphorylation of both the insulin receptor and IRS-1, but 

they did not observe a statistically significant improvement in insulin-stimulated glucose 

disposal.  However, there was a non-significant trend for an ~50% greater glucose disposal post-

exercise versus pre-exercise.  In summary, several studies show that acute exercise can improve 

insulin sensitivity in insulin resistant humans, but the mechanism for this phenomenon has not 

been identified.   

Numerous studies have investigated the improved insulin sensitivity after exercise in 

insulin resistant and diabetic rats, but much is still unknown about the underlying mechanisms.  

Insulin-stimulated glucose uptake, measured by hindlimb perfusion with maximally effective 

insulin, was improved up to 48 hours after exercise in Obese Zucker rats (a genetic model of 

obesity and T2DM that have a defective leptin receptor) versus lean sedentary controls (14).  

Similarly, SHHF/Mcc-Facp rats [obese spontaneously hypertensive heart failure rats with similar 

metabolic characteristics as humans with T2DM (105)] had improved whole body glucose 

disposal during a hyperinsulinemic-euglycemic clamp (using supraphysiologic insulin 

concentration) 2.5 hours after acute exercise (54).  Tanaka et al. showed that rats fed a high fat 

diet (HFD) had improved insulin-stimulated glucose transport (physiologic insulin dose) in the 

isolated soleus 2 hours after acute exercise (162).  They reported that isolated soleus muscle from 

exercised versus sedentary HFD rats had improved glucose transport and was not due to greater 

Akt phosphorylation.  Recently Mario Saad’s laboratory has investigated the improvements in 

insulin signaling and insulin-stimulated glucose disposal after acute exercise in insulin resistant 

rats that had been fed a HFD for 3 months (123, 126, 140).  With a hyperinsulinemic-euglycemic 
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clamp (physiologic insulin dose) following exercise (6 hour swim bout), both whole body and 

skeletal muscle glucose uptake in insulin resistant rats were restored to levels similar to chow fed 

sedentary rats (123, 140).  They observed that in previously exercised HFD rats versus sedentary 

HFD rats, insulin-stimulation (supraphysiologic dose) resulted in increased: insulin receptor 

tyrosine phosphorylation, pIRS-1Tyr, IRS-1-PI3K association and Akt phosphorylation (123, 126, 

140).  Interestingly, two studies from Saad’s group attributed improvements in insulin signaling 

observed in the HFD rats after exercise to be partially explained by reduced pJNK and reduced 

pSer-IRS-1 on the 307 site (pJNK can phosphorylate  IRS-1 on the Ser307 site) (123, 140).  

However, a third study from the same group observed similar improvements in insulin signaling 

(increased insulin receptor tyrosine phosphorylation, pIRS-1Tyr, IRS-1-PI3K association and Akt 

phosphorylation) in HFD rats after acute exercise (126), but they did not observe reductions in 

pJNK or pIRS-1Ser on the 307 site as reported in the other two studies (123, 140).  It is notable 

that the Saad group measured insulin-stimulated glucose disposal with a physiologic insulin 

dose, but all of the insulin signaling measurements were performed using a supraphysiologic 

insulin dose.  Therefore, it is not clear if the post-exercise induced improvements in insulin 

signaling were relevant to the observed improvements in glucose disposal.    

To summarize, multiple studies in insulin resistant rats (14, 54, 123, 126, 140, 162)  or 

humans (27, 43, 127, 155) have shown that different modes of acute exercise can improve insulin 

sensitivity.  The only study that performed insulin signaling measurements in insulin resistant 

humans found that proximal insulin signaling was improved in biopsies from the vastus lateralis 

after exercise, but whole body glucose disposal was not significantly increased (37).  In 

gastrocnemius muscles from insulin resistant rats, two studies found that improved insulin-

stimulated glucose uptake (physiologic insulin dose) following acute exercise was associated 

with reduced pJNK and improved proximal signaling (supraphysiologic insulin dose) (123, 140).  

A third study from this group also observed improved proximal insulin signaling 

(supraphysiologic insulin dose) in the gastrocnemius following exercise, but they did not find a 

reduction in pJNK (126).  However, with a physiologic insulin concentration, Tanaka et al. found 

that after acute exercise insulin-stimulated glucose uptake was improved in the soleus muscle 

from insulin resistant rats without improved Akt phosphorylation (162).  To date, no study of 

insulin resistant individuals has evaluated the effect of acute exercise on muscle glucose uptake 
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and the signaling at key proximal (insulin receptor and Akt) and distal (AS160) steps with a 

physiologic insulin dose.  

 

Differences in Exercise Effects on Insulin Signaling of Insulin Sensitive versus Insulin 

Resistant Muscle 

Available data suggest that improvements in insulin-stimulated glucose transport 

following a single session of exercise in both insulin sensitive and insulin resistant individuals 

may occur via distinct mechanisms.  A large amount of data on insulin sensitive rats or humans 

reveals that the improved insulin sensitivity following an acute exercise bout is apparently not 

due to increased affinity of insulin to its receptor (18-19, 185, 193), insulin receptor tyrosine 

kinase activity (165-166, 181, 185), pIRS-1Tyr (62, 71, 185), PI3K associated with IRS-1 (165, 

181, 185), or Akt activation (71, 181, 185).  Instead, in insulin sensitive rats, improved insulin-

stimulated glucose transport is accompanied by a sustained increase in pAS160 (8, 30, 51-52, 

168).  In high fat fed rats, limited data suggest that the improved insulin sensitivity following 

acute exercise may occur by reducing pIRS-1Ser (123, 140) and restoring proximal signaling 

steps by increasing pIRS-1Tyr (123, 126, 140), thereby reversing the inhibition induced by high 

fat feeding.  In these studies a supraphysiological dose of insulin was used for the insulin 

signaling measurements.  Therefore, it is not known if these results will be observed at a 

physiologically relevant insulin concentration.  It would be valuable for a study to investigate the 

mechanism for improved skeletal muscle insulin sensitivity following acute exercise in both 

insulin sensitive rats and high fat fed insulin resistant rats using a physiologic insulin 

concentration and the inclusion of sedentary and exercise rats from both diet groups (i.e., chow 

fed sedentary, HFD fed sedentary, chow fed exercise, and HFD fed exercise).  

 

Heterogeneity of Skeletal Muscle 

The capacity for contraction-mediated and insulin-mediated glucose uptake, as well as 

other metabolic characteristics, can vary greatly in different skeletal muscles.  This variability 

appears to be related to differences in muscle fiber type composition.  Prior to the identification 
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of myosin heavy chain (MHC) isoforms, muscles were often classified by color (red or white), 

contractile speed (slow- or fast-twitch), or by contractile speed and oxidative capacity [Slow 

Oxidative (SO), Fast Oxidative Glycolytic (FOG), or Fast Glycolytic (FG)].  SO muscles are rich 

in MHC-I fibers, FOG muscles are rich in MHC-IIa fibers, and FG muscles are rich in MHC-IIb. 

The histochemical staining and MHC schemes for fiber type classification do not coincide 

perfectly with each other.  Often there appears to be a high level of correspondence between SO 

and MHC-I fibers, and a moderate, but more variable level of correspondence for FOG with 

MHC-IIa and FG with MHC-IIb fibers (41).   One source of disparity between these schemes is 

that rat skeletal muscle also expresses MHC-IIx, and the subjectivity of earlier fiber typing 

techniques often results in inconsistency with IIx fibers being identified as either MHC-IIa or 

MHC-IIb, depending on the method used.  As a result, fiber typing via the MHC isoform 

expression is considered the “gold-standard” for determining muscle fiber type.  Identification of 

the correct fiber type is important because MHC isoforms have been associated with differences 

in metabolic phenotypes observed among various muscles.   

Glucose Uptake in Response to In Vivo Exercise without Insulin Infusion 

 Few studies have measured the effects of in vivo exercise on insulin-independent glucose 

transport in different muscles of varying fiber type.  In these studies the insulin-independent 

glucose uptake immediately after a single session of exercise was greatest in the soleus (SOL: a 

muscle rich in SO fibers), followed by the deep red region of the gastrocnemius (Gas R: muscle 

region rich in FOG fibers) and the white region of the gastrocnemius (Gas W: a muscle region 

rich in FG fibers) (SO > FOG > FG) (78, 137).  However, these results should be interpreted 

with caution.  For in vivo measurements for insulin-independent glucose uptake, although no 

exogenous insulin is infused, endogenous levels of insulin are still present.  Non-uniform 

recruitment during in vivo exercise of the muscles studied and differences in blood flow to the 

various muscles are additional factors that complicate the interpretation of these results.  

Additionally, the muscles or regions of muscles used to represent a given fiber type are not pure 

representations of any one fiber type.   
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Contraction-stimulated Glucose Uptake in Response to In Situ Electrical Stimulation  

 During in vivo exercise, muscle differences in glucose uptake depend in large part on the 

level of recruitment of the different muscles.  To minimize recruitment differences between 

muscles, multiple studies have utilized in situ electrical stimulation of the sciatic nerve of 

anesthetized rats, in combination with the hindlimb perfusion technique, to assess the 

relationship between skeletal muscle fiber type and contraction-stimulated glucose uptake in the 

absence of insulin.  However, several studies using this technique have reported divergent results 

for contraction-mediated glucose uptake with respect to muscle fiber type [FG > FOG > SO 

(128-129, 133), FOG > SO > FG (23, 60, 184), FG > FOG > FG > SO (131), FG > SO ≥ FOG > 

FG (82) or FOG > FG > SO (42)].  Although it is not clear what accounts for the diverse results, 

differences in glucose delivery to the various muscles studied and/or variations in electrical-

stimulation protocols are potential factors.    

Insulin-Independent Glucose Uptake in Response to Ex Vivo Electrical Stimulation 

 Another approach for investigating fiber type relationships with contraction induced 

glucose uptake has been the use of intact isolated skeletal muscles with different fiber type 

profiles.  Ex vivo experiments on isolated skeletal muscles allow for a highly controlled 

environment in order to assess the intrinsic properties of the muscles, free from confounding 

influences related to humeral factors, nutrient delivery via vasculature and neuromuscular 

recruitment.  In isolated intact skeletal muscles predominantly composed of a given fiber type 

electrically stimulated to contract ex vivo, the consensus for the relationship between fiber type 

and insulin-independent glucose uptake is that FOG > FG ≥ SO (3-4, 64, 73-74).  Each of these 5 

studies reported that contractions stimulated glucose uptake was greater for the FDB versus the 

soleus and/or epitrochlearis.  There was variability in ranking the contraction-stimulated glucose 

uptake for the epitrochleairs and soleus:  Henriksen et al. had soleus > epitrochlearis (64), 4 other 

studies had epitrochlearis > soleus (3-4, 73-74).  Although ex vivo electrical stimulation of 

isolated skeletal muscles allows for the greatest control, the possibility cannot be ruled out that 

the differences reported in these various muscles are due to muscle differences (e.g. 

epitrochlearis versus soleus versus flexor digitorum brevis) that are not exclusively attributable 

to fiber type specific differences.  
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 To summarize, the differences in contraction-stimulated glucose uptake among different 

skeletal muscles may be fiber type dependent.  In vivo exercise appears to result in greater 

insulin-independent glucose uptake in muscles rich oxidative fibers versus muscles rich in 

glycolytic fibers (SO > FOG > FG).  Experiments that measured glucose uptake following in situ 

contraction in the perfused hindlimb have not revealed a consistent fiber type relationship for 

insulin-independent glucose uptake.  In isolated intact rat skeletal muscles electrically stimulated 

to contract ex vivo, multiple studies consistently show insulin-independent glucose uptake in 

different muscles of varying fiber type have the following rank order: FOG (flexor digitorum 

brevis) > FG (epitrochlearis) ≥ SO (soleus).  Ex vivo experiments allow muscle to muscle (e.g., 

flexor digitorum brevis versus epitrochlearis) comparisons to be made free from exogenous 

factors that are present in both in vivo and in situ models.  However, no muscle is a pure 

representation of one fiber type (or cell type).  As a result, these findings do not allow for direct 

muscle fiber type comparisons (e.g., MHC-IIa versus MHC-IIb) in relation to contraction-

stimulated glucose uptake.      

Addressing Fiber Type Differences in Skeletal Muscle 

Much is still not known about the fiber type specific characteristics for insulin-

independent glucose uptake following muscle contraction.  Recently our group has developed 

and validated a novel method for determining both glucose uptake and fiber type (via myosin 

heavy chain expression) for isolated single muscle fibers from rat epitrochlearis muscles (103).  

By using the isolated epitrochlearis electrically stimulated to contract ex vivo, the single fiber 

method allows for direct fiber type comparisons for insulin-independent glucose uptake for the 

first time.  

 

Rationale for Research Models Used in this Thesis 

Chow fed and high fat fed Wistar rats were evaluated for several potential mechanisms 

that may be important for the post-exercise increase in insulin-stimulated glucose transport by 

skeletal muscle.  There is a large body of evidence showing that isolated epitrochlearis muscles 

from lean Wistar rats have improved insulin sensitivity following a single bout of exercise (8, 

30-31, 44, 51-52, 62, 175).  Metabolic impairments associated with high fat feeding in Wistar 
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rats are similar to those observed with in obese humans (22, 25-26, 92, 180).  For example high 

fat feeding in rats: 1) induces skeletal muscle insulin resistance and impaired whole body glucose 

tolerance (89, 176),  2) increases plasma triglyceride and non-esterified fatty acids (122, 180), 3) 

increases body mass (34, 157, 171), 4) increases adiposity  (26, 91, 157) and  5) induces insulin 

resistance without altering GLUT4 total abundance (59, 61).  

Study 1 used 12 muscles or regions of muscles of varying fiber type composition 

(adductor longus, extensor digitorum longus, epitrochlearis, mixed gastrocnemius, red 

gastrocnemius, white gastrocnemius, plantaris, soleus, red tibialis anterior, white tibialis anterior, 

tensor fasciae latae and white vastus lateralis).  These muscles or regions of muscles were chosen 

because they represent the spectrum of muscle fiber type composition that can be found in the 

rat, from muscle almost entirely composed of Type I fibers (soleus and adductor longus) to 

muscle that are almost entirely composed of Type IIb fibers (white vastus lateralis), as well as 

other muscles of mixed fiber type composition. 

The epitrochlearis muscle was isolated and incubated ex vivo for Studies 2 and 3.  For 

Study 2, the epitrochlearis was electrically stimulated to contract in order to investigate the 

relationship between skeletal muscle fiber type and insulin-independent glucose uptake.  Study 3 

used the epitrochlearis to investigate the signaling events associated with improved skeletal 

muscle insulin sensitivity in chow fed and high fat fed rats following acute exercise.  The 

epitrochlearis was used because it is a thin muscle, approximately 25 fibers thick, located in the 

forelimb of the rat, and it is recruited during swim exercise (indicated by AMPK activation, 

glycogen depletion and increased glucose transport) (8, 85, 174).  The epitrochlearis is ideal for 

ex vivo incubation experiments, because its geometry allows for adequate diffusion of nutrients 

into the muscle, it has been shown to be viable with ex vivo incubation (174),  electrical 

stimulation increases insulin-independent glucose transport (174) and it can be used for single 

fiber isolation to measure glucose uptake and fiber type (103).  Additionally, the fiber type 

composition of the epitrochlearis (15% MHC-I, 20% MHC-IIa, 65% MHC-IIb) is similar to the 

fiber type of the entire hindlimb muscle mass (5% MHC-I, 19 % MHC-IIa, 76% MHC-IIb) in the 

rat (9, 174).    

For Study 3, swim exercise was chosen because a single bout of swimming has been 

shown to consistently increase skeletal muscle insulin stimulated-glucose uptake in lean (8, 33, 



30 
 

51-52) and obese rats (14, 123, 126, 140).  The effects of a single bout of swim exercise on the 

epitrochlearis from normal rats are similar to those observed in normal humans following aerobic 

exercise (e.g., increased insulin-independent glucose uptake immediately following exercise, 

increased insulin-stimulated glucose uptake several hours after the completion of the exercise 

bout and a sustained AS160 phosphorylation without altered proximal signaling) (104, 135, 158, 

181).   

 

Gaps to Be Filled by this Research 

In Study 1, twelve skeletal muscles of varying fiber type composition were used to 

extend knowledge about the relationship between MHC isoform composition and the abundance 

of five proteins (GLUT4, AS160, TBC1D1, RUVBL2 and TUG) that are either established or 

putative regulators of glucose transport in rat skeletal muscle.   Skeletal muscle is a 

heterogeneous tissue, and different muscles can vary greatly in their capacity for insulin- and 

contraction- mediated glucose uptake.  One of the most often cited studies regarding the 

association between skeletal muscle fiber type, and the capacity for insulin-stimulated glucose 

uptake was performed by Henriksen and colleagues (64).  The capacity for glucose uptake was 

associated with GLUT4 protein abundance based on the analysis of four different rat skeletal 

muscles.  They concluded that oxidative muscles (composed of primarily MHC-I and MHC-IIa 

fibers) compared with glycolytic muscles (composed of primarily MHC-IIb fibers) have greater 

capacity for glucose transport due to greater total GLUT4 protein abundance.  It is important to 

note that they did not perform fiber type analysis on the muscles that they studied.  Instead, fiber 

type data used were from previous publications that used different strains of rats than the rats that 

Henriksen et al. used.  The most comprehensive study to measure both GLUT4 abundance and 

fiber type composition in rat skeletal muscles was performed by Megeney et al. who evaluated 

six different muscles or muscle regions and correlated percent fiber type composition of the 

muscles (determined by ATPase staining in the same six muscles from other rats) with GLUT4 

abundance (106).  They found a significant positive correlation with percent of oxidative fibers 

(SO + FOG) and a significant negative correlation with the percent of FG fibers.  However, 

identification of the muscle’s MHC isoform expression (MHC-I, MHC-IIa, MHC-IIb and MHC-

IIx) is considered the gold standard of fiber typing muscle (20, 125).  ATPase staining is not 
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ideal because of the subjectivity of the stain and the difficult in identifying all four MHC 

isoforms present in rat skeletal muscle (i.e. Henriksen and Megeney only report MHC-I, IIa and 

IIb, and fail to identify MHC-IIx muscle fibers in their analyses).  Study 1 extended the 

knowledge from earlier studies by measuring total GLUT4 protein abundance and MHC 

expression in 12 different rat muscles or regions of muscles.  These earlier studies were 

published prior to the discovery of many of the proteins that are known or putative regulators of 

GLUT4 and glucose transport (e.g., AS160, TBC1D1, TUG and RUVBL2).  Prior to Study 1, 

there has only been one other study that examined the relationship between AS160 and TBC1D1 

total protein abundance in different rodent muscles and in relation to MHC isoform expression.  

This previous study used mice rather than rats, and it only used three skeletal muscles.  They did 

not quantitatively examine the relationship between MHC isoform expression and total 

abundance of either AS160 or TBC1D1.  Study 1 was the first investigation of the relationships 

between RUVBL2, TUG and MHC isoform expression in multiple muscles, and the first 

investigation of their relationship with other established GLUT4 regulatory proteins.  Current 

evidence indicates that the variability in glucose uptake observed in different muscles is 

associated with disparities in GLUT4 protein abundance of different fiber types.  The first major 

goal of Study 1 was to extend knowledge about the relationship between MHC isoform 

composition and the abundance of GLUT4 and other proteins (AS160, TBC1D1, RUVBL2 and 

TUG) that are either established or putative regulators of glucose transport in rat skeletal muscle.  

The second major goal of Study 1 was to determine if the abundance of any of these proteins 

were significantly associated with each other.  

In Study 2, a novel method for measuring glucose uptake by single muscle fibers from 

the isolated epitrochlearis muscles electrically stimulated to contract ex vivo was used to extend 

the knowledge on the relationship between skeletal muscle fiber type and insulin-independent 

glucose uptake.  Previous findings suggest that contraction-mediated glucose uptake may vary 

based on fiber type composition.  However, groups investigating this relationship have obtained 

conflicting results.  The complexity of in vivo conditions or perfused hindlimb preparation 

confounds to the ability to understand the effects of fiber type per se on contraction-stimulated 

glucose uptake.  Various groups utilizing a reductionist approach analyzed insulin-independent 

glucose uptake in isolated intact skeletal muscles of varying fiber type electrically stimulated to 

contract ex vivo.  In these studies, there is a general consensus that muscles rich in fast oxidative 
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fibers (MHC-IIa) versus glycolytic (MHC-IIb) tend to have greater contraction-stimulated 

glucose uptake (3-4, 64, 73-74).   However, it is unclear if the observed differences in 

contraction-mediated glucose uptake are due to skeletal muscle fiber type or if they are due to the 

intrinsic properties of the different muscles used.  Study 2 avoided these issues by determining 

MHC expression and glucose uptake in the same muscle fiber from isolated rat epitrochlearis 

muscles that have been incubated ex vivo and electrically stimulated to contract.  The first major 

goal of Study 2 was to use intact rat epitrochlearis muscles incubated ex vivo and electrically 

stimulated to contract prior to single fiber isolation and glucose uptake measurements, allowing 

for direct fiber type comparisons for contraction-stimulated glucose uptake within the same 

muscle.  The second major goal of Study 2 was to further investigate the fiber type and protein 

co-expression patterns for GLUT4, TUG, AS160, TBC1D1 and RUVBL2 at the single fiber 

level.  The third major goal of Study 2 was to determine if the abundance of any of these proteins 

are significantly correlated with each other or with other metabolically relevant proteins 

(Cytochrome C oxidase IV, COX IV; glycogen phosphorylase; glyceraldehyde-3-phosphate 

dehydrogenase, GAPDH; and filamin C). 

In Study 3, chow (low fat) fed and high fat fed rats were evaluated for potential 

mechanisms that may be important for the post-exercise increase in insulin-stimulated glucose 

transport by skeletal muscle.  It is well established that a single bout of exercise can increase 

insulin sensitivity in skeletal muscle of insulin sensitive (8, 33, 51-52, 134) and insulin resistant 

rats (14, 54, 123, 126, 140).  However, it is not clear if the improved insulin sensitivity in both 

groups occurs via the same mechanism.  For insulin sensitive rats, enhanced insulin sensitivity 

does not appear to be due to improved proximal insulin signaling steps that have been studied.  

This benefit of exercise appears to be associated with the sustained increase in AS160 

phosphorylation.  Limited data in three studies by Mario Saad’s group suggest that improved 

insulin sensitivity in insulin resistant rats following acute exercise may occur by restoring 

proximal insulin signaling secondary to a decrease in pSer-IRS-1 (123, 140).  However, in these 

studies a supraphysiological dose of insulin was used for the insulin signaling measurements.  

Therefore, it is not known if these results will be observed at a physiologically relevant insulin 

concentration.  These earlier studies also did not include an insulin sensitive exercise control.  

Thus, although there is a consensus for improved insulin-stimulated glucose uptake after exercise 

by HFD fed rats, there is uncertainty about the effects on proximal insulin signaling.  
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Additionally, none of the studies that examined the mechanisms for improved insulin sensitive 

after acute exercise in insulin resistant rats include assessment of AS160 phosphorylation.  Study 

3 avoided these issues by using a physiologic insulin dose for glucose uptake and insulin 

signaling measurements, including a chow fed exercise control to be compared to the HFD 

exercise group, and measuring both proximal insulin signaling and AS160 phosphorylation.  The 

first major goal for Study 3 was to investigate the mechanism (measurements of proximal insulin 

signaling and AS160) for the exercise induced improvements for insulin-stimulated glucose 

uptake by skeletal muscle from insulin sensitive and insulin resistant rats.  The second major 

goal of Study 3 was to identify possible changes in GLUT4, AS160, TBC1D1, TUG, RUVBL2 

and muscle fiber type following 2 weeks of high fat feeding.  The third major goal of Study 3 

was to determine the effects of acute exercise on putative mediators of insulin resistance: lipid 

metabolites (acyl-CoA, DAG and ceramide), phosphorylation of the serine JNK and pIRS-1Ser. 
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Chapter III 

 

Study 1: 

Clustering of GLUT4, TUG, and RUVBL2 Protein Levels Correlate with Myosin Heavy 

Chain Isoform Pattern in Skeletal Muscles, but AS160 and TBC1D1 Levels Do Not 

 

 

Abstract 

Skeletal muscle is a heterogeneous tissue.  To further elucidate this heterogeneity, we 

probed relationships between myosin heavy chain (MHC) isoform composition and abundance 

of GLUT4 and four other proteins that are established or putative GLUT4 regulators [Akt 

substrate of 160 kDa (AS160), Tre-2/Bub2/Cdc 16-domain member 1 (TBC1D1), Tethering 

protein containing an UBX-domain for GLUT4 (TUG) and RuvB-like protein two (RUVBL2)] 

in 12 skeletal muscles or muscle regions from Wistar rats [adductor longus, extensor digitorum 

longus, epitrochlearis, gastrocnemius (mixed, red and white), plantaris, soleus, tibialis anterior 

(red and white), tensor fasciae latae and white vastus lateralis].  Key results were:  1) significant 

differences found among the muscles (range of muscle expression values) for GLUT4 (2.5-fold), 

TUG (1.7-fold), RUVBL2 (2.0-fold) and TBC1D1 (2.7-fold), but not AS160; 2) significant 

positive correlations for pairs of proteins:  GLUT4 versus TUG (R=0.699), GLUT4 versus 

RUVBL2 (R=0.613), TUG versus RUVBL2 (R=0.564), AS160 versus TBC1D1 (R=0.293) and 

AS160 versus TUG (R=0.246); 3) significant positive correlations for % MHC-I:  GLUT4 

(R=0.460), TUG (R=0.538) and RUVBL2 (R=0.511); 4) significant positive correlations for % 

MHC-IIa:  GLUT4 (R=0.293) and RUVBL2 (R=0.204); 5) significant negative correlations for 
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%MHC-IIb versus:  GLUT4 (R=-0.642), TUG (R=-0.626) and RUVBL2 (R=-0.692); and 6) 

neither AS160 nor TBC1D1 significantly correlated with MHC isoforms.  In 12 rat muscles, 

GLUT4 abundance tracked with TUG and RUVBL2 and correlated with MHC isoform 

expression, but was unrelated to AS160 or TBC1D1.  Our working hypothesis is that some of the 

mechanisms that regulate GLUT4 abundance in rat skeletal muscle also influence TUG and 

RUVBL2 abundance. 

 

Introduction 

Skeletal muscle is a heterogeneous tissue, and different muscles in the same individual 

can vary greatly with regard to metabolic characteristics, including the capacity for insulin-

mediated glucose uptake.  Henriksen et al. (19) found that the GLUT4 protein abundance of four 

different isolated rat skeletal muscles varied by ~4-fold, with the following rank-order:  flexor 

digitorum brevis (FDB) > soleus > extensor digitorum longus (EDL) > epitrochlearis.  Based on 

previously published data for the fiber type compositions (based on myosin ATPase staining) of 

the FDB (6), epitrochlearis (28), soleus and EDL (2), it was evident that the two muscles that 

were known to be largely composed of slow-oxidative (SO) or fast-oxidative-glycolytic (FOG) 

fibers (soleus and FDB, respectively) were characterized by greater GLUT4 abundance 

compared to the other two muscles that were predominantly composed of fast-glycolytic (FG) 

fibers (epitrochlearis and EDL).   The most comprehensive study to measure both GLUT4 

abundance and fiber type composition in multiple rat skeletal muscles was performed by 

Megeney et al. (27) who evaluated six different muscles or muscle regions and correlated percent 

fiber type composition of the muscles (determined by ATPase staining in the same six muscles 

from other rats) with GLUT4 abundance.  They found a significant positive correlation with 

percent of oxidative fibers (SO + FOG) and a significant negative correlation with the percent of 

FG fibers.   We have extended the knowledge from earlier studies by measuring both GLUT4 

and fiber type (based on myosin heavy chain isoform, MHC-I, MHC-IIa, MHC-IIb and MHC-IIx 

expression) in 12 different rat muscles or regions of muscles. 

Although GLUT4 is the ultimate mediator of muscle glucose transport capacity, a 

number of other proteins participate in insulin’s regulation of GLUT4 function.  Akt substrate of 

160 kDa (also known as TBC1D4) and TBC1D1 are two paralog Rab GTPase (GAP) proteins 

that were recently recognized as key signaling proteins that can control GLUT4 trafficking and 
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glucose transport (8, 10-11, 33).   Taylor et al. (40) reported that the abundance of each of these 

proteins varied greatly among three mouse skeletal muscles.   AS160 protein abundance was 

~10-fold greater in the soleus compared to the tibialis anterior (TA) and the EDL.  TBC1D1 

abundance was much greater for the TA compared to the EDL (~3-fold) and the soleus (~10-

fold).  They also noted that TBC1D1 expression appeared to track with the MHC-IIx content of 

these muscles, but they did not quantitatively analyze the relationship of TBC1D1 or AS160 with 

each other or with MHC isoform expression.   The relationship of AS160 and TBC1D1 

abundance to each other or to fiber type of rat skeletal muscle has also not been reported. 

Xie et al. (43) recently identified RuvB-like protein two (RUVBL2) as a protein that is 

physically associated with AS160 in 3T3-L1 adipocytes.  Genetic depletion of RUVBL2 in 3T3-

L1 cells resulted in a decrease in both phosphorylated AS160 and insulin-stimulated glucose 

uptake.   In addition, the epididymal fat pads of obese diabetic KKAy mice compared to normal 

controls had greatly reduced RUVBL2 expression.  The relationship between RUVBL2 

abundance and muscle MHC isoform composition has not been reported.   

Bogan et al. (4) identified the Tethering protein containing an UBX-domain for GLUT4 

(TUG) as a putative GLUT4 tethering protein that functions as part of the system that retains 

GLUT4 intracellularly in 3T3-L1 cells in the absence of insulin.  This model has been further 

supported by subsequent studies in 3T3-L1 adipocytes (44-45).  Under basal conditions (without 

insulin), TUG is associated with GLUT4 in either L6 myotubes or skeletal muscle of transgenic 

mice with muscle-specific overexpression of GLUT4myc (34).  Insulin causes GLUT4 to rapidly 

disassociate from TUG in both L6 cells and in skeletal muscle from GLUT4myc transgenic mice.  

Although GLUT4 and TUG are known to be binding partners, their relative expression levels in 

skeletal muscles with diverse MHC composition are unknown.   

The first major goal of this study was to extend knowledge about the relationship 

between MHC isoform composition and the abundance of five proteins (GLUT4, AS160, 

TBC1D1, RUVBL2 and TUG) that are either established or putative regulators of glucose 

transport in rat skeletal muscle.   The second major goal was to determine if the abundance of 

any of these proteins were significantly associated with each other.  Notable aspects of the 

experimental design were: 1) the inclusion of a large number of skeletal muscles (12 muscles or 

regions of muscles) with diverse fiber type compositions; 2) the assessment of relative MHC 

isoform levels and abundance of GLUT4 and four other proteins (TUG, RUVBL2, TBC1D1 and 
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AS160) for which very little was known with regard to relative expression by rat skeletal 

muscles; and 3) immunoblotting for each of the proteins and the determination of relative MHC 

isoform levels were all performed using the same muscles from the same rats.  We hypothesized 

that:  1) the abundance of each of the 5 proteins would vary among the 12 different muscles; 2) 

% MHC-I and % MHC-IIa would be positively correlated with GLUT4 and TUG; 3) % MHC-

IIb would be negatively correlated with GLUT4 and TUG; 4) GLUT4 would be positively 

correlated with TUG; 5) % MHC-IIx would be positively correlated with TBC1D1 and 

negatively correlated with AS160 and RUVBL2; 6) AS160 would be positively correlated with 

RUVBL2; and 7) TBC1D1 would be negatively correlated with AS160 and RUVBL2.    

 

Methods 

Materials   

The reagents and apparatus for SDS-PAGE and immunoblotting were purchased from 

Bio-Rad (Hercules, CA). Bicinchoninic acid protein assay reagent (no. 23227) and West Dura 

Extended Duration Substrate were from Pierce Biotechnology (Rockford, IL).  Anti-AS160 (no. 

07-741) was from Millipore (Billerica, MA). Anti-RUVBL2 (no. ab36569) was from Abcam 

(Cambridge, MA).  Anti-TBC1D1 was provided by Dr. Makoto Kanzaki (Tohoku University). 

Anti-TUG was previously described (4).  Anti-GLUT4 was provided by Dr. Samuel Cushman 

(NIH, Bethesda, MD).   

Animal Treatment 

Procedures for animal care were approved by the University of Michigan Committee on 

Use and Care of Animals.  Male Wistar rats (150-220 g; Harlan, Indianapolis, IN) were provided 

with rodent chow (Lab Diet; PMI Nutritional International, Brentwood, MO) and water ad 

libitum.  Rats were anesthetized with an intraperitoneal injection of sodium pentobarbital (50 

mg/kg wt).  While rats were under deep anesthesia, the following muscles or portions of muscles 

were dissected out and freeze-clamped:  adductor longus (AL), extensor digitorum longus 

(EDL), epitrochlearis (EPI), mixed gastrocnemius (GASM), red gastrocnemius (GASR), white 

gastrocnemius (GASW), plantaris (PLAN), soleus (SOL), red tibialis anterior (TAR), white 

tibialis anterior (TAW), tensor fasciae latae (TFL), and white vastus lateralis (VLW).  The deep 
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red (GAS and TA) and superficial white (GAS, TA and VL) regions of the relevant muscles 

were identified based on visual inspection and dissected out.  The GASM was dissected from the 

muscle’s medial head.   

Muscle Homogenization 

Frozen muscles were weighed, transferred to pre-chilled glass tissue grinding tubes 

(Kontes, Vineland, NJ), and homogenized in ice-cold lysis buffer (20 mM Tris-HCL, 150 mM 

NaCl, 1% Triton X-100, 1 mM Na3VO4, 1 mM EDTA, 1 mM EGTA, 2.5 mM NaPP, 1 mM β-

glycerophosphate, 1 µg/ml leupeptin, 1mM PMSF  at 1 ml/muscle) using a glass pestle attached 

to a motorized homogenizer (Caframo, Wiarton, ON).  Homogenates were then rotated at 4°C 

for 1 h and an aliquot of the homogenate (whole homogenate) was taken for myosin heavy-chain 

(MHC) analysis prior to being centrifuged (1,000 g for 10 min at 4°C). Portions of the 

supernatant and the whole homogenate were used to determine protein concentration according 

to the manufacturer’s protocol (Pierce Biotechnology no. 23227).  The remaining supernatant 

was stored at -80°C until further analyzed.  A portion of the whole homogenate was immediately 

used to determine MHC isoform composition as described below. 

Relative Abundance of Myosin Heavy Chain Isoforms 

Laemmli sample buffer was added to 5 µg of the whole homogenate prior to heating for 

10 min at 90°C.  Samples where then run at 45 V for 24 h at 4 °C on an 8% acrylamide-bis 

(50:1), 30% glycerol gel as described by Talmadge and Roy (39).  Gels were then trimmed and 

stained with Coomassie Blue for 1 h while gently rotating, followed by destaining for 3-4 h in 

20% methanol and 10% acetic acid solution. MHC bands were quantified using densitometry.      

Immunoblotting 

 Homogenized muscle lysates were boiled for 5-10 min in sodium dodecyl sulfate loading 

buffer then separated via PAGE and electrophoretically transferred to nitrocellulose membranes.  

Samples were then rinsed with Tris-buffered saline plus Tween (TBST) (140 mM NaCl, 20 mM 

Tris base, pH 7.6, and 0.1% Tween), blocked with 5% nonfat dry milk in TBST for 2 h at room 

temperature, washed 3 x 5 min at room temperature and treated with the appropriate primary 

antibody (1:1,000 in TBST + 5% BSA) overnight at 4°C. Blots were then washed 6 x 5 min with 
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TBST, incubated with the secondary antibody, goat anti-rabbit IgG horse horseradish peroxidase 

conjugate (1:20,000 in TBST + 5% milk) for 1 h at room temperature.  They were washed again 

6 x 5 min with TBST then 4 x 5 min TBS, and subjected to enhanced chemiluminescence (West 

Dura Extended Duration Substrate; #34075; Pierce).  The chemiluminescence of protein bands 

on nitrocellulose membranes was quantified using electrically cooled CCD camera technology 

(Alpha Innotech, San Leandro, CA). The individual values for the samples were normalized to 

the mean value for all of the samples on the blot.   

Statistics 

The data used for comparison of protein abundance among the 12 different muscles or 

muscle regions were analyzed by one-way ANOVA, and the Bonferroni correction was used to 

identify the source of significant variance for data.  If data failed the normality test, the Kruskal-

Wallis one-way ANOVA on Ranks and the Tukey post hoc test were used.  The nonparametric 

Spearman Rank Order Correlation (for individual data rather than on mean values for each of the 

12 muscles) was used to assess the relationships between abundance of each pair of the proteins 

studied (e.g., between GLUT4 vs. TUG) and between abundance of each protein and % of each 

MHC isoform (MHC-I, MHC-IIa, MHC-IIb and MHC-IIx).  The statistical analyses were 

performed using Sigma Plot (San Rafael, CA) version 11.0.  Data are expressed as means ± SE. 

P ≤ 0.05 was considered to be statistically significant.   

 

Results 

Relative Abundance of Myosin Heavy Chain (MHC) Isoforms 

 The relative abundance (%) of each MHC isoform for the 12 muscles or muscle regions 

is summarized in Table 3.1 and Figure 3.1.   

Relative Protein Abundance 

 In the 12 muscle or muscle regions studied the relative abundance of GLUT4 differed as 

follows: SOL was significantly greater (P<0.05) than the EDL, EPI, GASM, GASW, TAW, TFL, 

and VLW; AL was significantly greater (P<0.05) than the EPI, GASM, GASW, TAW, TFL, and 



51 
 

VLW; the TAR, and GASR were significantly greater (P<0.05) than the EPI, GASW, TAW, and 

VLW; PLAN was significantly greater (P<0.05) than the EPI, GASW, and TAW; EDL was 

significantly greater (P<0.05) than the EPI and VLW (Figure 3.2).  In the 12 muscles studied the 

GLUT4 abundance had a range of 2.5-fold (the VLW had the lowest and the SOL had the highest 

values). 

TUG protein abundance in the AL and SOL was significantly greater (P<0.05) than all of 

the other muscles studied (Figure 3.3).  The range of TUG abundance was 1.7-fold (the EPI had 

the lowest and the SOL had the highest values).   

The relative abundance of RUVBL2 in the 12 muscle or muscle regions studied differed 

as follows: SOL was significantly greater (P<0.05) than the EDL, EPI, GASW, TAW, and VLW; 

AL was significantly greater (P<0.05) than the EDL, GASW, TAW, and VLW; both PLAN and 

TFL were significantly greater (P<0.05) than TAW and VLW; GASR was significantly greater 

(P<0.05) than the VLW (Figure 3.4).  The range of RUVBL2 abundance was 2.0-fold (the VLW 

had the lowest and the SOL had the highest values). 

AS160 protein abundance did not differ significantly among any of the muscles or 

muscle regions studied (Figure 3.5).   

TBC1D1 protein abundance in both the GASW and EDL was significantly greater 

(P<0.05) than both the TFL and EPI (Figure 3.6). The GASR and GASM both had significantly 

greater (P<0.05) TBC1D1 abundance compared to the TFL.  The range for TBC1D1 abundance 

was 2.7-fold (the TFL had the lowest and GASR had the highest values).   

Correlations 

As expected, the % MHC-I values were high for the AL (90%) and SOL (88%).  These 

muscles compared to the other muscle studied were also characterized as having higher values 

for GLUT4, TUG or RUVBL2.  In an earlier study, Megeney et al. (27) evaluated 6 rat skeletal 

muscles (including the SOL, but not the AL) for correlations between GLUT4 and fiber type.  

For some comparisons, they identified the SOL as an outlier and excluded the SOL data from the 

correlation analysis.  In the current study, correlations were performed both with and without 
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exclusion of the AL and SOL data to make it possible to assess the data both with and without 

the influence of these muscles that have exceptional MHC profiles.   

The following pairs of proteins were significantly and positively correlated with each 

other either with all of the data or with the AL and SOL data excluded:   GLUT4 vs. TUG 

(Figure 3.7A), GLUT4 vs. RUVBL2 (Figure 3.7B), TUG vs. RUVBL2 (Figure 3.7C), AS160 vs. 

TBC1D1 (Figure 3.7D) and AS160 vs. TUG (Figure 3.7E). 

There were significant positive correlations for % MHC-I and the abundance of the 

following proteins with either all of the data or excluding the AL and SOL data:  TUG (Figure 

3.8B) and RUVBL2 (Figure 3.8C).  % MHC-I vs. GLUT4 was significantly positively correlated 

only when all of the data were in the analysis (Figure 3.8A). 

There were significant positive relationships between % MHC-IIa and the abundance of 

the following proteins either with all of the data or excluding the AL and SOL data:  GLUT4 

(Figure 3.9A) and RUVBL2 (Figure 3.9C).  TUG was significantly positively correlated with % 

MHC-IIa only when the AL and SOL data were excluded (Figure 3. 9B).  

There were significant negative correlations for % MHC-IIb and the abundance of the 

following proteins either using all of the data or excluding the AL and SOL data:  GLUT4 

(Figure 3.10A), TUG (Figure 3.10B), and RUVBL2 (Figure 3.10C). 

There was a significant negative correlation between % MHC-IIx and the abundance of 

TUG using all of the data; however, when the AL and SOL data were excluded, the correlation 

between % MHC-IIx and TUG was significant, but positive (Figure 3.11B).  In addition, when 

the AL and SOL data were excluded there were significant positive correlations for % MHC-IIx 

with either GLUT4 (Figure 3.11A) or RUVBL2 (Figure 3.11C). 

Neither AS160 nor TBC1D1 significantly correlated with the relative abundance of any 

of the MHC isoforms based on analysis using either all of the data or excluding the AL and SOL 

data (Figure 3.12-15).    
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Discussion 

This study provides novel information about five proteins (GLUT4, TUG, RUVBL2, 

AS160 and TBC1D1) that are either established or putative regulators of glucose transport.  The 

results supported some, but not all of the hypotheses about the relationships of these proteins 

with each other and with relative MHC isoform expression.  The hypotheses that related to 

GLUT4 and TUG were largely supported:  the abundance of both GLUT4 and TUG varied 

significantly among the muscles that were studied; the % MHC-I abundance was positively 

correlated to either GLUT4 or TUG; the % MHC-IIb abundance was negatively correlated with 

either GLUT4 or TUG; and GLUT4 and TUG were positively correlated with each other.  As 

was hypothesized, several of the muscles were significantly different with regard to TBC1D1 

abundance.  However, none of the other hypotheses related to TBC1D1 or AS160 were 

supported by the results:  AS160 and TBC1D1 were positively rather than negatively correlated 

with each other; neither TBC1D1 nor AS160 was significantly correlated with the relative 

abundance of any MHC isoform; and no significant differences were detected for AS160 

abundance among the muscles studied.   The results also revealed several unanticipated insights 

about RUVBL2, including significant positive correlations for RUVBL2 with GLUT4, TUG, % 

MHC-I and % MHC-IIa and a significant negative correlation for RUVBL2 with % MHC-IIb.  

However, RUVBL2 was not significantly correlated with either AS160 or TBC1D1.    

As expected, the 12 different muscles or muscle regions that were studied were diverse 

with regard to the relative abundance of MHC isoforms.  The results for relative MHC isoform 

abundance were in good agreement with previously published values for the AL, SOL (20), 

GASM (39), GASR, GASW, EDL (35), EPI (1), PLAN (29), and VLW (26).   The current study 

was apparently the first to report MHC isoform values for the TFL, TAR or TAW from rats.  

Previous studies that have assessed the relationship between fiber type composition of 

skeletal muscle and GLUT4 abundance have relied on histological assessment of myosin ATPase 

for fiber typing.   Measurement of MHC isoform by SDS-PAGE provides important advantages 

for quantitative analysis of skeletal muscle when compared to fiber type composition based on 

myosin ATPase activity (30).   The rank order for relative values of GLUT4 by the different 

muscles or muscle regions were similar to the results from several previous publications that 

evaluated GLUT4 abundance for three or more of the rat skeletal muscles assessed in the current 
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study, including the SOL, EPI and EDL (19), GASR, GASW, PLAN, EDL, and SOL (5), GASR, 

GASW, PLAN, and SOL (41), TAR, TAW, and EDL (21), and SOL, PLAN, EDL, GASR and 

GASW (27).  Megeney et al. (27) assessed GLUT4 abundance and fiber type composition (using 

myosin ATPase staining) in rat skeletal muscles.  They found a significant positive correlation 

for %  SO + FOG fibers vs. GLUT4, and a significant negative correlation for FG fibers vs. 

GLUT4.  In the current study, there were significant positive correlations for GLUT4 with either 

% MHC-I  or % MHC-IIa vs. GLUT4, and a significant negative correlation for % MHC-IIb vs. 

GLUT4.  The ~2.5-fold range from the lowest to highest values in the current study compares to 

ranges from ~2- to ~4-fold reported in earlier studies that evaluated several rat skeletal muscles 

with a range of fiber type compositions (5, 19, 21, 27, 41). 

A key outcome of this study was that the relative expression of three proteins (GLUT4, 

TUG and RUVBL2) clustered together based on comparisons of the muscles that were studied.  

These results raise the possibility that the expression of the three proteins may be modulated, in 

part, by shared mechanisms.  Skeletal muscle MHC isoform expression is influenced by 

conditions that alter neuromuscular activity, including spinal cord injury, hindlimb unloading, 

chronic bed rest, spaceflight, compensatory overloading, chronic electrical stimulation and 

exercise training (38).  Although the MHC isoform expressed by skeletal muscle is unlikely to 

directly determine GLUT4 expression levels, the abundance of GLUT4 in skeletal muscle has 

also been reported to be responsive to many of these same interventions.  For example, chronic 

electrical stimulation of skeletal muscle (21, 23) or endurance exercise training (5, 32, 36) can 

result in an increase in GLUT4 abundance, and denervation can reduce muscle GLUT4 

abundance (27).  To date, the effects of increased or decreased neuromuscular activity on muscle 

TUG or RUVBL2 abundance have not been reported, but it seems possible that their expression 

might also be altered in a manner that is similar to activity-related shifts in GLUT4 abundance. 

The significant correlation between TUG and GLUT4 abundance in skeletal muscles was 

a novel, but not unexpected finding.  Because TUG and GLUT4 can physically associate with 

each other, and because TUG-GLUT4 binding appears to play a role in the subcellular 

localization of GLUT4, altering the abundance of one of the binding partners may potentially 

influence the abundance of the other.  Consistent with a role for TUG in controlling GLUT4 

protein levels, genetic depletion of TUG by siRNA in 3T3-L1 cells resulted in a marked decrease 
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in GLUT4 protein abundance that appeared to be attributable to greater GLUT4 protein 

degradation (45).   However, the possibility that altered GLUT4 abundance might influence TUG 

abundance has not been assessed.   

RUVBL2 was evaluated because it was recently reported to be physically associated with 

AS160 in 3T3-L1 adipocytes and because genetic depletion of RUVBL2 in 3T3-L1 cells induced 

decrements in both phosphorylated AS160 and insulin-stimulated glucose uptake without 

altering the abundance of Akt or AS160 protein (43).  However, RUVBL2 has received much 

more scrutiny for its roles in the regulation of DNA structure and function.  It is a member of the 

AAA+ (ATPase associated with diverse cellular activities) family of DNA helicases and has 

been implicated in the response to DNA double-strand breaks and the regulation of gene 

expression (16).  Although RUVBL2 has been shown to have important functions in the nucleus, 

it is localized in both the cytosol and the nucleus (43).   The current study, apparently the first to 

assess RUVBL2 protein abundance in skeletal muscle, revealed significant positive correlations 

for RUVBL2 with % MHC-I or MHC-IIa, and a significant negative correlation for RUVBL2 

with % MHC-IIb.  The causes and functional consequences of these differences in RUVBL2 

expression levels are not currently known. 

Taylor et al. (40) found a 10-fold range in the relative abundance of TBC1D1 in skeletal 

muscles from mice, with the rank order of TA > EDL > SOL.  TBC1D1 abundance also varied 

among the rat skeletal muscles evaluated in the current study, with 2.7-fold greater values for 

GASR (highest) vs. TFL (lowest) muscle.  TBC1D1 abundance for the rat EDL was very similar 

to the GASR.  The TBC1D1 values for the SOL, TAR and TAW were intermediate, but not 

significantly different than the EDL (Figure 3.6).  Taylor et al. (40) also measured MHC isoform 

abundance and noted that TBC1D1 appeared to track with the type MHC-IIx content of the TA, 

EDL and SOL muscles, although quantitative analysis for this relationship was not reported.  

However, there was no evidence that TBC1D1 abundance in rat skeletal muscle was related with 

relative expression of MHC-IIx or with any of the other MHC isoforms.  An et al. (15) reported 

that increasing TBC1D1 expression of mouse TA muscle by ~7-fold did not alter glucose uptake 

(basal, insulin-stimulated or contraction-stimulated) or abundance of AS160 or GLUT4.  The 

causes and functional consequences of the different levels of TBC1D1 protein abundance in rat 

skeletal muscles remain to be determined. 
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AS160 and TBC1D1 have substantial structural similarities and appear to have 

overlapping functional properties, including the regulation of GLUT4 trafficking in skeletal 

muscle (8).  There were no significant differences for AS160 abundance among the rat skeletal 

muscles in the current study.  Consistent with these results, Gupte et al. (17) found no difference 

between the EPI and SOL of rats for AS160 abundance.  However, the current results are in 

contrast to substantial muscle-specific differences in the mouse, in which AS160 protein 

abundance was ~10-fold greater for the SOL compared to TA or EDL muscles (40).  Increasing 

AS160 abundance in mouse TA muscle by ~8-fold (i.e., to levels nearly as great as the 

endogenously high values found in mouse SOL) did not alter basal or insulin-stimulated glucose 

uptake or expression of GLUT4 protein (24).  However, contraction-stimulated glucose uptake 

was reduced ~24% with AS160 overexpression compared to empty vector controls (24).  

Endurance trained rats fed a high fat diet compared to sedentary controls eating the same diet had 

a small (15%), but significant decrease in muscle AS160 abundance concomitant with a 

moderately large (50%) increase in muscle GLUT4 protein content (25).  Endurance training by 

lean or obese humans also resulted in elevated muscle GLUT4 protein levels (~20-50%), but in 

contrast to the results for rats, there were also small (~20-30%) training-induced increases in 

AS160 abundance (14, 42).  Either humans with type 2 diabetes compared to non-diabetic 

controls (22) or insulin resistant obese Zucker rats compared to lean controls (3) have reduced 

insulin-mediated phosphorylation of AS160 without differences in AS160 protein abundance in 

skeletal muscle.  Transfection of skeletal muscle of either lean or obese rats with PGC1α induced 

a significant increase in GLUT4 abundance without concurrent changes in AS160 content (3).  

There are various mechanisms for regulating AS160 function without large changes in AS160 

protein abundance.  For example, AS160 is acutely regulated by insulin-induced phosphorylation 

of key sites and subcellular localization of AS160, and there is also evidence that AS160 

function is modulated by its association with other proteins, e.g., 14-3-3 (31) and possibly 

RUVBL2 (43).  Clarification of how muscles differ with regard to these regulatory processes 

will be needed to fully appreciate AS160’s role in determining muscle-related differences for 

glucose transport with insulin and/or exercise.  

The current study evaluated GLUT4 and related proteins in more muscles than previous 

publications.  However, we opted to not include the flexor digitorum brevis (FDB).  In our 

experience (7, 9), other muscles offer advantages compared to the FDB for studying GLUT4, 
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insulin signaling proteins and glucose uptake.  Advantages of the epitrochlearis or soleus vs. 

FDB include a larger data base of publications for comparing the results, the presence of less 

connective tissue in the muscle, and relatively greater fold-increases in insulin-mediated glucose 

uptake.   

It is important to interpret the correlations between protein abundance and relative levels 

of MHC isoforms with care.  Obviously, correlations do not prove causality.  Furthermore, it is 

inappropriate to assume that expression of a given protein is uniform in all of the fibers 

expressing a certain MHC isoform.  For example, in pooled single fibers expressing MHC-I 

collected from sedentary humans, GLUT4 abundance was greater for the fibers taken from the 

vastus lateralis compared to fibers collected from either the soleus or triceps brachii (12).  In 

addition, hybrid muscle fibers that express more than one MHC isoform can be relatively 

common in rat skeletal muscles (37).  The correlation for a given protein’s abundance with the % 

of MHC isoforms with relatively lower expression (MHC-IIa and MHC-IIx) can be highly 

influenced by the levels of the more abundant isoforms (MHC-I and MHC-IIb) in the group of 

muscles being studied.  For example, the correlation between MHC-IIx and TUG was 

significantly negative when all 12 muscles were included in the analysis, but the correlation was 

significantly positive when the analysis was performed after excluding the muscles with 

extremely high levels of MHC-I (SOL and AL, which have 0 or 1% MHC-IIx).  Nonetheless, 

careful examination of the correlations between the abundance of a given protein and the relative 

levels of the MHC isoforms can provide useful insights.  

In conclusion, an important result of this study was the identification of a cluster of three 

proteins (GLUT4, TUG and RUVBL2) that tracked together in the skeletal muscles that were 

evaluated.  GLUT4, TUG and RUVBL2 were each also positively correlated with % MHC-I and 

inversely correlated with the % MHC-IIb levels.  The paralog proteins AS160 and TBC1D1 are 

47% identical, share several important functional domains, and are implicated as regulators of 

glucose transport (40).   AS160 and TBC1D1 were positively correlated with each other, but 

neither of these proteins was significantly correlated with the relative levels of any of the MHC 

isoforms.  Earlier research has clearly documented that altered neuromuscular activation of 

skeletal muscle can markedly alter GLUT4 protein levels (5, 13, 21, 23, 36).  Training effects on 

TUG and RUVBL2 abundance have apparently not been assessed to date.  Given that SOL 
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compared to EDL muscles from sedentary male Wistar rats have much greater levels of motor 

unit activation (18), it is notable that the SOL compared to the EDL had significantly greater 

values for GLUT4, TUG and RUVBL2.  Our working hypothesis is that TUG and RUVBL2 

protein content in rat skeletal muscle are regulated by mechanisms that, at least in part, are 

similar to those that control GLUT4 protein abundance and that each is influenced by the level of 

neuromuscular activation.    
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% MHC-I % MHC-IIa % MHC-IIb % MHC-IIx 

AL 90 ± 10 3 ± 1 6 ± 2 1 ± 1 

EDL 2 ± 1 12 ± 2 57 ± 7 29 ± 3 

EPI 8 ± 2 13 ± 2 51 ± 6 28 ± 13 

GASM 10 ± 3 10 ± 3 59 ± 9 22 ± 3 

GASR 20 ± 4 17 ± 2 32 ± 5 31 ± 4 

GASW 1 ± 1 7 ± 2 72 ± 9 20 ± 3 

PLAN 4 ± 1 20 ± 2 44 ± 5 32 ± 4 

SOL 88 ± 10 12 ± 3 0 ± 0 0 ± 0 

TAR 1 ± 1 19 ± 3 54 ± 7 26 ± 5 

TAW 1 ± 1 4 ± 1 77 ± 9 18 ± 3 

TFL 8 ± 3 17 ± 2 42 ± 5 33 ± 4 

VLW 2 ± 1 1 ± 1 86 ± 10 10 ± 2 

 

 

 

The myosin heavy chain (MHC) isoforms were separated by SDS-PAGE, gels were 
stained with Coomassie Blue, and bands quantified by densitometry were expressed as 
relative values (%) for each of the 12 skeletal muscles or muscle regions:  adductor 
longus (AL), extensor digitorum longus (EDL), epitrochlearis (EPI), mixed 
gastrocnemius (GASM), red gastrocnemius (GASR), white gastrocnemius (GASW), 
plantaris (PLAN), soleus (SOL), red tibialis anterior (TAR), white tibialis anterior 
(TAW), tensor fasciae latae (TFL), and white vastus lateralis (VLW).  Values are means 
± SE (n=8).  

 

Table 3.1 Relative Myosin Heavy Chain Isoform Composition of Rat Skeletal 
Muscles 
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Figure 3.1 
 
Relative abundance (%) of myosin heavy chain (MHC) isoforms in the 12 skeletal muscles 
or muscle regions.  Open bars represent % MHC-I, gray bars represent % MHC-IIa, closed 
bars represent % MHC-IIb, and hatched bars represent % MHC-IIx.  Values are means ±SE; 
n = 8 for each muscle or muscle region. 
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Figure 3.2 
 
Relative GLUT4 protein abundance for 12 muscles or muscle regions.  *SOL greater than:  
EDL, EPI, GASM, GASW, TAW, TFL, VLW (P<0.05); †AL greater than:  EPI, GASM, GASW, 

TAW, TFL, VLW (P<0.05); 
#
PLAN greater than: EPI, GASW, TAW (P<0.05); ‡TAR greater 

than: EPI, GASW, TAW (P<0.05); ff GASR greater than:  EPI, GASW, TAW, VLW; P<0.05; 
ε
EDL greater than: EPI, VLW (P<0.05).  Values are means ±SE; n = 8 for each muscle or 

muscle region. 
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Figure 3.3 
 
Relative TUG protein abundance for 12 muscles or muscle regions.  *SOL and AL were 
greater than: EPI, EDL, VL W, TAW, GASW (P<0.05).  Values are means ±SE; n = 8 for each 
muscle or muscle region. 
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Figure 3.4 
 
Relative RUVBL2 protein abundance for 12 muscles or muscle regions.  *SOL greater than: 
GASW, VLW, TAW, EDL (P < 0.05); †AL greater than: VLW, TAW, GASW (P < 0.05); # TFL 
and PLAN greater than VLW and TAW (P<0.05); and ‡ GasR was greater than the VLW.  
Values are means ±SE; n = 8 for each muscle or muscle region. 
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Figure 3.5 
 
Relative AS160 protein abundance for 12 muscles or muscle regions.  Values are means 
±SE; n = 8 for each muscle or muscle region. 
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Figure 3.6 
 
Relative TBC1D1 protein abundance for 12 muscles or muscle regions.  *GASW and EDL 
are greater than EPI and TFL (P < 0.05); †GASM and GASR are greater than TFL (P < 0.05).   
Values are means ±SE; n = 8 for each muscle or muscle region. 
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Figure 3.7A-E 
 
Correlations between the following pairs of proteins:  A: GLUT4 vs. TUG; B: GLUT4 vs. 
RUVBL2; C: TUG vs. RUVBL2; D: AS160 vs. TBC1D1; E: AS160 vs. TUG.  The symbols 
represent individual data.  For correlations using All Muscles, n = 96.  For correlations 
excluding the AL and SOL data (w/o AL & SOL), n = 80. 
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Figure 3.12A-B 
 
Correlations between % MHC-I and the following proteins:  A: AS160; and B: TBC1D1.  
For correlations using All Muscles, n = 96.  For correlations excluding the AL and SOL data 
(w/o AL & SOL), n = 80. 
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Figure 3.13A- B 
 
Correlations between % MHC-IIa and the following proteins:  A: AS160; and B: TBC1D1.  
For correlations using All Muscles, n = 96.  For correlations excluding the AL and SOL data 
(w/o AL & SOL), n = 80. 
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Figure 3.14A-B 
 
Correlations between % MHC-IIb and the following proteins:  A: AS160; and B: TBC1D1.  
For correlations using All Muscles, n = 96.  For correlations excluding the AL and SOL data 
(w/o AL & SOL), n = 80. 
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Figure 3.15A-B 
 
Correlations between % MHC-IIx and the following proteins:  A) AS160; and B) TBC1D1.  
For correlations using All Muscles, n = 96.  For correlations excluding the AL and SOL data 
(w/o AL & SOL), n = 80. 
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Chapter IV 

 

Study 2: 

Myosin Heavy Chain Isoform Expression, Contraction-stimulated Glucose Uptake and 

Abundance of Proteins that Regulate Glucose Uptake and Metabolism in Single Skeletal 

Muscle Fibers 

 

 

Abstract 

Skeletal muscle is a heterogenous tissue, and this diversity is often studied in the context 

of muscle fiber type profile (myosin heavy chain, MHC, isoform expression).  Earlier research 

using whole skeletal muscles from rats suggested a possible fiber type difference based on the 

observation of greater contraction-stimulated glucose uptake in the predominantly MHC-IIa 

flexor digitorum versus the predominantly MHC-IIb epitrochlearis.  However, to fully 

understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers.  

Therefore, the major goals of this study were to determine if there are fiber type-related 

differences in single fibers for: 1) contraction-stimulated glucose uptake or 2) the abundance of 

proteins that are established or potential regulators of glucose uptake or metabolism.  Paired 

epitrochlearis muscles isolated from male Wistar rats were either electrically stimulated to 

contract (E-Stim) or served as resting controls (No-Estim).  Muscles were incubated with [3H]-2-

deoxy-d-glucose (2-DG), followed by isolation of ~20-40 single fibers per muscle.  MHC 

isoform and 2-DG uptake were determined for each fiber.  Immunoblotting of single fibers was 

used to determine abundance of several key proteins.  E-Stim versus No E-Stim fibers had 
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significantly greater (P < 0.05) 2-DG uptake among all fiber types that were isolated (MHC-IIa, 

MHC-IIax, MHC-IIx, MHC-IIxb and MHC-IIb), but contraction-stimulated 2-DG uptake was 

not significantly different among the fiber types.  GLUT4, TUG (tethering protein containing a 

UBX domain for GLUT4), COX IV (cytochrome C oxidase IV) and filamin C protein levels 

were significantly greater (P < 0.05) in MHC-IIa versus MHC-IIx, MHC-IIxb, MHC-IIb fibers.  

In addition, TUG and COX IV in MHC-IIax and MHC-IIx fibers exceeded values for MHC-IIxb 

and MHC-IIb, and GLUT4 levels for MHC-IIax exceeded MHC-IIxb.  Abundance values for 

GLUT4, COX IV, filamin C and TUG determined in single fibers significantly (P < 0.05) 

correlated with each other.  No significant fiber type-related differences were found for AS160 

(Akt substrate of 160 kDa), glycogen phosphorylase or glyceraldehyde-3-phosphate 

dehydrogenase abundance.  RUVBL2 was not detectable in any of the single fibers evaluated.  

TBC1D1 was detectable, but not significantly different for MHC-IIb versus MHC-IIxb fibers, 

and it was undetectable in ~90% of the MHC-IIa, MHC-IIax and MHC-IIx fibers tested.  In 

contrast to previous results for whole muscles with differing fiber type profiles, these data 

revealed no significant fiber type-related differences for contraction-stimulated glucose uptake 

by single fibers despite substantial fiber type-related differences in the abundance of several 

proteins, including GLUT4.  Furthermore, the significant and positive correlations found for 

abundance of GLUT4, COX IV, filamin C and TUG suggest that the abundance of these proteins 

within individual fibers may be regulated by overlapping mechanisms. 

 

Introduction 

Skeletal muscle is a heterogeneous tissue, and different muscles in a single individual can 

vary greatly with regard to many functional characteristics.  For example, the magnitude of the 

exercise-induced increase in glucose uptake is not uniform across all skeletal muscles (31, 52).  

Although, the diversity in glucose uptake during in vivo exercise is in large part attributable to 

the levels of muscle recruitment and blood flow, variability in the intrinsic characteristics of the 

muscles may also influence the capacity for contraction-stimulated glucose uptake.   The 

intrinsic properties of muscle are often evaluated in the context of muscle differences in fiber 

type composition (e.g., as assessed by the expression of myosin heavy chain, MHC, isoforms), 

and a common strategy is to compare two or more muscles with differing fiber type profiles.   
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When the goal is to elucidate the intrinsic properties of the muscle in response to contraction, a 

useful approach is to study isolated rodent skeletal muscles undergoing electrical stimulation.  

Henriksen et al. (26) evaluated four different rat skeletal muscles with varying fiber type 

compositions and reported that the greatest contraction-stimulated glucose uptake was in the 

flexor digitorum brevis [FDB; 92% type IIa fibers (1, 8)] and the lowest values were in the 

epitrochlearis [51% type IIb fibers (11)].   These results, which were subsequently confirmed by 

others (1-2, 29-30), supported the idea that the capacity for contraction-stimulated glucose 

uptake of type IIa fibers greatly exceeds that of type IIb fibers in rat skeletal muscles.  However, 

several caveats should be considered when interpreting these results. 

When comparing two muscles with very different fiber type profiles, it cannot be 

assumed that fiber type differences account for every functional difference between the muscles.   

Furthermore, it is important to note that hybrid fibers expressing more than one MHC isoform 

are common in rat skeletal muscle (6-7, 44, 59), and evaluation of glucose uptake by these 

hybrid fibers requires analysis at the single fiber level.   To fully understand glucose uptake at 

the cellular level in both hybrid and non-hybrid fibers, it is essential to assess glucose uptake by 

single fibers.  Therefore, we recently developed a novel method that can be used to determine 

both glucose uptake and fiber type in a single rat skeletal muscle fiber (44).  We found that 

insulin-stimulated glucose uptake was substantially greater for single fibers that expressed the IIa 

MHC versus the other fiber types that were assessed (IIb, IIx, and IIxb).   Insulin and contractile 

activity can each induce increased glucose uptake secondary to translocation of the GLUT4 

glucose transporter protein to the cell surface membranes, but multiple lines of evidence indicate 

that these two stimuli use distinct mechanisms to achieve this outcome (9-10, 15, 22, 24, 48-49).  

Quantitative analysis for the effect of contraction on glucose uptake in single fibers of differing 

fiber types has not been previously reported.  Thus, the first major goal of Study 2 was to make 

direct fiber type comparisons for contraction-stimulated glucose uptake within the same intact rat 

epitrochlearis muscles (fiber type representative of the entire rat hindlimb), which were 

incubated ex vivo and electrically stimulated to contract prior to single fiber isolation and glucose 

uptake measurements.   

Fiber type composition per se is probably not a direct determinant of glucose uptake 

capacity.  It seems more likely that fiber type composition is co-regulated with the direct 
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determinants of glucose uptake.  Contraction-stimulated glucose uptake is ultimately dependent 

on the GLUT4 glucose transporter, and several studies have demonstrated that differences in 

fiber type composition in multiple muscles are accompanied by differences in GLUT4 protein 

abundance (11, 26, 33, 46, 51).  For example, we studied twelve muscles or regions of muscles 

with diverse fiber type profiles and found a negative relationship between GLUT4 abundance 

and percentage of MHC-IIb abundance (11).   Henriksen et al. (26) found that GLUT4 

abundance corresponded to the level of glucose uptake by four different muscles that were 

stimulated by insulin, contractile activity, or both stimuli.  Based on these results, they proposed 

that GLUT4 abundance was “a major determinant for muscle cells to take up glucose.”  

Consistent with this interpretation, Brozinick et al. (5) reported that contraction-stimulated 

glucose uptake by several muscles in the perfused rat hindlimb was predicted by the muscle’s 

level of GLUT4 abundance.   Because previous studies have not evaluated the relationship 

between fiber type and GLUT4 abundance in intact single fibers from rat skeletal muscle, the 

second major goal was to determine if GLUT4 abundance differed according to MHC isoform 

expression in single fibers.   

In Study 1 evaluated the relationship between fiber type and abundance of GLUT4 and 

several proteins that are established or possible regulators of GLUT4 and/or glucose uptake 

(TUG, AS160, TBC1D1, and RUVBL2) (11).  Based on whole tissue analysis of multiple 

muscles with diverse fiber type profiles, we found that the relative levels of GLUT4, TUG and 

RUVBL2 appeared to cluster together.  However, these observations are not definitive evidence 

that the expression levels of these proteins are actually tracking together within the same muscle 

fibers.  Therefore, our third major goal was to further investigate the fiber type and protein co-

expression patterns for GLUT4, TUG, AS160, TBC1D1 and RUVBL2 at the single fiber level.  

Finally, we also evaluated in single fibers the abundance of several metabolically relevant 

proteins in single fibers (cytochrome C oxidase IV, COX IV; glycogen phosphorylase; and 

glyceraldehyde-3-phosphate dehydrogenase, GAPDH) and filamin C, an actin-binding protein 

with potential structural and signaling roles (50).  The results of this study provided unique 

insights at the cellular level with regard to fiber type differences in both contraction-stimulated 

glucose uptake and the expression of several proteins that are relevant to the regulation of 

glucose uptake, metabolism and other cellular functions.   
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Methods 

Material   

The reagents and apparatus for sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) and Coomassie Brilliant Blue (no. 161-0436) were from Bio-Rad 

(Hercules, CA).  Bicinchoninic acid protein assay reagent (no. 23227) was from Pierce 

Biotechnology (Rockford, IL).  Anti-COX IV (no. 4850) and anti-GAPDH (no. 2118) were from 

Cell Signaling Technologies (Boston, MA).  Anti-AS160 (no. 07-741) and LuminataTM Forte 

Western Horseradish Peroxidase Substrate (no. WBLUF0100) were from Millipore (Billerica, 

MA).  Anti-RUVBL2 (no. ab36569) was from Abcam (Cambridge, MA).  Anti-Glycogen 

Phosphorylase (GP; no. H00005837-m10) was from Novus Biologicals (Littleton, CO).  Anti- 

Filamin C (no. sc-48496) was from Santa Cruz Biotechnology (Dallas, TX).  Anti-TBC1D1 was 

provided by Dr. Makoto Kanzaki (Tohoku University; Sendai, Japan).  Anti-GLUT4 and anti-

TUG were provided by Dr. Jonathan Bogan (Yale University; New Haven, CT).   Collagenase 

Type 2 (305 units/mg) was purchased from Worthington Biochemical (no. LS004177, 

Lakewood, NJ). 

Animal Treatment   

  Procedures for animal care were approved by the University of Michigan Committee on 

Use and Care of Animals.  Male Wistar rats (~8 wk-old; 250-300g; Harlan, Indianapolis, IN) 

were provided with standard rodent chow and water ad libitum.  Rats were fasted the night 

before the experiment at ~1900.  On the morning after the overnight fast (between 0700 and 

0900), rats were given an intraperitoneal injection of sodium pentobarbital (50 mg/kg wt).  While 

rats were under deep anesthesia, both epitrochlearis muscles were dissected out, rapidly rinsed in 

warm (35°C) Krebs-Henseleit buffer (KHB) and transferred to vials for subsequent ex vivo 

incubations.  

Muscle Incubations and Electrical Stimulation  

  Isolated muscles were incubated in vials containing the appropriate media that was 

gassed from above (95% O2/5% CO2) in a water bath (35°C for Steps 1-3 and 5; and Step 4 was 

on ice) throughout all of the incubation steps.  For Step 1 (30 min), both epitrochlearis muscles 
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from each rat were placed in vials containing 2 mL of Media 1 [KHB supplemented with 8mM 

glucose].  For Step 2 (10 min), one of the paired muscles was suspended in a 5-ml bath 

containing two platinum electrodes with one end of the muscle attached to a glass rod and the 

other end attached to a force transducer (Radnoti, Litchfield, CT).  The mounted muscle was 

incubated in Media 1 and electrically stimulated to contract [E-Stim:  0.1 ms twitch, 100 Hz train 

for 10 s, 1 train/min for 10 min; Grass S48 Stimulator; Grass Instruments, Quincy, MA (19, 23)].  

The contralateral muscle, that served as a rested/non-electrically stimulated control (No E-Stim), 

was transferred to a vial containing Media 1.  For Step 3 (30 min), all muscles were transferred 

to vials containing 2 ml of Step 3 Media [KHB supplemented with 0.1% BSA, 0.1 mM 2-

deoxyglucose (2-DG; final specific activity of 13.5 mCi/mmol 3H-2-DG) and 9.9 mM mannitol].  

For Step 4 (15 min), muscles underwent 3 washes (5 min/wash with shaking at 115 revolutions 

per min) in ice-cold Wash Media [Ca2+-free KHB supplemented with 0.1% BSA and 8mM 

glucose, to clear the extracellular space (ECS) of 3H-2-DG (58)].  For Step 5 (60-70 min), 

muscles were incubated in vials containing Collagenase Media (Wash Media plus 1.5% Type II 

collagenase) for enzymatic digestion of muscle collagen (collagenase-treated muscles are 

hereafter referred to as fiber bundles). 

Isolation and Processing of Single Fibers for Glucose Uptake and Immunoblotting  

  After incubation Step 5, fiber bundles were removed from Collagenase Media, washed 

with Wash Media at room temperature, and placed in a petri-dish containing Isolation Media 

(Wash Media supplemented with 0.25% Trypan Blue, TB) (44).  Under a dissecting microscope 

(Leica EZ4D; Buffalo Grove, IL), intact single fibers were gently teased away from the fiber 

bundle using forceps.  Only fibers that were not permeable to TB (TB-permeable fibers were 

very rare) were isolated.  Each fiber was imaged using a camera-enabled microscope with Leica 

Application Suite EZ software after isolation.  Fiber dimensions were measured using Image J 

software.  Width (mean value for width measured at 3 locations on each fiber:  near the fiber 

midpoint and approximately halfway between the midpoint and each end of the fiber) and length 

of each fiber were be used to calculate an estimated volume (V = πr2l; r = radius as determined 

by half of the width measurement, l = length).  After imaging, each fiber was transferred by 

pipette with 10µl of Isolation Media to a micro-centrifuge tube containing 10µl of lysis buffer (1 

ml/muscle; 20 mM Tris-HCL, 150 mM NaCl, 1% Triton X-100, 1 mM Na3VO4, 1 mM EDTA, 1 
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mM EGTA, 2.5 mM NaPP, 1 mM β-glycerophosphate, 1 µg/ml leupeptin, 1mM PMSF), for a 

total volume of 20 µl.  Without disturbing the muscle fiber, a 10µl aliquot of the solution was 

removed from each fiber’s tube and pipetted into a separate tube to serve as Background Media.  

The Background Media was used to correct for any residual 3H-2-DG from the ECS that had not 

been eliminated by the three washes of the fiber bundle during Step 4 described above.  Lysis 

buffer (40µl) and 2X Laemmli buffer (50µl) were added to each isolated fiber tube and also to 

each fiber’s corresponding Background Media tube.  The tubes were then vortexed and heated to 

95-100 ˚C.  Samples were then cooled and stored at -20oC until 2-DG uptake and MHC isoform 

expression were determined.   

Fiber Bundle Homogenization and 2-DG Uptake   

After isolation of single fibers (~20-40 fibers per fiber bundle), the remainder of each 

fiber bundle was homogenized in 1ml ice-cold lysis buffer using a glass-on-glass pestle and 

grinding tubes (Kontes, Vineland, NJ) chilled on ice.   Aliquots of fiber bundle homogenates 

were added to vials containing scintillation cocktail (Research Products International, Mount 

Prospect, IL) for scintillation counting, and 2-DG accumulation was determined (44).  A portion 

of the homogenate was used to determine protein concentration according to the manufacturer’s 

protocol (Pierce Biotechnology no. 23227), and 2-DG uptake was normalized to protein content 

(µmol • µg-1 protein for fiber bundles) (44).   

Single Fiber 2-DG Uptake  

  An aliquot of each lysed single fiber and its corresponding Background Media were 

pipetted into separate vials with each containing 10ml of scintillation cocktail.  Aliquots of 

Incubation Step 3 Media (in which muscles had been incubated with 3H-2DG) were added to 

separate vials containing 10ml of scintillation cocktail.  The raw counts obtained from the 

Background Media were subtracted from the single fiber raw counts (single fiber counts – 

background counts = corrected single fiber counts).  The corrected single fiber counts were then 

used to determine the single fiber 3H-2DG accumulation which was calculated and normalized to 

the calculated fiber volume and expressed as nmol • µl-1 as previously described (44).   
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Myosin Heavy Chain (MHC) Isoform Expression 

  MHC isoforms from aliquots of single fiber lysates were separated and identified by 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) essentially as 

previously described (43-44, 55), with the following minor modifications made to the resolving 

gel (final reagent concentrations):  6.5% acrylamide-bis (50:1), 30% glycerol gel, 210 mM Tris-

HCl (pH 7.4), 105 mM glycine, 0.4% SDS, 19% H2O, 0.1% ammonium persulfate, 0.05% 

TEMED.  Samples and a MHC isoform standard (6 μg protein of a 3:2 mixture of homogenized 

rat soleus and extensor digitorum longus muscles containing all four MHC isoforms:  I, IIa, IIb, 

IIx) were run at a constant voltage (40 V) for 1 h (during electrophoresis that was performed in a 

refrigerator cooled to 4oC, the gel box was placed in a secondary container that was packed with 

ice) with continuous mixing by a magnetic stir bar inside the electrophoresis apparatus (Mini-

PROTEAN® Tetra cell no. 165-8004, Hercules, CA).  The use of a secondary container packed 

in ice and continuous stirring were slight modifications from our original methods with single 

fibers (44).  After 1 h, the power supply was switched from constant voltage mode to constant 

current mode, with the current setting at the end of the first hour of electrophoresis maintained 

for the subsequent 23-25 h (with the gel box packed on ice in a refrigerator at 4oC).  Gels were 

subsequently removed and stained with Coomassie Brilliant Blue overnight at room temperature 

while gently rotating on an orbital shaker.  The gels were then destained in 20% methanol and 

10% acetic acid solution for 4-6 h while rotating (destaining solution was replaced with fresh 

solution every 45-60 min).  MHC bands were quantified using densitometry (AlphaEase FC, 

Alpha Innotech, San Leandro, CA).   

Immunoblotting 

Aliquots of single fiber lysates were to heated to 90˚C for 5-10 min, separated via SDS-

PAGE using 4-20% TGXTM gradient gels (Bio-Rad no. 456-1095), and then electrophoretically 

transferred to nitrocellulose membranes.  After transfer, gels were stained in Coomassie Brilliant 

Blue overnight and then destained the following morning as described above.  The Coomassie-

stained MHC bands in the gels were quantified by densitometry with these post-transfer MHC 

band densities served as the loading controls for the subsequently immunoblotted proteins 

(Alpha Innotech, San Leandro, CA) (34, 43-44).   Membranes were then rinsed with Tris-

buffered saline (TBS:  140 mM NaCl and 20 mM Tris base, pH 7.6), blocked with 5% nonfat dry 
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milk in TBS plus tween (TBST:  0.1% tween) for 1 h at room temperature, washed 3 x 5 min at 

room temperature and incubated with the appropriate primary antibody (with 5% BSA unless 

otherwise specified by the manufacturer) and rotated on orbital shaker overnight at 4°C.  On the 

following morning membranes were washed 3 x 5 min with TBST, then incubated with the 

appropriate IgG horseradish peroxidase (HRP) conjugated secondary antibody (1:20,000 in 

TBST + 5% milk) for 3 h at room temperature.  Membranes were then washed again 3 x 5 min 

with TBST, 3 x 5 min TBS and subjected to enhanced chemiluminescence to visualize protein 

bands.  Protein bands from the membranes were quantified by densitometry (Alpha Innotech, 

San Leandro, CA).  The individual values for samples were normalized to the mean value for all 

of the samples on the blot, and then divided by the loading control (the post-transfer MHC 

density determined for the respective sample on Coomassie stained gels) (34).  

Statistics 

The two-tailed t-test was used for comparison of means between two groups.  One-way 

ANOVA was used for comparisons of means among more than two groups, and the Bonferroni 

correction was used to identify the source of significant variance for data when appropriate.  To 

determine the effects of fiber type and contraction on glucose uptake, two-way ANOVA and the 

Bonferroni post-hoc test were used.  The nonparametric Spearman rank order correlation for 

individual data was used to assess the relationships between abundance of each pair of the 

proteins studied (e.g., between GLUT4 vs. TUG).  Data that were not normally distributed were 

mathematically transformed to achieve normality prior to running the appropriate statistical 

analysis.  Statistical analyses were performed using Sigma Plot (San Rafael, CA) version 11.0.  

Data were expressed as means ± SE.  A P-value < 0.05 was considered statistically significant.   

 

Results 

MHC Isoforms  

  Single muscle fibers isolated from the epitrochlearis muscle expressed five distinct fiber 

types: MHC-IIa, MHC-IIax, MHC-IIx, MHC-IIxb and MHC-IIb (Figure 4.1).   The respective 

percentages of total isolated single fibers from each of these fiber types were as follows:   MHC-
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IIxb (~44%), MHC-IIb (~28%), MHC-IIx (~17%), MHC-IIa (~6%) and MHC-IIax (~5%).  

Consistent with earlier research using the collagenase method to isolate single fibers from rat 

epitrochlearis muscles (43-44), no MHC-I fibers were found among any of the single fibers that 

were isolated in the current study.     

2-DG Uptake   

 E-Stim fiber bundles versus No E-Stim fiber bundles had significantly greater (P < 0.01) 

contraction-stimulated 2-DG uptake (Figure 4.2).  For single fiber 2-DG uptake (Figure 4.3), 

there were significant main effects of E-stim (P < 0.01) and fiber type (P < 0.01).  Within the No 

E-Stim group, 2-DG uptake was significantly greater (P < 0.01) for MHC-IIa fibers versus MHC-

IIx and MHC-IIxb fibers.  Within the E-Stim group, 2-DG uptake was not statistically different 

among the fiber types.  For each fiber type, 2-DG uptake was significantly greater (P < 0.01) for 

E-Stim fibers versus the corresponding No E-Stim fibers.       

Relative Protein Abundance  

 The relative GLUT4 protein abundance differed among the fiber types as follows:  

MHC-IIa was significantly (P < 0.05) greater than MHC-IIx, MHC-IIxb and MHC-IIb; and 

MHC-IIax was significantly (P < 0.05) greater than MHC-IIxb and MHC-IIb (Figure 4.4).  In the 

5 fiber types that were identified, the GLUT4 abundance ranged by ~4.2-fold (with the lowest 

values in the MHC-IIb fibers and the highest values in the MHC-IIa fibers).        

 TUG protein abundance differed among the fiber types as follows:  MHC-IIa was 

significantly (P < 0.05) greater than MHC-IIxb and MHC-IIb; and MHC-IIax and MHC-IIx were 

significantly (P < 0.05) greater than MHC-IIxb (Figure 4.5).  The range of values for TUG 

abundance was ~3.1-fold (with the lowest values in the MHC-IIxb and the highest values in the 

MHC-IIa fibers).  

COX IV protein abundance differed among the fiber types as follows:  MHC-IIa was 

significantly (P < 0.05) greater than MHC-IIx, MHC-IIxb and MHC-IIb; and MHC-IIax and 

MHC-IIx were significantly (P < 0.05) greater than MHC-IIxb and MHC-IIb (Figure 4.6).  The 

range of values for COX IV abundance was ~7.6-fold (with the lowest values in the MHC-IIxb 

and the highest values in the MHC-IIa fibers).  
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Filamin C protein abundance in MHC-IIa fibers was significantly (P <0.05) greater than 

in MHC-IIx, MHC-IIxb and MHC-IIb fibers (Figure 4.7).  The range of values for filamin C 

abundance was ~5.2-fold (with the lowest values in the MHC-IIb and the highest values in the 

MHC-IIa fibers) 

TBC1D1 protein abundance was assessed by immunoblotting in a total of 75 single fibers 

(15 single fibers for each of the 5 fiber types), but TBC1D1 was not detectable in every single 

fiber.  TBC1D1 protein was detected in the following numbers of single fibers:  MHC-IIa fibers 

(n = 1), MHC-IIax fibers (n = 1), MHC-IIx (n = 2), MHC-IIxb fibers (n = 11) and MHC-IIb 

fibers (n = 11).  Because TBC1D1 was detectable in only 1 or 2 of the MHC-IIa, MHC-IIax, and 

MHC-IIx fibers, the statistical analysis was performed only using the values of MHC-IIxb (n = 

11) and MHC-IIb (n = 11) fibers for which TBC1D1 was detectable.   The relative TBC1D1 

protein abundance did not significantly differ between MHC-IIxb and MHC-IIb fibers (Figure 

4.8).   

The relative protein abundance values for AS160, GP and GAPDH did not significantly 

differ among any of the 5 fiber types (Figure 4.9 - 4.11).  

RUVBL2 protein was not detectable in any of the single fibers that were tested (n = 75 

single fibers; 15 per fiber type).  

Correlations  

 Correlation analysis was performed for each pair of proteins that was studied.   

Significant (P < 0.05) correlations were identified between the following pairs:   GLUT4 versus 

TUG (Figure 4.12A), GLUT4 versus COX IV (Figure 4.12B), GLUT4 versus filamin C (Figure 

4.12C), filamin C versus COX IV (Figure 4.12D), TUG versus COX IV (Figure 4.12E), TUG 

versus filamin C (Figure 4.12F), AS160 versus TUG (Figure 4.13A), AS160 versus GP (Figure 

4.13B), AS160 versus filamin C (Figure 4.13C), TCB1D1 versus COX IV (Figure 4.13D), GP 

versus GAPDH (Figure 4.14A), GP versus filamin C (Figure 4.14B) and GAPDH versus filamin 

C (Figure 4.14C). 
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Discussion  

Single muscle fibers have been extensively studied with regard to their contractile 

function, but many of their metabolic properties are relatively poorly understood.  In this context, 

the current study significantly advanced the knowledge of muscle’s metabolic phenotype at the 

cellular level by measuring in single fibers:  1) fiber type (based on MHC isoform expression); 2) 

rate of contraction-stimulated glucose uptake; and 3) abundance of eight proteins that are 

established or potential regulators of muscle glucose uptake or metabolism.  There were no 

significant differences in contraction-stimulated glucose uptake among the five fiber types that 

were studied (MHC-IIa, MHC-IIax, MHC-IIx, MHC-IIxb and MHC-IIb) even though these fiber 

types differed substantially in their abundance of several proteins, including GLUT4.  These data 

revealed valuable new insights that cannot be discerned by conventional approaches using whole 

tissue analysis.   

Two earlier publications assessed contraction effects on glucose uptake of single fibers, 

but neither included quantitative comparisons between differing fiber types (47, 57).  In both 

studies, 2-deoxyglucose (2-DG) was infused into anesthetized cats in which muscle contractions 

were induced by electrical stimulation of motor neurons.  Toop et al. (57) infused radiolabeled 2-

DG into the cats and prepared serial sections of muscle samples.  One section was used to 

histochemically determine if motor units were fast or slow based on myosin adenosine 

triphosphatase (ATPase) and oxidative enzyme activity.  A second section was used for 

autoradiographic assessment of 2-DG accumulation by individual fibers.  Although quantitative 

values for 2-DG accumulation were not reported, the authors noted that it was their “impression 

that autoradiographic labeling was less heavy” in the fibers of slow compared to fast motor units.  

Nemeth et al. (47) infused non-radioactive 2-DG into anesthetized cats concomitant with 

electrical stimulation of motor neurons.   Muscles were subsequently collected and serially 

sectioned, with one section used for fiber typing by myosin ATPase staining.  Individual frozen 

fibers were then micro-dissected from an adjacent muscle section, and 2-DG-6-phosphate (2-

DG6P) content was measured by biochemical analysis.  As expected, accumulation of 2-DG6P 

was much greater in fibers from electrically stimulated motor units compared to non-stimulated 

controls, but no comparisons of contraction-stimulated glucose uptake were reported for single 

fibers with different fiber types.  To the best of our knowledge, the results from the current study 
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provided the first quantitative comparison of contraction-stimulated glucose uptake among single 

fibers with differing fiber types. 

It is important to interpret the current data together with earlier research using intact 

skeletal muscle preparations.  Henriksen et al. (26) and others (1-2, 29-30) have previously 

reported that, based on results from whole skeletal muscles studied ex vivo, contraction-

stimulated glucose uptake was substantially greater in the FDB (enriched in type IIa fibers) 

compared to the epitrochlearis (enriched in type IIb fibers) muscles from rats.  These results are 

often cited as evidence that the capacity for contraction-stimulated glucose uptake is greater for 

IIa versus IIb fibers.  However, analysis of muscle tissue has limitations for elucidating 

differences among fiber types at the cellular level because:  1) no rat muscles have been found to 

exclusively express a single MHC isoform; 2) no rat muscle has been recognized to be 

predominantly composed of MHC-IIx fibers; 3) whole tissue analysis cannot determine the 

glucose uptake of hybrid fibers that express multiple MHC isoforms; 4) many cell types 

(including vascular, neural, and adipose cells) contribute to glucose uptake by skeletal muscle 

tissue; and 5) it cannot be assumed that every difference between muscles with divergent fiber 

type profiles is a direct consequence of differing fiber type.   The difference in contraction-

stimulated glucose uptake between the FDB and epitrochlearis in earlier research taken together 

with the lack of significant fiber type differences in contraction-stimulated glucose uptake for 

MHC-IIa compared to MHC-IIb single fibers provides a notable example of this final caveat. 

In contrast to the lack of fiber type differences for glucose uptake by single fibers from 

muscles that had been stimulated to contract, we previously found substantial fiber type-related 

differences for insulin-stimulated glucose uptake by single fibers from rat epitrochlearis muscles 

(43-44).  Insulin-stimulated glucose uptake was more than 2-fold greater for MHC-IIa fibers 

versus fibers expressing each of the other MHC isoforms that were studied, and insulin-

stimulated glucose uptake was also greater for MHC-IIxb versus MHC-IIb fibers (44).  The 

results for insulin-stimulated single fibers were consistent with the greater insulin-stimulated 

glucose uptake that has been found in the whole FDB versus the whole epitrochlearis (26).  We 

also previously reported a significant difference for AICAR-stimulated glucose uptake by single 

MHC-IIb fibers versus MHC-IIa fibers (MHC-IIb greater than MHC-IIa) (44) which 

corresponded to the greater AICAR-stimulated glucose uptake that had been observed for the 
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whole epitrochlearis versus the whole FDB (1).  Thus, in single fibers from rat epitrochlearis 

muscles, fiber type-related effects on glucose uptake capacity are highly stimulus-specific:  1) 

contraction-stimulated glucose uptake for MHC-IIa fibers is similar to MHC-IIb fibers; 2) 

insulin-stimulated glucose uptake for MHC-IIa fibers exceeds MHC-IIb fibers; and 3) AICAR-

stimulated glucose uptake for MHC-IIa fibers is less than MHC-IIb fibers.  These results may be 

related, at least in part, to differences in the expression patterns of key proteins that play 

stimulus-specific roles in the activation of glucose transport. 

Although the relationship between fiber type and glucose uptake is stimulus-specific, 

GLUT4 is the glucose transporter protein that is redistributed to the cell surface membranes in 

response to each of these stimuli, i.e., contraction (39, 42, 49), insulin (17-18, 38, 45, 49) and 

AICAR (35, 40-41).  The greater values for GLUT4 abundance in MHC-IIa versus MHC-IIb 

fibers may be related to the greater insulin-stimulated glucose uptake in MHC-IIa fibers (43-44), 

but this begs the question, why does GLUT4 expression not also track with the capacity for 

glucose uptake in response to either contraction or AICAR?  Several lines of evidence support 

the idea that skeletal muscle has distinct subcellular pools of GLUT4, and that these subsets of 

GLUT4 vary in their susceptibility to recruitment by different stimuli (14, 18, 37, 49).  If this 

scenario is true, the capacity for contraction-stimulated and AICAR-stimulated glucose transport 

in a given fiber type may be constrained by the amount of GLUT4 that is allocated to the 

contraction-susceptible and AICAR-susceptible pools of GLUT4.    

The ~4-fold greater GLUT4 abundance in MHC-IIa versus MHC-IIb fibers compares 

well with the ~4-fold difference in GLUT4 abundance of the FDB versus the epitrochlearis 

reported by Henriksen et al. (26).  This difference can also be compared with Study 1 of my 

dissertation in which we evaluated 12 different rat skeletal muscles or regions of muscles with 

wide differences in fiber type composition.  Based on analysis of multiple muscles, we found 

that the mean values for GLUT4 abundance varied by 2.5-fold, the % MHC-IIa fibers was 

positively correlated with GLUT4 levels, and the % MHC-IIb fibers was negatively correlated 

with GLUT4 levels (11).  The current study was apparently the first to assess single rat fibers for 

both MHC isoform expression and GLUT4 abundance by immunoblotting.  However, 

Hashimoto et al. (25) studied rat plantaris muscles and performed immunohistochemical analysis 

of GLUT4 content along with determination of fiber type profiles based on histochemical 
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analysis (myosin ATPase, succinate dehydrogenase, and α-glycerophosphate dehydrogenase).  

They reported that the rank order for GLUT4 content was:   slow oxidative (SO) fibers exceeded 

fast-oxidative glycolytic (FOG) which, in turn, exceeded fast glycolytic (FG) fibers, but only the 

SO versus FG difference achieved statistical significance.  Kong et al. (36) studied single fibers 

from rabbit tibialis anterior muscles and found GLUT4 protein levels measured by 

immunoblotting were roughly 2 to 3-fold greater on average in FOG fibers (identified on the 

basis of having high enzymatic activities of both malate dehydrogenase, MDH, and lactate 

dehydrogenase, LDH) compared to FG fibers (identified by low MDH activity and high LDH 

activity).  Daugaard et al. (16) dissected single fibers from human vastus lateralis muscle 

biopsies and determined MHC isoform expression (I, IIa and IIx are the MHC isoforms 

expressed in human muscle).  After pooling fibers that expressed the same MHC isoform, they 

determined GLUT4 abundance by immunoblotting.  GLUT4 abundance was ~20% greater for 

type I compared to MHC-IIa or MHC-IIx fibers, and GLUT4 in the latter fiber types did not 

differ from each other.  When both fiber type and GLUT4 were determined in single fibers of 

human vastus muscles by immunohistochemical analysis, GLUT4 levels were ~13% greater for 

type I versus type II fibers (types IIa and IIx were not differentiated).  The relative magnitude of 

differences between fiber types may vary among species, but the use of different methods 

complicates the comparisons across experiments.  Regardless, a unique aspect of the current 

study was that GLUT4 abundance was determined for hybrid fibers.  The results indicated 

greater GLUT4 content of MHC-IIax fibers compared to either MHC-IIxb or MHC-IIb fibers 

(but not MHC-IIa or MHC-IIx fibers), and MHC-IIxb fibers were not significantly different from 

either MHC-IIx or MHC-IIb fibers.   

Based on the analysis of multiple rat skeletal muscles of varying fiber type, we 

previously found that the relative levels of GLUT4, TUG and RUVBL2 expression were 

clustered together (11).  Our current analysis of these same proteins in single fibers extended the 

earlier results by demonstrating an association between the relative levels of GLUT4 and TUG at 

the cellular level.  These two proteins are known to be binding partners, and their interaction 

appears to play a role in the subcellular localization of GLUT4 (4).  Whereas the GLUT4 and 

TUG relationship that we observed by tissue analysis was confirmed in single fibers, the results 

for RUVBL2 in single fibers provided a new perspective for interpreting the results of tissue 

analysis.  We were unable to detect RUVBL2 in single fibers using the same antibody that we 
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previously used to detect RUVBL2 in whole epitrochlearis muscles.  Because these results 

suggest that RUVBL2 is not highly expressed by type MHC-II fibers, the whole tissue data 

appear to have been largely attributable to RUVBL2 expression by other cell types (e.g., MHC-I 

fibers, neurons, adipocytes, vascular cells, or satellite cells, etc.).   

It is well known that type IIa fibers are characterized by greater mitochondrial content 

compared to type IIb fibers (13, 20, 25, 27, 43).  The current results for the mitochondrial 

enzyme COX IV were consistent with these expectations, and they also confirmed our previously 

reported finding that COX IV abundance differed markedly in single fibers with the highest 

values in IIa fibers and the lowest values in MHC-IIb fibers (43).  Because earlier studies have 

provided evidence for co-regulation of GLUT4 and COX IV in muscle (3, 28), it was not 

surprising that there was a relatively high correlation between GLUT4 and COX IV abundance.  

In view of the relationship between GLUT4 and TUG, the positive association found between 

COX-IV and TUG abundance was also not unexpected.  GLUT4 and COX IV expression levels 

in skeletal muscle can be increased in response to chronic electrical stimulation of skeletal 

muscle or endurance exercise training (28, 36), and denervation can lead to reduced GLUT4 and 

COX IV abundance (12, 46).  Although it seems possible that TUG abundance is also responsive 

to the level of neuromuscular activity, this idea has not yet been experimentally tested.  

 The relative AS160 protein abundance in single fibers did not differ significantly among 

the fiber types.  This finding corresponds to our earlier results in which AS160 abundance did 

not correlate with MHC-isoform proportions, and in which no significant differences in AS160 

abundance were detected among multiple muscles with wide diversity in fiber type composition 

(11).  We originally became interested in possible fiber type differences in AS160 on the basis of 

the results of Taylor et al. (56) who reported large differences in AS160 abundance in different 

skeletal muscles of mice (soleus was ~10-fold greater than the extensor digitorum longus, EDL, 

and tibialis anterior, TA).  They noted that AS160 abundance tracked with the relative content of 

type MHC-I and MHC-IIa in the three muscles studied (TA: ~47% MHC-IIx, and ~53% MHC-

IIb;  EDL: ~35% MHC-IIx, and ~65% MHC-IIb; soleus:  ~27% MHC-I, ~38% MHC-IIa, ~15% 

MHC-IIx, and ~20% MHC-IIb).  In biopsies from humans, Jensen et al. (32) found AS160 

abundance did not differ in muscles that varied in fiber type profile:  soleus (71% MHC-I, 27% 

MHC-IIa, 1% MHC-IIx), gastrocnemius (54% MHC-I, 42% MHC-IIa, 4% MHC-IIx) and vastus 
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lateralis (47% MHC-I, 50% MHC-IIa, 2% MHC-IIx).  There seems to be variability among 

species for the range of AS160 expression values found in muscles with different fiber type 

profiles.    

The current study also provided new information about the relationship between AS160 

and RUVBL2.  It has been suggested based on results in adipocytes that RUVBL2 binding to 

AS160 can regulate insulin-stimulated AS160 phosphorylation and glucose transport (60).  

However, these proposed roles for RUVBL2 may not apply to type II fibers from rat skeletal 

muscle which lacked detectable RUVBL2 protein.  

Another important new finding was that TBC1D1 was undetectable in most (~91%) of 

the MHC-IIa, MHC-IIax and MHC-IIx single fibers.  In striking contrast, TBC1D1 was 

detectable in most (~73%) of the MHC-IIb and MHC-IIbx single fibers.  Using the same 

TBC1D1 antibody, we were able to detect TBC1D1 in each of 12 different muscles or muscles 

regions from rats (11).  In the earlier study of multiple muscles, TBC1D1 abundance was not 

significantly correlated with MHC isoform expression.  In the first study that evaluated TBC1D1 

abundance in multiple muscles, Taylor et al. (56) reported that TBC1D1 abundance differed by 

10-fold among three different skeletal muscles from mice, with the TBC1D1 content of the TA 

greater than the EDL which was greater than the soleus.  They suggested that the level of 

TBC1D1 corresponded to the relative content of type MHC-IIx in the three muscles studied, but 

this relationship was not quantitatively analyzed.  In contrast to the results for mice, we found no 

significant difference in TBC1D1 abundance among the TA, EDL and soleus muscles of rats and 

there was no association between TBC1D1 and the % MHC-IIx fibers (11).  Furthermore, the 

current data indicates TBC1D1 is not highly expressed by single MHC-IIx fibers from rats.  

Regardless of the possible species differences for TBC1D1 levels in various muscles, there is 

evidence based on results using whole muscles with high proportions of MHC-IIb fibers from 

both rats (epitrochlearis) and mice (EDL) that TBC1D1 may participate in the regulation of 

contraction-stimulated glucose uptake (22, 56).  However, the current results for TBC1D1 in 

MHC-IIa, MHC-IIax, and MHC-IIx fibers suggest some uncertainty about TBC1D1’s role for 

regulating contraction-stimulated glucose uptake in these fiber types of rat skeletal muscle. 

Filamin C is an actin-binding protein and Akt substrate that is selectively expressed in 

skeletal muscle (21, 50, 54).  Filamin C is largely found in two different cellular locations in 
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skeletal muscle:  near the sarcolemma in association with the dystrophin-glycoprotein complex 

and near the Z-line (50).  Filamin C’s purpose is uncertain, and it may have distinct functions 

associated with the two locations.   Nonetheless, it is notable that the remodeling of actin 

filaments has potential roles in both spatial localization of signaling proteins and translocation of 

GLUT4 glucose transporter vesicles (61).  Furthermore, we recently found that insulin leads to 

increased Ser2213 phosphorylation of filamin C in skeletal muscle (53-54).  Although there is 

currently no evidence that directly links filamin C to the regulation of glucose uptake or 

metabolism, the results for filamin C abundance were novel and interesting.  Filamin C 

abundance was highly fiber type-dependent, the pattern for its expression was similar to the 

pattern for the expression of GLUT4, TUG and COX IV, and there were significant correlations 

between the abundance of filamin C and the abundance of each of these proteins.  There were 

also modest, but significant correlations between filamin C abundance and the abundance of 

glycogen phosphorylase, GAPDH and AS160.  The causes and consequences of the fiber type-

related expression pattern of filamin C remain to be determined. 

Glycogen phosphorylase and GAPDH are enzymes that participate in carbohydrate 

metabolism.  There were no significant differences among the fiber types for abundance of either 

protein.  Because glycogen phosphorylase is essential for the breakdown of glycogen, the current 

data suggest that any differences in glycogenolysis among the MHC-II fiber types would depend 

on factors other than large differences in glycogen phosphorylase abundance.  There was a 

modest positive correlation between the abundance of each of these proteins. 

In the current study and in the two previous studies in which we evaluated the MHC 

expression of single fibers in the epitrochlearis (43-44), we did not isolate any MHC-I fibers.  

The relative abundance of the MHC composition of whole epitrochlearis from male Wistar rats 

(8% I, 13% IIa, 28% IIx, and 51% IIb) (11), and it is unclear why MHC-I fibers were not found 

among the many hundreds of single fibers that we have isolated to date.  Regardless, we were 

able to isolate single fibers expressing each of the other MHC isoforms (representing >90% of 

MHC in the rat epitrochlearis).  It should also be noted that we did not identify any MHC-IIax 

fibers in our previous studies (43-44).  Our identification of MHC-IIax fibers in the current study 

may be the result of slight modifications in the SDS-PAGE procedure (see Methods).  The 

MHC-IIa and MHC-IIx bands of MHC-IIax fibers were apparently not effectively separated in 
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the original studies, resulting in the classification of these hybrid fibers as either MHC-IIa or 

MHC-IIx fibers. 

For many decades, the concept of muscle fiber types has offered a useful perspective for 

understanding the heterogeneity that occurs both between and within skeletal muscles.  To fully 

understand this heterogeneity at the cellular level, it is essential to make functional 

measurements in single fibers.  The most important new finding was that contraction-stimulated 

glucose uptake did not differ significantly among the five MHC-II fiber types that were studied.  

It remains possible that fiber type-related differences in glucose uptake occur in MHC-II fibers 

with voluntary exercise in vivo, but such differences would likely be primarily dependent factors 

other than the fibers’ intrinsic capacity for contraction-stimulated glucose uptake (e.g., extent of 

recruitment and blood flow).  There were several compelling fiber type-related differences in 

protein abundance, including differences that were expected based on earlier studies (e.g., 

GLUT4 and COX IV).  The substantial and unanticipated fiber type differences for filamin C 

abundance provide novel information with implications for the functional roles of this protein.  

In addition, the lack of detectable RUVBL2 in any of the fiber types that were tested, and the 

fiber type differences for TBC1D1 have relevance for clarifying the biological purposes of these 

proteins in muscle.  The analysis of single fibers offers unique information and opportunities, but 

the optimal benefits of this approach require the careful consideration of the knowledge obtained 

from studying both isolated skeletal muscle preparations and the intact organism. 
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Figure 4.1 

Representative Coomassie stained gels showing the fiber types expressed by single fibers 
isolated from the rat epitrochlearis muscles.  
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Figure 4.2 

Contraction-stimulated 2-DG uptake by fiber bundles. *Indicates significance difference for 
2-tailed paired t-test between No E-Stim versus E-Stim (P < 0.01; n = 11).   
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Figure 4.3 

Contraction-stimulated 2-DG uptake by single muscle fibers.  Box in upper right shows 2-
way ANOVA analysis (No E-Stim vs. E-Stim, ± ES; Fiber Type, FT; Interaction, ± ES x 
FT).  For post-hoc analysis statistical significance (P < 0.05) within the No E-Stim fibers 
(open bars) is indicated by uppercase letters, and statistical significance (P < 0.05) within the 
E-Stim fibers (filled bars) is indicated by lowercase letters.  *Indicates significance 
difference (P < 0.05) for No E-Stim vs. E-Stim within a given fiber type (e.g., No E-Stim 
MCH-IIa vs. E-Stim MHC-IIa).  Values are means ± SE with n for No E-Stim/E-Stim fibers:  
MHC-IIa (25/21), MHC-IIax (15/27), MHC-IIx (59/72), MHC-IIxb (157/193) and MHC-IIb 
(84/136).  
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Figure 4.4 

Relative GLUT 4 protein abundance for single muscle fibers.  *Indicates statistical 
significance for MHC-IIa vs. MHC-IIx, MHC-IIxb and MHC-IIb (P < 0.05).  †Indicates 
statistical significance for MHC-IIax vs. MHC-IIxb and MHC-IIb (P < 0.05).  Values are 
means ± SE; n = 10 for each fiber type.   
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Figure 4.5 

Relative TUG protein abundance for single muscle fibers.  *Indicates statistical significance 
for MHC-IIa vs. MHC-IIxb and MHC-IIb (P < 0.05).  †Indicates statistical significance for 
MHC-IIax and MHC-IIx vs MHC-IIxb (P < 0.05).  Values are means ± SE; n = 13 for each 
fiber type. 
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Figure 4.6 

Relative COX IV protein abundance for single muscle fibers.  *Indicates statistical 
significance for MHC-IIa vs. MHC-IIx, MHC-IIxb, and MHC-IIb (P < 0.05).  †Indicates 
statistical significance for MHC-IIax and MHC-IIx vs MHC-IIxb  and MCH-IIb (P < 0.05).  
Values are means ± SE; n = 14 for each fiber type. 
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Figure 4.7 

Relative filamin C protein abundance for single muscle fibers.  *Indicates statistical 
significance for MHC-IIa vs. MHC-IIx, MHC-IIxb and MHC-IIb (P < 0.05).  Values are 
means ± SE; n = 13 for each fiber type. 
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Figure 4.8 

Relative TBC1D1 protein abundance for single muscle fibers.  Because TBC1D1 was 
detectable in only 1 to 2 of the MHC-IIa, MHC-IIax, and MHC-IIx fibers, the statistical 
analysis of TBC1D1 was performed only on the MHC-IIxb fibers and MHC-IIb fibers fibers 
for which TBC1D1 was detectable.  The dashed line for MHC-IIa, MHC-IIax and MHC-IIx 
fibers indicates that these subgroups were not included in the statistical analysis.  Values are 
means ± SE; n = 11 for each fiber type (MHC-IIxb and MHC-IIb).   
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Figure 4.9 

Relative AS160 protein abundance for single muscle fibers.  Values are means ± SE; n = 13 
for each fiber type. 
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Figure 4.10 

Relative Glycogen Phosphorylase protein abundance for single muscle fibers.  Values are 
means ± SE; n = 15 for each fiber type. 
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Figure 4.11 

Relative GAPDH protein abundance for single muscle fibers.  Values are means ± SE; n = 
13 for each fiber type. 
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Figure 4.13A-D 

Significant correlations.  A: AS160 vs. TUG, n = 55; B: AS160 vs. Glycogen Phosphorylase 
(GP), n = 65; C: AS160 vs. Filamin C, n = 60; D: TCB1D1 vs. COX IV, n = 20.  Each fiber 
is denoted with an individual symbol. 
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Chapter V 

  

Study 3: 

Acute Exercise Effects on Insulin Signaling and Insulin-Stimulated Glucose Uptake in 

Isolated Skeletal Muscle from Rats Fed either Low Fat or High Fat Diet 

   

 

Abstract 

Previous studies demonstrated that acute exercise by rats with normal insulin sensitivity 

can lead to increased insulin-stimulated glucose uptake of skeletal muscle concomitant with 

increased phosphorylation of Akt Substrate of 160 kDa on Thr642 and Ser588 (pAS160Thr642 and 

pAS160Ser588) compared to sedentary control values.  Because little is known about mechanisms 

for exercise effects on insulin sensitivity in insulin-resistant muscle, our goal was to assess 

exercise effects on insulin-stimulated glucose uptake, pAS160Thr642 and pAS160Ser588 in muscles 

from rats fed normal rodent chow (14% kcal fat, low fat diet, LFD) or a high fat diet (60% kcal 

fat, HFD, for 2wk).  Half of the rats from each diet group were sedentary (LFD SED and HFD 

SED), and the others performed 2h of swim-exercise.  Exercise rats were studied either 

immediately post-exercise (LFD IPEX and HFD IPEX) or 3h post-exercise (LFD 3hPEX and 

HFD 3hPEX).  For IPEX rats, one epitrochlearis muscle was immediately frozen for 

determination of glycogen and phosphorylation of AMP-activated protein kinase (AMPK) and 

Akt substrate of 160 kDa (AS160), and the contralateral muscle was incubated with 3H-2-

deoxyglucose (2-DG) with no insulin.  For 3hPEX rats, paired epitrochlearis muscles were 

incubated with 2-DG ±100μU/mL insulin.  At each time-point (IPEX and 3hPEX) for muscles 
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from both LFD IPEX and HFD IPEX rats, insulin-independent 2-DG uptake was increased (P < 

0.05) compared to the respective sedentary controls, and muscle insulin-independent 2-DG 

uptake was not different for LFD versus HFD groups in either sedentary or exercised rats.  IPEX 

versus Sedentary controls had reduced muscle glycogen and increased phosphorylation of 

AMPK and AS160, and none of these IPEX-effects differed between diet groups.  Muscles from 

HFD SED versus LFD SED rats had lower (P < 0.05) insulin-stimulated 2-DG uptake.  For both 

LFD 3hPEX and HFD 3hPEX groups, muscle insulin-stimulated 2-DG uptake was increased (P 

< 0.05) compared to their respective Sedentary controls, but muscle insulin-stimulated 2-DG 

uptake was lower (P < 0.05) for HFD 3hPEX versus LFD 3hPEX rats.  HFD did not significantly 

alter insulin-stimulated insulin receptor phosphorylation, or phosphatidylinositol-3-kinase 

associated with insulin receptor substrate-1 (IRS-1), AktSer473 phosphorylation or Akt activity of 

insulin-stimulated muscles, but there was a main effect of diet (P < 0.05) on for AktThr308 

phosphorylation (LFD > HFD).  For insulin-stimulated muscles from LFD 3hPEX rats, greater 2-

DG uptake was accompanied by increased (P < 0.05) pAS160Thr642 and pAS160Ser588.  For 

insulin-stimulated muscles from HFD 3hPEX versus HFD Sedentary rats, greater 2-DG uptake 

was accompanied by increased pAS160Ser588, but pAS160Ser588 values were significantly lower in 

the HFD 3hPEX versus LFD 3hPEX rats (P < 0.05).  In addition, in neither diet-group was the 

exercised-induced improvement in insulin-stimulated 2-DG uptake by muscle accompanied by:  

significant improvements in proximal insulin signaling, reduced serine phosphorylation of IRS-1, 

decreased c-Jun N-terminal Kinase phosphorylation or reductions in diacylglycerols or 

ceramides.  For triacylglycerols, there was a main effect of diet (P < 0.05, HFD > LFD) for 18:0, 

18:1 (n-9), 20:2,  and for LFD 3hPEX versus LFD SED muscles 20:1 was significantly lower (P 

< 0.05).  For acyl-CoA, there was a main effect of exercise (P < 0.05) for acyl-CoA-16:0 

(Sedentary > 3hPEX), and for HFD 3hPEX versus HFD SED muscles acyl-CoA-16:0 was 

significantly lower (P < 0.05).  These results indicate that exercise can enhance insulin-

stimulated 2-DG uptake of muscles from either LFD or HFD rats concomitant with enhanced 

pAS160.  In addition, these observations implicate the greater pAS160 in the LFD 3hPEX versus 

HFD 3hPEX group as a possible mechanism for the greater insulin-stimulated 2-DG uptake in 

muscles from LFD 3hPEX rats.   
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Introduction 

 A single exercise bout is an effective stimulus for increasing insulin-stimulated glucose 

transport in skeletal muscle of humans (38, 61, 63, 68)  or rodents (2, 10, 12, 19-20, 38, 45, 53) 

with normal insulin sensitivity prior to exercise.  Following acute exercise by lean rats (28) or 

humans (61) with normal insulin sensitivity, the improved insulin-stimulated glucose transport is 

secondary to enhanced recruitment of the GLUT4 glucose transporter to the cell surface.  

However, the precise mechanism for the greater insulin-mediated GLUT4 translocation is 

unknown.  Numerous studies of healthy humans or rats have found that the greater insulin 

sensitivity following exercise is not due to improved proximal insulin signaling [e.g., insulin 

binding to its receptor (4-5, 69), insulin receptor (IR) tyrosine kinase activity (60, 62, 65), insulin 

receptor substrate-1 tyrosine phosphorylation (pIRS-1Tyr) (28-29), phosphatidylinositol-3-kinase 

associated with insulin receptor substrate-1 (IRS-1-PI3K) (15, 17, 66-67), or activation of Akt (2, 

18, 20, 25, 65)].   

The lack of evidence for exercise to elevate the activation of proximal insulin signaling 

events suggest that exercise may act on more distal signaling processes.  In humans or rats the 

distal insulin signaling protein called Akt Substrate at 160 kDa (AS160; also known as TBC1D4) 

has been proposed as a possible regulator for the post-exercise increase in insulin sensitivity (2, 

9, 19-20).  AS160 is a Rab-GTPase protein that is phosphorylated in response to insulin, thereby 

inhibiting its GTPase activity and allowing for GLUT4 vesicles to translocate to the cell surface 

(11, 34, 49, 51).  During the hours following acute exercise, the elevated AS160 phosphorylation 

has repeatedly been shown to be sustained (2, 19-20, 56, 63).  In addition, evidence suggests that 

AS160’s sustained phosphorylation tracks with the post-exercise increase in insulin-stimulated 

glucose transport under conditions in which the dietary protocol was altered after exercise (i.e., 

with or without refeeding a rat chow with a high carbohydrate content) (20).   

 Insulin resistance associated with high fat feeding is attributable to the reduced ability of 

insulin to stimulate GLUT4 translocation to the cell surface rather than reduced total GLUT4 

abundance (26, 35, 47).  Insulin resistance has been reported to be associated with increased 

muscle levels of lipid metabolites (including acyl-CoA, ceramides and diacylglycerol, DAG), 

that can increase the activity of serine kinases, including Protein Kinase C-Theta (PKC-θ) and c-

Jun N-terminal Kinase (JNK) (6, 14, 48, 52, 55, 57).  These serine kinases have been implicated 
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in increased serine phosphorylation of insulin receptor substrate-1 (pIRS-1Ser) on inhibitory sites 

(pIRS-1Ser307 and pIRS-1Ser1101), leading to reduced downstream signaling steps resulting in 

reduced Akt activation.  

A single bout of exercise can also improve insulin-stimulated glucose uptake in skeletal 

muscle of insulin resistant humans (7, 16, 44, 54) or rats (3, 21, 36, 41, 46, 59).  It is not clear if 

exercise induces this benefit in both healthy and insulin resistant individuals via the same 

mechanism.  In rats fed a high fat diet (HFD), the limited data available suggest that the 

improved insulin sensitivity following acute exercise is associated with enhanced proximal 

signaling secondary to reduced JNK phosphorylation (pJNK) and pIRS-1Ser307 (41, 46).  

However, results from these studies should be interpreted with caution because insulin signaling 

measurements were obtained only with a supraphysiological insulin dose (41, 46).  Furthermore, 

a similar study by the same group reported improved insulin signaling (increased IRS-1Tyr and 

Akt phosphorylation, pAkt) in HFD rats after exercise in the absence of reduced pJNK or pIRS-

1Ser307 (43).   

For Study 3 healthy insulin sensitive rats (eating standard chow; low fat diet, LFD) and 

rats fed a HFD (for two weeks to induce insulin resistance) were evaluated for several potential 

mechanisms that may be important for the post-exercise increase in insulin-stimulated glucose 

transport by skeletal muscle.  The first major goal for Study 3 was to investigate the mechanism 

(measurements of proximal insulin signaling and AS160 phosphorylation) for the exercise 

induced improvements for insulin-stimulated glucose uptake by skeletal muscle from insulin 

sensitive and insulin resistant rats.  The second major goal was to identify possible changes in 

GLUT4, AS160, TBC1D1, TUG, RUVBL2 and muscle fiber type following 2 weeks of high fat 

feeding.  The third major goal was to determine the effects of acute exercise on putative 

mediators of insulin resistance [lipid metabolites (acyl-CoA,DAG, ceramide), pJNK and pIRS-

1Ser307 and pIRS-1Ser1101] in muscles from insulin sensitive and insulin resistant rats.  
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Methods 

Materials 

The reagents and apparatus for sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and immunoblotting were from Bio-Rad (Hercules, CA).  

Bicinchoninic acid protein assay reagent (no. 23227) and Pierce reversible protein stain 

(Memcode) kit for nitrocellulose membranes (no. 24580) were from Pierce Biotechnology 

(Rockford, IL).  Anti-AS160 (no. ABS54), anti-GLUT4 (no. CBL243), anti-IRS-1 (no. 06-248), 

anti-PI3K (no. 06-195), Akt1/PKBα Immunoprecipitation-Kinase Assay Kit (17-188), anti-

Akt/PH domain clone SKB1 (no. 05-591), Akt substrate peptide (no. 12-340), protein G agarose 

beads (no. 16-266), MILLIPLEX MAP Cell Signaling Buffer and Detection Kit (no. 48-602),  

MILLIPLEX MAP Akt/mTOR Phosphoprotein Panel (no. 48-611; AktSer473; glycogen synthase 

beta, GSKβSer9; insulin receptor, IRTyr1162/1163; IRS-1Ser307; and tuberous sclerosis 2, TSC2Ser939), 

MILLIPLEX MAP Phospho JNK/SAPKThr183/Tyr185 (no. 46-613) and LuminataTM Forte Western 

Horseradish Peroxidase Substrate (no. WBLUF0100) were from Millipore (Billerica, MA).  

Anti-RUVBL2 (no. ab36569) was from Abcam (Cambridge, MA).  Anti-pAktThr308 (no. 9275), 

anti-Akt (no. 9272), anti-FoxO1 (Forkhead box protein O1; no. 2880), anti-pFoxO1Thr24 (no. 

9464), anti-PRAS40 (Proline-rich Akt substrate of 40 kDa; no. 2691), anti-pPRAS40Thr246 (no. 

2997), anti-GSK3β (no. 9315), anti-JNK (no. 9252) and anti-TSC2 (no. 3612) were from Cell 

Signaling Technologies (Boston, MA).  Phospho-AS160Thr642 (no. 3028 P1) was from Symansis 

Limited (Auckland, New Zealand).  Anti-Insulin Receptor-β (no. sc-20739) was from Santa Cruz 

Biotechnology.  Anti-TUG was provided by Dr. Jonathan Bogan (Yale University; New Haven, 

CT).  Insulin ELISA (no. 80-INSRT-E01) was from Alpco Diagnostics (Salem, NH).  

Animal Treatment 

 Procedures for animal care were approved by the University of Michigan Committee on 

Use and Care of Animals.  Male Wistar rats (6 wk old; initial body weight ~200-250g; Harlan, 

Indianapolis, IN) were individually housed, separated into two groups and provided with either 

standard rodent chow (Low Fat Diet; LFD: 14% kcal fat, 58% kcal CHO, 28% kcal protein; Lab 

Diet no. 5001, PMI Nutritional International, Brentwood, MO) or high fat diet [HFD: 60% kcal 

fat, 20% kcal CHO, 20% kcal protein; Research Diets (no.D12492), New Brunswick, NJ] and 
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water ad libitum for 2 weeks.  After two weeks of the diet intervention, rats were fasted the night 

before the experiment at ~1900.  On the morning after the overnight fast, rats from both diet 

groups (LFD and HFD) either remained sedentary or performed an acute exercise bout.  

Beginning at ∼0600, exercised rats swam in a barrel filled with water (35°C) to a depth of ∼45 

cm (6 rats/barrel, 3 rats from each diet group) for 4 × 30 min bouts, with a 5 min rest period 

between each bout (19).  Immediately after completing the exercise protocol (IPEX), some rats 

were anesthetized (intraperitoneal injection of sodium pentobarbital, 50 mg/kg wt), and 

epitrochlearis muscles were dissected out.  One muscle was used to measure insulin-independent 

glucose uptake, and the contralateral muscle was immediately frozen for subsequent 

determination of glycogen concentration,  pAMPK and pAS160.  The remaining exercising rats 

were dried and returned to their cages without access to food for 3h, at which time blood was 

sampled from the tail vein from both time-matched sedentary controls (LFD sedentary or HFD 

Sedentary) and exercised rats 3 hours post-exercise (LFD 3hPEX or HFD 3hPEX) to determine 

blood glucose (via Accu-Chek Aviva glucometer, Roche, Indianapolis, IN) and plasma insulin 

concentration (via Alpco ELISA).  Homeostatic model assessment of insulin resistance (HOMA-

IR) was calculated: [plasma glucose (mg/dL) x plasma insulin (µUnits/mL)] ÷ 405.  Rats were 

then anesthetized, and their epitrochlearis muscles were dissected out to measure insulin-

independent and insulin-dependent glucose uptake.  Sedentary rats from each diet group were 

anesthetized at times coinciding with the IPEX and 3hPEX groups.  While rats were under deep 

anesthesia both epitrochlearis muscles were dissected out, rapidly rinsed in warm (35°C) Krebs-

Henseleit buffer (KHB) and transferred to vials for subsequent ex vivo incubations.  

Muscle Incubations 

Isolated epitrochlearis muscles underwent two incubation steps.  During both incubation 

steps, vials containing the appropriate media were continuously shaken and gassed (95% O2/5% 

CO2) in a heated (35°C) water bath.  For insulin-independent glucose uptake, epitrochlearis 

muscles were rapidly dissected out IPEX.  One muscle from the IPEX groups and their time-

matched SED controls underwent a 2-step incubation procedure.  Step 1 IPEX incubation (10 

min) was as follows: IPEX  muscles were incubated in vial containing 2 ml of Media 1 [Krebs-

Henseleit buffer supplemented with 0.1% bovine serum albumin (KHB/BSA), 2 mM sodium 

pyruvate, and 6 mM mannitol].  Step 2 IPEX incubation (20 min) was a follows: IPEX muscles 
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were then transferred to a second vial containing 2 ml of Media 2 [(KHB/BSA solution, the same 

insulin concentration as in Step 1), 1 mM 2-deoxyglucose (2-DG; final specific activity of 2.25 

mCi/mmol 3H-2-DG), and 9 mM mannitol (final specific activity of 0.022 mCi/mmol 14C-

mannitol)].  Insulin-independent and insulin-dependent glucose uptake were measured in paired 

epitrochlearis muscles from other rats at 3hPEX along with time-matched SED controls.  Step 1 

3hPEX incubation (30 min) was as follows:  3hPEX contralateral muscles were placed in vials 

containing 2 mL of Media 1 with either 0 nM or 0.6 nM insulin.  Step 2 3hPEX incubation (20 

min) was as follows:  muscles were then transferred to a second vial containing 2 ml of Media 2 

and the same insulin concentration as in Step 1.  Following Step 2 incubations, all muscles were 

rapidly blotted on filter paper (moistened with ice-cold KHB), trimmed, freeze-clamped using 

aluminum tongs cooled in liquid nitrogen and stored at −80°C until later processing and analysis. 

Muscle Homogenization 

Frozen muscles used for glucose uptake and immunoblotting were weighed and then 

homogenized in ice-cold lysis buffer (1 ml/muscle; 20 mM Tris-HCL, 150 mM NaCl, 1% Triton 

X-100, 1 mM Na3VO4, 1 mM EDTA, 1 mM EGTA, 2.5 mM NaPP, 1 mM β-glycerophosphate, 1 

µg/ml leupeptin, 1mM PMSF at 1 ml/muscle) using a TissueLyser II homogenizer (Qiagen Inc, 

Valencia, CA).  Homogenates were rotated at 4°C for 1 h prior to being centrifuged (10,000 g for 

10 min at 4°C).  The supernatant was used to determine protein concentration according to the 

manufacturer’s protocol (Pierce Biotechnology no. 23227).  The remaining supernatant was 

stored at -80°C until further analysis.     

Glucose Uptake 

Aliquots of the supernatants from muscles processed for glucose uptake were added to 

vials containing scintillation cocktail (Research Products International, Mount Prospect, IL), and 
3H and 14C disintegrations per minute were measured by a scintillation counter (Perkin Elmer, 

Waltham, MA).  These values were used to determine 2-DG uptake as previously described (8, 

27). 
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Immunoblotting 

Appropriate volumes of the muscle lysate for equal protein concentration were boiled for 

5-10 min in SDS-loading buffer, separated via SDS-PAGE (poly acrilamide gel electrophoresis) 

and then electrophoretically transferred to nitrocellulose membranes.  Membranes were rinsed 

with Tris-buffered saline plus Tween (TBST; 140 mM NaCl, 20 mM Tris base, pH 7.6, and 0.1% 

Tween), blocked with 5% nonfat dry milk in TBST for 2 h at room temperature, washed 3 x 5 

min at room temperature and treated with the appropriate primary antibody (in TBST with 5% 

BSA unless otherwise specified by the manufacturer) overnight at 4°C.  Blots were washed 3 x 5 

min with TBST, incubated with the appropriate secondary antibody IgG horseradish peroxidase 

(in TBST + 5% milk) for 1 h at room temperature.  Equal protein loading was confirmed using 

MemCode (1).  They were then washed again 3 x 5 min with TBST, 4 x 5 min TBS and 

subjected to enhanced chemiluminescence to visualize protein bands.  Protein bands were 

quantified by densitometry (Alpha Innotech, San Leandro, CA).  The individual values for the 

samples were normalized to the mean value for all of the samples on the membrane. 

IRS-1–PI3K Association 

For evaluation of PI3K associated with IRS-1, 400 μg of protein from each sample was 

combined with 3 µg of anti-IRS-1 antibody and rotated overnight (4°C).  The following morning 

protein G-agarose beads were washed three times with lysis buffer, resupended in lysis buffer 

(50% slurry) and 100 μl of 50% slurry mix of protein G-agarose beads were added to the 

sample/antibody mix and rotated 2 h at 4°C.  Protein G-agarose beads were isolated by 

centrifugation (4,000 g at 4°C for 1 min) and washed three times in lysis buffer.  Antigens were 

eluted from the beads with 45 μl of 2× SDS loading buffer and were boiled for 5 min before 

SDS-PAGE and immunoblotted with anti-PI3K, as described above.  

Akt Activity Measurement 

Akt activity was determined according to the manufacturer's protocol.  Briefly, protein G-

agarose beads were rotated overnight with anti-Akt/PH domain clone SKB1.  The 

antibody/protein G-agarose mixture was combined with 500 μg of protein from each sample and 

rotated for 2 h at 4°C.  The antigen/antibody/protein G-agarose complex was combined with Akt 

substrate peptide and [γ-32P]ATP (final concentration of 1 μCi/μl) and shaken at room 



123 
 

temperature for 60 min.  The complex was then centrifuged (4,000 g for 1 min), and 40 μl of 

supernatant was collected and transferred to phosphocellulose paper.  After washes (3 times with 

1.5% phosphoric acid and once with acetone), the phosphocellulose paper was transferred to a 

vial containing scintillation cocktail for scintillation counting.  The individual values for the 

samples were normalized to the mean value of the raw counts for all of the samples per assay 

group.  An assay group consisted of paired epitrochlearis muscles (previously incubated with 

insulin or with no insulin) from each diet and exercise group (i.e., LFD Sedentary, HFD 

Sedentary, LFD 3hPEX and HFD 3hPEX).   

Multiplex Analysis 

Two multiplex assays were used to assure MAPmate bead compatibility.  In the first 

multiplex assay, muscle homogenates were used to determine the phosphorylation status of the 

Akt/mTOR signaling axis (AktSer473, GSKβSer9, IRTyr1162/1163, IRS-1Ser307 and TSC2Ser939).  In a 

second Luminex assay, muscle homogenates were used to determine amount of 

pJNK/SAPKThr183/Tyr185.   Analysis was performed by the Luminex L200 instrument (Luminex, 

Austin, TX), and data were analyzed by xPONENT software (Luminex). 

TAG, DAG & Ceramide Analysis 

The Lipidomics Core of the University of Michigan Molecular Phenotyping Core 

performed lipid extraction and triacylglycerol (TAG), DAG and ceramide analysis from muscles 

in non-incubated epitrochlearis muscles.  Briefly, TAG and DAG were isolated via thin layer 

chromatography and then analyzed by gas chromatography (GC ) using a flame ionization 

detector (39).  Ceramides were extracted and analyzed via high-performance liquid 

chromatography (HPLC) and tandem mass spectrometry (MS/MS), and quantified by ESI-

MRM-MS (electronspray ionization-magnetic resonance microscopy-mass spectrometry) on a 

tandem quadrupole mass spectrometer (30).  The individual values of samples were normalized 

to the mean value for all of the samples from the LFD Sedentary rats.   
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MHC analysis 

Non-incubated muscles were homogenized in pre-chilled glass tissue-grinding tubes 

(Kontes, Vineland, NJ) containing cold lysis buffer and protein concentrations were determined 

for whole homagenate.  Laemmli sample buffer (2×) was then added to 5 µg of the whole 

homogenate prior to boiling for 10 min.  Samples where then loaded on to gels modified from 

(13, 37, 58) for SDS-PAGE [Final reagent concentrations for separating gel: 6.5% acrylamide-

bis (50:1), 30% glycerol, 210 mM Tris-HCl (pH 7.4), 105 mM glycine, 0.4% SDS, 19% H20, 

0.1% ammonium persulfate, 0.05% TEMED].  Samples and a MHC isoform standard (6 μg 

protein of a 3:2 mixture of homogenized rat soleus and extensor digitorum longus muscles 

containing all four MHC isoforms:  I, IIa, IIb, IIx) were run at a constant voltage (50 V) for 1 h 

(during electrophoresis that was performed in a refrigerator cooled to 4oC, the gel box was 

placed in a secondary container that was packed with ice) with continuous mixing by a magnetic 

stir bar inside the electrophoresis apparatus (Mini-PROTEAN® Tetra cell no. 165-8004, 

Hercules, CA).  The use of a secondary container packed in ice and continuous.  After 1 h, the 

power supply was switched from constant voltage mode to constant current mode, with the 

current setting at the end of the first hour of electrophoresis maintained for the subsequent 23-25 

h (with the gel box packed on ice in a refrigerator at 4oC).  Gels were subsequently removed and 

stained with Coomassie Brilliant Blue overnight at room temperature while gently rotating on an 

orbital shaker.  The gels were then destained in 20% methanol and 10% acetic acid solution for 

4-6 h while rotating (destaining solution was replaced with fresh solution every 45-60 

min).  MHC bands were quantified using densitometry (AlphaEase FC, Alpha Innotech, San 

Leandro, CA).   

Muscle Glycogen 

Muscles used for measurement of glycogen were weighed and then homogenized in ice-

cold perchloric acid (0.3 M).  An aliquot of the homogenate was used to determine muscle 

glycogen concentration by the amyloglucosidase method (42). 

Statistics 

Two-way ANOVA analysis was used to compare means among more than two groups, 

and the Tukey post-hoc test was used to identify the source of significant variance.  Data that 
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were not normally distributed were mathematically transformed to achieve normality prior to 

running the appropriate statistical analysis.  Statistical analyses were performed using Sigma Plot 

(San Rafael, CA) version 11.0.  Data were expressed as means ± SE.  A P-value < 0.05 was 

considered statistically significant.  Two-tailed t-test analysis was used for comparison of means 

between two groups.   

 

Results 

Myosin heavy chain isoform expression   

After two weeks of diet intervention, fiber type of the epitrochlearis was not significantly 

altered (Table 1). 

Body Mass, Epididymal Mass, Epidymal/Body Mass Ratio, and Estimated Caloric Intake.   

After the two week diet intervention, body mass (P < 0.01), epididymal fat pad mass (P < 

0.01; Figure 5.1) and epididymal/body mass ratio (8.36 ± 0.26 vs. 5.84 ± 0.14 mg/g; P < 0.01) 

were greater for the HFD versus LFD group.  Estimated caloric intake (based on the product of 

food intake, g, and caloric density, kcal/g, of each diet) of LFD rats (85.00 ± 1.70 kcal/d) 

significantly lower (P <0.01) than values for HFD rats (93.43 ± 2.00 kcal/d).  

IPEX:  Muscle 2-DG Uptake and Glycogen   

For insulin-independent 2-DG uptake by isolated epitrochlearis muscles (Figure 5.2A), 

there was significantly main effect of exercise (IPEX > Sedentary; P < 0.01).  Post-hoc analysis 

indicated significantly greater (P < 0.05) insulin-independent 2-DG uptake from muscles of 

IPEX versus sedentary rats within each diet group.  Insulin-independent 2-DG uptake did not 

differ between diet groups for either sedentary or IPEX rats. 

For muscle glycogen (Figure 5.2B), there was a significant main effect of exercise 

(Sedentary > IPEX; P < 0.01).  Post-hoc analysis indicated significantly lower (P < 0.05) 

muscles glycogen for IPEX versus sedentary rats within each diet group.  Muscle glycogen did 

not differ between diet groups for either sedentary or IPEX rats. 
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IPEX:  Muscle Immunoblotting  

 There were no significant effects of diet or exercise on total abundance of AMPK and 

AS160 at IPEX (Figure 5.3).  

For pAMPK (Figure 5.4A), there was a significant main effect of exercise (IPEX > 

Sedentary; P < 0.05).  Post-hoc analysis indicated that pAMPK was significant greater (P < 0.05) 

for IPEX versus sedentary rats within each diet groups.  The pAMPK did not differ between diet 

groups for either sedentary or IPEX muscles.   

For pAS160Thr642 (Figure 5.4B), there was a significant main effect of exercise (IPEX > 

Sedentary; P < 0.05).  Post-hoc analysis indicated that pAS160 was significantly greater (P < 

0.05) for IPEX versus sedentary rats within each diet group.  There was no significant diet effect 

on pAS160Thr642 in either the sedentary or the IPEX muscles.  For pAS160Ser588 (Figure 5.4C), 

was a significant main effect of exercise (IPEX > Sedentary; P < 0.05), but the post-hoc analysis 

did not reveal any significant differences. 

3hPEX: Plasma Glucose and Insulin 

For plasma glucose (Figure 5.5A), there was a significant main effect of exercise 

(Sedentary > 3hPEX; P < 0.01) and a significant interaction between diet and exercise (P < 0.05).  

Post-hoc analysis revealed that plasma glucose was significantly greater (P < 0.05) for Sedentary 

HFD versus Sedentary LFD rats, but this diet-related difference in glucose was eliminated at 

3hPEX.  For both LFD and HFD groups, plasma glucose was significantly lower (P < 0.05) at 

3hPEX versus sedentary controls.   

For plasma insulin (Figure 5.5B), there were significant main effects of both diet (HFD > 

LFD; P < 0.01) and exercise (Sedentary > 3hPEX; P < 0.01).  In the sedentary groups, HFD 

versus LFD rats had significantly greater (P < 0.05) plasma insulin, but in the 3hPEX groups, 

plasma insulin was not different between diet groups.  In the HFD groups, plasma insulin for 

3hPEX versus sedentary rats was significantly reduced (P < 0.05).  

For HOMA-IR (Figure 5.5C), there was a significant main effect of diet (HFD > LFD; P 

< 0.01) and exercise (Sedentary > 3hPEX; P < 0.01).  In the sedentary groups, HFD versus LFD 

rats had significantly greater (P < 0.05) HOMA-IR, but in the 3hPEX cohorts HOMA-IR did not 
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differ between diets.  For both LFD and HFD groups, HOMA-IR for 3hPEX versus sedentary 

was significantly reduced (P < 0.05). 

3hPEX:  Muscle 2-DG Uptake  

For 2-DG uptake in muscles incubated without insulin (Figure 5.6A), there was a 

significant main effect of exercise (3hPEX > Sedentary; P < 0.05), and post-hoc analysis 

indicated that insulin-independent 2-DG values were significantly greater (P < 0.05) for muscles 

from 3hPEX versus SED rats in the LFD group.  No significant diet-related differences in 

insulin-independent 2-DG uptake were identified. 

For 2-DG uptake in muscles incubated with insulin (Figure 5.6B), there were significant 

main effects of both diet (LFD > HFD; P < 0.01) and exercise (3hPEX > Sedentary; P < 0.01).  

Post-hoc analysis revealed that 2-DG uptake with insulin was significantly (P < 0.05) greater for 

muscles from LFD 3hPEX rats versus all other groups.  In the HFD groups, post-hoc analysis 

indicated that 2-DG uptake with insulin was significantly greater (P < 0.05) for muscles from 

3hPEX versus SED rats.   For delta-insulin (with insulin – no insulin = delta-insulin) 2-DG 

uptake (Figure 5.5B), there were significant main effects of both diet (LFD > HFD; P < 0.01) 

and exercise (Sedentary < 3hPEX; P < 0.01).  Post-hoc analysis demonstrated that delta-insulin 

2-DG uptake for LFD 3hPEX rats was significantly greater (P < 0.05) than all other groups.  

Post-hoc analysis also indicated that in the sedentary groups, delta-insulin glucose uptake was 

significantly greater (P <0.05) for LFD versus HFD rats.  In addition, delta-insulin 2-DG uptake 

for HFD-3hPEX rats exceeded HFD-SED rats (P < 0.05), but these values did not significantly 

differ for HFD-3hPEX versus LFD-SED rats.  

3hPEX:  Muscle Immunoblotting 

 Neither diet nor exercise significantly altered the total abundance of Akt, AS160, 

GLUT4, TUG, RUVBL2, TBC1D1, GSK3β, PRAS40, JNK, IR, or IRS-1 (Figure 5.7).  For total 

FoxO1 (n = 8 per group) there were significant main effects of exercise (3hPEX > Sedentary; P < 

0.05) for either muscles incubated with no insulin (LFD Sedentary = 0.52 ± 0.11; HFD Sedentary 

= 0.42 ± 0.09; LFD 3hPEX = 1.19 ± 0.34; and HFD 3hPEX = 0.80 ± 0.13) or muscles incubated 

with insulin (LFD Sedentary = 0.66 ± 0.17; HFD Sedentary = 0.93 ± 0.34; LFD 3hPEX = 1.92 ± 

0.40; and HFD 3hPEX = 1.57 ± 0.29).  For muscles incubated in the absence of insulin, post-hoc 
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analysis revealed that HFD 3hPEX versus HFD Sedentary values were significantly greater (P < 

0.05).  For insulin-treated muscles, post-hoc analysis revealed that LFD 3hPEX versus LFD 

Sedentary values were significantly greater (P < 0.05).  

Neither diet nor exercise significantly altered phosphorylation of the insulin receptor 

(pIRTyr1162/1163; Figure 5.8A), delta-insulin pIRTyr1162/1163; Figure 5.8B), IRS-1–PI3K association 

regardless of insulin concentration (Figure 5.8C) or delta-insulin IRS-1–PI3K (Figure 5.8C). 

 Neither diet nor exercise significantly altered pAktThr308 for muscles without insulin 

(Figure 5.9A).  For delta-insulin pAktThr308 (Figure 5.9B), there was a significant main effect of 

diet (LFD > HFD; P < 0.05), but no further significance was revealed by post-hoc analysis.  

There were no significant effects of either diet or exercise on either pAktSer473 (Figures 5.9C) or 

Akt activity (Figures 5.9E) regardless of insulin concentration, delta-insulin pAktSer473 (Figures 

5.9D) or delta-insulin Akt activity (Figures 5.9 F). 

     For pAS160Thr642 (Figure 5.10A), there was a significant main effect of exercise in 

muscles incubated without insulin (Sedentary < 3hPEX; P < 0.05), and post-hoc analysis 

indicated that for LFD groups, 3hPEX values were greater than Sedentary values (P < 0.05).  For 

pAS160Thr642 in muscles with insulin, there was a significant main effect of diet (LFD > HFD; P 

< 0.01), and post-hoc analysis revealed that for 3hPEX groups, LFD values were greater than 

HFD values.  For delta-insulin pAS160Thr642 (Figure 5.10B), there was a significant main effect 

of diet (LFD > HFD; P < 0.05), and post-hoc analysis indicated that for 3hPEX groups, LFD 

values exceeded HFD values (P < 0.05). 

 For pAS160Ser588 (Figure 5.10C), muscles incubated without insulin there was a 

significant main effect of diet (LFD > HFD; P < 0.05), and post-hoc analysis indicated that 

within sedentary groups, the LFD values were greater than HFD values (P < 0.05).  For 

pAS160Ser588 muscles incubated with insulin, there were significant main effects of both diet 

(LFD > HFD; P < 0.01) and exercise (3hPEX > Sedentary; P < 0.01).  Post-hoc analysis of 

muscles incubated with insulin indicated that pAS160Ser588 for the LFD 3hPEX group was 

greater than all other groups (P < 0.05), pAS160Ser588 for the HFD SED group was significantly 

lower than all other groups (P < 0.05), and pAS160Ser588 values from LFD SED and HFD 3hPEX 

were not significantly different.   For delta-insulin pAS160Ser588 (Figure 5.10D), there were 
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significant main effects of both diet (LFD > HFD; P < 0.01) and exercise (Sedentary < 3hPEX; P 

< 0.01), and post-hoc analysis indicated that values from the LFD 3hPEX group significantly 

exceeded all other groups (P < 0.05).   

 For pFoxO1Thr24 in muscles incubated without insulin (Figure 5.11A), there were no 

significant differences.  For pFoxO1Thr24 muscles incubated with insulin, there were significant 

main effects of both diet (LFD > HFD; P < 0.01) and exercise (Sedentary < 3hPEX; P < 0.01).  

Post-hoc analysis of pFoxO1Thr24 in muscles incubated with insulin indicated that LFD 3hPEX 

values were significantly greater than all other groups (P<0.05).  Post-hoc analysis further 

revealed that in the HFD groups, 3hPEX values exceeded sedentary values (P<0.05).  For delta-

insulin pFoxO1Thr24 (Figure 5.11B), there were significant main effects of both diet (LFD > 

HFD; P < 0.05) and exercise (Sedentary < 3hPEX; P < 0.01).  Post-hoc analysis indicated that 

delta-insulin pFoxO1Thr24 for LFD 3hPEX values were significantly greater than all other groups 

(P < 0.05), and HFD 3hPEX values exceed HFD sedentary values (P<0.05).   

 For pPRAS40Thr246 (Figure 5.11C) in muscles incubated without insulin, there were no 

significant differences.  For pPRAS40Thr246 muscles incubated with insulin, there was a 

significant main effect of diet (LFD > HFD; P < 0.01), and post-hoc analysis revealed that LFD 

3hPEX values exceeded LFD sedentary values (P<0.05).   For delta-insulin pPRAS40Thr246 

(Figure 5.11D), there was a significant main effect of exercise (Sedentary < 3hPEX, P < 0.05), 

and post-hoc analysis indicated that LFD 3hPEX values exceeded LFD Sedentary values (P < 

0.05).   

Neither diet nor exercise significantly altered either pGSK3βSer9 or pTSC2Ser939 regardless 

of insulin concentration (Figures 5.12A-D). 

 For pIRS-1Ser1101 (Figure 5.13A), muscles incubated without insulin had a significant 

main effect of exercise (3hPEX > Sedentary; P < 0.01).  Post-hoc analysis revealed HFD 3hPEX 

values exceeded HFD Sedentary values (P < 0.05).  For muscles incubated with insulin, there 

was a significant main effect of diet on pIRS-1Ser1101 (LFD > HFD; P < 0.05), but post-hoc 

analysis did not reveal any further differences among the groups. 

For pIRS-1Ser307 (Figure 5.13B), there were no significant differences among muscles 

incubated without insulin, but there was a significant main effect of exercise (3hPEX > 
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Sedentary; P < 0.05) in muscles incubated with insulin, but post-hoc analysis did not reveal any 

further differences among the groups. 

Neither diet nor exercise altered pJNK in muscles regardless of insulin concentration 

(Figure 5.13C). 

Lipid Metabolites 

 There were significant main effects of diet (LFD < HFD; P < 0.05) for muscle TAG 18:0, 

18:1 (n-9), and 20:2 (Figure 5.14), but post-hoc analysis did not reveal any further differences 

among them.  For TAG 20:1, there was a significant main effect of exercise (Sedentary > 

3hPEX; P < 0.01), and post-hoc analysis indicated that LFD sedentary values exceeded LFD 

3hPEX values (P < 0.05).  

 Muscle acyl CoA 16:0 had a significant main effect of exercise (Sedentary < 3hPEX; P < 

0.01; Figure 5.15), and post-hoc analysis indicated that HFD Sedentary values exceeded HFD 

3hPEX values.   

Muscle DAG 20:4 had a significant interaction between diet and exercise (Figure 5.16), 

and post-hoc analysis indicated that HFD 3hPEX values exceeded HFD Sedentary values (P < 

0.05). 

Neither diet nor exercise significantly altered the level of any ceramide species (Figure 

5.17).  

 

Discussion 

The current study investigated the mechanisms by which acute exercise improves insulin-

stimulated glucose uptake in both insulin sensitive and insulin resistant rat skeletal muscles. The 

most important results included:  1) each of the key metabolic and signaling outcomes 

determined for muscles IPEX (insulin-independent glucose uptake, glycogen, pAMPKThr172, 

pAS160Thr642, and pAS160Ser588) was indistinguishable in LFD versus HFD rats; 2) skeletal 

muscles from Sedentary HFD versus Sedentary LFD rats exhibited modest, but significant 

insulin resistance for glucose uptake accompanied by modest, but significant deficit in 
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pAS160Ser588; 3) skeletal muscles from LFD rats at 3hPEX versus Sedentary LFD rats were 

characterized by substantially elevated insulin-stimulated glucose uptake concomitant with 

significantly increased phosphorylation of AS160 (both pAS160Thr642 and pAS160Ser588 

determined for muscles incubated either with or without insulin as well as the delta-insulin for 

pAS160Ser588) in the absence of significant changes in proximal insulin signaling steps; 4) 

skeletal muscles from HFD rats at 3hPEX had insulin-stimulated glucose uptake values that 

exceeded the Sedentary HFD group and were not different from Sedentary LFD group, but were 

significantly less than the LFD 3hPEX group; 5) the improvement in insulin-stimulated glucose 

uptake of muscles from HFD rats at 3hPEX was accompanied by elimination of the diet-induced 

deficit in pAS160Ser588, but neither pAS160Ser588 nor pAS160Thr642 of the HFD 3hPEX group 

attained values as great as the LFD 3hPEX group; 6) the improved in insulin-stimulated glucose 

uptake in muscle may also be associated with the exercised-induce reduction in acyl-CoA 16:0; 

and 7) the improved insulin-stimulated glucose uptake by muscles from both LFD and HFD rats 

at 3hPEX were not accompanied by significant reductions in a number of possible mediators of 

muscle insulin resistance, including DAG and ceramides concentrations, pIRS1Ser307, 

pIRS1Ser1101, and pJNKSer73. 

 A single session of exercise is known to increase insulin-stimulated glucose uptake by 

skeletal muscle in healthy rats (2, 10, 12, 19-20, 24, 38, 45, 53) and humans (38, 61, 63, 68).  

Consistent with previous findings for LFD rats, the improved insulin-mediated glucose uptake by 

muscles from 3hPEX versus sedentary rats occurred concomitant with increased pAS160Thr642, 

both with and without insulin, despite unaltered proximal insulin signaling (insulin receptor 

phosphorylation, IRS-1–PI3K association, Akt phosphorylation or Akt activity).  These results 

for proximal insulin signaling are consistent with those of Wojtaszewski et al. (65-66) who 

demonstrated that insulin-stimulated glucose disposal after acute exercise by humans occurs 

without improvement in proximal insulin signaling steps (including Akt phosphorylation).  The 

current results also confirm the findings from several of our previous studies that have reported a 

sustained increase in pAS160Thr642 both with and without insulin several hours post-exercise in 

the absence of an increase in the calculated delta-insulin pAS160Thr642 (19-20, 53).  Treebak et al. 

(63) also found greater pAS160 in muscles from healthy humans after a single session of 

exercise.    In the current study, pAS160Ser588 of muscles without insulin was not increased, but 

both pAS160Ser558 in muscles incubated with insulin and delta-insulin on pAS160Ser588 were 
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significantly elevated in the 3hPEX LFD group.  The results of both the current and earlier 

studies demonstrate that acute exercise by healthy rats induces greater pAS160 on Ser588 and 

Thr642, the phosphomotifs that appear to be most important for regulating insulin-stimulated 

glucose transport (51).  Although greater pAS160 has not yet been proven to be directly 

responsible for increased skeletal muscle insulin sensitivity in the hours after exercise, enhanced 

pAS160 is a leading candidate for the mechanism accounting for this benefit of exercise in 

healthy individuals.   

 For insulin resistant rats (3, 21, 36, 41, 46, 59) and humans (7, 16, 44, 54), a single 

session of exercise has also been shown to be an effective stimulus for improving insulin-

stimulated glucose uptake.  However, surprisingly few studies have addressed the mechanisms 

for this improvement.  In the current study, neither HFD nor acute exercise altered the total 

GLUT4 abundance.   Previous studies suggested that a single exercise session can correct some 

of the defects in proximal insulin signaling of insulin resistant muscle stimulated with a 

supraphysiologic insulin dose (41, 43, 46).  In contrast the current results indicate that exercise 

did not induce increases in proximal signaling with a physiologic insulin dose in muscles from 

HFD rats at 3hPEX compared to HFD Sedentary rats.  The current study also provided the first 

information about the effect of a single exercise session on insulin-stimulated AS160 

phosphorylation in insulin resistant skeletal muscle.   The insulin resistance for glucose uptake 

by muscle in the HFD Sedentary rats versus LFD Sedentary rats was accompanied by reduced 

phosphorylation of AS160Ser588.   In the HFD 3hPEX versus HFD sedentary rats, pAS160Ser588 

with insulin was significantly increased, and these values were restored to levels similar to the 

values in muscles from Sedentary LFD rats.  The elimination of diet-related decrement in 

pAS160Ser588 of insulin-stimulated muscles from HFD 3hPEX versus Sedentary LFD rats 

occurred concomitant with elimination of the diet-related decrease in insulin-stimulated glucose 

uptake for muscles in the 3hPEX HFD group.  The current data provide novel evidence that 

improved pAS160Ser588 in muscle may be important for the mechanism by which exercise can 

normalize insulin-stimulated glucose uptake by previously insulin resistant muscle.  

 Notable aspects of the experimental design of the current study were the comparison of 

the magnitude of exercise’s effects on insulin-stimulated glucose uptake in muscles with normal 

versus defective insulin sensitivity and the investigation of the possibility that distinct 
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mechanisms may account for exercise-induced improvements of insulin-stimulated glucose 

uptake in insulin sensitive versus insulin resistant muscles.   Even though the metabolic effects of 

exercise determined IPEX were indistinguishable for LFD and HFD rats, the muscles from LFD 

3hPEX versus HFD 3hPEX rats reached a significantly greater level of insulin-mediated glucose 

uptake.  Thus, muscles from insulin resistant rats appeared to have a limited capacity for 

exercise-induced improvements in insulin-stimulated glucose uptake.  Careful examination of the 

published literature on insulin sensitivity after acute exercise by insulin resistant rats or humans 

reveals a similar outcome has been previously reported (3, 7, 16, 21, 36, 44, 46).  However, 

earlier research did not identify the reason that exercise does not result in equal insulin-

stimulated glucose uptake for normal and insulin resistant individuals.  Results of the current 

study indicate that the difference was not attributable to post-exercise differences in several key 

events of proximal insulin signaling.  Rather, this diet-related difference in insulin-stimulated 

glucose uptake at 3hPEX was accompanied by differences in the extent of exercise effects on 

pAS160.  In the HFD cohort, exercise significantly improved delta-insulin for pAS160Ser588, but 

the delta-insulin values for both pAS160Ser588 and pAS160Thr642 of HFD rats at 3hPEX failed to 

attain values as great as the LFD rats at 3hPEX.   The results of the current study in normal and 

insulin resistant rats, and results from previous studies of normal rats (2, 19-20, 53) demonstrate 

that the level of skeletal muscle insulin-stimulated glucose uptake consistently tracks with the 

extent of post-exercise effects on elevated pAS160.   

The specific processes causing greater insulin sensitivity in skeletal muscles after a single 

session of exercise remains unknown for both normal and insulin resistant rats.  It has been 

suggested that prior exercise might improve insulin sensitivity by reducing muscle levels of 

various lipid metabolites that are implicated in insulin resistance.  There were no significant 

exercise effects on muscle concentrations of DAG or ceramides in either diet group at 3hPEX.    

These results are consistent with the observation that, regardless of diet, exercise did not lower 

muscle levels of pJNKSer73, pIRS1Ser307, or pIRS1Ser1101 which have been linked to insulin 

resistance (3, 7, 27, 30, 34-35).  Although there was a significant main effect of exercise for 

lower muscle TAG 20:1 concentration, skeletal muscle TAG is not generally considered to be 

direct mediator of insulin resistance (19-20, 31).  However, acyl CoA-16:0 was significantly 

reduced by exercise, and these levels at 3hPEX were quite similar between the two diet groups.   

Elevated levels of long-chain acyl-CoA have been shown to be associated with skeletal muscle 
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insulin resistance (23, 31, 33), and reduced long-chain acyl-CoAs levels in skeletal muscle 

associated with acute exercise have been shown to correlate with improved insulin-stimulated 

glucose uptake (40).  In this context, it seems possible that the exercise effect on acyl-CoA-16:0 

played a role in the improved insulin sensitivity, but the similarity in values for the LFD and 

HFD groups at 3hPEX indicates that another mechanism accounts for the differences between 

diet groups for insulin-stimulated glucose uptake after exercise. 

The molecular events that account for exercise-related increases in pAS160 remain to be 

identified.  Funai et al. (20) previously demonstrated that prior exercise did not lead to greater 

phosphorylation of TBC1D1 (a paralog of AS160) in skeletal muscle.  This result led to the 

question, is the greater phosphorylation of AS160 observed several hours after acute exercise 

represent a unique outcome or is a long-lasting effect of prior exercise evident for the 

phosphorylation of other Akt substrates in skeletal muscle?  In the current study, there was not a 

increase in phosphorylation of either pTSC2Ser939 or pGSK3Ser9 on Akt-phosphomotifs, but we 

identified two other Akt substrates, FoxO1 and PRAS40, that were characterized by elevated 

insulin-mediated phosphorylation in the hours following exercise.  Neither of these proteins are 

known to regulate skeletal muscle glucose transport, so it seems unlikely that elevated pFoxO1 

or pPRAS40 directly account for the post-exercise enhancement of insulin-stimulated glucose 

uptake at 3hPEX.  However, it is possible that prior exercise favors greater phosphorylation of 

AS160, FoxO1 and PRAS40 via a common mechanism.  The lack of detectable exercise-induced 

changes in key proximal signaling events in the LFD rats raises the possibility that exercise 

influences the in vivo activity of specific kinases and/or phosphatases by mechanisms that are not 

evident using conventional assays (e.g., by altering protein localization, inducing post-

translational modifications other than the phosphorylation sites tested, altering protein-protein 

binding, etc.).   

It should be noted that there was a significant effect of exercise for total FoxO1 

abundance.  Interestingly the exercise-related differences in total FoxO1 followed a pattern that 

was quite similar to the pattern for exercise effects on pFoxO1 values.  A key characteristic of 

FoxO1 is that following phosphorylation, FoxO1 translocates from the nucleus to the cytosol 

(22, 64).  It seems likely that the exercise-related increase in FoxO1 abundance reflects the fact 

that the centrifugation protocol would be expected to precipitate the nuclear fraction, and the 
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detergents used would not be expected to solubilize the nuclear proteins.  It would be worthwhile 

for future experiments to assess the influence of exercise on subcellular localization of FoxO1 

and other signaling proteins.  

Sedentary HFD versus Sedentary LFD rats had significantly greater HOMA-IR values, 

indicating whole body insulin resistance.  Under fasting conditions when insulin concentrations 

are low, skeletal muscle glucose uptake is also low, and HOMA-IR values are more indicative of 

insulin ability to regulate hepatic glucose production.  Earlier research has documented that short 

term high fat feeding can induce hepatic insulin resistance (32, 50), and it seems likely that in 

addition to the modest insulin resistance that was found for skeletal muscle in the current study, 

hepatic insulin resistance contributed to the significantly elevated plasma glucose and insulin 

levels in the Sedentary HFD rats.  HOMA-IR values were significantly reduced for each group of 

rats at 3hPEX compared to their respective sedentary diet group, and HOMA-IR values for HFD 

3hPEX versus LFD 3hPEX rats were not significantly different from each other.  The greater 

insulin-stimulated glucose uptake by skeletal muscle would be expected to play an important role 

in improved whole body insulin sensitivity after exercise under conditions of elevated insulin.  

However, it seems possible that exercise effects on hepatic glucose production may help explain 

the lack of significant differences in HOMA-IR for HFD compared to LFD rats at 3hPEX, but 

future research will be necessary to determine if this speculation is true.  

Improved insulin sensitivity of skeletal muscle is a major health-related benefit of 

physical activity.  The specific underlying mechanisms accounting for this effect are poorly 

understood, especially for insulin resistant individuals, but the current study provided new 

insights by evaluating exercise effects on muscle glucose uptake and key signaling steps, 

including pAS160, in both normal and insulin resistant rats.  The results implicate greater 

pAS160 for exercise benefits on insulin sensitivity in muscle of both groups.  Furthermore, the 

inability of the HFD group to attain insulin-stimulated glucose uptake values equal to the LFD 

group post-exercise was accompanied with a similar deficit in the ability of acute exercise to 

enhance pAS160.  The current results do not prove a causal relationship between the persistent 

exercise effect on pAS160 and insulin sensitivity.  Nonetheless, the consistency of the 

relationship between pAS160 and post-exercise insulin sensitivity along with the crucial role of 

pAS160 for insulin-stimulated glucose transport have led to our working hypothesis that 
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enhanced pAS160 is important for the improved insulin-stimulated glucose uptake after acute 

exercise in both normal and insulin resistant muscle.  We further hypothesize that the failure of 

the HFD 3hPEX group to achieve insulin-mediated glucose uptake equal to the LFD 3hPEX 

group is linked to a lesser exercise-effect on pAS160 in the muscles from the HFD rats.  Future 

research should focus on identifying the specific processes that lead to greater pAS160 after 

exercise, elucidating the explanation for the lack of the full exercise effect on pAS160 in insulin 

resistant individuals, and determining the extent to which greater pAS160 is causally linked to 

the level of increased insulin-stimulated glucose uptake after exercise. 
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  LFD HFD 

MHC-I % 4 ± 1 5 ± 2 

MHC-IIa % 9 ± 1 9 ± 1 

MHC-IIx % 31 ± 4  27 ± 3 

MHC-IIb %  57 ± 6  59 ± 5  

 

 

 

 

 

 

 

 

The myosin heavy chain  (MHC) isoforms were separated by 
SDS-PAGE, gels were stained with Coomassie blue, and bands 
quantified by densitometry were expressed as relative values 
(%) for the epitrochlearis muscles from LFD and HFD fed 
rats (n = 8 per group).  Values are means ± SEM. 

 

Table 5.1 Relative Myosin Heavy Chain Isoform Composition 
of Rat Epitrochlearis Muscle 
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Figure 5.1 
 
A:  Body mass.  B:  Epididymal fat mass. *P < 0.01, Low Fat Diet (LFD) versus High Fat 
Diet (HFD).   Data were analyzed by two-tailed t-test.  Values are means ± SEM; n = 36 per 
diet group. 
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Figure 5.2 
 
A:  2-Deoxyglucose (2-DG) uptake (without insulin) in epitrochlearis muscles of time-
matched sedentary and immediately post-exercise (IPEX) rats.  B:  Glycogen of 
epitrochlearis muscles from Sedentary and IPEX rats.  Data were analyzed by two-way 
ANOVA.   Diet, main effect of diet; Exercise, main effect of exercise; D x E, interaction 
between Diet and Exercise.  Post-hoc analysis was performed to identify the source of 
significant variance.  *P < 0.05, IPEX versus Sedentary within the same diet group (e.g., 
LFD IPEX vs. LFD Sedentary, etc.).  Values are means ± SEM; n = 4-6 per group. 
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Figure 5.3 
 
Total protein abundance for immediately post-exercise (IPEX) epitrochlearis muscles.  
Representative total protein immunoblots for proteins for which abundance was not altered 
by diet or exercise. 
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Figure 5.4 
 
Immediately post-exercise (IPEX) measurements for A: pAMPK

Thr172
;  B: pAS160

Thr642
; and 

C: pAS160
Ser588

.   Measurements made in epitrochlearis muscles (without insulin) from 
time-matched sedentary and IPEX rats.  Data were analyzed by two-way ANOVA.  Diet, 
main effect of diet; Exercise, main effect of exercise; D x E, interaction between diet and 
exercise.  Post-hoc analysis was performed to identify the source of significant variance.  *P 
< 0.05 for IPEX versus Sedentary within a given diet group (e.g., LFD IPEX vs. LFD 
Sedentary, etc.).  Values are means ± SEM; n = 4-6 per group. 
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Figure 5.5 
 
A: Plasma Glucose. B: Plasma Insulin. C: HOMA-IR. Data were analyzed by two-way 
ANOVA.  Plasma was obtained from rats at 3h postexercise, 3hPEX, and time-matched 
Sedentary controls.  Diet, main effect of diet; Exercise, main effect of exercise; D x E, 
interaction between diet and exercise.  Post-hoc analysis was performed to identify the 
source of significant variance.  *P < 0.05, LFD versus HFD, within Sedentary.  †P < 0.05, 
for 3hPEX versus Sedentary within a given diet group (e.g., LFD 3hPEX vs. LFD Sedentary, 
etc.).  Values are means ± SEM; n = 36 per group. 



143 
 

 

 

 

 

 

 

 

 

 

Figure 5.6 
 
A: 2-Deoxyglucose (2-DG) uptake measured in paired epitrochlearis muscles without or 
with insulin 3h post-exercise (3hPEX).  Data were analyzed by two-way ANOVA within 
each insulin level.  Diet, main effect of diet; Exercise, main effect of exercise; D x E, 
interaction between Diet and Exercise.  Post-hoc analysis was performed to identify the 
source of significant variance.  *P < 0.05, for Sedentary versus 3hPEX, within LFD.  †P < 
0.05 for LFD 3hPEX with insulin versus all other with insulin groups. ‡P < 0.05, for glucose 
uptake with insulin within HFD, Sedentary versus 3hPEX. Values are means ± SEM; n = 19-
24.  B: 2-DG uptake delta-insulin values.  Data were analyzed by two-way ANOVA within 
each insulin level.  Post-hoc analysis was performed to identify the source of significant 
variance. *P < 0.05, for LFD versus HFD within Sedentary.  †P < 0.05, for LFD 3hPEX 
versus all other with insulin groups.  ‡P < 0.05; for Sedentary versus 3hPEX within HFD.  
Values are means ± SEM; n = 17-22 per group. 
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Figure 5.7 
 
Representative total protein abundance for 3h post-exercise (3hPEX) muscles.  Total FoxO1 
protein was the only protein that was found to be significantly altered by exercise or diet. 
*FoxO1 (n = 8 per group) there were significant main effects of exercise (3hPEX > 
Sedentary; P < 0.05) for either muscles incubated with no insulin (LFD Sedentary = 0.52 ± 
0.11; HFD Sedentary = 0.42 ± 0.09; LFD 3hPEX = 1.19 ± 0.34; and HFD 3hPEX = 0.80 ± 
0.13) or muscles incubated with insulin (LFD Sedentary = 0.66 ± 0.17; HFD Sedentary = 
0.93 ± 0.34; LFD 3hPEX = 1.92 ± 0.40; and HFD 3hPEX = 1.57 ± 0.29).  For muscles 
incubated in the absence of insulin for FoxO1, post-hoc analysis revealed that HFD 3hPEX 
versus HFD Sedentary values were significantly greater (P < 0.05).  For insulin-treated 
muscles, post-hoc analysis revealed that LFD 3hPEX versus LFD Sedentary values were 
significantly greater (P < 0.05). 



145 
 

 

 

 

 

 

 

 

 

 

Figure 5.8 
 
A: Insulin Receptor

Tyr1162/1163
 phosphorylation measured in paired epitrochlearis muscles 

3hPEX.  Data were analyzed by two-way ANOVA within each insulin level.  Diet, main 
effect of diet; Exercise, main effect of exercise; D x E, interaction between Diet and 
Exercise.  Values are means ± SEM; n = 19-20 per group.  B: Insulin Receptor

Tyr1162/1163
 

delta-insulin values. Data were analyzed by two-way ANOVA within each insulin level. 
Values are means ± SEM; n = 19-20 per group.  C: IRS-1-PI3K association measured in 
paired epitrochlearis muscles 3hPEX.  Data were analyzed by two-way ANOVA within each 
insulin level.  Values are means ± SEM; n = 8 per group.  D: IRS-1 – PI3K association delta-
insulin values.  Data were analyzed by two-way ANOVA within each insulin level. Values 
are means ± SEM; n = 8 per group. 
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Figure 5.9 
 
 A: Akt Thr308 phosphorylation (Akt

Thr308
) measured in paired epitrochlearis muscles 

3hPEX.  Data were analyzed by two-way ANOVA within each insulin level.  Diet, main 
effect of diet; Exercise, main effect of exercise; D x E, interaction between Diet and 
Exercise.  Values are means ± SEM; n = 22-26 per group.  B: pAkt

Thr308
 delta-insulin values.  

Data were analyzed by two-way ANOVA within each insulin level.  Post-hoc analysis was 
performed to identify the source of significant variance.  Values are means ± SEM; n = 22-
25 per group.  C: Akt Ser473 phosphorylation (pAkt

Ser473
) measured in paired epitrochlearis 

muscles 3hPEX.  Data were analyzed by two-way ANOVA within each insulin level.  Values 
are means ± SEM; n = 19-20 per group.  D: pAkt

Ser473
 delta-insulin values.  Data were 

analyzed by two-way ANOVA within each insulin level.  Values are means ± SEM; n = 19-
20 per group.  E: Akt activity measured in paired epitrochlearis muscles 3hPEX.  Data were 
analyzed by two-way ANOVA within each insulin level.  Values are means ± SEM; n = 19-
20 per group.   F: Akt activity delta-insulin values.  Data were analyzed by two-way ANOVA 
within each insulin level.  Values are means ± SEM; n = 18-21 per group. 
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Figure 5.10 
 
A: Akt Subtrate at 160 kDa Thr 642 phosphorylation (pAS160

Thr642
) measured in paired 

epitrochlearis muscles 3h post-exercise (3hPEX).  Data were analyzed by two-way ANOVA 
within each insulin level.  Diet, main effect of diet; Exercise, main effect of exercise; D x E, 
interaction between Diet and Exercise.  Post-hoc analysis was performed to identify the 
source of significant variance.  *P < 0.05, for Sedentary versus 3hPEX with no insulin 
within LFD.  †P < 0.05, for LFD versus HFD with insulin within 3hPEX.  Values are means 
± SEM; n = 13-16 per group.  B:  pAS160

Thr642
 delta-insulin values.  Data were analyzed by 

two-way ANOVA within each insulin level.  Post-hoc analysis was performed to identify the 
source of significant variance.  *P < 0.05, for LFD versus HFD within 3hPEX.  Values are 
means ± SEM; n = 13-16 per group.  C: Akt Subtrate at 160 kDa Ser 588 phosphorylation 
(pAS160

Ser588
) measured in paired epitrochlearis muscles 3hPEX.  Data were analyzed by 

two-way ANOVA within each insulin level.  Post-hoc analysis was performed to identify the 
source of significant variance. ‡P < 0.05, for LFD versus HFD within Sedentary.  *P < 0.05, 
LFD 3hPEX is greater than all other with insulin groups.  †P < 0.05, Sedentary HFD is less 
than all other with insulin groups.  Values are means ± SEM; n = 13-16 per group.  D: 
pAS160

 Ser588
 delta-insulin values.  Data were analyzed by two-way ANOVA within each 

insulin level.  Post-hoc analysis was performed to identify the source of significant variance.  
*P < 0.05, LFD 3hPEX is greater than all other with insulin groups.  Values are means ± 
SEM; n = 13-16 per group.  
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Figure 5.11 
 
A: pFoxO1

Thr24
 measured in paired epitrochlearis muscles 3h post-exercise (3hPEX).  Data 

were analyzed by two-way ANOVA within each insulin level.  Diet, main effect of diet; 
Exercise, main effect of exercise; D x E, interaction between Diet and Exercise.  Post-hoc 
analysis was performed to identify the source of significant variance.  *P < 0.05, for LFD 
3hPEX versus all other groups with insulin.  †P < 0.05, for Sedentary versus 3hPEX with 
insulin within HFD.  Values are means ± SEM; n = 8 per group.  B:  pFoxO1

Thr24
 delta-

insulin values.  Data were analyzed by two-way ANOVA within each insulin level.  Post-hoc 
analysis was performed to identify the source of significant variance.  *P < 0.05, LFD 
3hPEX versus all other groups.  †P < 0.05, for Sedentary versus 3hPEX with insulin within 
HFD.  Values are means ± SEM; n = 8 per group.  C: pPRAS40

Thr246
 measured in paired 

epitrochlearis muscles 3hPEX.  Data were analyzed by two-way ANOVA within each insulin 
level.  Post-hoc analysis was performed to identify the source of significant variance.  *P < 
0.05, for Sedentary versus 3hPEX with insulin within LFD.  Values are means ± SEM; n = 8 
per group.  D: pPRAS40

Thr246
 delta-insulin values.  Data were analyzed by two-way ANOVA 

within each insulin level.  Post-hoc analysis was performed to identify the source of 
significant variance.  *P < 0.05, for Sedentary versus 3hPEX with insulin within LFD.  Vales 
are means ± SEM; n = 8 per group.  



149 
 

 

 

  

 

 

 

 

 

 

 

Figure 5.12 
 
A: pGSK3β

Ser9
 measured in paired epitrochlearis muscles 3hPEX.  Data were analyzed by 

two-way ANOVA within each insulin level.  Diet, main effect of diet; Exercise, main effect 
of exercise; D x E, interaction between Diet and Exercise.  Values are means ± SEM; n= 19-
20.  B: pGSK3β

Ser9
 delta-Insulin values measured 3hPEX.  Data were analyzed by two-way 

ANOVA within each insulin level.  Values are means ± SEM; n= 19-20.  C: pTSC2
Ser939

 
measured in paired epitrochlearis muscles 3hPEX.  Data were analyzed by two-way ANOVA 
within each insulin level.  Values are means ± SEM; n= 19-20.  D: pTSC2

Ser939
 delta-Insulin 

values measured 3hPEX.  Data were analyzed by two-way ANOVA within each insulin 
level.  Values are means ± SEM; n= 19-20. 
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Figure 5.13 
 
A: Insulin receptor substrate 1 Ser1101 phosphorylation (pIRS-1

Ser1101
) measured in paired 

epitrochlearis muscles 3hPEX.  Data were analyzed by two-way ANOVA within each insulin 
level.  Diet, main effect of diet; Exercise, main effect of exercise; D x E, interaction between 
Diet and Exercise.  Tukey post-hoc analysis was performed to identify the source of 
significant variance.  *P < 0.05, for Sedentary versus 3hPEX without insulin within HFD.  
Values are means ± SEM; n = 20.  B: Insulin receptor substrate 1 Ser307 phosphorylation 
(IRS-1

Ser307
) measured in paired epitrochlearis muscles 3hPEX.  Data were analyzed by two-

way ANOVA within each insulin level.  Tukey post-hoc analysis was performed to identify 
the source of significant variance.  Values are means ± SEM; n = 19-20.  C: c-Jun N-
terminal kinase Ser73 phosphorylation (pJNK

Ser73
) measured in paired epitrochlearis 

muscles 3hPEX. Data were analyzed by two-way ANOVA within each insulin level.  Values 
are means ± SEM; n = 11-12. 
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Chapter VI 

 

Discussion 

 

 

The dissertation included three independent, but related studies that aimed to further the 

understanding of the mechanisms regulating skeletal muscle glucose transport.  This chapter of 

the dissertation will: 1) summarize the major goals and new results from each of the three 

studies, 2) provide a unified perspective of some of the key findings of the research that were 

included in either two or all three of the studies, 3) propose some future directions for research 

that are based on the results of this dissertation, and 4) offer overall conclusions.  

 

Summary of Major Goals and Results for Studies 1 to 3 

Study 1: Clustering of GLUT4, TUG, and RUVBL2 Protein Levels Correlate with Myosin Heavy 

Chain Isoform Pattern in Skeletal Muscles, but AS160 and TBC1D1 Levels Do Not 

Because skeletal muscle is a heterogeneous tissue, it is important to understand 

differences among various muscles in addition to differences within the various fiber types found 

in a given muscle.  Muscle fiber type (myosin heavy chain, MHC, expression) has previously 

been shown to be associated with differences in protein expression (17, 26, 32, 34, 39), insulin-

stimulated glucose transport (16, 21), and contraction-stimulated glucose uptake (1-2, 17, 20-21) 

of whole muscles.  Therefore, the first major goal for Study 1 was to extend the knowledge about 

the relationship between MHC isoform composition and the abundance of GLUT4 and four 
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proteins [AS160 (Akt substrate at 160 kDa), TBC1D1 (Tre-2/Bub2/Cdc 16-domain member 1), 

TUG (tethering protein containing a UBX domain for GLUT4) and RUVBL2 (RuvB like protein 

two)] that are established or potential regulators of glucose transport in rat skeletal muscle.  The 

second major goal of Study 1 was to determine if the abundance of any of these proteins are 

significantly correlated with each other.    

An important result of Study 1 was the identification of a cluster of three proteins 

(GLUT4, TUG and RUVBL2) that tracked together in the skeletal muscles that were evaluated.  

GLUT4, TUG and RUVBL2 were each also positively correlated with % MHC-I and inversely 

correlated with the % MHC-IIb levels.  AS160 and TBC1D1 were positively correlated with 

each other, but neither of these proteins was significantly correlated with the relative levels of 

any of the MHC isoforms.  Earlier research has clearly documented that altered neuromuscular 

activation of skeletal muscle can markedly alter GLUT4 protein levels (6, 11, 23, 28, 46).  

Training effects on TUG and RUVBL2 abundance have apparently not been assessed to date.  

Given that soleus (SOL) compared to extensor digitorum longus (EDL) muscles from sedentary 

male Wistar rats have much greater levels of motor unit activation (16), it is notable that the SOL 

compared to the EDL had significantly greater values for GLUT4, TUG and RUVBL2.  Our 

working hypothesis is that TUG and RUVBL2 protein content in rat skeletal muscle are 

regulated by mechanisms that, at least in part, are similar to those that control GLUT4 protein 

abundance and that each is influenced by the level of neuromuscular activation.  Although 

AS160 and TBC1D1 have been shown to regulate GLUT4 translocation (8, 24, 42-43), data from 

this study suggested that the relative abundance of AS160 and TBC1D1 may not be regulated via 

similar mechanisms as GLUT4, TUG and RUVBL2.   

 

 

Study 2: Myosin Heavy Chain Isoform Expression, Contraction-stimulated Glucose Uptake and 

Abundance of Proteins that Regulate Glucose Uptake and Metabolism in Single Skeletal Muscle 

Fibers  

The first major goal for Study 2 was to measure contraction-stimulated glucose uptake 

(independent of insulin) in single muscle fibers that had been characterized by fiber type (MHC 
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isoform expression), so that fiber type-related comparisons for contraction-stimulated glucose 

uptake was possible within the same muscle.  The second major goal of Study 2 was to test if the 

abundance of any of the proteins that had been evaluated at the whole muscle level in Study 1 

(GLUT4, TUG, AS160, TBC1D1, and RUVBL2) differed according to fiber type when 

evaluated at the single fiber level.  The third major goal of Study 2 was to determine if there 

were significant correlations in the abundance of any of these proteins with each other or with 

several other metabolically relevant proteins (Cytochrome C oxidase IV, COX IV; glycogen 

phosphorylase; glyceraldehyde-3-phosphate dehydrogenase, GAPDH; and filamin C).   

 The most important new finding from Study 2 was that contraction-stimulated glucose 

uptake did not differ significantly among the five MHC-II fiber types that were studied in rat 

epitrochlearis muscles.  It remains possible that fiber type-related differences in glucose uptake 

occur in MHC-II fibers with voluntary exercise in vivo, but such differences would likely be 

primarily dependent on factors other than the fibers’ intrinsic capacity for contraction-stimulated 

glucose uptake (e.g., extent of recruitment and/or blood flow).  There were several compelling 

fiber type-related differences in protein abundance, including differences that were expected 

based on earlier studies for GLUT4, TUG and COX IV (MHC-IIa > MCH-IIax > MHC-IIx > 

MHC-IIxb > MHC-IIb) (9, 17, 34).  The substantial and unanticipated fiber type differences for 

filamin C abundance (MHC-IIa > MCH-IIax > MHC-IIx > MHC-IIxb > MHC-IIb) provided 

novel information with implications for the functional roles of this actin-binding protein.  In 

addition, the lack of detectable RUVBL2 in any of the fiber types that were tested, and the fiber 

type differences for TBC1D1 (only consistently detected in MHC-IIxb and MHC-IIb fibers) have 

relevance for clarifying the biological functions of these proteins in different muscle fiber types.  

The analysis of single fibers offers unique information and opportunities, but the optimal benefits 

of this approach require that the single fiber results be evaluated with careful consideration of the 

knowledge obtained from studying both isolated skeletal muscle preparations and the intact 

organism.  

 

Study 3: Acute Exercise Effects on Insulin Signaling and Insulin-Stimulated Glucose Uptake in 

Isolated Skeletal Muscle from Rats Fed either Low Fat or High Fat Diet   
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The first major goal for Study 3 was to measure key insulin signaling processes 

(including phosphorylation of Akt, pAkt; and AS160, pAS160) to test potential mechanisms for 

the exercise-induced improvements for insulin-stimulated glucose uptake by skeletal muscle 

from both insulin sensitive and insulin resistant rats.  The second major goal of Study 3 was to 

determine if a high fat diet would induce changes in muscle fiber type composition or in the 

abundance of GLUT4, AS160, TBC1D1, TUG, or RUVBL2.  The third major goal of Study 3 

was to determine the effects of acute exercise on putative mediators of insulin resistance: lipid 

metabolites (acyl-CoA; diacylglycerol, DAG; ceramide), phosphorylation of the serine kinase c-

Jun N-terminal (pJNK) and serine phosphorylation of insulin receptor substrate-1 (pIRS-1
Ser

)]. 

The most important results for Study 3 included:  1) each of the key metabolic and 

signaling outcomes determined for muscles IPEX (insulin-independent glucose uptake, 

glycogen, pAMPK
Thr172

, pAS160
Thr642

, and pAS160
Ser588

) was indistinguishable in LFD versus 

HFD rats; 2) skeletal muscles from HFD Sedentary versus LFD Sedentary rats exhibited modest, 

but significant insulin resistance for glucose uptake accompanied by modest, but significant 

deficits in key insulin signaling steps that regulate glucose uptake (delta-insulin pAkt
Thr308

, 

pAS160
Ser588

, delta-insulin pAS160
Thr642

 and delta-insulin pAS160
Ser588

); 3) skeletal muscles 

from LFD 3hPEX versus LFD Sedentary rats were characterized by substantially elevated 

insulin-stimulated glucose uptake concomitant with significantly increased phosphorylation of 

AS160 (both pAS160
Thr642

 and pAS160
Ser588

 determined for muscles incubated either with or 

without insulin as well as the delta-insulin for pAS160
Ser588

) in the absence of significant 

exercise-induced changes in proximal insulin signaling steps; 4) skeletal muscles from HFD rats 

at 3hPEX had insulin-stimulated glucose uptake values that exceeded the Sedentary HFD group 

and were not different from Sedentary LFD group, but were significantly less than the LFD 

3hPEX group; 5) the improvement in insulin-stimulated glucose uptake of muscles from HFD 

rats at 3hPEX was accompanied by elimination of the diet-induced deficit in pAS160
Ser588

, but 

neither pAS160
Ser588

 nor pAS160
Thr642

 of the HFD 3hPEX group attained values as great as the 

LFD 3hPEX group; 6) the improved insulin-stimulated glucose uptake in muscle may also be 

associated with the exercised induce reduction in acyl-CoA 16:0; and 7) the improved insulin-

stimulated glucose uptake by muscles from both LFD and HFD rats at 3hPEX were not 

accompanied by significant reductions in a number of possible mediators of muscle insulin 

resistance, including DAG and ceramides concentrations, pIRS1
Ser307

, pIRS1
Ser1101

, and 
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pJNK
Ser73 

(and within Sedentary groups none of these possible mediators of insulin resistance 

differed between the diet groups). 

The reproducible relationship between pAS160 and post-exercise insulin-stimulated 

glucose uptake in this study and in earlier research (3, 13-14, 45) along with the crucial role of 

pAS160 for insulin-stimulated glucose transport have led to our working hypothesis that 

enhanced pAS160 is important for the improved insulin-stimulated glucose uptake after acute 

exercise in both normal and insulin resistant muscle.  We further hypothesize that the failure of 

the HFD 3hPEX group to achieve insulin-mediated glucose uptake equal to the LFD 3hPEX 

group is linked to a lesser exercise-effect on pAS160 in the muscles from the HFD rats.   

A Unified Perspective of Some of the Key Outcomes from Studies 1 to 3  

Prior to Study 1, a common viewpoint was that GLUT4 protein abundance was greater in 

muscles that were enriched with MHC-I and MHC-IIa fibers versus muscles enriched with 

MHC-IIb fibers.  However, this interpretation was based on studies using a limited number of 

muscles, and these earlier studies did not fiber type the muscles themselves and/or used 

subjective fiber typing methods that did not allow for the identification of all four MHC isoforms 

that are expressed in rat skeletal muscle (17, 34).  Study 1 is the most comprehensive study of the 

relationship between GLUT4 abundance and fiber type in rat skeletal muscle.  Results from 

Study 2 revealed that in single muscle fibers there was a fiber type-dependent relationship for 

GLUT4 abundance that was consistent with the fiber type-dependent relationship found in whole 

muscle results from Study 1.  It was previously suggested that the capacity for contraction-

stimulated glucose uptake by skeletal muscle was dependent on the total abundance of GLUT4, 

and that both glucose uptake capacity and GLUT4 were related to fiber type (17).  However, in 

single fibers characterized by fiber type, despite ~4-fold range in GLUT4 abundance, 

contraction-stimulated glucose uptake was not different among the fiber types.  Additionally, 

results from Study 3 indicated that skeletal muscle insulin resistance associated with two weeks 

of high fat feeding was not due to reduced GLUT4 abundance.  Previously published research 

along with the current study using the isolated single muscle fibers from the epitrochlearis have 

shown:  1) insulin-stimulated glucose uptake was greater in MHC-IIa versus MHC-IIb fibers 

(33); 2) AICAR stimulated glucose uptake was greater in MHC-IIb versus MHC-IIa fibers (33); 

and 3) contraction-stimulated glucose uptake did not track with GLUT4 abundance.  Therefore, 
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these data suggest that the capacity for glucose transport in response to various stimuli is 

stimulus-specific rather than being uniformly dependent on GLUT4 abundance.  The fiber type 

capacity for contraction-stimulated glucose uptake seems likely to be related to the contraction-

specific mechanisms that regulate GLUT4 translocation.  Earlier studies in muscle tissue 

provided evidence for distinct “pools” of GLUT4 in skeletal muscle that selectively respond to 

different stimuli (i.e. contraction regulated GLUT4 pools and insulin regulated GLUT4 pools) 

(36-37).  It may be that size and/or regulation of the contraction-regulated GLUT4 pool is similar 

among fiber types (accounting for the lack of a difference for contraction-stimulated glucose 

uptake among fibers), but the size and/or regulation of the insulin-regulated GLUT4 pool varies 

among fiber types (accounting for the difference for insulin-stimulated glucose uptake among 

fibers).  However, this hypothesis is speculative, and further research is necessary to verify this 

possibility.      

Prior to the studies included in this dissertation, most of the knowledge of TUG was 

based on results in adipocytes.  This dissertation provided novel information regarding the 

abundance of TUG in skeletal muscle.  These studies were the first to show that: 1) the 

abundance to TUG tracks with fiber type at both the whole muscle and single fiber level; 2) the 

abundance of TUG versus GLUT4 are highly correlated at the whole muscle and single fiber 

level; and 3) the abundance of GLUT4 or TUG was not altered by two weeks of a HFD.  These 

findings, together with previously published data suggesting that GLUT4 and TUG physically 

associate with each other in skeletal muscle (44), are consistent with the idea that TUG may 

influence GLUT4 localization in muscle.  Furthermore, the positive relationship between the 

protein abundance of TUG and GLUT4 suggests that their abundance may be regulated by 

similar mechanisms.  Data from fat cells has indicated that reducing the abundance of TUG via 

shRNA knockdown also resulted in reduced GLUT4 abundance (56).  It would be interesting to 

determine if in skeletal muscle interventions that alter GLUT4 abundance (e.g., physiologic 

interventions:  exercise training, denervation, etc.; or genetic interventions:  GLUT4 

overexpression or knockdown) have similar effects on TUG abundance and vice-versa.  Because 

TUG was discovered using a screen intended to identify insulin responsive proteins that 

physically associate with GLUT4 (4), it was not entirely surprising that in adipocytes the 

association between TUG and GLUT4 was shown to be is reduced in response to insulin 

allowing for GLUT4 translocation.  However, it is not known if contraction also disrupts the 
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TUG-GLUT4 association.  If in skeletal muscle, the TUG-GLUT4 association is only regulated 

by insulin and not regulated by contraction, this would provide useful insight that may account 

for the lack of a relationship between GLUT4 and contraction-stimulated glucose uptake by 

single muscle fibers.  In other words, a highly speculative idea is that there may be specific TUG 

isoforms or “TUG-like” proteins that restrain GLUT4 to intracellular sites, and that are only 

responsive to specific stimuli (i.e., contraction or insulin), and the function of contraction-

responsive “TUG-like” proteins may not vary among type II fiber types. 

Data from earlier studies using fats cells suggested that the relative abundance of 

RUVBL2 was associated with the level of insulin-stimulated glucose uptake and pAS160 (55).  

However, prior to the research in this dissertation, little was known regarding RUVBL2 

abundance in skeletal muscle.  Results from Study 1 suggested that the relative abundance of 

RUVBL2 may be related to skeletal muscle fiber type, and RUVBL2’s abundance was found to 

be highly correlated with GLUT4 and TUG.  However, RUVBL2 abundance did not correlate 

with abundance of AS160, its putative binding partner, in skeletal muscle.  Interestingly in Study 

2, RUVLB2 was not detected in any of the single muscle fibers that were analyzed by 

immunoblotting.  In Study 3, epitrochlearis muscles from insulin resistant rats did not have 

altered RUVBL2 abundance despite having reduced insulin-stimulated glucose uptake and 

pAS160.  Previous studies using fat cells suggested that reductions in RUVBL2 protein 

abundance were associated with insulin resistance via reduced AS160 phosphorylation (55).  The 

lack of detectable RUVBL2 in single skeletal muscle cells and the lack of a change in RUVBL2 

abundance in insulin resistant muscle raise the possibility that the reported relationship of 

RUVBL2 abundance and insulin resistance in fat cells may not apply to skeletal muscle under 

conditions of mild insulin resistance.  Therefore, RUVBL2 seems to be an unlikely candidate to 

influence the observed skeletal muscle insulin resistance following high fat diet or improved 

insulin-stimulated glucose uptake after exercise in either insulin sensitive or insulin resistant rats.           

Prior to this dissertation, the relationship between AS160 abundance and fiber type in rat 

skeletal muscle had not been studied.  Additionally, although numerous studies have investigated 

the role of pAS160 in the improved skeletal muscle insulin sensitivity following acute exercise in 

insulin sensitive muscle, the role of pAS160 in exercise effects on glucose uptake had not been 

examined in insulin resistant muscles.  AS160 protein abundance was found to not significantly 
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differ among 12 muscles or regions of muscles of widely varying fiber type, and this lack of a 

fiber type difference was confirmed at the cellular level.  Thus, these data suggest that the total 

abundance of AS160 may not be a major determining factor for glucose transport in rat skeletal 

muscle.  This interpretation is supported by the previous observations that insulin-stimulated 

glucose uptake is much greater for single MHC-IIA versus single MHC-IIB fibers (33), ~8-fold 

overexpression of AS160 in mouse skeletal muscle did not alter insulin-stimulated glucose 

uptake (31), diabetic rats have impaired insulin-mediated increases in pAS160 without changes 

in AS160 abundance (7, 10),  pAS160 was reduced without differences in AS160 abundance in 

skeletal muscle of insulin resistant humans (50), and diabetic humans have normal total AS160 

expression but reduced insulin-stimulated pAS160 (25).  There are two studies that have 

investigated effect of whole body deletion of AS160 in mice (7, 54).  AS160 knockouts had 

whole body insulin resistance.  However, in isolated skeletal muscle from AS160 deficient mice, 

the soleus had reduced insulin-stimulated glucose uptake, but insulin-stimulated glucose uptake 

by the EDL was normal.  To interpret these results, it is important to recognize that unlike rat 

skeletal muscle, in mouse skeletal muscle AS160 abundance is ~10-fold greater in the soleus 

versus the EDL (49).  Therefore, deletion of AS160 in a skeletal muscle in which AS160 is 

highly abundant, such as the soleus, may have a greater effect on insulin-mediated glucose 

transport compared with muscles in which AS160 is in low abundance, such as the EDL.  It 

should also be noted that the deletion of AS160 in the soleus also resulted in a significant 

reduction in GLUT4 (GLUT4 abundance was not altered by AS160 deletion in the EDL).  

Therefore, the reduced insulin-stimulated glucose uptake by the soleus is likely to be at least 

partly due to differences in GLUT4.  The explanation for the lack of a close relationship between 

AS160 abundance and glucose uptake in studies from rats (7, 10) and humans (25) is uncertain.  

However, AS160 is a Rab GAP protein, Rab GAPs can have multiple cellular functions (18-19), 

and it is possible that only a portion of the AS160 expressed in a muscle cell is functionally 

relevant for regulating glucose transport.  Regardless, the level of insulin-stimulated pAS160 

does seem to be related to the level of insulin-stimulated glucose transport.  For muscles from 

HFD Sedentary versus LFD Sedentary rats, both insulin-stimulated glucose uptake and pAS160 

were reduced.  For muscles from both LFD 3hPEX and HFD 3hPEX rats, both insulin-stimulated 

glucose and pAS160 were increased compared to their respective sedentary controls.  For HFD 

3hPEX versus LFD 3hPEX muscles, both insulin-stimulated glucose uptake and pAS160 were 
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not elevated to the same level.  Although the mechanisms remains unknown, these findings 

support the idea that the level of pAS160 consistently tracks with skeletal muscle insulin 

sensitivity following acute exercise.  It is unclear why HFD feeding resulted in a blunted exercise 

response to insulin for pAS160, but these data suggest that mechanisms for improved skeletal 

muscle insulin sensitivity following acute exercise are not identical for insulin sensitive versus 

insulin resistant rats.   

Similar to AS160, the relationship between muscle fiber type and TBC1D1 abundance 

had not been studied in rat skeletal muscle prior to this dissertation.  In contrast to earlier data 

from mice (49), there was not an inverse relationship for the relative abundance of TBC1D1 

versus AS160, the differences in TBC1D1 protein abundance among various muscles or regions 

of muscles were much smaller in rats (2.7-fold range among 12 rat muscles evaluated in Study 2) 

compared to the earlier study (49) in mice (10-fold range among 3 mouse muscles),  and 

TBC1D1 abundance was not related to fiber type in rat muscles.   Unexpectedly, TBC1D1 was 

only consistently detectable in MHC-IIxb and MHC-IIb fibers (i.e., TBC1D1 was not 

consistently detected in MHC-IIa, MHC-IIax, or MHC-IIx fibers).  It is possible that TBC1D1 is 

important for regulating contraction-stimulated glucose uptake in MHC-IIxb and MHC-IIb fibers 

and less important in MHC-IIa, MHC-IIax, or MHC-IIx fibers.  However, further analysis is 

necessary before this conclusion could be made.  It is also possible that the abundance of 

TBC1D1 in MHC-IIa, MHC-IIax, and MHC-IIx fibers may fall just below the detectable range, 

and a small amount of TBC1D1 may be sufficient for it to be functionally significant.  It would 

be interesting to determine if pooling multiple fibers in which TBC1D1 was not detectable, such 

as MHC-IIa fibers, would allow for TBC1D1 to be detected.  If this approach was successful, 

then estimations could be made between the relative abundance of TBC1D1 in MHC-IIa, MHC-

IIax, and MHC-IIx fibers with MHC-IIxb and MHC-IIb fibers.       

A common theme throughout this dissertation was the exploration of the functional 

importance of skeletal muscle fiber type.  Fiber typing was performed by the identification of 

MHC isoform expression.  However, there are various methods for determining fiber type (i.e., 

visual inspection to determine the “redness” or “whiteness” of a muscle, histochemical staining, 

contractile properties, etc.).  Fiber typing by MHC isoform expression was selected because it 

can be used for single fibers, it is an objective measurement of a functionally relevant protein, it 
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is reproducible and it has been described as the gold standard for determining fiber type (5).  

Therefore, it is important to note that fiber type was used as a means to categorize both whole 

muscles and single muscle fibers, so it is possible to compare results from whole muscle with 

results from single fibers.  Single fiber analysis for Study 2 reinforced findings from whole 

muscle analysis performed in Study 1 (i.e., GLUT4 and TUG abundance tracks with fiber type 

and AS160 abundance was not related to fiber type).  However, Study 2 also revealed many 

interesting findings that could only be identified by single fiber analysis:  1) contraction-

stimulated glucose uptake did not differ among fiber types; 2) TBC1D1 was only consistently 

detectable in MHC-IIxb and MHC-IIb fibers; 3) RUVBL2 was readily detected in muscle tissue, 

but not detectable in single type II muscle fibers (likely more highly expressed in other cell types 

within muscle); and 4) the epitrochlearis has a large proportion (~61%) of hybrid fibers.  

Although data from Study 2 provided novel information, these results only allow for 

interpretations based on total protein abundance in relation to fiber type because the current 

method does not allow phosphorylation measurements to be made (i.e., the isolation of single 

fibers appears to influence the phosphorylation status of fibers; unpublished results).  Other 

approaches (e.g., immunohistochemistry), will be needed to evaluate protein phosphorylation at 

the level of single fibers.  Finally, several caveats for the single fiber results should be 

acknowledged, including that type I (slow-twitch) fibers were not evaluated because they were 

not isolated by the collagenase method, and it remains to be established if the single fiber results 

for the epitrochlearis are generalizable to single fibers in other muscles. 

Determination of total protein abundance is important, but protein function is also 

influenced by many other factors.  Protein abundance is certainly not the only determinant of 

AS160 function.  For Studies 1, 2 and 3 AS160 total abundance did not differ among 12 different 

muscles of varying fiber type, did not differ among 5 different fibers types in muscle cells, and 

did not differ in response to HFD, acute exercise, or insulin.  However, Study 3 emphasized the 

role of pAS160 and showed the degree by which pAS160 tracked with glucose uptake.  This was 

evident by the results showing that insulin-simulated glucose uptake by skeletal muscle and the 

level of pAS160 followed the same stepwise relationship: HFD SED < HFD 3hPEX = LFD SED 

< LFD 3hPEX.  Although these results for pAS160 and insulin-stimulated glucose uptake 

coincide with previous findings (3, 7, 10, 13-14, 25, 45), it should be noted that additional post-

translational modifications may play a role in the regulation of AS160 and glucose uptake.  For 
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example, it was recently shown that TBC1D3 (a paralog of AS160) localization with the plasma 

membrane was associated with greater palmitoylation (27).  It is not known if AS160 is regulated 

by palmitoylation, but an interesting result from Study 3 indicated that there was a trend for 

elevated palmitoyl-CoA in muscles from HFD fed rats (possibly associated with the muscle 

insulin resistance), and following acute exercise there was a main effect of exercise (3hPEX < 

Sedentary) for the level of palmitoyl-CoA, with HFD 3hPEX muscles having significantly 

reduced palmitoyl-CoA.  Similar to TBC1D3, localization of AS160 may also be influenced by 

palmitoylation.  However, this theory has not yet been tested.  Additionally, it cannot be ruled 

out that AS160 localization and/or activity may be regulated by other post-translational 

modifications (e.g., methylation, acetylation, etc.), protein-protein interactions [e.g., binding to 

14-3-3 proteins (15, 38)], or allosteric interactions with small molecules.  Further research is 

necessary to investigate these and other possibilities to fully understand the role of AS160 in 

regulating glucose transport.    

Future Directions 

The combined findings from Studies 1, 2 and 3 have provided valuable insight for future 

directions for understanding skeletal muscle glucose transport.  Because skeletal muscle accounts 

for the greatest proportion of insulin-stimulated glucose transport and the prevalence of obesity 

associated insulin resistance and diabetes continues to rise, future studies focusing on 

understanding the mechanism for improved skeletal muscle insulin sensitivity after acute 

exercise are of primary importance.    

Studies have shown that glucose uptake by rat skeletal muscle tissue in response to a 

physiologic insulin dose is greater in muscles or regions of muscles rich in oxidative fibers 

(enriched with MHC-I and IIa fibers) compared with muscles or regions of muscles rich in 

glycolytic fibers (enriched with MHC-IIb and IIx fibers) (12, 22, 29-30, 40-41).  It seems 

possible that alterations in muscle glucose uptake with various interventions (e.g., exercise or 

diet) may differ according to fiber type.  Studies using hyperinsulinemic-euglycemic clamp with 

a physiologic insulin dose following HFD feeding indicate that muscles or muscle regions with a 

large percentage of oxidative fibers were more susceptible to the reduced insulin-stimulated 

glucose uptake (25% to 45% decrease with HFD) (29-30, 48).  However, muscles or regions of 

muscles with a high percentage of glycolytic fibers appeared to be less susceptible to the diet-
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induced reductions in insulin-stimulated glucose uptake (0% to 25% decrease with HFD).  

Following acute exercise by insulin sensitive rats,  apparently only the classic study by Richter et 

al. (41) has reported insulin-stimulated glucose uptake in different muscles or regions of muscles 

of varying fiber type.  Exercised versus sedentary controls had approximately a two-fold increase 

in insulin-stimulated glucose uptake in the perfused hindlimb with a physiologic insulin dose 

with large and significant increases in insulin-stimulated glucose uptake in the red gastrocnemius 

(rich in MHC-I and MHC-IIa fibers).  In contrast, the white gastrocnemius (rich in MHC-IIb and 

MHC-IIx fibers) from exercise versus sedentary rats had a non-significant trend for increased 

insulin-stimulated glucose uptake, and no evidence for an exercise-induced increase in insulin-

stimulated glucose uptake in the soleus (rich in MHC-I fibers).  Apparently, only Oakes et al. 

have reported insulin-stimulated glucose uptake using a physiologic insulin dose in different 

muscles or regions of muscles of varying fiber type following a single exercise bout by rats fed a 

HFD (35).  Prior exercise significantly improved insulin-stimulated glucose uptake in both the 

red quadriceps (rich in MHC-I and MHC-IIa fibers) and white quadriceps (rich in MHC-IIb and 

MHC-IIx fibers), contrary to findings from healthy LFD fed rats (41).  Additionally, the relative 

increase after exercise in insulin-stimulated glucose uptake was greater in the muscle region with 

a higher percentage of glycolytic fibers versus the muscle region with a higher percentage of 

oxidative fibers.  Taking together the data from Richter et. al. (41) for insulin sensitive rats and 

Oakes et al. (35), for rats fed a HFD the exercised-induced improvements in insulin-stimulated 

uptake may differ based on both diet and muscle fiber type.  However, comparisons of data from 

two different research groups using different exercise protocols, different methods for measuring 

glucose uptake and different muscles (gastrocnemius versus quadriceps) should be made with 

caution.  Therefore, it would be informative for these comparisons between rats fed LFD versus 

HFD to be made utilizing the same exercise protocol, with identical methods for measuring 

glucose uptake by single fibers with differing fiber types from the epitrochlearis.  For Study 3, 

two weeks of high fat feeding was sufficient to induce mild insulin resistance in isolated skeletal 

muscle.  Also, a single session of exercise improved insulin-stimulated glucose uptake in 

epitrochlearis muscles from both HFD and LFD fed rats, but the muscles from HFD 3hPEX 

versus LFD 3hPEX rats did not attain equal levels of insulin-stimulated glucose uptake.  One 

hypotheses is that the mild insulin resistance in the epitrochlearis muscles from HFD fed rats was 

due to a greater degree of insulin resistance in the oxidative fibers (e.g., MHC-IIa) versus 
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glycolytic fibers (e.g., MHC-IIb), and following acute exercise the more insulin resistant fibers 

had an impaired exercise response.  In order to test this hypothesis it would be ideal to utilize the 

single fiber method from Study 2, to measure the effects of acute exercise on insulin-stimulated 

glucose uptake in single muscle fibers from epitrochlearis isolated from LFD and HFD fed rats 

that either remained sedentary or performed a single session of exercise.    

Prior to Study 3, AS160 was the only direct Akt substrate that had been identified to have 

increased phosphorylation in skeletal muscle in the hours following acute exercise.  As a result, 

exercised induced improvements for skeletal muscle insulin-stimulated glucose uptake and the 

associated increase in AS160 phosphorylation have been extensively studied (3, 13-14, 45, 47, 

51).  However, the mechanism that allows for the greater insulin-stimulated AS160 

phosphorylation in muscle following acute exercise remains unknown.  In Study 3, FoxO1 and 

PRAS40 were identified as additional proteins that are also direct Akt substrates that have 

increased phosphorylation with insulin-treatment several hours after a single session of exercise.  

Therefore, it seems logical to investigate additional similarities among AS160, FoxO1 and 

PRAS40 to elucidate the possible mechanisms that account for the improved skeletal muscle 

insulin sensitivity following acute exercise.  The most obvious candidate for the greater insulin-

stimulated phosphorylation of these three proteins would be changes in the balance between 

activity for their kinases and/or phosphatases.  For insulin sensitive models, Akt does not have 

greater activity following acute exercise, which is the primary insulin regulated kinase for 

AS160, FoxO1 (52) and PRAS40 (53).  Other known AS160 kinases, such as AMPK (AMPK 

acitvatied protein kinase), RSK (ribosomal S6 kinase) and SGK1 (Serine/threonine-protein 

kinase) have also been shown to not have increased insulin-stimulated phosphorylation hours 

after a single exercise bout (45).  Following exercise, it is possible that AS160, FoxO1 and 

PRAS40 localize to a similar intracellular region that increases their susceptibility for 

phosphorylation and/or reduces their susceptibility for dephosphorylation.  One key 

characteristic of FoxO1 is that following phosphorylation by Akt, FoxO1 translocates from the 

nucleus to the cytosol.  However, it is not known if exercise results in greater FoxO1 

translocation from the nucleus to the cytosol, possibly making FoxO1 more susceptible to 

phosphorylation by Akt in response to insulin.  Therefore, a reasonable starting point would be to 

determine via immunohistochemistry if the cellular localization for AS160, FoxO1 and PRAS40 

in skeletal muscle is altered during the hours following acute exercise.  If the results did in fact 
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show that exercise leads to the redistribution of AS160, FoxO1, and PRAS40, it would then be 

interesting to perform follow-up studies to identify the causes for this redistribution.      

 

Overall Conclusions   

Factors that influence skeletal muscle glucose uptake were the focus of this project 

because skeletal muscle plays a major role in the regulation of whole body glucose homeostasis.  

Isolated skeletal muscle was studied to analyze the intrinsic properties of muscle with respect to 

insulin-independent glucose uptake in response to ex vivo contraction, and insulin-dependent 

glucose uptake by muscle from insulin sensitive and insulin resistant rats following acute 

exercise.  The most important functional results from these studies were: 1) contraction-

stimulated glucose uptake did not differ among MHC-II fibers isolated from the rat 

epitrochlearis; and 2) improved insulin-stimulated glucose uptake by insulin resistant muscles 

following acute exercise was associated with greater pAS160.  Data from Studies 1 and 2 further 

confirmed the relationship between fiber type and GLUT4 abundance, showing that the GLUT4 

expression pattern for single muscle fibers was consistent with whole muscle analysis.  

Therefore, a reasonable hypothesis would have been that the capacity for contraction-stimulated 

glucose uptake by single muscle fibers would track with the relative abundance of GLUT4 

within a given fiber type.  However, contraction-stimulated glucose uptake was not different 

among any of the fiber types measured.  Therefore, it appears that the capacity of contraction-

stimulated glucose uptake is not determined by GLUT4 abundance, and further research is 

needed to identify the factors that determine contraction-stimulated glucose uptake.   For Study 

3, insulin resistant muscles were found to have improved insulin-mediated glucose uptake 

following acute exercise and was associated with increased pAS160.  Additionally, it appeared 

that the improved insulin-stimulated pAS160 following acute exercise by insulin sensitive and 

insulin resistant rats occurred via different mechanisms.  Short-term high fat feeding was not 

only sufficient to induce skeletal muscle insulin resistance, but it was also sufficient to alter the 

exercised induced improvements for insulin-stimulated glucose uptake by muscle.  In 

conclusion, this dissertation provided novel information regarding the effects of ex vivo 

contraction and in vivo exercise on glucose uptake by skeletal muscle.  These results lay the 
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foundation for future experiments to fully understand the mechanisms that regulate skeletal 

muscle glucose transport.       

 

References 

1. Ai H, Ihlemann J, Hellsten Y, Lauritzen HP, Hardie DG, Galbo H, and Ploug T. 

Effect of fiber type and nutritional state on AICAR- and contraction-stimulated glucose transport 

in rat muscle. Am J Physiol Endocrinol Metab 282: E1291-1300, 2002. 

2. Ai H, Ralston E, Lauritzen HP, Galbo H, and Ploug T. Disruption of microtubules in 

rat skeletal muscle does not inhibit insulin- or contraction-stimulated glucose transport. Am J 

Physiol Endocrinol Metab 285: E836-844, 2003. 

3. Arias EB, Kim J, Funai K, and Cartee GD. Prior exercise increases phosphorylation of 

Akt substrate of 160 kDa (AS160) in rat skeletal muscle. Am J Physiol Endocrinol Metab 292: 

E1191-1200, 2007. 

4. Bogan JS, Hendon N, McKee AE, Tsao TS, and Lodish HF. Functional cloning of 

TUG as a regulator of GLUT4 glucose transporter trafficking. Nature 425: 727-733, 2003. 

5. Booth FW, Laye MJ, and Spangenburg EE. Gold standards for scientists who are 

conducting animal-based exercise studies. J Appl Physiol 108: 219-221, 2010. 

6. Brozinick JT, Jr., Etgen GJ, Jr., Yaspelkis BB, 3rd, Kang HY, and Ivy JL. Effects of 

exercise training on muscle GLUT-4 protein content and translocation in obese Zucker rats. Am J 

Physiol 265: E419-427, 1993. 

7. Cao S, Li B, Yi X, Chang B, Zhu B, Lian Z, Zhang Z, Zhao G, Liu H, and Zhang H. 

Effects of exercise on AMPK signaling and downstream components to PI3K in rat with type 2 

diabetes. PLoS One 7: e51709, 2012. 

8. Cartee GD and Funai K. Exercise and Insulin: Convergence or Divergence at AS160 

and TBC1D1? Exercise and Sport Sciences Reviews 37: 188-195, 2009. 

9. Castorena CM, Mackrell JG, Bogan JS, Kanzaki M, and Cartee GD. Clustering of 

GLUT4, TUG and RUVBL2 Protein Levels Correlate with Myosin Heavy Chain Isoform Pattern 

in Skeletal Muscles, but AS160 and TBC1D1 Levels Do Not. J Appl Physiol, 2011. 

10. Chen YC, Lee SD, Kuo CH, and Ho LT. The effects of altitude training on the AMPK-

related glucose transport pathway in the red skeletal muscle of both lean and obese Zucker rats. 

High Alt Med Biol 12: 371-378, 2011. 

11. Daugaard JR and Richter EA. Relationship between muscle fibre composition, glucose 

transporter protein 4 and exercise training: possible consequences in non-insulin-dependent 

diabetes mellitus. Acta Physiol Scand 171: 267-276, 2001. 

12. Delp MD and Duan C. Composition and size of type I, IIA, IID/X, and IIB fibers and 

citrate synthase activity of rat muscle. J Appl Physiol 80: 261-270, 1996. 

13. Funai K, Schweitzer GG, Castorena CM, Kanzaki M, and Cartee GD. In vivo 

exercise followed by in vitro contraction additively elevates subsequent insulin-stimulated 

glucose transport by rat skeletal muscle. Am J Physiol Endocrinol Metab 298: E999-1010, 2010. 

14. Funai K, Schweitzer GG, Sharma N, Kanzaki M, and Cartee GD. Increased AS160 

phosphorylation, but not TBC1D1 phosphorylation, with increased postexercise insulin 

sensitivity in rat skeletal muscle. Am J Physiol Endocrinol Metab 297: E242-251, 2009. 



175 
 

15. Geraghty KM, Chen S, Harthill JE, Ibrahim AF, Toth R, Morrice NA, 

Vandermoere F, Moorhead GB, Hardie DG, and MacKintosh C. Regulation of multisite 

phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR. 

Biochem J 407: 231-241, 2007. 

16. Hennig R and Lomo T. Firing patterns of motor units in normal rats. Nature 314: 164-

166, 1985. 

17. Henriksen EJ, Bourey RE, Rodnick KJ, Koranyi L, Permutt MA, and Holloszy JO. 

Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. Am J 

Physiol 259: E593-598, 1990. 

18. Horgan CP and McCaffrey MW. Rab GTPases and microtubule motors. Biochem Soc 

Trans 39: 1202-1206, 2011. 

19. Hutagalung AH and Novick PJ. Role of Rab GTPases in membrane traffic and cell 

physiology. Physiol Rev 91: 119-149, 2011. 

20. Ihlemann J, Ploug T, and Galbo H. Effect of force development on contraction induced 

glucose transport in fast twitch rat muscle. Acta Physiol Scand 171: 439-444, 2001. 

21. Ihlemann J, Ploug T, Hellsten Y, and Galbo H. Effect of stimulation frequency on 

contraction-induced glucose transport in rat skeletal muscle. Am J Physiol Endocrinol Metab 

279: E862-867, 2000. 

22. James DE, Jenkins AB, and Kraegen EW. Heterogeneity of insulin action in individual 

muscles in vivo: euglycemic clamp studies in rats. Am J Physiol 248: E567-574, 1985. 

23. Johannsson E, McCullagh KJ, Han XX, Fernando PK, Jensen J, Dahl HA, and 

Bonen A. Effect of overexpressing GLUT-1 and GLUT-4 on insulin- and contraction-stimulated 

glucose transport in muscle. Am J Physiol 271: E547-555, 1996. 

24. Kane S, Sano H, Liu SC, Asara JM, Lane WS, Garner CC, and Lienhard GE. A 

method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a 

Rab GTPase-activating protein (GAP) domain. J Biol Chem 277: 22115-22118, 2002. 

25. Karlsson HK, Zierath JR, Kane S, Krook A, Lienhard GE, and Wallberg-

Henriksson H. Insulin-Stimulated Phosphorylation of the Akt Substrate AS160 Is Impaired in 

Skeletal Muscle of Type 2 Diabetic Subjects. Diabetes 54: 1692-1697, 2005. 

26. Kern M, Wells JA, Stephens JM, Elton CW, Friedman JE, Tapscott EB, Pekala PH, 

and Dohm GL. Insulin responsiveness in skeletal muscle is determined by glucose transporter 

(Glut4) protein level. Biochem J 270: 397-400, 1990. 

27. Kong C, Lange JJ, Samovski D, Su X, Liu J, Sundaresan S, and Stahl PD. 

Ubiquitination and degradation of the hominoid-specific oncoprotein TBC1D3 is regulated by 

protein palmitoylation. Biochem Biophys Res Commun 434: 388-393, 2013. 

28. Kong X, Manchester J, Salmons S, and Lawrence JC, Jr. Glucose transporters in 

single skeletal muscle fibers. Relationship to hexokinase and regulation by contractile activity. J 

Biol Chem 269: 12963-12967, 1994. 

29. Kraegen EW, James DE, Storlien LH, Burleigh KM, and Chisholm DJ. In vivo 

insulin resistance in individual peripheral tissues of the high fat fed rat: assessment by 

euglycaemic clamp plus deoxyglucose administration. Diabetologia 29: 192-198, 1986. 

30. Kraegen EW, Storlien LH, Jenkins AB, and James DE. Chronic exercise compensates 

for insulin resistance induced by a high-fat diet in rats. Am J Physiol 256: E242-249, 1989. 

31. Kramer HF, Witczak CA, Taylor EB, Fujii N, Hirshman MF, and Goodyear LJ. 

AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal muscle. J 

Biol Chem 281: 31478-31485, 2006. 



176 
 

32. Mackrell JG, Arias EB, and Cartee GD. Fiber type-specific differences in glucose 

uptake by single fibers from skeletal muscles of 9- and 25-month-old rats. J Gerontol A Biol Sci 

Med Sci 67: 1286-1294, 2012. 

33. MacKrell JG and Cartee GD. A Novel Method to Measure Glucose Uptake and 

Myosin Heavy Chain Isoform Expression of Single Fibers from Rat Skeletal Muscle. Diabetes In 

Press: Accepted January, 2012. 

34. Megeney LA, Neufer PD, Dohm GL, Tan MH, Blewett CA, Elder GC, and Bonen A. 

Effects of muscle activity and fiber composition on glucose transport and GLUT-4. Am J Physiol 

264: E583-593, 1993. 

35. Oakes ND, Bell KS, Furler SM, Camilleri S, Saha AK, Ruderman NB, Chisholm DJ, 

and Kraegen EW. Diet-induced muscle insulin resistance in rats is ameliorated by acute dietary 

lipid withdrawal or a single bout of exercise: parallel relationship between insulin stimulation of 

glucose uptake and suppression of long-chain fatty acyl-CoA. Diabetes 46: 2022-2028, 1997. 

36. Ploug T and Ralston E. Exploring the whereabouts of GLUT4 in skeletal muscle 

(review). Mol Membr Biol 19: 39-49, 2002. 

37. Ploug T, van Deurs B, Ai H, Cushman SW, and Ralston E. Analysis of GLUT4 

distribution in whole skeletal muscle fibers: identification of distinct storage compartments that 

are recruited by insulin and muscle contractions. J Cell Biol 142: 1429-1446, 1998. 

38. Ramm G, Larance M, Guilhaus M, and James DE. A role for 14-3-3 in insulin-

stimulated GLUT4 translocation through its interaction with the RabGAP AS160. J Biol Chem 

281: 29174-29180, 2006. 

39. Richardson JM, Balon TW, Treadway JL, and Pessin JE. Differential regulation of 

glucose transporter activity and expression in red and white skeletal muscle. J Biol Chem 266: 

12690-12694, 1991. 

40. Richter EA, Garetto LP, Goodman MN, and Ruderman NB. Enhanced muscle 

glucose metabolism after exercise: modulation by local factors. Am J Physiol Endocrinol Metab 

246: E476-482, 1984. 

41. Richter EA, Garetto LP, Goodman MN, and Ruderman NB. Muscle glucose 

metabolism following exercise in the rat: increased sensitivity to insulin. J Clin Invest 69: 785-

793, 1982. 

42. Sakamoto K and Holman GD. Emerging role for AS160/TBC1D4 and TBC1D1 in the 

regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab 295: E29-37, 2008. 

43. Sano H, Kane S, Sano E, Miinea CP, Asara JM, Lane WS, Garner CW, and 

Lienhard GE. Insulin-stimulated phosphorylation of a Rab GTPase-activating protein regulates 

GLUT4 translocation. J Biol Chem 278: 14599-14602, 2003. 

44. Schertzer JD, Antonescu CN, Bilan PJ, Jain S, Huang X, Liu Z, Bonen A, and Klip 

A. A transgenic mouse model to study glucose transporter 4myc regulation in skeletal muscle. 

Endocrinology 150: 1935-1940, 2009. 

45. Schweitzer GG, Arias EB, and Cartee GD. Sustained postexercise increases in AS160 

Thr642 and Ser588 phosphorylation in skeletal muscle without sustained increases in kinase 

phosphorylation. J Appl Physiol 113: 1852-1861, 2012. 

46. Slentz CA, Gulve EA, Rodnick KJ, Henriksen EJ, Youn JH, and Holloszy JO. 

Glucose transporters and maximal transport are increased in endurance-trained rat soleus. J Appl 

Physiol 73: 486-492, 1992. 

47. Sriwijitkamol A, Coletta DK, Wajcberg E, Balbontin GB, Reyna SM, Barrientes J, 

Eagan PA, Jenkinson CP, Cersosimo E, DeFronzo RA, Sakamoto K, and Musi N. Effect of 



177 
 

acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-

course and dose-response study. Diabetes 56: 836-848, 2007. 

48. Storlien LH, James DE, Burleigh KM, Chisholm DJ, and Kraegen EW. Fat feeding 

causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. 

Am J Physiol 251: E576-583, 1986. 

49. Taylor EB, An D, Kramer HF, Yu H, Fujii NL, Roeckl KS, Bowles N, Hirshman 

MF, Xie J, Feener EP, and Goodyear LJ. Discovery of TBC1D1 as an insulin-, AICAR-, and 

contraction-stimulated signaling nexus in mouse skeletal muscle. J Biol Chem 283: 9787-9796, 

2008. 

50. Tonks KT, Ng Y, Miller S, Coster AC, Samocha-Bonet D, Iseli TJ, Xu A, Patrick E, 

Yang JY, Junutula JR, Modrusan Z, Kolumam G, Stockli J, Chisholm DJ, James DE, and 

Greenfield JR. Impaired Akt phosphorylation in insulin-resistant human muscle is accompanied 

by selective and heterogeneous downstream defects. Diabetologia 56: 875-885, 2013. 

51. Treebak JT, Frosig C, Pehmoller C, Chen S, Maarbjerg SJ, Brandt N, MacKintosh 

C, Zierath JR, Hardie DG, Kiens B, Richter EA, Pilegaard H, and Wojtaszewski JF. 
Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle. 

Diabetologia 52: 891-900, 2009. 

52. Tzivion G, Dobson M, and Ramakrishnan G. FoxO transcription factors; Regulation 

by AKT and 14-3-3 proteins. Biochim Biophys Acta 1813: 1938-1945, 2011. 

53. Wang H, Zhang Q, Wen Q, Zheng Y, Lazarovici P, Jiang H, Lin J, and Zheng W. 

Proline-rich Akt substrate of 40kDa (PRAS40): a novel downstream target of PI3k/Akt signaling 

pathway. Cell Signal 24: 17-24, 2012. 

54. Wang HY, Ducommun S, Quan C, Xie B, Li M, Wasserman DH, Sakamoto K, 

Mackintosh C, and Chen S. AS160 deficiency causes whole-body insulin resistance via 

composite effects in multiple tissues. Biochem J 449: 479-489, 2013. 

55. Xie X, Chen Y, Xue P, Fan Y, Deng Y, Peng G, Yang F, and Xu T. RUVBL2, a novel 

AS160-binding protein, regulates insulin-stimulated GLUT4 translocation. Cell Res, 2009. 

56. Yu CF, Cresswell J, Loffler MG, and Bogan JS. The glucose transporter 4-regulating 

protein TUG is essential for highly insulin-responsive glucose uptake in 3T3-L1 adipocytes. 

Journal of Biological Chemistry 282: 7710-7722, 2007. 

 

 



178 
 

 

 

 

 

Appendix I: Study 2 

 

 

This section contains additional figures for data collected from Study 2 that were not included in 

Chapter IV. 
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Figure A-I 4.1  

Relative RPS6 protein abundance for single muscle fibers.  *Indicates statistical significance 
for MHC-IIa vs. MHC-IIb (P < 0.05).  Values are means ± SE; n = 15 for each fiber type.  
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Appendix II: Study 3 

 

 

This section contains additional information and figures for data collected from Study 3 that 

were not included in Chapter IV 
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Lab Diet 5001 (low fat diet; LFD) 

Protein Value 
 

Fat Value 
 

Carbohydrates Value 
Arginine 1.41% 

 
Cholesterol 200 ppm 

 
Starch 31.90% 

Cystine 0.31% 
 

Linoleic Acid 1.22% 
 

Glucose 0.22% 
Glycine 1.21% 

 
Linolenic Acid 0.10% 

 
Fructose 0.30% 

Histidine 0.57% 
 

Arachidonic Acid <0.01% 
 

Sucrose 3.70% 
Isoleucine 1.14% 

 
Omega-3 Fatty Acids 0.19% 

 
Lactose 2.01% 

Leucine 1.83% 
 

Total Saturated Fatty Acids 1.56% 
 

Total 48.70% 

Lysine 1.41% 
 

Total Monosaturated Fatty 
Acids 1.60% 

   Methionine 0.67% 
 

Fat 10.70% 
   Phenylalanine 1.04% 

  Tyrosine 0.71% 
 Threonine 0.91% 
 Tryptophan 0.29% 
 Valine 1.17% 
 Serine 1.19% 
 Aspartic Acid 2.81% 
 Glutamic Acid 4.37% 
 Alanine 1.43% 
 Proline 1.49% 
 Taurine 0.02% 
 Protein 23.90% 
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Lab Diet 5001 (low fat diet; LFD) Continued 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Minerals Value 
 

Vitamins Value 

Ash 7% 
 

Carotene 2.3 ppm 

Calcium 0.95% 
 

Vitamin K (as menadione) 1.3 ppm 

Phosphorus 0.66% 
 

Thiamin Hydrochloride 16 ppm 

 Phosphorus (non-phytate) 0.39% 
 

Riboflavin 4.5 ppm 

Potassium 1.18% 
 

Niacin 120 ppm 

Magnesium 0.21% 
 

Pantothenic Acid 24 ppm 

Sulfur 0.36% 
 

Choline Chloride 2250 ppm 

Sodium 0.40% 
 

Folic Acid 7.1 ppm 

Chlorine 0.67% 
 

Pyridoxine 6.0 ppm 

Fluorine 16 ppm 
 

Biotin 0.30 ppm 

Iron 270 ppm 
 

B12  50 mcg/kg 

Zinc 79 ppm 
 

Vitamin A 15 IU/g 

Manganese 70 ppm 
 

Vitamin D3 4.5 IU/g 

Copper 13 ppm 
 

Vitamin E 42 IU/kg 

Cobalt 0.90 ppm 
 

Ascorbic Acid --- 

Iodine 1.0 ppm 
   

Chromium 1.2 ppm 
   

Selenium 0.30 ppm 
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Research Diets D12492 (high fat diet; HFD) 

 

 

Typical analysis of cholesterol in lard = 0.95 mg/g 
Cholesterol (mg)/4057 kcal = 232.8 
Cholesterol (mg)/kg = 300.8 
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Figure A-II 5.1 

 IPEX measurements for TBC1D1 Ser231 phosphorylation (pTBC1D1
Ser231

).   
Measurements made in epitrochlearis muscles (without insulin) from time-
matched sedentary and IPEX rats.  Data were analyzed by two-way ANOVA.  
Diet, main effect of diet; Exercise, main effect of exercise; D x E, interaction 
between Diet and Exercise.  Tukey post-hoc analysis was performed to identify 
the source of significant variance.  *P < 0.05 greater than LFD Sedentary. 
Values are means ± SEM; n = 4-6 per group. 
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Figure A-II 5.4 
A: IκB-α measured in paired epitrochlearis muscles 3hPEX.  Data were analyzed by two-
way ANOVA within each insulin level.  Diet, main effect of diet; Exercise, main effect of 
exercise; D x E, interaction between Diet and Exercise. Values are means ± SEM; n= 11.  B: 
IκB-β measured in paired epitrochlearis muscles 3hPEX.  Data were analyzed by two-way 
ANOVA within each insulin level. Tukey post-hoc analysis was performed to identify the 
source of significant variance.  *P < 0.05 HFD Sedentary is less than LFD Sedentary and 
HFD 3hPEX.  †P < 0.05 LFD 3hPEX is less than LFD Sedentary are  Values are means ± 
SEM; n= 19-20.   
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