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W e consider a periodic-review inventory system with regular and expedited supply modes. The expedited supply is
faster than the regular supply but incurs a higher cost. Demand for the product in each period is random and sen-

sitive to its selling price. The firm determines its order quantity from each supply in each period as well as its selling
price to maximize the expected total discounted profit over a finite or an infinite planning horizon. We show that, in each
period if it is optimal to order from both supplies, the optimal inventory policy is determined by two state-independent
thresholds, one for each supply mode, and a list price is set for the product; if only the regular supply is used, the opti-
mal policy is a state-dependent base-stock policy, that is, the optimal base-stock level depends on the starting inventory
level, and the optimal selling price is a markdown price that decreases with the starting inventory level. We further study
the operational impact of such supply diversification and show that it increases the firm’s expected profit, reduces the
optimal safety-stock levels, and lowers the optimal selling price. Thus that diversification is beneficial to both the firm
and its customers. Building upon these results, we conduct a numerical study to assess and compare the respective benefit
of dynamic pricing and supply diversification.
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1. Introduction

Supply diversification and dynamic pricing are
important strategic tools for companies to manage
their supply and demand, respectively. Companies
in various industries, for example, airlines and con-
sumer electronics, have successfully adopted
dynamic pricing to increase their profitability. For
example, Dell sells its product through its website
and offers promotion every week and even changes
price daily. Maintaining two supply sources for one
product/component is common in procurement
practice. In particular, because cost and delivery
lead time are two of the key supplier selection mea-
sures, firms often pair one responsive but costly
supplier with a less responsive but also less costly
supplier to meet fickle customer demand. For
instance, many firms in the US fashion industry
have moved their major manufacturing facilities off-
shore to take advantage of the lower production
cost. However, some still prefer to maintain costly
domestic facilities so that they can better respond to
changes in market demand. With both supply diver-
sification and dynamic pricing in place, an impor-
tant question is how to jointly determine the

optimal inventory replenishment and pricing
strategies.
In this study, we address this issue by considering

a periodic-review inventory model with two supply
sources. One supplier provides a shorter delivery lead
time but incurs a higher unit cost while the other one
has a longer delivery lead time but a lower unit cost.
Demand is stochastic and sensitive to the selling
price. Unsatisfied demand is fully backlogged in each
period. Our objective is to determine the optimal
inventory replenishment and pricing strategies that
maximize the expected total discounted profit.
Inventory models with multiple supplies differing

in cost and lead time have been extensively studied.
Barankin (1961) is considered as the earliest work on
inventory models with two delivery modes that stud-
ies a single period problem. Daniel (1963) extends
Barankin (1961) to a multi-period model with one
capacitated regular supplier and one emergency
supplier, with lead times being 1 and 0, respectively.
Fukuda (1964) further generalizes the work of Daniel
(1961) to the case where the lead times of the two sup-
ply modes are L (an arbitrary non-negative constant)
and L + 1, respectively. The dual-supplier problem
with arbitrary length of lead times is studied by
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Whittmore and Saunders (1977), who demonstrate
that the optimal control policy is very complicated
and state dependent if the difference in lead times is
not 1. That is, the optimal policy control parameters
are functions of the state of the system. Because of the
complexity of the optimal policy, recently, Scheller-
Wolf et al. (2003) and Veeraraghavan and Scheller-
Wolf (2008) focused on evaluation and optimization
of two classes of inventory policies, that is, “single
index” and “dual index” policies, respectively. Allon
and Van Mieghem (2010) develop a continuous-time
model and investigate the average order rates placed
to each source when two supply sources are available
with different costs and responsiveness. Other related
work on single-stage inventory systems with multiple
transportation modes includes Feng et al. (2003,
2004).
Another closely related stream of research is the

coordination of inventory replenishment and pricing.
This topic, starting with the work of Whitin (1955),
who analyzes the newsvendor problem with price-
dependent demand, has been the focus of many
papers. Federgruen and Heching (1999) characterize
the optimal inventory and pricing policy as a base-
stock list-price policy for both finite and infinite plan-
ning horizon problems. By list-price policy, we mean
that the selling price is usually set at a constant price,
referred to as list price, but as the inventory level gets
higher, the firm offers a discount on the list price
(markdown), and the higher the stock level the
deeper the discount. Building on Federgruen and
Heching’s work, Chen and Simchi-Levi (2004a,b)
include fixed ordering cost in the model. They derive
the optimal pricing and replenishment strategies for
both finite and infinite planning horizons. Feng and
Chen (2003) study joint pricing and inventory optimi-
zation for a periodic review inventory system with
the criterion of maximizing the long-run average
profit. More recently, Allon and Zeevi (2011)
addressed the simultaneous determination of pricing
and capacity investment strategies for a multi-period
inventory system and analyzed the optimal capacity,
inventory, and pricing policies. For a detailed review
on this stream of research, the reader is referred to
Chen and Simchi-Levi (2010).
Different from the aforementioned two streams of

research, our model integrates the two strategic deci-
sions. We show that when the firm orders from both
suppliers in period n, it should follow a base-stock
type of policy with two thresholds ðsen; srnÞ, that is, first
raise the inventory level to sen by ordering from the
expedited supply and then order from the regular
supply to further raise the inventory position to srn.
And an optimal list price is set. If it is optimal for the
firm to only order from the regular supply, the opti-
mal policy is a state-dependent base-stock policy,

with the base-stock level increasing in the starting
inventory level. And a discount price is offered,
which decreases with the starting inventory level.
When the demand is modeled as an additive process,
we show that the structure of the optimal policies can
be further simplified. In particular, when only regular
supply is used in the optimal policy, the base-stock
level is increasing in the starting inventory level with
slope between 0 and 1, and the order quantity is
decreasing in the starting inventory level. Further-
more, we extend these results to the case with an infi-
nite planning horizon. These results generalize those
in Federgruen and Heching (1999).
We further study the operational impact of such

supply diversification by considering the case where
in the initial setting the firm has only one supplier,
either the expedited supplier that has replenishment
lead time 0 or the regular supplier that has lead time
1, and analyzing the effect to the firm when it can
source from both of them. We show that supply diver-
sification increases the firm’s profit, reduces the opti-
mal safety-stock level (of the same supply source),
and lowers the optimal selling price. Therefore,
supply diversification benefits the firm as well as its
customers. We conduct a numerical study to examine
the respective benefit of supply diversification and
dynamic pricing. We find that each strategy can
increase the profitability of the firm quite signifi-
cantly. In particular, supply diversification and
dynamic pricing strategies seem to be “substitutes”
for each other; in general, dual sourcing brings the
firm more value than dynamic pricing unless the
expedited supply is very costly. The intuition lies in
the trade-off between a more flexible supply and the
ability of managing demand; when the expedited
ordering cost is very high, it will be rarely used.
Hence, in that case, introducing the expedited supply
mode adds little value to the system.
The remainder of this article is organized as fol-

lows. We first give a detailed description of the model
and provide the formulation in the next section. In
section 3, we present the main results on the optimal
replenishment and pricing strategy for the finite hori-
zon problem and then extend the results to an infinite
horizon case. In section 4, we discuss the important
special case of additive demand and present the sim-
plified structure of the optimal inventory and pricing
policies. In section 5, we analyze the effect of intro-
ducing a second supply and show that diversification
is beneficial to both the firm and its customers. In sec-
tion 6, we conduct a numerical study to demonstrate
the results, and finally we conclude in section 7.
Throughout the article, we use “increasing” and

“decreasing” in a non-strict sense, that is, they repre-
sent “nondecreasing” and “nonincreasing,” respec-
tively.
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2. The Model

Consider a firm managing a periodic-review inventory
system with two supply modes: one is regular that has
lead time 1, while the other is expedited that has lead
time 0. For convenience, we shall also call them regular
and expedited/emergency suppliers. The planning
horizon consists of N periods, numbered in decreasing
order, that is, the first period is N and the last period is
1. In each period n, the firm can order through regular
supply at a unit ordering cost crn or order through expe-
dited supply at unit cost cen, where cen [ crn. They are
thereafter referred to as regular and expedited orders.
Customer demand in period n is random and sensitive
to the selling price pn. We use Dnðpn; �nÞ to denote the
random demand for each period n, where �n is a ran-
dom noise and is independent from one another in
different periods. dnðpnÞ ¼ E½Dnðpn; �nÞ�. Suppose
p � pn � �p for some given lower (upper limit) p (�p). As
in Federgruen and Heching (1999), we assume
Dnðp; �nÞ is concave and decreasing in p for any given
sample path of �n, so dnðpÞ is concave and decreasing
in the selling price p. In each period, the firm deter-
mines the regular and expedited order quantities and
sets the selling price for the product.
At the end of each period after demand is realized,

the remaining inventory is carried over to the next per-
iod and incurs holding cost, while unsatisfied demand
is backlogged and incurs shortage cost. Let LnðxÞ be
the inventory holding and backlogging cost given the
ending inventory level in period n is x, and define

Gnðy; pÞ ¼ E½Lnðy�Dnðp; �nÞÞ�;

where y is the starting inventory level (after expe-
dited ordering) at period n. Clearly, Gnðy; pÞ repre-
sents the expected holding and shortage cost for
period n when the post-decision inventory level is y
and the selling price is p. Following Federgruen and
Heching (1999), we assume that Gnðy; pÞ is jointly
convex in y and p and limjyj!1 Gnðy; pÞ ¼
limjyj!1½ðcen � crnÞy þ Gnðy; pÞ� ¼ 1 for any given
p 2 ½p,p�.
The sequence of events is as follows. First, the firm

receives the regular order placed in the previous per-
iod and updates and reviews the current inventory
level; second, the expedited order is placed, if any,
and then received; third, a regular order is placed and
the selling price is set; fourth, demand is realized and
excess demand is backlogged; fifth, all costs and reve-
nue are incurred. The objective of the firm is to maxi-
mize the expected total discounted profit over a finite
or an infinite horizon.
We summarize the additional notation that will be

used subsequently as follows, in which the subscript
n is the index of period:

xn ¼ the initial inventory level before any deci-
sions are made;

yen ¼ the inventory level after placing the expe-
dited order;

yrn ¼ the inventory position after placing the reg-
ular order;

N = the length of the planning horizon;
a = the discount factor, 0 � a < 1.

With the notation and the event sequence above,
the order quantity from the expedited supply is
yen � xn while that from the regular supply is
yrn � yen.
Given the starting inventory level xn, let vnðxnÞ be

the optimal expected discounted profit from period n
to 1; then the problem can be formulated as

vnðxnÞ ¼ max
yrn � yen � xn;pn2½p;�p�

�
pndðpnÞ � cenðyen � xnÞ

� crnðyrn � yenÞ � Gnðyen; pnÞ

þaE½vn�1ðyrn �Dnðpn; �nÞÞ�
�
;

ð1Þ

and v0ðx0Þ ¼ ce0x0, which means that at the end of
the planning horizon, if x0 [ 0, the unit salvage
value is ce0; otherwise, it costs ce0 to clear each unit
of the backlog. The first term in Equation (1) is the
expected revenue; the second and third terms are
ordering cost from the expedited and regular sup-
ply, respectively; the fourth term is the expected
inventory holding and demand backlogging cost;
and the last term is the discounted expected profit-
to-go. Note that in each period n, as the regular
order has lead time 1, it has no impact on the
inventory holding and backlogging cost in period n,
whereas it affects the future periods by having the
inventory level at the beginning of period n � 1 at
yrn � Dnðpn; �nÞ.
To facilitate the analysis, let VnðxnÞ ¼ vnðxnÞ�

cenxn, n � 0, and so V0ðxÞ ¼ 0. From Equation (1), we
have

vnðxnÞ � cenxn ¼ max
yrn � yen � xn;pn2½p;�p�

�
pndðpnÞ � ceny

e
n

� crnðyrn � yenÞ � Gnðyen; pnÞ
þ aE½vn�1ðyrn �Dnðpn; �nÞÞ
� cen�1ðyrn �Dnðpn; �nÞÞ�

þacen�1E½ðyrn �Dnðpn; �nÞÞ�
�
:

From the definition of VnðxnÞ, we can get

VnðxnÞ ¼ max
yrn � yen � xn;pn2½p;�p�

fJnðyen; yrn; pnÞg; ð2Þ
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where for n = 2,…,N,

Jnðye; yr; pÞ ¼ � ðcen � crnÞye þ ðacen�1 � crnÞyr
þ ðp� acen�1ÞdðpÞ � Gnðye; pÞ
þ aE½Vn�1ðyr �Dnðp; �nÞÞ�;

ð3Þ

and for n = 1

J1ðye; yr; pÞ ¼ � ðce1 � cr1Þye þ ðace0 � cr1Þyr
þ ðp� ace0ÞdðpÞ � G1ðye; pÞ:

ð4Þ

This transformation essentially shifts the term
cenx in Equation (1) to its previous period, period
n + 1, and will not alternate the structure of the
optimal solutions. We can now consider VnðxnÞ as
the optimal value function and focus on
Jnðye; yr; pÞ as the objective function for each
period n.
Here we assume ace0 � cr1 to prevent the firm from

ordering an infinite amount from the regular supply
in the last period. As a result, yr1 ¼ ye1 at optimum
in period 1 as there is no reason to place a regular
order. Furthermore, we assume p � acen�1 for all n.
In the rest of the article, for ease of exposition, we
will omit the subscript n unless confusion may
arise.

3. Optimal Operational Policy

In this section, we characterize the optimal ordering
and pricing strategies. In addition, we present some
structural properties and quantitative relationships
among the decisions.
First, we need the following technical result.

LEMMA 1.

(a) Jnðye; yr; pÞ is concave in ðye; yr; pÞ;
(b) VnðxÞ is concave and decreasing in x.

PROOF. We prove the result by induction on n.
Because V0ðxÞ ¼ 0, obviously (b) is true for n = 0.
For (a), in Equation (4), each term is concave, so
(a) holds true for n = 1. Suppose both (a) and (b)
are valid for n � 1. Because Gnðye; pÞ is convex,
Dnðp; �Þ is concave in p, and Vn�1ðxÞ is decreas-
ing concave (from the inductive assumption),
Jnðye; yr; pÞ is concave in ðye; yr; pÞ. By
Proposition-B4 in Heyman and Sobel (1984) that
concavity is preserved after maximization, VnðxÞ is
concave.

Finally, VnðxÞ is decreasing in x because Jn is inde-
pendent of x and a larger x leads to a more restric-
tive feasible domain of yr and ye and so a smaller
maximum objective function value. h

For any given ye and yr, define

pnðye; yrÞ ¼ arg max
p2½p;�p�

fJnðye; yr; pÞg: ð5Þ

Substituting the optimal price pnðye; yrÞ into Equa-
tion (3) yields

VnðxÞ ¼ max
yr � ye � x

�
ðcrn � cenÞye þ ðacen�1 � crnÞyr

� Gnðye; pnðye; yrÞÞ þ ðpnðye; yrÞ
� acen�1Þdðpnðye; yrÞÞ

þ aE½Vn�1ðyr �Dnðpnðye; yrÞ; �nÞ�
�
;

which is concave in ðye; yrÞ from Lemma 1(a). Define

ðsen; srnÞ ¼ argmax
yr � ye

fJnðye; yr; pnðye; yrÞÞg; ð6Þ

SrnðxÞ ¼ argmax
yr

fJnðx; yr; pnðx; yrÞÞg: ð7Þ

Let �pn ¼ pnðsen; srnÞ and PnðxÞ ¼ pnðx; SrnðxÞÞ. By
their definitions, it is clear that srn ¼ SrnðsenÞ and
�pn ¼ PnðsenÞ. With these, the optimal ordering and
pricing strategy for each period is characterized in the
following result.

THEOREM 1. The optimal ordering and pricing policy is
characterized as follows. In each period n, if x � sen, then
ðye�n ; yr

�
n Þ ¼ ðsen; srnÞ and p�n ¼ �pn; if x [ sen, then if

x\ SrnðxÞ, ðye
�
n ; y

r�
n Þ ¼ ðx; SrnðxÞÞ and p�n ¼ PnðxÞ; other-

wise, ðye�n ; yr
�
n Þ ¼ ðx; xÞ and p�n ¼ pnðx; xÞ.

PROOF. The result follows from the concavity of
Jnðye; yr; pÞ and definitions (5)–(7). h

The theorem shows that, when x � sen, the optimal
inventory replenishment policy is a state-independent
base-stock type with two thresholds, one for expedited
order and the other for regular order; when x [ sen,
the firm should only order from the regular supply
using a state-dependent base-stock policy. Specifically,
if the starting inventory level x at the beginning of per-
iod n is less than sen, it is optimal to order up to sen
using the expedited order, then use the regular order
to raise the inventory position to srn, and to sell the
product at price �pn; if the starting inventory level x is
greater than sen, then only use the regular order to
bring the inventory position to maxfx; SrnðxÞg and set
the price at pnðx;maxfx; SrnðxÞgÞ.
When the value and cost functions are continuous

and differentiable, due to the concavity of
Jnðye; yr; pnðye; yrÞÞ, ðsen; srnÞ can be solved by the corre-
sponding first order conditions. Specifically, when
n = 1, sen ¼ srn and satisfies
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�ðcen � acen�1Þ � ðGnðy; pnðy; yÞÞ0y¼sen
¼ 0; ð8Þ

which has a finite solution because of ce1 [ cr1 � ace0
and the assumption on Gnðy; pÞ; when n > 1, denote
ð�ye; �yrÞ the solutions to the following set of equations:

�ðcen � crnÞ � ðGnðye; pnðye; yrÞÞ0ye ¼ 0 ð9Þ
acen�1 � crn þ

�
aE½Vn�1ðyr �Dðpnðye; yrÞ; �ÞÞ�

�0

yr
¼ 0:

ð10Þ
If �ye � �yr, then sen ¼ �ye and srn ¼ �yr; otherwise

sen ¼ srn and it satisfies

�ðcen � acen�1Þ þ
�
� Gnðy; pnðy; yÞÞ

þ aE½Vn�1ðy�Dðpnðy; yÞ; �ÞÞ�
�0

y¼sen

¼ 0:

ð11Þ

It can be seen from Equation (10) that if acen�1 � crn,
then �ye

�
[ �yr

�
and so srn ¼ sen because the left hand

side of Equation (10) would be negative in yr.
And SrnðxÞ is the solution of

acen�1 � crn þ
�
aE½Vn�1ðy�Dðpnðx; yÞ; �ÞÞ�

�0
y
¼ 0:

After solving sen, s
r
n, and SrnðxÞ, we can find the opti-

mal price �pn and pnðye; yrÞ.

LEMMA 2.

(a) Jnðye; yr; pÞ is a submodular function in ye and p.
(b) Jnðye; yr; pÞ is a submodular function in yr and p.
(c) Jnðye; yr; pnðye; yrÞÞ is a supermodular function in

ye and yr.

PROOF.

(a) For n = 1, because each of the first three terms
in J1ðye; yr; pÞ either depends only on ye or p or is
a constant with respect to ye and p, it suffices to
show that �G1ðy; pÞ is submodular or G1ðy; pÞ
is supermodular. Note that Gnðy; pÞ ¼
E½Lnðy � Dnðp; �ÞÞ� where Lnð�Þ is convex and
Dnðp; �Þ is decreasing in p. Therefore,
Lnðy � Dðp; �ÞÞ is supermodular in (y,p) (see
e.g., Theorem 2 in Federgruen and Heching
1999) and so is Gnðy; pÞ. For n > 1, as the only
term that depends on both ye and p is Gnðy; pÞ,
the same argument above leads to the submodu-
larity of Jnðye; yr; pÞ. So part (a) follows.

(b) For n = 1, the result is obviously true. For
n > 1, we just need to show the submodulari-
ty of Vnðy � Dnðp; �ÞÞ in (y,p). Again, by the
concavity of VnðxÞ and the monotonicity of
Dnðp; �Þ, the result follows.

(c) First note that the terms related to ye or yr are
separable in Jnðye; yr; pÞ and so Jnðye; yr; pÞ is
supermodular in ðye; yrÞ. Let ~p ¼ �p and

define ~Jnðye; yr; ~pÞ ¼ Jnðye; yr; �~pÞ. From parts

(a) and (b), ~Jnðye; yr; ~pÞ is supermodular in

ðye; ~pÞ and ðyr; ~pÞ. Therefore, ~Jnðye;yr;~pðye;yrÞÞ ¼
max

~p2½��p;�p�
~Jnðye;yr;~pÞ is supermodular in ðye;yrÞ

as the constraint set of ~p is a lattice (see Theo-
rem 2.7.6 in Topkis 1998). Therefore,
Jnðye;yr;pðye;yrÞÞ is supermodular. h

The following property of the optimal policy
parameters is a direct consequence of Lemma 2 (see
Topkis 1998).

THEOREM 2.

(a) Given yen, pnðyen; yrnÞ is decreasing in yrn.
(b) Given yrn, pnðyen; yrnÞ is decreasing in yen.
(c) SrnðxÞ is increasing in x and PnðxÞ is decreasing in

x.

The trajectory of the optimal price with respect to
the starting inventory level can be summarized as fol-
lows. When x � sen, the optimal price is a constant at
�pn; when sen \ x � SrnðxÞ, p�n ¼ PnðxÞ; when x [ SrnðxÞ,
p�n ¼ pnðx; xÞ. The theorem shows that the optimal
selling price is decreasing in the starting inventory
level x. More important, from Theorem 2 and the defi-
nitions of �pn, PnðxÞ, and pnðx; xÞ, the firm would
charge a lower price (discount) when the starting
inventory level increases. By considering �pn as the list
price, the optimal pricing strategy for the firm is still a
list-price policy. This extends the result of Federgruen
and Heching (1999) to a model with two supply
modes.
In what follows we extend the results to the case

with an infinite planning horizon. All the cost param-
eters and demand distribution are stationary. In the
analysis of infinite horizon models it is easier to have
the one-period reward uniformly non-positive so that
the results in negative dynamic programming can be
applied. Since the original problem has no such prop-
erty, we subtract a constant

M ¼ max
p� p� �p

pdðpÞ;

which is assumed to be finite, from the original one-
period expected profit (for period n � 1). We then
obtain the transformed value function �VnðxÞ for the
finite horizon problem from the original value func-
tion VnðxÞ:

�VnðxÞ ¼ VnðxÞ �Mð1� anÞ
1� a
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and

�Jnðye; yr; pÞ ¼ Jnðye; yr; pÞ �Mð1� anÞ
1� a

:

Consequently, for the transformed model, each per-
iod’s reward is non-positive and �V0ðxÞ ¼ 0. So the
optimal value function of the infinite horizon problem
�VðxÞ satisfies the optimality equations (e.g., Proposi-
tion 3.1.1, Bertsekas 2007):

�VðxÞ ¼ max
yr � ye � x;p2½p;�p�

�Jðye; yr; pÞ

where

�Jðye; yr; pÞ ¼ðcr � ceÞye þ ðace � crÞyr þ ðp� aceÞdðpÞ
� Gðye; pÞ �Mþ aE½�Vðyr �Dðp; �ÞÞ�:

In the following, we first present the relationship
between �V and �J and �Vn and �Jn as well as those of the
original problem.

PROPOSITION 1.

(a) �VðxÞ ¼ limn!1 �VnðxÞ, VðxÞ ¼ limn!1 VnðxÞ,
�Jðye; yr; pÞ ¼ limn!1 �Jnðye; yr; pÞ,
Jðye; yr; pÞ ¼ limn!1 Jnðye; yr; pÞ; and
�VðxÞ ¼ VðxÞ � M

1�a and
�Jðye; yr; pÞ ¼ Jðye; yr; pÞ � M

1�a.

(b) V and J satisfy the optimality equation

VðxÞ ¼ max
yr � ye � x;p2½p;�p�

fJðye; yr; pÞg ð12Þ

where

Jðye; yr; pÞ ¼ ðcr � ceÞye þ ðace � crÞyr þ ðp� aceÞdðpÞ
� Gðye; pÞ þ aE½Vðyr �Dðp; �ÞÞ�:

(c) V(x) is concave and decreasing in x and Jðye; yr; pÞ
is concave in ðye; yr; pÞ.

PROOF. From Lemma 1, �Jnðye; yr; pÞ is concave and
so is continuous. The assumption on G(y,p)
implies that, for each p 2 ½p; �p�, �Jnðye; yr; pÞ ! 1
when kðye; yrÞk ! 1 (here ‖�‖ is Euclidean norm).
Because the transformed problem belongs to neg-
ative dynamic program, based on Proposition
3.1.7 in Bertsekas (2007) that value iteration con-
verges to the optimal value function �VðxÞ, parts
(a) and (b) follow. For part (c), V(x) and Jðye; yr; pÞ
just inherit the properties of VnðxÞ and
Jnðye; yr; pÞ. h

Define

pðye; yrÞ ¼ arg max
p2½p;�p�

fJðye; yr; pÞg;

ðse; srÞ ¼ argmax
yr � ye

fJðye; yr; pðye; yrÞÞg;

SrðxÞ ¼ argmax
yr

fJðx; yr; pðx; yrÞÞg:

Similarly, we can obtain the following results from
Lemma 2 in the finite horizon case and the value itera-
tion.

PROPOSITION 2.

(a) Jðye; yr; pÞ is submodular in ðye; pÞ and ðyr; pÞ;
(b) Jðye; yr; pðye; yrÞÞ is supermodular in ðye; yrÞ.

The next result characterizes the optimal policy.

THEOREM 3. There exists a stationary optimal base-stock
and list-price policy for the infinite horizon model, which
can be characterized as

ðye� ; yr� ; p�Þ

¼
ðse; sr; �pÞ if x� se

ðx; SrðxÞ; pðx; SrðxÞÞÞ if SrðxÞ� x[ se

ðx; x; pðx; xÞÞ if x[ SrðxÞ:

8><
>:

PROOF. From Propositions 3.1.3 and 3.1.7 of Bertse-
kas (2007), there exists a stationary optimal policy
for such a negative dynamic program, and the pol-
icy maximizes the right-hand side of the optimality
equation (12). So the result follows. h

4. Additive Demand

In this section, we consider a special case of the model
with additive demand, that is, the demand function
Dnðp; �nÞ is separable and can be written as

Dnðp; �nÞ ¼ dnðpÞ þ �n;

where dnðpÞ is decreasing in p and E½�n� ¼ 0. Addi-
tive demand implies that the probability of Dnðp; �nÞ
differing from dnðpÞ by any amount is independent
of the price p (Mills 1959), and it has been widely
used and discussed in the literature on joint inven-
tory and pricing optimization (e.g., Chen and
Simchi-Levi 2004a,b). Let gnðdÞ denote the inverse
function of dnðpÞ, which is well defined as dnðpÞ is a
decreasing function of p. As in Chen and Simchi-
Levi (2004a), we assume that the expected revenue
function RnðdÞ ¼ dgnðdÞ is concave in d. Under the
additive demand function, we are able to provide a
more detailed characterization of the optimal policy.
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Because when p increases from p to �p, dnðpÞ
decreases from �dn ¼ dnðpÞ to dn ¼ dnð�pÞ, the decision
variable can be changed from p to d, and the optimal-
ity equation can now be written as

vnðxÞ ¼ max
yr � ye � x;d2½dn;�dn�

�
RnðdÞ � cenðye � xÞ � crnðyr � yeÞ

� Gnðye � dÞþaE½vn�1ðyr � d� �nÞ�
�
;

ð13Þwhere

GnðyÞ ¼ E½Lnðy� �nÞ�:
Through observing Equation (13), we conduct

another change of variable ~ye ¼ ye � d and
~yr ¼ yr � d; then the optimality equation (13) can be
expressed as

vnðxÞ ¼ max
~yr � ~ye � x�d; d2½dn;�dn�

�
½RnðdÞ � cend� � ðcen � crnÞ~ye

� Gnð~yeÞ � crn~y
r þ aE½vn�1ð~yr � �nÞ�

�
þ cenx:

ð14Þ
As seen in the previous section, all the value func-

tions involved can be inductively shown to be con-
cave. Define Hnð~yrÞ ¼ �crn~y

r þ aE½vn�1ð~yr � �nÞ�, and
let ~y2n be its maximizer. Then max~yr � ~ye Hnð~yrÞ ¼
Hnð~ye _ ~y2nÞ; where “_” is the maximum operator, that
is, for any real numbers x and y, x _ y = max{x,y}.
Thus we can further rewrite the optimality equation as

vnðxÞ ¼ max
~ye � x�d;d2½dn;�dn�

�
½RnðdÞ � cend� � ðcen � crnÞ~ye

� Gnð~yeÞ þ max
~yr � ~ye

f�crn~y
r þ aE½vn�1ð~yr � �nÞ�g

�

þ cenx

¼ max
~ye � x�d;d2½dn;�dn�

�
½RnðdÞ � cend� � ðcen � crnÞ~ye

� Gnð~yeÞ þHnð~ye _ ~y2nÞ
�
þ cenx:

Let ~y1n be the maximizer of

Wnð~yeÞ ¼ �ðcen � crnÞ~ye � Gnð~yeÞ þHnð~ye _ ~y2nÞ:
Then

max
~ye � x�d

fWnð~yeÞg ¼ Wnððx� dÞ _ ~y1nÞ: ð15Þ

Consequently, the optimal expected demand d (or
the optimal price p ¼ gnðdÞ) can be identified by
solving the following problem:

vnðxÞ ¼ max
d2½dn;�dn�

f½RnðdÞ � cend� þWnððx� dÞ _ ~y1nÞg: ð16Þ

Define

~dnðxÞ ¼ arg max
d2½dn;�dn�

f½RnðdÞ � cend� þWnððx� dÞ _ ~y1nÞg:

LEMMA 3. ~dnðxÞ is increasing in x with slope no more
than 1.

PROOF. The objective function on the right-hand
side of Equation (16) is a concave function of d, and
it is supermodular in (x,d), and the constraint
d 2 ½dn; �dn� is a lattice (see Topkis 1998 or Porteus
2002). Thus the optimal solution ~dnðxÞ is an increas-
ing function of x. Letting z = x � d, then the optimi-
zation problem (16) can be written as

vnðxÞ ¼ max
x��dn � z� x�dn

f½Rnðx� zÞ � cenðx� zÞ�

þWnðz _ ~y1nÞg;

where the bracketed terms are supermodular in (x,z).

Because the constraint fðx; zÞ j x � �dn � z� x � dng is
a lattice, it follows from Lemma 8.4 of Porteus (2002)

that the optimal solution z�nðxÞ ¼ x � ~dnðxÞ is increas-
ing in x. This shows 0 � ~dnðxþ 1Þ � ~dnðxÞ � 1. h

The one-period expected profit function
RnðdÞ � cend is concave, and we define

d�n ¼ arg max
d2½dn;�dn�

fRnðdÞ � cendg: ð17Þ

Thus, if x � ~y1n þ d�n, then the optimal pricing deci-
sion in Equation (16) is d�n, while if x [ ~y1n þ d�n, then
the optimal solution is ~dnðxÞ satisfies x � ~dnðxÞ� ~y1n.
Based on the preceding analysis, we characterize

the optimal policies in the next theorem. Let
p�n ¼ gnðd�nÞ and pnðxÞ ¼ gnð~dnðxÞÞ for x [ y1n þ d�n.

THEOREM 4. When demand is additive, the optimal
inventory control policy for period n is determined by
two critical numbers y1n � y2n, and the optimal pricing
policy is a list price with markdown policy, with a list
price p�n and markdowns determined by a decreasing
function pnðxÞ � p�n for x [ y1n þ d�n. More specifically,
suppose the starting inventory level at period n is x;

(i) if x � y1n þ d�n, then the optimal inventory policy is
determined by two base-stock levels ðye�n ; yr

�
n Þ ¼

ðy1n þ d�n; y
2
n þ d�nÞ such that the firm orders through

the expedited supply to raise the inventory level to the
base-stock level y1n þ d�n, then orders through the
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regular supply to raise the inventory position to the
base-stock level y2n þ d�n (i.e., order y2n � y1n from the
regular supply), and the optimal price is p�n;

(ii) if y1n þ d�n \ x, then only order through the regular
supply to raise the inventory position to
maxfx; y2n þ ~dnðxÞg, viz., ðye�n ;yr

�
n Þ¼ ðx;maxfx;y2nþ

~dnðxÞgÞ and set a markdown price pnðxÞ; the base-
stock level y2n þ ~dnðxÞ is increasing in the starting
inventory level x at slope no more than 1, and the
optimal order quantity from the regular supply, y2nþ
~dnðxÞ � x, is decreasing in x with slope at least �1.

PROOF. Let y1n ¼ ~y1n and y2n ¼ maxf~y2n; y1ng; thus
y2n � y1n. h

Case 1. y1n � ~y2n. In this case, y2n ¼ ~y2n. If the starting
inventory level xn � y1n þ d�n, then as we discussed
previously, the optimal pricing decision is p�n (d

�
n) and,

by Equation (16), the optimal ~yen in Equation (15) is y1n.
Thus the optimal expedited order decision is
ye

�
n ¼ y1n þ d�n. This shows that the optimal ordering

decision is to raise the inventory level to y1n þ d�n by
the expedited supply. Next, by Equation (14), the
optimal ~yrn is y2n; thus the optimal yr

�
n ¼ y2n þ d�n. This

implies that it is optimal to raise the inventory posi-
tion to y2n þ d�n by ordering y2n � y1n units from the
regular supply.
If xn [ y1n þ d�n but xn � y2n þ ~dnðxnÞ, then by

Equation (15), the optimal ~yen is xn � ~dnðxnÞ, or the
optimal yen is xn, meaning that the firm does not resort
to expedited supply. The optimal price in this case is
pnðxÞ (the average demand is ~dnðxnÞ). By substituting
this into Equation (14), it is seen that the optimal ~yrn is
y2n; thus the optimal yr

�
n ¼ y2n þ ~dnðxnÞ, which is an

increasing function of xn but with slope no more than
1. Thus in this case, the optimal decision is to only use
the regular supply to raise the inventory position
to y2n þ ~dnðxnÞ (by ordering y2n þ ~dnðxnÞ � xn), and to
not resort to expedited supply. Since the ~dnðxnÞ is
increasing with slope no more than 1, it is clear that
the order quantity y2n þ ~dnðxnÞ � xn is decreasing
with slope at least �1.
Finally, if xn [ y2n þ ~dnðxnÞ, then it is seen from

Equations (14) and (15) that the optimal ~yen and ~yrn are
both equal to xn � ~dnðxnÞ; thus ðye�n ; yr

�
n Þ ¼ ðx; xÞ. This

shows that the firm does not order anything.

Case 2. y1n [ ~y2n. Then y2n ¼ y1n. From the definition
of y1n, it implies that ~ye ¼ ~yr or the firm does not need
to resort to the regular supply. Therefore, if the start-
ing inventory level xn � y1n þ d�n, then the optimal
replenishment level through expedited order is
y1n þ d�n, while if xn [ y1n þ d�n (and so y1n þ d�n � y1n
þ ~dnðxnÞ), then by Equations (14) and (15), no order is
placed. This policy is exactly the same as what would
be achieved using the policy as described in the theo-

rem, but using optimal control parameters y1n ¼ y2n.
The proof is now complete. h

Note that if y1n ¼ y2n, then regular supply mode will
not be resorted to in period n regardless of the starting
inventory level. And compared with the results in sec-
tion 3, we can see that sen ¼ y1n þ d�n, s

r
n ¼ y2n þ d�n,

and SrnðxÞ ¼ y2n þ ~dnðxÞ. Furthermore, the computa-
tion of the control parameters is easier in this additive
demand case because they can be solved sequentially
through several single-dimension concave optimiza-
tion problems.

REMARK 1. The optimal pricing policy in Theorem 4
is list price with markdowns. It should be noted,
however, that the list-price structure remains only
when the expedited supply mode exists. When
expedited supply mode is removed, the optimal
pricing policy will no longer be of a list-price type.
See the next section for more discussion on this.

REMARK 2. In the special case of dn ¼ �dn, the aver-
age demand and the selling price are fixed, and our
model, as well as results, reduces to that of Fukuda
(1964). Therefore, Theorem 4 generalizes Fukuda’s
result to the joint optimization of inventory and
pricing. The optimal inventory decisions in Theorem
4 remains the same as that in Fukuda (1964), and it
is a dual base-stock policy.

REMARK 3. The two critical numbers y1n and y2n can
be interpreted as the safety-stock level and safety-
stock position, respectively, for period n. To see this,
note that at the beginning of period n, if the firm
orders from the expedited supply, it raises the
inventory level to y1n þ d�n and then orders from the
regular supply to raise the inventory position to
y2n þ d�n. As d�n is the average demand for period n,
the expected inventory level at the end of period n
is y1n, which is the safety-stock level. Similarly, y2n is
the average inventory position at the end of period
n (when only the regular supply is used, y2n is still
the average inventory position at the end of period
n as ~dnðxÞ is the average demand), and we call it the
safety-stock position for period n.

5. Operational Impact of Supply
Diversification

Most firms in practice have more than one supply
source. One interesting question to ask is what the
effect is to the firm when an additional supply source
is introduced. In this section we address this issue.
As in the previous section, the demand function is
assumed to be additive.
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5.1. Impact of Adding the Regular Supply
We first consider the case where, initially, the firm
only has the expedited supply with lead time 0, and
we want to study the impact to the firm after intro-
ducing the regular supply that has replenishment
lead time 1.
When the firm has only the expedited supply, we

use v̂nðxÞ to represent its maximum expected total dis-
counted profit function. The corresponding optimal-
ity equation is

v̂nðxÞ ¼ max
ye � x�d;d2½dn;�dn�

�
½RnðdÞ � cend� � ceny

e � GnðyeÞ

þ aE½v̂n�1ðye � �nÞ�
�
þ cenx: ð18Þ

The boundary condition is v̂0ðxÞ ¼ ce0x.
The optimal policy for this case can be obtained as a

special case of the analysis in the previous section.
Specifically, if the starting inventory level in period n
is less than ŷ1n þ d�n (note that d

�
n is defined as in Equa-

tion (17)) where

ŷ1n ¼ argmax
ye

f�ceny
e � GnðyeÞ þ aE½v̂n�1ðye � �nÞ�g;

then the firm raises the inventory level to ŷ1n þ d�n,
and the optimal selling price is the list price
p̂�n ¼ gnðd�nÞ; if the starting inventory level is over
ŷ1n þ d�n, then the firm orders nothing and the opti-
mal selling price is p̂nðxÞ � p̂�n where p̂nðxÞ ¼
gnðd̂nðxÞÞ and

d̂nðxÞ ¼ arg max
d2½dn;�dn�

�
½RnðdÞ � cend� � cenðx� dÞ

� Gnðx� dÞ þ aE½v̂n�1ðx� d� �nÞ�
�

and p̂nðxÞ is decreasing in x.
We shall use the same notation for, for example,

value function, optimal policies, etc., as in the previ-
ous section for the system with both the expedited
and regular supply modes. Recall that the optimal
value function for the system with dual supply modes
is vnðxÞ and its optimal policy in period n is deter-
mined by y1n � y2n, d�n (or p�n), and ~dnðxÞ (or pnðxÞ)
defined on x [ y1n þ d�n. Also, note that d�n is the same
for both systems. The following is the main result on
the effect of adding the regular supply mode.

THEOREM 5. After the regular supply is introduced, the
optimal value function and optimal policy parameters of
the firm satisfy, for n = 1,…,N,

(i) vnðxÞ � v̂nðxÞ for all x;
(ii) y1n � ŷ1n;

(iii) p�n ¼ p̂�n;
(iv) pnðxÞ � p̂nðxÞ for all x; and
(v) ~dnðxÞ � d̂nðxÞ for all x.
We offer the following interpretation of this theo-

rem. Part (i) of Theorem 5 is obvious: when more
options become available to the firm, the firm can only
do better; thus its maximum profit does not go down.
Part (ii) states that the safety-stock level for the
expedited supply after adding the second, regular,
supply becomes smaller. This is because, after intro-
ducing the new supply mode, the firm has another
option when needed to raise the inventory level;
hence, it can reduce its safety-stock level from the first,
expedited, supply. Part (iii) indicates that the optimal
list price in the dual-supply system is the same as that
in the system with only the expedited supply. How-
ever, part (iv) posits that the markdown price in the
dual-supply system is lower when the starting inven-
tory level is the same. The last part, (v), is the same as
(iv) but stated in terms of optimal average demand.

PROOF. Recall that the optimality equation for the
dual-supply case is

vnðxÞ ¼ max
ye�x�d; d2½dn;�dn�

�
½RnðdÞ� cend� � ðcen � crnÞye

�GnðyeÞþmax
yr�ye

f�crny
r þ aE½vn�1ðyr � �nÞ�g

�
þ cenx:

That vnðxÞ � v̂nðxÞ can be easily proved using induc-
tion, and it is omitted. In the following, we show,
by induction, that (ii)–(v) are valid together with
v̂nðyÞ � vnðyÞ increasing in y, that is,

v0nðyÞ� v̂0nðyÞ ð19Þ
for n = 1,…,N.
The result is clearly satisfied when n = 0 since

v0ðxÞ ¼ v̂0ðxÞ ¼ ce0x. Now, suppose the result holds
for n�1, and we proceed to prove it for n. For sim-
plicity, let wnðyÞ ¼ Hnðy _ ~y2nÞ. We first show that

crn þ w0
nðyÞ� aE½v̂0n�1ðy� �nÞ�: ð20Þ

By inductive assumption of Equation (19) for n � 1,
the maximizer ~y2n of concave function HnðyÞ is no
more than the maximizer of concave function
�crny þ aE½v̂n�1ðy� �nÞ�, denoted by ŷ2n. If y � ~y2n,
then the left-hand side of Equation (20) is equal to
crn and, because y � ŷ2n,

ð�crnyþ aE½v̂n�1ðy� �nÞ�Þ0 � 0:

Thus aE½v̂0n�1ðy � �nÞ� � crn and Equation (20) is
satisfied. On the other hand, if y � ~y2n, then the
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left-hand side of Equation (20) is equal to
aE½vn�1ðy � �nÞ�; thus, Equation (20) follows from
the inductive assumption.
To complete the proof of Theorem 5, we introduce

two functions:

Anðx; 0Þ ¼ max
ye � x

�ceny
e � GnðyeÞ þ ½crnye þ wnðyeÞ�

� 	
;

Anðx; 1Þ ¼ max
ye � x

�ceny
e � GnðyeÞ þ aE½v̂n�1ðye � �nÞ�

� 	
;

and let y1n and ŷ1n be the unconstrained maximizers
of the objective functions above, respectively. Then
Equation (20) implies y1n � ŷ1n. We further argue that
Anðx; 1Þ � Anðx; 0Þ is increasing in x, or Anðx; iÞ is
supermodular in (x,i),i = 0,1. To see this, first con-
sider x � y1n. On this range Anðx; 1Þ � Anðx; 0Þ is a
constant. If y1n � x � ŷ1n, then Anðx; 0Þ is a constant
and Anðx; 1Þ is increasing; thus Anðx; 1Þ � Anðx; 0Þ is
also increasing. Finally, if x � ŷ1n, then

Anðx; 1Þ � Anðx; 0Þ ¼ aE½v̂n�1ðx� �nÞ� � ½crnxþ wnðxÞ�;

thus, it follows from Equation (20) that Anðx; 1Þ�
Anðx; 0Þ is increasing in x.
To prove v̂nðxÞ � vnðxÞ is increasing in x, we fur-

ther define, for i = 1,0,

vðx; iÞ ¼ max
dn � d� �dn

½RnðdÞ � cend� þ Anðx� d; iÞ� 	þ cenx

¼ max
x��dn � z� x�dn

½Rnðx� zÞ � cenðx� zÞ� þ Anðz; iÞ
� 	

þ cenx;

where the second equality follows from the change
of variable z = x�d. Since both Rnðx � zÞ � cenðx � zÞ
and Anðz; iÞ are supermodular in (x,z,i) and the con-
straint set fðx;zÞ j x � �dn� z�x � dng is a lattice, this
shows, by application of Lemma 8.4 of Porteus
(2002), that v(x,i) is supermodular in (x,i). Finally,
note that

vðx;1Þ � vnðx;0Þ ¼ v̂nðxÞ � vnðxÞ;

hence, v̂nðxÞ � vnðxÞ is also increasing in x, complet-
ing the proof of Equation (19).
The argument above also shows that z�ðxÞ ¼

x � d�nðx; iÞ is increasing in i. This corresponds to
~dnðxÞ � d̂nðxÞ, or pnðxÞ � p̂nðxÞ. Finally, p�n ¼ p̂�n is
obvious as in both cases, d�n is the maximizer of
RnðdÞ � cenðdÞ on ½dn; �dn�. The proof of Theorem 5 is
thus complete. h

REMARK 4. In comparing the ordering policies, we
compare the safety-stock levels of the expedited
supply before and after the regular supply is intro-
duced. Note that in general we cannot compare the

optimal safety-stock level in one model with the
safety-stock position in another. That is, we cannot
compare the inventory level/position raised by the
different supply modes before and after another
supply is introduced, and consequently, the overall
inventory levels in the two systems cannot be
compared. Indeed, the objective for the optimiza-
tion is the total profit and not the inventory level;
since the two supply modes differ in their
characteristics, one has shorter lead time but higher
cost, holding cost has to weigh in for the inventory
optimization decision. Thus, maximizing profit/
minimizing cost does not usually lead to compari-
son results in the overall inventory levels in the
two systems.

5.2. Impact of Adding an Expedited Supply
We next consider the case where initially the firm
only has the regular supply mode, which has
replenishment lead time 1, and we study the impact
of introducing an expedited supply that has lead
time 0. Let �vnðxÞ be the maximum total discounted
profit from period n to the end of the planning hori-
zon for the system with only a regular supply,
everything else being the same as the original sys-
tem with dual supply. The optimality equation for
this single supply system is

�vnðxÞ ¼ max
y� x;d2½dn;�dn�

�
RnðdÞ � crny� Gnðx� dÞ

þ aE½�vn�1ðy� d� �nÞ�
	þ crnx

¼ max
d2½dn;�dn�

�½RnðdÞ � crnd� � Gnðx� dÞ

þmax
yr � x

�� crnðyr � dÞ þ aE½�vn�1ðyr � d� �nÞ�
		

þ crnx

¼ max
d2½dn;�dn�

�½RnðdÞ � crnd� � Gnðx� dÞ

þ max
�yr � x�d

�� crn�y
r þ aE½�vn�1ð�yr � �nÞ�

		þ crnx;

where �yr ¼ yr � d. The optimality equation above
leads to the structure of the optimal inventory and
pricing decision for the firm, specified in the
following result. Since it is a special case of Theo-
rem 4, its proof is omitted. Let �y2n ¼
argmaxy �crnyþ aE½�vn�1ðy � �nÞ�

� 	
.

COROLLARY 1. When the inventory level at the begin-
ning of period n is x, the optimal replenishment decision
is determined by a critical number �y2n and the optimal
average demand �dnðxÞ, which is an increasing function of
starting inventory level x with slope no more than 1, that
is, 0 � �dnðxþ 1Þ � �dnðxÞ � 1, and the optimal pricing
�pnðxÞ is decreasing in x. In particular, when
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x � �y2n þ �dnðxÞ, the optimal average demand �dnðxÞ is the
maximizer of the single-period concave profit function
RnðdÞ � crnd � Gnðx � dÞ.

It is interesting to note that the optimal price for
the model with only a regular supply is no longer
of a list-price type, that is, there is no list price �p�n.
The optimal price �pnðxÞ is decreasing in x for all x.
This is due to the positive lead time. Indeed, when
the replenishment lead time is 1, even if the
starting inventory level x at the beginning of
period n is very low, after the optimal replenish-
ment decision raises the inventory position to
�y2n þ �dnðxÞ the order quantity �y2n þ �dnðxÞ � x will
not arrive until the following period, and it is only
the on hand inventory, x, that is to be used to
serve the random demand for the current period.
Therefore, no matter how low the inventory level
at the beginning of the period might be, the
optimal price for this period always depends on x.
To see the last part of the corollary, note that as
long as the inventory level at the beginning of the
period is below �y2n þ �dnðxÞ, the inventory level at
the beginning of the next period will be �y2n � �n,
which is independent of the decision on average
demand d. Therefore, the optimal d simply
maximizes the profit function for the current
period.
As seen from the proof of Theorem 4, the order-

ing decision for the regular supply is determined
by y2n ¼ maxf~y2n; y1ng, where y1n is the safety-stock
level for the expedited supply. Whenever ~y2n � y1n,
the regular supply is not used in period n.
Therefore, the optimal ordering decision of the
regular supply is determined by ~y2n. In the follow-
ing theorem, when we compare the ordering char-
acteristics of the regular supply, we compare ~y2n
and �y2n.

THEOREM 6. After the expedited supply mode is intro-
duced, the optimal value function and optimal policy
parameters of the firm satisfy, for n = 1,…,N,

(i) vnðxÞ � �vnðxÞ for all x;
(ii) ~y2n � �y2n;

(iii) pnðxÞ � �pnðxÞ for all x; and
(iv) ~dnðxÞ � �dnðxÞ for all x.

Therefore, after the expedited supply is intro-
duced, the profit function of the firm goes up, the
safety-stock position goes down, and the optimal
selling price drops. This again shows that sourcing
diversification benefits both the firm and the
customers.

Some preparation is needed to prove Theorem 6.
First, we need the following simple result, which is
easy to show.

LEMMA 4. For any concave, differentiable functions f(x)
it holds that

f 0ðxÞ� �
max
z� x

fðzÞ�0:

In addition, for convenience we introduce notation

Hnðz; 1Þ ¼ � GnðzÞ þmax
yr � z

�crny
r þ aE½�vn�1ðyr � �nÞ�

� 	
HnðzÞ ¼ðcrn � cenÞz� GnðzÞ

þmax
yr � z

�crny
r þ aE½vn�1ðyr � �nÞ�

� 	
Hnðx; 0Þ ¼max

z� x
HnðzÞ:

Then, the optimality equation for the single supply
problem can be written as

�vnðxÞ � crnx ¼ max
d2½dn;�dn�

½RnðdÞ � crnd� þHnðx� d; 1Þ� 	

¼ max
dn � x�n� �dn

�½Rnðx� nÞ � crnðx� nÞ�

þHnðn; 1Þ
	
; ð21Þ

where the second equality follows from a change of
variable ξ = x � d. We also rewrite the optimality
equation for the dual-supply case as

vnðxÞ � cenx ¼ max
d2½dn;�dn�

½RnðdÞ � cend� þHnðx� d; 0Þ� 	

¼ max
dn � x�n� �dn

�½Rnðx� nÞ � cenðx� nÞ�

þHnðn; 0Þ
	
: ð22Þ

PROOF OF THEOREM 6. The first result (i) is intuitive;
adding another option does not hurt the firm. Its
proof follows easily from induction; the hence it is
omitted. Here we only prove (ii), (iii), and (iv).
We will prove inductively that �v0nðxÞ � v0nðxÞ for

all x and n. Note that once this is established, it fol-
lows from the definitions of ~y2n and �y2n that ~y2n � �y2n,
proving the desired result (ii). This is clearly true
for n = 0. Suppose it has been shown that �v0n�1ðxÞ �
v0n�1ðxÞ; we proceed to prove it for n. From the
inductive assumption, we have

�crny
r þ aE½�vn�1ðyr � �nÞ�

� �0
� �crny

r þ aE½vn�1ðyr � �nÞ�
� �0
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and this implies that for any value x, it holds that

max
yr � x

�crny
r þ aE½�vn�1ðyr � �nÞ�

� 	� �0

� max
yr � x

�crny
r þ aE½vn�1ðyr � �nÞ�

� 	� �0
:

Therefore, we obtain

where the last inequality follows from Lemma 4.
Then, we apply the same idea in proving Theorem
5. Define g(x,ξ,i) on �∞ < x, ξ < ∞ and i = 0,1 by

gðx; n; 1Þ ¼ Rnðx� nÞ þ crnnþHnðn; 1Þ
gðx; n; 0Þ ¼ Rnðx� nÞ þ cennþHnðn; 0Þ:

By the concavity of Rnð�Þ, g(x,ξ,i) is supermodular in
(x,ξ), and because

gðx; n; 1Þ � gðx; n; 0Þ ¼ Hnðn; 1Þ �Hnðn; 0Þ � ðcen � crnÞn

is increasing in ξ from Equation (24) and indepen-
dent of x, we conclude that g is supermodular in (x,
i) and (ξ,i). This proves that g(x,ξ,i) is supermodular
in (x,ξ,i). Since the constraint set dn � x � n � �dn is
a sublattice of (x,ξ,i), we apply Lemma 8.4 of Porteus
(2002) to obtain that

gðx; iÞ ¼ max
dn � x�n� �dn

gðx; n; iÞ

is supermodular in (x,i). Noting from Equations (20)
and (21) that

�vnðxÞ ¼ max
dn � x�n� �dn

gðx; n; 1Þ; vnðxÞ ¼ max
dn � x�n� �dn

gðx; n; 0Þ;

we conclude that

gðx; 1Þ � gðx; 0Þ ¼ �vnðxÞ � vnðxÞ
is increasing in x, or �v0nðxÞ� v0nðxÞ. This proves that
�v0nðxÞ� v0nðxÞ holds for all n.

For fixed x, let

�n�nðxÞ ¼ arg max
dn � x�n� �dn

gðx; n; 1Þ

n�nðxÞ ¼ arg max
dn � x�n� �dn

gðx; n; 0Þ:

Then, by the supermodularity result we conclude
that both �n�nðxÞ and n�nðxÞ are increasing in x, and

that n�nðxÞ � �n�nðxÞ for all x. As �n�nðxÞ ¼ x � �dnðxÞ
and n�nðxÞ ¼ x � ~dnðxÞ, this implies ~dnðxÞ � �dnðxÞ,
proving (iii). Hence, the optimal prices, pnðxÞ and
�pnðxÞ, are both decreasing in the inventory level x
and they satisfy pnðxÞ � �pnðxÞ for all x, or (iv). That
is, the optimal price decreases after the expedited
supply is introduced under a same starting inven-
tory level. The proof of Theorem 6 is complete. h

6. Numerical Study

In this section, we aim at studying the following ques-
tions numerically. First, what is the respective value
to the firm of having dual supply options and adopt-
ing dynamic pricing? Second, which strategic tool
brings more value to the firm?
We first consider a system with planning horizon

N = 5. Suppose demand function D(p) = a � cp + �
in which � is Negative Binomial with mean 8; a = 100
and c = 2. This is an additive model with
dnðpÞ ¼ a � cp þ E½�� and �n ¼ � � E½��. The unit
regular ordering cost is crn ¼ 2; the last period salvage
value/penalty cost is ce0 ¼ 2; the inventory holding
and demand backlogging cost is LðxÞ ¼ hxþ þ bx�

with h = 2 and b = 20 when the ending inventory
level is x. The discount factor a = 0.95. Other system
parameters are selected from the following sets:

cen ¼ f4; 8; 16g; varð�Þ ¼ f10; 13:33; 20; 40g:
We will discuss the value of supply diversification

in both dynamic and static pricing settings, while for
the value of dynamic pricing, we consider the case
with single and dual supplies. So we first specify how
the static price is selected. When the expedited supply

crn � cen þH0
nðx; 1Þ ¼ ðcrn � xenÞx� GnðxÞ þmax

yr � x
�crny

r þ aE½�vn�1ðyr � �nÞ�
� 	� �0

� ðcrn � cenÞx� GnðxÞ þmax
yr � x

�crny
r þ aE½vn�1ðyr � �nÞÞ�

� 	� �0
ð23Þ

� max
z� x

ðcrn � cenÞz� GnðzÞ þmax
yr � z

�crny
r þ aE½vn�1ðyr � �nÞ�

� 	� �� �0

¼ H0
nðx; 0Þ;
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is available (either the firm uses both supplies or the
expedited supply only), the static price ps is the one
that maximizes the single-period profit function, that
is,

ðps; ysÞ ¼ argmax
p;y

f�ð1� aÞcen þ ðp� acen�1ÞdðpÞ
� Gnðy; pÞg:

A similar static pricing policy is used in the numeri-
cal study of Federgruen and Heching (1999). When
only the regular supply is available, we choose the
static price ps as the one that maximizes the expected
revenue pd(p) because, in this case the ordering lead
time is one period, and we want to avoid a state-
dependent static price. Denote the corresponding
value function under the static pricing strategy by
vsnðxÞ.
To assess the benefit of supply diversification, we

compare the profit of the system with dual supply
vis-�a-vis the one with a single sourcing when the
firm uses either dynamic pricing or a static pricing
strategy. For the systems with dynamic pricing, we
define

VOD ¼ averagex2½�10;60�
vNðxÞ � A

vNðxÞ � 100%

� �
;

where vNðxÞ is the optimal profit under dual sourc-
ing while A ¼ v̂NðxÞ or �vNðxÞ is the optimal profit
with only the expedited (regular) supply. Similarly,
for the case with static pricing, the value of supply
diversification VODs is defined as

VODs ¼ averagex2½�10;60�
vsNðxÞ � B

vsNðxÞ
� 100%

� �
;

in which B ¼ v̂sNðxÞ or �vsNðxÞ, and vsNðxÞ uses the
same static price as that used in computing v̂sNðxÞ or
�vsNðxÞ.
Table 1 presents VOD and VODs under different

demand variances and unit expedited costs. For ease
of reference, we use VODj and VODs

j to denote the

corresponding value when only supply j is available,
j = r,e. First, note that when the unit expedited cost

increases, VODr and VODs
r decrease whereas VODe

and VODs
e increase. This is intuitive, as when com-

pared to the case with only regular supply, the expe-
dited supply becomes less important when its cost
gets higher, whereas when compared to the case with
only expedited supply, the value of having a regular
supply would go up when the expedited supply
becomes more costly. Meanwhile, we find the value
of supply diversification, in both dynamic and static
pricing settings, is rather robust to the change of the
variance of e.
We then examine the value of dynamic pricing,

which is quantified by

VOP ¼ averagex2½�10;60�
vNðxÞ � vsNðxÞ

vNðxÞ � 100%

� �
;

and, analogously, when there is only the expedited
(resp., regular) supply available, the corresponding
VOP is defined by replacing vNðxÞ with v̂NðxÞ (resp.,
�vNðxÞ) and vsNðxÞ with v̂sNðxÞ (resp., �vsNðxÞ) and we
denote it by VOPe (resp., VOPr).
The results are reported in Table 2. It can be seen

that under supply diversification, the value of
dynamic pricing is rather small when the unit cost of
expedited order is relatively low (VOP is < 2% even
when cen ¼ 8, four times the regular unit cost), while
it increases dramatically when the unit expedited cost
reaches 16. This interesting finding can be explained
as follows. When the expedited supply is inexpensive,
the firm enjoys supply flexibility, which can be used
to mitigate the adverse effect caused by uncertainty in
random demand, and it limits the value of dynamic
pricing. In single sourcing setting, when only the reg-
ular supply is available, VOPr is around 3.9% whereas
VOPe is very minimum when only the expedited sup-
ply is available. The latter phenomenon is in part
because when the starting inventory level falls in the
region [�10,60], the optimal price is the same as the
static one in most of the cases. However, we find that
dynamic pricing brings higher value to the firm when
the starting inventory level is more than 60. Further-
more, the value of dynamic pricing is also rather
insensitive to the variance of e, in large part because
the demand function is additive. We depict the

Table 1 Value of Supply Diversification

Var[e]

Dynamic pricing Static pricing

VODr VODe VODs
r VODs

e

cen ¼ 4 cen ¼ 8 cen ¼ 16 cen ¼ 4 cen ¼ 8 cen ¼ 16 cen ¼ 4 cen ¼ 8 cen ¼ 16 cen ¼ 4 cen ¼ 8 cen ¼ 16

10 5.56 3.94 1.37 5.50 17.01 37.92 8.69 6.75 2.91 5.36 16.02 33.63
13.33 5.55 3.90 1.34 5.50 17.03 37.99 8.69 6.72 2.87 5.36 16.04 33.69
20 5.53 3.85 1.30 5.49 17.06 38.11 8.69 6.67 2.83 5.35 16.06 33.79
40 5.52 3.74 1.23 5.47 17.13 38.37 8.70 6.58 2.75 5.34 16.13 34.03
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optimal profit function under dynamic pricing and
static pricing in Figure 1a and the optimal profit
under dual sourcing and single sourcing in Figure 1b.
To see how inventory holding cost h affects the

values of supply diversification and dynamic pricing,
we conduct additional numerical experiments by
altering the values of h from 2 to 6 with a step size 2
while letting cen ¼ 8 and Var[e] = 10. The results are
presented in Table 3. We can see that h has a minor
impact on those values.
From the results in Tables 1–3, we find that in gen-

eral, supply diversification provides the firm with
more benefit than dynamic pricing, except when the
expedited supply is very costly (cen ¼ 16), and in that
case VODs

r is less than VOPr, implying that dynamic
pricing has bigger impact. In this regard, these two
strategic tools seem to be substitutes for each other.
Suppose, for example, the firm is currently using dual
supply modes and adopting a dynamic pricing strat-
egy and is considering simplifying its operation by
either reducing its supply base or implementing a
simple static pricing strategy. Then, the results of
VODr, VODe, and VOP suggest that when cen is

relatively low, instituting a static price strategy will
not hurt much of the firm’s profit and, hence, is the
recommended action to take, while when cen is rela-
tively high, then it is better that the firm simply
remove the expedited supply mode from its supply
base.
We finally study the comparative static properties

of optimal policy parameters. In Figure 2a, we illus-
trate the trajectory of the optimal price for the systems
with (a) single sourcing with regular supply, (b) sin-
gle sourcing with expedited supply, and (c) dual
sourcing. It is clear that the optimal price decreases
with the starting inventory level in all three cases.
Furthermore, the optimal selling price for the dual
supply system is always the lowest, which is consis-
tent with our theoretical results that sourcing diversi-
fication is beneficial to the customers. The comparison
of the optimal selling prices between the two single
sourcing systems, however, depends on the starting
inventory level: the optimal selling price for the sys-
tem with single regular supply is the highest when
the starting inventory level is low, and this may be
attributed to the longer inventory replenishment time.
However, when the inventory level is high, the sys-
tem with the single expedited supply has the highest
selling price, and the intuition behind this is that the
firm does not want to get rid of its inventory too
quickly because of its higher unit ordering cost.
Figure 2b illustrates the optimal inventory level/

position after replenishment decisions in the three

Table 2 Value of Dynamic Pricing

Var[e]

Dual sourcing Single sourcing

VOP
VOPr

VOPe

cen ¼ 4 cen ¼ 8 cen ¼ 16 crn ¼ 2 cen ¼ 4 cen ¼ 8 cen ¼ 16

10 0.15 1.19 6.47 3.84 0.00 0.01 0.02
13.33 0.15 1.19 6.48 3.85 0.00 0.00 0.02
20 0.15 1.19 6.52 3.87 0.00 0.00 0.01
40 0.14 1.19 6.58 3.90 0.00 0.00 0.01
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Figure 1 Comparison of Value Functions

Table 3 Impact of Holding Cost h on VOD and VOP

h VODr VODe VODs
r VODs

e VOP VOPr VOPe

2 3.94 17.01 6.75 16.02 1.19 3.84 0.01
4 3.89 17.07 6.79 15.97 1.29 3.82 0.01
6 3.90 17.10 6.84 15.94 1.42 3.95 0.04
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systems, similar to those in Figure 2a. In the figure, se

(= 47) pinpoints the optimal expedited order-up-to
level in the dual sourcing system, which is lower than
that (= 50) of the system with single expedited sup-
ply. This is due to the fact that the dual sourcing
system has another option to order from the regular
supply, and it echoes the result in Theorem 5. Never-
theless, the dual sourcing system keeps a higher regu-
lar order-up-to level than the system with only
regular supply, especially when x\ sen. Note that the
SrðxÞ values for the two systems are actually quite
close. As in the dual sourcing system, the firm can
increase its inventory level to sen immediately and then
charge a lower price, and it would keep a higher regu-
lar order-up-to level.
We end this section by reporting VOD and VOP

values for a system with a longer planning horizon,
T = 20, in Table 4. The other parameters are the same
as those of the preceding examples. It can be seen that
the general messages conveyed in the previous exam-
ples carry over to this case, and the values of these
two strategic tools, for example, supply diversifica-
tion and dynamic pricing, do not vanish with a long
planning horizon.

7. Concluding Remarks

In this paper we study the dynamic pricing and
inventory control in a periodic-review inventory sys-
tem with dual supply modes. The lead times for the
two supply modes are 0 and 1, respectively. We show
that the optimal inventory policy is of a base-stock

type, and the optimal pricing strategy is list price with
markdowns. We also analyze the effect of supply
diversification and prove that supply diversification
benefits both the firm and its customers. Our numeri-
cal results further show that supply diversification
brings the firm more value than dynamic pricing and
these two strategies seem to be substitutes for each
other.
One critical assumption in our model is that the

lead times of the two supply modes are 0 and 1,
respectively. When the selling price is exogenous, the
optimal inventory control problem with dual-supply
and arbitrary lead times has been studied in Whitt-
more and Saunders (1977), who show that the optimal
policy for such a system is quite complicated; its
policy control parameters depend on the state of the
system. When there is only a single supply but arbi-
trary lead time, the joint optimization problem of
inventory and pricing is studied in Pang et al. (2012).
Both the optimal inventory control policy and the
optimal pricing strategy are shown to be state depen-
dent, that is, the policy control parameters depend on
the state of the system. Thus, if the lead times of the
two supply modes are arbitrary, it is conceivable that
the operational strategies for the model discussed in
this study can only be more complicated than those in
Whittmore and Saunders (1977) and Pang et al.
(2012). Some preliminary discussion is given below.
Suppose the lead times for the two supply modes

are 0 and L, respectively, where L � 1 is an arbitrary
integer. Let x0 be the inventory level at the beginning
of a period and x1; x2; . . .; xL�1 the orders that are to be
delivered one period from now, two periods from
now, and L�1 periods from now. The state of the sys-
tem is ðx0; x1; . . .; xL�1Þ. To analyze the structure of the
optimal inventory and pricing policy, we reformulate
the problem as follows: define

yi ¼
XL�1

k¼i

xk; i ¼ 0; 1; . . .; L� 1: ð24Þ
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Figure 2 Optimal Selling Prices and Order-up-to Levels

Table 4 VOD and VOP for T = 20

Var[e]

VOD VOP

cen ¼ 4 cen ¼ 8 cen ¼ 16 cen ¼ 4 cen ¼ 8 cen ¼ 16

10 1.96 1.35 0.45 0.24 0.44 0.94
13.33 1.97 1.34 0.44 0.24 0.44 0.95
20 1.98 1.32 0.43 0.24 0.45 0.98
40 2.03 1.30 0.41 0.24 0.46 1.02
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The transformed state of the system is
y ¼ ðy0; y1; . . .; yL�1Þ, with state space

y1 � y2 � � � � � yL�1:

Using L\-convexity and lattice analysis, our preli-
minary analysis shows that the optimal replenish-
ment decisions and the optimal price depend on the
state y in some complicated but monotone manner.
This will be investigated in a future study.
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