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Affinity purification followed by mass spectrometry (AP-MS) has become a common approach
for identifying protein–protein interactions (PPIs) and complexes. However, data analysis
and visualization often rely on generic approaches that do not take advantage of the quantitative
nature of AP-MS. We present a novel computational method, nested clustering, for biclustering
of label-free quantitative AP-MS data. Our approach forms bait clusters based on the similarity
of quantitative interaction profiles and identifies submatrices of prey proteins showing consistent
quantitative association within bait clusters. In doing so, nested clustering effectively addresses
the problem of overrepresentation of interactions involving baits proteins as compared
with proteins only identified as preys. The method does not require specification of the
number of bait clusters, which is an advantage against existing model-based clustering methods.
We illustrate the performance of the algorithm using two published intermediate scale human
PPI data sets, which are representative of the AP-MS data generated from mammalian cells. We
also discuss general challenges of analyzing and interpreting clustering results in the context of
AP-MS data.
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Introduction

Deciphering how proteins assemble with each other into
complexes is key to understanding their biological activity.
In recent years, affinity purification coupled to mass spectro-
metry (AP-MS) has become the technique of choice to recover
and identify protein complexes. This has been made possible
in part by advances in tandem mass spectrometry (MS/MS)
and the development of efficient affinity purification strategies
(Gingras et al, 2007). Most often, target proteins (baits) are
purified along with their interaction partners (preys) through
an epitope tag-based affinity chromatography step. After
purification, the protein mixture is digested into peptides that
are identified using MS/MS (Aebersold and Mann, 2003).
By performing additional AP-MS experiments for intercon-
nected baits, further information can be gained related to the

assembly of proteins into interaction networks and delineation
of protein complexes involving shared components.

A number of computational approaches were developed for
reconstructing protein complexes from ‘binary’ representa-
tions of AP-MS data (i.e. observation/non-observation of a
given interaction; such modeling correctly describes other
types of interaction data, such as yeast two-hybrid; Braun et al,
2009). This includes methods based on the socio-affinity index
(Gavin et al, 2006; Collins et al, 2007; Pu et al, 2007), as well as
a direct application of graph theory based and other advanced
approaches (Hart et al, 2007; Zhang et al, 2008; Friedel and
Zimmer, 2009). These methods, however, were designed for
genome-scale projects, where ideally each prey is also
analyzed as a bait (allowing theoretically for scoring the
presence–absence of interaction for each protein pair) giving a
more complete coverage of the target interactome. At the same
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time, most current AP-MS data sets are of a relatively small
scale where only a subset of proteins are selected for bait
purification, especially in human cells (see Sardiu et al (2008)
for further discussion). In such cases, potential interactions
between non-bait proteins cannot be screened directly,
resulting in partial coverage of the interaction network
(Scholtens et al, 2005). This renders the methods listed above
of limited utility.

Furthermore, most of these methods were also developed
for very specific data sets generated in Saccharomyces
cerevisiae through tandem affinity purification, which effec-
tively enriches for stable protein complexes that are relatively
easily identifiable computationally (Gavin et al, 2006; Krogan
et al, 2006). By contrast, more sensitive detection methods,
such as those based on single-step affinity purification,
typically recover a much higher number of interactors for
each bait protein (Chen and Gingras, 2007). In such data sets,
clustering of data by computational methods that treat all
interactions with equal weight regardless of the quantitative
evidence, and where grouping of proteins into protein
complexes relies heavily on the topological properties of the
network, is no longer effective.

In AP-MS studies, there is additional quantitative informa-
tion regarding the abundance of proteins in the affinity-
purified sample (such as MS/MS spectral counts) that can be
extracted from the data (Liu et al, 2004; Powell et al, 2004; Old
et al, 2005; Lu et al, 2007; Choi et al, 2008). Recently,
hierarchical clustering of a bait–prey matrix data set of
normalized spectral abundance factor (NSAF) values (Zybai-
lov et al, 2006) was applied to a human protein–protein
interaction (PPI) network. This revealed that clustering
quantitative data with continuous distance metrics identifies
modules (subnetworks involved in multiple protein com-
plexes) better than clustering binary data (Sardiu et al, 2009).
However, this study only investigated commonly used
clustering methods that assign proteins to separate or over-
lapping partitions in single-dimensional space. Such an

approach is not ideal because of the aforementioned problem
of incomplete interaction data for proteins that appear in the
network only as preys.

Here, we present a novel clustering approach for reconstruc-
tion of protein complexes that takes advantage of quantitative
information and is applicable to incomplete protein interaction
data sets that are typically generated in small and intermediate
scale AP-MS studies (see Box 1). Our method, nested
clustering, essentially performs a two-step sequential cluster-
ing (biclustering): creation of bait clusters based on common
patterns of label-free quantitative data (spectral counts) across
all prey proteins, and identification of nested clusters of preys
sharing similar abundance level in each bait cluster. The
method effectively addresses the problem of incomplete data,
and does not require specification of the number of bait
clusters. The performance of the algorithm is illustrated using
two published intermediate scale human PPI data sets, which
are representative of the AP-MS data generated from mamma-
lian cells.

Results and discussion

Overview of the computational method

The input of our clustering approach is AP-MS interaction data
that have passed through a processing step to remove
contaminants due to non-specific binding, for example by
referencing against control purifications or using statistical
methods (Sowa et al, 2009; Breitkreutz et al, 2010). The data
are represented in a bait–prey matrix, with each column
corresponding to purification of a bait protein and each row
corresponding to a prey protein: values are spectral counts for
each protein. Provided that data are properly normalized to
account for the factors affecting spectral count-based quanti-
fication (e.g. protein length and the total spectral counts in
each AP-MS experiment), relative quantitative measures can
be directly compared across purifications, allowing joint
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Box 1 Summary of the analytical pipeline

Novel clustering method for AP-MS data
H Choi et al

2 Molecular Systems Biology 2010 & 2010 EMBO and Macmillan Publishers Limited



statistical modeling of the entire data set (see Materials and
methods).

The nested clustering approach is illustrated in Figure 1. The
algorithm identifies biclusters by stochastically drawing samples
of bait and prey cluster configurations from the appropriate
posterior distribution, as well as mean and variance parameters
associated with them using the Markov chain Monte Carlo
(MCMC) algorithm (see Supplementary information for detail).

The biclustering configuration yielding the highest posterior
probability is selected as the optimal solution. Figure 1A
illustrates a single iteration for drawing bait and prey clusters.

Step I: clustering of baits for anchors of biclusters
The input data are organized into a matrix format with
n columns and p rows for baits and preys, respectively. Baits
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Figure 1 Overview of the computational method. (A) Nested clustering algorithm. Baits are probabilistically assigned to bait clusters with associated mean and
variance. The diameter of circles is proportional to the normalized spectral counts. In bait clusters, mean abundance of each prey is drawn as a square. Mixture modeling
is used to group these elements into a small number of abundance levels, completing nested clustering of prey proteins. (B) Resulting biclusters from the algorithm in
(A). Each bicluster corresponds to a submatrix consisting of a bait cluster and an associated nested prey cluster. (C) Example of maximum a posteriori estimation. Bait
clustering is illustrated in a hypothetical data with two preys. Each dot is a single purification with a different bait. Four unique sets of clustering configurations were
generated in 100 samples. The number N is the number of samples sharing the given bait clusters, and maxP is the maximum posterior probability under the fixed bait
cluster configuration. The Model 2 is the most frequently sampled configuration with the highest maximum posterior probability, and Model 3 is the second best
competing model with similarly high posterior probability. The other two configurations have low posterior probability and low frequency of sampling.
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are probabilistically assigned to clusters. Here, each cluster has
associated abundance vectors of mean and variance (length
p), as shown in vertical arrays of rectangles in the figure. The
probability that a bait protein is a member of a bait cluster is
proportional to the Gaussian likelihood of the observed
spectral counts with the cluster mean and variance times the
prior. Without specifying the number of clusters in the data,
the algorithm starts with no known bait clusters. First, bait
cluster 1 is created to represent bait 1. Then bait cluster 2 is
created to explain bait 2 because the abundance vector of
cluster 1 is unlikely the data generating distribution for bait 2
(in this hypothetical example shown in Figure 1). Bait 3 is
assigned to bait cluster 1 because the bait is similar to bait 1
and thus there is no need to create another bait cluster
(number of bait cluster remains at 2). Following this process,
baits are sequentially assigned to either existing clusters or a
new cluster, and the number of clusters created along the way
after assigning all n baits becomes the final number of
bait clusters.

Step II: clustering of preys within anchors for final
assembly of biclusters
Once baits are organized into bait clusters, preys in each
cluster vector are assigned the most likely mean and variance
values (Figure 1A, lower panel). In this process, the same
mean and variance values are shared across many preys and
different bait clusters. Within each bait cluster, the preys
sharing the same mean abundance are pooled into nested prey
clusters. Combining these preys with the bait cluster results in
the assembly of a bicluster (Figure 1B). This completes single
iteration of the sampling algorithm.

Sampling steps are iterated many times to ensure sufficient
exploration of the search space. Figure 1C shows how bait
cluster configuration can change along the iterations using an
example of a hypothetical data set. For visualization purposes,
the illustration involves only two preys, A and B. The two axes
are spectral counts for the two proteins, where each dot
represents abundance coordinate of a bait protein. Candidate
models are grouped if they share identical bait cluster
configurations. In this example, four unique sets (Models 1
through 4) of clustering configurations were created from 100
samples. Among these, a large proportion of models shared
bait clusters shown in Models 2 and 3 (50 and 35%,
respectively), with high posterior probabilities given the
observed data, suggesting that these bait clusters most likely
represent the underlying protein complexes. As the assign-
ment process is probabilistic, the total number of clusters can
change every time this process is repeated, and the pool of all
sampled models automatically generates a posterior distribu-
tion of bait clusters as well as the number of bait clusters. This
can serve as a reference distribution for the sample with the
highest posterior probability (reported clustering result). For
final determination of the clustering outcome, the algorithm
reports the configuration yielding the highest posterior
probability.

Our implementation is based on mixture modeling, which
is common in the statistical literature of clustering for
high dimensional data (Yeung et al, 2001; Fraley and Raftery,
2002). A critical challenge in the model-based clustering

problem is the choice of the number of clusters. Although a
number of approaches were proposed to find the optimal
number of clusters (Tibshirani et al, 2001; Dudoit
and Fridlyand, 2002), our approach is based on Dirichlet
process mixture (DPM) models (see Materials and methods),
an off-the-shelf framework for Bayesian model-based cluster-
ing. The inferential procedure in DPM models surveys a
large number of potential candidate models with varying
numbers of clusters, and automatically determines the optimal
number of bait clusters and prey clusters from the best data
fitting model, avoiding the computational burden to fit
multiple models with different number of clusters and
compare them.

Results from nested clustering can be summarized in several
ways. First, the most straightforward outcome is a set of
biclusters, submatrices in the bait–prey matrix data, each
associated with estimated mean abundance value and
variance. A submatrix consists of a bait cluster serving as an
anchor and nested prey clusters shared consistently by the
baits in the bait cluster (and in a consistent level of
abundance). Submatrices can be best illustrated in heatmaps
of raw bait–prey matrix, where rows and columns are
reorganized using estimated abundance levels (as illustrated
in Figure 1B), although such arrangement does not guarantee
that nested prey clusters are correctly grouped across all bait
clusters in a single plot. Clustering results can also be
visualized using tools such as Cytoscape (Shannon et al,
2003): quantitative data can be represented by visual encoding
of edge attributes (edge thickness).

Application to TIP49a/b data set

The method was first applied to a human PPI network centered
around two AAAþ ATPases Tip49a and Tip49b involved in
chromatin remodeling (Sardiu et al, 2008). The network
reconstructed in the original study consisted of four major
protein complexes SRCAP, hINO80, TRRAP/Tip60, and URI/
Prefoldin profiled using 27 bait proteins, with a total of 55
proteins (baits and preys). These protein complexes were
established in earlier studies and validated using in vivo
coimmunoprecipitation assays (Sardiu et al, 2008, 2009). The
authors of the original study applied a variety of existing
clustering algorithms to this data set, and provided a detailed
performance assessment of each algorithm including para-
meters affecting the outcome, as well as a useful guideline for
using them in practice (Sardiu et al, 2009). Therefore, this data
set represents a good choice for evaluating the performance of
our approach.

Sample models with associated bait and nested prey clusters
were generated from the MCMC algorithm, and the sample
leading to the highest posterior probability (maximum a
posteriori estimate) was chosen as the final result. Bait clusters
recovered major groups of baits belonging to hINO80, URI/
Prefoldin, and SRCAP complexes according to the known
membership (Sardiu et al, 2008). To further evaluate the
clustering solution, we compared the bait cluster configuration
with the interbait probability distance matrix (see Materials
and methods for computation), and discovered that the
separation in probability distance was concordant with the
selected bait clusters (Supplementary Figure 1). We also
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monitored the distribution of the number of bait clusters
throughout the sampling, which fluctuated between 9 to 11
clusters with the majority focused on 10 bait clusters.
A number of samples showed DPCD and ZNF.HIT2 merged
with Prefoldin complex in the case of 9 bait clusters, whereas
MRGBP formed an independent bait cluster in the case of 11
bait clusters.

After identifying bait clusters, preys were assigned to
mixture component distributions of abundance within each
bait cluster, resulting in nested clustering of prey proteins, as
represented by colored rectangles in the heatmap (estimated
mean abundance in Figure 2B; raw spectral count data in
Figure 2A). Notice that, due to the automatic clustering
property of DPM model, the estimated mean and variance of
all boxes (nested prey clusters) were ‘regularized’ toward a
small pool of common values, yielding a small number of
submatrices. To assemble these boxes into protein complexes,
all boxes sharing the same mean abundance value in each bait
cluster were combined together.

As indicated on the right-hand side of Figure 2B, nested prey
clusters in each bait cluster were nicely separated into the
known complex membership reported in Sardiu et al (2009).
It also shows a substantial amount of cross-talks involving the
members of TRRAP/TIP60 and SRCAP complexes. Four bait
proteins, TIP49B, YL1, MRGBP, and H2AZ (marked * in
Figure 2B), interact with both members of SRCAP and TRRAP/
TIP60 complexes. Although TIP49A does not form a bait
cluster with TIP49B due to the heterogeneous quantitative
profiles, both proteins show interactions with nearly all the
baits in consistently high abundance.

The submatrices in Figure 2B also show groupings of prey
proteins according to their association with bait clusters.
Several preys were found to be associated with multiple
protein complexes. For example, BAF53 shows interactions
with two members of SRCAP complex SRCAPand ZINF.HIT1 in
medium ‘abundance’ (i.e. in AP-MS experiments using baits
from this complex, this protein was generally identified with
spectral counts in the intermediate abundance range), and
with the members of hINO80 complex in low abundance. IES6
provides another such example. Figure 2C shows the same
result in Cytoscape. In the graph, baits that serve as anchors for
the corresponding protein complexes) are indicated by larger
nodes than for the proteins only identified as prey. Note
that while the visualization in Figure 2C is a more compre-
hensive reflection of the multiplicity of protein complexes
than the heatmaps in Figure 2A and B, the latter representation
allows an easier interpretation of each protein complex,
which implies that these different visual formats are
complementary.

Analysis of combined data sets in human
phosphatase 2A network

To further illustrate several specific challenges of AP-MS data,
the method was applied to a data set focusing on the human
Protein Phosphatase 2A (PP2A) network. The data set was
created by merging two independent data sources, each
covering different parts of the target network with a small
overlap. The combined data set consisted of 25 purifications of

22 unique baits resulting in a network of 68 proteins including
the baits. The first study focused on the characterization of a
novel striatin-interacting phosphatase and kinase (STRIPAK)
complex with dense interconnections through a catalytic
subunit PPP2CA and a scaffolding subunit PPP2R1A (Gou-
dreault et al, 2009). Note that the term ‘complex’ here is used
in the sense of computationally assembled entity of densely
interconnected proteins. The second study covered a compre-
hensive collection of catalytic, scaffolding, and regulatory
subunits in the PP2A network (Glatter et al, 2009). The two
studies share three common baits MOBKL3, PPP2CA, and
PPP2R1A.

This data set was selected to see whether related data
from different studies can be jointly analyzed. As the two
data sets share three baits, the coherence of clustering
between repeated measurements of the same bait in different
studies can be tested. In addition, this data set is interesting
in that it poses a unique challenge for clustering because
the bait coverage of protein complexes varies widely.
After combining the data, STRIPAK complex consisted of
almost half the baits leading to an oversampling relative
to the remaining PP2A subunits, whereas the catalytic/scaf-
folding subunits and the regulatory subunits purified in the
second study did not show dense interactions among
themselves.

Nested clustering of the PP2A data reported seven bait
clusters of varying size. However, unlike the TIP49a/b data set
discussed above, several clustering solutions with larger
number of clusters were found having similarly high posterior
probabilities (Supplementary Figure 2 shows the sampling
distribution of the number of bait clusters considered). We first
note that in all three instances, baits that were used in the two
independent studies (PPP2CA, PPP2R1A, and MOBKL3) were
assigned to the same bait cluster. This suggests that integrating
data from different sources is feasible after proper normal-
ization of spectral counts. As for the bait clustering, the
STRIPAK complex formed a standalone cluster (Figure 3A
and B), which was also discovered in the interbait probability
distance (see Supplementary Figure 2). TRAF3IP3 was an
exception that formed an independent cluster, which hap-
pened mainly because it was detected as prey in no other
purifications but its own (with high counts) as, unlike
other baits, it is not expressed endogenously in HEK293
(Goudreault et al, 2009). In addition to the recapitulation of the
STRIPAK complex, Figure 3A and B show that PPP2CA and
PPP2R1A (PP2A catalytic and scaffolding subunits, respec-
tively) are pivotal links of the PP2A system as they are
identified with consistently high abundance in AP-MS runs
with all baits, as expected from the literature (Virshup and
Shenolikar, 2009).

At the same time, some of the catalytic, scaffolding, and
regulatory subunits formed clusters, despite the lack of
interconnections among themselves. These clustering results
were found to be in part due to interactions with chaperone-
containing TCP1 subunits (CCTs). The eight subunits of CCT
complex included in this data are known to interact with each
PP2A-family phosphatase catalytic subunit such as PP2A and
PP4 (Gingras et al, 2005), as well as with multiple proteins that
possess a WD-40 domain, for example each member of the
PPP2R2A-2D group, and the striatin molecules (Ho et al, 2002;
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Figure 3 Application of nested clustering to PP2A data set. (A) Heatmap of the raw spectral data organized using estimated mean values. (B) Heatmap of the
estimated mean spectral counts. (C) Network visualization of the PP2A system along with the STRIPAK and CCT complexes. Green and brown nodes are baits and
preys, respectively. Baits are shown as circles of larger size to indicate that they are the anchors of protein complexes constructed by nested clustering. Red circles
indicate large-protein complexes identified in the form of submatrices.
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Valpuesta et al, 2002). However, in these data, the CCT
complex components were identified inconsistently and with
low spectral counts, possibly due to the common problem of
under sampling of low abundance proteins in MS/MS. This
inconsistency was sufficiently influential to produce artificial
clusters. Still, the use of quantitative spectral count-based
abundance data coupled with nested clustering, and with an
appropriate choice of the hyperprior (see Supplementary
information), was helpful in negating the effect of under-
sampling of CCT components because the clustering outcome
was driven largely by interactions with proteins identified
reproducibly and with high abundance. For instance, incon-
sistent interactions between STRN and STRN3 with CCT
complex were suppressed from the output shown in Figure 3B
(dashed box in the rows for CCT complex). At the same time,
this adjustment also affected the clustering result of other
potentially real components of protein complexes (long-
dashed boxes in Figure 3B) such as DYNLL1. Overall, our
analysis highlighted the importance of improving the robust-
ness of detecting protein interactions (e.g. by means of
performing AP-MS with multiple biological replicates of the
same bait) to be able to use interaction data involving weak or
transient interactions for informative clustering and network
analysis.

Comparison to other clustering methods

As observed earlier, nested clustering recovered the known
protein complex structure without dependence on the choice
of distance metric and data transformation. In Sardiu et al
(2009), the authors evaluated several commonly used cluster-
ing algorithms on their data, including hierarchical clustering.
They pointed out that many of the clustering methods they
evaluated failed to recover the full network correctly, and
suggested that the availability of various distance metrics and
data types (binary/quantitative) have to be explored. The
results of our own analysis using hierarchical clustering is in
agreement with these observations (see Supplementary Figure
3 and Supplementary information).

In general, these observations reflect the common limitation
of methods such as hierarchical clustering, k-means, and fuzzy
clustering in that they essentially partition proteins in one
dimensional space, that is, separately the rows of the bait–prey
matrix. As a biclustering algorithm, nested clustering uses
clustering on a single axis (bait side) as an intermediate step
only, and as the final output derives submatrices (nested prey
clusters) anchored by the bait clusters. In this regard, we have
also compared the output of nested clustering with several
existing biclustering methods, BiMax (Prelic et al, 2006),
Cheng and Church (CC) (Cheng and Church, 2000), and PLAID
(Lazzeroni and Owen, 2002). In the two data sets analyzed
earlier, BiMax and CC algorithms failed to recover known
proteins complexes, whereas the PLAID model was the only
method that recovered hINO80 complex and the subcluster
shared by SRCAP and TRRAP/TIP60 complexes in the TIP49a/
b data set, and also the core hubs PPP2R1A and PPP2CA of the
PP2A data set. However, even the PLAID model failed to
distinguish a few obvious complexes such as Prefoldin and
TRRAP complexes in the TIP49a/b data set and the STRIPAK

complex in the PP2A data set (see Supplementary Figures 4
and 5 and Supplementary information).

Practical utility of nested clustering and future
extensions

In this study, we addressed the computational challenges of
representative AP-MS data sets that are currently being
generated, that is data sets containing incomplete interaction
data due to purification of a relatively small number of proteins
(typically o25–50 baits). This distinguishes our work from
most previous computational efforts. As the analysis of protein
complexes and interaction networks in the case of mammalian
organisms is unlikely to be routinely performed on the global
scale as in yeast, methods that can specifically deal with
smaller, incomplete interaction data sets are very valuable to
the proteomics community. We also note that it is also likely
that the use of quantitative information (such as spectral
counts used in this work) coupled with methods such as
nested clustering will be just as valuable in the analysis of
large-scale data sets. However, this question can only be
addressed when such data sets become publicly available,
along with appropriate benchmarks for evaluating the
performance of different computational methods applied to
these data.

Our approach has several important technical advantages.
Nested clustering groups the prey proteins with similar
spectral counts within each bait cluster, and provides an
economical expression of abundance levels by identifying a
small number of discrete categories (e.g. negligible, low,
medium, or high abundance). The outcome is easily inter-
pretable in terms of the participation of each prey in one or
multiple protein complexes. Second, the output is reported in
the form of a bicluster, which allows individual proteins to
belong to multiple complexes either as baits or as preys. Third,
the method automatically chooses an optimal number of bait
clusters and nested prey clusters by an extensive survey of
different clustering models in terms of their likelihood—an
important feature often omitted or addressed without proper
statistical summaries in generic clustering algorithms. We also
note the flexibility of the modeling framework with respect to
future extensions. For example, there are alternative label-free
quantification strategies (Nesvizhskii et al, 2007), such as
those based on total ion current measurement (Wepf et al,
2009). The statistical model can incorporate proper distribu-
tional properties of each data such as mean–variance relation-
ship simply by selecting an appropriate likelihood for each
data type.

Finally, we remark that the clustering analysis was applied
to filtered AP-MS data after removal of non-specific back-
ground proteins (common contaminants). The contaminant
removal step was performed as a part of the original studies by
subtracting all proteins identified in the negative control
experiments from the final list of interactors. Furthermore, the
PP2A data set (the subset reported in Goudreault et al (2009))
was additionally filtered using a certain minimum spectral
count threshold, essentially eliminating all false-positive
interactions but at the cost of likely removing some true
interactions in the low abundance range. However, the two
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steps—removal of non-specific background proteins and
clustering analysis—can be performed within the same joint
statistical framework using spectral count information. We
have recently developed a computational model SAINT for
model-based assessment of significance of observed indivi-
dual PPIs using peptide or spectral counts (Breitkreutz et al,
2010). Thus, future work should focus on a combined strategy
that marries modeling of spectral count profiles across the
entire data set (including control purifications) for computing
the confidence in individual interactions simultaneously with
the clustering analysis for reconstruction of protein com-
plexes. Such a modeling framework can also be further
extended to include additional information, for example to
incorporate the knowledge from existing protein interaction
databases and/or higher-level information such as gene
ontology.

In conclusion, we developed a novel computational method
for nested clustering of AP-MS data to identify protein
complexes. The method has several key advantages. It uses
quantitative information that can be extracted from AP-MS
data such as MS/MS spectral counts. It also addresses the
problem of incomplete protein interaction data common in
many AP-MS data sets. Compared with existing hierarchical
and even biclustering methods, nested clustering was able to
organize complexes more accurately in both data sets
analyzed in this work. As AP-MS approach is being increas-
ingly used for generation of protein interaction networks,
novel statistical methods specifically designed for AP-MS data,
such as nested clustering presented here, will have an
increasingly important function.

Materials and methods

Protein identification and spectral counting

TIP49a/b data set was obtained from Sardiu et al (2009) as a matrix
consisting of 55 proteins (rows) and 27 purifications (columns), with
elements of the matrix represented by MS/MS spectral counts. The AP-
MS data for KIAA bait protein were not used for clustering because
only one prey protein was identified as interacting with that bait.

PP2A data set was derived from two publicly available studies
(Glatter et al, 2009; Goudreault et al, 2009). To simplify the integration
of the data, raw MS data were re-analyzed as a part of this work (see
Supplementary information) using X! Tandem, PeptideProphet, and
ProteinProphet (Nesvizhskii et al, 2007). ProteinProphet files were
parsed, exported into a local MySQL database for further analysis and
extraction of spectral count information. Peptides whose sequence is
present in multiple proteins cannot be unambiguously assigned to a
particular protein or protein group in the protein summary file
(Nesvizhskii and Aebersold, 2005). The spectral counts for peptides
shared among multiple proteins were weighted when computing the
spectral count for each protein. For a peptide identified from n MS/MS
spectra and shared between two distinguishable proteins, A and B, its
contribution to the adjusted spectral count of protein A was taken as
n�NA

d/(NA
d þNB

d). Here, NA
d and NB

d are the spectral counts of proteins
A and B, respectively, determined based on distinct (non-shared)
peptides. After this spectral count adjustment procedure, all IPI protein
accession numbers were converted to gene names. In the case of
multiple proteins mapping to the same gene name, the highest overall
spectral counts for the gene were used in the subsequent clustering
analysis. Finally, data were exported into Excel files, and manually
curated to keep only those proteins that were reported as valid protein
interaction partners in the original studies. The final spectral count
matrix used for clustering consisted of 22 bait proteins and 25
purifications (including 3 baits that were in common between the two
studies).

Data conversion from spectral counts to scaled
NSAF values

The conversion of spectral counts to the NSAFs was performed using
the definition provided in Zybailov et al (2006). Let Sij denote the
spectral count for the interaction between bait j and prey i. Also define
Li to be the sequence length of prey i. Then the corresponding NSAF
value is defined by

~Sij ¼
Sij=Li

Pp

i¼1

ðSij=LiÞ

where p is the number of preys. To facilitate the modeling in a suitable
scale, a natural log transformwas applied followed by multiplication by a
factor of 100, that is 100� log(~Sij þ 1) to come up with the final
normalized spectral count data.

DPM model

DPM refers to a probability mixture model without a pre-specified
number of mixture components, of which the proportions are
constructed according to a stochastic process called Dirichlet process.
DPM has a clustering property that the stochastic process for mixture
proportions almost surely produces a finite number of distributions,
resulting in an economical yet flexible expression for the data
generating distribution, and therefore an automatic clustering out-
come. This property actually renders DPM inappropriate to model the
observed data directly, but makes it an attractive choice for specifying
a prior distribution for Bayesian statistical inference (e.g. for mean
spectral counts, not observed counts). Using DPM as a prior
distribution has an inferential advantage that its posterior distribution
also follows the same form of DPM with adjusted mixture proportions.

Formally, consider a mixture model of the form yi �
PK

k¼1 pkfð�jykÞ.
Each component f( � |yk) denotes a parametric distribution, for
example Gaussian, and K is left unspecified. If it is assumed that
the distribution parameters {yk}k¼1

K are drawn from a common
base distribution G0, then the final model can be written as follows.
For i¼1, 2, ?,

yijci; y1; . . . ; yK � fð�jyci
Þ

cijp1; . . . ; pK � Discreteðp1; . . . ; pKÞ
yk � G0

p1; . . . ; pK � Dirichletða=K; . . . ; a=KÞ

where ci is the cluster membership for yi into one of the K groups. A
shorthand expression for this model is yi|yiBf (yi), yiBG, and GB
DP(G0, a), where a is a concentration parameter. For a more detailed
description of DPMs, see Antoniak (1974). From this basic framework,
DPM models have been extended to a more sophisticated form that
allows dependence between components of {yk}k¼1

K , as in the
hierarchical Dirichlet process (Teh et al, 2006) and the nested Dirichlet
process (Rodriguez et al, 2008), of which the former was used in this
work. In particular, a hierarchical DPM is used to model the
distribution of abundance of individual preys with the same set of a
finite number of abundance levels shared across all proteins but with
distinct probabilities of taking on those values.

Nested mixture model

Let X¼{xji} denote the bait–prey matrix data with n baits and p preys,
indexed by j and i, respectively. Nested clustering of the bait–prey
matrix data can be built upon the model proposed in Kim et al (2006),
which carries out one-way partition clustering for gene expression data
using the original DPM prior above. Following the approach, let xj

denote a p-dimensional vector of spectral counts in p preys for bait j,
then the bait clustering DPM can be written as

xjjyk � fðykÞ; yk � G; and G � DPðG0; aÞ
where f is a multivariate Gaussian distribution with mean and variance
parameters fykgKk¼1 ¼

def fðmk; s
2
kÞg

K
k¼1 and G0 denotes the base distribu-

tions for p-dimensional vectors {mk}k¼1
K and {sk

2}k¼1
K . It is further
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assumed that the base distribution can be decomposed as
G0 ¼

Qp
i¼1 G0i and the individual protein-level DPM G0i follows a

hierarchical Dirichlet process such that G0iBDP(H, g) for i¼1,?, p
and HBDP(H0, r), where g and r are individual prey level and entire
data level concentration parameters, respectively. See Supplementary
information for the prior elicitation for each data set and the inference
procedure based on MCMC sampling algorithm.

Determination of clusters

The outcome is an ordinary mixture model of the following form.
A mixture model is first obtained for bait clustering

pðxjÞ ¼
XK

k¼1

okfðxjjykÞ

with a fixed number K. Here, bait j is assigned to the cluster that gives
the maximum posterior probability, that is

ĉj ¼ ClusterðxjÞ ¼ arg maxkokfðxjjykÞ:
Given the bait clusters {ĉj}j¼1

n , yki¼(mki, ski
2 ) denotes the mean

(abundance level) and the variance of prey i in bait cluster k. As a
result of hierarchical Dirichlet process prior, a mixture model for prey
clustering is obtained as follows

pðykijxij; j: cj ¼ kÞ ¼
XL

l¼1

pli

Y

fj:cj¼kg
fiðxijjzlÞ

for all preys i¼1,y,p and bait clusters k¼1,y,K. Here, fi denotes the
marginal distribution of xij for all j¼1,y,n. The nested prey clusters
are determined as

Nested ClusterðykiÞ ¼ arg maxzl
pli

Y

fj:cj¼kg
fiðxijjzlÞ:

Note that the finite set of mean and variance values (z1,?, zL) are
shared in the posterior distribution of all preys i¼1,y,p, with different
weights p � i¼(p1i,?, pLi) in each prey. In the notation above, L is an
unknown number of prey clusters. Note that this number was also
automatically determined by the clustering property of DPM.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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