
Supplementary Information

1 Stability of the slow manifold and derivation of the expression ofR(X̄)

Consider the system in standard singular perturbation form

dy
dt
= k(t) − δ(y−C)

ǫ
dC
dt

= −δC +
δ

kd
(pTOT −C)(y−C). (1)

For a variablex involved in system (1), we denote by ¯x the value of the variablex once we have setǫ = 0 in
system (1). Letg(C, y) := −δC + δkd

(pTOT −C)(y−C) and letC̄ = γ(ȳ) be the smallest root ofg(γ(ȳ), ȳ) = 0.
Then,C̄ = γ(ȳ) defines the slow manifold. Model (1) reduced to the slow manifold leads to the reduced model

dȳ
dt
= k(t) − δ(ȳ− γ(ȳ)). (2)

Let τ = t/ǫ and leteC = C− C̄ be the error betweenC and its approximation̄C, the dynamics of such an error,
called the boundary layer system, is given by

deC

dτ
= −δ(eC + C̄) +

δ

kd
(pTOT − eC − C̄)(ȳ− eC − C̄), (3)

and describe the dynamics of the error ofC with respect toC̄, in which ȳ and thusC̄ are considered frozen at
the initial condition. Since we desireC to tend toC̄, we study the stability of the equilibrium pointeC = 0 of
equation (3).

Proposition 1. The equilibrium eC = 0 of the boundary layer system (3) is asymptotically stable uniformly in
ȳ and∂g/∂C|C̄(t),ȳ(t) has real part smaller than a fixed negative number.

Proof. One can easily verify that∂g/∂C|C̄(t),ȳ(t) ≤ −δ and thatdeC
dτ = −K(ȳ)eC +

δ
kd

e2
C, in which K(ȳ) ≥ K0

with K0 independent of ¯y. Therefore, the local asymptotic stability is uniform in ¯y. �

This proposition implies that the slow manifold is stable asymptotically, that is, after a fast transienty is
well approximated by ¯y andC is well approximated bȳC. More formally, it follows that (Theorem 3.1 [5])
if eC(0) is in the region of attraction of the equilibriumeC = 0, then for a fixedT > 0 we have thaty(t) =
ȳ(t) +O(ǫ), for all t ∈ [0,T] and for each fixedt2 > t1 > 0 we have thatC(t) = C̄(t) +O(ǫ), for all t ∈ [t1, t2].
As a consequence, we also have thatX(t) = X̄(t) + O(ǫ), for all t ∈ [t1, t2]. SinceX̄(t) = ȳ(t) − C̄(t), the
differential equation that̄X satisfies is given bydX̄

dt =
dȳ(t)
dt −

dγ(ȳ)
dȳ

dȳ(t)
dt , which finally leads to

dX̄
dt
= (k(t) − δX̄)

(

1−
dγ(ȳ)

dȳ

)

. (4)

After a fast transientX(t) will follow X̄(t) solution of equation (4).
Since whendγ(ȳ)

dȳ = 0, the dynamics of equation (4) is the same as the dynamics of the isolated system, we

determine a more useful expression fordγ(ȳ)
dȳ as follows.
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Proposition 2.
dγ(ȳ)

dȳ
=

1

1+ (1+X̄/kd)2

pTOT/kd

=: R(X̄) (5)

andR(X̄) < 1.

Proof. We remove the bar from the variables to simplify notation. Suppose thatγ(y) satisfies thatg(γ(y), y) =
0, whereg(C, y) = δ

[

−C + 1
kd

(pTOT −C)(y− c)
]

. We want to calculatedγ/dy.

dγ/dy = −
∂g/∂y
∂g/∂C

=

1
kd

(pTOT −C)

1+ 1
kd

(pTOT −C) + 1
kd

(y−C)

so substituting
1
kd

(y−C) =
C

pTOT −C

this equals
1

1+ kd pTOT

(pTOT−C)2

=
1

1+ kd
pTOT

(

1+ C
pTOT−C

)2

and now substituting C
pTOT−C =

1
kd

(y−C) we conclude that this equals

1

1+ kd
pTOT

(

1+ 1
kd

(y−C)
)2
,

in which y−C = X.
�

2 Attenuation of the retroactivity to the output by feedback

Lemma 1. Consider the system
dX
dt
= G(t)(u(t) − KX)

in which G(t) ≥ G0 > 0 and |u′(t)| ≤ V uniformly in t. Then,

|X(t) −
u(t)
K
| ≤ exp(−tG0K)|X(0)−

u(0)
K
| +

V

G0K2
.

Proof. Let e= X−u/K. The error dynamics is given by ˙e= −G(t)Ke− u̇(t)
K . The solution of such a differential

equation is provided by

e(t) = e(0) exp(−
∫ t

0
KG(τ)dτ) +

∫ t

0
exp(−

∫ t

τ

KG(σ)dσ)
u′(t)
K

dτ.

Since|u′(t)| ≤ V andG(t) ≥ G0 > 0 for all t, we have that

|X(t) −
u(t)
K
| ≤ exp(−tG0K)|X(0)−

u(0)
K
| + (1− exp(−tG0K))V/(G0K2).

Hence, we obtain the desired result. �

Then, we can give the following simple corollary to Lemma 1.
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Corollary 1. Consider the two systems

dXr

dt
= G(u(t) − KXr) and

dX
dt
= Ḡ(t)(u(t) − KX), (6)

in which |u′(t)| ≤ V, Ḡ(t) > G0, and G≥ G0 for G0 > 0. Then

|X(t) − Xr (t)| ≤ exp(−tG0K)C0 + 2
V

G0K2
,

for a suitable nonnegative constant C0.

Proof. We can apply Lemma 1 to the two systems in equation (6), separately. This along with the triangular
inequality |X(t) − Xr (t)| ≤ |X(t) − u(t)/K| + |Xr (t) − u(t)/K| leads to|X(t) − Xr(t)| ≤ exp(−tG0K)C0 + 2 V

G0K2 ,

for a suitable nonnegative constantC0 depending on the initial conditions. �

Let us now consider the isolated system

dX
dt
= k(t) − δX, (7)

and the connected system (4) and assume that we can amplify with gainG the inputk(t) and apply an additional
negative feedback−G′X, in whichG′ = αG for someα = O(1). Then, we obtain the two systems (isolated an
connected) as

dXr

dt
= G(k(t) − (α + δ/G)Xr ) (8)

and
dX
dt
= G(k(t) − (α + δ/G)X)(1− d(t)) (9)

respectively, in whichd(t) =
∣

∣

∣

∣

dγ(y)
dy

∣

∣

∣

∣

andy(t) given by the reduced system

dy
dt
= Gk(t) − (G′ + δ)(y− γ(y)).

We can apply Corollary 1 to the two systems (8) and (9) withḠ(t) = G(1−d(t)), K = (α+δ/G), andk(t) = u(t),
to obtain thatX(t) can be made close toXr(t) by increasing the gainG.

2.1 Design 1: Amplification through transcriptional activation

The differential equations modeling the insulation device are given by

dZ
dt

= k(t) − δZ + k−Zp − k+Z(p0,TOT − Zp) (10)

dZp

dt
= k+Z(p0,TOT − Zp) − k−Zp (11)

dmX

dt
= GZp − δ1mX (12)

dX
dt

= νmX − η1YX+ η2W− δ2X + koffC − konX(pTOT −C) (13)

dW
dt

= η1XY− η2W− βW (14)

dY
dt

= −η1YX+ βW+ αG− γY + η2W (15)

dC
dt

= −koffC + konX(pTOT −C), (16)
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in which we have assumed that the expression of gene z is controlled by a promoter with activityk(t). These
equations will be studied numerically and analyzed mathematically in a simplified form. The variableZp is the
concentration of protein Z bound to the promoter controlling gene x,p0,TOT is the total concentration of the
promoter p0 controlling gene x,mX is the concentration of messenger RNA of X,C is the concentration of X
bound to the downstream binding sites with total concentration pTOT, γ is the decay rate of the protease. The
value ofG is the production rate of X mRNA per unit concentration of Z bound to the promoter controlling x;
the promoter controlling gene y has strengthαG, in whichα is a constant so that the promoter controlling y
has the same order of magnitude strength as the promoter controlling x. The dynamics of equations (10)–(16)
without the elements in the box in equation (13) describe thedynamics ofX with no downstream system,
which we callXr .

We mathematically explain why system (10)–(16) allows to have X ≈ Xr thus attenuating the effect of s
on theX dynamics. Equations (10) and (11) simply determine the signal Zp(t) that is the input to equations
(12)–(16). For the discussion regarding the attenuation ofthe effect of s, it is not relevant what the specific
form of signalZp(t) is. Let thenZp(t) be any bounded signalv(t). Since equation (12) takesv(t) as an input,
we will have thatmX = Gv̄(t), for a suitable signal ¯v(t). Let us assume for the sake of simplifying the analysis
that the protease reaction is a one step reaction, that is, X+ Y →β Y. Therefore, equation (15) simplifies to
dY
dt = αG−γY and equation (13) simplifies todX

dt = νmX−βYX−δ2X+koffC−konX(pTOT−C). If we consider
the protease to be at its equilibrium, we have thatY(t) = αG/γ. As a consequence, theX dynamics becomes

dX
dt
= νGv̄(t) − (βαG/γ + δ2)X + koffC − konX(pTOT −C) ,

with C determined by equation (16). By using the same singular perturbation argument employed in the
previous section, we obtain that the dynamics ofX will be after a fast transient approximatively equal to

dX
dt
= (νGv̄(t) − (βαG/γ + δ2)X)(1− d(t)), (17)

in which d(t) < 1. In the case in whichd(t) = 0, we obtain the dynamics of the isolated system as

dXr

dt
= νGv̄(t) − (βαG/γ + δ2)Xr . (18)

We can thus apply Corollary 1 to systems (18) and (17) withu(t) = νv̄(t), K = βα/γ + δ2/G, andḠ(t) =
G(1− d(t)), to conclude thatX(t) can be made closer toXr(t) by increasingG.

2.2 Design 2: Amplification through phosphorylation

A one step model for the phosphorylation reactions is considered to apply Corollary 1:

Z + X →k1Z + Xp,

and
Y + Xp→

k2Y + X.

The conservation of X givesX + Xp +C = XTOT, in which X is the inactive protein, Xp is the phosphorylated
protein that binds to the downstream sites p, and C is the complex of the phosphorylated protein Xp bound to
the promoter p. TheXp dynamics can be described by the first equation in the following model

dXp

dt
= k1XTOTZ(t)

(

1−
Xp

XTOT
− C

XTOT

)

− k2YXp + koffC − konXp(pTOT −C) (19)

dC
dt

= −koffC + konXp(pTOT −C). (20)
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The boxed terms represent the retroactivitys to the output. For a weakly activated pathway ([2]),Xp ≪ XTOT.
Also, if we assume that the concentration of total X is large compared to the concentration of the downstream
binding sites, that is,XTOT ≫ pTOT, equation (19) is approximatively equal to

dXp

dt
= k1XTOTZ(t) − k2YXp + koffC − konXp(pTOT −C).

DenoteG = k1XTOT andG′ = k2Y. Exploiting again the difference of time scales between theXp dynamics
and theC dynamics, after a fast initial transient, the dynamics ofXp can be well approximated by

dXp

dt
= (GZ(t) −G′Xp)(1− d(t)), (21)

in which 0 < d(t) < 1 is the effect of the retroactivitys to the output after a short transient. System (21)
with d(t) = 0 determines the isolated system. We callXr the output signal to the isolated system. We thus
apply Corollary 1 to system (21) withd(t) = 0 and to system (21) withu(t) = Z(t), Ḡ(t) = G(1 − d(t)), and
K = k2Y/(k1XTOT) to conclude thatX(t) can be made closer toXr(t) by increasing the gainG.

3 A general formulation of attenuation of retroactivity

We briefly discuss here a formalization of the “low-retroactivity” property, described in terms of the general
system model:

dx
dt
= f (x, u, s)

y = Y(x, u, s)

r = R(x, u, s). (22)

We view the input signalu and the retroactivitys to the output as belonging to setsU andV respectively.
These sets summarize all prior information available aboutthe signals, such as their ranges of values, or their
maximal rates of change. The initial conditions at timet = 0 for the state variablesx are supposed to lie in
a subsetX of the set of possible states. The definitions will be stated relative to a given a number∆ > 0 (in
practice, a small number) which specifies the tolerated level of retroactivity, and an intervalI ⊆ (0,+∞) which
specifies on what time interval the retroactivity should be small.

The system (22) will be said to have∆-level retroactivity to the output, on the time interval I, provided that,
for any initial conditionξ in X, any signalsu ∈ U ands∈ V, and any time instantt ∈ I :

|y(t) − y0(t)| ≤ ∆ and |r(t) − r0(t)| ≤ ∆,

wherex, y, r are as in (22) withx(0) = ξ, and:

dx0

dt
= f (x0, u, 0), x0(0) = ξ

y0 = Y(x0, u, 0)

r0 = R(x0, u, 0).

In words, the difference between the outputy and the outputy = y0 that would have been measured had the
retroactivity signals not been present (s = 0) is not larger than the number∆; and also the retroactivityr to
the input is not substantially different than ifswas not there.

Similarly, the system (22) will be said to have∆-level retroactivity to the input, on the time interval I, if for
any initial conditionξ ∈ X, any signalu ∈ U, and any time instantt ∈ I :

|r0(t)| ≤ ∆
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where, as earlier,r0 = R(x0, u, 0). In words, the retroactivity to the input is small, assuming that the system is
not subject to retroactivity to its outputs.

Observe that when the system has both∆-level retroactivity to the input and the output, from|r(t)−r0(t)| ≤ ∆
and |r0(t)| ≤ ∆ one has that|r(t)| ≤ 2∆, that is, the input retroactivity is “small” even if retroactivities to its
outputs are present.

These formulations are very general, and apply to arbitrarysystems.
The properties are a variant of the control theory property of almost disturbance decoupling[4, 9], and their

study and verification is naturally carried out using techniques based ongainsand input to state stability[1,
6, 7]. In this paper, we described but one particular approach, which is useful whenever time-scale separation
techniques can be employed. For simplicity, we presented our calculations for finite time intervals, but entirely
analogous calculations based on singular perturbation theory are possible on infinite intervals, appealing to
the methods described in [3] and [8].
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