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Abstract 
 
 
 

A Mechanistic Examination of APOBEC3-Mediated LINE-1 Inhibition 
 
 

By 
 
 

Sandra R. Richardson 
 
 
 
Chair: John V. Moran 
 
 

Protein-coding sequences account for ~3% of the human genome, and a 

typical gene resides permanently at a discrete chromosomal address.  The 

human genome, however, is not simply a static catalogue of genes; in many 

ways, it is an ever-changing entity.  One dynamic component of the human 

genome is transposable elements (TEs), or “jumping genes”.  Long Interspersed 

Element-1 (LINE-1 or L1) is a TE whose sequences make up ~17% of human 

DNA.  Although most L1s are inactive, a few retain the ability to mobilize by a 

process called retrotransposition.  In a round of retrotransposition, an L1 in the 

genome is transcribed into RNA, and translated to produce the protein machinery 

essential for generating a new insertion.  The L1-encoded proteins bind to the 

RNA from which they were translated to form an L1 ribonucleoprotein particle 

(RNP), enter the nucleus, and cleave the genomic DNA in a new location to 
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expose a free DNA end, which the L1 machinery uses to prime synthesis of a 

DNA copy of its associated RNA.  This process is termed target-primed reverse 

transcription (TPRT).  The new DNA copy of the L1 becomes integrated into the 

genome, giving rise to a novel insertion. 

L1 is often regarded as a molecular parasite that can be damaging to the 

host.  In fact, ~70 cases of human disease have been attributed to L1-mediated 

retrotransposition events, and it stands to reason that humans have evolved 

ways to curtail L1 mobility.  The human APOBEC3 (A3) family of cytidine 

deaminases represents a component of innate immunity hypothesized to have 

evolved to restrict TE mobility.   Interestingly, it has been suggested that the A3 

family further evolved and expanded to combat retroviruses such as HIV, which 

are relative evolutionary “newcomers” that share similarities with TEs in the ways 

that they challenge the genome.  The mechanisms by which A3 proteins combat 

exogenous and endogenous threats are the subject of ongoing study. 

 In this thesis, I undertake a mechanistic examination of A3-mediated L1 

inhibition.  I find that human A3 proteins can restrict retrotransposons from 

different species, which bear little sequence identity to human L1s.  I therefore 

hypothesize that A3-mediated restriction targets conserved steps or 

intermediates in the retrotransposition pathway, rather than relying on sequence-

dependent recognition of retroelements.  Indeed, I elucidate a mechanism of L1 

inhibition by APOBEC3A (A3A), in which A3A edits transiently exposed single-

stranded DNA during L1 TPRT.  In concert with the action of cellular repair 

factors which degrade deaminated TPRT intermediates, I conclude that this 
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editing is at least partially responsible for A3A-mediated L1 inhibition.  This work 

represents the first mechanistic explanation for inhibition of an autonomous 

retroelement by an A3 cytidine deaminase, providing new insight into the 

dynamic interplay between endogenous retrotransposons and host genomes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

Chapter 1 

 

Retrotransposon Control in the Mammalian Germline and Early Embryo 

 

Abstract 

Transposable elements (TEs), once disparaged as “junk DNA,” are now 

recognized as a biologically and evolutionarily significant component of 

mammalian genomes. The known active TEs in the mouse and human  genomes 

are retrotransposons, which mobilize through an RNA intermediate by a process 

termed retrotransposition. Unlike retroviruses, which also mobilize through an 

RNA intermediate, retrotransposons are endogenous elements that generally 

lack the capacity for transmission between individuals, and consequently rely on 

a vertical mode of transmission.  In order to generate heritable insertions, 

retrotransposons must mobilize in cells that will contribute to the next generation.  

Key opportunities for retrotransposon mobility arise during developmentally 

critical rounds of genome-wide epigenetic reprogramming in the early embryo, 

prior to germline specification, and in the primordial germline.  Unchecked, 

heritable retrotransposition events are potentially deleterious to the host.  Thus, 

mammalian genomes have evolved a battery of defense mechanisms against 

retrotransposition.  This chapter provides a brief background on retroelement 
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biology followed by a discussion of evidence for retrotransposon activity during 

early mammalian embryo development and in the germline, as well as host 

defenses that may limit the generation of heritable retrotransposition events. 

 

Mobile DNA in Modern Genomes 

Genomes are not static catalogues of genes; indeed, they are ever-

changing entities.  Transposable elements (TEs), or “jumping genes”, represent a 

dynamic component of genomes.  While a typical cellular gene resides at a 

discrete locus, TEs are able to mobilize to new chromosomal loci [1].  This 

activity has led to a remarkable accumulation of TE sequences in mammalian 

genomes: at least 45% of human DNA and at least 37% of mouse DNA is 

derived from TEs [2, 3].  Most of these TE insertions have been rendered unable 

to mobilize through the accumulation of mutations over time [2].  However, a 

growing body of work has revealed that modern mammalian genomes contain 

intact elements with the potential to mobilize (For review, see [4]). The 

classification and characteristics of TEs presently active in human and mouse 

genomes is discussed below. 

 

Retrotransposons are Active in Mammalian Genomes 

Transposable elements that mobilize through reverse transcription of an 

RNA intermediate are termed retrotransposons [5].  Retrotransposons are further 

categorized based on whether they possess long terminal repeats (LTRs) as LTR 

retrotransposons or non-LTR retrotransposons (Figure 1.1) (Reviewed in [6, 7]). 
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LTR Retrotransposons 

LTR retrotransposons replicate through the reverse transcription of an 

RNA intermediate [8-10].  Endogenous LTR retrotransposons and exogenous 

retroviruses are closely related, and share a long, intertwined evolutionary 

relationship [11].  It is unclear whether retroviruses originally arose from 

endogenous LTR retroelements, or if endogenous LTR retrotransposons 

originated from germline colonization by exogenous retroelements [5].  Indeed, 

both scenarios have likely occurred: some retroviruses are hypothesized to have 

evolved from gypsy-like LTR retrotransposons through the acquisition of genes 

and regulatory sequences which facilitate a viral lifestyle [11-13].  Paradoxically, 

exogenous retroviruses may have also given rise to a subset of endogenous LTR 

retrotransposons: the LTR retrotransposon superfamily of endogenous 

retroviruses (ERVs), are “domesticated” retroviruses which have become 

endogenized via germline colonization and the inactivation or loss of genes 

required for an extracellular infectious lifestyle [14].   

LTR retrotransposon sequences in the human genome appear to be 

completely inactive [2]. Intriguingly, a few human endogenous retrovirus (HERV) 

insertions are polymorphic with respect to presence among individuals, 

suggesting that they retrotransposed relatively recently during human evolution 

[15-18].  In contrast, the mouse genome contains multiple active families of LTR 

retrotransposons (reviewed in [19]). 
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Endogenous retroviruses contain direct repeats (LTRs), which flank genes 

encoding structural and enzymatic functions necessary for retrotransposition.  

These include the GAG ORF, which encodes the structural proteins for virus-like 

particle (VLP) formation, and the POL ORF, which contains protease, reverse 

transcriptase, RNaseH, and integrase activities (Figure 1.1 A) (Reviewed in [11, 

20, 21]). Some murine ERVs also contain envelope genes [22].   

Mouse endogenous retroviruses are subdivided into three classes based 

on their similarity to genera of exogenous retroviruses (Figure 1.1 A).  Class I 

contains elements which cluster with gamma- and epsilonretrovirus; active 

members include the type C murine leukemia virus (MuLV), murine retroviral-

related sequences (MuRRS), GLN (named for its glutamine tRNA primer-binding 

site), and virus-like 30S (VL30) endogenous retroviruses [19].   

Active members of Class II, which cluster with lentivirus, alpha-, beta-, and 

delta-retroviruses, include mouse mammary tumor virus (MMTV) as well as 

intracisternal A particle (IAP) and the mouse endogenous type D provirus (MusD) 

along with its internally deleted non-autonomous counterpart mouse early 

transposon (ETn) [23-26]. IAP and ETn/MusD elements are highly active and 

responsible for most of the endogenous retrovirus-induced germline mutations in 

mouse [19, 22].  

Presently active Class III ERVs, distinguished by their relationship to 

spumaviruses, include the murine endogenous retrovirus (MuERV_L) and the 

internally deleted, non-autonomous mammalian apparent LTR retrotransposons 

(MaLR) [19].  
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LTR retrotransposon mobilization closely resembles that of retroviruses, 

except that the LTR retrotransposon life-cycle is strictly intracellular [27].  

Mobilization begins with transcription of the element by RNA polymerase II from 

a promoter located within the 5’ LTR, and polyadenylation is directed by a 

polyadenylation signal located in the 3’ UTR [20]. The resultant mRNA is 

translated, giving rise to gag proteins, as well as the proteins containing reverse 

transcriptase and integrase activities [28, 29].  Gag proteins assemble to form the 

virus-like particle (VLP), which encapsulates the element mRNA, as well as the 

proteins required for generation of a new insertion [30].  Owing to their lack of a 

functional env gene, these viral particles remain intracellular and are not 

infectious.  The element-encoded reverse transcriptase activity carries out 

reverse transcription of the mRNA in the cytoplasm, giving rise to a double-

stranded cDNA (Reviewed in [31]).  The element-encoded integrase activity 

facilitates integration of the cDNA into a new location in the host genome [10, 32]. 

 

Non-LTR Retrotransposons 

Non-LTR retrotransposons are found throughout eukaryotes, and Long 

INterspersed Element 1 (LINE-1 or L1) non-LTR retrotransposons represent the 

only known active autonomous retroelements in humans [33-35].  LINE-1 

sequences account for about 17% of human DNA (Figure 1.1 B) [2]. The vast 

majority of L1s in the human genome have been rendered inactive by 5’ 

truncations, rearrangements, and the accumulation of mutations [2, 36-38]; 

however, ~80-100 L1s per individual retain the ability to mobilize [39, 40].  L1 
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sequences similarly comprise ~18% of the mouse genome [3]; however, in 

contrast to humans, mice are estimated to contain approximately 3,000 

retrotransposition-competent L1s per individual [41].   

A full-length human L1 is approximately 6 kb [33, 42], and begins with a 

5’UTR harboring an internal promoter [43]; the human L1 5’UTR also contains an 

antisense promoter of unknown function (Figure 1.1 B) [44].  L1s encode two 

open reading frames, and end in a 3’UTR and a poly-A tail [33, 42].  L1s in the 

genome are typically flanked by variable-length target-site duplications (TSDs), 

which are structural hallmarks of the integration process [45, 46] (Figure 1.1 B).    

LINE-1 retrotransposition (Figure 1.2) begins with transcription of a full-

length element from its internal promoter located within the 5’UTR [43, 47-52].   

The resulting bicistronic mRNA is translated, giving rise to two proteins, ORF1p 

and ORF2p.  ORF1p is a ~40 kD protein that is essential for retrotransposition 

[34, 53, 54].  ORF1p possesses nucleic acid binding activity mediated by its 

central RNA recognition motif and carboxyl-terminal basic domain [34, 55-60].  

Mouse and human ORF1p also contain an N-terminal coiled-coil domain, which 

facilitates ORF1p trimer formation [55, 59, 61].  Mouse ORF1p is reported to 

possess nucleic acid chaperone activity [62]. 

Human ORF2p is a ~150 kD protein that may be translated by an 

unconventional termination-reinitiation mechanism, which can occur 

independently of the ORF2 AUG initiation codon [63-66].  ORF2p contains 

endonuclease (EN) and reverse transcriptase (RT) activities, both of which are 

critical for retrotransposition [34, 67, 68].  ORF1p and ORF2p proteins bind to 
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their encoding mRNA in a phenomenon known as cis-preference, giving rise to 

the hypothesized L1 ribonucleoprotein particle (RNP) retrotransposition 

intermediate {Esnault, 2000 #36;Kulpa, 2005 #50;Kulpa, 2006 #57;Wei, 2001 

#38;Hohjoh, 1996 #14;Martin, 1991 #51}.  The RNP then enters the nucleus by a 

mechanism which is not completely understood, but which can occur 

independently of nuclear envelope breakdown during cell division [69].   

Upon gaining access to the genome, the L1 EN activity nicks the genomic 

DNA, liberating a free 3’ hydroxyl residue [67, 70, 71].  This 3’ hydroxyl residue 

provides a primer from which the L1 RT activity can initiate reverse transcription 

of the L1 mRNA, giving rise to the first-strand L1 cDNA [67, 72, 73].  This 

process is termed target-primed reverse transcription (TPRT), based on models 

derived from work on the R2 element from Bombyx mori [74].  Second-strand 

DNA cleavage generally occurs some distance downstream of the initial single-

strand endonucleolytic nick, facilitating second-strand DNA synthesis and leading 

to the generation of variable-length TSDs flanking the new L1 insertion [75].  The 

mechanistic details of second-strand DNA synthesis and integration are 

incompletely understood.  Notably, in vitro studies on the R2 of Bombyx mori 

indicate that two molecules of the R2 protein, which encodes EN and RT 

activities, participate in the generation of new insertions.  The first subunit, which 

binds upstream of the endonuclease cleavage site, is responsible for first-strand 

DNA cleavage and the initiation of reverse transcription of the R2 RNA template 

[76].  The second subunit, which binds downstream of the first, then carries out 

second-strand cleavage [76]; subsequently, the upstream subunit is 
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hypothesized to carry out second-strand DNA synthesis [76].  Furthermore, the 

R2 protein has been demonstrated in vitro to possess 5’-to-3’ RNA displacement 

activity concurrent with second-strand DNA synthesis, suggesting that an RNA-

DNA heteroduplex could persist until second-strand DNA synthesis, obviating the 

need for a cellular RNaseH activity to degrade the R2 RNA template [77].  As 

techniques and reagents become available to study L1 TPRT in vitro, it will be 

intriguing to discover whether L1 and R2 share similar mechanisms in the latter 

steps of TPRT and integration. 

 Although cis-preference is the prevailing rule in template selection by the 

L1 enzymatic machinery, the L1 encoded proteins also can mobilize non-

autonomous retrotransposons in trans, such as the human short interspersed 

element (SINE) Alu and the mouse SINEs B1 and B2 [78, 79].  The human SINE-

R/VNTR/Alu (SVA) composite element also is likely mobilized in trans by the L1-

encoded machinery [80-84].   In addition, the L1-encoded proteins can 

occasionally mobilize cellular mRNAs, giving rise to processed pseudogenes [85, 

86]. In sum, L1-mediated retrotransposition events are responsible for at least 

one third of human DNA (Figure 1.1 B) [2].  

  

Transposable Elements and their Host Genomes 

TEs share ancient and complex relationships with their host genomes, and 

while TE mobilization is typically neutral or detrimental to host fitness, to dismiss 

TEs as purely harmful or useless is an oversimplification.  Indeed,  in some 

cases, TEs can be viewed as inadvertently providing the raw material for host 
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genome evolution, their sequences becoming exploited by the host genome to 

serve a beneficial purpose. For example, the RAG1 and RAG2 endonucleases, 

vital components of VDJ recombination in the adaptive immune system, were 

likely derived from a DNA transposon [87-90].  Likewise, in Drosophila, the TEs 

Het-A, TART, and TAHRE function in place of a conventional telomerase to 

maintain chromosome length throughout rounds of cell division [91-95].  

Furthermore, Penelope-like retroelements lacking endonuclease domains have 

recently been discovered to localize to telomeres in species representing four 

different eukaryotic kingdoms; these elements may represent an evolutionary link 

between retroelements and modern-day telomerases [96].     Recent work in 

mouse embryonic stem cells (mESCs) suggests that mouse endogenous 

retrovirus (MuERV) LTRs drive transcription of genes which regulate a totipotent 

state resembling the 2-cell stage embryo [97, 98]. Individual cells within mESC 

cultures cycle in and out of this totipotent  state, which appears to be important 

for the sustainability of mESC cultures, as well as the ability of mESCs to 

undergo correct cell fate specification. Therefore, retroelement regulatory 

sequences may provide critical developmental functions in the early mammalian 

embryo [98].  

In many cases, strategies for TE mobility may have evolved to be 

relatively innocuous to the host:  certain TEs have specific target-site preferences 

that incur minimal risk to the host genome.  For example, the non-LTR 

retrotransposon R2 of Bombyx mori encodes a sequence-specific endonuclease, 

directing its mobility to a unique sequence within the 28S rRNA gene [99].  
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Similarly, the yeast LTR retrotransposon Ty1 and Ty3 are targeted specifically to 

regions upstream of RNA Pol III transcription initiation sites, in a manner 

dependent on Pol III transcription [100-103].  In contrast, the yeast LTR 

retrotransposon Ty5 is specifically targeted to silent chromatin  [104-106], but 

can mobilize to other genomic locations under conditions of genomic stress [107].  

In sum, retroelement targeting to specific integration sites may be beneficial to 

the TE and perhaps the host, as the propagation of these endogenous elements 

ultimately hinges on host fitness (for review, see [108]).   

Contributions to genome evolution aside, unchecked TE mobilization 

represents a substantial threat to host fitness and genome stability. For example, 

approximately 96 cases of human disease have been associated with L1-

mediated retrotransposition events [75, 109-111].  Furthermore, 10-12% of 

spontaneous mouse mutations are estimated to arise from non-LTR and LTR 

retrotransposon activity [22].  This considerable burden highlights the ongoing 

conflict between retrotransposons and their host genomes, in which 

retrotransposons strive to ensure their propagation to subsequent generations, 

and the host genome must defend itself from retrotransposition-mediated 

mutations. 

 

Opportunities for Heritable Insertions in Early Development 

Endogenous retrotransposons primarily rely on a vertical mode of 

transmission, as they generally lack the capacity for transmission between 

individuals.  Therefore, in order to successfully propagate, retrotransposons must 
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mobilize in cells that have the potential to contribute to the next generation.  In 

mammals, one of these critical developmental windows occurs in the pluripotent 

cells of the very early embryo, before the germ lineage is specified. If a 

retrotransposition event occurs at this stage, there is a chance that the cell in 

which it occurs could contribute to the germline, rendering the insertion heritable 

by subsequent generations (Figure 1.3) (Reviewed in [108, 112]).  Alternately, de 

novo heritable events may occur within the germline, after it has diverged from 

the somatic lineage (Reviewed in [108, 112]).  Thus, in principle, heritable 

insertions could occur at any point in germline development, from primordial 

germ cells in the developing embryo to mature haploid gametes. 

 

Erasure and Establishment of DNA Methylation: “Windows of Opportunity” 

for Retrotransposon Mobilization 

 In most tissues and developmental stages, retrotransposons are kept 

transcriptionally quiescent by DNA methylation [113].  In fact, DNA methylation is 

proposed to have evolved to restrict TE activity [114].    However, the temporal 

windows where retrotransposons can ensure heritable insertions are also the 

developmental stages (the pre-implantation embryo and primordial germline) 

where the genome undergoes profound epigenetic reprogramming essential for 

proper development (Figure 1.4, discussed further below) [115].  This 

reprogramming includes the erasure and subsequent reestablishment of DNA 

methylation (reviewed in [116]).  Such transient epigenetic relaxation may 
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release retrotransposons from transcriptional repression, enabling a permissive 

cellular environment for de novo retrotransposition events (Reviewed in [117]). 

 

Methylation Erasure and Re-establishment in the Early Embryo 

A round of genome-wide epigenetic reprogramming takes place in 

mammalian pre-implantation embryos (Figure 1.4 A).  In mice, where this 

process has been extensively studied, the paternal genome in the zygote 

undergoes rapid demethylation shortly after fertilization, and before replicating its 

DNA [118-121].  From the one-cell stage until the morula/early blastocyst stage, 

during cleavage divisions, both the paternal and maternal genomes undergo 

passive demethylation, in which DNA methylation marks are not copied onto 

newly-synthesized DNA strands during rounds of cell division [122-128].  

Retroelements in the mouse genome are differentially demethylated 

during reprogramming in the early embryo: IAP elements (as well as imprinted 

genes) remain heavily methylated during this period, while L1 elements undergo 

extensive demethylation [122, 124].  The maternally-inherited short form of the 

maintenance DNA methyltransferase, DNMT1o, has been demonstrated to 

regulate IAP methylation in the early embryo [129]; however, it remains unknown 

how IAP sequences, but not L1 sequences, are specifically targeted for 

maintenance of DNA methylation.   

Methylation is re-established around the time of implantation [125] by the 

de novo DNA methyltransferases Dnmt3a and Dnmt3b [127]. During subsequent 

rounds of cell division, the maintenance DNA methyltransferase Dnmt1 is 
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responsible for copying methylation marks from the template strand to the newly-

synthesized daughter strand [130].  

 

Methylation Erasure and Re-establishment in the Primordial Germline 

In mice, a second round of genome-wide reprogramming, including 

retroelement demethylation, X-reactivation, and imprint erasure, occurs in the 

primordial germline of the developing fetus (Figure 1.4 B). Mouse germline 

development begins with the appearance of the primordial germ cells (PGCs), 

which arise from epiblast cells.  The PGCs arise in the posterior epiblast at 7.25 

days post-coitum (dpc) [131] (Figure 1.4 B).  PGCs proliferate and migrate to the 

genital ridge at 8.5 dpc [132]. Migrating PGCs show random X-inactivation, 

imprinting, and high levels of DNA methylation; however, following entry into the 

genital ridge, they undergo genome-wide demethylation which is completed by 

13-14 dpc [116, 125, 133-136].   

Retroelement sequences are differentially demethylated during primordial 

germline epigenetic reprogramming: IAP sequences partially retain DNA 

methylation, while LINE-1 sequences are more extensively demethylated [124, 

134].  Following the completion of this round of demethylation, male germ cells 

enter mitotic arrest, and female germ cells enter meiotic prophase.  

Establishment of de novo methylation in the male germline begins at 13.5 dpc 

and is completed around birth, before re-entry of male germ cells into mitosis 

[116, 125, 133-136]. 
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DNA methylation of TEs in primordial germ cells is carried out by the de 

novo DNA methyltransferases Dnmt3a and Dnmt3b [127].   In addition, the non-

catalytic paralog DNA methyltransferase 3-like (Dnmt3L) is critical for Dnmt3A-

mediated methylation of L1 and IAP elements [137, 138].  Dnmt3L has been 

demonstrated to stabilize the active conformation of Dnmt3A, allowing more 

efficient transfer of methyl groups onto target DNA sequences [139, 140].  

Analysis of fetal prospermatagonia revealed that in mice, SINE-B1 repeats are 

methylated by DNMT3a, while IAP and L1 elements are methylated by both 

Dnmt3a and Dnmt3b [137].  

Intriguingly, Dnmt3L-deficient mice manifest a meiotic phenotype--failure 

of synapsis at the zygotene/pachytene transition—after the actual window of 

Dnmt3L expression has elapsed [138].  This meiotic defect results in sterility with 

a complete lack of germ cells in adult males [141].  Furthermore, LINE-1 and IAP 

elements in Dnmt3L-deficient germ cells are highly demethylated relative to wild-

type [137, 138]. This lack of methylation of L1 and IAP repeats in Dnmt3L-

deficient testes is accompanied by a high level of retroelement transcriptional 

reactivation.  Aberrant transposon upregulation and activity has been suggested 

to contribute to meiotic catastrophe [138]. However, the mechanistic link between 

loss of transposon methylation, transcriptional reactivation and meiotic 

catastrophe in Dnmt3L-deficient male germ cells is unclear and requires further 

investigation.  Likewise, much remains to be elucidated regarding the 

mechanistic details of Dnmt3L targeting to TE sequences.   
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Developmental timing and location of heritable L1 retrotransposition 

events 

Potential windows for TE mobilization occur in the developing germline 

and early embryo; however, it is currently unclear where and when the majority of 

heritable retrotransposition events actually occur.  In this section, human case 

studies, experimental animal models, and cell  culture systems which have 

provided insight about the developmental timing of heritable L1 retrotransposition 

events are presented. 

 

Evidence for L1 retrotransposition in the germline 

 A 2002 study by Brouha et al. [142] examined the case of a male patient 

afflicted with chronic granulomatous disease (CGD) caused by mutation of the X-

linked gene CYBB, which encodes the gp91phox subunit of cytochrome b558.  

Characterization of the patient’s CYBB gene revealed an exonic L1 insertion, not 

present in the patient’s mother, that consisted of ~1720 bp of L1 sequence and a 

280 bp 3’ transduction.  The 3’ transduced sequence allowed identification of the 

likely precursor L1 as LRE3, located on chromosome 2q24.1 within a region of 

imperfect “GAAA” repeats.  Notably, the patient’s mother was homozygous for 

the precursor LRE3 element on chromosome 2; however, one of her LRE3 

alleles was followed by 28 GAAA repeats, and the other was followed by 29 

GAAA repeats.  The patient was heterozygous for the chromosome 2 LRE3 

precursor element.  Furthermore, his chromosome 2 LRE3 allele was followed by 

28 GAAA repeats, yet the disease-causing LRE3 insertion into CYBB on his X-
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chromosome contained 29 GAAA repeats in the 3’ transduced sequence.  Thus, 

the insertion within CYBB must have come from an LRE3 allele not inherited by 

the patient.  The explanation favored by the authors is that RNA from the 

mother’s LRE3 allele, flanked by 29 GAAA repeats, retrotransposed in the female 

germline into CYBB on an X-chromosome prior to the onset of meiosis II.  The de 

novo insertion then segregated away from the donor LRE3 allele during meiosis 

II [142].  Although this model adequately explains the data, subsequent studies 

have provided possible reinterpretations regarding the developmental timing of 

the LRE3 retrotransposition event (see below). 

 Evidence from a transgenic mouse model suggests that engineered L1 

retrotransposition events can occur in the male germline [143].  In a study by 

Ostertag et al., a retrotransposition-competent L1 transgene was engineered to 

contain an EGFP reporter under control of an acrosin promoter and tagged with 

an acrosin signal peptide, allowing EGFP to be expressed and localize to the 

acrosome in sperm [143, 144].  One line of transgenic mice produced faint green 

sperm, indicating successful retrotransposition in the male germline.  In addition, 

PCR assays indicated that approximately 1/100 developing spermatids contained 

a retrotransposition event [143]. When male mice harboring the L1 transgene 

were bred to wild-type females, 2/135 resultant offspring (F2 generation) 

contained engineered L1 retrotransposition events, one of which was inherited by 

the subsequent (F3) generation independently of the transgene [143].  This result 

is consistent with L1 mobilization in the male germline prior to the onset of 

meiosis II, allowing the de novo L1 insertion to segregate away from the 
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chromosome harboring the L1 transgene [143, 144].  However, similar to the 

Brouha et al. study [142], more recent data provide alternative explanations for 

the timing of this retrotransposition event (see below). 

 In contrast to the findings of Ostertag et al., a recent effort to uncover 

evidence of endogenous, de novo L1 insertions in sperm arrived at a much lower 

estimate for the rate of L1 mobilization in the mammalian male germline [145]. 

Freeman et al. developed a technique termed L1 hybridization enrichment and 

examined human sperm DNA for de novo retrotransposition events at genomic 

loci previously demonstrated to accommodate L1 insertions in humans [145].  

Although this technique is capable of single-molecule amplification of insertion-

bearing target sites, no de novo insertions were detected among large quantities 

of sperm DNA.  This result suggests that L1 insertion in the male germline is 

extremely rare, with a rate lower than one insertion per 400 haploid genomes 

[145].  Thus, the frequency with which L1 retrotransposition events occur in the 

male mammalian germline remains an open question. 

 Recent experimental evidence suggests that heritable retrotransposition 

events may take place in the female germline.  Georgiou et al. [146] performed 

RT-PCR analysis using RNA obtained from human denucleated germinal vesicle 

(GV) oocytes, and detected expression of L1, HERV-K10, and SVA 

retrotransposon transcripts.  To determine whether retroelement expression was 

accompanied by the capacity to accommodate retrotransposition events, GV 

oocytes were microinjected with a plasmid expressing a retrotransposition-

competent L1 tagged with an EGFP indicator cassette, or a retrotransposition-
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defective mutant L1 as a control.  EGFP positive oocytes were detected in the 

RC-L1 injected population, but not in the negative control oocytes, suggesting 

that these cells are capable of harboring de novo retrotransposition events.  The 

rate of retrotransposition reported in GV oocytes is remarkably high compared to 

what is reported for human HeLa and other cell types: of 30 GVs microinjected 

with an RC-L1 construct, 26 were EGFP positive, indicating that 86.6% of GVs 

receiving the marked L1 construct harbored retrotransposition events [146].  

Thus, human oocytes may represent a permissive developmental stage for the 

generation of heritable retrotransposon insertions. 

 

Evidence for L1 retrotransposition in the early embryo  

 Evidence for L1 retrotransposition in early human development in vivo has 

been uncovered through the study of a male patient afflicted with X-linked 

choroideremia [147, 148].   The patient harbored an L1 insertion into the CHM 

gene, resulting in aberrant splicing of the CHM transcript [148].  PCR analysis of 

lymphocyte DNA from the patient’s mother revealed that she was a somatic 

mosaic with respect to this L1 insertion.   Analysis of the patient and his two 

sisters showed that all three shared the same haplotype in the CHM region, but 

only the patient and one of his sisters bore the L1 insertion [147].  Thus, the 

mother was necessarily both a germline and somatic mosaic with respect to this 

L1 insertion.  This striking result indicates that the retrotransposition event must 

have taken place very early in the mother’s embryonic development, before the 

segregation of the germline and the soma. 
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Evidence that L1 retrotransposition can take place during embryogenesis 

has also been provided by studies in transgenic model organisms.  In a study by 

Kano et al., mice and rats harboring a marked retrotransposition-competent L1 

transgene were occasionally observed to produce offspring with de novo L1 

insertions derived from the transgene without transmitting the transgene itself 

[149].  A possible explanation for this result is that the retrotransposition event 

took place in the parental germline before the completion of meiosis I, followed 

by segregation of the transgene away from the new insertion during meiosis II, as 

proposed by Ostertag et al. [143].  If this was the case, the F2 offspring inheriting 

the de novo insertion would be expected to harbor it in every cell, and would 

subsequently pass it on to half of their offspring (F3).  Unexpectedly, none of the 

insertion-bearing F2 mice transmitted an insertion to the F3 generation, indicating 

that the insertion was not present in their germ lineage.  Therefore, the most 

parsimonious explanation is that transcription of the marked L1 transgene took 

place during gamete development in the original transgenic mouse.  Instead of 

undergoing retrotransposition in the germline, it is proposed that the L1 RNA was 

carried over in the gamete through fertilization, perhaps protected by formation of 

the L1 ribonucleoprotein particle, and was subsequently able to carry out TPRT 

and generate a de novo insertion during embryogenesis in the offspring.  

Quantitative PCR analyses for retrotransposition events in spermatogenic cells 

and pre-implantation embryos corroborated these findings; evidence of 

retrotransposition of marked elements was much more prevalent in pre-

implantation embryos than spermatogenic cells [149].   
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It is interesting to note that in the Ostertag et al. study, described above, 

inheritance of an engineered L1 insertion independently of the L1 transgene was 

interpreted as evidence for L1 retrotransposition in the germ line prior to meiosis 

II [143]. In addition, inheritance of a de novo L1 insertion independently of the 

precursor element by a human patient was interpreted by Brouha et al. [142] as 

evidence of L1 retrotransposition in the female germline prior to meiosis II.  

However, as elucidated by the Kano et al. study, both results are also consistent 

with carry-over of an L1 RNP in a gamete, and retrotransposition post-fertilization 

in the early embryo [149].   Nevertheless, detection by Ostertag et al. of sperm 

harboring engineered L1 retrotransposition events, as evidenced by EGFP 

expression, demonstrates in principle that L1 retrotransposition can occur in the 

male germline [143].  

 Cell culture models provide additional support for the hypothesis that L1 

retrotransposition can occur in the early embryo.  Human embryonic stem cells 

(hESCs), isolated from the inner cell mass (ICM) of human embryos at the 

blastocyst stage, represent a relevant model for studying retrotransposition 

during this early embryonic development [150].  Supporting the notion that early 

human embryos may accommodate L1 retrotransposition, L1 ribonucleoprotein 

particles are highly expressed in hESCs, and  a significant proportion of 

expressed L1Hs elements in cultured hESCs are retrotransposition-competent 

[151, 152].  Furthermore, it has been demonstrated that engineered L1 

constructs tagged with a retrotransposition indicator cassette can mobilize in 
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cultured hESCs, albeit at low levels when compared to L1 mobilization in 

transformed cell types such as HeLa cells [34, 151, 153].   

To identify potentially active retroelements in hESCs, Macia et al. [152] 

examined the cohort of transposable elements expressed in hESCs.  By cloning 

and sequencing expressed Alu elements, and testing a sample of these elements 

in a cultured-cell retrotransposition assay, they determined that hESCs express a 

wide variety of Alu elements from different subfamilies. 

 To identify potentially expressed L1 elements in the genome, Macia et al. 

[152] took advantage of the L1 antisense promoter of genomic L1 elements [44].  

Transcripts originating from genomic L1 antisense promoters were cloned in a 3’ 

RACE strategy, and mapped to the genome to identify potentially transcriptionally 

active genomic L1s. Notably, this strategy is based on the assumption that 

expression from an L1 antisense promoter indicates that the L1 sense promoter 

is active as well [152]. Their results reveal that ~30% of human-specific L1 

elements expressed in hESCs correspond to known retrotransposition-competent 

L1s.  Furthermore, L1 antisense promoter activity from genomic loci lacking a 

previously-annotated L1 insertion in the human genome working draft sequence 

was predictive of polymorphic insertions present in hESC lines.  The robust 

expression of endogenous retrotransposition-competent L1s in hESCs, combined 

with the ability of hESCs to accommodate the retrotransposition of tagged 

transfected elements [151], support the idea that heritable retrotransposition 

events can occur in the early embryo. 
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The case for L1 mobilization in pluripotent cells is strengthened by recent 

work in induced pluripotent stem cells (iPSCs)[154].  These cells, which are 

generated by the introduction of defined transcription factors (Oct3/4, Sox2, c-

Myc Klf4 [155], or Oct3/4, Sox2, NANOG, Lin28 [156]) into cultured somatic cells 

such as fibroblasts, share a similar transcriptional profile and pluripotent 

characteristics with embryonic stem cells [155-157].  L1 mRNA and L1 ORF1p 

expression were observed at very low levels in parental fibroblasts, and 

increased to levels comparable to those observed in hESCs, as verified by 

Northern blotting, upon reprogramming of those fibroblasts into iPSCs.  

Furthermore, transcriptional upregulation of L1 elements upon reprogramming 

correlated with a decrease in L1 promoter methylation, particularly for known “hot” 

L1s [154].  These results suggest that pluripotent iPSCs, resembling the state 

found in the very early embryo, may be permissive for L1 mRNA and ORF1p 

expression, which could lead to endogenous retrotransposition events.  Induced 

pluripotent stem cells also accommodated higher levels of retrotransposition than 

parental fibroblasts, when measured in an assay employing a marked L1 

retrotransposition indicator provided as a transfected episomal plasmid [154]. 

 

Somatic retrotransposition 

 As discussed above, methylation patterns on retroelements are 

established during early development, and are maintained throughout somatic 

tissues.  Recent studies, however, have uncovered evidence of retrotransposition 

in certain somatic cell types.  Rat neuronal precursor cells overexpress 
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endogenous L1 transcripts and accommodate retrotransposition of a transfected 

engineered L1 equipped with a reporter cassette [158]. Furthermore, transgenic 

mice harboring a marked L1 transgene under the control of the native L1 5’UTR 

promoter can accommodate engineered L1 insertions consistent with L1 

retrotransposition events occurring during embryonic and adult neurogenesis 

[158].  Similarly, human fetal brain stem cells and neural progenitor cells derived 

from human embryonic stem cells can accommodate retrotransposition of an 

engineered reporter L1 [159, 160].  Notably, fetal brain samples were found to be 

hypomethylated when compared to matched skin samples, suggesting that L1 

expression may be released from methylation-dependent suppression in 

neuronal tissues [159].  Finally, quantitative multiplex PCR analysis revealed that 

L1 copy number may be higher in brain than in other somatic tissues [159].  

However, observed increases in L1 copy number without the characterization of 

bona fide novel L1 insertions do not conclusively demonstrate de novo 

retrotransposition in brain. General genome instability resulting in duplication or 

deletion of L1 sequences in different tissues could also, in principle, explain such 

discrepancies in L1 copy number. 

 Recently, compelling evidence for L1 activity in the human brain was 

uncovered in a high-throughput search for novel L1, Alu, and SVA insertions in 

genomic DNA derived from brain tissues from three human individuals [161].  By 

a method termed retrotransposon capture sequencing (RC-seq), potentially novel 

(relative to known catalogued polymorphisms) L1 insertions were identified in 

DNA samples from brain and blood of the donors; reads found in both were 
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classified as germline insertions, while those present in brain only were regarded 

as potential somatic events.  Only a minority of L1 insertions were designated as 

germline, suggesting that the majority of events observed represent genuine 

somatic insertions.  The 5’ ends of several insertions were confirmed by PCR, 

and 3’ end validation was possible for three potential somatic insertions.  Among 

these three insertions, one L1 and one Alu insertion were flanked by target-site 

duplications (TSDs) indicative of retrotransposition by target-primed reverse 

transcription. Thus, this study provides support for increased retrotransposon 

copy number in neuronal tissues resulting from bona fide, de novo 

retrotransposition events.  

 In addition to mobilization in normal neuronal cell types, a growing number 

of studies have reported de novo retrotransposon insertions in several different 

tumor types, including lung cancer [162], colorectal cancer [163, 164], and 

hepatocellular carcinoma [165].  Retroelement activity in tumors is correlated with 

decreased methylation on retroelement promoters [162, 165], suggesting that 

loss of methylation contributes to deregulated retrotransposition during 

tumorigenesis.  It remains to be determined whether most retroelement insertions 

found in tumors represent drivers of tumorigenesis, or are merely passenger 

mutations occurring in a deregulated genomic environment (Reviewed in [108]). 

  

Mechanisms for Restricting Heritable Retrotransposition Events 

 In this section, host mechanisms of defense against retroelement mobility 

are presented. These mechanisms include a small RNA-mediated silencing 
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pathway which functions in the male primordial germline, histone modifications in 

early embryonic cell types, and a cohort of cellular factors which have been 

demonstrated to restrict L1 mobilization in cultured cells. 

 

PIWI/piRNA in the Mammalian Male Germline 

 Accumulating evidence has led to the proposal of an evolutionarily 

conserved adaptive defense mechanism against transposons in the mouse male 

germline.  This pathway involves murine members of the PIWI clade of 

Argonaute proteins and their associated 26-31 nucleotide small RNAs, termed 

piRNAs (PIWI-interacting RNAs), which are proposed to guide PIWI proteins to 

silence mobile elements.  Silencing is proposed to take place both through PIWI-

mediated slicer cleavage of transposon transcripts, and piRNA-guided epigenetic 

silencing of elements in the genome.  

The details of the PIWI-piRNA pathway in mammals are not completely 

understood, and prevailing models are largely built upon work in Drosophila [166, 

167].  A pathway involving PIWI proteins and piRNAs, known as the “ping-pong” 

model, is active in Drosophila germ cells.  In this pathway, piRNAs are derived 

from single-stranded RNAs transcribed from regions containing a high density of 

diverse transposon-derived sequences, termed piRNA clusters.  Notably, the 

Flamenco locus had long been recognized as a master regulator of the 

endogenous retrovirus gypsy [168-171]), and only recently was identified as a 

piRNA cluster directing PIWI-mediated silencing of expressed gypsy elements in 

Drosophila ovarian somatic cells [167, 172].   
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Transposon transcripts derived from germline piRNA clusters are 

processed into individual piRNAs by an unknown mechanism.  These genome-

encoded piRNAs are termed primary piRNAs, and are usually antisense with 

respect to the transposon sequence [167].  Primary piRNAs have a bias for uracil 

at their 5’ end (1U) [166, 167].  The Piwi protein Aubergine binds primary piRNAs, 

and the piRNA guides its associated Aubergine protein to a transposon mRNA 

target.  Aubergine-mediated slicer cleavage and 3’ end processing of this target 

gives rise to a new piRNA, termed a secondary piRNA, which is sense-oriented 

with respect to the element.  Secondary piRNAs have a bias for adenine at the 

10th position from their 5’ end (10A), a hallmark of primary piRNA-guided PIWI-

mediated cleavage [166, 167]   Such secondary piRNAs bind to the PIWI protein 

AGO3 and direct AGO3-mediated cleavage of antisense transposon RNAs, 

presumably derived from piRNA clusters [173].  This cycle gives rise to new 

antisense piRNAs, which can direct destruction of sense transposon RNAs, 

simultaneously combating existing transposon transcripts and fueling subsequent 

rounds of the cycle [166, 167].   

In addition to post-transcriptional regulation, Drosophila PIWI proteins may  

have a role in epigenetic modification.  Aubergine and PIWI are effectors of 

position-effect variegation (PEV), the phenomenon wherein a euchromatic gene 

becomes silenced when placed in proximity to a heterochromatic region of the 

genome (Reviewed in [174]).  Loss of Aubergine or PIWI function relieves PEV-

mediated silencing of certain genes apparently through the loss of 

heterochromatin protein 1a (HP1a) from the region [175].  HP1a and PIWI 
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physically interact, and PIWI localizes to the nucleus and associates with 

chromatin, strengthening the evidence for its role as an effector of epigenetic 

modifications [176]. 

The existence of a ping-pong pathway in mammals is currently under 

investigation.  In the mouse male primordial germline, two PIWI clade proteins, 

MIWI2 and MILI, are expressed during the temporal window when DNA 

methylation is erased and reestablished [177, 178] (Figure 1.3).  Deficiency in 

MIWI2 or MILI results in meiotic arrest at the pachytene stage of meiosis I, and 

correlates with an aberrant increase in L1 and IAP transcripts, as well as a failure 

to establish methylation on retroelements in the genome [179-182]. In addition, 

piRNAs expressed during this time, termed “pre-pachytene piRNAs”, bear 

signatures suggestive of a ping-pong type amplification mechanism, and are 

enriched for transposon-derived sequences [178, 180, 182].  Unlike Drosophila, 

where piRNAs are derived from transposon-dense piRNA clusters, transposon-

derived mammalian pre-pachytene piRNAs appear to be derived from individual 

transposons scattered throughout the genome [178].  The potential participation 

of MIWI2 and MILI in a piRNA amplification pathway, particularly the roles of 

MIWI2 and MILI endonuclease activities [183], are currently areas of intense 

study. Indeed, MILI and MIWI2 are hypothesized to degrade transposon 

transcripts, fuelling a ping-pong amplification cycle, while also somehow targeting 

reestablishment of methylation to transposon sequences in a piRNA-directed 

manner [178].  However, evidence for a mechanistic link between PIWI/piRNA 

complexes and transposon methylation remains to be identified. 
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Histone modifications and retrotransposon control in the early embryo 

Much of what is known regarding transposon control in the pre-

implantation embryo comes from experiments in cultured pluripotent cell types.  

Indeed, evidence for a retrotransposon-specific silencing mechanism in 

pluripotent cells has been gained through experiments in human embryonic 

carcinoma (EC) cells.  Human EC cells have a similar transcriptional profile to 

hESCs, and have been regarded as a relevant model for early human 

development [184].  Furthermore, like hESCs, EC cells express L1 transcripts 

and L1 ORF1 protein [55, 151, 185, 186].  L1 retrotransposition events from a 

marked indicator cassette have been demonstrated to occur in EC cells, but 

undergo rapid silencing of the L1-delivered reporter gene either during or 

immediately after retrotransposition [185].  Treatment with histone deacetylase 

inhibitors reactivated expression of the reporter gene; silencing and reactivation 

of the reporter gene were reversible with removal and addition of HDAC inhibitor 

[185].  This silencing appears to specifically affect reporter genes delivered by 

target-primed reverse transcription (TPRT): reporter cassettes delivered by LINE 

elements from mouse and zebrafish, which carry out TPRT, were efficiently 

silenced, while similar reporter genes delivered by human immunodeficiency 

virus (HIV) or Moloney murine leukemia retrovirus (MMLV), which undergo 

different mechanisms of insertion, were less efficiently silenced and exhibited 

only modest reactivation [185]. Importantly, retrotransposition events occurring in 

differentiating EC cells were not subject to efficient reporter gene silencing; 
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however, induced differentiation of cells already harboring silenced integration 

events was not sufficient to reactivate these silenced events [185].  Thus, 

nascent L1 integration events in pluripotent EC cells are hypothesized to be 

recognized by an unknown mechanism and efficiently silenced, while 

differentiating cells do not employ such a silencing mechanism.  However, 

silencing of L1 retrotransposition events occurring during the pluripotent state 

appears to be maintained during differentiation [185].  Future studies will no 

doubt elucidate the nature of this epigenetic mechanism. 

 In mouse ES cells (mESCs), a variety of chromatin modifying enzymes 

and epigenetic marks have been demonstrated to repress repetitive sequences.  

A recent report demonstrated that the histone lysine methyltransferase SETDB1 

(also known as ESET) is essential for silencing a subset of endogenous 

retroviruses in mESCs [187].  Upon conditional SETDB1 knockout, MusD, IAP, 

and endogenous MLV sequences were transcriptionally upregulated.  

Transcriptional upregulation was coordinated with loss of H3K9 trimethylation 

and H4K20 trimethylation on MusD, IAP, and MLV sequences.   

The SETDB1 interacting partner KAP1 (also known as TRIM28) recruits 

SETDB1 as well as the NuRD histone deacetylase complex to effect 

transcriptional silencing of target genes [188].  The recruitment of KAP1 to target 

genes is mediated by Kruppel-associated box domain-zinc finger proteins 

(KRAB-ZFPs), which can recognize target genes in a sequence-specific manner 

[189, 190].   Indeed, loss of KAP1 results in substantial upregulation of 

endogenous retroviruses, particularly IAP elements [191].  SETDB1 removal 
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does not affect KAP1 recruitment to target genes, while KAP1 depletion causes 

increased ERV expression and a decrease in SETDB1 and H3K9 trimethylation 

at ERV sequences [187].  Thus, KAP1 apparently acts upstream of SETDB1 in 

ERV silencing in mESCs.   

The role of DNA methylation in concert with histone lysine methylation in 

silencing ERVs in mESCs is not completely understood.  Rowe et al. [191] found 

that treating mESCs with 5-azacytidine (5-aza), a drug which causes passive 

DNA demethylation, resulted in upregulation of IAP transcription that was 

synergistic with KAP1 knockout.  By comparison, a microarray study by Karimi et 

al. [192], employed Dnmt1/Dnmt3a/Dnmt3b triple knock-out (DNMT TKO) 

mESCs and SETDB1-depleted mESCs, and demonstrated that DNA methylation 

and SETDB1/H3K9 trimethylation regulate predominantly non-overlapping sets of 

genes.  A synergistic transcriptional upregulation upon Dnmt1 and SETDB1 

double knock-down was only observed for the young IAPE-z subfamily of 

endogenous retroviruses.  This result is consistent with earlier reports suggesting 

that DNMT TKO cell lines generally do not de-repress endogenous retroviruses 

[187, 193, 194].  Thus, while methylation may play a role in the regulation of 

specific, young ERV elements, the control of ERVs in mESCs appears to occur 

predominantly through histone modification.  In differentiated cells, however, 

histone modifications are less important for ERV silencing, while DNA 

methylation takes over as the vital repressive mark [187, 195, 196]. 

Several additional chromatin modifying factors have been implicated in 

ERV silencing in mESCs.  A recent microarray study has implicated HDAC1 
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(histone deacetylase 1) in endogenous retrovirus silencing in mESCs, as well as 

identifying retrotransposons subject to regulation by DNA methylation, SETDB1-

mediated histone modification, and polycomb repressive complex (PRC) [197].  

Indeed,  simultaneous knockout of polycomb-repressive complexes PRC1 and 

PRC2 results in de-repression of IAP and MLV in mESCs [198].  The PRC-

interacting factor RYBP has also been implicated in retroelement silencing; 

RYBP-deficient mESCs derepress MuERV but not MusD or IAP sequences [199].  

Likewise, loss of the lysine-specific demethylase KDM1A/LSD1 results in >10-

fold upregulation of MuERV_L ERVs, and marked increase in MuERV_L Gag 

protein in mESCs and blastocysts.  Although KDM1A was not directly 

demonstrated to occupy ERV promoters, upregulation of MuERV_Ls was 

correlated with hypomethylation of H3K4, hypoacetylation of H3K27, and 

increased H3K9 dimethylation.  Notably, DNA methylation at MuERV_L elements 

was unperturbed [200]. 

 

Cellular Inhibitors of L1 Retrotransposition 

Mov10 

 Mov10 is a putative RNA helicase originally identified as an inhibitor of 

Moloney murine leukemia virus infection in mice [201, 202], and has 

subsequently been demonstrated to affect the infectivity, positively or negatively, 

of several RNA viruses, leading to its investigation as a regulator of endogenous 

retrotransposon activity [203].  Mov10 was independently identified as a possible 

regulator of retrotransposition due to its association with the L1 RNP as 
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determined by mass spectrometry analysis [204].    Indeed, several studies have 

demonstrated that Mov10 overexpression restricts the mobilization of L1, Alu, 

SVA, and IAP elements in a cell culture assay [203-205], and that knock-down of 

endogenous Mov10 enhances L1, Alu, and IAP retrotransposition efficiency [203, 

204].  The mechanism by which MOV10 restricts L1 retrotransposition is 

currently unknown; however, Mov10-mediated L1 inhibition requires intact 

helicase motifs [204].  Furthermore, other ATP-dependent RNA helicases were 

demonstrated to have no effect on L1 retrotransposition, indicating that  inhibition 

of retrotransposition is not a general feature of ATP-dependent RNA helicases 

[204].  Mov10 overexpression decreases L1 RNA and protein levels [204]; 

however, the significance of this observation in terms of a mechanism of 

inhibition remains to be determined. 

 

TrexI 

 TrexI is a highly abundant 3’-to-5’ DNA exonuclease [206-208].  TrexI 

mutations in humans cause Acardi-Goutieres syndrome (AGS) [209], a severe 

genetic encephalopathy which mimics the symptoms of in utero viral infection 

[210].  In mice, TrexI deficiency results in inflammatory myocarditis, leading to 

cardiomyopathy, circulatory failure, and premature death [211].  In a 2008 study 

[212], Stetson et al. implicated TrexI as a negative regulator of a cell-intrinsic 

defense pathway targeting cytosolic single-stranded DNA, termed the interferon-

stimulatory DNA (ISD) response [213-216]. In the absence of TrexI, self-derived 

DNA substrates accumulate in cells and activate the ISD response.  Thus, TrexI 
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is likely responsible for metabolizing endogenous DNA substrates, thereby 

preventing auto-immunity. Indeed, cytoplasmic DNA accumulates in the heart 

cells of TrexI-deficient mice compared to wild-type mice. Intriguingly, 

accumulated DNA in TrexI-deficient heart cells was enriched for retrotransposon 

sequences, suggesting that retroelement reverse transcripts may be metabolized 

by TrexI.  Consistent with this hypothesis, expression of TrexI in cultured cell 

assays inhibited both IAP and L1 retrotransposition, and mutations in TrexI found 

in AGS patients abolished TrexI-mediated retrotransposition inhibition.  Thus, 

TrexI may represent a cellular defense mechanism against retrotransposition, 

degrading retroelement reverse transcripts to prevent their recognition by the ISD 

pathway [212]. 

 Intriguingly, mutations in any of the three subunits of human RNaseH2 can 

also cause AGS [210].  It is therefore tempting to speculate that RNaseH2 

cooperates with TrexI to metabolize retrotransposition intermediates.  For 

example, RNaseH2 could degrade the retroelement RNA template following first-

strand cDNA synthesis, rendering the retroelement cDNA vulnerable to 

degradation by TrexI, which acts on single-stranded DNA [208].  However, how 

the cytoplasmic TrexI can access L1 cDNAs generated by TPRT in the nucleus 

needs to be addressed.  The vulnerability of single-stranded DNA in L1 

retrotransposition intermediates in the face of cellular restriction factors is 

emphasized by data presented in Chapter 3 of this thesis. 

 

APOBEC3 Cytidine Deaminases 

33



The human APOBEC3 (A3) proteins (A3A, A3B, A3C, A3DE, A3F, A3G, 

A3H) constitute a family of seven cytidine deaminases which reside in a head-to-

tail arrangement within a gene cluster on chromosome 22 [217, 218].   The A3 

family is named for its homology to APOBEC1 (apolipoprotein B mRNA-editing 

catalytic polypeptide 1), an RNA-editing enzyme which precisely edits one base 

of the ApoB mRNA to create a stop codon, facilitating generation of two ApoB 

isoforms, ApoB-48 and ApoB-100, which have distinct roles in cholesterol 

metabolism [219, 220].  The ApoB-100 is required in the liver for the production 

of very low density lipoprotein (VLDL), and ApoB-48 functions in the small 

intestine and is essential for dietary fat absorbtion (Reviewed in [221]). The A3 

proteins are also related to activation-induced deaminase (AID), a single-

stranded DNA editing enzyme which participates in class-switch recombination 

and somatic hypermutation required for immunoglobulin diversification in the 

adaptive immune system [222, 223].   

The human APOBEC3 proteins each contain either one (A3A, A3C, A3H) 

or two (A3B, A3DE, A3F, A3G) cytidine deaminase (CDA) active sites [217, 218, 

224].  The A3 CDA active site consists of the conserved motif H-X-E-X23-28-P-C-

X2-4-C, where X represents any amino acid [225].  The two cysteine residues are 

proposed to coordinate a Zn2+ ion, while the glutamic acid residue is involved in 

proton shuttling important for the deaminase reaction [226-229].  The A3 proteins 

preferentially act on single-stranded DNA [230-235].  Interestingly, for double 

deaminase domain proteins A3B, A3G, and A3F, (not determined for A3DE), only 

the C-terminal deaminase domain is catalytically active [236, 237]. 
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A3G (originally known as CEM15) was identified as an intracellular factor 

conferring resistance to vif-deficient HIV-1 infection [2, 36, 238].  At the time of 

viral production, A3G is incorporated into budding HIV viral particles, and is 

delivered to target cells upon infection.   In the cytoplasm of the target cell, A3G 

can act upon the minus-strand HIV cDNA during reverse transcription, 

deaminating cytidine (dC) to uridine (dU) [233-235, 239].  Deaminated HIV 

genomes may be subject to degradation by the base excision repair machinery 

[240]; however, it has been demonstrated that the activity of uracil DNA 

glycosylase (UNG) is not required for the antiviral activity of A3G [241-243].  

Alternatively, hyperedited HIV genomes may give rise to a mutated progeny virus, 

rendering it inactive and curtailing infectivity.  The HIV-encoded protein virion 

infectivity factor (Vif) appears to have evoloved as a counter-measure against 

A3G.  In virus-producing cells, Vif targets A3G for proteasomal degradation, 

excluding A3G from budding viral particles (reviewed in [244]). 

Intriguingly, A3G may also elicit a deaminase-independent mechanism of 

HIV restriction, as deaminase deficient A3G mutants retain antiretroviral activity 

[245-248].  Bishop et al. reported a defect in the accumulation of full-length HIV 

reverse transcripts in the presence of A3G, and proposed a model in which A3G 

acts as a physical impediment to HIV RT procession on the HIV RNA [249].  

Other studies have reported A3G-mediated deaminase-independent defects in 

primer annealing and strand transfer during HIV reverse transcription, and HIV 

proviral integration [250, 251].  Recently, Bélanger et al. described mutations in 

the N-terminal (non-catalytic) domain of A3G which abolish RNA binding while 
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retaining deaminase activity [252].  These A3G mutant proteins extensively edit 

HIV cDNAs, but do not restrict the generation of HIV reverse transcripts or 

proviral integration [252].   Thus, although the relative contribution of deaminase-

dependent and independent mechanisms to A3G-mediated HIV inhibition 

remains the subject of investigation and controversy, ongoing studies are 

beginning to shed light on this difficult question [235, 239, 246, 248, 249, 251-

255]. 

In addition to APOBEC3G, A3 family members A3B, A3DE, A3F and A3H 

have been demonstrated to restrict vif-deficient HIV infection [224, 231, 256-259].   

Members of the A3 family have also been demonstrated to restrict endogenous 

retroelement mobilization in cell culture assays, with each member displaying 

activity against a specific repertoire of retroelements (Summarized in Table 1.1) 

[230, 237, 260-271]. 

The data presented in Chapters 2, 3, and 4 of this thesis build upon 

previous studies of A3-mediated L1 inhibition in cultured cells. Among the 

numerous studies that have examined the impact of A3 proteins on L1 

mobilization by co-transfection experiments in a cultured-cell retrotransposition 

assay [34, 153], all reports find that A3A and A3B potently restrict L1 

retrotransposition to ~20% of control levels [230, 237, 260-262, 264].  

Interestingly, A3A and A3B can enter the nucleus—A3A by diffusion and A3B via 

a nuclear localization signal [237]--and therefore presumably can access L1 

TPRT [230, 237].  A3B-mediated L1 inhibition clearly occurs independently of 

A3B cytidine deaminase activity [237, 262].  For A3A, the question of deaminase-
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independence is more complicated:  deaminase-domain mutants of A3A abolish 

its ability to restrict retrotransposition [230, 237]; however, due to the small size 

of the A3A protein (199 amino acids, ~26 kD), concerns have been raised as to 

whether mutations in the deaminase active site disrupt protein folding and 

therefore  indirectly abolish potential deaminase-independent activities [237].  

The potential for deaminase-dependent and -independent modes of A3A-

mediated L1 inhibition is addressed in Chapters 3 and 4 of this thesis.  

A3C, which can enter the nucleus by diffusion [237], has also been 

demonstrated to inhibit L1 retrotransposition, with some studies reporting strong 

inhibition similar to A3A and A3B [230, 264], while others report modest inhibition, 

to ~50% of control levels [237, 260, 261].  Whether A3C deaminase-deficient 

mutants can restrict L1 retrotransposition has not been reported.   Stable variants 

of A3H, which also can enter the nucleus by diffusion, restrict L1 

retrotransposition to ~20% of control levels [267, 271].  A deaminase domain 

mutant of A3H was demonstrated to restrict L1 retrotransposition to ~35% of 

control levels [267]. 

A3DE, A3F, and A3G localize predominantly to the cytoplasm [237, 260].  

A3DE was found to have no effect on L1 retrotransposition in one study [266], 

and a modest effect on L1 retrotransposition (inhibition to ~50% of control levels) 

in another [260].    There is a distinct dichotomy in the literature about whether 

A3F restricts L1 retrotransposition: our lab [237] consistently observes no 

inhibition of L1 by A3F; in fact, we often observe that A3F expression slightly 

enhances L1 retrotransposition. However, other labs [230, 260-262, 264] report 
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significant A3F-mediated inhibition (to 20-30% of control levels), independent of 

A3F deaminase activity [262].  Most reports agree that A3G, which is also 

cytoplasmic, does not potently restrict L1 retrotransposition [230, 237, 261, 262, 

264, 270, 272]. However, one study reports robust inhibition of L1 

retrotransposition [260].  Overall, differences in the reported abilities of A3 

proteins to restrict L1 retrotransposition likely stem from subtle differences in 

experimental approach, the types of vectors from which A3 proteins are 

expressed, and the cell lines in which retrotransposition assays were carried out.   

Most assays reporting inhibition of L1 by APOBEC3 proteins were 

performed by overexpression of  APOBEC3 proteins and engineered L1 

retrotransposition indicator plasmids in transformed cultured cells [230, 237, 260-

262, 264, 266, 270-272]. Several APOBEC3 proteins (A3B, A3C, A3DE, A3F, 

A3G), however, are expressed endogenously in cultured human embryonic stem 

cells (hESCs) [237, 273].  To determine whether endogenous APOBEC3 

expression in hESCs restricts retrotransposition, Wissing et al. [273] carried out 

exquisitely-controlled retrotransposition assays in the presence of shRNA-

mediated knockdown of APOBEC3 proteins.   While knockdown of A3C, A3DE, 

A3F, and A3G had no effect on retrotransposition levels, suppression of A3B 

resulted in a ~2-3.7 fold increase in the retrotransposition of a marked L1 

element.  Therefore, endogenous A3B may restrict L1 activity in pluripotent cells, 

suggesting that APOBEC3-mediated inhibition of LINE-1 may represent an early-

embryonic defense against retroelement mobility. 
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 Despite numerous studies reporting A3-mediated L1 inhibition in cultured 

cells, little is known about the molecular mechanism by which A3 proteins restrict 

L1 retrotransposition.  In this thesis, I undertake a mechanistic examination of 

APOBEC3-mediated L1 inhibition.  Chapter 2 entails a survey of A3-mediated 

inhibition of a variety of autonomous and non-autonomous retroelements from 

various species.  The data presented in Chapter 2 point to a sequence-

independent mode of L1 inhibition by A3A and A3B that relies on inhibition of 

conserved L1-encoded activities, such as endonuclease cleavage and reverse 

transcription, or on recognition of the L1 TPRT intermediate.  In Chapter 3, I 

elucidate a deaminase-dependent mechanism of A3A-mediated L1 inhibition, 

which occurs by deamination of single-stranded DNA transiently exposed during 

TPRT, followed by the action of cellular repair factors to degrade deaminated 

TPRT intermediates.  In Chapter 4, I describe an A3A mutant, A3A_F75L, which 

lacks deaminase activity in vitro yet retains the ability to restrict L1 

retrotransposition. Although this mutant initially suggested a deaminase-

independent mode of A3A-mediated L1 inhibition, subsequent investigation 

revealed that A3A_F75L likely retains deaminase activity in vivo.  Finally, in 

Chapter 5, I discuss the results presented in Chapters 2-4, articulate remaining 

questions, and provide suggestions for future experimental directions. 
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Figure 1.1:  Active Retrotransposons in the human and mouse genomes   

A. Schematic of a typical LTR retrotransposon/endogenous retrovirus (ERV).  
White boxes with gray triangles represent the long terminal repeats (LTRs) 
flanking the element.  Colored rectangles represent open reading frames for gag, 
protease (pro), polymerase (pol).  The pol gene contains reverse transcriptase 
(RT), RnaseH (RH) and integrase (INT) activities.  Some, but not all, ERVs 
contain an envelope (env) gene.  Below, types and prevalence of ERVs in the 
human and mouse genomes are indicated, with a list of currently-active elements 
of each type [2, 3].  Reviewed in [108]. 
 
B.  Schematic of a human LINE-1 autonomous non-LTR retrotransposon.  The 
5’UTR contains an internal promoter (black arrow); human L1 5’UTRs have an 
antisense promoter of unknown function (gray arrow).  Open reading frames are 
depicted as colored rectangles.  ORF1 (green) contains nucleic acid binding and 
chaperone activity.  ORF2 harbors endonuclease (EN) and reverse transcriptase 
(RT) activities.  LINE-1 elements end in a 3’UTR (gray rectangle) and a poly-A 
tail (An).  Elements residing in the genome are typically flanked by variable-length 
target-site duplications (TSDs), depicted as black arrows.  Below, prevalence of 
autonomous (LINEs) and non-autonomous (SINEs) non-LTR retrotransposons in 
the human and mouse genomes are indicated [2, 3].   Reviewed in [108]. 
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Figure 1.2: The L1 retrotransposition mechanism 
 
A round of L1 retrotransposition begins with transcription of a full-length 
retrotransposition-competent L1 from its internal promoter.  The L1 RNA (wavy 
line) is exported to the cytoplasm and translated by an unconventional 
termination-reinitiation mechanism.  The L1-encoded proteins, ORF1p (gold 
circles) and ORF2p (blue circle) bind back to the RNA from which they were 
translated, to generate the L1 ribonucleoprotein particle (RNP), a hypothesized 
retrotransposition intermediate.  The L1 RNP re-enters the nucleus, where the 
ORF2p-encoded endonuclease (EN) activity nicks genomic DNA in a new 
location.  EN-mediated cleavage exposes a free 3’-hydroxyl residue, from which 
the L1 reverse transcriptase (RT) activity initiates synthesis of the first-strand L1 
cDNA on the L1 RNA template.  Second-strand cleavage often takes place 
downstream of first-strand cleavage, ultimately giving rise to variable-length 
target site duplications (TSDs)(black arrows) flanking the de novo L1 insertion 
upon integration.  Reviewed in [274]. 
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Figure 1.3:  Hypothetical consequences of retrotransposition in pluripotent 
cells of the early embryo  
 
A.  As demonstrated by Van den Hurk et al. [147], cells harboring a de novo 
retrotransposition event could contribute both to the soma and germline, resulting 
in an individual with somatic as well as germline mosaicism.  This event would be 
transmissible to the next generation.   
 
B.  Conceivably, cells harboring the insertion could contribute solely to the 
germline, giving rise to germline mosaicism and therefore rendering the insertion 
heritable.   
 
C.  Insertion-bearing cells could contribute to the somatic lineage but not the 
germline, resulting in somatic mosaicism.  Such an event would not be 
transmissible to the next generation. Red and white shaded circles in the human 
figures and sperm represent insertion-bearing and non insertion-bearing cells in 
the soma, and germline, respectively. 
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Figure 1.4:  Retroelement Expression and Control During Mammalian Early 
Embryonic Development 
 
 A. Pre-implantation embryonic development.  Above, stages of embryonic 
development from fertilization through implantation are represented.  Below, the 
graph represents the relative methylation levels of the paternal (blue), maternal 
(red), and embryonic (green) genomes.  Green bars indicate reported temporal 
windows of retroelement expression [24, 97, 151, 275-279]; violet bars indicate 
reported anti-retroelement host defense mechanisms discussed in the text [187, 
188, 191, 197-199, 237, 273].  Notes on the methylation status of retroelements 
are highlighted in yellow [122, 124]. Italics indicate observations made in human 
cells.   
 
B. Mouse primordial germline development.  Above, progress of the primordial 
germ cells [PGCs] is represented, from their appearance at 7.25 dpc, through 
migration to the genital ridge ending at 11.5-12.5 dpc.  Gender determination 
occurs at this time.  Blue shading: Male PGCs proliferate until 15.5 dpc, when 
they undergo mitotic arrest until 2 days post-partum (dpp).  At this point, mitosis 
resumes, and some male PGCs give rise to spermatagonial stem cells which will 
sustain adult meioses, while others contribute to the first wave of meiosis.  
Below; pink shading: Female PGCs enter meiosis prenatally at 13.5 dpc, then 
undergo meiotic arrest at ~3 dpp.  Meiosis resumes in adult mice, but is not 
completed until after fertilization.  Below: the graph represents relative 
methylation levels in PGC (green), then male (blue) and female (red) germ cell 
genomes. Temporal windows of retroelement (green) [280-282] and anti-
retroelement factor (violet)  [138, 177, 178, 180, 182] expression are indicated.  
Notes on the methylation status of retroelements are highlighted in yellow [124, 
134]. 
 
This figure is similar to figures supplied in numerous reviews on DNA methylation 
during early development (i.e. [115]).  Here, it has been re-drawn, and notes on 
retroelement expression, retroelement methylation, and the expression of anti-
retroelement defense mechanisms have been added. 
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IAP MusD L1 Alu 

A3A 

nuc/cyt 

Yes: [230, 
237, 263] 

Yes [230] Yes: [230, 237, 260, 
261, 264] 
 

Yes: [237] 

A3B 

nuc/cyt 

[230, 237, 
263] 

Yes: [230] 
 
No: [265] 

Yes: [230, 237, 260-
262, 264] 

Yes: [237] 

A3C 

nuc/cyt 

Yes: [230] 
 
Modest: [263]  

Yes: [230, 
265] 

Yes: [230, 260, 264] 
 
Modest: [237, 261] 

Modest: [237] 

A3DE 

cyt 
n/d 

Yes: [266] Modest: [260] 
 
No: [266] 

Yes: [266, 267] 

A3F 

cyt 

Yes: [230] 
 
Modest: [263]  

Yes: [230, 
265] 

Yes: [230, 260-262, 
264, 283] 
 
No: [237] 

No: [268] 

A3G 

cyt 

Yes: [230, 
263, 272] 
 
Modest: [265] 

Yes:[265, 
272] 
 
No: [230] 

No: [230, 237, 262, 
264, 270, 272] 
 
Modest: [283] 
 
Yes: [260, 261] 

Yes: [268, 269, 
283] 

A3H 

nuc/cyt 
n/d n/d Depends on the 

variant. 
 

DelN15 or G105-
bearing variants 
(unstable):  
No:  [264] 
Modest: [260] 
 

N15 intact and R105 
variants (stable):  
Yes: [267, 271] 

N15 intact and 
R105 variants 
(stable): Yes: 
[267] 
 

 
Table 1.1:  Reported APOBEC3-mediated inhibition of human and mouse 
endogenous retroelements 
 
“nuc” = nuclear localization.  “cyt” = cytoplasmic localization  
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Chapter 2 

 

 

Inhibition of Autonomous and Nonautonomous Retrotransposons by 

Human APOBEC3 Proteins 

 

 I designed and carried out the cultured cell retrotransposition assays in 

this chapter, with input from Dr. Jose Garcia-Perez on the experimental design of 

the assays shown in Figure 2.3 and Figure 2.4, and technical assistance from 

Randy Planegger on the assay depicted in Figure 2.5. 

  

Abstract 

 In this chapter, I employ LINE and SINE elements from different species to 

gain insight regarding how various human APOBEC3 proteins restrict 

retrotransposition.  I find that APOBEC3A and APOBEC3B inhibit LINE 

retrotransposition in a sequence-independent manner, suggesting that they 

inhibit a conserved step in the retrotransposition pathway.  I also find that unlike 

human and mouse LINE-1 elements, a zebrafish LINE-2 element that does not 

encode an ORF1 protein is restricted by APOBEC3G, and that this inhibition is 
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deaminase-independent.  A3G also restricts retrotransposition of the non-

autonomous SINE Alu [1, 2]; here I find that A3G also restricts mobilization of the 

mouse SINEs B1 and B2.  Thus, I observe a correlation between lack of ORF1p 

coding potential and A3G-mediated retrotransposition restriction. 

 

Introduction  

The seven human APOBEC3 (A3) proteins belong to a vertebrate-specific 

family of nucleic acid mutators, the AID/APOBEC proteins, which catalyze the 

deamination of cytidine to uridine in single-stranded DNA (Figure 2.1 B) or RNA 

(Reviewed in [3]).  Apolipoprotein B mRNA editing catalytic subunit 1 

(APOBEC1) is an RNA-editing enzyme which acts specifically on the 

apolipoprotein B (apoB) mRNA, allowing the generation of two ApoB isoforms 

with distinct roles in cholesterol metabolism [4, 5].  Although APOBEC1 was the 

first AID/APOBEC family member to be functionally characterized, it is actually a 

relative newcomer evolutionarily, and is restricted to the mammalian lineage [6].  

Indeed, the DNA-editing enzyme activation induced deaminase (AID), which in 

humans is critical for class-switch recombination and immunoglobulin gene 

diversification in the adaptive immune system [7-9], and APOBEC2, whose 

biological function in humans remains to be elucidated [10], are the ancestral 

AID/APOBEC family members. AID and APOBEC2 have homologues in bony 

fish, and AID has homologues in cartiliginous fish [6].  Furthermore, the sea 

lamprey, a jawless vertebrate, encodes an AID homologue implicated in a unique 

form of adaptive immunity based on variable lymphocyte receptors [11].  An 
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ancestor of this lamprey deaminase is hypothesized to be the evolutionary 

predecessor of the AID/APOBEC family [3, 11, 12]. 

Like APOBEC1, the APOBEC3 (A3) cytidine deaminases are specific to 

the mammalian lineage [6].   The A3 family has experienced a dramatic 

evolutionary expansion and diversification; for example, mice have a single A3 

gene, while humans encode seven A3s: APOBEC3A (A3A), APOBEC3B (A3B), 

APOBEC3C (A3C), APOBEC3DE (A3DE), APOBEC3F (A3F), APOBEC3G 

(A3G), and APOBEC3H (A3H) (Figure 2.1) [13-15](for a comprehensive review 

see [16]).  The A3 genes reside in a cluster on chromosome 22q13.2, where they 

are arranged in a head-to-tail configuration [6, 13-15]. Although initially described 

as “orphan” C-to-U editing enzymes [13], various A3s have since been 

demonstrated to restrict the mobilization or infectivity of a spectrum of 

endogenous retroelements and exogenous viruses (Reviewed in [16]).  Indeed, 

the remarkable expansion of the A3 gene family is hypothesized to result from 

selective pressure imposed by genetic conflict with endogenous retroelements, 

with antiretroviral activity representing a relatively recent evolutionary 

“repurposing” of certain A3 factors [17]. 

As discussed in Chapter 1, the autonomous retrotransposon L1 and the 

non-autonomous SINE Alu are the only presently active elements in the human 

genome [18]; for review see [19].  Previous studies have demonstrated that 

members of the APOBEC3 family, most potently A3A and A3B, restrict L1 

mobilization in a cell culture assay [20-25].  Notably, A3A and A3B can enter the 

nucleus, where L1 target-primed reverse transcription (TPRT) and integration 
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take place [20].  Interestingly, there is some conflict in the literature about 

whether the predominantly cytoplasmic A3F restricts L1: one study [20] reports 

no inhibition and perhaps a slight increase in L1 retrotransposition in the 

presence of A3F, while others [21-25] report significant inhibition.  Similarly, most 

reports agree that A3G, which also localizes to the cytoplasm, does not potently 

restrict L1 retrotransposition [20-22, 24-27]. However, one study reports robust 

inhibition of L1 retrotransposition [23], though in this case A3G was expressed 

from an SV40 ori-containing vector in T-antigen transformed cells, likely leading 

to massive overexpression of the A3G protein.  In contrast, A3G potently restricts 

Alu retrotransposition in cultured cells [1, 2].  The mechanism of inhibition is 

proposed to involve sequestration of Alu RNA to high molecular mass (HMM) 

A3G complexes, preventing Alu RNA from accessing the L1 retrotransposition 

machinery [1]. 

 In this chapter, we assess the ability of human A3 proteins to restrict the 

mobility of non-human LINE and SINE retroelements.  The data provide insight 

into the importance of retroelement nucleotide sequence and retroelement 

structure for A3-mediated inhibition. 

 

Results 

The L1 Retrotransposition Assay and Controls for A3 Cytotoxicity 

To quantify L1 retrotransposition, we employed a cell culture 

retrotransposition assay [28, 29].  In this assay, we use constructs containing a 

retrotransposition-competent L1 element tagged in its 3’UTR with a neomycin 
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phosphotransferase reporter gene in the opposite transcriptional orientation of 

the L1 element.  This reporter gene, dubbed mneoI, is equipped with a 

heterologous promoter and polyadenylation signal. The neomycin 

phosphotransferase coding sequence is interrupted by an intron with splice donor 

and splice accepter sites in the same transcriptional orientation as the L1 

element (Figure 2.2 A, above).  This arrangement ensures  that a functional copy 

of the neomycin phosphotransferase gene is only generated upon transcription of 

the L1 from its 5’UTR (or a heterologous CMV promoter), splicing of the L1 

mRNA, translation of the L1-encoded proteins, and successful retrotransposition 

into a new genomic location (Figure 2.2 A, below).  Selection with G418 for 12-14 

days results in the generation of G418-resistant foci, which are quantified to 

determine L1 retrotransposition efficiency.  Notably, we employ two different 

HeLa cell lines in the retrotransposition assays described in this chapter.  HeLa-

JVM accommodates L1 retrotransposition, but not Alu trans-mobilization.  In 

contrast, HeLa-HA accommodates both L1 and Alu retrotransposition.  These cell 

lines have been reported previously [2], and the molecular explanation for their 

differential ability to accommodate Alu retrotransposition is currently under 

investigation.  HeLa-JVM is used in figures 2.2, 2.5, and 2.6, and HeLa-HA is 

used in Figure 2.4. 

To determine the impact of A3 proteins on L1 retrotransposition, we co-

transfect cells with L1 indicator plasmids, as described above, and A3 expression 

vectors [2, 20].  Co-transfection with a vector expressing rat β-arrestin, which 

does not affect L1 retrotransposition [2, 20], serves as a positive control.  
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Following selection, G418-resistant colonies are quantified, and percent 

retrotransposition in the presence of A3 expression is determined relative to β-

arrestin control co-transfections.   

We have observed, and other groups have reported, “off-target” effects on 

cell viability caused by ectopic A3 expression [30, 31].  In the case of A3A, these 

effects may arise from a DNA damage response and cell-cycle arrest [32].  To 

ensure that the diminishment in G418-resistant foci we observe in the presence 

of A3 expression is not solely due to non L1-specific effects on cell viability, we 

developed a stringent control in which a circular or linear neomycin 

phosphotransferase expression vector (hereafter referred to as “linear NEO” or 

“circular NEO” controls), is co-transfected with the A3 expression vector side-by-

side with every retrotransposition assay performed.  Results from the NEO 

control assays are used to normalize data from the L1 retrotransposition assay.  

The details of this experimental control are laid out graphically in Figure 3.2.   

 

Inhibition of Autonomous LINE elements by APOBEC3 Proteins 

We first asked whether autonomous LINE elements of divergent 

nucleotide sequences are inhibited by human A3 proteins. We employed 

autonomous LINE retrotransposons from mouse (TGf21, L1SM) and zebrafish 

(Zfl2-2), which bear little nucleotide sequence identity to human L1.3 (Figure 2.3 

A and B) in a cultured cell retrotransposition assay [28, 29](Figure 2.2 A).  TGf21 

is a natural active mouse LINE-1 element of the GF subfamily [33]. L1SM is a 

synthetic mouse LINE-1 element based on the L1spa TF subfamily element [34], 

67



engineered to increase GC richness while preserving the amino acid sequence of 

the L1-encoded proteins [35].   Zfl2-2 is a zebrafish element of the LINE-2 clade, 

which encodes only one ORF containing endonuclease and reverse transcriptase 

activities (orthologous to human L1 ORF2) [36].  The Zfl2-2 reporter construct is 

unique in that the mneoI cassette is cloned upstream of, and thus does not 

interrupt, the Zfl2-2 3’UTR.  This modification is critical, as Zfl2-2 is a stringent 

type LINE and the integrity of the 3’UTR sequence is essential for recognition of 

the transcript by the Zfl2-2-encoded enzymatic machinery [36].    

Consistent with previous studies [20-24], A3A potently inhibited human 

L1.3, to ~17% of β-arr control levels, and A3B efficiently inhibited human L1.3 

retrotransposition, to ~17% of control levels (Figure 2.3 C).  Furthermore, A3A 

inhibited L1SM, (~45% of control) TGf21 (~21% of control) and Zfl2-2 (~35% of 

control).  A3B inhibited L1SM, TGf21 and Zfl2-2 retrotransposition, to ~48%, 

~23%, and ~39% of control levels, respectively (Figure 2.3 C).  We hypothesize 

that the ability of L1SM to partially evade A3-mediated inhibition may stem from 

its ability to generate higher levels of transcripts and RNPs [35], and possibly 

generate more insertions per cell (Sean Ferris, previous rotation student in the 

Moran lab, unpublished preliminary data)(See Chapter 5 for further discussion). 

A3G did not efficiently inhibit human L1.3 retrotransposition, in agreement 

with previous studies [20-22, 25, 27, 37].  Similarly, retrotransposition of the 

mouse elements L1SM and TGf21 was not strongly impacted by A3G expression 

(Figure 2.3 C).  Strikingly, however, the zebrafish LINE-2 element, Zfl2-2, was 

potently inhibited by A3G, to ~29% of control levels (Figure 2.3 C). 
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Inhibition of Nonautonomous Retrotransposons by APOBEC3G 

Zfl2-2 does not encode a protein analogous to the LINE-1 ORF1p [36].  

Similarly, the nonautonomous retrotransposon Alu, which is potently restricted by 

A3G [2], does not have protein-coding potential, and requires only L1 ORF2p for 

mobilization in trans [38, 39].  Thus, we observe a correlation between ORF1p 

coding potential and resistance to A3G-mediated retrotransposition inhibition.  

We therefore asked whether other ORF1p-less non-autonomous retroelements, 

specifically the mouse SINEs B1 and B2, are likewise susceptible to A3G-

mediated inhibition.  The mouse SINE B1, like human Alu, is derived from the 

7SL gene [40]; however, its structure is monomeric instead of dimeric [41].  

Unlike Alu and B1, the mouse SINE B2 is derived from a tRNA gene [42]. 

To assay the mobilization of non-autonomous retroelements by the L1-

encoded proteins, we employed a specialized trans retrotransposition assay 

(Figure 2.2 B)[38, 43, 44].  In this assay, a reporter-less L1 “driver” construct, 

expressing either a full-length L1 element or L1 ORF2p only, is co-transfected 

with a “reporter” construct consisting of the non-autonomous retroelement tagged 

with a mneoI reporter cassette.  For reporter constructs in which the element is a 

Pol III-derived transcript (Alu and mouse SINEs), a special reporter cassette, 

termed neoTET is used, in which the mneoI gene is interrupted by a group I 

autocatalytic intron, as Pol III transcripts are not processed by the spliceosome 

[38, 43, 45].  We also employed L1.3/ORF1mneoI, which is a reporter for 

ORF1p-mediated processed pseudogene formation and consists of L1.3 ORF1 
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followed by the mneoI indicator cassette [44].  This construct mimics the SINE 

HAL1, recently identified in mammalian genomes and characterized by Dr. Arian 

Smit [46, 47]. In this experiment, L1.3/ORF1mneoI served as an internal control, 

as it must undergo mobilization in trans but retains ORF1p coding potential. 

We carried out trans retrotransposition assays consisting of Alu, B1, B2 

and ORF1mneoI reporter constructs, co-transfected with the 5’UTR/ORF2/noNeo 

“driver” construct (Figure 2.4 A), and APOBEC3 or β-arr control plasmids.  

Consistent with previous studies [2], Alu retrotransposition was efficiently 

inhibited by A3A, A3B, and A3G, to ~5%, ~9%, and ~13% of control, respectively 

(Figure 2.4 B).  Furthermore, the mouse SINEs B1 and B2 were also inhibited by 

A3A (~5% and ~17% of control), A3B (~6% and ~14% of control), and A3G (~5% 

and ~9% of control) (Figure 2.4 B). Indeed, L1.3/ORF1mneoI mobilization was 

only modestly reduced by A3G expression (~55% of control), but to a lesser 

extent than Alu, B1, and B2.  In sum, these data strengthen the correlation 

between ORF1p coding potential and resistance to A3G-mediated 

retrotransposition inhibition. 

 

Deaminase-Independent Inhibition of Zfl2-2 Retrotransposition by 

APOBEC3G 

 Previous studies indicate that A3G-mediated Alu inhibition occurs 

independently of A3G deaminase activity, as an A3G catalytic mutant 

(A3G_E259Q, or A3Gm) efficiently inhibits Alu retrotransposition [2].  To 

determine whether inhibition of Zfl2-2 retrotransposition by A3G is dependent 
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upon A3G cytidine deaminase activity, we employed A3Gm in the cell culture 

retrotransposition assay.  A3Gm inhibited Zfl2-2 retrotransposition to 33.8% of β-

arr control levels, similar to wild-type A3G (32.8% of control levels) (Figure 2.5).   

In an orthogonal approach to the question of deaminase-dependence, we 

also asked whether A3G-mediated inhibition of Zfl2-2 could be alleviated by 

expression of a small protein inhibitor of the DNA repair factor uracil DNA 

glycosylase (UNG). Uracils in DNA are recognized as damage by UNG, which 

removes the uracil base [48].   The resulting abasic site is subsequently cleaved 

by apurinic/apyrimidinic endonuclease (APE)[49].  We reasoned that if A3G 

inhibits Zfl2-2 retrotransposition by a mechanism  that entails deamination of 

cytidine to uracil in DNA, and degradation by the downstream DNA repair 

response to deamination, inhibition of UNG by uracil glycosylase inhibitor (UGI) 

would alleviate A3G-mediated L1 inhibition.  We found that UGI expression  has 

no effect on Zfl2-2 inhibition by A3G or A3Gm (Figure 2.5 A), while UGI 

expression alleviated A3A-mediated inhibition of Zfl2-2 retrotransposition (from 

6.3% to 20.0% of control). Notably, A3A-mediated inhibition of human L1.3 

retrotransposition is alleviated by UGI expression  (Figure 2.5 B and Figure 3.17); 

this result is expended upon and discussed in depth in Chapter 3.  Taken 

together, the data suggest that A3G-mediated inhibition of Zfl2-2 

retrotransposition takes place by a deaminase-independent mechanism. 

 

APOBEC3F Does Not Inhibit L1 Retrotransposition in HeLa-JVM cells 
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 Previous work from our lab has shown that APOBEC3F (A3F) does not 

inhibit L1 retrotransposition in HeLa-JVM cells [2, 20].  However, several other 

publications report significant inhibition of L1 by A3F [21-25].  Specifically, the lab 

of Dr. Reuben Harris reports that A3F efficiently inhibits L1 retrotransposition in a 

deaminase-independent manner [25].    We hypothesized that this discrepancy 

could by due to differences in nucleotide or amino acid sequence between A3F 

expression plasmids used by different labs.  We therefore obtained the A3F 

expression vector used by the Harris lab (A3F_Harris, or A3FH), and compared 

the nucleotide sequence to the plasmid obtained from Dr. Brian Cullen 

(A3F_Cullen, or A3FC) used in our assays.  The A3F construct from Dr. Harris’ 

lab contains three nucleotide changes relative to the construct from Dr. Cullen’s 

lab:  t322g, resulting in a serine to alanine change (S108A), t429c which is silent 

with respect to amino acid sequence, and a691g, which causes an isoleucine to 

valine change (I231V) (Figure 2.6 A).  In addition, we obtained an A3F 

expression plasmid from Dr. Michael Malim’s lab (A3F_Malim, or A3FM). 

Although based on the “chain of custody” this construct should be identical to the 

one received from Dr. Cullen’s lab, sequencing revealed one nucleotide change 

(a814g; T272A) in A3FM relative to A3FC. 

 To assess whether the nucleotide or resultant amino acid changes present 

in the A3F construct from the Harris lab impart the ability to inhibit L1 

retrotransposition, we carried out retrotransposition assays using the A3FC, 

A3FH, and A3FM constructs.  In HeLa-JVM cells, none of the A3F constructs 

tested effected significant inhibition of L1 retrotransposition (Figure 2.6 B).  Thus, 
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we conclude that sequence changes in the Harris A3F construct relative to the 

Cullen A3F or Malim A3F constructs do not, by themselves, impart the ability to 

inhibit L1 retrotransposition.  

 

Discussion 

A3A and A3B inhibit autonomous and non-autonomous retrotransposons 

 In this Chapter, we observe that A3A and A3B inhibit human, mouse, and 

zebrafish LINE elements with divergent nucleotide sequences (Figure 2.3, A and 

B).  These data suggest that A3A and A3B do not recognize a conserved 

sequence motif in the human L1 element, which might be expected as the human 

APOBEC3 locus evolved and expanded with exposure to human, but not mouse 

or zebrafish, LINE element retrotransposition [3].  Instead, we hypothesize that 

A3A and A3B, which can enter the nucleus [20] act in some manner at target-

primed reverse transcription (TPRT) (Figure 2.7 A)(See Chapter 3).   Indeed, 

TPRT is required to generate insertions by all of the elements tested, either 

directly (autonomous LINEs) or in trans (non-autonomous SINEs and 

L1.3/ORF1mneoI).  In Chapter 3, we pursue this hypothesis and undertake a 

detailed mechanistic examination of A3A-mediated inhibition of L1 

retrotransposition. 

 

ORF1p may be protective against A3G-mediated retrotransposition inhibition 

 The prevailing model for A3G-mediated Alu inhibition is that A3G 

sequesters Alu RNA to high molecular mass (HMM) cytoplasmic complexes, 
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thereby restricting access to the L1 retrotransposition machinery [1].  Intriguingly, 

we found that an autonomous zebrafish LINE-2 element (Zfl2-2), which encodes 

only one ORF analogous to human and mouse L1 ORF2p [36], is also restricted 

by A3G, in a deaminase-independent manner (Figure 2.3, Figure 2.5).  Likewise, 

the mouse SINEs B1 and B2 are also potently inhibited by A3G, revealing a 

correlation between ORF1p coding capacity and escape from A3G-mediated 

inhibition.  We therefore speculate that ORF1p protects L1 RNPs from 

sequestration by A3G in HMM complexes, while Alu, B1, B2, and Zfl2-2 are 

susceptible to A3G-mediated restriction (Figure 2.7 B). 

 

Why are reports on A3F-mediated L1 inhibition inconsistent with one another? 

 We find that nucleotide and resulting minor amino acid changes between 

A3F expression vectors from different labs [2, 20-25] do not account for the 

conflicting reports of the ability of A3F to inhibit L1 retrotransposition (Figure 2.6). 

We hypothesize that A3F-mediated L1 inhibition may depend on the presence of 

an unidentified cellular factor that may associate with A3F or the L1 RNP.  

Notably, we do not observe A3F-mediated L1 inhibition in HeLa-HA cells or 

HeLa-JVM cells.  Should a set of cell lines that do and do not allow A3F-

mediated L1 inhibition be identified, it would be interesting to compare the 

proteins and RNAs that associate with A3F (and the L1 RNP) in each cell line, 

and identify candidate cellular factors that may facilitate or impede A3F-mediated 

L1 restriction.  However, such a factor may not directly associate with A3F or the 
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L1-encoded proteins, which would make its identification a complicated 

undertaking.  

 In sum, we conclude that different APOBEC3 proteins likely effect 

retroelement restriction by different mechanisms.  A3 factors that can access the 

nucleus are hypothesized to act during TPRT.  In contrast, cytoplasmic A3s, 

specifically A3G, may carry out inhibition via a cytoplasmic sequestration 

mechanism. 

 

Materials and Methods 

 

Plasmids 

All plasmids were grown in DH5α (F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 

endA1 hsdR17 (rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1) competent E. coli 

(Invitrogen; Carlsbad, CA. Prepared in house as described in [50]). Plasmids 

were prepared using the Qiagen Plasmid Midi Kit (QIAGEN; Hilden, Germany) 

according to the manufacturer’s protocol.   

 

APOBEC3 expression constructs: 

The pK_βarr, A3A, A3B, A3F_Cullen, A3G, and A3Gm expression plasmids have 

been described previously [51]. pK_A3F_Malim was received from Dr. Michael 

Malim.  pK_A3F_Harris has been described previously [25].  
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LINE expression constructs: 

pJM101/L1.3 has been described previously [52, 53].  It consists of the pCEP4 

backbone (Invitrogen/Life Technologies; Carlsbad, CA) containing a full-length 

copy of the L1.3 element with the mneoI indicator cassette in the 3’UTR. 

 

pDK101 has been described previously [54], and consists of JM101/L1.3 

modified by PCR mutagenesis to contain the T7 gene 10 epitope tag at the C-

terminus of ORF1p. 

 

pCEP4/L1SM has been described previously [35], and consists of a synthetic 

mouse L1 sharing the same amino acid sequence as L1spa [34], but with 24% of 

its nucleotide sequence replaced for optimal GC-richness. It contains the mneoI 

indicator cassette in the 3’UTR, and is cloned in the pCEP4 backbone. 

 

pCEP4/TGf21 has been described previously [33] and consists of a natural 

mouse element with the mneoI indicator cassette in the 3’ UTR, cloned in the 

pCEP4 backbone. 

 

pCEP4/Zfl2-2 has been described previously [36] and consists of a zebrafish 

LINE-2 element cloned in the pCEP4 backbone.  The Zfl2-2 3’UTR is cloned 3’ of 

the mneoI cassette. 
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L1.3/ORF1mneoI has been described previously [44] and consists of the pCEP4 

backbone containing the L1.3 5’UTR, L1.3 ORF1, and the mneoI indicator 

cassette. 

 

KUB-101-LRE3-sv+ consists of the pBSKS-II backbone (Stratagene/Agilent 

Technologies; Santa Clara, CA) containing a full-length LRE3 element driven by 

a mouse UBC promoter, with the mneoI indicator cassette in the 3’UTR, and the 

SV40 late polyadenylation signal. 

 

SINE Expression Constructs 

pAluNF1-NEOIII  has been described previously [38] and contains an Alu element 

isolated from a de novo insertion into the NF1 gene [55] downstream of the 7SL 

enhancer upstream sequence.  The neoTET reporter gene [56], driven by the 

SV40 promoter, is situated between Alu element sequence and the Alu polyA 

tract.  The 7SL transcription terminator follows the Alu polyA tract. 

 

NeoTET-marked B1 and B2 elements have been described previously [43], and 

are similar to pAluNF1-NEOIII, except they contain active murine B1 or B2 

elements in place of Alu. 

 

77



LGCX vector has been described previously [57] and is a variant of the LNCX 

retroviral vector [58] in which the neomycin phosphotransferase gene has been 

replaced by GFP.  

 

LGCX/UGI has been described previously [57] and consists of the LGCX vector 

containing a uracil glycosylase inhibitor (UGI) gene codon-optimized for 

expression in human cells (hUGI). 

 

pU6i NEO is a pBSKS-based plasmid with the neomycin phosphotransferase 

(NEO) gene from pEGFPN1 (Clontech) introduced into the backbone.  The multi-

cloning site contains the U6 promoter. To generate linearized plasmid for control 

transfections, pU6i NEO was digested with BglII (New England Biolabs; Ipswitch, 

Massachussets), which does not disrupt NEO gene expression, and run on an 

agarose gel to confirm linearization.  The restriction digest reactions were purified 

using the Qiagen gel extraction kit. 

 

Cell Culture 

HeLa cells:  Cells were grown at 37°C in the presence of 7% CO2 and 100% 

humidity, using Dulbecco’s modified Eagle medium (DMEM) (Invitrogen) 

supplemented with 10% fetal bovine calf serum (FBS) (Invitrogen) and 1X 

penicillin/streptomycin/glutamine (Invitrogen). 

 

LINE and SINE Retrotransposition Assays 
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Retrotransposition assays in HeLa-JVM and HeLa-HA cells were carried out as 

previously described [28, 29].  Cells were plated at an appropriate density in 6-

well dishes (BD Biosciences; San Jose, California), T-75 flasks (BD Biosciences) 

or 10cm dishes (BD Biosciences or Corning; Corning, New York) to obtain 

quantifiable colonies for the retroelement expression construct used (see figure 

legends).  Eighteen hours later, transfections were carried out using the FuGene 

6 transfection reagent (Roche; Penzberg, Germany) and Opti-MEM (Invitrogen), 

according to manufacturer’s protocol (3 µl FuGene and 97 µl Opti-MEM per µg of 

DNA transfected).  Cell culture media was replaced the following day.  Cells were 

subjected to selection with 400 µg/ml G418 (Invitrogen) 72 hours post-

transfection.  Selection was carried out for 12-14 days, replacing the selection 

media every other day.  Colonies were washed with 1X phosphate buffered 

saline (PBS) (Gibco), fixed with 37% paraformaldehyde/8% glutaraldehyde, and 

stained with 0.1% crystal violet solution. 
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Figure 2.1: The APOBEC3 Cytidine Deaminases 
 
A.  The human APOBEC3 (A3) family consists of seven cytidine deaminases.  
Each A3 protein harbors one (A3A, A3C, A3H) or two (A3B, A3DE, A3F, A3G) 
deaminase active sites (dark blue rectangles).  Below, the consensus A3 active 
site is shown, with zinc-coordinating residues critical for enzymatic function 
highlighted in red [13-15]. 
 
B.  The cytidine deamination reaction.  Cytidine deaminases convert cytidine to 
uridine through the consumption of a water molecule (H2O) and the release of 
ammonia (NH3).   
 
Figure 2.1 is similar to figures supplied in several review articles [16, 59, 60], but 
was redrawn here. 
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Figure 2.2: Cultured-cell assays for cis  and trans retrotransposition 
 
A.  The L1 retrotransposition assay.  A retrotransposition-competent L1 (in this 
case, L1.3) is tagged in its 3’UTR with a neomycin phosphotransferase reporter 
gene (shown in green) under control of a heterologous promoter (black arrow), in 
the opposite transcriptional orientation of the L1 element [28, 61].  The neo gene 
is interrupted by an intron in the same transcriptional orientation as the L1 
element [28, 61].  This cassette is referred to as mneoI [28]. This arrangement 
ensures that a functional neo gene can only be expressed if the L1 is transcribed 
from its 5’UTR (or a heterologous CMV promoter), and the mRNA is spliced, 
translated, and the resulting L1 RNP undergoes a round of retrotransposition into 
a new genomic location [28].  The integrated neo reporter gene allows the 
generation of G418-resistant foci [28, 29]. 
 
B. Representative assays for trans retrotransposition.  In trans retrotransposition 
assays, a plasmid expressing an untagged full-length retrotransposition-
competent L1 or ORF2p only (5’UTR/ORF2/NoNeo [62], center) is co-transfected 
with a tagged reporter construct.  On the left, L1.3/ORF1mneoI contains the L1 
5’UTR, ORF1, and the mneoI  reporter cassette described above [44]. The 
ORF2p from 5’UTR/ORF2/NoNeo mobilizes the spliced L1.3/ORF1mneoI 
reporter mRNA in trans, resulting in G418-resistant foci.  On the right is an 
example assay for nonautonomous retrotransposon trans mobilization. The 
pAluNF1-NEOIII [38]  contains an active Alu element under control of the 7SL 
enhancer upstream sequence.  The two Alu monomers are separated by a short 
internal poly-A tract (An).  The Alu sequence is followed by  the neoTET reporter 
cassette (green, interrupted by a self-splicing intron, in red).  G418-resistant 
colonies arise upon trans retrotransposition of the Alu RNA by L1 ORF2p. 
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Figure 2.3:  Inhibition of LINE Elements by Human APOBEC3 Proteins 
 
A. Human, mouse, and zebrafish LINE elements.   The mneoI indicator cassette 
[28, 61] (green) is shown within the 3’UTR of human L1.3. Dark blue triangles 
represent the monomers in the 5’UTR of the mouse L1s (TGf21 and L1SM) [33, 
35], and repetitive units in the 5’UTR of the zebrafish LINE-2 element (Zfl2-2) [36].  
L1.3, TGf21 and L1SM each encode ORF1 and ORF2 [33, 35]; Zfl2-2 contains 
only one ORF which contains endonuclease (EN) and reverse transcriptase (RT) 
activities, analogous to ORF2 of the human and mouse elements [36].    
 
B. Percent nucleotide identity of mouse and zebrafish elements to human L1.3. 
 
C. Human APOBEC3 proteins inhibit diverse retroelements.  HeLa-JVM cells 
were plated in six-well dishes, at appropriate density for the retroelement used 
(L1.3, 2x103; L1SM, 2x103 ; TGf21, 2x104 ; Zfl2-2, 4x104 cells/well).  Wells were 
transfected (in triplicate per condition) with 0.5 µg L1 reporter plasmid and 0.5 µg 
APOBEC3 reporter plasmid.  

Human (L1.3), mouse (L1SM and TGf21), and zebrafish (Zfl2-2) 
retroelements are indicated on the x-axis.  The y-axis indicates percent 
retrotransposition relative to control (β-arrestin).  Colored bars indicate the A3 
expression plasmid used (blue=A3A, red=A3B, green=A3G, purple=β-arrestin).  
These data represent the average of triplicate wells; error bars indicate percent 
standard deviation.  Data are normalized to linear NEO control co-transfections, 
performed as described in Figure 3.3.  A representative assay is shown; this 
experiment was performed three times representing biological replicates. 
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Figure 2.4: Inhibition of SINE Retrotransposition by APOBEC3 Proteins 
 
 
A. SINE elements from human and mouse. Reporter constructs: The human 
SINE Alu (pAluNF1-NEOIII) [38] and the mouse SINE B1 and B2 reporter 
constructs [43] are equipped with a specialized mneoI reporter gene interrupted 
by an autocatalytic intron (neotet; green rectangles, shown for Alu only).  The 
element and reporter gene are flanked by the 7SL enhancer sequence (enh) and 
the 7SL transcription terminator (term) [38, 43].  The left and right monomers of 
the Alu element are separated by a short internal poly-A tract (An).  The 
L1.3/ORF1mneoI [44] reporter construct consists of the L1.3 5’UTR (grey 
rectangle) and ORF1 (gold rectangle), and bears the mneoI cassette (green 
rectangles).  Driver construct:  5’UTR/ORF2/Δneo consists of the L1.3 5’UTR, 
ORF2, and 3’UTR, and does not contain a reporter cassette. 
 
B.  Human APOBEC3 proteins inhibit nonautonomous retrotransposons (SINEs).   
Approximately 5x105  HeLa-HA cells were plated per T-75 flask.  Each flask was 
transfected with a total of 4 µg of plasmid DNA: 2 µg of the reporter plasmid (Alu, 
B1, B2, or ORF1mneoI), 1µg of “driver” plasmid (5’UTR/ORF2/noNeo) [62], and 1 
µg of APOBEC3 plasmid.  Flasks were transfected in duplicate for each condition.   

The reporter element is indicated along the x-axis (human Alu, mouse B1 
and B1, and the internal control ORF1mneoI); y-axis indicates percent 
retrotransposition relative to control (β-arr).  Colored bars correspond to the co-
transfected APOBEC3 plasmid (blue = A3A, red = A3B, purple = A3G, turquoise 
= β-arr).  Values are the average of duplicate co-transfections per condition; error 
bars indicate percent standard deviation.  Data were normalized to linear NEO 
control transfections, carried out as described in Figure 3.3.  A representative 
assay is shown; this assay was performed twice representing biological 
replicates. 
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Figure 2.5:  Deaminase-Independent Inhibition of Zfl2-2 Retrotransposition 
by APOBEC3G 
 
The data in A and B are from the same experiment, but are depicted separately 
for clarity. HeLa-JVM cells were plated in 10 cm dishes at appropriate density for 
the retroelement used (4x105 for Zfl2-2, 1x105 for L1.3, 2x105 for circular NEO). 
Each dish was transfected with a total of 3 µg plasmid DNA: 1 µg Zfl2-2, 
pJM101/L1.3, or circular NEO, 1 µg APOBEC3 plasmid (or β-arr control), and 1 
µg pLGCX_UGI or empty vector control).   

The APOBEC3 (or β-arr control) plasmid used is indicated on the x-axes.  
A3Gm is a deaminase-deficient mutant of APOBEC3G [2].  The y-axis indicates 
percent retrotransposition relative to the appropriate β-arr control co-transfection.  
Navy blue bars represent LGCX empty vector control, yellow bars represent 
LGCX_UGI.  Error bars represent percent standard deviation between duplicate 
transfections.  Data were normalized to circular NEO control co-transfections 
carried out as described in Figure 3.3.  A representative assay is shown; this 
assay was performed twice representing biological replicates. 
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Figure 2.6: APOBEC3F does not inhibit L1 in HeLa-JVM Cells 
 
A.  APOBEC3F construct sequences from the Cullen (A3FC) [20], Harris (A3FH) 
[25], and Malim (A3FM) [63]  labs.  The A3F coding sequence is depicted as a 
light blue rectangle; dark blue rectangles indicate cytidine deaminase active sites.  
Positions of nucleotide (black) and amino acid (green) residues where A3FH and 
A3FM differ from A3FC are indicated. 
 
B. APOBEC3F constructs from the Cullen lab, Malim lab, and Harris lab do not 
inhibit L1 retrotransposition in HeLa-JVM cells.  Retrotransposition assays: 
Approximately 2x103 HeLa-JVM cells were plated per well of a 6-well dish. Each 
well was transfected with a total of 1 µg plasmid DNA comprised of 0.5 µg L1 
reporter plasmid (or linear NEO control plasmid) and 0.5 µg APOBEC3F (or 
control β-arr) plasmid.  Transfections were performed in triplicate per 
experimental condition. 

The LINE element is indicated on the x-axis.   Percent retrotransposition 
relative to β-arr control is indicated on the y-axis.  Blue bars represent A3A, red 
bars represent A3F-Cullen, yellow bars represent A3F-Malim, green bars 
represent A3F-Harris, and violet bars represent β-arr control. Error bars 
represent percent standard deviation among triplicate co-transfections.  Data are 
normalized to linear NEO control assays carried out as depicted in Figure 3.3.  A 
representative assay is shown, this experiment was performed three times 
representing biological replicates. 
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Figure 2.7:  Hypotheses for retroelement inhibition by A3A, A3B, and A3G 
 
A.  Inhibition at target-primed reverse transcription (TPRT). A3A (green) and A3B 
(blue) can access the nucleus and are predicted to interfere with TPRT of 
autonomous and non-autonomous retroelements.  Single deaminase-domain 
A3s are depicted as a single oval; double deaminase-domain A3s are depicted 
as a two-lobed shape. L1 RNA is depcited in red, nascent L1 cDNA is depicted in 
blue. Zfl2-2 RNA is depicted in green with a bold green line indicating the Zfl2-2 
3’UTR critical for Z2 ORFp binding [36].  The L1 ORF2p and Zfl2-2 ORFp are 
depicted in orange.  Representative non-autonomous retroelement RNA is 
depicted in black.   
 
B.  Inhibition by cytoplasmic sequestration.  A3G (purple) is cytoplasmic, and is 
predicted to restrict the mobilization of non-autonomous retroelements and Zfl2-2 
by sequestering retroelement RNAs in the cytoplasm.  Zfl2-2 RNA and protein 
are depicted in green and orange, respectively.  Alu, B1, and B2 RNAs are 
shown in black.  In contrast, LINE-1 ORF1p (lavendar ovals) is hypothesized to 
protect the L1 RNA (red) from sequestration.   
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Chapter 3 

 

A Molecular Mechanism for APOBEC3A-Mediated LINE-1 Inhibition 

 

I designed and carried out the retrotransposition assays, LEAP assays, 

and L1 insertion recoveries detailed in this chapter.  Dr. Inigo Narvaiza and Dr. 

Matt Weitzman generated and characterized the purified recombinant A3A and 

A3A mutant proteins (Figures 3.7 and 3.8).  Randy Planegger provided technical 

assistance for the retrotransposition assay shown in Figure 3.14.  The L1 

insertion recoveries were carried out using modifications to the original protocol 

[1, 2], which were designed and optimized by Santiago Morell in the laboratory of 

Dr. Jose Luis Garcia-Perez. 

 

Abstract 

In this chapter, a molecular mechanism for A3A-mediated L1 inhibition 

was investigated.  I found that A3A inhibits LINE element retrotransposition in a 

sequence-independent manner, and that A3A does not directly block L1 

endonuclease or reverse transcriptase activities.  In an in vitro assay for L1 

TPRT (L1 element amplification protocol, or LEAP), I observed that A3A can 
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deaminate exposed single-stranded DNA in TPRT intermediates.  I therefore 

hypothesized that A3A inhibits L1 in a deaminase-dependent manner, by editing 

TPRT intermediates and thereby triggering their degradation by the cellular repair 

factors uracil DNA glycosylase (UNG) and apurinic/apyrimidinic endonuclease 

(APE).  I predicted that expression of uracil glycosylase inhibitor protein (UGI) in 

the cell culture assay would simultaneously alleviate A3A-mediated L1 inhibition, 

and preserve evidence of editing within retrotransposed sequences.  Indeed, UGI 

alleviates A3A-mediated L1 inhibition in cultured cells.  Furthermore, L1 

insertions generated in the presence of A3A and UGI bear substantial evidence 

of A3A-mediated editing.  Thus, I conclude that A3A effects inhibition of L1, at 

least in part, by deaminating single-stranded DNA transiently exposed during L1 

TPRT, providing the first mechanistic explanation for APOBEC3-mediated 

autonomous retroelement inhibition.   

 

Introduction 

The seven human APOBEC3 (A3) cytidine deaminases are intracellular 

defenders of genome integrity.  The identification of APOBEC3G (A3G) as a 

restriction factor against vif-deficient HIV infectivity [3] first drew attention to the 

A3 family as a component of innate immunity against exogenous pathogens.  

Subsequent reports demonstrated that APOBEC3F (A3F) also restricts vif-

deficient HIV [4, 5], while A3B inhibits wild-type HIV [6].  In addition, A3B, A3F, 

and A3G restrict hepatitis B virus (HBV) [7-10], and APOBEC3A (A3A) can inhibit 

replication of adeno-associated virus (AAV) [11].  Based on evidence for ancient 
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positive selection of the A3 genes, however, it is hypothesized that conflict with 

endogenous retroelements has been a crucial force in A3 evolution [12].  Indeed, 

several studies have demonstrated that various A3 proteins, including A3A, can 

inhibit Long INterspersed Element-1 (LINE-1 or L1) mobility in cultured cells [11, 

13-17], yet the mechanism by which A3A restricts L1 retrotransposition remains 

enigmatic.  In this chapter, we investigate the molecular mechanism of A3A-

mediated L1 inhibition. 

 

Sequence-Independent Inhibition of LINE Retrotransposition by A3A 

To investigate the mechanism of A3A-mediated inhibition of L1 

retrotransposition, we first asked whether inhibition depends on the nucleotide 

sequence of the retroelement.   We employed a cell culture retrotransposition 

assay [18, 19], and compared inhibition of human  L1.3 [20] to a natural mouse 

L1 element (TGf21) [21], a synthetic mouse L1 element (L1SM) [22], and a LINE-

2 element from zebrafish (Zfl2-2) [23] (Figure 3.1 A).  The nucleotide sequences 

of the ORFs encoded by these elements differ from L1.3 to varying extents 

(25.8%-59.3%)(Figure 3.1 B).  In contrast to the human and mouse L1s, Zfl2-2 

contains only one ORF, which encodes endonuclease and reverse transcriptase 

activities required for retrotransposition (Figure 3.1 A) [23].  

Consistent with previous reports, A3A expression inhibited 

retrotransposition of L1.3 to 25.5% of β-arrestin control levels [13].  A3A inhibited 

TGf21 and Zfl2-2 to 22.2% and 19.1% of β-arrestin, respectively.  A3A inhibited 

L1SM to a modest extent (60.6% of β-arrestin)(Figure 3.1 D). The partial 
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resistance of L1SM to A3A-mediated inhibition may be attributable to the 

elevated transcript levels, RNP production, and retrotransposition frequency of 

this element [22].   The deaminase-deficient mutant A3A-C106S did not 

significantly restrict retrotransposition of any of the elements tested, consistent 

with previous reports (Figure 3.1 D)[11].  Thus, the inhibition of LINE 

retrotransposition by A3A occurs independently of retroelement nucleotide 

sequence. Additional controls confirmed that the reduction of G418-resistant 

colonies observed in the presence of A3A reflects a specific inhibition of 

retrotransposition, beyond a non-specific cytotoxicity (Figure 3.2 A-C).  Finally, 

A3A inhibited retrotransposition when L1 was expressed from a non-episomal 

vector (pBSKS) and when L1 expression was driven by the native L1 promoter; 

thus, inhibition does not arise from A3A-mediated interference with a replicating 

episome or from inhibition of transcription from a viral promoter (Figure 3.3).  

 

A3A does not inhibit L1 endonuclease activity 

The LINE elements inhibited by A3A (Figure 3.1) all require element-

encoded endonuclease (EN) and reverse transcriptase (RT) activities for their 

retrotransposition, suggesting that A3A may inhibit a discrete step in TPRT [24]. 

While EN-deficient L1s cannot mobilize in wild-type cells, they retrotranspose 

efficiently in certain cells deficient in p53 and in the non-homologous end joining 

(NHEJ) pathway of DNA repair [25-27].  If A3A specifically blocks L1 

endonuclease activity, endonuclease-independent (ENi) retrotransposition events 

should escape inhibition (Figure 3.4 A).  Thus, we assessed the ability of A3A to 
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inhibit wild-type and ENi retrotransposition in wild-type (4364a) and XRCC4-

deficient (XR-1) Chinese Hamster Ovary (CHO) cells.  As predicted, A3A 

inhibited wild-type L1 retrotransposition in 4364a and XR-1 cells, to 3.7% and 

10.8% of β-arr, respectively (Figure 3.4 B), demonstrating that A3A can effect L1 

inhibition in non-human cells.  We found that A3A inhibited ENi retrotransposition 

in XR-1 cells to 1.8% of control levels (Figure 3.4 C). Thus, we conclude that A3A 

does not specifically inhibit L1 endonuclease activity. 

 

A3A does not block L1 reverse transcription 

To determine if A3A inhibits L1 RT activity, we tested the effect of purified 

recombinant A3A protein (rA3A or rA3A_C106S) in an in vitro assay for L1 

reverse transcription termed L1 Element Amplification Protocol (LEAP), which 

mimics the initial steps of TPRT (Figure 3.6 A)[28].  We purified recombinant A3A 

(rA3A) fused to a histidine tag from E. coli by Ni++-affinity followed by gel filtration. 

(Figure 3.7).  Control experiments using a fluorescein-labeled ssDNA 

oligonucleotide containing a single cytosine demonstrate that rA3A is active in 

UDG-dependent deaminase assays (Figure 3.8 A, left), while purified rC106S did 

not show detectable levels of deaminase activity (Figure 3.8 A, right).  In 

agreement with previous reports [11], rA3A did not show activity on dsDNA 

(Figure 3.8 B). 

Our initial experiments revealed a dramatic loss of LEAP products in the 

presence of rA3A, but not rA3A_C106S, which we interpreted as A3A-mediated 

inhibition of L1 RT procession (Figure 3.5 A).  However, we were concerned that 
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the presence of a cytidine residue in the LEAP adapter (5np1) might be allowing 

rA3A to interfere with the LEAP reaction indirectly; for example, by binding and 

sequestering the LEAP primer away from the L1 enzymatic machinery.  We 

therefore designed a LEAP adapter with no cytidine residues (5np0), and carried 

out LEAP reactions in the presence of rA3A.  Strikingly, rA3A did not result in a 

decrease in LEAP products primed from the 5np0 adapter (Figure 3.5 A).   

Moreover, sequencing of rA3A LEAP products primed with 5np0, and residual 

products from reactions primed with 5np1, revealed no evidence of deamination 

of the adapter or the L1 cDNA.  Thus, we were faced with an rA3A-mediated 

reduction of LEAP products that was dependent on the presence of a cytidine 

residue in the LEAP adapter, but which appeared to occur without deamination of 

LEAP products.   

Based on the above result, we hypothesized that rA3A could deaminate 

the cytidine residue in the 5np1 adapter, and that a uracil DNA glycosylase 

activity present in the L1 RNP preparation was responsible for removing the 

resulting uracil, leading to degradation of the adapter at the abasic site during the 

15-minute 100° C incubation step between the L1 RT reaction and PCR 

amplification (Figure 3.6 A).  Inclusion of recombinant uracil glycosylase inhibitor 

(UGI) protein in the LEAP reaction with rA3A did not restore LEAP products, 

leading us to speculate that the cellular uracil DNA glycosylase activity must be 

provided not by UNG2 but by SMUG1, which is not affected by UGI [29] (Figure 

3.5 A).  Consistently, in the absence of rA3A, no LEAP products were obtained 

from a “pre-deaminated” adapter containing a single uracil residue (5np1.U) 
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(Figure 3.5 B).  We next sought to confirm that a uracil DNA glycosylase activity 

was present in the L1 RNP, by using the 5np1.U adapter to prime MMLV and 

AMV reverse transcription reactions on purified RNA from L1 RNP preparations, 

followed by PCR amplification.  These reactions contain no rA3A protein and no 

undefined components (i.e., no putative cellular uracil DNA glycosylase activity), 

and we therefore expected to generate robust RT products from the 5np1.U 

adapter.  Strikingly, no MMLV RT products were detectable from the 5np1.U 

adapter (Figure 3.5 C).   

At this point, we speculated that the presence of a uracil residue in the 

adapter was not interfering with reverse transcription, but with the PCR 

amplification step required to detect RT products.  Indeed, we ultimately realized 

that PfuTurbo Hotstart DNA polymerase (Agilent), which we had used in the PCR 

amplification step of LEAP, cannot process through uracils in the template DNA 

strand.  We reasoned that cytidine residues in LEAP products generated in the 

presence of rA3A were likely being deaminated by rA3A, resulting in uracil 

residues that impede the procession of PfuTurbo, blocking PCR amplification and 

detection of LEAP products.  We therefore switched to a variant of this enzyme, 

PfuTurbo Cx Hotstart DNA polymerase (Agilent), which can process through 

uracils in template DNA. When PfuTurbo Cx  was used to amplify LEAP products, 

we detected robust LEAP products in the presence of rA3A, regardless of 

whether the adapter contained a cytidine residue (Figure 3.6 B).  Control 

experiments demonstrated that rA3A and rA3A_C106S do not interfere with in 
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vitro MMLV reverse transcription (Figure 3.9).  Thus, we conclude that A3A does 

not directly block L1 RT procession. 

 

A3A deaminates L1 TPRT intermediates in vitro 

Previous studies did not detect deamination of L1 insertions generated in 

the presence of A3A [13]; however, rapid degradation of deaminated substrates 

by uracil DNA glycosylase (UNG) and apurinic/apyrimidinic endonuclease (APE) 

may confound detection of such editing in vivo. To determine if A3A can 

deaminate L1 RT  products in vitro, we characterized 100 LEAP products 

generated in the presence or absence of rA3A or rA3A_C106S.  We did not 

detect significant editing of control RNP-only or rA3A_C106S products (Figure 

3.10 A and C).    In rA3A-containing reactions, we expected to uncover evidence 

of rA3A-mediated editing throughout the LEAP products.  To our surprise, we 

detected little evidence of editing within the L1 cDNA portion of the LEAP 

products.  However, we uncovered robust editing of the single-stranded adapter 

used to prime the LEAP reaction. For example,  among 100 products generated 

in the presence of rA3A, 91 exhibited a C-to-T change within the single 5’-TCA-3’ 

trinucleotide (a previously published preferred A3A target trinucleotide [11]) in the 

single-stranded LEAP adapter (Figure 3.10 B, far right; Table 3.1).  To make a 

relevant comparison, we quantified how frequently 5’-TCA-3’ trinucleotides within 

the L1 cDNA were deminated in the presence of rA3A.  The L1 cDNA portion of 

each LEAP product contains six 5’-TCA-3’ trinucleotide sequences.  We 

therefore consider 100 L1 cDNAs to contain a total of 600 5’-TCA-3’ substrates 
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that could potentially be edited by rA3A.   Among 600 total 5’-TCA-3’ substrates 

in the cDNA portion of 100 products, 25 were deaminated, representing editing of 

only 4.2% of available 5’-TCA-3’ substrates (Table 3.1).  

The above results suggested that the L1 RNA remains annealed to the L1 

cDNA during reverse transcription, protecting the L1 cDNA and leaving only the 

single-stranded LEAP adapter vulnerable to deamination.  To test this 

hypothesis, we included recombinant RNaseH in LEAP reactions with rA3A.  In 

RNP-only and rA3A_C106S control reactions, 25 out of 600 (4.2%) and 40 out of 

600 (6.7%) of available 5’-TCA-3’ substrates within the cDNA portion were 

deaminated, respectively (Figure 3.10 D and F). This result is consistent with the 

presence of an endogenous deaminase activity in HeLa cell RNP preparations; 

notably, APOBEC3B (A3B) is expressed in HeLa cells, and siRNA-mediated A3B 

knockdown is correlated with a moderate increase in engineered L1 

retrotransposition [30].  In contrast, in the presence of rA3A and RNaseH, 228 

out of 600 (38.0%) 5’-TCA-3’ substrates within the L1 cDNA were deaminated 

(Table 3.1, Figure 3.10 E).  

When assessing the extent of A3A-mediated editing on LEAP products 

amplified by PCR, it is critical to confirm that sequenced PCR products actually 

represent unique, independent LEAP products and not clonal amplification of a 

few LEAP products.  Therefore, for the 100 LEAP products generated in the 

presence of rA3A and RNaseH, we compared the number and location of edited 

bases on each of the products, along with the poly-A tail length of each product.  

As illustrated in Table 3.2, the 100 LEAP products were generated from four 
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independent LEAP reactions.  Among the products from each independent LEAP 

reaction, no two cloned products were identical with respect to number of 

deaminations, location of deaminations, and poly-A tail length.  Thus, we confirm 

that our sequenced PCR products represent unique L1 RT products.  The 

frequency of deamination events per LEAP product, for all experimental 

conditions, is shown in Figure 3.11. 

 

Uracil glycosylase inhibitor (UGI) alleviates A3A-mediated L1 inhibition 

The above data suggest that rA3A can deaminate single-stranded DNA 

exposed during TPRT in vitro.  We therefore hypothesized that A3A inhibits L1 

retrotransposition in cultured cells by deaminating TPRT intermediates, leading 

to their degradation by UNG and APE.  Blockage of UNG by a uracil glycosylase 

inhibitor (UGI) [31] should stabilize deaminated TPRT intermediates, 

simultaneously alleviating A3A-mediated inhibition and preserving signatures of 

deamination at nascent L1 insertions (Figure 3.12 A).  To test this prediction, we 

first examined the impact of UGI expression on L1 retrotransposition efficiency in 

the presence of A3A (Figure 3.12 B, left branch).  As predicted, co-expression of 

UGI and A3A resulted in a ~2-fold alleviation of A3A-mediated inhibition relative 

to A3A and empty vector control (Figure 3.12 C).  Colony counts indicate that 

UGI expression has no effect on L1 retrotransposition in the absence of A3A 

(Figure 3.13).   

To confirm that alleviation of inhibition by UGI is deaminase-dependent, 

we employed APOBEC3B (A3B) and A3B catalytic mutants, which have been 
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demonstrated to inhibit L1 in a deaminase-independent manner [13, 16].  UGI 

expression marginally alleviated L1 inhibition by wild-type A3B, but had no effect 

on L1 inhibition by A3B deaminase-deficient mutants (Figure 3.14).   

Over-expression of UGI also modestly relieved off-target effects of A3A in 

NEO control assays (Figure 3.15 B).  To confirm that we were observing a bona 

fide alleviation of retrotransposition inhibition and not solely relief of off-target 

effects of A3A expression, we carried out retrotransposition assays using a 

reduced amount of A3A plasmid (0.25 µg instead of 1.0 µg).  In this case, we 

observed virtually no effect by A3A on NEO control experiments (Figure 3.15 E), 

yet a ~2-fold inhibition of retrotransposition persisted (Figure 3.15 D).  We 

incrementally increased the amount of UGI plasmid in the co-transfections, and 

found that UGI expression consistently relieved A3A-mediated inhibition to ~80% 

of control levels (Figure 3.15 C). 

Additional controls demonstrated that UGI specifically alleviated A3A-

mediated inhibition of L1, independently of relieving A3A cytotoxicity (Figure 3.15 

A-E).  In sum, we conclude that UGI expression specifically alleviates A3A-

mediated inhibition of L1 by mitigating the downstream consequences of DNA 

deamination. 

 

A3A deaminates single-stranded DNA transiently exposed during TPRT  

We next examined L1 insertions occurring in the presence of A3A and 

UGI for signatures of deamination.  We co-transfected cells with A3A, UGI, and 

JM140-L1.3-Δ2-k7, a retrotransposition indicator plasmid which delivers a ColE1 
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bacterial origin of replication along with the NEO gene, allowing recovery of L1 

insertions and flanking genomic DNA as autonomously replicating plasmids in 

bacteria [1]. We selected G418-resistant colonies to establish twelve  insertion-

containing cell lines (Figure 3.12 B, right branch).  Upon characterizing the 

insertions, we observed four incidents of G-to-A mutation within the 

retrotransposed sequence, which correspond to deamination events on the first 

strand L1 cDNA (Figure 3.16 A).  The 5’ target-site duplication (TSD) of one 

insertion contained a C-to-T change within the preferred A3A target site 5’-TCA-

3’, suggesting that A3A can act on transiently single-stranded genomic DNA 

during TPRT  (Figure 3.16 B).  

To amass further evidence for A3A-mediated editing of L1 

retrotransposition events, we employed a stable UGI-expressing U2OS cell line 

[32] (Figure 3.17 A, left branch).  This strategy ensures that UNG activity is 

blocked before introduction of A3A and L1 plasmids into the cell, as determined 

by subjecting cell lysates to an assay for uracil DNA glycosylase-dependent 

cleavage of a fluorescein-labeled oligonucleotide bearing a single uracil residue  

[32].  As compared to a control U2OS cell line, U2OS_UGI cell lysates contained 

no detectable uracil DNA glycosylase activity in this assay [32].  In control U2OS 

cells, 25 ng of A3A plasmid per transfection inhibited retrotransposition to 26.0% 

of β-arrestin control levels without substantial toxicity (Figure 3.17 A and B, 

Figure 3.18 A).  In U2OS_UGI cells, retrotransposition in the presence of 25 ng 

of A3A was alleviated to 87.6% of β-arrestin control levels (Figure 3.17 B; Figure 
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3.18 B).  Thus, we conclude that A3A inhibits L1 retrotransposition in U2OS cells, 

and that this inhibition is relieved by stable UGI expression. 

We next used JM140-L1.3-Δ2-k7 to generate a panel of clonal U2OS_UGI 

cell lines harboring L1 insertions (Figure 3.17 A, right branch).  Among 33 

insertions generated in the presence of A3A, representing ~123 kb of 

retrotransposed sequence, we detected 39 G-to-A changes on the plus-strand of 

the L1 insertions, far outnumbering any other nucleotide change (Figure 3.19, 

Figure 3.20).  In contrast, among 30 insertions (~107 kb) generated in the 

presence of C106S, only five G-to-A changes were detected, and among 24 

insertions with β-arrestin (~81 kb), we did not detect any G-to-A changes (Figure 

3.18, Figure 3.20, Figure 3.21).  Thus, we conclude that A3A can deaminate 

single-stranded DNA during L1 TPRT, providing a probable mechanistic 

explanation for A3A-mediated L1 inhibition. 

 

Discussion 

The data indicate that A3A inhibits L1 retrotransposition in a sequence-

independent manner, and without directly inhibiting L1 EN activity or RT 

procession.  We find that recombinant A3A protein (rA3A) can deaminate L1 RT 

products in vitro, and that the availability of single-stranded DNA dictates the 

specific signatures of deamination on L1 RT products.   

In the LEAP reaction in vitro, in the absence of RNaseH, the L1 RNA and 

first-strand cDNA remain annealed in a heteroduplex, and deamination is 

restricted to the single-stranded LEAP adapter which simulates the free genomic 
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DNA end used to prime TPRT in vivo.  Thus, we speculate that when cellular 

RNaseH is not abundant, the L1 RNA and cDNA could remain annealed in a 

protective heteroduplex protecting the first-strand L1 cDNA until second strand 

synthesis occurs.  In contrast, when recombinant RNaseH is included in the 

LEAP reaction, C-to-U editing by A3A is evident throughout the L1 cDNA.  Thus, 

when RNaseH is available in vivo,  the L1 cDNA may be rendered vulnerable to 

A3A-mediated deamination.  Notably, the L1-related R2 element of Bombyx mori 

can displace RNA during second-strand DNA synthesis in vitro [33], obviating the 

need for RNaseH activity during integration.   

We next extended our in vitro findings to L1 retrotransposition events in 

cultured cells by employing a uracil glycosylase inhibitor (UGI) [31],  since 

deaminated TPRT intermediates in vivo are predicted to be degraded by UNG 

and APE.  Indeed, expression of UGI in cultured cells alleviates A3A-mediated 

L1 inhibition and reveals evidence for C-to-U editing of integrated L1 cDNAs as 

well as a genomic target-site duplication flanking an L1 integration. Remarkably, 

we observed a strand bias with regards to deamination events within 

retrotransposed insertions, with 39 G-to-A changes compared one C-to-T change  

on the plus-strand L1 DNA (Figure 3.19).  This result is consistent with 

deamination of the minus-strand cDNA during TPRT, and is not consistent with 

deamination of plasmid DNA by A3A, which reportedly occurs on both DNA 

strands [34].  Furthermore, deamination of 5’ flanking genomic DNA cannot 

easily be explained by editing of transfected plasmid DNA.   Finally, among the 

G-to-A changes observed within retrotransposed sequence in U2OS_UGI cells, 
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one mutation resulted in a premature termination codon (Figure 3.20; cell line A0-

43), which truncates the L1 ORF2p protein by 145 amino acids and reduces 

retrotransposition efficiency to ~7% of control levels (Figure 3.23), making it 

unlikely that this mutation occurred on the plasmid prior to retrotransposition. We 

therefore conclude that deamination of TPRT intermediates is responsible, at 

least in part, for A3A-mediated inhibition of L1 retrotransposition.   

We propose a model for L1 inhibition by A3A in which A3A acts 

opportunistically on single-stranded DNA during L1 TPRT (Figure 3.24 and 3.25).  

A3A can deaminate the first-strand L1 cDNA if the L1 RNA has been removed, 

presumably through the action of cellular RNaseH (Figure 3.24 A, left).  When 

UNG activity is inhibited by UGI, these C-to-U changes become fixed as C-to-T 

transitions, and are revealed as G-to-A changes on the top strand of the 

integrated L1 insertion (Figure 3.19, Figure 3.24 A, right).  In the absence of UGI, 

removal of the uracil base by UNG and subsequent cleavage by APE would 

presumably result in degradation of the L1 cDNA (Figure 3.25 A).  Notably, such 

cleavage of the L1 cDNA could give rise to a 5’ truncated L1 insertion (Figure 

3.25 A).  

The transiently single-stranded genomic DNA regions, which ultimately 

give rise to L1 target site duplications, are a second potential substrate for A3A-

mediated deamination during L1 TPRT.  Deamination of the 5’ flanking genomic 

DNA in the presence of UGI is predicted to result in mismatched TSDs, with the 

deamination event evident as a C-to-T change in the 5’ TSD (Figure 3.24 B).  

Among the L1 insertions generated in HeLa cells, we uncovered one example of 
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editing consistent with deamination in this region (Figure 3.16 B).  Therefore, 

deamination of 5’ flanking genomic DNA may represent a mechanism by which 

A3A can interfere with L1 TPRT.  Notably, the putative deamination event took 

place within the context 5’-TCA-3’, which has been previously reported as a 

preferred A3A substrate [11], and also was preferentially deaminated by rA3A in 

our LEAP products (Table 3.1).  In the absence of UGI, deamination in this 

region and resultant cleavage of the top-strand DNA could potentially substitute 

for second-strand cleavage during TPRT (Figure 3.25 B).  The L1 integration 

event could then go to completion and would perhaps give rise to an insertion 

bearing shorter target-site duplications than if second-strand cleavage took place 

at the single-strand/double-strand DNA junction 3’ of the TPRT intermediate.  

Notably, the structure of the transiently single-stranded genomic DNA 5’ of the L1 

insertion resembles the non-transcribed strand of an R-loop, which is acted upon 

by the APOBEC3-related activation induced deaminase (AID) in vitro [35], and 

which may be targeted by AID in vivo during class-switch recombination [36].  

Thus, activity on a transiently single-stranded DNA substrate at a genomic locus 

may represent a conserved feature of APOBEC-related cytidine deaminases.  

Indeed, the cytotoxic effects of A3A may arise from a DNA damage response 

triggered by deamination and UNG-dependent degradation of single-stranded 

genomic DNA at structures such as transcription bubbles and replication forks 

[32].   

A3A-mediated deamination of the 3’ flanking genomic DNA of a TPRT 

intermediate in the presence of UGI is predicted to result in mismatched TSDs, 
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with the deamination event evident as a G-to-A change in the 3’ TSD (Figure 

3.23 C).  We did not detect evidence for editing in this location among the 

retrotransposition events characterized from cultured cells.  However, extensive 

editing of the single-stranded 3’ RACE adapter in the LEAP assay suggests that 

3’ flanking genomic DNA may be a viable target for A3A in vivo, especially in the 

absence of cellular RNaseH.   It is intriguing to speculate that in the absence of 

UGI, A3A-mediated editing within this region could lead to loss of the entire 

integration intermediate (Figure 3.25 C).  Notably, the ERCC1/XPF 

endonuclease has been implicated in limiting L1 retrotransposition by cleaving 

this transiently single-stranded 3’ genomic DNA during TPRT [37].  The DNA 

lesion resulting from cleavage of this region could be repaired using the top 

strand DNA as a template, leaving no detectable evidence of the thwarted 

retrotransposition event.   

The data indicate that A3A inhibits L1 retrotransposition by deaminating 

transiently single-stranded DNA exposed during TPRT, providing the first 

mechanistic explanation for APOBEC3-mediated inhibition of an autonomous 

retroelement.  Notably, engineered L1 insertions represent a readily recoverable 

sequence target, which we have exploited in conjuction with UGI to preserve and 

directly observe A3A-mediated editing of genomic substrates, without resorting to 

3D-PCR-based techniques [34, 38, 39].   

Given the expression profile of A3A in human tissues [11, 34], it is unlikely 

that L1, which must retrotranspose in the germline or early embryo in order to 

generate heritable insertions, is the physiological target of A3A.  However, 
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endogenous APOBEC3B has been demonstrated to restrict L1 retrotransposition 

in human embryonic stem cells (hESCs) [30].  Thus, mechanistic insights from 

A3A-mediated L1 inhibition can be extended to A3B, which represents a likely 

physiological restriction factor for L1 retrotransposition.   

 

Materials and Methods 

Some of the text describing materials and methods in this chapter is duplicated 

from Chapter 2 of this thesis. 

 

Plasmids 

All plasmids were grown in DH5α (F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 

endA1 hsdR17 (rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1) competent E. coli 

(Invitrogen; Carlsbad, CA. Prepared in house as described in [40]) and prepared 

using the Qiagen Plasmid Midi Kit (QIAGEN; Hilden, Germany) according to the 

manufacturer’s protocol.   

 

APOBEC3 expression constructs: 

The pK_βarr, A3A, A3B, A3B_Nterm and A3B_CS expression plasmids have 

been described previously [41].  The APOBEC3A mutant C106S, described in 

[11] was received from Dr. Matt Weitzman and Dr. Inigo Narvaiza in pcDNA 3.1+ 

(Invitrogen), and were subcloned into the pK vector using HindIII and XhoI 

restriction sites.   
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LINE expression constructs: 

 

JM101/L1.3 has been described previously [20, 42], and consists of the pCEP4 

backbone (Invitrogen/Life Technologies; Carlsbad, CA) containing a full-length 

copy of the L1.3 element and the mneoI indicator cassette. 

 

pDK101 has been described previously [43], and consists of JM101/L1.3 

modified by PCR mutagenesis to contain the T7 gene 10 epitope tag at the C-

terminus of ORF1p. 

 

pDK135 has been described previously [28], and is identical to pDK101, except it 

contains the D702A mutation in the putative ORF2p reverse transcriptase active 

site [44]. 

 

pJJH230A/L1.3 has been described previously [45], and is similar to 

JM101/L1.3, except it contains the mblastI indicator cassette ([26]) in the 3’ UTR 

instead of mneoI, and it contains the H230A mutation in the ORF2p endonuclease 

domain [44]. 

 

KS101/L1.3/sv+ consists of the pBSKS-II backbone (Stratagene/Agilent 

Technologies; Santa Clara, CA) containing a full-length L1.3 element with the 

mneoI indicator cassette in the 3’UTR, and the SV40 late polyadenylation signal. 

 

114



JM102/L1.3 has been described previously [26], and is identical to JM101/L1.3, 

except it lacks the L1.3 5’UTR. 

 

pCEP4/L1SM has been described previously [22], and consists of a synthetic 

mouse L1 sharing the same amino acid seqeunce as L1spa [46], but with 24% of 

its nucleotide sequence replaced for optimal GC-richness. It contains the mneoI 

indicator cassette in the 3’UTR, and is cloned in the pCEP4 backbone. 

 

pCEP4/TGf21 has been described previously [21] and consists of a natural 

mouse element with the mneoI indicator cassette in the 3’ UTR, cloned in the 

pCEP4 backbone. 

 

pCEP4/Zfl2-2 has been described previously [23] and consists of a zebrafish 

LINE-2 element cloned in the pCEP4 backbone.  The Zfl2-2 3’UTR is cloned 3’ of 

the mneoI cassette. 

 

pAD2TE1 has been described previously [47] and is similar to pDK101 except it 

contains aTAP tag on the C-terminus of ORF2p as well as the T7 gene 10 

epitope tag on the C-terminus of ORF1p. 

 

pAD136 has been described previiously [47] and is identical to pAD2TE1 except 

it contains the H230A mutation in the ORF2p endonuclease domain. 
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JM140/L1.3/Δ2/k7 has been described previously [1] and contains the L1.3 

element cloned into pCEP4 backbone, but lacks the CMV promoter and the 

SV40 polyA signal.  The mneoI indicator cassette and a ColE1 bacterial origin of 

replication are inserted in the L1.3 3’UTR. 

 

LGCX vector has been described previously [31] and is a variant of the LNCX 

retroviral vector [48] in which the neomycin phosphotransferase gene has been 

replaced by GFP.  

 

LGCX/UGI has been described previously [31] and consists of the LGCX vector 

containing a uracil glycosylase inhibitor (UGI) gene codon-optimized for 

expression in human cells (hUGI). 

 

pU6i NEO is a pBSKS-based plasmid with the neomycin phosphotransferase 

(NEO) gene from pEGFPN1 (Clontech) introduced into the backbone.  The multi-

cloning site contains the U6 promoter. To generate linearized plasmid for control 

transfections, pU6i NEO was digested with BglII (New England Biolabs; Ipswitch, 

Massachussets), which does not disrupt NEO gene expression, and run on an 

agarose gel to confirm linearization.  The restriction digest reactions were purified 

using the Qiagen gel extraction kit. 
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Cell Culture 

HeLa cells:  Cells were grown at 37°C in Dulbecco’s modified Eagle medium 

(DMEM) (Invitrogen) supplemented with 10% fetal bovine calf serum (FBS) 

(Invitrogen), 1X penicillin/streptomycin/glutamine (Invitrogen) in the presence of 

7% CO2 and 100% humidity. 

 

CHO cells:  Cells were grown at 37°C in DMEM-low glucose medium (Invitrogen) 

supplemented with 10% FBS (Invitrogen), 1X penicillin/streptomycin/glutamine 

(Invitrogen), and 1X non-essential amino acids (Invitrogen) in the presence of 7% 

CO2 and 100% humidity. 

 

U2OS_UGI and U2OS control Cells: Cells were grown at 37°C in DMEM 

(Invitrogen) supplemented with 10% FBS (Invitrogen) and 1X 

penicillin/streptomycin/glutamine (Invitrogen) in the presence of 7% CO2 and 

100% humidity. 

 

The L1 Retrotransposition Assay 

HeLa and U2OS cell retrotransposition assays were carried out as 

previously described [18, 19].  Cells were plated at an appropriate density in 6-

well dishes (BD Biosciences; San Jose, California), T-75 flasks (BD Biosciences) 

or 10cm dishes (BD Biosciences or Corning; Corning, New York) to obtain 

quantifiable colonies for the retroelement expression construct used (see figure 

legends).  Eighteen hours later, transfections were carried out using the FuGene 
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6 transfection reagent (Roche; Penzberg, Germany) and Opti-MEM (Invitrogen), 

according to manufacturer’s protocol (3 µl FuGene and 97 µl Opti-MEM per µg of 

DNA transfected).  Media was replaced the following day.  At 72h post-

transfection, cells were subjected to selection with 400 µg/ml G418 (Invitrogen)  

Selection was carried out for 12-14 days, replacing the selection media every 

other day.  Colonies were washed with 1X phosphate buffered saline (PBS) 

(Gibco), fixed with 37% paraformaldehyde/8% glutaraldehyde, and stained with 

0.1% crystal violet solution. 

CHO cell retrotransposition assays were carried out in 4364a and XR-1 

cell lines as previously described [26].  Cells were plated in T-75 flasks (BD 

Biosciences) at an appropriate density to obtain quantifiable colonies for the 

retroelement construct used (details are given for each experiment in the figure 

legends).  Eight hours later, transfections were carried out using the FuGene 6 

transfection reagent (Roche) and Opti-MEM (Invitrogen) according to 

manufacturer’s protocol (3 µl FuGene and 97 µl Opti-MEM per µg of DNA 

transfected).  Media was replaced the following day.  At 72h post-transfection, 

cells were subjected to selection with 400 µg/ml G418 (Invitrogen).  Selection 

was carried out for 12-14 days, replacing the selection media every other day. 

Colonies were washed with 1X PBS, fixed with 37% paraformaldehyde/8% 

glutaraldehyde, and stained with 0.1% crystal violet solution. 
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Protein expression and purification 

A3A and A3A-mutant C106S cDNAs were inserted into pET28 and pET21 

histidine-tag expression plasmids and expressed in E. coli, strain C43(DE3) 

(Lucigen). Recombinant protein was produced by expression at 37° C in LB plus 

antibiotics for 3 to 5 hrs after induction with 1mM IPTG.  Bacterial cultures were 

spun down and cell pellets frozen prior to cell lysis.  Cell pellets were 

resuspended in lysis buffer {50 mM NaCl, 200mM KCl, 10% glycerol, 1mM DTT, 

35mM imidazole protease and Complete protease inhibitor (Roche)} and lysed 

using a fluidifier. The soluble (supernatant) fraction was separated by 

centrifugation at 40,000xg for 1 hr at 6° C. Recombinant protein from the 

supernatant was purified by binding to Ni-sepharose (GE healthcare), washing 

with lysis buffer and eluting with lysis buffer containing 0.5M imidazole.  Protein 

was concentrated using Amicon Ultracell filters (Millipore) and further purified  by 

gel filtration on a HiLoad 16/60 Superdex 200 prep grade column (Amersham), 

dialyzed in Slide-A-Lyzer cassettes (Pierce) in dialysis buffer (50 mM NaCl, 

200mM KCl, 10% glycerol, 1mM DTT and, finally, concentrated with Amicon 

Ultracell filters (Millipore). Protein purification was monitored by SDS PAGE, 

coomassie blue staining, and/or immunoblotting with anti-His-tag (Sigma) or anti-

APOBEC3A antibodies [49].  UV-spectrophotometry and Image J software was 

used to quantify protein levels.  
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In vitro Deaminase Assays 

To determine rA3A deaminase activity in UDG-dependent deaminase assays, 

increasing concentrations of rA3A or rC106S were incubated with a 5’-end FITC 

labeled single strand deoxyoligonucleotide (0.4 mM) in a final reaction volume of 

30 ml containing (40 mM Tris, pH 8.0, 10% glycerol, 40 mM KCl, 50 mM NaCl, 5 

mM EDTA, and 1 mM DTT). The reactions were incubated at 37°C for 4-8 hrs, 

stopped by heating to 90°C for 5 min, cooled on ice, and then centrifuged at 

10,000 x g for 1 minute. Twenty ml of the supernatant was then incubated with 

uracil DNA glycosylase (UDG, New England Biolabs) in buffer containing 20 mM 

Tris, pH 8.0, 1 mM DTT for 1 h at 37°C and treated with 150 mM NaOH for 30 

minutes at 37°C. Then, samples were incubated at 95°C for 5 min, 4°C for 2 min 

and separated by 15% TBE/urea-PAGE. Gels were directly analyzed using a 

FLA-5100 scanner (Fuji). The PAGE-purified ssDNA oligonucleotide (Invitrogen) 

used for the deaminase assays (FITC-TCA) contains a single cytosine in the A3A 

specific target trinucleotide 5’-TCA. 

(FITC-5’-TATTATTATTATTATTATTCATTTATTTATTTATTTATTT-3’).  

For deaminase assays on dsDNA (Fig. 2C) the target FITC-TCA oligonucleotide 

was pre-incubated with a complementary oligonucleotide, or a non-

complementary oligonucleotide (ns) at the indicated ratios.  
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LEAP Assay 

LEAP assays were carried out generally as described in [28].   

 

Primer sequences:  All oligos used in this study were syntesized by Integrated 

DNA Technologies (IDT; Coralville, Iowa) 

 

LEAP adapter 5np1; purified by high-performance liquid chromatography 

(HPLC): 5’-GATGGATGATGAATAAAGTGT 

GGGATGATCATGATGTATGGATAGGTTTTTTTTTTTT-3’   

 

LEAP adapter 5np0; purified by high-performance liquid chromatography 

(HPLC):  5’-GATGGATGATGAATAAAGTGT 

GGGATGATGATGATGTATGGATAGGTTTTTTTTTTTT-3’   

 

LEAP adapter 5np1.U; purified by high-performance liquid chromatography 

(HPLC): 5’-GATGGATGATGAATAAAGTGT 

GGGATGATUATGATGTATGGATAGGTTTTTTTTTTTT-3’   

 

5np1 outer: 5’-GATGGATGATGAATAAAGTG-3’ 

 

L1 3’ end: 5’-GGGTTCGAAATCGATAAGCTTGGATCCAGAC-3’ [28] 
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Preparation of L1 RNPs:  6x106 HeLa cells were plated per T-175 flask (BD 

Biosciences).  Eighteen hours later, they were transfected with 30 µg of L1 

plasmid DNA using FuGene 6 transfection reagent (Roche) and Opti-MEM 

(Invitrogen) according to manufacturer’s protocol (3 µl FuGene and 97 µl Opti-

MEM per µg of DNA transfected).  At 72 hours post-transfection, cells were 

subjected to selection with 200 µg/ml hygromycin B (Invitrogen).  Hygromycin 

media was replaced daily for 9-11 days, until harvest day.  Untransfected control 

HeLa cells were plated 2-3 days before harvest day.  On harvest day, cells were 

washed three times with 10 ml cold 1x PBS and collected by scraping into 10 ml 

cold 1x PBS.  Cells were pelleted in a 15-ml conical tube (BD Biosciences) at 

3,000xg for 5 minutes at 4°C.  The PBS was removed, and cells were lysed for 

15 minutes on ice in 1 ml lysis buffer (1.5 mM KCl, 2.5 mM MgCl2, 5 mM Tris-HCl 

(pH 7.4) 1% w/v deoxycholic acid, 1% w/v Triton X-100 and 1x Complete EDTA-

free protease inhibitor cocktail (Roche).  Following lysis, cell debris and nuclei 

were pelleted by centrifugation at 3,000xg for 5 minutes at 4°C, and whole-cell 

lysate was transferred to a new tube. 

 

Isolation of RNPs by Ultracentrifugation:  1 ml whole-cell lysate was centrifuged 

through a sucrose cushion consisting of 8.5% and 17% w/v sucrose in 80 mM 

NaCl, 5 mM MgCl2, 20 mM Tris-Cl (pH 7.5), 1 mM DTT, and 1x Complete EDTA-

free protease inhibitor cocktail (Roche).  Cells were ultracentrifuged for 2h at 

178,000xg at 4°C.  The resulting pellet was resuspended in 50-100 µl (depending 

on pellet volume) dH2O with EDTA-free protease inhibitor cocktail (Roche).  
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Protein concentration was determined by Bradford assay (Bio-Rad; Hercules, 

California), and the sample was brought to 1.5 mg/ml final concentration.  The 

portion of the sample intended for LEAP reactions was diluted to 50% v/v 

glycerol, aliquoted, flash-frozen on dry ice/ethanol, and stored at -80°C.  

Additional portions were reserved for RNA extraction. 

 

RNA isolation and RT-PCR:  RNA was extracted from RNP preps using the 

Qiagen RNA Easy columns following the manufacturer’s instructions, omitting the 

cell lysis step and including on-column DNase treatment.  RNA was quantified 

using a Nano-Drop spectrophotometer and diluted to 0.5 µg/µl.  RT-PCR was 

carried out on 0.5 µl of purified RNA, using MMLV reverse transcriptase 

(Promega) and 0.8 µM LEAP adapter (5np1) at 42°C for 30 minutes.  For A3A 

containing reactions, 100-300 ng of rA3A or rA3A_C106S protein in 10% glycerol 

were included in the MMLV RT reaction.  For control reactions containing “heat-

killed” rA3A, rA3A samples were incubated at 100° C for 15 minutes prior to 

inclusion in the MMLV RT reaction.  Following the MMLV RT reaction, reaction 

mixtures were incubated at 100°C for 15 minutes to denature rA3A protein.   O.5 

µl MMLV-RT reaction product was PCR amplified using PfuTurbo Cx Hotstart 

DNA polymerase (Agilent) and the following conditions: 95° C for 2 minutes, 

followed by 35 cycles of 30s at 95° C, 30s at 58° C, and 30s at 72° C, with a final 

extension time of 7 minutes at 72°C.  PCR products were visualized on 2% 

agarose gels. 
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LEAP Reactions:  One µl of 0.75 µg/ul (50% v/v glycerol) RNP sample was 

incubated with 50 mM Tris-Cl (pH 7.5), 50 mM KCl, 5 mM MgCl2, 10 mM DTT, 

0.4 µM LEAP primer, 20 U RNasin (Promega), 0.2 mM dNTPs (Invitrogen) and 

0.05% v/v Tween 20 in a final volume of 50 µl, for 30 minutes at 37°C.  A “no 

RNP” reaction was prepared as a negative control.  For A3A containing 

reactions, 5-100 ng of rA3A or rA3A_C106S protein in 10% glycerol were 

included in the LEAP reaction. For RnaseH-containing reactions, 2 units 

recombinant RNaseH (Invitrogen) were included in the LEAP reaction.  For 

control reactions containing “heat-killed” rA3A, rA3A samples were incubated at 

100° C for 15 minutes prior to inclusion in the LEAP reaction.   

Following the L1 RT reaction, reactions were incubated at 100°C for 15 

minutes to denature rA3A protein.  1 µl of LEAP product was then included in the 

PCR amplification step using PfuTurbo Hotstart DNA polymerase (Agilent) or 

PfuTurbo Cx Hotstart DNA polymerase (Agilent), and the following conditions: 95° 

C for 2 minutes, followed by 35 cycles of 30s at 95° C, 30s at 58° C, and 30s at 

72° C, with a final extension time of 7 minutes at 72°C.  PCR products were 

visualized on 2% agarose gels. 

 

Product characterization:  PCR products were excised from agarose gels and 

purified using the QIAquick gel extraction kit (Qiagen).  Products were cloned into 

ZERO Blunt PCR cloning vector (Invitrogen), transformed, and plasmid DNA 

recovered by mini-prep (Promega SV Mini-Prep kit; Promega, Fitchburg, 

Wisconsin).  Individual clones were then sequenced.  Sequence alignments were 
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produced using MegAlign software from the Lasergene DNASTAR suite 

(DNASTAR; Madison, Wisconsin). 

 

Characterization of retrotransposition events 

Primers: All oligos used in this study were syntesized by Integrated DNA 

Technologies (IDT; Coralville, Iowa) 

 

NEOasReco: 5’-TCTATCGCCTTCTTGACGAG-3’ 

Rescue3seq: 5’-ACTCACGTTAAGGGATTTTGGTCA-3’ 

PolyAseq: 5’-AAAAAAAAAAAAAAAAAAAABN-3’ 

 

Generation of clonal cell lines: 2x105 HeLa cells were plated per 15 cm dish (BD 

Biosciences) and transfected using FuGene 6 (Roche) and Opti-MEM 

(Invitrogen) with 3 µg each of A3A expression vector, pLGCX/UGI, and 

JM140/L1.3/Δ2/k7 according to manufacturer’s protocol (3 µl FuGene and 97 µl 

Opti-MEM per µg of DNA transfected).  For U2OS_UGI cells, 5x105 cells were 

plated per 15 cm dish and transfected using FuGene 6 (Roche) and Opti-MEM 

(Invitrogen)  with 2 µg A3A (or A3A_C106S, or β-arr) plasmid and 8 µg of 

JM140/L1.3/Δ2/k7 according to manufacturer’s protocol (3 µl FuGene and 97 µl 

Opti-MEM per µg of DNA transfected).   Selection with 400 µg/ml of G418 

(Invitrogen) was initiated at 72 hours post-transfection, and carried out for 14 

days.  G418 media was replaced every other day.  On day 14, individual colonies 

were manually picked to individual wells of 12-well culture dishes (BD 
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Biosciences).  These colonies were expanded for 2-3 weeks to establish clonal 

cell lines.  Confluent T-75 flasks (BD Biosciences) of each cell line were 

harvested by trypisinization, and genomic DNA was prepared using the Qiagen 

Blood and Cell Culture Midi Kit, according to manufacturer’s instructions.   

 

Recovery of L1 insertions:  Insertions were recovered generally as previously 

described [2].  Briefly, 8 µg of genomic DNA was digested with excess restriction 

enzyme (HindIII, SspI, BglII, BamHI: NEB; BclI: Promega) overnight at 37° C.  

The following morning, an additional 2 µl of enzyme was added to the digest, and 

incubated at 37° C for 2 hours.  Digestion reactions were heat-inactivated (65° C, 

15 minutes), or in the case of BglII digest, cleaned up with the Wizard DNA 

clean-up kit (Promega).  The entire digest was then ligated with 8 µl T4 DNA 

ligase (NEB) under dilute conditions (500 µl total) overnight at 16° C.  The next 

morning, 2 µl additional T4 DNA ligase was added to the reaction and incubated 

at room temperature for 4 hours.  Ligations were concentrated on an Amicon 

Ultra-0.5 Centrifugal Filter Unit with Ultracel-100 membrane (Millipore; Billerica, 

Massachussets) at 8,000xg for 5 minutes, followed by a wash with 500µl dH2O, 5 

minutes at 8,000xg.  10-100 µl of concentrated DNA was recovered with a 10 

second spin.  The entire ligation was then added to 500 µl of XL-10 gold ultra-

competent E. coli (Stratagene; prepared in-house as described in [40]) and 

incubated on ice for 1-3 hours.  Transformations were heat-shocked at 42° C for 

38-45 seconds, and allowed to recover on ice for 2 minutes.  2 ml of warm (37° 

C) LB (no antibiotic) was added to each transformation.  Transformations were 

126



incubated overnight at room-temperature on an orbital shaker at 100 rpm.  The 

next morning, transformations were pelleted (300xg) and gently resuspended in 

500 µl fresh LB.  About 400 µl of this resuspension was plated on a 15 cm 

Kanamycin plate (30 µg/ml), and the remaining ~100 µl was used to seed a 2 ml 

liquid culture (30 µg/ml Kanamycin).  Plates and liquid cultures were incubated 

for 18-24 hours at 37° C.  Mini-preps (Promega SV mini-prep kit) were prepared 

from 2 ml cultures.  From 15 cm plates, individual colonies were picked to 

inoculate 2 ml cultures (30 µg/ml Kanamycin), grown overnight at 37° C, and 

plasmid DNA was prepared by mini-prep the following day.  Plasmid DNA 

recovered from mini-preps was digested with the original enzyme used for 

recovery, to confirm intramolecular ligation.  To characterize flanking genomic 

DNA, recovered insertions were sequenced using primers annealing to the 5’ 

(NEOasReco) and 3’ (Rescue3seq) ends of the NEO_ColE1 recovery cassette, 

as well as an oligo dA primer (polyAseq).  The genomic locations of insertions 

were determined by aligning flanking sequence to the human genome (Feb. 

2009; GRCh37/hg19), using the BLAT function of the UCSC genome browser. 
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Figure 3.1:  A3A-mediated L1 inhibition is sequence-independent 
 
A. Schematic of the LINE elements used in this experiment:  The mneoI cassette 
[18, 50] is shown within the 3’UTR of human L1.3. Black triangles represent the 
monomers in the 5’UTR of the mouse L1s (TGf21 and L1SM), and repetitive units 
in the 5’UTR of the zebrafish LINE-2 element (Zfl2-2).  L1.3, TGf21, and L1SM 
each encode ORF1 and ORF2 (outlined in red). Zfl2-2 contains only one ORF 
(outlined in red) which encodes endonuclease (EN) and reverse transcriptase 
(RT) activities.    
 
B. Percent nucleotide identity between ORF1 or ORF2 of human L1.3, and the 
corresponding ORF of each of the elements used.  For Zfl2-2, n/a indicates not 
applicable, as this element lacks an ORF1 orthologue. 
 
C.  Experimental strategy.  Approximately 2x104 (L1SM), 1x105 (L1.3), 2x105 

(NEO control), or 4x105 (TGf21 and Zfl2-2) HeLa cells were plated per T-75 flask 
and co-transfected in duplicate with 2 µg each of LINE and A3A (or β-arrestin 
control) expression vector. 
 
D. Sequence-independent inhibition of retrotransposition by A3A.  The impact of 
wild-type A3A (white bars), A3A_C106S (grey bars), and β-arr positive control 
(black bars) on LINE retrotransposition is shown.  The y-axis indicates percent 
retrotransposition, with the β-arr positive control set to 100% for each element.  
The x-axis indicates the LINE element used. Error bars indicate percent standard 
deviation derived from duplicate transfections.  The same experiment is shown in 
Figure 4.2, with the addition of A3A_F75L.  This experiment was performed 
twice, representing biological replicates. 
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Figure 3.2:  A3A expression has cytotoxic effects that do not account for 
the full impact of A3A expression on L1 retrotransposition 
 
A.  Schematic for A3A toxicity controls.   For each assay in this thesis, co-
transfections with a L1 retrotransposition indicator and A3A/β-arr plasmid, and a 
NEO expression vector and A3A/β-arr plasmid, were carried out in parallel.  At 72 
hours post-transfection, G418 selection (400µg/ml) was initiated and carried out 
for 14 days.  Colonies were fixed, stained, and counted.  The percentage of 
G418-resistant colonies relative to β-arr control was determined for L1 and NEO 
experiments.  The results from each NEO co-transfection were used to normalize 
data from the corresponding L1 co-transfection.  
 
B. A3A expression diminishes the number of G418-resistant colonies generated 
by co-transfection of a circular or linearized NEO expression vector, and by L1 
retrotransposition. Approximately 2x105 (retrotransposition assay) or 4x105 (NEO 
assay) HeLa cells per T-75 flask were transfected in duplicate with 4 µg total 
plasmid DNA.  Each transfection included 1 µg of L1 or NEO expression vector, 
and increasing amounts of A3A expression vector (from 0.0 µg to 3.0 µg).  The 
remaining plasmid mass was made up with β-arr expression vector so that each 
co-transfection consisted of a total plasmid mass of 4 µg.  The y-axis indicates 
the percentage of G418-resistant colonies obtained from each transfection, with 
0.0 µg A3A (4.0 µg β-arr) set to 100%.  The x-axis indicates the amount of A3A 
plasmid present in the co-transfection.  The gray line indicates colony counts for 
circular NEO co-transfection experiments; the light blue line indicates colony 
counts for linear NEO co-transfection experiments, and the dark blue line 
indicates counts for L1.3 retrotransposition.  Error bars indicate percent standard 
deviation between duplicate transfections. 
 
C.  Dose-dependent A3A-mediated L1 retrotransposition inhibition.  The colony 
counts generated in the retrotransposition assay (Supplemental Figure 1A) were 
normalized using the colony counts generated in the linear or circular NEO 
control co-transfections.  The y-axis indicates normalized percent 
retrotransposition, with 0.0 µg A3A (4.0 µg β-arr) set to 100%.  The x-axis 
indicates the amount of A3A plasmid in the co-transfection.  Dark blue bars show 
the results of normalization of L1 data with circular NEO co-transfection data; 
gray bars show the results of normalization with linear NEO co-transfection data.  
Error bars indicate percent standard deviation between duplicate transfections. 
This experiment was performed twice, representing biological replicates. 
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Figure 3.3:  Inhibition of L1 by A3A is not attributable to interference with 
L1 expression from a viral (CMV) promoter, or by interference with the 
replication of an episomal L1 expression vector 
 
Approximately 2x103 HeLa cells were plated per well of a 6-well dish and co-
transfected in triplicate with 0.5 µg A3A expression vector and 0.5 µg of L1 
expression vector per well.  L1 expression vectors: pDK101 L1.3, a pCEP4-
based episomal construct harboring a CMV promoter in addition to the L1 5’UTR 
[43].   pBSKS L1.3 is a non-episomal vector from which L1 expression is driven 
solely by the L1 5’UTR.  pJM102 L1.3 is a pCEP4-based episomal construct 
harboring a CMV promoter.  pJM102 L1.3 does not contain the L1 5’UTR; L1 
expression is driven only by a CMV promoter.  The y-axis indicates linear NEO-
normalized percent retrotransposition, with the β-arr positive control set to 100%. 
The L1 expression construct is indicated on the x-axis.  Dark blue bars show % 
retrotransposition in the presence of A3A; gray bars indicate the positive control 
β-arr.  Error bars indicate percent standard deviation derived from triplicate 
transfections.  Data were normalized to linear NEO control co-transfections as 
shown in figure 3.2.   
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Figure 3.4: A3A-mediated L1 inhibition does not occur by blockage of L1 
endonuclease activity 
 
A)  Experimental rationale. if A3A specifically blocks L1 EN activity, ENi 
retrotransposition events are expected to escape inhibition.  If A3A does not 
specifically block L1 EN activity, ENi events are expected to be susceptible to 
inhibition. 
 
B) Control retrotransposition assay in 4364a (wild-type) CHO cells.  
Approximately 1x105 4364a CHO cells were plated in a T-75 flask and co-
transfected with 2 µg of wild-type L1 retrotransposition indicator (pAD2TE1) and 
2 µg of A3A or control (β-arr) expression vector.  The y-axis indicates percent 
retrotransposition, with the β-arr positive control set to 100%.  
 
C) Wild-type and ENi retrotransposition assay in XR-1 CHO cells.  Approximately 
1x105 XR-1 CHO cells were plated in a T-75 flask and co-transfected with 2 µg of 
wild-type (pAD2TE1, gray bars) or endonuclease mutant (pAD136, black bars) 
L1 retrotransposition indicator plasmid and 2 µg of A3A or control (β-arr) 
expression vector.  The y-axis indicates percent retrotransposition, with the β-arr 
positive control set to 100%.  Error bars indicate standard deviation between 
duplicate transfections. 
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Figure 3.5:  Pfu cannot process through uracils in the template strand 
during PCR amplification 
 
 For each panel, lanes are labeled across the top.  For LEAP reactions (A and B), 
RNPs of the indicated L1 construct were used; for MMLV RT reactions (C), RNA 
purified from the indicated type of RNP was used. WT indicates pDK101 [43], a 
wild-type L1, RT- indicates pDK135 [28], an L1 bearing a mutation in the reverse 
transcriptase domain (D702A), EN- indicates JJ10.3-H230A [45], an 
endonuclease-deficient L1 bearing the mutation H230A in the endonuclease 
active site.  This construct also contains a blasticidin-resistance indicator 
cassette instead of mneoI; a small difference in cassette length causes LEAP 
products from this construct to be slightly larger, giving rise to a higher molecular 
weight LEAP product.  HeLa indicates untransfected HeLa cells; CS indicates 
100 ng of rA3A_C106S, a deaminase deficient A3A mutant protein.  HK indicates 
100 ng of heat-killed (15 minutes at 100°C) rA3A protein.  H2O is a water control 
(no RT product) for the PCR amplification step. 
 
A.  A3A-dependent loss of LEAP products occurs only when there is a cytidine 
residue within the LEAP adapter.  Increasing nanogram amounts of recombinant 
A3A protein (rA3A) were added to wild-type L1 RNP reactions.  On the right, 2 
units of recombinant uracil glycosylase inhibitor protein (UGI) were included in 
each reaction.  For each set of experiments, the LEAP adapter used is indicated.  
Top: “Normal” indicates the original LEAP/3’RACE adapter [28], which contains 
seven cytidines.  Middle: 5np0 is a modified LEAP adapter containing no cytidine 
residues.  Bottom: 5np1 is identical to 5np0, except that it contains a single 
cytidine residue. 
 
B.  LEAP products are lost when the LEAP adapter contains a uracil residue.  No 
rA3A protein was added to the reactions in this panel.  On the right, the 5np0 
(“G”), 5np1 (“C”), and 5np1.U (“U”) LEAP adapters are diagrammed.  On the left, 
LEAP reactions were performed with 5np0 (top), 5np1 (middle), and the “pre-
deaminated” LEAP adapter 5np1.U (bottom).  Reactions were performed both in 
the absence (lanes 1-5) and presence (lanes 6-10) of 2 units of recombinant 
UGI. 
	  
C.  MMLV RT products are lost when the LEAP adapter contains a uracil residue.  
No rA3A protein was added to the reactions in this panel.  Above, lanes 1-6 
contain MMLV RT products generated from the original (“normal”) LEAP/3’RACE 
adapter.  Lanes 7-12 were generated from the 5np0 adapter.  Below, lanes 1-6 
were generated from the 5np1 adapter, and lanes 7-12 were generated from the 
5np1.U adapter. 
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Figure 3.6:  rA3A does not block L1 RT activity 
 
A)  The LEAP assay.  L1 RNPs, consisting of the L1 RNA (dashed grey line) and 
the L1-encoded proteins (not shown) are isolated by ultracentrifugation from 
transfected cells.  The L1 RNPs are provided with a 3’ RACE primer (5np1, 
shown in black) consisting of a 3’ oligo dT and a 5’ unique adapter sequence.  
The 5np1 adapter contains a single cytidine (red) in the unique adapter portion.  
Following the RT step, reactions are boiled at 100° C for 15 minutes to denature 
rA3A protein.  L1 cDNAs were amplified by PCR using primers to the engineered 
L1 3’ end and the unique adapter sequence (black arrows). 
 
B) rA3A does not inhibit the LEAP reaction.  Control reactions, left to right: wild-
type (pDK101) RNP, RT mutant (pDK135 [28]; bearing RT domain mutation 
D702A) RNP, EN mutant (JJ101.3-H230A [45]) RNP; this construct also contains 
a blasticidin-resistance indicator cassette instead of mneoI; a small difference in 
cassette length causes LEAP products from this construct to be slightly larger, 
giving rise to a higher molecular weight LEAP product.  HeLa indicates 
untransfected HeLa cell RNP prep, no RNP control.  rA3A-containing reactions: 
wild-type (pDK101) RNP with increasing nanogram amounts (5-100 ng) of rA3A 
protein.  CS: 100 ng of rA3A_C106S.  HK: 100 ng of “heat-killed” (100° C for 15 
minutes) rA3A protein.  H2O: no L1 RT product PCR negative control.  Below, 
MMLV RT reactions illustrate the integrity of purified RNA isolated from the RNP 
prep used in the LEAP assay.  MMLV RT reactions were carried out using the 
5np1 3’RACE adapter, and PCR amplified using the 5np1 outer primer and  the 
L1 3’ end primer.  All PCR reactions were carried out using Pfu Turbo Cx. 
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Figure 3.7:  Purification of recombinant A3A protein 
 
  A) Purification of rA3A from E. coli by Ni affinity. Purification of His-tagged rA3A 
protein was monitored by SDS-4-12% polyacrylamide gel electrophoresis and 
coomassie blue staining. Input bacterial lysate was loaded onto the Ni-
Sepharose column (Lysate). Flowthrough lysate and wash fractions were 
collected (Unbound and Wash, respectively). rA3A was eluted with lysis buffer 
containing 0.5M imidazole and consecutive elution fractions were collected (F1-
4). Eluted His-tagged rA3A was mostly eluted in F2 (arrow). Approximate 
molecular sizes are indicated on the left.  

 
B) Purification of rA3A by gel filtration. rA3A purified by Ni-Affinity was further 
purified by gel filtration by FPLC on a Superdex 200 column. 280nm absorbance 
profile of the FPLC fractions is shown. Elution volume and fractions are indicated 
in the X-axis. Approximate molecular weight is indicated.  
 
This figure was generated by Dr. Inigo Narvaiza. 
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Figure  3.8:  Characterization of rA3A deaminase activity in vitro 
 
A.  rA3A but not the C106S mutant has deaminase activity in vitro. 
Increasing amounts of rA3A (left panel) or rC106S (right panel) were incubated 
with a FITC-labeled single strand DNA oligonucleotide containing a single 
cytidine residue for 4 hrs at 37° C. Samples were then incubated with 
recombinant uracil DNA glycosylase (UNG) and NaOH, and the products were 
resolved by gel electrophoresis using a 15% TBE/urea polyacrylamide gel. 
Molecular sizes of substrate oligonucleotide and deaminated, cleaved product 
are indicated. A control reaction (Oligo) was performed in the absence of 
recombinant protein. 
 
B.  Recombinant A3A does not deaminate dsDNA.  UDG dependent Deaminase 
assays with rA3A in the presence of increasing concentrations of a 
oligonucleotide complementary (asOligo) to the FITC labeled deamination 
substrate (1:1, 1:2, 1:5 ratio substrate:asoligo). In control reactions the antisense 
oligonucleotide was absent (lanes 1 and 7), antisense oligonucleotide was added 
after incubation with A3A (lanes 5 and 11), or a non specific oligonucleotide (ns) 
was added (lanes 6 and 12). A band corresponding showing a product of 
deamination was only detected after UDG treatment when the substrate is 
accessible to rA3A as ssDNA: in the absence of asOligo (lanes 7 and 12) or 
when the antisense oligonucleotide was added after incubation of the substrate 
with rA3A (lane 11).  
 
This figure was generated by Dr. Inigo Narvaiza. 
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Figure 3.9:  Recombinant A3A does not inhibit MMLV-RT activity 
 
From right to left:  MMLV RT reactions were carried out using the 5np1 3’RACE 
adapter, on purified RNA isolated from RNPs harvested from cells transfected 
with pDK101 (WT) or pDK135 (RT-).  RNA isolated from untransfected HeLa 
cells (HeLa) and a no RNA sample were included as controls.  Recombinant A3A 
(100 ng and 300 ng), rA3A_C106S (300 ng) and “heat-killed” (15 minutes, 100° 
C) rA3A (300 ng) were included in MMLV RT reactions.  Products were amplified 
using the 5np1 outer primer and the L1 3’ end primer. 
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Figure 3.10: Summary of 100 LEAP products per experimental condition   
 
The plus-strand sequence of the unedited LEAP product is depicted, 5’ to 3; 
therefore, G-to-A changes correspond to C-to-U deaminations on the minus-
strand L1 cDNA.  The location of the L1 3’ end PCR primer is underlined in blue.  
An indicates the LEAP product polyA tail, followed by the 5np1 LEAP adapter 
sequence, underlined in green.  Within the LEAP product sequence, all G 
nucleotides are highlighted in red.  Black stars piled above G nucleotides 
graphically represent the number times among 100 LEAP products that a 
nucleotide change consistent with deamination was observed at that position.  
Counts of deamination events are represented numerically below.  Blue circles 
piled above the sequence represent nucleotide changes not consistent with 
deamination. 
 
Top panel, a-c:  Summary of 100 LEAP products generated using wild-type L1 
RNP plus: a) no rA3A protein, b) 100 ng of wild-type rA3A, c) 100 ng of 
rA3A_C106S. 
 
Bottom panel, d-f:  Summary of 100 LEAP products generated using wild-type L1 
RNP with 2 Units of RNaseH, plus: d) no rA3A protein, e) 100 ng of wild-type 
rA3A, f) 100 ng of rA3A_C106S.  
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Figure 3.11:  Numerical distribution of deamination events per L1 cDNA 
portion of the LEAP product, excluding the LEAP adapter 
 
For each experimental condition depicted in Figure 5, a histogram quantifies G-
to-A changes per product (x-axis) versus the number of LEAP products (out of 
100 per condition) harboring each quantity of G-to-A changes (y-axis). The L1 
cDNA portion of the LEAP product, but not the LEAP adapter, is considered in 
this analysis. The abundance of LEAP products harboring multiple deaminations 
suggests that A3A may act processively on single-stranded DNA.  
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Figure 3.12:  UGI expression alleviates A3A-mediated inhibition of 
retrotransposition in HeLa cells  
 
A)  Experimental rationale.  From left:  A3A is predicted to deaminate cytidine to 
uracil in single-stranded DNA in TPRT intermediates.  Upper branch: uracils in 
DNA are recognized and removed by UNG, resulting in an abasic site that can be 
cleaved by APE, which is predicted to result in destruction of TPRT 
intermediates, thereby inhibiting retrotransposition.  Lower branch:  UGI 
expression blocks the activity of UNG, preserving uracils in DNA.  Thus, 
deaminated TPRT intermediates are predicted to persist, and harbor signatures 
of deamination which become fixed as C-to-T changes (G-to-A on the opposite 
DNA strand), and A3A-mediated inhibition of retrotransposition should thereby be 
alleviated. 
 
B)  Schematic for testing the effect of UGI expression on A3A-mediated L1 
inhibition, and generation of stable HeLa cell lines harboring retrotransposition 
events, using A3A and UGI expression vectors.  Left branch, retrotransposition 
assay:  Approximately 1x105 HeLa cells were plated per 10 cm dish and co-
transfected with 1 µg each of L1 expression plasmid (JM101 L1.3) A3A or β-arr 
control vector, and pLGCX/UGI or pLGCX empty vector.  G418 selection (400 
µg/ml) was initiated at 72h post-transfection and carried out for 14 days. Right 
branch, characterizing insertions: 2x105 HeLa cells were plated per 15 cm dish, 
and transfected 24 hours later with 3 µg each of JM140/L1.3/Δ2/k7, A3A, and 
LGCX/UGI plasmids.  G418 selection (400 µg/ml) was initiated at 72h post-
transfection and carried out for 14 days.   Individual colonies were then isolated 
and expanded to establish clonal cell lines.  Genomic DNA was prepared and 
subjected to the recovery procedure. 
 
C)  UGI expression alleviates A3A-mediated retrotransposition inhibition.  The y-
axis depicts percentage of L1 retrotransposition relative to control.  For each 
experimental condition, the appropriate β-arr control was set to 100%.  Gray bars 
indicate empty pLGCX vector; black bars indicate pLGCX_UGI. Error bars 
represent standard deviation between duplicate transfections. 
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Figure 3.13: UGI co-expression does not enhance retrotransposition 
efficiency independently of A3A co-expression 
 
Above left, raw colony counts from duplicate L1.3+β-arr+LGCX_vector co-
transfections.  Below left, raw colony counts from duplicate L1.3+β-
arr+LGCX_UGI co-transfections.  Above right, colony counts from duplicate 
L1.3+A3A+LGCX_vector co-transfections.  Below right, colony counts from 
duplicate L1.3+A3A+LGCX_UGI co-transfections. 
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Figure 3.14:  UGI does not alleviate inhibition by cytidine deaminase 
deaminase mutants of APOBEC3B 
 
Approximately 1x105 HeLa cells were plated per 10 cm dish, and transfected with 
1 µg each of APOBEC3 vector, L1 vector, and pLGCX_UGI or pLGCX empty 
vector.  Y-axis indicates percentage of retrotransposition relative to control, with 
the appropriate β-arr control for each experimental condition set to 100%.  The 
APOBEC3 construct used is indicated along the x-axis.  Dark blue bars show 
vector-only (pLGCX)  control, yellow bars show inclusion of pLGCX_UGI.  Data 
were normalized to circular NEO control co-transfections.   
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Figure 3.15: UGI expression specifically alleviates A3A-mediated L1 
inhibition in HeLa cells 
 
A) Colony counts, not normalized, corresponding to Figure 3.12 C.  Colony 
counts from L1 retrotransposition assays, not normalized.  Gold bars indicate 
LGCX vector control, blue bars indicate LGCX-UGI co-transfection.  The y-axis 
indicates percentage of G418-resistant colonies relative to β-arr control.  The x-
axis shows the A3A expression vector used.   
 
B) Colony counts from circular NEO control co-transfections, corresponding to 
Figure 3C.  UGI co-expression partially alleviates A3A cytotoxicity.  Gold bars 
indicate LGCX vector control, blue bars indicate LGCX-UGI co-transfection.  The 
y-axis indicates % G418-resistant colonies relative to β-arr control.  The x-axis 
shows the A3A expression vector used. 
 
C) UGI alleviates A3A-mediated inhibition of retrotransposition independently of 
its impact on off-target effects.  Here, we used .25 µg of A3A plasmid, to achieve 
minimal effect on NEO control experiments, while substantially inhibiting L1 
retrotransposition (Figure 3.2, B-C).   This control demonstrates that UGI 
expression specifically alleviates inhibition of L1, independently of effects on A3A 
cytotoxicity.  Approximately 1x105 HeLa cells were transfected with a total 
plasmid mass of 4 µg, the composition of which is represented in the pie charts 
below each bar graph.  Assays were carried out in parallel with L1.3 and linear 
NEO control, which were held constant at 1 µg per transfection (black wedge).  
The amount of A3A plasmid (or β-arr control) was held constant at .25 µg (red 
wedge).  LGCX_UGI expression vector (green wedge) was added in increasing 
amounts (0 µg, 0.125 µg, 0.25 µg, 2.25 µg, x-axis); the remaining plasmid mass 
for each co-transfection was supplied by LGCX empty vector (gray wedge). 
Retrotransposition assay was normalized to linear NEO.  Y-axis indicates percent 
retrotransposition relative to β-arr control for each condition.  Error bars represent 
percent standard deviation between duplicate transfections. 
 
 
D) Retrotransposition assay colony counts and E) linear NEO colony counts, 
from the experiment shown in Supplemental Figure 3D.  Approximately 1x105 

HeLa cells were transfected with a total plasmid mass of 4 µg, the composition of 
which is represented in the pie charts below each bar graph.  Assays were 
carried out in parallel with L1.1 and linear NEO control, which were held constant 
at 1 µg per transfection (black wedge).  The amount of A3A plasmid (or β-arr 
control) was held constant at .25 µg (red wedge).  LGCX_UGI expression vector 
(green wedge) was added in increasing amounts (0 µg, 0.125 µg, 0.25 µg, 2.25 
µg, x-axis); the remaining plasmid mass for each co-transfection was supplied by 
LGCX empty vector (gray wedge).   Y-axes indicate percentage of G418-
resistant colonies relative to β-arr control for each condition.  In all graphs, error 
bars indicate percent standard deviation derived from duplicate transfections. 
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Figure 3.16:  UGI expression reveals evidence of A3A-mediated editing of 
L1 retrotransposition events in HeLa cells   
 
A)  Summary of mutations found within retrotransposed L1 sequence among 12 
insertions generated in the presence of A3A in HeLa cells. The number of G-to-A 
changes in the plus-strand sequence (indicative of deamination of the nascent 
first-strand cDNA) is highlighted in red. 
 
B)  An L1 insertion harboring mismatched TSDs indicative of A3A-mediated 
editing.  Above, the empty-site genomic sequence of the eventual target site 
duplications is shown.  The targeted “C” is highlighted in red.  Below, the 
structure of the L1 integration event, flanked by mismatched TSDs.  The 3’ TSD 
retains the original genomic sequence, while the 5’ TSD bears evidence of A3A-
mediated deamination. 
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Figure 3.17:  Stable UGI expression alleviates A3A-mediated inhibition of 
retrotransposition in U2OS cells 
 
A)  Schematic for testing the effect of stable UGI expression on A3A-mediated L1 
inhibition in U2OS cells, and generation of stable U2OS_UGI cell lines harboring 
retrotransposition events generated in the presence of A3A.  Left branch, 
retrotransposition assay:  Approximately 5x104 U2OS_UGI or control U2OS cells 
per 10 cm dish were transfected with a total of 1.25 µg of DNA, including 1.0 µg 
of JM101 L1.3 plasmid.  For the β-arr control transfections, 250 ng of pK_β-arr 
plasmid was used.  For the A3A and C106S transfections, the remaining 250 ng 
consisted of 25 ng of pK_A3A plasmid or 25 ng of pk_A3A_C106S plasmid, and 
225  ng of pK_β-arr plasmid.  G418 selection (400 µg/ml) was initiated at 72h 
post-transfection and carried out for 14 days.  Right branch, characterizing 
insertions:  5x105 U2OS_UGI cells were plated per 15 cm dish, and transfected 
24 hours later with 8 µg of JM140_L1.3_Δ2_k7 plasmid, and 2 µg of A3A, 
C106S, or β-arr plasmid.  At 72 hours post-transfection, selection with 400 µg/ml 
G418 was initiated and carried out for 14 days.  Individual colonies were isolated 
and expanded to establish clonal cell lines.  Genomic DNA was prepared and 
subjected to the recovery procedure. 
 
B) Stable UGI expression alleviates A3A-mediated L1 inhibition.  This data point 
is taken from the titration experiment shown in Supplemental Figure 5.  Left, 
results for control U2OS cells.  Right, results for U2OS_UGI cells.  The y-axes 
indicate percent retrotransposition relative to β-arr control.  White bars indicate 
A3A, gray bars indicate C106S, black bars indicate β-arr. Error bars represent 
standard deviations between duplicate transfections. 
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Figure 3.18:  Titration to determine the appropriate amount of A3A plasmid 
to use in U2OS cells 
 
A. Effect of A3A expression on G418-resistant colony generation by L1 
retrotransposition or circular NEO plasmid in U2OS control cells.  Approximately 
5x104 control U2OS cells were transfected with a total of 1.25 µg of DNA, 
including 1.0 µg of JM101/L1.3 plasmid.  For the β-arr control transfections, 250 
ng of pK_β-arr plasmid was used.  A3A and C106S transfections consisted of, 
0.25 ng, 25 ng, 100 ng, or 250 ng  of pK_A3A or pk_A3A_C106S expression 
vector, and the appropriate amount of pK_β-arr plasmid to bring total plasmid 
mass to 1.25 µg.  The y-axis shows %G418-resistant colonies, with β-arr control 
co-transfection (0 ng A3A) set to 100%. The x-axis shows the amount of A3A 
plasmid used.   
 
B. Effect of A3A expression on G418-resistant colony generation by L1 
retrotransposition or circular NEO plasmid in U2OS_UGI cells.  Approximately 
5x104 U2OS_UGI cells were transfected with a total of 1.25 µg of DNA, including 
1.0 µg of JM101_L1.3 plasmid.  For the β-arr control transfections, 250 ng of 
pK_β-arr plasmid was used.  A3A and C106S transfections consisted of, 0.25 ng, 
25 ng, 100 ng, or 250 ng  of pK_A3A or pk_A3A_C106S expression vector, and 
the appropriate amount of pK_β-arr plasmid to bring total plasmid mass to 1.25 
µg.  The y-axis shows %G418-resistant colonies, with β-arr control co-
transfection (0 ng A3A) set to 100%. The x-axis shows the amount of A3A 
plasmid used.  This experiment was performed three times, representing 
biological replicates. 
 
The data point at 25 ng of A3A plasmid is illustrated in the bar graph in Figure 
3.17. 
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Figure 3.19:  Stable UGI expression reveals evidence of A3A-mediated 
editing of L1 insertions in U2OS cells 
 
Summary of G-to-A and other mutations found within retrotransposed L1 
sequence among insertions generated in U2OS_UGI cells. The number of G-to-A 
changes in the plus-strand sequence (indicative of deamination of the nascent 
first-strand cDNA) is highlighted in red. 
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Figure 3.20:  Schematic representation of L1 retrotransposition events 
generated in U2OS_UGI cells in the presence of A3A 
 
Above, the JM140-L1.3-Δ2-k7 retrotransposition indicator cassette is depicted [1].  
Features of the plasmid are shown to scale: 5’UTR (green), ORF1 (light blue), 
inter-orf spacer (light gray), ORF2 (dark blue), 3’UTR (orange) NEO cassette 
(purple) with HSV_tk polyA signal (maroon), SV40 promoter/ori (pink), and ColE1 
bacterial origin of replication (red).  Below, the length and structural features of 
characterized insertions are represented graphically.  The name of each cell line 
is shown at left.  Nucleotide changes from the JM140-L1.3-deltadelta-k7 
sequence are depicted as follows: stars indicate G-to-A changes, circles indicate 
any other nucleotide change.  Blue shapes indicate changes in non-coding 
regions.  Green shapes indicate silent mutations, yellow shapes indicate 
missesnse mutations, and red shapes indicate nonsense mutations. 
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Figure 3.21:  Schematic representation of L1 retrotransposition events 
generated in U2OS_UGI cells in the presence of β-arrestin 
 
Above, the JM140-L1.3-Δ2-k7 retrotransposition indicator cassette is depicted [1].  
Features of the plasmid are shown to scale: 5’UTR (green), ORF1 (light blue), 
inter-orf spacer (light gray), ORF2 (dark blue), 3’UTR (orange) NEO cassette 
(purple) with HSV_tk polyA signal (maroon), SV40 promoter/ori (pink), and ColE1 
bacterial origin of replication (red).  Below, the length and structural features of 
characterized insertions are represented graphically.  The name of each cell line 
is shown at left.  Nucleotide changes from the JM140-L1.3-deltadelta-k7 
sequence are depicted as follows: stars indicate G-to-A changes, circles indicate 
any other nucleotide change.  Blue shapes indicate changes in non-coding 
regions.  Green shapes indicate silent mutations, yellow shapes indicate 
missesnse mutations, and red shapes indicate nonsense mutations.  
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Figure 3.22:  Schematic representation of L1 retrotransposition events 
generated in U2OS_UGI cells in the presence of A3A_C106S 
 
Above, the JM140-L1.3-Δ2-k7 retrotransposition indicator cassette is depicted [1].  
Features of the plasmid are shown to scale: 5’UTR (green), ORF1 (light blue), 
inter-orf spacer (light gray), ORF2 (dark blue), 3’UTR (orange) NEO cassette 
(purple) with HSV_tk polyA signal (maroon), SV40 promoter/ori (pink), and ColE1 
bacterial origin of replication (red).  Below, the length and structural features of 
characterized insertions are represented graphically.  The name of each cell line 
is shown at left.  Nucleotide changes from the JM140-L1.3-deltadelta-k7 
sequence are depicted as follows: stars indicate G-to-A changes, circles indicate 
any other nucleotide change.  Blue shapes indicate changes in non-coding 
regions.  Green shapes indicate silent mutations, yellow shapes indicate 
missesnse mutations, and red shapes indicate nonsense mutations.  
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Figure 3.23:  G 5390 A mutation substantially decreases L1 
retrotransposition efficiency 
 
The mutation G 5390 A was recapitulated by site-directed mutagenesis on wild-
type pJM101/L1.3.  For the retrotransposition assay, approximately 2x104 

U2OS_UGI cells were plated per well of a 6-well dish.  24 hours later, cells were 
transfected with 1 µg of retrotransposition indicator plasmid.  Selection with 400 
µg/ml G418 was initiated at 72 h post-transfection and carried out for 14 days.  
Cells were fixed, stained, and counted.  The x-axis shows the elements used in 
the assay.  RT- indicates the negative control pDK135, which bears a mutation in 
the RT domain that abolishes retrotransposition.  The y-axis indicates % 
retrotransposition relative to pJM101/L1.3 control.  Error bars indicate standard 
deviations derived from triplicate transfections.  This experiment was performed 
twice, representing biological replicates. 
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Figure 3.24:  Modes of action by A3A at L1 TPRT, in the presence of UGI  
Potential TPRT intermediates are illustrated at left.  Transiently single-stranded 
genomic DNA regions that ultimately become target-site duplications are shown 
in orange.  The L1 RNA is depicted in red; the L1 cDNA is shown in blue.  The 
green oval represents A3A protein.  The red “stop sign” represents UGI blocking 
the activity of UNG.  On the right, the predicted signatures of deamination on 
integrated L1 insertions are illustrated. 
 
A.  Deamination of the L1 cDNA.  If A3A  deaminates the minus-strand L1 cDNA 
(presumably rendered vulnerable by the action of RnaseH) in the presence of 
UGI, mutations are evident as G-to-A changes on the plus-strand of the 
integrated L1.   
 
B.  Deamination of the 5’ flanking genomic DNA.  In the presence of UGI, 
deamination of the transiently single-stranded 5’ flanking genomic DNA during 
TPRT (left side) results in a C-to-T change in the 5’ TSD relative to the 3’ TSD 
(right side). 
 
C.  Deamination of the 3’ flanking genomic DNA.  In the presence of UGI, 
deamination of the transiently single-stranded 3’ flanking genomic DNA during 
TPRT is predicted to result in a G-to-A change in the 3’ TSD relative to the 5’ 
TSD. 
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Figure 3.25:  Modes of action by A3A at L1 TPRT  Potential TPRT 
intermediates are illustrated at left.  Transiently single-stranded genomic DNA 
regions that ultimately become target-site duplications are shown in orange.  The 
L1 RNA is depicted in red; the L1 cDNA is shown in blue.  The green oval 
represents A3A protein.  On the right, predicted outcomes of A3A-mediated 
deamination followed by TPRT intermediate cleavage are illustrated. 
 
A.  Deamination of the L1 cDNA.  If A3A  deaminates the minus-strand L1 cDNA 
(presumably rendered vulnerable by the action of RnaseH), the actions of UNG 
and APE could result in cleavage of the L1 cDNA, giving rise to a 5’ truncated L1 
insertion.  
 
B.  Deamination of the 5’ flanking genomic DNA.  Deamination of the transiently 
single-stranded 5’ flanking genomic DNA during TPRT (left side), followed by the 
actions of UNG and APE, could result in top strand cleavage, that could 
substitute for L1-mediated second-strand cleavage during integration. 
 
C.  Deamination of the 3’ flanking genomic DNA.  Deamination of the transiently 
single-stranded 3’ flanking genomic DNA during TPRT, followed by the actions of 
UNG and APE, could lead to loss of the entire L1 integration intermediate.  The 
resulting lesion could be repaired using the top strand genomic DNA as a 
template, leaving no evidence of the thwarted insertion. 
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Table 3.1:  Analysis of rA3A target site preference on LEAP products 
 
Each sub-table lists all possible trinucleotide contexts with a “G” as the middle 
nucleotide (corresponding to a “C” on the first-strand LEAP cDNA).  The first 
column shows how many times each trinucleotide appears in the LEAP product 
sequence.  Greyed-out rows indicate that the trinucleotide is not present in the 
LEAP product sequence.  The second column lists how many times this each 
trinucleotide is available in 100 LEAP products.  The third column quantifies how 
many times a deamination event was observed within each trinucleotide.  The 
fourth column quantifies the percentage of available sites deaminated in 100 
LEAP products.  Below, colored rows express frequencies of deamination as a 
percentage of total available G nucleotides, total G nucleotides residing in 
published A3A target sites (TGA, GGA), total published A3A target sites plus 
A3A, which was prefered by rA3A in this assay (TGA, GGA, AGA), and total 
TGAs only.  To the right, an additional cell lists the percentage of adapter 
sequences deaminated, at the sole “C” nucleotide which resides within the 
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Supplemental Table 1
# of sites in LEAP Product

available sites in 100 
products

deaminated in 
RNP alone

percentage of available sites 
deaminated in 100 products # of sites in LEAP Product

available sites 
in 100 products

deaminated in 
RNP+RNaseH

percentage of available sites 
deaminated in 100 products

GGG GGG
AGG AGG
TGG 1 100 1 1.0% TGG 1 100 0 0.0%
CGG CGG
GGA 1 100 0 0.0% GGA 1 100 4 4.0%
AGA 2 200 0 0.0% AGA 2 200 19 9.5%
TGA 6 600 2 0.3% TGA 6 600 25 4.2%
CGA CGA
GGT GGT
AGT 3 300 0 0.0% AGT 3 300 0 0.0%
TGT 3 300 0 0.0% TGT 3 300 0 0.0%
CGT CGT
GGC GGC
AGC 1 100 0 0.0% AGC 1 100 0 0.0%
TGC 5 500 1 0.2% TGC 5 500 0 0.0%
CGC CGC

Total G's: 2200 4 0.2% Total G's: 2200 48 2.2%
Total published A3A target 

sites (GGA, TGA): 700 3 0.4%
Total published A3A target sites 

(GGA, TGA): 700 25 3.6%

Totalpublished A3A target 
sites, plus AGA 900 3 0.3%

adapters 
deaminated:

Totalpublished A3A target sites, 
plus AGA 900 44 4.9%

adapters 
deaminated:

Total TGA's 600 2 0.3% 1.0% Total TGA's 600 25 4.2% 2.0%

# of sites in LEAP Product
available sites in 100 

products
deaminated in 

A3A alone
percentage of available sites 
deaminated in 100 products # of sites in LEAP Product

available sites 
in 100 products

deaminated in 
A3A+RNaseH

percentage of available sites 
deaminated in 100 products

GGG GGG
AGG AGG
TGG 1 100 3 3.0% TGG 1 100 5 5.0%
CGG CGG
GGA 1 100 3 3.0% GGA 1 100 5 5.0%
AGA 2 200 13 6.5% AGA 2 200 75 37.5%
TGA 6 600 25 4.2% TGA 6 600 228 38.0%
CGA CGA
GGT GGT
AGT 3 300 0 0.0% AGT 3 300 4 1.3%
TGT 3 300 0 0.0% TGT 3 300 8 2.7%
CGT CGT
GGC GGC
AGC 1 100 0 0.0% AGC 1 100 0 0.0%
TGC 5 500 0 0.0% TGC 5 500 5 1.0%
CGC CGC

Total G's: 2200 44 2.0% Total G's: 2200 330 15.0%
Total published A3A target 

sites (GGA, TGA): 700 28 4.0%
Total published A3A target sites 

(GGA, TGA): 700 233 33.3%

Totalpublished A3A target 
sites, plus AGA 900 41 4.6%

adapters 
deaminated:

Totalpublished A3A target sites, 
plus AGA 900 308 34.2%

adapters 
deaminated:

Total TGA's 600 25 4.2% 91.0% Total TGA's 600 228 38.0% 50.0%

# of sites in LEAP Product
available sites in 100 

products
deaminated in 
C106S  alone

percentage of available sites 
deaminated in 100 products # of sites in LEAP Product

available sites 
in 100 products

deaminated in 
C106S+RNase

percentage of available sites 
deaminated in 100 products

GGG GGG
AGG AGG
TGG 1 100 0 0.0% TGG 1 100 1 1.0%
CGG CGG
GGA 1 100 0 0.0% GGA 1 100 2 2.0%
AGA 2 200 2 1.0% AGA 2 200 15 7.5%
TGA 6 600 2 0.3% TGA 6 600 40 6.7%
CGA CGA
GGT GGT
AGT 3 300 0 0.0% AGT 3 300 0 0.0%
TGT 3 300 1 0.3% TGT 3 300 0 0.0%
CGT CGT
GGC GGC
AGC 1 100 0 0.0% AGC 1 100 0 0.0%
TGC 5 500 0 0.0% TGC 5 500 0 0.0%
CGC CGC

Total G's: 2200 5 0.2% Total G's: 2200 58 2.6%
Total published A3A target 

sites (GGA, TGA): 700 2 0.3%
Total published A3A target sites 

(GGA, TGA): 700 41 5.9%

Totalpublished A3A target 
sites, plus AGA 900 4 0.4%

adapters 
deaminated:

Totalpublished A3A target sites, 
plus AGA 900 56 6.2%

adapters 
deaminated:

Total TGA's 600 2 0.3% 1.0% Total TGA's 600 40 6.7% 1.0%
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Supplemental Table 1
# of sites in LEAP Product

available sites in 100 
products

deaminated in 
RNP alone

percentage of available sites 
deaminated in 100 products # of sites in LEAP Product

available sites 
in 100 products

deaminated in 
RNP+RNaseH

percentage of available sites 
deaminated in 100 products

GGG GGG
AGG AGG
TGG 1 100 1 1.0% TGG 1 100 0 0.0%
CGG CGG
GGA 1 100 0 0.0% GGA 1 100 4 4.0%
AGA 2 200 0 0.0% AGA 2 200 19 9.5%
TGA 6 600 2 0.3% TGA 6 600 25 4.2%
CGA CGA
GGT GGT
AGT 3 300 0 0.0% AGT 3 300 0 0.0%
TGT 3 300 0 0.0% TGT 3 300 0 0.0%
CGT CGT
GGC GGC
AGC 1 100 0 0.0% AGC 1 100 0 0.0%
TGC 5 500 1 0.2% TGC 5 500 0 0.0%
CGC CGC

Total G's: 2200 4 0.2% Total G's: 2200 48 2.2%
Total published A3A target 

sites (GGA, TGA): 700 3 0.4%
Total published A3A target sites 

(GGA, TGA): 700 25 3.6%

Totalpublished A3A target 
sites, plus AGA 900 3 0.3%

adapters 
deaminated:

Totalpublished A3A target sites, 
plus AGA 900 44 4.9%

adapters 
deaminated:

Total TGA's 600 2 0.3% 1.0% Total TGA's 600 25 4.2% 2.0%

# of sites in LEAP Product
available sites in 100 

products
deaminated in 

A3A alone
percentage of available sites 
deaminated in 100 products # of sites in LEAP Product

available sites 
in 100 products

deaminated in 
A3A+RNaseH

percentage of available sites 
deaminated in 100 products

GGG GGG
AGG AGG
TGG 1 100 3 3.0% TGG 1 100 5 5.0%
CGG CGG
GGA 1 100 3 3.0% GGA 1 100 5 5.0%
AGA 2 200 13 6.5% AGA 2 200 75 37.5%
TGA 6 600 25 4.2% TGA 6 600 228 38.0%
CGA CGA
GGT GGT
AGT 3 300 0 0.0% AGT 3 300 4 1.3%
TGT 3 300 0 0.0% TGT 3 300 8 2.7%
CGT CGT
GGC GGC
AGC 1 100 0 0.0% AGC 1 100 0 0.0%
TGC 5 500 0 0.0% TGC 5 500 5 1.0%
CGC CGC

Total G's: 2200 44 2.0% Total G's: 2200 330 15.0%
Total published A3A target 

sites (GGA, TGA): 700 28 4.0%
Total published A3A target sites 

(GGA, TGA): 700 233 33.3%

Totalpublished A3A target 
sites, plus AGA 900 41 4.6%

adapters 
deaminated:

Totalpublished A3A target sites, 
plus AGA 900 308 34.2%

adapters 
deaminated:

Total TGA's 600 25 4.2% 91.0% Total TGA's 600 228 38.0% 50.0%

# of sites in LEAP Product
available sites in 100 

products
deaminated in 
C106S  alone

percentage of available sites 
deaminated in 100 products # of sites in LEAP Product

available sites 
in 100 products

deaminated in 
C106S+RNase

percentage of available sites 
deaminated in 100 products

GGG GGG
AGG AGG
TGG 1 100 0 0.0% TGG 1 100 1 1.0%
CGG CGG
GGA 1 100 0 0.0% GGA 1 100 2 2.0%
AGA 2 200 2 1.0% AGA 2 200 15 7.5%
TGA 6 600 2 0.3% TGA 6 600 40 6.7%
CGA CGA
GGT GGT
AGT 3 300 0 0.0% AGT 3 300 0 0.0%
TGT 3 300 1 0.3% TGT 3 300 0 0.0%
CGT CGT
GGC GGC
AGC 1 100 0 0.0% AGC 1 100 0 0.0%
TGC 5 500 0 0.0% TGC 5 500 0 0.0%
CGC CGC

Total G's: 2200 5 0.2% Total G's: 2200 58 2.6%
Total published A3A target 

sites (GGA, TGA): 700 2 0.3%
Total published A3A target sites 

(GGA, TGA): 700 41 5.9%

Totalpublished A3A target 
sites, plus AGA 900 4 0.4%

adapters 
deaminated:

Totalpublished A3A target sites, 
plus AGA 900 56 6.2%

adapters 
deaminated:

Total TGA's 600 2 0.3% 1.0% Total TGA's 600 40 6.7% 1.0%
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Table 3.2:  Detailed summary of the number and location of deamination 
events on each of 100 rA3A+RNaseH LEAP products, and poly-A tail length 
 
First column:  LEAP products generated in the presence of A3A.  Products were 
derived from four independent L1 RT reactions, indicated by colored shading 
(yellow, orange, pink, purple).  Second column:  Poly-A tail length of individual 
LEAP products.  Third column:  total G-to-A changes in each product.  Fourth 
Column: total non G-to-A changes in each product.  The next 18 columns denote 
the positions of G bases deaminated in rA3A-LEAP products; for each product, a 
“1” indicates a deamination at that position.  The next column, Other, indicates 
the position of non G-to-A changes.  The final column, Adapter TCA, indicates 
whether the single-stranded LEAP adapter was deaminated for each product; a 
“1” that the single “C” in the adapter was deaminated in that product. 
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Chapter 4 

 

A3A_F75L, a Putative Separation-of-Function APOBEC3A Mutant 

 

I designed and carried out the cultured cell retrotransposition assays and 

in vitro LEAP assays described in this chapter.  Dr. Inigo Narvaiza, in the 

laboratory of Dr. Matt Weitzman, generated the purified recombinant A3A and 

mutant A3A proteins, and performed the in vitro  deaminase assays shown in 

Figure 4.3 A.  Dr. Rahul Kohli carried out the bacterial mutator assay alluded to in 

this chapter. 

 

Abstract 

 In Chapter 3, I undertook a detailed mechanistic examination of 

APOBEC3A (A3A) mediated inhibition of LINE-1 retrotransposition.  I elucidated 

a deaminase-dependent pathway of inhibition, in which A3A edits transiently-

exposed single-stranded DNA during L1 target-primed reverse transcription 

(TPRT).  I conclude that, in concert with the action of cellular repair factors uracil 

DNA glycosylase (UNG) and AP endonuclease (APE), this mechanism is at least 

partially responsible for A3A-mediated L1 inhibition. However, these data do not 
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rule out a deaminase-independent component of A3A-mediated L1 inhibition. In 

this chapter, I report L1 inhibition by a particular A3A mutant, A3A_F75L.  This 

mutant has previously been demonstrated to lack deaminase activity in vitro [1].  

Yet, in the experiments detailed in this chapter, I found that A3A_F75L potently 

inhibits L1 retrotransposition in cultured cells.  Thus, I initially regarded 

A3A_F75L as a separation-of-function mutant which supports a deaminase-

independent mechanism for A3A-mediated L1 inhibition.  Unexpectedly, however, 

I found that A3A_F75L mediated L1 inhibition is alleviated by uracil glycosylase 

inhibitor (UGI) expression. Furthermore, A3A_F75L has above-background 

deaminase activity in a bacterial mutator assay.  I hypothesize that this mutant 

retains deaminase activity in vivo, but not in vitro.   

  

Introduction  

 The human APOBEC3 (A3) proteins contain conserved cytidine 

deaminase active sites with the consensus sequence H-X-E-X23-28-P-C-X2-4-C, 

where X represents any amino acid [2].  Based on comparisons with well-

characterized zinc-dependent deaminases, the histidine (H) and two cysteine (C) 

residues are hypothesized to participate in Zn2+ ion coordination, while the critical 

glutamic acid (E) residue is proposed to function as a proton shuttle [3-6] (Figure 

4.1 B).  Mutation of these conserved residues abolishes cytidine deaminase 

activity [7-9].  However, A3A is a relatively small protein (199 amino acids; Figure 

4.1 A), and disruption of Zn2+ ion coordination may severely disrupt protein 

folding and active site integrity. Thus, mutational analyses to distinguish whether 
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A3A-mediated inhibition of retroelements and viruses depends specifically on 

cytidine deaminase activity, or only requires an intact active site, have proved 

challenging. 

In a recent study [1], Narvaiza et al. generated and characterized a panel 

of A3A mutant proteins, including a mutant termed A3A_F75L.  Phenylalanine 

residue F75 resides within the A3A cytidine deaminase active site (Figure 4.1 A), 

but is not predicted to participate in Zn2+ ion coordination (Figure 4.1 B).  Notably, 

the analogous residue in APOBEC1, which is an RNA editing enzyme, is 

required for deaminase activity as well as nucleic acid binding [4, 10].  Previous 

studies indicate that wild-type A3A restricts adeno-associated virus (AAV) 

replication, whereas A3A_C106S, which bears a mutation in a critical Zn2+ 

coordinating cysteine residue and lacks deaminase activity in vitro [7], does not 

affect AAV replication [1, 7].    A3A_F75L lacks deaminase activity in vitro, but 

retains the ability to inhibit AAV replication in cultured cells [1].  Thus, A3A_F75L 

putatively separates the capacity to restrict AAV replication from A3A cytidine 

deaminase activity, and represents a potential reagent to distinguish between 

deaminase-dependent and  deaminase-independent A3A-mediated restriction of 

other retroelements and exogenous pathogens. 

In Chapter 3, we identify a deaminase-dependent mechanism for A3A-

mediated L1 inhibition, in which A3A deaminates single-stranded DNA transiently 

exposed during L1 TPRT.  However, our results do not rule out the existence of a 

deaminase-independent mechanism of inhibition.  Indeed, evidence of 

deaminase-independent L1 inhibition by APOBEC3 factors has been provided by 
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studies on APOBEC3B (A3B) [8, 11] and APOBEC3F (A3F) [11].  Furthermore, 

in Chapter 2, we report deaminase-independent inhibition of a zebrafish LINE-2 

element [12] by APOBEC3G (A3G).  Here, we employ A3A_F75L, a putative 

separation-of-function A3A mutant, in an attempt to disentangle deaminase-

dependent and deaminase-independent modes of A3A-mediated L1 inhibition.  

 

Results 

A3A_F75L inhibits LINE element retrotransposition in cultured cells 

 To investigate a potential deaminase-independent mode of A3A-mediated 

L1 inhibition, we asked whether A3A_F75L inhibits human L1.3 [13, 14], as well 

as mouse natural and synthetic L1s (TGf21 [15] and L1SM [16]) and a zebrafish 

LINE-2 element (Zfl2-2 [12]), in the cell culture retrotransposition assay [17, 18].  

We found that F75L potently inhibits retrotransposition of L1.3 (16% of control), 

TGf21 (16% of control), and Zfl2-2 (13% of control)(Figure 4.2).  Inhibition of 

L1SM by F75L was less pronounced (51% of control).  Across all elements 

tested, F75L effected slightly more potent inhibition than wild-type A3A.  In 

contrast, C106S did not inhibit any of the elements tested, consistent with 

previous reports (Figure 4.2)[7]. 

 

A3A_F75L does not block L1 Reverse Transcription  in vitro 

 APOBEC3G (A3G) is hypothesized to inhibit elongation of HIV reverse 

transcripts by acting as a physical “road-block” to RT procession on the HIV RNA 

template, in a deaminase-independent manner [19].  We therefore asked 
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whether wild-type A3A, A3A_F75L, and A3A_C106S block L1 reverse 

transcription.  We employed an in vitro assay termed L1 element amplification 

protocol (LEAP)[20].  In the LEAP assay, L1 RNPs are provided with a single-

stranded 3’RACE adapter, which consists of a 3’ oligo dT and a unique adapter 

sequence (Figure 3.6 A).  The oligo dT portion of the adapter anneals to the L1 

RNA polyA tail, providing a 3’OH from which the ORF2p-encoded reverse 

transcriptase activity can initiate reverse transcription of its associated RNA.  The 

resultant L1 cDNA is amplified by PCR using primers to the engineered L1 3’ end 

and the unique adapter sequence. 

 We included purified recombinant A3A protein (rA3A) as well as A3A 

mutant proteins (rA3A_F75L, rA3A_C106S) in the LEAP reaction.  Wild-type 

rA3A exhibits robust deaminase activity in an in vitro assay, while rA3A_F75L 

and rA3A_C106S exhibit minimal deaminase activity (Figure 4.3 A).  We included 

these recombinant proteins in LEAP reactions, and observed no diminishment of 

LEAP products (Figure 4.3 B). Thus, we concluded that rA3A and rA3A mutant 

proteins do not block L1 RT activity. 

 

Recombinant A3A_F75L protein does not efficiently deaminate LEAP 

products  in vitro 

We next examined LEAP products generated in the presence of rA3A, 

rA3A_F75L, and rA3A_C106S.  As described in Chapter 3, rA3A efficiently 

deaminated the single-stranded adapter used to prime the L1 reverse 

transcription reaction, and when recombinant RNaseH was included in the LEAP 
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reaction, A3A efficiently deaminated the L1 cDNA.  In contrast, rA3A_F75L, like 

rA3A_C106S, did not exhibit robust deaminase activity on LEAP substrates 

(Figure 4.4).  Thus, recombinant A3A_F75L protein lacks robust deaminase 

activity in vitro. 

  

F75L-mediated L1 inhibition is alleviated by UGI in cultured cells 

Based on the pattern of deamination observed in the LEAP assay, we 

hypothesized that wild-type A3A inhibits L1 retrotransposition by deaminating 

transiently exposed single-stranded DNA during L1 TPRT.  Deaminated TPRT 

intermediates would be degraded by the cellular repair factors uracil DNA 

glycosylase (UNG) and apurinic/apyrimidinic endonuclease (APE), thereby 

effecting L1 inhibition.  We therefore reasoned that expression of uracil 

glycosylase inhibitor protein (UGI) [21] would alleviate A3A-mediated 

retrotransposition inhibition.  Indeed, co-expression of UGI with A3A in the L1 

retrotransposition alleviated L1 inhibition by ~2-fold over vector control (Figure 

3.12 C, Figure 3.17 B).  We also find evidence for A3A-mediated editing of L1 

TPRT intermediates in cultured cells, in the presence of UGI (Figure 3.16 A and 

B, Figure 3.19).  Unexpectedly, UGI expression also alleviated A3A_F75L-

mediated retrotransposition inhibition to a similar extent (Figure 4.5).  Notably, 

UGI expression alone does not increase retrotransposition efficiency (Figure 

3.13).  Furthermore, UGI expression does not alleviate deaminase-independent 

retrotransposition inhibition by APOBEC3B (A3B) mutants (Figure 3.14), nor 

does it alleviate deaminase-independent inhibition of a zebrafish LINE-2 element 
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(Zfl2-2) by APOBEC3G (A3G) (Figure 2.5).  Thus, we hypothesize that 

A3A_F75L may possess deaminase activity in vivo, but not in vitro.  Indeed, 

A3A_F75L exhibits cytidine deaminase activity above the level exhibited by 

A3A_C106S in a bacterial mutator assay (Matthew Weitzman and Rahul Kohli, 

personal communication). 

 

Discussion 

 In this Chapter, we examine the impact of a putative A3A separation-of-

function mutant, A3A_F75L, on L1 retrotransposition.  A3A_F75L lacks 

deaminase activity in vitro; however, like wild-type A3A, A3A_F75L inhibits 

human, mouse, and zebrafish LINE elements in a cultured cell retrotransposition 

assay.  Recombinant A3A_F75L protein has no effect on L1 reverse transcription 

in an in vitro assay, and does not exhibit robust deaminase activity on L1 RT 

products.  However, like wild-type A3A, A3A_F75L mediated L1 inhibition is 

alleviated by UGI expression.  Furthermore, A3A_F75L has greater deaminase 

activity than A3A_C106S in a bacterial mutator assay. 

 Taken together the above results suggest that A3A_F75L lacks 

deaminase activity in in vitro assays, yet retains deaminase activity when 

expressed in bacteria or cultured mammalian cells.  We hypothesize that in vivo, 

unidentified cellular factors may facilitate proper A3A_F75L protein folding or 

stability (Figure 4.6).  Therefore, when removed from the cellular context, 

A3A_F75L cannot efficiently deaminate single-stranded DNA.   
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Alternatively, it is possible that A3A_F75L truly lacks deaminase activity in 

vitro and in vivo.  For this to be the case, UGI expression must alleviate 

A3A_F75L mediated retrotransposition inhibition by a mechanism that does not 

involve the stabilization of uracil residues in DNA.  Notably, UGI blocks the active 

site of UNG by mimicking protein-DNA interactions [22, 23].  Therefore, one 

could hypothesize that UGI also blocks the A3A active site by mimicking a 

cytidine residue, thereby preventing the A3A active site from functioning in a 

deaminase-independent manner, but giving the appearance of alleviating the 

downstream effects of deamination.  This scenario is unlikely, however, in light of 

our finding that UGI does not alleviate L1 inhibition by deaminase-defective A3B 

mutants (Figure 3.14) or inhibition of Zfl2-2 by a deaminase-defective A3G 

mutant (Figure 2.5).  Furthermore, inclusion of recombinant UGI in the LEAP 

reaction with wild-type rA3A does not abolish A3A-mediated deamination of 

LEAP products (Figure 3.5).  In sum, we find that A3A_F75L lacks deaminase 

activity in vitro, but retains deaminase activity in vivo.  The molecular explanation 

for this difference remains to be uncovered.  It is possible that A3A_F75L has 

weaker enzymatic activity than wild-type A3A, and that this deficiency is reflected 

in in vitro experiments as a lack of detectable activity.  However, in the cellular 

context, A3A_F75L may be able to localize efficiently to TPRT intermediates (or 

exposed single-stranded plasmid DNA in a bacterial mutator assay).  Thus, in 

cultured cells, any residual A3A_F75L deaminase activity may be sufficient to 

inhibit L1 retrotransposition in a deaminase-dependent manner.  Alternatively, 

A3A_F75L, in mammalian cells, may interact with an endogenously expressed 
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A3 factor (such as A3B), and enhance its ability to act at L1 TPRT in a 

deaminase-dependent manner.   Overall, whether L1 inhibition by wild-type A3A 

involves a deaminase-independent component remains to be elucidated.  

 

Materials and Methods 

Some of the text describing materials and methods in this chapter is duplicated 

from Chapter 2 and Chapter 3 of this thesis. 

 

Plasmids 

All plasmids were grown in DH5α (F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 

endA1 hsdR17 (rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1) competent E. coli 

(Invitrogen; Carlsbad, CA. Prepared in house as described in [24]). Plasmids 

were prepared using the Qiagen Plasmid Midi Kit (QIAGEN; Hilden, Germany) 

according to the manufacturer’s protocol.   

 

APOBEC3 expression constructs: 

The pK_βarr and A3A expression plasmids have been described previously [9]. 

The APOBEC3A mutant C106S, described in [7], and the APOBEC3A mutant 

F75L, described in [1] were received from Dr. Matt Weitzman and Dr. Inigo 

Narvaiza in pcDNA 3.1+ (Invitrogen), and were subcloned into the pK vector using 

HindIII and XhoI restriction sites.   

 

Bacterial mutator assay constructs: 
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I PCR amplified A3A, A3A_F75L, and A3A_C106S cDNAs from the respective 

pK expression vectors using the following primers:   

 

5’_NdeI_A3A:  GGGGCATATGATGGAAGCCAGCCCAGCATC 

3’_XhoI_A3A: GCGATCCTCGAGTCAAGCGTAATC 

 

The resultant fragments were cloned into the pET41 expression vector 

(Novagen) using NdeI and XhoI restriction endonucleases (NEB).  pET41_A3A, 

pET41_F75L, and pET41_C106S were then used by Dr. Rahul Kohli and Dr. 

Matt Weitzman to carry out the bacterial mutator assay (personal 

communication). 

 

LINE expression constructs: 

pJM101/L1.3 [13, 14], pCEP4/L1SM [16], pCEP4/TGf21 [15], pCEP4/Zfl2-2 [12], 

LGCX vector [21], LGCX/UGI [21], and pU6i NEO are described in depth in 

Chapters 2 and 3 of this thesis. 

 

Cell Culture 

Cell culture conditions are described in Chapters 2 and 3 of this thesis. 

 

L1 Retrotransposition Assays 

Retrotransposition assay methods [17, 18] are described in detail in Chapters 2 

and 3 of this thesis.   
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Production and characterization of Recombinant A3A Proteins 

Purification of recombinant A3A and mutant proteins was carried out as 

described in Chapter 3.  In vitro deaminase assays were carried out as described 

in Chapter 3. 

 

 

 

LEAP Assay 

Methods for RNP preparation and LEAP assays [20] are described in detail in 

Chapters 2 and 3 of this thesis.    

 

Acknowledgements 

 I would like to thank members of the Moran lab for helpful discussion.  Dr. 

Inigo Narvaiza and Dr. Matthew Weitzman generated recombinant A3A proteins.  

Dr. Rahul Kohli performed the bacterial mutator assay. 

 

 

 

 

 

186



	  
	  
Figure 4.1:  The cytidine deaminase active site of APOBEC3A 
 
A. The amino acid sequence of APOBEC3A.  The conserved cytidine deaminase 
active site is underlined within the amino acid sequence, and expanded below.  
The critical active site residues highlighted in red (H70, E72, P100, C101, C106) 
[25].  F75 is highlighted in green. 
 
B.  Schematic of the A3A active site.  H70, C101, and C106 (highlighted in red) 
participate in zinc ion coordination; E72 is important in catalyzing the removal of 
the amine group to convert cytidine to uridine (Reviewed in [26] and [2]).  F75 is 
highlighted in green.  This figure is re-drawn based on a figure from a review by 
Harris and Liddament [26].  
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Figure 4.2:  A3A_F75L inhibits LINE element retrotransposition 
 
Approximately 2x104 (L1SM), 1x105 (L1.3), 2x105 (NEO control), or 4x105 (TGf21 
and Zfl2-2) HeLa cells were plated per T-75 flask and co-transfected in duplicate 
with 2 µg each of LINE and A3A (or β-arr control) expression vector.  The y-axis 
indicates percent retrotransposition in the presence of each A3A protein, with the 
β-arr positive control set to 100% for each element.  The x-axis indicates the 
LINE element used.  Maize bars show results for wild-type A3A, gray bars show 
results for A3A_F75L, light blue bars show results for A3A_C106S, and dark blue 
bars show results for the β-arr positive control.  Error bars indicate percent 
standard deviation derived from duplicate transfections.  Data was normalized 
using the circular NEO control.  Figure 3.1 depicts data from the same 
experiment, omitting A3A_F75L.  A representative experiment is shown.  This 
assay was performed twice, representing biological replicates. 
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Figure 4.3: Recombinant A3A_F75L protein does not inhibit LEAP activity 
 
A. In vitro deaminase activity of rA3A and rA3A mutant proteins.  Increasing 
amounts of rA3A (left panel), rF75L (middle panel) or rC106S (right panel) were 
incubated with a FITC-labeled single strand DNA oligonucleotide containing a 
single cytidine residue for 4 hrs at 37° C. Samples were then incubated with 
recombinant uracil DNA glycosylase (UDG) and NaOH, and the products were 
resolved by gel electrophoresis using a 15% TBE/urea polyacrylamide gel. 
Molecular sizes of substrate oligonucleotide and deaminated, cleaved product 
are indicated. A control reaction (Oligo) was performed in the absence of 
recombinant protein. 
 
 
B.  Recombinant A3A_F75L protein does not inhibit LEAP activity.  Left: controls, 
left to right:  Wild-type RNP (pDK101), RT mutant RNP (pDK135), EN mutant 
RNP (pDK136), untransfected HeLa cell RNP, no RNP control. Right: 50 ng and 
100 ng of rA3A, rA3A_F75L, and rA3A_C106S were included in LEAP reactions 
with wild-type (pDK101) RNPs.  As a control, 50 ng and 100 ng of “heat-killed” 
(15 minutes, 100° C) rA3A and mutant proteins were added to LEAP reactions.

A.

B.
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Figure 4.4:  rA3A_F75L does not have robust deaminase activity   
 
For each experimental condition, the plus-strand sequence of the unedited LEAP 
product is depicted, 5’ to 3.  Therefore, C-to-T changes indicative of editing by 
A3A on the minus-strand cDNA are revealed as G-to-A changes on the depicted 
plus strand.  The location of the L1 3’ end PCR primer is depicted at far left, 
underlined in blue.  At right, the location of the poly-A tail is indicated (An), 
followed by the 5np1 LEAP adapter sequence, underlined in green.  Within the 
LEAP product sequence, all G nucleotides are highlighted in red.  Black stars 
piled above G nucleotides graphically represent the number times among 100 
LEAP products that a nucleotide change consistent with deamination was 
observed at that position.  Counts of deamination events are represented 
numerically below.  Blue circles piled above the sequence represent nucleotide 
changes not consistent with deamination.  Data from the same experiment for 
A3A, A3A_C106S, and β-arr are also presented in Figure 3.10. 
 
Top panel, a-d:  Summary of 100 LEAP products generated using wild-type L1 
RNP plus: a) no rA3A protein, b) 100 ng of wild-type rA3A, c) 100 ng of 
rA3A_F75L, d) 100 ng of rA3A_C106S. 
 
Bottom panel, e-h:  Summary of 100 LEAP products generated using wild-type 
L1 RNP with 2 Units of RNaseH, plus: e) no rA3A protein, f) 100 ng of wild-type 
rA3A, g) 100 ng of rA3A_F75L, d) 100 ng of rA3A_C106S. 
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Figure 4.5:  UGI alleviates A3A_F75L-mediated retrotransposition inhibition 

Approximately 1x105 HeLa cells were plated per 10 cm dish and co-transfected 
with 1 µg each of L1 expression plasmid (JM101_L1.3) A3A or β-arr control 
vector, and pLGCX_UGI or pLGCX empty vector.  The y-axis depicts % 
retrotransposition.  For each experimental condition, the appropriate β-arr control 
was set to 100%.  Gold bars indicate empty pLGCX vector; blue bars indicate 
pLGCX_UGI.  Data was normalized to circular NEO control co-transfections. 
Error bars represent percent standard deviation between duplicate transfections.  
Data from the same experiment for A3A, A3A_C106S, and β-arr are also 
presented in Figure 3.12. 

20%

40%

60%

80%

100%

120%

0%
A3A F75L C106S β-arr

Re
tr

ot
ra

ns
po

si
tio

n 
(p

er
ce

nt
 o

f c
on

tr
ol

)

UGI
Vector

L1.3 Colony Counts, Normalized to Linear NEO

192



 
 
 
Figure 4.6:  Speculative model for differential deaminase activity of 
A3A_F75L in vitro and in vivo 
 
A. In vitro, wild-type A3A (green) retains deaminase activity. F75L (orange) is 
deficient in deaminase activity in vitro, possibly due to defects in protein folding 
or stability.  C106S (red) is deficient in deaminase activity in vitro, due to 
disruption of Zn2+ ion coordination critical for deaminase activity. 
 
B. In vivo, wild-type A3A (green) has deaminase activity and may interact with 
unknown cellular factors (A, B, C).  A3A_F75L (orange) has some deaminase 
activity in vivo; stability or proper folding may be enhanced by cellular interacting 
factors. C106S (red) is deficient in deaminase activity in vivo, due to disruption of 
Zn2+ ion coordination critical for deaminase activity. 
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Chapter 5 

 

Conclusions 

 

 

Overview 

In this thesis, I have undertaken a mechanistic examination of 

retroelement inhibition by the human APOBEC3 (A3) proteins.  In Chapter 1, I 

provide a literature review discussing our current knowledge of retrotransposon 

control mechanisms in mammals, with a focus on the regulation of potentially 

heritable insertions in the mammalian germline and early embryo.  Chapter 2 

entails an initial survey of human A3 activity against autonomous LINE and non-

autonomous SINE elements from various species.  In Chapter 3, I elucidate a 

deaminase-dependent mechanism for APOBEC3A (A3A) mediated L1 inhibition, 

while in Chapter 4, I investigate putative deaminase-independent L1 inhibition by 

an A3A mutant, A3A_F75L.  In this concluding Chapter, I reflect on the body of 

work presented in this thesis.  I discuss the significance of results acquired in 

previous chapters, but focus on remaining questions, and provide suggestions for 

future experimental directions. 

196



APOBEC3-Mediated Retrotransposition Inhibition in the Cultured Cell 

Assay: Reflections on our Experimental Approach 

 

Why study L1 and A3A in HeLa Cells? 

 When considering the physiological context of L1 restriction by APOBEC3 

proteins, it is important to note that endogenous A3A expression in humans is 

limited to peripheral blood lymphocytes [1-6], making it unlikely that A3A combats 

heritable retrotransposition events in vivo.  However, I view A3A as a surrogate 

for investigating a general mechanism of deaminase-dependent retroelement 

restriction, and from an experimental standpoint, studying A3A-mediated L1 

inhibition in cultured human HeLa cells has distinct advantages.  First, HeLa cells 

do not highly express endogenous full-length L1 RNA [7] or L1 ORF1p [7, 8], yet 

they accommodate high levels of L1 retrotransposition from ectopically 

expressed retrotransposition indicator plasmids [9, 10].	   	  Similarly, HeLa cells do 

not express endogenous A3A [11].  Thus, A3A-mediated L1 inhibition can be 

studied in these cells in a controlled manner, with minimal influence from 

endogenous L1 or A3A expression.  In contrast, HeLa cells express endogenous 

A3B, and siRNA-mediated A3B knockdown increases engineered L1 

retrotransposition in these cells [11].  Thus, a mechanistic examination of A3B-

mediated L1 restriction in HeLa cells may be confounded by endogenous A3B 

expression, a complication which we avoid when studying A3A.   Insights gained 

by studying A3A, however, can now be applied to examining the mechanism of 

L1 restriction by A3B (discussed further below). 
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From an evolutionary standpoint, it is also interesting to note that the 

ancestral AID/APOBEC-like protein, from which the modern-day AID/APOBEC 

family expanded, was almost certainly a single deaminase domain protein (as is 

A3A) which arose early in vertebrate evolution [12].  The closest extant relative to 

this AID/APOBEC predecessor is found in the sea lamprey, a jawless vertebrate, 

where it has been implicated in a form of adaptive immunity involving variable 

lymphocyte receptors [13].  I therefore speculate that ancestral AID/APOBEC 

proteins acquired a role in innate immunity against endogenous mobile elements 

by a deaminase-dependent mechanism similar to the mechanism we have 

uncovered for A3A-mediated L1 inhibition.  I regard this deaminase-dependent 

restriction as a relatively “primitive” defense against transposable elements.  

Indeed, as illustrated by the cytotoxic effects of ectopic A3A expression in 

cultured cells (discussed below) [14], deaminase-dependent modes of 

transposable element restriction likely take a toll on genome stability.  During the 

expansion and evolution of the mammalian APOBEC3 family, a subset of A3 

genes fortuitously acquired a double deaminase domain structure [15].  I 

speculate that this double-domain configuration provided flexibility in terms of 

protein function and specificity, and that deaminase-independent retroelement 

and viral restriction represents a relatively recent adaptation of the AID/APOBEC 

family. 

 

A3A Cytotoxicity in the Cultured Cell Retrotransposition Assay 
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 It is now widely accepted that A3A expression has “off-target” effects on 

cell viability that are independent of L1 retrotransposition inhibition [2, 14, 16]. 

When I first chose to study the mechanism of A3A-mediated L1 inhibition, 

however, such effects had not been reported.  In fact, several published studies 

included control experiments to rule out nonspecific cytotoxicity as a cause for 

apparent A3A-mediated L1 inhibition, and reported that A3A expression has no 

off-target effects [17, 18].  Upon initiating the APOBEC3 project,  I performed 

GFP co-transfections to assess transfection efficiency in parallel with each 

retrotransposition assay, and I consistently observed fewer GFP positive cells in 

the presence of A3A as compared to control (β-arrestin) co-transfections.  I 

became concerned that A3A expression was killing or inhibiting the growth of 

transfected cells, and that such cytotoxicity could be responsible for the reduction 

in G418-resistant colonies we observe in the retrotransposition assay in the 

presence of APOBEC3 expression.   

 Transfection efficiency is assessed at 72 hours post-transfection, while the 

retrotransposition assay is carried out for 12-14 days.  I therefore developed a 

more stringent control for A3A-mediated off-target effects, by carrying out L1-A3 

retrotransposition assays in parallel with circular or linearized NEO-A3 co-

transfections (Figure 3.2 A).  Like the L1-A3 retrotransposition assays, G418 

selection on NEO-A3 co-transfections was initiated at 72 hours post-transfection 

and carried out for 12-14 days. Despite the increased stringency of this control, 

A3A demonstrates significant L1 inhibition after normalization of results to NEO 

co-transfections (Figure 3.2 B and C). 
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 In retrospect, having found that A3A deaminates single-stranded DNA in 

L1 TPRT intermediates, I propose that A3A-mediated toxicity likewise stems from 

opportunistic deamination of single-stranded DNA. I hypothesize that A3A can 

access single-stranded genomic DNA transiently exposed at structures such as 

transcription bubbles and replication forks, leading to a DNA damage response 

and cell cycle perturbation [14].  Indeed, evidence of A3A-mediated editing of 

genomic and mitochondrial DNA has been uncovered [19], using a technique 

known as differential DNA denaturation PCR (3D-PCR) [20].  The 3D-PCR 

technique is a nested PCR strategy that entails one round of standard PCR using 

primers to a genomic or mitochondrial sequence, followed by a second round of 

PCR using a nested set of primers. Several PCR reactions are done in parallel, 

with denaturation temperatures reduced in a stepwise manner [20].  Lower 

denaturation temperatures allow G-to-A edited products (i.e., products with a 

lower GC content) to denature, while the parental non-edited products (higher 

GC content) remain annealed and are not amplified. The 3D-PCR technique has 

also been employed to uncover evidence for A3A-mediated editing of transfected 

plasmid DNA [2].  Although this finding raises concerns that the editing we 

observe within genomic L1 insertions in the presence of A3A could have resulted 

from deamination of plasmid DNA, we observe a complete strand bias for editing 

of the minus-strand L1 cDNA, while editing of plasmid DNA is reported to occur 

on both strands [2].  If A3A-mediated editing was occurring on the autonomously-

replicating episome (JM140/L1.3/Δ2/k7; [21]) from which we generate L1 
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insertions, we would expect our L1 insertions to reflect editing of both strands of 

plasmid DNA. 

Taken together, A3A-mediated editing of genomic DNA and plasmid DNA 

may account for the reduction in G418-resistant colonies observed in NEO co-

transfection control assays (Figure 5.1).  Normalization of L1 retrotransposition 

assays to NEO control co-transfections, however, reveals marked restriction of 

L1 retrotransposition that cannot be explained by off-target A3A-mediated editing 

alone. 

 

APOBEC3-Mediated Retrotransposition Inhibition:  Remaining Questions 

and Future Experimental Directions 

 

Why is L1SM resistant to A3A-mediated inhibition? 

 We consistently observe that the synthetic mouse element, L1SM [22], is 

partially refractory to A3A-mediated inhibition, compared to human L1.3 and 

natural mouse [23] and zebrafish [24] elements (Figure 2.3 and Figure 3.1). We 

hypothesize that L1SM generates more insertions per cell, on average, than 

other elements.  Indeed, preliminary data generated in the lab by a previous 

rotation student, Sean Ferris, suggests that this is the case.  The model 

presented in Chapter 3 for A3A-mediated L1 inhibition suggests that inhibition 

occurs at the level of the individual insertion.  As one insertion per cell is 

sufficient to confer G418-resistance in the retrotransposition assay, A3A 

expression would therefore have a stronger effect on elements which produce 
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fewer insertions per cell, while elements that generate many insertions per cell 

would be less potently inhibited.  To test this hypothesis, one could generate a 

panel of clonal cell lines using L1.3 and L1SM, in the presence and absence of 

A3A (Figure 5.2 A).  Southern blotting using a probe to the mneoI reporter gene 

would reveal the number of insertions per clonal cell line, and therefore per cell, 

for each condition.  I predict that for L1.3 as well as L1SM, A3A would reduce the 

mean number of insertions per cell (Figure 5.2 B).  However, such a shift for L1.3 

would result in zero insertions in most cells (and hence, a loss of G418-resistant 

colonies), while for L1SM, more cells would ultimately harbor at least one 

insertion. 

 The ability of L1SM to partially escape A3A-mediated inhibition also 

provides an indirect argument that the reduction in colonies in the cultured-cell 

assay in the presence of A3A is not solely due to an A3A-triggered DNA damage 

response and resulting cell-cycle arrest [14], or degradation of plasmid DNA [2].  

If A3A caused a loss of G418-resistant colonies entirely independently of L1 

retrotransposition, then all elements should appear to be inhibited to the same 

extent. 

 

How does APOBEC3G inhibit Zfl2-2 retrotransposition? 

Perhaps the most unexpected result from our initial survey of A3-mediated 

inhibition of LINE elements is that the zebrafish LINE-2 element, Zfl2-2, is 

potently restricted by A3G (Figure 2.3).  This is in contrast to human and mouse 

LINE-1 elements, which are inhibited by A3A and A3B, but not A3G.  The data 
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presented in Chapter 3 indicate that A3A inhibits L1 retrotransposition by 

deaminating L1 TPRT intermediates, which is likely the same mechanism by 

which A3A inhibits mouse and zebrafish LINE elements.  However, A3G is a 

cytoplasmic protein which presumably does not have access to TPRT, and is 

therefore unlikely to function like A3A to restrict Zfl2-2 mobilization.  Comparisons 

to other elements which are inhibited by A3G may therefore provide more 

relevant insight about how A3G restricts Zfl2-2. 

Zfl2-2, like the mouse and human LINE-1 elements, is an autonomous 

retrotransposon which encodes the enzymatic machinery for its own mobilization 

[24].  Unlike human and mouse L1s, however, Zfl2-2 lacks an ORF1p equivalent, 

and encodes only one ORF, analogous to ORF2p [24].  In this way, Zfl2-2 is 

similar to nonautonomous retroelements like human Alu and the mouse SINEs 

B1 and B2, which do not have protein-coding capacity, and which do not require 

L1 ORF1p for their mobilization [25-27].  A3G inhibits Alu retrotransposition [28], 

as well as B1 and B2 mobility (Figure 2.4).  Thus, we observe a correlation 

wherein elements that encode ORF1p are refractory to A3G-mediated inhibition, 

while those lacking ORF1p are susceptible.  

A3G-mediated Alu inhibition occurs independently of A3G cytidine 

deaminase activity [28].  Likewise, we find that A3G inhibits Zfl2-2 in a 

deaminase-independent manner (Figure 2.5).  The prevailing model for Alu 

restriction by A3G is based on the observation that A3G expression leads to the 

inclusion of Alu RNAs in high molecular mass (HMM) A3G complexes [29]. This 

sequestration is proposed to inhibit Alu retrotransposition by preventing Alu 
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RNAs from accessing the L1 protein machinery.  Notably, the data supporting 

this model do not distinguish correlation from causation: it is not apparent 

whether A3G-dependent inclusion of Alu RNA in HMM complexes is directly and 

solely responsible for A3G-mediated retrotransposition inhibition.  Nevertheless, 

based on a sequestration hypothesis, one may speculate that L1 elements are 

protected from sequestration by A3G by the presence of ORF1p in RNP 

intermediates, whereas ORF1p-lacking elements are vulnerable to sequestration 

by A3G (Figure 2.7).  As a first step to investigate this hypothesis, one could co-

transfect cells with HA-tagged A3G and Zfl2-2, and ask whether Zfl2-2 mRNA is 

found in HMM A3G complexes, with Alu/A3G co-transfections serving as a 

positive control.  There is currently no antibody available for the Zfl2-2 encoded 

protein; however, generation of a functional epitope-tagged (i.e., TAP, HA, etc.) 

Zfl2-2 construct would allow detection of Zfl2-2 protein in HMM A3G complexes, 

as well.  I would also employ tagged L1 constructs (i.e., pAD3TE1, which bears a 

T7 tag on ORF1p, a TAP tag on ORF2p, and an MS2 tag on the L1 RNA [30]), to 

ask whether L1 RNA and protein are recruited to A3G HMM complexes.  Co-

localization of L1 and Zfl2-2 protein and RNA with A3G could also be examined 

by immunofluorescence microscopy.  Inclusion of Zfl2-2 RNA and/or protein, but 

not L1 RNA and proteins, in A3G HMM complexes would strengthen the 

hypothesis that A3G restricts certain retroelements by a sequestration 

mechanism.  However, if the RNA and protein components of L1, which is not 

inhibited by A3G, are recruited to HMM A3G complexes, it would suggest that 
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retroelement interaction with A3G HMM complexes is not indicative of 

susceptibility to restriction. 

 

What is the fate of the L1 RNA following first-strand cDNA synthesis? 

 In Chapter 3, we found that in the in vitro LEAP assay, the L1 RNA and 

first-strand cDNA remain annealed in an RNA-DNA heteroduplex following first-

strand L1 cDNA synthesis.  The persistence of the L1 RNA protects the L1 cDNA 

from deamination by purified recombinant A3A protein (rA3A); the addition of 

recombinant RNaseH is required to render the L1 cDNA vulnerable to editing 

(Figure 3.10).  This result led us to hypothesize that A3A effects L1 inhibition by 

deaminating single-stranded DNA substrates transiently exposed during TPRT.  

In a broader sense, this result also invites speculation about the fate of the L1 

RNA during TPRT in cells.  L1 does not encode an RNaseH activity [31], 

suggesting that the L1 RNA is either degraded by a cellular factor, or displaced 

during second-strand cDNA synthesis, as has been demonstrated in vitro for the 

related R2 element of Bombyx mori [32].   

Our analysis of L1 insertions generated in the presence of A3A and UGI, 

where we find evidence of A3A-mediated deamination within the retrotransposed 

cDNA sequence, supports the hypothesis that a cellular factor may remove the 

L1 RNA prior to second-strand cDNA synthesis.  Cellular RNaseH2, which 

cooperates with flap endonuclease (FEN-1) to remove RNA primers during 

lagging strand DNA replication [33], may be responsible for degradation of the L1 

RNA.  Unpublished data from the laboratory of Dr. Dan Stetson reveals that L1 

205



retrotransposition efficiency can be up- and down-modulated by manipulating 

RNaseH2 expression levels: shRNA-mediated knockdown of RNaseH2 

enhances L1 retrotransposition, while overexpression of RNaseH2 decreases L1 

retrotransposition in the cultured cell assay (Dr. Dan Stetson, personal 

communication).  Thus, I hypothesize that the fate of the L1 RNA varies on a cell-

by-cell and perhaps insertion-by-insertion basis, depending on the efficiency of 

RNaseH2 activity.  If cellular RNaseH2 gains access to the L1 RNA-cDNA hybrid 

before second-strand L1 cDNA synthesis takes place, the L1 RNA is removed, 

rendering the L1 cDNA vulnerable to cellular factors that may degrade single-

stranded DNA and thereby prevent completion of a new L1 insertion.  Alternately, 

if RNaseH2 does not access the TPRT intermediate, the first-strand cDNA 

remains protected until the putative RNA-displacement activity of the L1 

enzymatic machinery displaces the L1 RNA upon second-strand cDNA 

synthesis. 

In Chapter 3, we successfully employed UGI to preserve evidence of A3A-

mediated editing of retrotransposed L1 first-strand cDNAs. I now propose that 

A3A-mediated editing provides a molecular signature of single-stranded DNA 

during TPRT, that can be used to discern whether RNaseH2 is responsible for 

degradation of the L1 cDNA.  The reagents required for this experiment are a 

panel of HeLa cell lines which stably express UGI, and also stably over-express 

RNaseH2 (HeLa.UGI.RNaseH2+), express normal levels of RNaseH2 

(HeLa.UGI.control) or contain a stable shRNA-mediated RNaseH2 knockdown 

(HeLa.UGI.RNaseH2-) (Figure 5.3).  To confirm that any phenotype arising from 
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RNaseH2 knockdown can be reversed by RNaseH2 expression, I also propose 

to generate a stable cell line harboring an RNaseH2 shRNA, as well as an 

engineered shRNA-resistant RNaseH2 expression vector 

(HeLa.UGI.RH2.rescue)(Figure 5.3).   On each of these backgrounds, I propose 

to generate L1 insertions in the presence of ectopic A3A expression, and analyze 

the retrotransposed sequences for evidence of A3A-mediated editing.  The 

traditional L1 recovery assay used in Chapter 3 is labor and time-intensive; 

therefore, PCR amplification of the retrotransposed NEO reporter gene from a 

pool of insertion-harboring colonies, followed by next-generation sequencing, 

may provide a high-throughput and more efficient way to detect editing. If 

RNaseH2 is responsible for the removal of the L1 RNA, I would expect robust 

editing of HeLa.UGI.RNaseH2+ insertions, moderate editing of HeLa.UGI.control 

insertions (comparable to levels seen in Figure 3.19), and reduced editing of 

HeLa.UGI.RNaseH- insertions (Figure 5.3 B).  HeLa.UGI.RH2.rescue insertions 

would be expected to harbor similar levels of deamination to HeLa.UGI.control 

insertions, provided that the engineered shRNA-resistant RNaseH2 expression 

vector generates similar RNaseH2 levels to the endogenous RNaseH2 gene. 

It is also possible that RNaseH2 is not directly responsible for degradation 

of the L1 RNA, and that the L1 RNA-cDNA heteroduplex normally persists until 

second-strand cDNA synthesis. In this scenario, A3A may specifically recruit 

cellular factors that expose the L1 first-strand cDNA during TPRT.  Notably, 

activation-induced deaminase (AID) has been demonstrated to deaminate both 

strands of actively transcribed DNA regions (entailing RNA-DNA heteroduplexes 
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on the template strand), to generate somatic hypermutation during 

immunoglobulin gene diversification [34-36].  RNaseH2 has not been found to 

participate in this process.  However, the RNA exosome, a cellular RNA 

processing and degradation complex, has recently been identified to associate 

with AID, and facilitate its access to template strand DNA [37].  As AID and A3A 

are related, it is tempting to speculate that A3A could also associate with the 

RNA exosome, allowing A3A to access the first-strand L1 cDNA in the RNA-

cDNA heteroduplex during TPRT. 

 

Is there a deaminase-independent component of A3A-mediated L1 inhibition? 

 In Chapter 3, we uncover a deaminase-dependent mechanism for A3A-

mediated L1 inhibition, supported by direct evidence of A3A-mediated editing of 

L1 insertions, and the observation that expression of uracil glycosylase inhibitor 

protein (UGI) alleviates inhibition. Notably, alleviation of inhibition by UGI is 

efficient, but consistently fails to restore retrotransposition to 100% of control 

levels (Figure 3.12 C and 3.17 B).  There are a number of possible explanations 

for this observation.  The first stems from the fact that we rely on the expression 

of the spliced mneoI reporter gene to detect retrotransposition.  A3A-mediated 

editing of the mneoI region of the L1 cDNA likely causes deleterious missense or 

nonsense mutations which incapacitate the neomycin phosphotransferase gene 

a certain percentage of the time.  Thus, these insertions would not be detected 

as successful retrotransposition events in the cultured cell assay, even in the 

presence of UGI.  Second, mammalian cells express two nuclear uracil DNA 
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glycosylases with activity on single-stranded DNA: UNG2 [38],  which is inhibited 

by UGI [39], and SMUG1, which is not affected by UGI [40].  Thus, SMUG1 could 

be responsible for degrading edited L1 substrates when UNG2 is blocked by 

UGI.  This scenario is unlikely, at least in stable UGI-expressing U2OS cells, as 

previously published control experiments demonstrate a lack of detectable uracil 

DNA glycosylase activity in these cells [14]. 

 Finally, it is possible that A3A effects a deaminase-independent mode of 

L1 inhibition, in addition to its deaminase-dependent activity.  Notably, inhibition 

of vif-deficient HIV infection by A3G likely involves both deaminase-dependent 

and deaminase-independent mechanisms [41-49].  A3G robustly edits minus-

strand viral cDNAs, which can give rise to defective progeny viruses.  It appears 

that both UNG and SMUG-1 are dispensable for A3G-mediated inhibition of viral 

infectivity, suggesting that excision of uracil bases and APE-mediated 

degradation of HIV cDNAs is not responsible for this inhibition [40, 50].  

Conversely, deaminase-deficient A3G mutants robustly inhibit vif-deficient HIV 

infectivity, and a recent model suggests that A3G functions as a physical “road-

block” on the HIV RNA, to impede elongation of HIV reverse transcripts [42]. The 

relative contribution of deaminase-dependent and independent mechanisms to 

A3G-mediated HIV restriction remains unclear.  

 As discussed in Chapter 4, mutating Zn2+-coordinating residues within the 

single CDA active site in A3A may compromise the structural integrity of the 

protein, abrogating deaminase activity as well as other putative activities that 

could effect deaminase-independent L1 inhibition.  In contrast, A3G is a double 
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deaminase domain protein [51, 52].  Mutational analysis reveals that only the C-

terminal domain of A3G has deaminase activity [53]; the N-terminal domain 

bears the consensus CDA active site, but is deficient in deaminase activity and 

may be important for other enzymatic functions.  Therefore, I hypothesize that in 

contrast to A3A, mutations in the A3G CDA-competent active site are less likely 

to compromise the overall structural integrity of the A3G protein, making 

separation of deaminase activity from antiretroviral activity readily attainable. 

 In Chapter 4, we employ an A3A mutant, A3A_F75L, previously reported 

to lack deaminase activity but retain the ability to inhibit adeno-associated virus 

replication [54].  We find that this mutant potently restricts L1 retrotransposition, 

so, based on previous reports [54], we initially regarded it as a separation-of-

function mutant indicative of a deaminase-independent mode of A3A-mediated 

L1 restriction.  However, we ultimately found that A3A_F75L-mediated inhibition 

is alleviated by UGI expression (Figure 4.5), and that A3A_F75L has greater 

deaminase activity than A3A_C106S in a bacterial mutator assay (Weitzman and 

Kohli, personal communication).  The most parsimonious explanation for the data 

is that A3A_F75L lacks deaminase activity in vitro, but retains deaminase activity 

when expressed in the cellular context (mammalian or prokaryotic).  Recovering 

L1 insertions generated in the presence of UGI and A3A_F75L, as done in Figure 

3.16 and 3.19 for wild-type A3A, would be the most effective way to determine 

whether A3A_F75L has deaminase activity in cells.  Alternately, in a potentially 

more efficient approach, a PCR-based strategy could be used to amplify the 

retrotransposed NEO gene from a pool of cells harboring retrotransposition 
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events that took place in the presence of A3A_F75L. Evidence of deamination 

could then be detected by next-generation sequencing.   

 Overall, our mechanistic examination of A3A-mediated L1 inhibition has 

been a source of insight about how deaminase-dependent retroelement inhibition 

can occur. Due to the inherent difficulties of A3A mutational analysis, continuing 

to pursue a deaminase-independent component of A3A-mediated L1 inhibition 

represents a  challenging undertaking.  Indeed, I argue that a mechanistic 

examination of L1 inhibition by APOBEC3B (A3B) is more likely to provide insight 

about deaminase-independent L1 inhibition. 

 

How does APOBEC3B inhibit L1 retrotransposition? 

 Like A3A, APOBEC3B (A3B) potently restricts L1 retrotransposition in 

cultured cells [1, 17, 53, 55-57].  Indeed, we find that A3B acts in a sequence-

independent manner, as it is capable of restricting LINE elements from mouse 

and zebrafish (Figure 2.3).  Unlike A3A, however, mutation of the A3B 

deaminase-competent active site, which resides in the C-terminal domain of the 

protein, does not compromise A3B-mediated L1 inhibition [53, 55]. Furthermore, 

UGI expression modestly alleviates L1 inhibition by wild-type A3B, but has no 

effect on inhibition by deaminase-deficient A3B mutants (Figure 3.14).  Notably, 

A3B contains a nuclear import signal, and has the ability to shuttle between the 

cytoplasm and nucleus, giving it access to L1 TPRT [53]. I therefore hypothesize 

that, similar to what has been reported for A3G-mediated HIV restriction [41-49], 

A3B inhibits L1 retrotransposition by deaminating single-stranded DNA within 
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TPRT intermediates, and also functions in a deaminase-independent manner to 

physically block the elongation of the L1 first-strand cDNA on its RNA template. 

 To investigate the action of A3B during L1 TPRT, one could generate 

purified recombinant A3B protein (rA3B), and include it in the LEAP reaction.  As 

deaminase active site A3B mutants retain the ability to inhibit L1, I suggest using 

rA3A as a negative control for direct L1 RT inhibition.  If rA3B blocks the 

procession of L1 RT, full-length LEAP products will likely be diminished.  

Therefore, to detect the presence of shorter LEAP products, I suggest using a set 

of tiled L1 3’ end primers in the PCR amplification step.  As reported for A3G-

mediated HIV RT inhibition [42], if A3B blocks L1 RT procession I would expect 

an inverse correlation between LEAP product length and abundance in the 

presence of rA3B.  Alternately, if A3B does not directly block L1 RT procession, 

robust full-length LEAP products will be generated in the presence of rA3B.  

Regardless of whether A3B diminishes the quantity and length of LEAP products, 

I would expect sequencing to reveal signatures of rA3B-mediated deamination. 

 If rA3B does not block L1 RT procession, then A3B likely functions in  a 

deaminase-independent manner at a different point during the L1 

retrotransposition process.  One possibility is that A3B, which is a shuttle protein 

and can translocate between the cytoplasm and the nucleus [53], sequesters the 

L1 RNA or RNP in the cytoplasm, as proposed for A3G-mediated Alu inhibition 

[29].  Indeed, it would be interesting to determine by co-immunoprecipitation 

experiments whether A3B can interact with L1 ORF1p or ORF2p, and if such an 

interaction is direct or mediated by an RNA bridge.   
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What are the physiological roles of A3A and A3B in humans? 

It is well demonstrated that A3A potently restricts L1 retrotransposition 

when ectopically expressed in cultured cells [1, 17, 53, 56, 57]. However, A3A 

expression is restricted to peripheral blood lymphocytes [1, 53] and is induced by 

interferon [2].  Therefore, it is unlikely that A3A plays a role in the restriction of 

heritable L1 retrotransposition events in humans, which must occur in the 

germline or very early embryo prior to germline specification.  Similarly, A3A also 

restricts adeno-associated virus (AAV) replication [1, 54]; however, AAV is not 

known to be pathogenic in humans and therefore may not represent a natural 

target of A3A.  Thus, the physiological role of A3A in humans likely remains to be 

uncovered.  The fact that A3A expression is induced by interferon and can 

mutate transfected DNA [2] suggests that A3A may play a role in an innate 

immune response to an as-yet unidentified exogenous pathogen.  On the other 

hand, recent evidence that A3A can deaminate host cell genomic DNA [14, 19] 

opens up the possibility that, similar to AID, endogenous A3A may target the 

genome to create somatic mosaicism as part of a presently undescribed cellular 

process.  Interestingly, a new report indicates that endogenous A3A in 

monocytes localizes to the cytoplasm, and does not edit cellular genomic DNA 

[58].  The A3A protein has a molecular weight of <40 kD and therefore is small 

enough to diffuse into the nucleus, and in cultured cells ectopically expressed 

A3A localizes diffusely throughout the nucleus and cytoplasm [1, 53].  Therefore, 

the mechanism by which endogenous A3A is restricted to the cytoplasm remains 
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to be determined.  Indeed, it will be interesting to see whether future studies 

uncover a defined physiological role for this potent cytidine deaminase. 

In contrast to A3A, A3B is expressed in a wide variety of tissues [52, 53], 

and endogenous A3B has been implicated in L1 restriction in human embryonic 

stem cells (hESCs) [11].  Thus, A3B is more likely than A3A to represent a 

physiologically relevant retroelement restriction factor.  I therefore propose that a 

mechanistic examination of A3B-mediated L1 inhibition, as described above, 

represents an important step in understanding the regulation of potentially 

heritable L1 retrotransposition events.   

  Notably, recent studies have uncovered evidence for endogenous L1 

mobility in the human brain and neuronal cell types [59-61], where A3B 

expression has not explicitly been demonstrated [52].  It is interesting to 

speculate that A3B expression may be repressed in neuronal cell types, allowing 

L1 retrotransposition to generate somatic mosaicism.  It is also interesting to note 

that a common deletion polymorphism exists in humans, in which the last exon of 

the APOBEC3A gene and the first seven exons of the APOBEC3B gene are 

deleted [62].  This deletion is predicted to generate a fusion transcript that 

produces a protein identical to A3A, and results in a complete loss of A3B.  This 

polymorphism is nearly fixed in Oceanic populations, exists at high allele 

frequencies in East Asian and American Indian populations, and is rare in 

Africans and Europeans [63].  It would be interesting to determine whether 

Oceanic populations have a higher frequency of heritable L1-mediated insertions 

when compared to Africans and Europeans.  Furthermore, one could investigate 
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whether induced pluripotent stem cells (iPSCs) [64-66] derived from individuals 

bearing the deletion accommodate higher levels of retrotransposition from 

engineered retrotransposon vectors when compared to iPSCs from individuals 

with functional APOBEC3 alleles.  Likewise, it would be interesting to examine 

various somatic tissues from individuals bearing the APOBEC3 deletion to 

determine the prevalence of endogenous L1-mediated retroelement insertions. 

Of course, it will be important to recognize the inherent difficulties in establishing 

positive and negative controls, when comparing cell lines and tissues from 

individuals with different genetic backgrounds.  Overall, as sequencing 

technologies improve, allowing detailed examination of endogenous L1 

insertions, future studies will no doubt elucidate the role of A3B and other cellular 

factors in regulating heritable and somatic retrotransposition events. 

 

Summary 
 
 The mobility of transposable elements such as L1 represents an ancient 

and ongoing threat to genome stability, and the evolution of the APOBEC3 family 

of cytidine deaminases is hypothesized to have been driven by genetic conflict 

with endogenous retroelements.  Indeed, certain members of the APOBEC3 

family, most potently A3A, restrict L1 retrotransposition in cultured cells.  

Previously, little was known about the molecular mechanisms of A3-mediated L1 

inhibition.  In this thesis, I have uncovered a deaminase-dependent mechanism 

for A3A-mediated L1 restriction, and in doing so gained insight into various 

aspects of APOBEC3 and L1 biology.  Future studies will no doubt further 
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elucidate the dynamic interplay between endogenous retroelements and host 

restriction factors. 
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Figure 5.1:  Possible explanations for “off-target” effects of A3A expression 
in cultured cells 
 
A3A has been demonstrated to act upon transiently single-stranded DNA during 
TPRT (top left).  A3A may also access single-stranded genomic DNA at 
transcription bubbles and replication forks.  The downstream consequences of 
genomic DNA deamination likely include a DNA damage response and cell cycle 
arrest (bottom left) [14].  In addition, A3A may access single-stranded DNA on 
transfected plasmids, either during transcription from the plasmid or during 
plasmid replication (right).  These activities could potentially lead to degradation 
of the transfected plasmid. 
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Figure 5.2:  Proposed experiment to examine the impact of A3A expression 
on the number of L1 insertions per cell 
 
A.  Generation and characterization of clonal cell lines.  Above, HeLa cells are 
co-transfected with L1.3 or L1SM, and A3A or β-arr control plasmid.  Clonal cell 
lines are generated by selection of G418 and expansion of the resulting colonies.  
Genomic DNA from each cell line is subjected to Southern blotting with a probe 
to the NEO gene.   
 
B.  Predicted distributions of L1 insertions per cell.  L1.3 is shown at left, L1SM, 
at right.  The x-axes represent the number of insertions per cell; the dashed line 
highlights the “zero” point.  The y-axes represent the number of cells.  Blue bars 
indicate β-arr control distributions; red bars indicate the predicted leftward shift in 
the presence of A3A. 
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Figure 5.3:  Experiment to test L1 cDNAs for single-strandedness during 
target-primed reverse transcription (TPRT)  
 
A.  HeLa cells are transduced with a lentiviral vector harboring the humanized 
UGI gene (LGCX_UGI) or empty vector control.  Cells are flow-sorted on GFP to 
generate a polyclonal population of GFP and UGI-expressing cells (HeLa.UGI).  
Next, sequential rounds of lentiviral transduction and selection are used to 
generate HeLa.UGI.control, HeLa.UGI.RH2+, and HeLa.UGI.RH2- cell lines.   
 
B.  The table indicates the genotype of each engineered cell line, as well as the 
expected relative levels of A3A-mediated deamination within retrotransposed L1 
sequences. 
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Appendix 

 

Characterizing Engineered L1 Retrotransposition Events in Cultured 

Human Embryonic Stem Cells 

 

 

 

Introduction 

As discussed in Chapter 1, the early embryo, before germline 

specification, represents a critical window for the generation of heritable L1 

insertions.  Human embryonic stem cells (hESCs) reprsent an ideal model to 

study L1 retrotransposition in early human development.  Previous studies have 

demonstrated that L1 can retrotranspose in hESCs in culture [1-3] and that L1 

retrotransposition can occur in vivo during early human embryonic development 

[4].   

Here, we generate a library of L1 insertions in H9 and H13B hESCs using 

a “second-generation” L1 retrotransposition indicator plasmid, pUB-RAM-LRE3.  

Characterizing these insertions allows us to observe the structural hallmarks, 

putative target-site preference, and alterations to target-site DNA associated with 
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L1 retrotransposition in the early embryo.  Furthermore, unique features of the 

pUB-RAM-LRE3 indicator plasmid allows manipulation of the L1-delivered 

reporter cassette in clonal insertion-bearing cell lines. 

 

Results/Discussion 

 

The pUB-RAM-LRE3 retrotransposition indicator plasmid 

 To facilitate the generation and manipulation of L1 insertions in clonal 

hESC cell lines, we engineered a “second-generation” L1 retrotransposition 

indicator plasmid termed pUB-RAM-LRE3 (Figure A.1).  This construct consists 

of the human L1 element LRE3 [5], driven by its 5’UTR, as well as the ubiquitin C 

ligase (UBC) promoter [6].  The UBC promoter is intended to maximize L1 

expression. The construct bears the standard mneoI retrotransposition indicator 

cassette [7, 8], followed by the ColE1 bacterial orgin of replication, which allows 

recovery of retrotransposed L1 insertions as autonomously replicating plasmids 

in bacteria, as previously described [9, 10].  The entire mneoI-ColE1 cassette is 

flanked by heterologous loxP sites [11, 12], which in turn are flanked by FRT 

sites [13].  After integration, the FRT sites are designed to allow Flp 

recombinase-mediated removal of the mneoI-ColE1 cassette.  The heterologous 

loxP sites are designed to facilitate replacement of the integrated mneoI-ColE1 

cassette with any gene of choice. 
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Generation of clonal insertion-bearing cell lines 

Clonal insertion-bearing cell lines were generated by transfecting H9 and 

H13B hESCs with the pUB-RAM-LRE3 plasmid, and imposing G418 selection for 

14 days.  The resulting G418-resistant colonies were then expanded to generate 

clonal cell lines.  We have generated 28 cell lines, 15 in H13B (designated RAM 

1-15) and 13 in H9 hESCs (designated RAM A-M).  A subset of cell lines were 

validated as bona-fide hESCs by immunostaining for pluripotency markers 

(Figure A.2), and the presence of the spliced mneoI cassette delivered by 

retrotransposition was confirmed for all cell lines by PCR (Figure A.3). 

 Four pUB-RAM-LRE3 insertions from H9 hESCs have been characterized 

(Figure A.4).  These insertions bear the typical hallmarks of L1 retrotransposition, 

including target-site duplications and poly-A tails.  Interestingly, one insertion was 

apparently prematurely polyadenylated within the SV40 promoter that drives 

expression of the mneoI indicator gene (Figure A.4, line RAM-I).  This insertion 

was characterized by inverse PCR, as premature polyadenylation resulted in 

omission of the ColE1 bacterial origin of replication from the insertion. 

 

L1-delivered reporter genes may undergo silencing in hESCs 

The generation of G418-resistant colonies harboring pUB-RAM-LRE3-

derived retrotransposition events proved to be a slow process, with fewer than 

five G418-resistant colonies arising from a typical transfection.  We therefore 

speculate that the L1-delivered mneoI reporter gene may become epigenetically 

silenced during or after insertion in hESCs.  We chose twelve H9 clonal cell lines 
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(RAM A through L), harboring the retrotransposed L1 indicator cassette, as 

verified by PCR, that had been maintained on irradiated feeder MEFs in the 

absence of selection for 4-8 passages.  We re-subjected these cells to G418 

selection at a range of concentrations (50-150 µg/ml) for seven days, with 

untransfected H9 hESCs serving as a negative control.  Interestingly, different 

cell lines displayed varying degrees of resistance to G418 selection, with some 

lines appearing fully resistant (ie RAM-D; Figure A.5, top row, fourth well), while 

others were much more susceptible to G418 selection (ie RAM-J; Figure A.5, 

bottom row, second well).  Thus, while these insertion-bearing hESCs clearly 

maintained mneoI reporter gene expression through the initial selection process 

to generate clonal cell lines, in some cases expression from the mneoI cassette 

appears to have become silenced with subsequent passaging in culture. 

 

Materials and Methods 

hESC culture: 

H9 and H13b hESCs (WiCell) were grown on gelatin-coated plates on pre-

irradiated mouse embryonic fibroblast (MEF) feeder cells (GlobalStem or 

ChemiCon).   hESC culture media contains DMEM F12 Media (Gibco), 20% 

Knockout Serum Replacer (KOSR; Gibco), 4 ng/ml FGF-2 (fibroblast growth 

factor) (Invitrogen), 1mM L-glutamine (Gibco), 50 µM β-mercaptoethanol, and 0.1 

mM non-essential amino acids (Gibco).  Cells were manually passaged using the 

StemPro EZ passage Cell Passaging Tool (Invitrogen) every 3 or 4 days. 
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Plasmids: 

All plasmids were grown in DH5α (F– Φ80lacZΔM15 Δ(lacZYA-argF) 

U169 recA1 endA1 hsdR17 (rK–, mK+) phoA supE44 λ– thi-1 gyrA96 relA1) 

competent E. coli (Invitrogen; Carlsbad, CA. Prepared in house as described in 

[14]).  Plasmids wereprepared using the Qiagen Plasmid Midi Kit (QIAGEN; 

Hilden, Germany) according to the manufacturer’s protocol.   

 

pUB-RAM-LRE3:  consists of the pBSKS II backbone containing the LRE3 

element driven by a ubiquitin C ligase (UBC) promoter.  The 3’UTR of the 

element harbors an engineered retrotransposition cassette, mneoI, and the 

ColE1 bacterial origin of replication.  These sequences are flanked by 

heterologous LoxP sites (LoxP and Lox511), which in turn are flanked by FRT 

sites. 

 

Transfection and selection of hESCs: 

1-2 hours prior to transfection, hESC media was removed from cells and 

replaced with hESC media supplemented with 10 µM ROCK inhibitor Y-27632.  

In the meantime, 10 cm dishes (Corning) were coated with matrigel (BD 

biosciences) diluted 1:15 in cold DMEM-F12 media and incubated for 1-2 hours 

at room temperature.  For each round of transfection, one plate of hESCs was 

sacrified for counting purposes: cells were dissociated using trypsin, and cell 

density determined by counting on a hematocytometer.  For cells to be 

transfected, hESCs were dissociated using TrypLE Select (Invitrogen) and 
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washed once with 1X PBS.  For each transfection, approximately ~2x106 cells 

were resuspended in 100 µl of V-kit solution (Amaxa).  This suspension was 

mixed with 4 µg of plasmid DNA, and transferred to an Amaxa nucleofection 

cuvette.  Cells were nucleofected using Amaxa program A-23.  Following 

nucleofection, 500 µl of pre-warmed RPMI was added to the cuvette and the 

entire suspension was then transferred to a microcentrifuge tube and incubated 

at 37°C for 15-30 minutes.  Each transfection was seeded on a Matrigel-coated 

plate and maintained in MEF-conditioned media (made in house) supplemented 

with 20 ng/ml of FGF-2 and 10 µM Y-27632 ROCK inhibitor (MCM20-iROCK).   

 Transfected cells were fed daily with MCM20-iROCK for 5 days.  Selection 

with 50 µg G418 (Invitrogen) was initiated at day 6, and continued for one week.  

Selection with 100 µg G418 was then initiated at day 14, and continued for one 

week.  G418-resistant colonies were manually dissected and replated onto 

irradiated feeder MEFs, and expanded to generate clonal cell lines.  Genomic 

DNA was prepared using the Qiagen Blood and Cell Culture Midi Kit, according 

to the manufacturer’s instructions.   

 

Immunocytochemistry: 

 Approximately 5x105  hESCs were plated per well of a 12-well dish, on 

irradiated feeder MEFs.  Cells were allowed to grow for four days, at which point 

they were fixed using 2% paraformaldehyde.  Cells were washed twice with 1X 

D-PBS (Invitrogen), and permeabilized using permeabilization buffer (0.1% triton, 

0.1% sodium citrate).  Cells were then washed once with serum wash (9.8 mL D-
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PBS, 100 µl normal donkey serum, 100 µl 10 % sodium azide), and incubated in 

blocking buffer (1 mL normal donkey serum, 50 µl Triton X-100, 100 µl 10% 

sodium azide, 8.85 ml D-PBS) for 30 minutes in a humidified chamber at room 

temperature.  OCT4 antibody (Santa Cruz, SC-8628) was diluted 1:400 in 

antibody dilution buffer (100 µl normal donkey serum, 50 µl Triton X-100, 100 µl 

10% sodium azide, 9.75 ml D-PBS).  Cells were incubated in primary OCT4 

antibody overnight at 4°C in a humidified chamber.  The next day, cells were 

washed with serum wash.  The secondary antibody (Texas Red Donkey anti-

Goat antibody, Affinipure, 705-075-147) was diluted 1:800 in antibody dilution 

buffer.  Cells were incubated for 30 minutes at room temperature in a humidity 

chamber.  Cells were washed with serum wash in the dark, then washed with D-

PBS in the dark.  Cells were then stained with Hoechst for 5 minutes, then rinsed 

once with H2O and once with D-PBS.  Cells were visualized using fluorescence 

microscopy. 

 

NEO PCR: 

Primers: 

437s: GAGCCCCTGATGCTCTTCGTCC [7] 

1808as: CATTGAACAAGATGGATTGCACGC [7] 

For each PCR reaction, 300 ng of hESC genomic DNA was used as the 

template.  PCR reactions were performed Roche Expand High-Fidelity PCR 

system.  Cycling conditions are as follows:  95° C for 4 minutes, followed by 35 
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cycles of 95° C, 45s; 52°C, 20s; 72°C, 1 min., and a ten-minute extension at 72° 

C.  Products were visualized on a 1% agarose gel. 

 

Recovery of L1 insertions:  

 

The L1 insertion recovery procedure  

Insertions were recovered generally as previously described [10].  Briefly, 

8 µg of genomic DNA was digested with excess restriction enzyme (HindIII, SspI, 

BglII, BamHI: NEB; BclI: Promega) overnight at 37° C.  The following morning, an 

additional 2 µl of enzyme was added to the digest, and incubated at 37° C for 2 

hours.  Digestion reactions were heat-inactivated (65° C, 15 minutes), or in the 

case of BglII digest, cleaned up with the Wizard DNA clean-up kit (Promega).  

The entire digest was then ligated with 8 µl T4 DNA ligase (NEB) under dilute 

conditions (500 µl total volume) overnight at 16° C.  The next morning, 2 µl 

additional T4 DNA ligase was added to the reaction and incubated at room 

temperature for 4 hours.  Ligations were concentrated on an Amicon Ultra-0.5 

Centrifugal Filter Unit with Ultracel-100 membrane (Millipore; Billerica, 

Massachussets) at 8.0xg for 5 minutes, followed by a wash with 500µl dH2O, for 

5 minutes at 8.0 g.  10-100 µl of concentrated DNA was recovered with a short 

spin.  The entire ligation was then added to 500 µl of XL-10 gold ultra-competent 

E. coli (Stratagene; prepared in-house as described in [14]) and incubated on ice 

for 1-3 hours.  Transformations were heat-shocked at 42° C for 38-45 seconds, 

and allowed to recover on ice for 2 minutes.  2 ml of warm (37° C) LB (no 
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antibiotic) was added to each transformation.  Transformations were incubated 

overnight at room-temperature on an orbital shaker at 100 rpm.  The next 

morning, transformations were pelleted (300 g) and gently resuspended in 500 µl 

fresh LB.  About 400 µl of this resuspension was plated on a 15 cm Kanamycin 

plate (30 µg/ml), and the remaining ~100 µl was used to seed a 2 ml liquid 

culture (30 µg/ml Kanamycin).  Plates and liquid cultures were incubated for 18-

24 hours at 37° C.  Mini-preps (Promega SV mini-prep kit) were prepared from 2 

ml cultures.  From 15 cm plates, individual colonies were picked to inoculate 2 ml 

cultures (30 µg/ml Kanamycin), grown overnight at 37° C, and plasmid DNA was 

prepared by mini-prep the following day.  Plasmid DNA recovered from mini-

preps was digested with the original enzyme used for recovery, to confirm 

intramolecular ligation.  To characterize flanking genomic DNA, recovered 

insertions were sequenced using primers annealing to the 5’ (NEOasReco) and 

3’ (Rescue3seq) ends of the mneoI_ColE1 recovery cassette, as well as an oligo 

dA primer (polyAseq).  The genomic locations of insertions were determined by 

aligning flanking sequence to the human genome (Feb. 2009; GRCh37/hg19), 

using the BLAT function of the UCSC genome browser 

(http://genome.ucsc.edu/cgi-bin/hgBlat). 

 

Inverse PCR 

Primers: 

NEO210as:  GACCGCTTCCTCGTGCTTTACG 
 
NEO1720s:  TGCGCTGACAGCCGGAACACG 
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NEO173as: CATCGCCTTCTATCGCCTTCTTG 
 
NEO1808s:  GCGTGCAATCCATCTTGTTCAATG 
	  
 

4-5 µg of genomic DNA was digested with restriction endonuclease (HindIII, 

BglII, or SspI, NEB).  Reactions were heat-inactivated or, when heat inactivation 

was not possible (BglII), cleaned up using the Promega Wizard DNA clean-up kit.  

Fragments were ligated under dilute conditions, with a final volume of 1 ml and 

3200 units of T4 DNA ligase (Invitrogen).  DNA was recovered using phenol 

extraction, and precipitated using sodium acetate and ethanol.  First and second-

round PCR reactions were performed using the Roche Long Template PCR 

system, with buffer 3.  Reaction conditions include 10 pMol each primer, 20 nMol 

each dNTP, and 2.5 units of DNA polymerase mix.  4 µl of the ligation was used 

as template for the first round of PCR.  Primers used were NEO210as, 

NEO1720s.  Cycling conditions were 2 minutes at 95C, followed by 30 cycles of 

94° C, 15s; 64° C, 30s; 68° C, 15 minutes; followed by a 30-minute extension at 

68° C.  1-5 µl of the first-round PCR product was used for the second-round 

PCR.  Primers used were NEO173as, NEO 1808s.  Cycling conditions were 

identical to the first-round PCR.  Products from the second-round PCR were 

ligated into the pGEM-T Easy vector (Promega) and characterized. 

 

Re-imposing selection on clonal cell lines: 

 Clonal H9 cell lines generated as described above were passaged on 

irradiated feeder MEFs in the absence of selection for 2-4 weeks (4-8 passages).  
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Cells were dissociated using the StemPro EZ Passage Cell Passaging Tool and 

~5x105 cells were plated per well of Matrigel-coated 12-well dishes (BD 

Biosciences).  Twenty-four hours after plating, selection with 50 µg/ml, 100 

µg/ml, or 150 µg/ml of G418 was initiated and carried out for seven days. 
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Figure A.1:  The pUB-RAM-LRE3 retrotransposition indicator 
 
The human L1 element LRE3 [5] is drived by its 5’ UTR, and a ubiquitin C ligase 
(UBC) promoter [6] to ensure high expression leves.  The construct bears the 
mneoI retrotransposition inidcator cassette.  The black arrow and black lollipop 
represent the mneoI engineered heterologous promoter and polyadenylation 
signal, respectively.  The mneoI indicator gene is followed by the ColE1 bacterial 
orgin of replication [9, 10].  The entire mneoI-ColE1 cassette is flanked by 
heterologous loxP sites [11, 12], which in turn are flanked by FRT sites [13].  This 
figure was generated by Jose Garcia-Perez. 
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Figure A.2:  Immunostaining of H13B hESC cell lines harboring L1 
retrotransposition events 
 
Representative colonies from four clonal H13B cell lines harboring pUB-RAM-
LRE3 L1 insertions are shown.  Brightfield (B.F.) images show typical hESC 
colony morphology.  Hoechst stains the nuclei of hESCs, as well as feeder 
MEFs.  OCT4 is a marker of pluripotency. 
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Figure A.3:  PCR across the spliced NEO gene confirms L1 insertions in 
H13b and H9 hESCs 
 
Primers flanking the intron within the NEO retrotransposition indicator cassette 
(437s, 1808as) were used to amplify the spliced pUB-RAM-LRE3-delivered NEO 
gene from 15 H13b (RAM 1-15, top row) and 13 H9 (RAM A-M, bottom row) 
hESC clonal cell lines.  The spliced (retrotransposed) product is 493 bp; the 
unspliced (vector) product is 1396 bp.  For each cell type, untransfected genomic 
DNA was used as a negative control. 
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Figure A.4:  Engineered L1 retrotransposition events in cultured human 
embryonic stem cells 
 
Above: for each insertion, the chromosomal location is depicted as viewed on the 
UCSC genome brower (http://genome.ucsc.edu/cgi-bin/hgGateway).  If the 
insertion resides within a gene, the location within the gene (ie, exon or intron 
number) and relative transcriptional orientation to the gene, are listed.   
 
Below:  The sequence of the empty site for each insertion is shown, with the 
region that ultimately became the target-site duplication (TSD) in green.  The 
filled site is depicted beneath.  TSDs are highlighted in green, and the structure 
of the insertion, including truncation point and polyA tail length, is indicated
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Figure A.5:  A NEO reporter gene delivered by the pUB-RAM-LRE3 
retrotransposition indicator can undergo silencing in hESCs 
 
Approximately 5x105 H9 hESCs from twelve different clonal cell lines harboring 
insertions generated using pUB-RAM-LRE3 were plated in quadruplicate in 12-
well matrigel-coated dishes and fed with MEF-conditioned media.  24 hours after 
plating, cells were subjected to selection with zero, 50, 100, or 150 µg/ml G418.  
Selection was carried out for seven days; cells were then fixed and stained with 
crystal violet.  H9 hESC clonal lines are RAM A through L; in each 12-well dish:  
top row A-D, middle row E-H, bottom row I-L.  Untransfected H9 hESCs serve as 
a negative control. 
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