Supplementary Information

1 Stability of the slow manifold and derivation of the expresion of R(X)

Consider the system in standard singular perturbation form

Y k- sy-©)

dt
= aCs %(pm _o)y-0). 1)

For a variablex involved in system (1), we denote bythe value of the variable once we have set= 0 in
system (1). Leg(C,y) := —6C + %(pTOT — C)(y - C) and letC = y(y) be the smallest root af(y(y),y) = O.
Then,C = y(y) defines the slow manifold. Model (1) reduced to the slow riadehieads to the reduced model
dy _
2 = KO - 65~ YG). @
Lett = t/e and letec = C — C be the error betwee@ and its approximation:_, the dynamics of such an error,
called the boundary layer system, is given by
d =~ 0 - =
== = —5(ec + ) + 1 (Pror - &c - C)(y - &c - C), ®)
dr Kg
and describe the dynamics of the errooivith respect taC, in which y and thusC are considered frozen at

the initial condition. Since we desif@ to tend toC, we study the stability of the equilibrium poiat = 0 of
equation (3).

Proposition 1. The equilibrium g = 0 of the boundary layer system (3) is asymptotically stabiéotmly in
y andag/dCley 51y has real part smaller than a fixed negative number.

Proof. One can easily verify thalg/dClcy yin < —6 and thatde: = —K(y)ec + kde% in which K(y) > Ko
with Kg independent of. Therefore, the local asymptotic stablllty is uniformyin O

This proposition implies that the slow manifold is stablgraptotically, that is, after a fast transiepis
well approximated by andC is well approximated by.. More formally, it follows that (Theorem 3.1 [5])
if ec(0) is in the region of attraction of the equilibriusg = 0, then for a fixedl' > 0 we have thay(t) =
y(t) + O(e), for all t € [0, T] and for each fixed, > t; > 0 we have thaC(t) = C(t) +O(e), forall t € [tg, to].
As a consequence, we also have tKé) = X(t) + O(e), forall t € [t1,t]. SinceX(t) = y(t) — C(t), the
differential equation thaX satisfies is given b}g— dﬁtt) d(yj(y% dfj(tt), which finally leads to

dy(y) ) @

dx
= (K(t) - 6X) (1— &

dt

After a fast transienX(t) will follow )?(t) solution of equation (4).

Since when‘@ = 0, the dynamics of equation (4) is the same as the dynamiteaolated system, we

determine a more useful expression ?ﬁ% as follows.



Proposition 2.

dy(y) _ 1 PV
dy g4 @eXpkg? R ®)
“prov/ke

andR(X) < 1.

Proof. We remove the bar from the variables to simplify notationp@se tha(y) satisfies thag(y(y),y) =
0, whereg(C,y) =6 [—C + %(pTOT -C)(y- c)]. We want to calculately/dy.

1
49/ (pror-C)
dy/dy = — 9/%y _ . 2 a
99/0C 1+ =(pror —C) + 1 (y - C)
S0 substituting
1 C
—(v-C)= ——
Kd v=0) pror-C
this equals
1 1
14+ _kipror

2
(pror-C 1 t Bror ProT (1+ ProT— C)

and now substitutin% = %(y — C) we conclude that this equals

1
da (14 Ey-C)

1+

in whichy - C = X.

2 Attenuation of the retroactivity to the output by feedback

Lemma 1. Consider the system
& = Gl - KX

d
in which Gt) > Go > O and|U’(t)| < V uniformly in t. Then,
u(o \%
X0 - 921 < expi-1GoK)X(0) - S +

GoK?’

Proof. Lete = X—u/K. The error dynamics is given /= —G(t)Ke— % The solution of such a fierential
equation is provided by

e(t) = e0) expt f KG(r)dr) + f expl f KG(o-)da-)u(t)

Since|U/ ()] < V andG(t) > Gg > 0 for all t, we have that

u(t) ()

IX(1) = <1 < expEHGOK)IX(0) - = =1 + (1 - exp(- tGoK))V/(GoK?).

Hence, we obtain the desired result. m|

Then, we can give the following simple corollary to Lemma 1.



Corollary 1. Consider the two systems

d dff — G(u(t) - KX;) and dd— = G(O)(u(t) - KX), (6)

in which|u'(t)] < V, G(t) > G, and G> G for Gg > 0. Then

V
IX(t) = X (t)] < expEtGoK)Co + 2G0K2

for a suitable nonnegative constang.C

Proof. We can apply Lemma 1 to the two systems in equation (6), stghard his along with the triangular
inequality | X(t) — X (t)] < |X(t) — u(t)/K] + |X:(t) — u(t)/K| leads tgX(t) — X (t)] < exptGoK)Co + ZG el
for a suitable nonnegative consta&y depending on the initial conditions. O

Let us now consider the isolated system

dX
ot = KO - o @)

and the connected system (4) and assume that we can amglhifgaunG the inputk(t) and apply an additional
negative feedbackG’X, in whichG’ = oG for somea = O(1). Then, we obtain the two systems (isolated an
connected) as

O = G ~ (@ +5/G)X) ®
and dx
O = (KO - (o +5/6P0(1 - () ©

respectively, in whichd(t) = ’dy(y) andy(t) given by the reduced system

d )

= = GO - (& +8)(y ~ 7)),

We can apply Corollary 1 to the two systems (8) and (9) \ﬁtt) = G(1-d(t), K = (a+6/G), andk(t) = u(t),
to obtain thatX(t) can be made close ¥ (t) by increasing the gai.

2.1 Design 1. Amplification through transcriptional activation

The diferential equations modeling the insulation device arerpise

dz
5 = K-oZ +\ k Zp — ki Z(poToT — Zp) \ (10)
dz
d_tp = kZ(porot - Zp) -k Zp (1D
dd—rrtb( = GZp —01Mmy (12)
dX
Gt = Y=Y X W — 52X + [ kegC — kanX(pror - C) (13)
dw
o = mXY-mW—pw (14)
%_\t( = —mYX+BW+aG —yY + W (15)
dc
Gt = “KorC+ konX(pror - C). (16)



in which we have assumed that the expression of gene z isodledtby a promoter with activitk(t). These
equations will be studied numerically and analyzed mathiealty in a simplified form. The variablg, is the
concentration of protein Z bound to the promoter contrgligene x,po o7 is the total concentration of the
promoter g controlling gene xmy is the concentration of messenger RNA ofiXis the concentration of X
bound to the downstream binding sites with total conceptigbr ot, v is the decay rate of the protease. The
value ofG is the production rate of X mRNA per unit concentration of Zibd to the promoter controlling x;
the promoter controlling gene y has strengtB, in which « is a constant so that the promoter controlling y
has the same order of magnitude strength as the promoteoliogt X. The dynamics of equations (10)—(16)
without the elements in the box in equation (13) describedyreamics ofX with no downstream system,
which we callX;.

We mathematically explain why system (10)—(16) allows teehd ~ X; thus attenuating theflect of s
on theX dynamics. Equations (10) and (11) simply determine theadigp(t) that is the input to equations
(12)—(16). For the discussion regarding the attenuatioim@ifect of s, it is not relevant what the specific
form of signalZp(t) is. Let thenZy(t) be any bounded signa(t). Since equation (12) takest) as an input,
we will have thatmy = Gv(t), for a suitable signal(t). Let us assume for the sake of simplifying the analysis
that the protease reaction is a one step reaction, thatisyx5 Y. Therefore, equation (15) simplifies to
dY = aG-yY and equation (13) simplifies # = vmyx —BY X— 62X+ KoyC — konX(pr o1 —C). If we consider
the protease to be at its equilibrium, we have g} = «G/y. As a consequence, theedynamics becomes

>

dX _
It = YOV — (BaG/y + 62)X + | keyC — konX(pror - C)

with C determined by equation (16). By using the same singulaugEtion argument employed in the
previous section, we obtain that the dynamicXafill be after a fast transient approximatively equal to

dX _
ot = 0BV = (BaG/y +52)X)(1 ~ d(D)). 17)
in whichd(t) < 1. In the case in whicH(t) = 0, we obtain the dynamics of the isolated system as
CL_):’ = YGU(t) — (BaG/y + 62)%;. (18)

We can thus apply Corollary 1 to systems (18) and (17) with = w(t), K = Ba/y + 62/G, andG_(t) =
G(1 - d(t)), to conclude thaK(t) can be made closer ¥ (t) by increasings.
2.2 Design 2: Amplification through phosphorylation

A one step model for the phosphorylation reactions is camnsilto apply Corollary 1.
Z+X 874X,

and
Y + Xp 8Y + X,

The conservation of X giveX + X, + C = Xror, in which X is the inactive protein, Xis the phosphorylated
protein that binds to the downstream sites p, and C is the eonab the phosphorylated proteinybound to
the promoter p. Th&, dynamics can be described by the first equation in the foligumodel

dX X

o = kXrorZ() (1 o | X )_ k2¥ % + | kayC ~ konXp(Pror — C)| (19)
TOT

& = ks + konXo(pror ~ C). (20)



The boxed terms represent the retroactigity the output. For a weakly activated pathway ([H), < Xtor.
Also, if we assume that the concentration of total X is largempared to the concentration of the downstream
binding sites, that isXtoTt > proT, equation (19) is approximatively equal to

dXo

W = kleoTZ(t) - k2YXp + koﬁC - konXp(pTOT - C)

DenoteG = ki Xtor andG’ = kpY. Exploiting again the dierence of time scales between Kgdynamics
and theC dynamics, after a fast initial transient, the dynamicXgtan be well approximated by

dXp )
T (GZ(t) - G'Xp)(1 - d(t)), (21)

in which 0 < d(t) < 1 is the dfect of the retroactivitys to the output after a short transient. System (21)
with d(t) = O determines the isolated system. We ¢&lithe output signal to the isolated system. We thus
apply Corollary 1 to system (21) wittit) = 0 and to system (21) with(t) = Z(t), §(t) = G(1 - d(t)), and

K = koY/(k1 Xt0o7) to conclude thaX(t) can be made closer & (t) by increasing the gai.

3 A general formulation of attenuation of retroactivity

We briefly discuss here a formalization of the “low-retrd&tt” property, described in terms of the general
system model:

dx

i f(x,u,s)
y = Y(Xu,s)
r = R(xus). (22)

We view the input signall and the retroactivitys to the output as belonging to set$ andV respectively.
These sets summarize all prior information available abimeisignals, such as their ranges of values, or their
maximal rates of change. The initial conditions at time O for the state variables are supposed to lie in
a subselX of the set of possible states. The definitions will be stastative to a given a numbey > 0 (in
practice, a small number) which specifies the tolerated tdvetroactivity, and an interval C (0, +c0) which
specifies on what time interval the retroactivity should tmak.

The system (22) will be said to havelevel retroactivity to the output, on the time intervaprovided that,
for any initial conditioné in X, any signalal € U ands € <V, and any time instarite |:

ly(®) —yo®)l <A and  |r(t) —ro(t)l < A,

wherex,y,r are as in (22) withx(0) = &, and:

d
2= U0, (0)=¢
Yo = Y(xo,u,0)

In words, the diference between the outpyfind the outpuy = yg that would have been measured had the
retroactivity signals not been presens(= 0) is not larger than the numbdr, and also the retroactivity to
the input is not substantially flerent than ifswas not there.
Similarly, the system (22) will be said to haxelevel retroactivity to the input, on the time intervalifi for
any initial condition¢ € X, any signall € U, and any time instarite |:

Iro(t) < A
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where, as earliery = R(xo, u, 0). In words, the retroactivity to the input is small, assognihat the system is
not subject to retroactivity to its outputs.

Observe that when the system has bbilevel retroactivity to the input and the output, frémtt)—ro(t)| < A
and|ro(t)] < A one has thalr(t)] < 2A, that is, the input retroactivity is “small” even if retrdadties to its
outputs are present.

These formulations are very general, and apply to arbisgsyems.

The properties are a variant of the control theory properglmost disturbance decouplirid, 9], and their
study and verification is naturally carried out using teges based ogainsandinput to state stabilityf1,

6, 7]. In this paper, we described but one particular approatich is useful whenever time-scale separation
techniques can be employed. For simplicity, we presentedaloulations for finite time intervals, but entirely
analogous calculations based on singular perturbaticoryhere possible on infinite intervals, appealing to
the methods described in [3] and [8].
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