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ABSTRACT:

Most opioid analgesics used in the treatment of pain are

mu opioid receptor (MOR) agonists. While effective,

there are significant drawbacks to opioid use, including

the development of tolerance and dependence. However,

the coadministration of a MOR agonist with a delta

opioid receptor (DOR) antagonist slows the development

of MOR-related side effects, while maintaining analgesia.

We have previously reported a series of cyclic mixed effi-

cacy MOR agonist/DOR antagonist ligands. Here we

describe the transfer of key features from these cyclic ana-

logs to linear sequences. Using the linear MOR/DOR ago-

nist, Tyr-DThr-Gly-Phe-Leu-Ser-NH2 (DTLES), as a

lead scaffold, we replaced Phe4 with bulkier and/or con-

strained aromatic residues shown to confer DOR antago-

nism in our cyclic ligands. These replacements failed to

confer DOR antagonism in the DTLES analogs, presum-

ably because the more flexible linear ligands can adopt

binding poses that will fit in the narrow binding pocket of

the active conformations of both MOR and DOR. None-

theless, the pharmacological profile observed in this series,

high affinity and efficacy for MOR and DOR with selec-

tivity relative to KOR, has also been shown to reduce the

development of unwanted side effects. We further modi-

fied our lead MOR/DOR agonist with a C-terminal glu-

coserine to improve bioavailability. The resulting ligand

displayed high efficacy and potency at both MOR and

DOR and no efficacy at KOR. VC 2013 Wiley Periodicals,

Inc. Biopolymers (Pept Sci) 102: 107–114, 2014.
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INTRODUCTION

I
t has long been assumed that the more specific a ligand

is for its therapeutic target, the fewer negative side effects

it will elicit. This seems intuitive, as there will be fewer

off-target interactions and, theoretically, fewer unin-

tended effects. However, when the development of nega-

tive side effects is mediated through the same receptor as the

desired effects, as in the case of opioid analgesics, the simul-

taneous modulation of multiple targets often generates a

more desirable drug profile.1–3 The coadministration of a

mu opioid receptor (MOR) agonist with a delta opioid

receptor (DOR) agonist4–7 or antagonist8–12 retains MOR

mediated analgesia and, interestingly, displays reduced toler-

ance and dependence liabilities, features that limit the clini-

cal use of MOR agonist opioid analgesics.13

For pharmacokinetic simplicity, it is preferable to incorpo-

rate the desired MOR and DOR functionalities into a single

compound.11–24 Consequently, opioid ligands that interact

simultaneously with both receptors have been widely pursued

and many peptide,11,13,22–24 peptide-like,16,17,20,25 and nonpep-

tide14,15,26 ligands have been described. Using homology
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models that we have developed for the active and inactive con-

formations of MOR, DOR, and the kappa opioid receptor

(KOR),11,13,27–31 we have successfully designed cyclic mixed

efficacy MOR agonist/DOR antagonist ligands11,24 based on

our previously described cyclic, tetra- and pentapeptide ago-

nists. In our cyclic pentapeptide series we used the nonselective

opioid agonist Tyr-c(S-S)[DCys-Phe-Phe-Cys]NH2 (com-

pound 1 in Refs. 11 and 24) as a starting point, where c(S-S)

denotes cyclization through a disulfide linkage via the thiol

containing cysteine side chains. Our homology models suggest

that the binding pocket in the active state conformations of

MOR and DOR differ in size and shape in the area accommo-

dating Phe3 of “Tyr1-X-Phe3” cyclic tetrapeptides or Phe3 and

Phe4 of “Tyr1-X-Phe3-Phe4” cyclic pentapeptides: the MOR

active state binding site is slightly larger than that in the DOR

active state binding site, which has bulkier residues occluding

the ligand binding pocket (Lys108 and Met199of DOR in place

of Asn127 and Thr218 of MOR).24,27–31 We exploited these dif-

ferences to selectively modulate efficacy by incorporating bulky

aromatic replacements for the Phe3or Phe4 residues of the

ligand which can be accommodated in the MOR active state

binding site, but which produce a steric clash in the compara-

tively narrower DOR active state binding site. The ligand bind-

ing site of the DOR inactive conformation, however, is larger

than that of the DOR active conformation and can tolerate

these bulkier Phe replacements. Successful design of ligands

that favor interactions with the MOR active and DOR inactive

conformation would be expected to display the desired MOR

agonist/DOR antagonist profile.

In peptides from “Tyr1-X-Phe3-Phe4” cyclic series, replace-

ment of Phe3 with a bulkier 1- or 2-napthylalanine (1- and 2-

Nal, respectively) successfully reduced the agonist character of

the resulting ligands at DOR without drastically reducing

MOR agonist activity.11,24 In a related series of “Tyr1-X-Phe3”

tetrapeptides13 we found that a ligand, KSK-103 (Dmt-c(S-Et-

S)[DCys-Aic-DPen]OH, where c(S-Et-S) denotes cyclization

through an ethylene dithioether linkage via the side chains thi-

ols), containing a constrained 2-aminoindan-2-carboxylic acid

(Aic) residue within the cycle, adopted a conformation that

would fit easily in the more open MOR active state binding

site, but formed a steric clash in the DOR active state binding

site. In short, we found that through careful modulation of the

constraint and steric bulk of these cyclic peptides we were able

to selectively reduce DOR efficacy to yield a MOR agonist/

DOR antagonist ligand.11,13,24

While the cyclic ligands described above display the desired

binding and efficacy profiles, their syntheses are low yielding

and often require complicated, inefficient purification proce-

dures. Hence, we sought to examine whether we could trans-

late the structure-activity relationships found in our cyclic

ligands to linear compounds. As noted above, a key feature for

conferring DOR antagonism in our cyclic peptide series is

replacement of a Phe residue in the third or fourth position of

the lead, agonist peptide with a bulkier and/or more con-

strained aromatic residue.11,13,24 In this report we examined

whether DOR antagonism can be conferred upon linear opioid

peptides by similar replacements (Figure 1). As a starting point

for these substitutions, we chose a linear opioid hexapeptide

developed by Roques with a “Tyr1-X-Gly-Phe4” motif,

Tyr-DThr-Gly-Phe-Leu-SerNH2 (DTLES).32 DTLES has been

shown to have high affinity for both MOR and DOR and dis-

play agonist character at both receptors in the guinea pig ileum

(GPI) and mouse vas deferens (MVD) assays, respectively.33 A

further advantage of DTLES is that the C-terminal serine resi-

due can be glycosylated to improve bioavailability, as demon-

strated by Polt and co-workers.33

RESULTS AND DISCUSSION
The in vitro binding and efficacy data for our set of linear ana-

logues using the DTLES scaffold with constrained and/or

bulky substitutions for Phe4 are presented in Table I. In an

attempt to translate the structure activity relationships from

our cyclic peptides to linear ligands, we initially installed an

Aic in place of Phe4 in the DTLES scaffold to mimic KSK-103.

As previously reported, KSK-103 displays low nanomolar

binding for MOR and DOR, with moderate agonist activity at

MOR and no stimulation of DOR.13 Unfortunately, the result-

ing compound, 1, displayed micromolar binding to all three

opioid receptors and was not pursued further. In contrast to

KSK-103, peptide 1 with Aic at the fourth position cannot be

accommodated in the binding pocket of any opioid receptor.

Reasoning that the quaternary a-carbon of Aic might adversely

affect the backbone conformation resulting in the observed

low affinity, we next replaced Phe4 with an indanylglycine

(Idg) in which the side chain is one carbon further removed

from the peptide backbone. This ligand, 2, exhibited relatively

weak binding to MOR (200 6 20 nM) and DOR (300 6 55

nM) and acts as a low potency agonist at MOR (maximal stim-

ulation 70 6 9% of standard) with no agonist activity at DOR.

In an effort to increase the affinity and potency of 2 we next

replaced the Tyr1 with a 2’,6’ dimethyltyrosine (Dmt) as this

replacement often confers improved binding affinity at opioid

receptors.34 The resulting compound, 3, displayed the expected

increase in affinity (MOR 3.4 6 0.7 nM; DOR 2.1 6 0.3 nM)

and retained selectivity relative to KOR (270 6 12 nM), how-

ever, the substitution of a Dmt1 for a Tyr1 also completely abol-

ished MOR efficacy (Table I).

Since the constrained nature of Aic (cyclized through the

backbone a-carbon) and Idg (b-branched) could be the cause
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of the observed poor affinities of 1 and 2, we next examined

analogues with less constrained, but still bulky hydrophobic

Phe4 replacements. These ligands contained either a 1-Nal or

2-Nal in the fourth position (compounds 4 and 5, respectively)

to mimic the results observed in our previously reported cyclic

pentapeptides.24 Interestingly, both Nal-containing analogues

displayed tight binding to MOR and DOR, with full agonist

activity at both receptors (Table I). This is similar to the profile

exhibited by DTLES (Table I) which binds with high affinity to

MOR and DOR and is reported to be a potent agonist in the

MVD and GPI assays.33 Compound 4 displays significant ago-

nist activity at KOR (75 6 2% of standard), albeit with low

potency, and low selectivity for MOR and DOR over KOR.

Compound 5, however, displays improved MOR agonist/DOR

agonist potencies and a significant decrease in KOR binding

and efficacy as compared to peptide 4. This is consistent with

our opioid receptor models; compound 5 fits neatly into the

binding pocket of the active states of both MOR (Figure 2A)

and DOR (Figure 2B), explaining the full agonist activity at

both receptors. However, there is a significant steric clash

between DThr2 of 5 and Ile294 of the KOR active state (Figure

2C) and inactive state (not shown) models which accounts for

the decrease in efficacy and binding affinity. This steric hin-

drance is absent in the MOR and DOR active state binding site

models which have a Val in the corresponding position.

We next substituted the Tyr1 of 5 with a Dmt1 in an attempt

to further improve affinity and potency at MOR and DOR, as

more potent ligands require lower doses of drug to be effective,

reducing the incidence of negative side effects.35 The resulting

ligand, 6, displayed higher binding affinity and potency at both

MOR and DOR, and, surprisingly, no efficacy at KOR. How-

ever, KOR binding affinity was also greatly improved, with the

result that 6 shows similar high affinity for MOR, DOR, and

KOR. The observed high KOR affinity but no efficacy suggests

that 6 is a KOR antagonist. This was confirmed by theT
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observation that 6 causes a shift in the stimulation of

[35S]GTPcS binding evoked by the KOR agonist U69,593, with

a Ke (antagonist equilibrium constant) of 63 6 11 nM. The

combination of high affinity but no efficacy at KOR, although

not one of our design goals, may be advantageous as KOR

antagonists have been shown to possess anti-depressant like

effects and reduce stress induced drug reinstatement behavior,

features that prevent relapse in addicted individuals.36

As noted above, Tyr1-containing ligands with more con-

strained residues in the fourth position, 1 (Aic4) and 2 (Idg4),

displayed significantly lower affinity for MOR and DOR than

other Tyr1 compounds in this series. Perhaps unsurprisingly, 2

is the only ligand in this series which displays a MOR agonist/

DOR antagonist profile. This is likely due to the fact that some

conformational restriction is necessary to selectively produce a

steric clash in the DOR active state binding site to reduce DOR

efficacy; more flexible residues are able to assume conforma-

tions that can be accommodated in the DOR active state bind-

ing site and display DOR agonism. When we replaced the Tyr1

of 2 with a Dmt1 (3), we greatly improved affinity at MOR

and DOR, but lost all agonist activity. Our homology models

suggest that the phenolic hydroxyl of the Tyr1 is anchored

between Tyr148 and Ile296 in the MOR binding site. However,

the 2’,6’ methyl groups of the Dmt form a steric clash with

these residues (Figure 3B). This steric clash is relieved in the

more open MOR inactive site, allowing for tight binding, but

no efficacy at MOR.

While we were not able to selectively reduce DOR efficacy

while retaining tight binding to MOR and DOR, compound 5

remains promising as a MOR agonist/DOR agonist profile is

FIGURE 2 Comparison of 5 in the MOR, DOR, and KOR active state binding sites – 5 (Tyr-

DThr-Gly-2Nal-Leu-SerNH2) docked in the active state models of MOR (A), DOR (B), and KOR

(C). 5 fits neatly into the active state binding pockets of MOR and DOR, allowing for full agonist

character at both receptors. In the active state of KOR, however, DThr2 of 5 forms a steric clash

(highlighted by an arrow) with Ile294 of the receptor, reducing agonist activity at KOR.

FIGURE 3 Comparison of 2 and 3 in the MOR active state binding site – 2 (Tyr-DThr-Gly-Idg-

Leu-SerNH2) (A) and 3 (Dmt-DThr-Gly-Idg-Leu-SerNH2) (B) docked in the active state model of

MOR. The 2, 6 methyl groups of Dmt1 in 3 form a steric clash in the MOR active state with Tyr148

and Ile296 (highlighted by arrows). This clash prevents 3 from binding to the MOR active site, caus-

ing it to be an antagonist.
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also desirable. It has been demonstrated that the co-

administration of a MOR agonist with a DOR agonist potenti-

ates the binding and antinociceptive potency of MOR ago-

nists.4–7 The synergistic effect between MOR and DOR

agonists has been shown to lessen the development of tolerance

and dependence, as well as other unwanted side effects.7,33,37

Unfortunately, 5, like most unmodified peptides, is expected to

have low membrane permeability and therefore low bioavaila-

bility.33,38,39 In fact, blood/brain barrier (BBB) penetration is

considered one of the biggest hurdles to viable peptide thera-

peutics.40,41 This is particularly problematic for opioid peptides

as they must cross membranes in the digestive tract to be orally

active, and the BBB to reach the central nervous system (CNS)

where opioids exert their major impact on the management of

moderate to severe pain.42–44 To improve the “druggability” of

peptide ligands, several approaches have been developed to

increase stability and peptide penetration of biological mem-

branes.33,38,39 Polt and co-workers have demonstrated that the

glycosylation of opioid peptides renders them enzymatically

resistant and CNS active after peripheral administration.7,33,45–48

Among these are peptides based upon DTLES, in which the

C-terminal Ser side chain is the site of glycosylation. We

therefore glycosylated the C-terminal serine of 5 with an

O-linked b-D-glucose to determine if this modification

maintains this analog’s in vitro profile. The resulting ligand,

7, does indeed display similar binding and efficacy as its

parent compound, 5, with the exception of somewhat

reduced MOR potency.

As noted above, the Polt group has successfully employed

glycosylation of DTLES to generate bioavailable, mixed efficacy

MOR agonist/DOR agonist peptide ligands, and have investi-

gated the in vivo actions of their key ligand, MMP-2200

(Tyr-DThr-Gly-Phe-Leu-Ser-(O-b-D-lactose)-NH2).
7,33,46 MMP-

2200 displays reduced development of tolerance and depend-

ence compared to morphine7 and does not produce reinforcing

effects,49 suggesting that this mixed efficacy profile is an answer

to the negative neurochemical adaptations and addiction liabil-

ity problems associated with MOR agonist analgesics. However,

the lack of self-administration may be influenced by the residual

KOR activity that MMP-2200 displays. MMP-2200 was reported

by Polt and co-workers to have high KOR affinity, but no KOR

efficacy data were presented. In our hands, this compound

displays full agonist behavior at KOR (82 6 11% stimulation of

KOR relative to U69,593 standard at 10 mM). The KOR agonist

activity of the Polt ligands is a potentially significant drawback

as KOR agonists have been shown to cause dysphoria50 and act

as psychotomimetics51 and therefore display aversive proper-

ties.52 These actions could conceivably contribute to the

observed reduced self-administration52 of MMP-2200, rather

than this reflecting a MOR agonist/DOR antagonist profile.

Ligands described in this report provide a possible advant-

age, in that they display a preference for binding to MOR and

DOR over KOR (5,7), or act as KOR antagonists (6). In partic-

ular, the glycosylated peptide, 7, exhibits considerably lower

KOR affinity compared to MOR or DOR, and very low KOR

efficacy. This lack of KOR activity and the anticipated

improved bioavailability may help to clarify the effects that

DOR agonist activity has on the self-administration of mixed

efficacy MOR/DOR ligands and provide a more acceptable

drug profile for use in human subjects.

MATERIALS AND METHODS

Materials
All reagents and solvents were purchased from commercial sources

and used without further purification. All chemicals and biochemicals

were purchased from Sigma Aldrich (St. Louis, MO) or Fisher Scien-

tific (Hudson, NH), unless otherwise noted. All tissue culture reagents

were purchased from Gibco Life Sciences (Grand Island, NY). Radio-

active compounds were purchased from Perkin-Elmer (Waltham,

MA). Peptide synthesis reagents, amino acids, and Rink resin were

purchased from Advanced Chem Tech (Louisville, KY), except for

Fmoc-2-aminoindan-2carboxylic acid, which was purchased from

Chem Impex (Wooddale, IL). Wang resins were purchased from Nova

Biochem, EMD (Gibbstown, NJ). MMP-2200 was a kind gift from Dr.

Robin Polt. Fmoc-Ser (b-Glc(Ac)4)-OH (the glycosylated serine build-

ing block) was synthesized accordingly to previously published

protocols.53

Solid Phase Peptide Synthesis
Peptides were synthesized using solid phase Fmoc (fluorenylmethylox-

ycarbonyl) chemistry as described above on a Discover S-Class CEM

microwave using Synergy software. Deprotection of the first Fmoc

protecting group was performed using a 20% solution (v/v) of piperi-

dine in N-methyl-2-pyrrolidone (NMP) with “Fmoc deprotection”

program (power: 20 W, Time: 1:30 min, Temperature: 75˚C, D Tem-

perature: 0˚C) on the microwave synthesizer followed by three washes

of NMP. Double coupling was then preformed using a 4.0x equiva-

lence of the amino acids, 0.4M O-(7-azabenzotriazol-1-yl)-N,N,N0,N0-
tetramethyluronium hexafluorophosphate (HATU) and 1-hydroxy-7-

azabenzotriazole (HOAt) in dimethylformamide (DMF) (2.5 mL),

0.125M diisopropylethylamine (DIEA) in NMP (1 mL), NMP (2.5

mL), and the “Coupling” program (power: 20W, Time: 5:00 min,

Temperature: 75˚C, D Temperature: 5˚C) on the microwave synthe-

sizer. After each double coupling the resin was washed with three

times with NMP. After the final “Fmoc deprotection” the resin was

washed three times with NMP, then three times with methylene chlo-

ride (DCM) and dried under vacuum.

For the synthesis of 7, the acetates on the glycosylated residue on

the peptide were removed using 80% of hydrazine monohydrate in

methanol before cleaving the peptide from the resin, following previ-

ously reported protocols.54 All nonglycosylated peptides and acetate-

deprotected glycosylated peptides were cleaved from the resin and

side-chain-protecting groups removed by treatment at room
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temperature for 2 h with a cleavage cocktail consisting of 9.5 mL tri-

fluoroacetic (TFA) acid and 0.5 mL water. The solution was concen-

trated in vacuo, and peptides were precipitated using cold

diethylether. The filtered crude material was then purified using a

Waters semipreparative HPLC (Waters Corporation, Milford, MA)

with a Vydac Protein and Peptide C18 column (10 micron particle

size, 10 x 150 mm), using a linear gradient 10% Solvent B (0.1% TFA

acid in acetonitrile) in Solvent A (0.1% TFA acid in water) to 60%

Solvent B in Solvent A, at a rate of 1% per minute at 10 mL per

minute. The identity of all peptides was determined using ESI-MS

performed on an Agilent Technologies LC/MS system using a 1200

Series LC and 6130 Quadrupole LC/MS (Agilent Technologies, Santa

Clara, CA) in positive mode with 50–100 mL injection volume and a

linear gradient of 0% Solvent D (0.02% TFA and 0.1% acetic acid

(AcOH) in acetonitrile) in Solvent C (0.02% TFA and 0.1% AcOH in

water) to 60% Solvent D in Solvent C in 15 min. The purity of all

peptides was determined using a Waters Alliance 2690 Analytical

HPLC (Waters Corporation, Milford, MA) and Vydac Protein and

Peptide C18 reverse phase column (5 micron particle size, 5 3 220

mm), using a linear gradient of 0–70% Solvent B in Solvent A at a

rate of 1% per minute. Linear peptides were purified to �95% purity

by UV absorbance at 230 nm.

Cell Lines and Membrane Preparations
C6-rat glioma cells stably transfected with a rat l (C6-MOR) or rat d
(C6-DOR) opioid receptor55 and Chinese hamster ovary (CHO) cells

stably expressing a human j (CHO-KOR) opioid receptor56 were

used for all in vitro assays. Cells were cultured and membranes pre-

pared as previously described.24

Radioligand Binding Assays
Radioligand binding assays were performed as previously described.24

In brief, assays were performed using competitive displacement of 0.2

nM [3H]diprenorphine (250 mCi, 1.85TBq/mmol) by the test com-

pound from membrane preparations containing opioid receptors.

The assay mixture, containing membrane suspension (20 lg protein/

tube) in 50 mM Tris-HCl buffer (pH 7.4), [3H]diprenorphine, and

various concentrations of test peptide, was incubated at room temper-

ature for 1 h to allow binding to reach equilibrium. The samples were

filtered through Whatman GF/C filters and washed three times with

50 mM Tris-HCl buffer (pH 7.4). The radioactivity retained on dried

filters was determined by liquid scintillation counting after saturation

with EcoLume liquid scintillation cocktail in a Wallac 1450 MicroBeta

(Perkin-Elmer, Waltham MA). Nonspecific binding was determined

using 10 lM naloxone. Ki values were calculated using nonlinear

regression analysis to fit a logistic equation to the competition data

using GraphPad Prism version 5.01 for Windows. The results pre-

sented are the mean 6 standard error from at least three separate

assays performed in duplicate.

Stimulation of [35S]GTPcS Binding
Agonist stimulation of [35S] guanosine 5’-O-[gamma-thio]triphos-

phate ([35S]GTPcS, 1250 Ci, 46.2TBq/mmol) binding was measured

as described previously.24 Briefly, membranes (10–20 lg of protein/

tube) were incubated 1 h at room temperature in GTPcS buffer (50

mM Tris-HCl, 100 mM NaCl, 5 mM MgCl2, pH 7.4) containing 0.1

nM [35S]GTPcS, 30 lM guanosine diphosphate (GDP), and varying

concentrations of test peptides. Peptide stimulation of [35S]GTPcS

was compared with 10 lM standard compounds [D-Ala2, N-MePhe4,

Gly-ol]-enkephalin (DAMGO) at MOR, D-Pen2,5- enkephalin

(DPDPE) at DOR, or U69,593 at KOR. The reaction was terminated

by rapidly filtering through GF/C filters and washing 10 times with

GTPcS buffer, and retained radioactivity was measured as described

above. The results presented are the mean 6 standard error from at

least three separate assays performed in duplicate; maximal stimula-

tion was determined using nonlinear regression analysis with Graph-

Pad Prism version 5.01 for Windows.

Determination of Ke for Compound 6
Agonist stimulation of [35S]GTPcS binding by the known standard

agonist U69,593 at KOR was measured as described in the previous

section. This was then compared with [35S]GTPcS binding stimulated

by U69,593 in the presence of 500 nM compound 6. Both conditions

produced 100% stimulation relative to U69,593. The difference

between the EC50 of U69,593 alone and in the presence of test antago-

nist (compound 6) is the shift in dose reponse. The Ke for compound

6 was then calculated as Ke 5 (concentration of compound 6)/ (Dose

response shift – 1). The results presented are the mean 6 standard

error from at least three separate assays performed in duplicate; maxi-

mal stimulation was determined using nonlinear regression analysis

with GraphPad Prism version 5.01 for Windows.

Receptor Modeling
Models for the opioid receptors were generated using the recently

obtained X-ray structures for mouse MOR (PDB ID: 4dkl),57 mouse

DOR (PDB ID: 4ej4),58 and human KOR (PDB ID: 4djh).59 Modeling

of active conformations of MOR, DOR, and KOR was performed as

previously described11,24 using crystal structures of KOR together with

active conformations of bovine rhodopsin (PDB ID: 3dqb)60 and

bovine b2-adrenergic receptor (PDB ID: 3sn6).61 Coordinates of active

conformations of opioid receptors with docked cyclic peptides can be

downloaded from our website (http://mosberglab.phar.umich.edu/

resources/).

X-ray structures of opioid receptors in inactive conformations and

homology models of active receptor conformations were used for

docking high affinity peptide antagonists and agonists, respectively.

Conformations of linear peptides were generated to reproduce back-

bone conformations of previously reported cyclic peptides, as well as

spatial positions of their pharmacophore elements, Tyr1 and Phe3 resi-

dues.11,24,62 After minimization with CHARMm implemented in

QUANTA (Accelrys, Inc), low-energy conformations of peptides were

docked to the binding pockets of corresponding receptors in accord-

ance with mutagenesis-derived peptide-protein interactions.28 These

interactions included hydrogen-bonding between peptide N1 and

Asp from transmembrane domain 3 (Asp128 in DOR, Asp147 in MOR,

and Asp138 in KOR), water-mediated hydrogen-bonding between

OH-group of peptide Tyr and His from transmembrane domain 6

(His278 in DOR, His297 in MOR and His291 in KOR), and interactions

of the peptide X3 aromatic sidechain with residues from extracellular

loop 1, extracellular loop 2, and transmembrane domain 7, of recep-

tors: Lys108, Met199, Leu300 of DOR, Asn127, Thr218 and Trp318 of

MOR, Val118, Ser211, and Tyr312 of KOR. The position of the aromatic

ring of Tyr1 of peptide antagonists generally followed the position of
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aromatic rings of cocrystallized non-peptide antagonists, though posi-

tions of peptide N-termini were shifted by �3 Å toward the extracel-

lular surface. To minimize steric hindrances, manual docking of

peptides in low-energy conformations was followed by the automated

rigid docking implemented in QUANTA and subsequent minimiza-

tion with CHARMm (Adopted-Basis Newton-Raphson method, 100

steps, E 5 10).
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