LRTTU TO MSDICAL STUDEUPS. (Oct. 28, 198.)
FEvERS.
J. H. Kelloge, M. D.
-0
AT a late hour lat evening Dr. Rossittor usked me to ta $\mathbb{X K}$ to you this torticE upon tie subjact of fevers., fhern is perhape no condition of disegse in which the physician is caller ugon to qct in which he has an oportunity to do so much as in the condition commonly known as fever. It has ban said that the are three classes of $99 t i e n t s s$ Shes tho cannot get well, no matter what you do: those that will get well, in silte of everything you do, and those who are helped to get well by what you do. Now the nstient suffering rom fever belongs to the last class if to amy class at all. There is no morbid condition in which the phytacian can do so much--ir which the physician has the oportunity for doing so much, and in wich the rmedial applications are so efficient for the relief of the pgtient and in which thete are so efficient means--such admitable maxes and usoful means for affording rolief to the potient as in eases in which they are surforing from fover.

Fever is a symptom, and not a disease. So whon we talk of a patient as having a fever, we never think of thefever being the disegse, or as the only thing to be considered. The fever is only the symptom of the malady. Thore is always somethirs else besties the fover--which is a pattor alvavs to be romemberad-.. it is not on iv 2 fever, but somathin else. The Tever is simply the ovicence of something else, and this something else, whatever it is, must be discovered. In othor words, the fover must have a cause, and ve must-discover this cause in order that ve may cive it, as vell as the rever, attention.

Nevertheless, there arg some cases in which the patient has a fever, in which we canot discover what the cause is--we do not know exactly what the causs is--but in this case we have the satisfaction of knowing that we fay possibly bring the patient to a succassful issue and to a ricovery by the treatmert of his fever--the symptomatic treatment of his case. symptomstic treatment in cencral is not a very satisfactory treatment, but in the case of fever it is Eenerally compratively satisfactory, for as a rule the thine that/will benefit the fover, or lessen this symptom, will at the same time aid in the ranoval of the caune which han , roducec the fevor, and it is a very comfoting thought that the thing that will aid in the roduction of tomperature and the lessening of the fovir will at the samn time aid in menovinc the cause of the fover, so that the symptomatic troatmont a 10.0 my, in some cases, be antirely success ful.

Now baforn proceeding further in the discussion of this question, let us consider briefly, what is a fever. In the first place we have to consicen that the symptom of fever has to do with the heat makirg ard heat regulating process s of the body. Let us rocall what these are. There are three elements in the heat makivg and heat rogiling processes of the body. First of all there are the thermocenic or thermogenetic tissues,. Nery oreq of the body and every tissue that vorks of course produces heat, but there usx are special thermogenetic tissues in the bociy in the muscles, and to some slight extent in the liver.

Now the thermo conetic tissues found ir the musclos are so called for the reason that they may be especially used for he at production, asicie rom any other functional activity. e have he at produced in the liver while the liver is at ork doing other things, but the same is true of the muscle when it is not at work--when it is not active--and they
are callaf the thermoenentic tissues.
Now we have besides these a set of canglia in the silinal cord, and the stimuli un ar which they act are qutomatically stimulatine the ther ocenetic tissues to activity--just as we have in the heart mutometit censers whic stimulate the heart to acticity, and just as o have automatic centers which ztixyixtie control tho resziretion ard stimulate the activity of tho res ibatory movements, just as there are autarntic centers which stimulate the activity of the liver, centers which atimulate the activityaz of the stomach ,-- wo wave automatic certers in the spinal cord which stimulate and control the thermosenic tissues. Then thare are in the brain more centers, which have the control of the qutomatic certers. We have a sot of centers whic stimum late the automatic centers to ircreased activity, or wadat accelerating centers; and we have another set of centers which diminish the activity, or inhibitory centers. I think this way of lookivg at the thermogenetic aparatus in the bocy is the most raasonable and the most simple, of acy view which I have soen advanced. It is the latest view of the subject, which you have already studied, I suppose, in the An ican Text-. book, ard it appeals to my good sense as being rational ard reasonable. Thernoganetic tissues in the muscles, automatic centers in the cord, controlled by zacx acceleratere and inhibitory centers in the brain.

Now a fevor is a disturbance of the heat regulating centers; when a patient has a fever he is sufering from a disturbance of the heat regulating conters. There may be no disturbance of the thermocenetic tissues, - thextisxumsxazt and there onay be no cisturbance of the automatit centers- they may be ready to operate in the usual way for they are under control, and only act as they are act d upon --they are uncer the control of the acceleratory centers and the irhibitory centers. Now In a fover these he at reculating centers in the brain are disturbod.

Theses heat regular cent are constantly being disturbed mo er lease - fall o one or two degrees of temperature, a little draft of air blowing upon the faces blast of heat from a furnace, a hot breeze from a stove, a hot current of air, or any change of temperature with which the skin oms in contact is sufficient to bring into play these heatregulatin centers and to stimulate into activity the inhibitory or the acceleratory center, is my be required.

Theseheat regulating center s may be disturbed in two, or rather throe ways: By nervous impressions falling upon the skin or received in other ways, or by toxic substancesiin the blood, or by chancing the temperatore of the blood. In other ores, by reflex influence, by changing
the temperature of the blood, or by toxic substances in theblood..
(Dr. Pqulson: Then there is reason to believe the we m have such a thing as a norvous te prature-nraising of temperature from maxasxhose tyertatixxxy

Now there is another statement that I wish to makes make wi th referene to rev r-that for ar should not be looked upon, is it was formarly regarded, is an unmitigated evil. That is, I think, a matter of great importance for the young physician to remember. That fever may be doing him good. The very fact that the patient has a fever is not an indication that we should make an attack upon him with allthe means that we possess for destroy ling that fever In such a fever the patient may have a temp rature of 100 to 101 1-2, and atrine can be done it the way of reducing his temperature: nothing needs to ne done in many cases. Why? Because the fever is in itself curative. Fever is an rise of effort of nature to heal om thing, and the temperature is in itself beneficial in certain cases.

Now wo might consider how it might be beneficial. For instance, in diphtioria--you know that in diphtheria there is a production of toxic
and this toxin causes a rise of temperature and gives rise to paralysis and to other disturbing symptoms. Now there is also produced, besides this toxin, another poisonous substance, calla antitoxin. Antitoxin is nature's antidote for toxin; nature produces a substance which neutralizes the toxin, or antitoxin. This substance may be takin from the blood, and is used as a remedy in diphtheria with porhapa conedegree of success in certain cases. Dr. Hare o. philadelphis says that it is most active when the bock, terms mature is high, than When the body is at a lower temperature, And we can readily see--and he conjectures, and I t ink quite progeciy, that the raise of bodily tenperature is on of the fays in which nit tare prepares this antitoxin-and one of the conditions for producing this antitoxin is an elevated taperature. So this iaxa natter to be remembered andkept in mind.

Haig says "On the other hand, when under the reverse conditions the draught is bsd, combustion is Incomplete and the fires run low, the microbes get a firm hold, and are able to multiply and produce the disease. From this point of view tie causation of fever is of extreme interest, for fever is accompanied by a general increase of combustion ard motabdoian, and, indeed, it looks very much as it it was a protective effort on the part of nature to stimulate the fires of life and burn out the invader, and it is interesting to note that Loevy and Renter found that artificially produced fever protected animals to some extent against microbic inoculation."

This explains how it is that patients suffering frow one febrile disorder psenarally ill not contract another. If a child has mums, it will not fe^{9} the measles; the child with sager all pox does not generally have diphtheria, --although diphtheria is a microbic malady, and often comas in ceaslication, whore diphtheria and scarlet fever eris previously present have developed.

Now the thoucht I ant to place before you is, that a fevs i not an unaitijated evil and a thine to be foucht cecklessly or without considera tian. Still, ve nover zould thins of letting a patient alone and saying "Iet the fever cure him," because the fever might consume hia. The fover is a consubaing fige michaight des roy the disease, but aight also destroy the patignt. It might conzume the cause of the disorder, but the pationt aijle not e able to last ntil the dross was all consuaed-the patient might be practically all dross, and it would co sume it all.

The real eause of a fever is the resistance of the body to the causes of disease wich are pegent in it. That is the ceal eause of fevar-the resistance and vital reaction of the body against the dieease conditions which are prezent. That is becominz dovaloped more and mpre. This shows us the universal aplication of the statenent that lever--that disease--is a remedial effort on the part of tha body to hesl itself. It is the activit, of the aceeleratory center -of the healins power-the curative ower that is in al: seoking to ake him well--that is the real cause of this phenomena to which we attach the nane fisease. I think this is becoming clearer and clearer every year. and talking
Trenty-five years ago then se tere writing uponathis subject-when it was comparabivoly new in the world--it was not new, but it was scrcely ever rogarded andxtmagkt zbout ,--there were aany dark and difficuit and troublesome problens, to tall hour somfhings were curative ; but as time rant on and thare were ner developments in patholosy and physiology, we saw more and more cloarly all the time how true it is that tigere is ithin the body a divine power secicing to heal it piysically as well as aentally and morally, and that very process of disease in whici a perion segas tobe sufferinc from the consequences of his sins
is feally an effort at healing, and of there is quouch of the an to pass through that purifying process ve willfind him there after he Egts through, but if he is nothiag but dross when the firg gets through burning the an hinself is burned.

I beligve that is true of moral as $w=1 l$ as plysical things-othat God is alvays trying to hoal the man, and that al tie ungleasant experiences we have in the world are to purif ard heal us, whether wentally morally or physically, and if there is anything left in the man when this purif.inc preess is completed--if the process can be completed ariculeave anytiing behind, thit which is 1 eft beifnd will be pure gold and will be somothins that will, dovelop throughout all eternity into all that is good and pure and besutiful, --and ood will save ant ing that has any gold in hin.

DR. PAUE ON: In the Nedical Bulletin the Editor likens it to boys parsistinc in br as ing ice, and he says "as soon as they oreak the ice Nature mencs it! so as soon as a man 1003 things that will be him up, wature heals him. \$hx

De. K. That is a vargood illustr ation: We see the sane thing in an abraded skin.

UFS: In feyr, does the heat incroase the autivity of the thite olood corpuscles, or does it destroy thom and in that way get ridof the rever.

DR. K. Yes; and we have a good illustration of that in a ldeal influmation where thore is an increase of the tompratu e; the ce is heat, redness and pain--those are the three great constituents of local inflamation. We find the white blood corjuscles in that agtion suarail, and excoedingly active pmigrating very radily outside of the vessels, and thoy ar, very activgly engaged in phagocytosis, and evorything else they are capable of.

Now the tomperature is knowr to rise as gigh as fifteen degreas above the normal in some conditions of discase, and an over higher tenperature has bee noticed in sorae fox eases just before death, but when the toperature rises over ten degrees, the pationt very seldon recovers urlessth elevation of tengerature is due to some nervous disorder.

Now in fever the functions of the heat rejulating centers are so greatly disturbed that influeneas which ix un ar norasl conditions would be radily compon ated for create, a very freat disturbace in fever The heat equlating centig's become vory susceptible in cases of fover to disturbins influences; in other words the body is brovelt somewhat into the eondition of a cold looded animal, in fover. We know in the case of tia cold blooded animal histempature is raity by the temperatiare of the surr dunding a dium. Take for instance the terperature of the rog, and it is generally sut little higher than that of the air or water by which it is surrounded, provided that the temperatur? of the air or water is not much different toon its ordinary tgap ature. For instance, if the te perature of the water is at freoxing, the tempera ture of the frog in the itatir should be to or thre degrees sbove fre n-eezing-- just a little above. Then if you raise the thqerature considorably above the ordinary temperature in which the aninal lives, then the temp arature of the animal will be just a little below--but only a little. Thereas in man there is a vide difference which does not vary in that ay. But in a condition of fever we find a differert state of things. we find that the body id susceptible. The elevation of the temperaturs in the room will give us an elevation of the temperature of the pationt, and aplications lax of measures for the ceduction of the temp or ature are much more effective in the fever patient than in the healthy individual. That is a very impor ant and practical thine to beamia ared. Ut usea to five me trouble, until I learned that fact.

I said, "A boy gons in swiming in vator at a tecugrature of 70", and he does not get his tenperature lowered two or thres degress, and why should it lower the tempatur of the fever patient? " And I did not have as wuch faith in vator as. I ought to hava had, as a neans of lowering tamp arature, because thon I made experiments u, on ay olf I could not see that the e was any great modilication of teaperature either above or bev noraad --I mea n by such aplications as wo use in treating the fover patient, because it is possible to educs the teperature of the norial am by a severd application, or to raise the tempa ature. But in foyor the patient is brought more nearly into the cost dition of the cold blooded animal, so that the heat reculating centers are mo e easily disturbed anc inrluenced in one or the other direction. This must be remerabered for two reasons--first, that we ayy have faith in those measures of treatment whilimight seam to be inergicient, Which would not effect the tempratasoof the he ithy individual, but that $a \cdots e$ effective alarscasetixxx in recucing the teng orature in fevor and we must r member also that since we find it possible in fever to Iovar the temperature too much, and lower the temporature more than it is safe and proper that it should be lowered, that it may result in danage beins one. In fever, in other words, there is a disablement of the heat resulding centers ---a disablement and crippling of the heat regula inc conters in such a ma nor that the ceneration and elimination of heat are not properly con rolled. There is a marked loss of resistance because of this thermegenetic disturbance,--both of the centes whici tend to depression of temprature, and those which produce an olevation of the toaparatuce. In both ways there is a marked loss of the pover of control.

Now $3 s 0$ what takes place in the attempt to regulate the temperature
of the body: We have the automatic thernogenetic centera in the spinal cord, we have thermogenic tissues and wo hve heat reculting centers: and we have not only generation of heat, but we have eliaination-we have two processes to be rogulated. But we have two centers to do this work of regulation--the inhibitory and the acceleratory centers, acting u.on the automatic centers of the qain, and these regulating cett" s do somethifuore than control the automatic canters of the cord. The $x x$ acegleratory centers--for exanje the heat aec leratory center, s sends an in stimulus to the automatic centors and causes them to produce more heat, and at the s an time it acts uon other structiares and functia of the body and causes them to conserve the heat and chect he at elimingtion. These hat egulatini centors inthe wain are so small that it has begn difficult to locate them, and yet they have cont rol of the entire body in the most wonderful way. The hoat regulating conters not onl increase the heat production, but at the same tine check the heat elimination from the body by the contraction of the surface ensels throushont the entire bodyif and if the exposure to cold is considergole, so that there is a very $\mathrm{lar}_{\mathrm{f}} \mathrm{a}$ loss of heat, a large tendency to vary from the normal standard, then all the muscles are set to work. Think what a tremendous control it has over the muscles; in shivering every mus cle of the body werks lard. I remember when I used to have the qgue, thirty vears or more agon..I remenber hov tired I used to be from shaking; after a far hours of shaking I feft as though I hd been working hard all day, becau e every muscle had beat workinc, and working hard. You not only get tired and thovoughy disgusted with the disoase, but you get tired out from the exercise. Now this is a wonderful control that these centers have when they are abla to control every blood vessel of the s in and every muscle of the body at the sane time.

And so it is with the heat acceleratory centers in tise of ain. They not only lessen the activity of the automatic centers of the cord, but at the sane time lessen heat e inination, cause dilitation of tiag bleo vessels of the s in, and stiniatg every one of the perspiratory glands of the skin to activity. See what a cortrol this is: These little ducts, the perspiratory glan s, if spread over a level surface would cover el ve thou and square f et, and if arranged end to end would form a chain several miles in length-and bre this center has control over all this vast agchanism. Thus e have heat elimination increased at thesame time that heat production is desreased. It is important to renersbar this.

Now her is a inte esting fact which I hve aleady alluded to: That dramerm temperatu* to ds far more to causo a ris9 of temperature with one in a febrile condition than when on is in health, because the condition of the patient is more like that of the cold bloodod animal, Xaxe in warm water: its tomperature will rise fifteen to twonty decraes high or than the noral. Take the terporature of a froc and then put it in water that $i z$ forty d ecrees warmor, and see hov r ap idly its temperature will rise. The sane is true of all classes of cold blooded animals. The warm atmosphere tends far more xaximxarsan in disease that in health to cause a rise of temperature both by increasirc heat production and decreasing heat elimination.

Now how does the vara atmosphere decerase the heat elimination? By radiation. And how does it increase heat production? By adtinc as a vital stimulus. There is are lex action by winch the heat is sent to the surface of the body, thus dereaseng the hat elimin tion and in creasing heat roduction.

QUES: "ould not that hold true to a certain extent, and when we
gerspire have a tocdenc: to cecrease?
Ans. Te were only speaking of heat production. The heat production might be increased and the heat elimingtion be inereased out of groportion to it. This rests roon experimertal racts. An atmospheric tomperature ofabou* $60^{\prime \prime} \mathrm{F}_{;}$, terds to incres e hat production ard at a temp rature of 104 F . hast roduction is ircreased three tiaes more than the noraal. That mears ar increase in the bodily temporature. It is of the utmost iraportance to remeaber his in dialing with fev r cuses We ofter find nurses no lectinf the tenperature of the room, and allowing it to rise and the gatient was accordircly having a teraperature of three or four or five a the result ofthis increased heat production. Very often a chil bacomes hot a d fevorish simply becquse the temperature of the room is too high. Babies very ofton get into a febrile condition becsuse of the abnormal temporature. Vou know that in x hot weather Etenexphace babias are very apt to have a rise of temperature becquse of the continued high temperature aroud them, hence the importance of groper regultion of the tamperature in fever cases. A cold atmosphere also increases heat production, but 1 ess than in haalth. Thut is, if the tompergture a is below 60^{n} it also has a tendency to produce heatproduction. 60" then, is the neutral point as regards heat production. What is the neutral point for the skin? $92-6^{\prime \prime}$. The neutral point of the body, then, is $92-6$ ", but the neutral air is 60". That is the temperature we always prescribe for a fever ptient. In Fngland the temperature of a room is never allowed to gat beyond 60 ", ad in the hospitals it is never allowed to rise bgyond that if it is possible to help it, ar: in the living roons in Englard it is not allowed to rise above 60". In the bathroons of vienna the patients sit arounc after the bath with linen shegts wrapped around them, at a temperature of 60", and

I was sur.rised, myself, to find that I va not chiliy. I had bean through a process of soaking in the hot water tanks and shovering with cold vator, and vigorous rubbing, and co ong senmed to be uncoufortable at all. They at about witl! line sheots wraped about them, fith a secore or two of men waitirg for the barber, or the ohiropodist, ete., and no one semod to be uncomfortable. We siaply had Chinese slipers o n our feet. But is over hape in Angrica that the roons are kept so hot. In Purozear courtries they cannot afford to waste the fuel so. How is it in Turkey?

Avs. The bthrooms ars very hot. They have no themometors in the livinc roons, ad the torparatu θ is very irregular.

But it is in macland wore pains is take: to reculate the teparature of the room, ard those pgople aake a groat complaint about or hot rooms over here in America. let us remenber, then, that the neutral point of air is 60": A tomparature below that incroases heat production and a temperature above that produces heat production. of course a difference of five or six degrees would not have very much ef ect. At a temperature of $104^{\prime \prime}$ tie proportjon is increased to three times the noraal.

DR. PAUL ON: -.Just as soon as we get the bath rooms below 80 ", the patients complain about it. Is it because the people ars used to these hich temperatures? If we should put our bath rooms down to 70 " or 65" I co not think we should be sble to get the astients to take troatmont that day.

Alls. The people of America are used to a hicher temp orature. But I do not think thit our b'athrooms should be above 75"--not above 76".

We have tha patients contirually complainirg about aki eg cold in the bathroom. They do not take cold in the bathroom--they take cold artor they come out of the bathroom. Nov let us seo the reasons:

When the temgerature of the atr raachas about 104 one begins to parspire. Now when the skin is wars and moist ard pers firirg, how such is heat olimiration increasod? To three times its normsl a ount. The temperature is maintained at the noraal, --and that is one reason we now that it produetion produc s heat nximinstianke that anount, a because the teaganture would rapidly fall unless it was kept p. Wh exporimentation shovs us that it inereases heat elimination to thres times the nor ala oun, and of crurse heat production is kept up all the time. So wile the elavation of tomp apature in a patientes roon night produce increased heat production, this might be compersated for y increased hat elimin+tion. But supjose we have a fover pationt, whose skin does not pers,ire,... the 3 :in is advays dry and never moist-- then if we have heat produetion have no compensating heat olimingtion, and hre we must rave a rise of teignorature.

Exercise, eitiner muscular or mental--eve 30 s licht exercise is sitting up in bed and conversin: with a friend may in the case of a fever pationt cause a fory pronouncod rise of tomparature, and not on y in the fever pationt but in the convalescent from fever, ahd a person who has just ecovered from a fover. I have known them to be up for half an hour, and walk across the roon, and 0 baek to b ol and hve a relase. Sitbing up in b or ta king may cause a decided rise of teraperature in the fever patient. We think that this is such a slight exereise that it will not o any harm, but it is because of this lack of activity of the heat regulating centors. Anc alth uch the body is at eost in bod there is usua a ceeat activity of tho thernozenetic tissues in connection ith the muscies. The prominent fature in fev or is increased heat production. For each degree C.,--1.3 F., el vvation of temperatur thei θ is an incceased heat production of 6,5 , according to Liebermeister. Tt is vorth while to remanb or that: For overy degree Centigrade the
the patient.s teaperature risesthere is an increased lieat produc:ion, producing that, elevation of temperature, of 6%. I have praparad a table based upon this fact, in Farenheit degrees. Starting at 99, the normal teraperature, at

> 100 the increase would be 4.6%. 101

102

$$
11.3
$$

In other wor is, for every decree Parerheit elevation of temperature there will be 3 1-3, hatax incerased of heat jroduction above the noralal Whan we get up tol07" the increase of heat roduction is $27 \%-{ }^{\prime \prime}$ the patien is producing 2% more heat than he ouglt to.

DR. PAULSON: If there were 10 , heat elimination this would be much greater?

ATS. Yes, under ordiary conditions of fever. In case of sweating fever the heat production is inceased very much more than that. Heat dissipation is generally increased in fever, but in th s proportion than the heat producsion, so xamoxxkwer that in this way $>$ <दिe may have qu elevation of tergperature. It is quite important for us to know what fever is before we undertake to deal with it.

I thought I would sive you something that was not given in Osler. I see that he doesn't say a word about what fever is so that you see that by simply studging the textbook you will simply learn by rote a fev things that you ought to know, but that is not the way to practice modicine. You want to knov the nature of the phenomena, so that you may be able to deal with it intelligently.

No. lat us notice in hoz iany ways ve ay have tia temperature of the gtient disturbed: In the first place we asy have heat production incrased, heat elimination reatining normal.
second, e axy have heat eliniation decreased, heat production remaining noraal.

Third we ray have the heat production and hat elimination both ancreased, but the heat production increased more than heat elinination. Fourth, we asy have heat production and heat elinination both decreased, but tha heat elimination decreased more than the heat production. These four metiods will produce a rise of temperature. The rise of temperature is due simply to the iisturbance of the balance betweon he at production and heat elimination. Then you see fever is simply đue to relative conditions, not a absolute conditions, but the relative condition of the h at production and the hast elimination.

Now to may have heat production increased and bat elimination decreased, and we axy also have heat elimination increased moce that the heat production is increased, and that vould cause a fall of tenperature. We may have heat elimination illecreased and heat production increased, which would produce an exaçeration of the effects of increased lat production ithout elimination. We ingy have all of these cominations to produce a change of temperature, and we may have the converse of that. Increased heat production with decreased heat elimination vill cause the greatest gossible rise of temperature. We have that, occasionalz, infever--in a rise of temperature there is increased heat production and ciecrease of elinination.

Now it is not alvays easy to know rou the general symptoms which of these symptoms prevail, but there ar= methods by hich we can find out, but which we will take up at another time. When the s in is red and moist hat glimination is increased tireg times its normal anount. In

certain febrile conditions the riseof tempersture is einferly due to

LACTURE TO MEDICAI STUDBINS. Oet . 31 '98.
 FEVERS. J. H. Kellogs, M. D.

------..---
A study of this efiart will ahke the subj ct elearer to you: ("Hip "hat production, HR heat elimination.) trzeprature decreasid.

I SRPRRATURE INCREASED.
$\mathrm{HP}+\mathrm{HE}=$
$\mathrm{HP}+\mathrm{HB}-$
$\mathrm{H}=\mathrm{HR}$ -
H? + HE

QU 3. If a patient's tomperature had got down to 94-5", and if if heat production wers below normal and heat elimination were below noraal, the temperature rould remain the sana, would it not?

ANS. The body establishes a certain standard, and maintains an equilibriua at that standard, and it might be 96-6", while in a cold blooded animl thare is a changing of the tomperature caused by a change in tha temperature of the air or water, which is changing all the tine. A patient vith a temperature of 102" or 1 of" serms to establish that standard--that is not a normal standard, howover. In order to maintain that standard nature must keep p an in reased heat production or must maintair a decrased heat elimination, becsuse the surface of the body is adapted to the radiat on or heat at such a rate that if the heat roduction is riht for one part of the body, the slin will throw
off heat undor ordinary conditions at tha sum rate at which it is groCuced. So the lower standard must be an abnoraal standard..

We have found out the ditferent conditions under whivh we may have the temperature disturbed by both an elevation of terpe ature and a diminution of temprature. How in how many different ways ayy we have this disturbance of the noraal equilibrius, broduced? (In three ways.) 3tate what they are.

MIS WhITR: We have nervous expression, toxins and difference in the temperature of the blood..

DR. KRLIOGG: Hov ea we Iind whether a person has an elevaticn on temperature in con equence of increased heat production or in consequence of diminished heat elimination $\mathbb{F} \boldsymbol{c}$ an penerally ascertain that by the condition of the patient's skin. You remember e le arr d testeray if a person's kin is rod or moist hat elimination has inereased to three times the normal. So whenever we find a patient's skin red andx moist we knov that there must an increased rare of heat production, becqus? it would be impossible for the body tomporature to be kept at tho nornal point under such conditions. If we Iind the patient with a temperature above noragl, and at the same time find his heat eliminstion increased 300 , we know as a matter or natural inference withow: further decionstration that there is at increased heat production of at least thren times the normal amount. If his temprature is above normal and his elimination is increased, above the horal, and still his temperature is retained at the normal point or above it, we now that his heat production is kopping up with his heat elimingtion, othwrwise his te prature would raidly fall. This may be illustrated b a bottle of hot vater. The intensity of the fire must be maintained equal to the intensity of the heat elimination. ...e know also by the objective sympoms hich observe in a patient--iI we ind his temperature qbove
the nomal we krow that his heat production is increased, and there must be in reased heat eliminttion.

Now we will make a littie computation ard see what this means.
Here is a case--ie the vaporation of water from the surface ofichaxhacky an enormous amont of h at is absorbed because it is recdered I at nt How many units of hes does it require to convert spound of water into a pound of steam--how mony hast units are rendered latent by boilin to stoam? (700.) Over 900. Then if wo had the amount of hest necessary to raise wat or $u_{\text {. }}$ to the ov aporating point, than ve should tind that there is still more Itent heat, and $w s$ add the two, and it is practically a thou sand heat units--sometimes more and sometimes less, but practically a thousand heat units--pound-parerheit urits, because we have to fiegl ith water in pouncls. I qlways reduce it to kilocravis and lilogra loat units in writing for a paper. Now hareis the sltin throwinc ofr water all the time-about ho much wator is avaporated per hour, ordinarily? (A pound and a half a dayet- From an ounce to an ounc and a half por hour--ateragire about an ounce. To what degree could that be increased in a profuse perspiration? (Thros times.) more that that--it could be in oreased fifty to sixty times; it could be normously incroased. Nov int us seo what this a ounts to--suppose it could be increased only to eight ounces ir a fover patient sweating fairly, mode ately--the r sult of the removal of eight ounces of waler alone ould be tive hundred heat units--that is half a pound of weter requires five hondrad hat units to remow it in hour. Now in the eae case of a person weighing 160 pounds what would the idecrease of temperg ture be ir an hour-how man: heat units would he lose per pound if he loses five hundrad heat units in an hour? (Thron heat units par pound.)

Hoy much would his temperature be'roduced then? (Three degrees.) Yes. No suppose we consider the patient as a bottle of water. Suppose this is a bottle of water, and the te perature of the water is 103F. Now we put a cloth arouse d the bottle, allying heat, an making the water evaporate from that doth st such a rate that if the bottle held 160 pounds of water it would lose five hundred heat units in an hour or in any length of time-how many h at units would that be, per pound (Three.) Yes, because 160 is contained in five hunt rod about theron times. Now if a pound of rater if this bottle lost thereon hat units how much would the whole bottle of water lose--hov me would the hole decrees? 160 pounds lose if each pound of water loses throxprakis? (Three.) Yes. The sam t ire is true of the patient weighing 160 pounds, proviced there was no increase of heat production. Suppose a patient has a tempe nature of 103" and 9 make him sweat at the rate of eight ounces an hour--that i: moderate sweating--the evacora tion of the water would remove rom his body enough heat to reduce the Whole temperature of his body then degrees in an hour--in other words the temperature would fall to 100 ". In an ague patient the temperature EOe wight down with wonderful ra,idity,-- and this accounts for it-there is sufficient power in sweating moderately to reduce the temperatire st the rate of three degrees in an hour. In sweating his tomperaturo would "all rapidly. No what would pr vent his temperature from getting too low? Increased h at production. So the e is a good ra z or why when the patient takes a cold bath or makes a cold
a.jication to the skin there should be a reflex influence by which heat production is increased and heat elimin sion is diminish od, otherwise we might refrigerate the patient so that his vital forces would be weakened a) a paralyzed. It is important to know the power that there is in refric orative measures, and in simple sweating.

Now-suppose the heat production in cases of this kind was tuat double the noragl mount,--sup,ose the pationt were makine h at with twice the noralal raidity--hov fast is that--hov m my heat units c an one lake in a minute at the ordinary rate? (4 out coo ealories.) The hoat procuction is at such a rate as to ratide the tmperature of 7 1-2 pounds of water 1" por pirute. Nw let me tell you how to find the so ou can alvayscome bek to the orifinal effect--how many heat units are produco in twentyefour hours ordinarily (Somethinc, like three million of eslories.) It is pretty rearly thr millionse How much oulc that be per hour? Divicing by twecty-four we heve 118866 small calories. Now ve will get this into pouncofarenheit --it is 1.6 kilogram-calories. How many pounds does it take to make a kilogramp $\quad 2.2$ pounds. (Blackboard calculation.) Dividinc by ninafifths ve have 3.96. Then multiplying by 1.6 we have 6.3 . If we had used the $2,8000,000$ it ould have civen us 7.5 -- for convenience we will eall it 7 . The figures are not exact, but we will say that there are seven pounds of water vaporate in a minute- seven pound-fparonheit heat units are procluced by the body per mirute. If that is the case how many can be produced in an hour? 420 . When we eva, orate eicht ounces of water, it produces how many hat units? 500 heat units. Now that 500 he at units hac to be taken aw y from the body-nov the body is making heat at the ordin ry rate--it is goin ala at the ordiary rate, and that woulc be about how much? 420 m at inits in an hour. How many heat units would we have left of the 500 ? 80. So the body has lost eighty eat units more. Now the weight of the body is $16 \mathbf{0}$ pauz pounds, and ve have aighty heat units lost from the 160 pounds, and the fall of one-half a degree in temperature. We vill suppo e that our heat elimination is doubled, so that the patient is evaporating sixteen ounces of water per hour-- it may be increased to forty or fifty times the ordiary amount--suafose a pound of water eva orated from the skin-
suppose it is a pound and a half-how many heat units would be lost? Thrac times as much--1500. This eqleuition will help you in your professional sork, and also in your work of teaching nurses. The normal heat elimination is about 420 heat units in a: hour . Suppose heat production is doubled-- o would have ar increase of temperature If because of the incresse of heat procuction. The heat elimination is normal and the hoat production is norms wat would that be?
840. Now we have caused a heat loss of firteen hundred hat un its in the same time in which eight hundme nd forty heat units are produced--what would be the result There would be 660 h at units caincd. Now the patient veicis 160 pounds--we will divide to see how guch he temperature woulde lowered. Dividing 660 by 160 we have a fall of $41-8^{\prime \prime}$, so the tempe rature would be $98 \mathbf{7 - 3 \prime}$. This is very practicalit is a tangible thing, and somethirg which yo eq estimate and masure. I have been for sone time trying to finc a way by which we car ascartain more accur tely as to what the condition of the patient is under difierent conditions of heat elimination and heat production. Of course we have h at production and heat elimination, and if we have a patient's temprature we only need to know one thing: If we can know Whethor the atient has diminished lat elimination, from this factor ve can get the other, nowing the teraperature. Now if we find that a patient's temperature is normal--I will illustrate this. (Bl ckboard calculation.) Now we may say that heat elimihation and heat production are on the two ends of a teeter-here is the fulcrum or the balance. s^{0} long is these two are in perfect balance the body terperature is 98.5 -so long as these two are balanced --ir we find the heat procuction up, and the temperature 0 the body remaininc the sane, we know that heat

Because, the tomparature of the body rapresents the balatee, you see; the body teaprature te:1s us thit there is a balance, and if it tells us that this balance is 93.6 that means that the scales are exactly balanced But we could not tell from the body teap rature alone whather heat production is increased or diminished, or whether heat elimination is increased or diminished--there is no possible maans of telling that by taing the temperature. If the temporature is 99.6 it sioply means that the balarce is maintained. But wecar say this-we can tell wen the temporature is normal, and knowing that we know that if the he at production is normal that the heat elimin tion must be normal also-in other words we know that if HP is equal and the temp orature is 93.6 , HE will be equal a lso.. No sup ose we find the teporature lon.if wo find the toaporature $100^{\prime \prime}$, and find that the patient is sweatire, so thit his heat elfmiration is increased, what shall e say, then, about HPP (That it i plus.) Yesso if eno the temgrature of the boriy and $c a b$ ascertain the hat production or the hat elimination, - if ean ascertain the one we can ascortain the other-if we kno the he at eliminstion we can masure the hoat production, because the humar body is a physical body, like the sun, or like a teakettle, or anything else in Which hoat is being produced, and if we can measure the rate at which it is throw off, can tell how quach the hast production armonemen ination- is by knowing the body temp orature.

One method which has occurred to me was to note the rate at which the thermometer reaches its maximum wher aplied to the stin; of course the hotter the skin, the mor rapidly the thermometer would reach the maximum. Place the thermometer uncer the axilla and note the time when the mercury roaches the maximum--that is one way of application. The first thermometer that as over und \boldsymbol{x} for determinine the tempor:ture vas a most ingenious thing--but it was really the same as the thing
that we are talkire bout. I did the saze thing, but it simply indicated the rate of heat elimination. Just a hundred years ago now the doctors in New York city were irterested in the se of water in fevers, but thrmonetes were scarce ard high priced in those days. An ingenious methodxacexx of constructing a thermometer occurred te a doctor ir the bachwoods of Maine where it is difficult to obtain them, and you may find it useful for the samereason. You can easily make a thermometer if you can st a piece of glass tubing of small caliber: Close one end. Nowome farm it somewhat, and dip one end in a little rluid, and inmadiately take it out, and the recult ivill be that as thas
 N if.00 540 uncoulo
 to which the coluan of water rises in his case and compars the results. This may be better than the complicated azchine wich I have here--ho:evor I will explain it. Here is a listle devico which is the sase princigle gs the other. This consists of a bottle in which there is a little vatar in a tubs; it is an air colum-nothing mo co than that tuba after all, and that tube is the best, nevertheless I will tell you about tiis. It is simply a littlo bottle with colored rluic in it and a thbe dipuins down into it. Here is a little chanber full of air, sndx this is a tube full of air, and it commanicates with very sinall chamer, int the top of wich I breathe a very littie--the less the better. Now when I take this in ay hand you seg it at once begins to rise; by hating the air the air dismlaces the water and causes the column of watior to eise into the tube. Now this little chamer has a sor of definite known area, and cortains a certain anount of air, and knowing the exact area of the stin and knowing how many le at anits are being thrown off
from that area of the sicin, and knowing the maxiaun, we can find the loed inflanation. (Marking zero-points.) See hoir delieate this is: I sim,ly breatio into it, and it goes below vary quickly--I blow hot and cold--what eauses that to go below? (Eva, oration.)
guss. Why could you not have hot and cold to the syine by this a.ans?

You could; I have hai an arrargement for bloaing hot and cold-first one and ther the other-but it is not so convenie t. Now I bloz in, first slowly, and then I will blow hrd--first up and then down-What causes that' (The cool air; it draws in the air fro the outside.) Y_{e}, it brings a coluan of air from the outside which is not saturated with moistare; beath is moist and it akes an induction current. (Experimenting.) We must inge sevoral aplications--the inal is to nako an application to sevaral places, and having ascertained the local temparature wo are enabled to find the local inflamation in such cases as abscess forming in the thick auscles of the thigh or in cases of typhoid fevor, inflanmation of the borrels, paritonitis, etc.--it is a new thing. I only laare ad about this a fow weaks ago when I was in washington investigating to see if I could find something new in hydrothergpy. Just twonty years ago this winter I spent three months working in the Iaboratory and also spent sevaril months in Boston and searched the Uerchantile Library in Philadelphia and other places for these prihciptes, and have beon gettins facts. I have found this interesting thing to which I have rofered and I shall give an account of it in ay zork on Myarotharany.

I DCPURES 30 MSICAL SZUDEITS. (No.3.)

FP V FR S.

Suppose analyze a little further the table show ing the different relations between hat production, and hast alinination which would be attended by a rise of temperature, and those in which it ould be attended by a fall of temperature.

Producing Rise of Temperature.
${ }^{2} \mathrm{HP}+$
$3 \mathrm{HP}+$
$3 \mathrm{HP}++$
$4 \mathrm{HP}=$
5 H

Producing pall of Temperature.

Now suppose hast elimination was increased and heat production renal normal, what would be the effect? A fall of te porature. So we could have but one case in viii the he at production grains normal, in which we have a rise of temp rature--by diminished heat elimination. It is possible to have hat elimination minus and host product ion minus also,... that would be normal; but if hest elimination is dec ceased to a greator extent than the heat production is decreased, then there will be a rise of temp orature. If heat elimination and production are diminished equally, the proportion is normal.

Dr. paulsont: That depends upon the first start:
Dr. K. Vie are starting with a coral temperature, and both are decreased at the same rate. The patient is then living on a lover level. When a man is fasting, that havens? The temperature falls a litho below. What tat:9s it drop? Because the hast production cannot k ap up with the heat elimintion, so nature establishes an economical level, and he
lives on thet olane until just a fer houes bofore he dies, and than down it cones. It cones lown beequse the hole thing is sroken down he has burned his own body uy. It is more difficult toxsmaxxoxx for the body to supply fuel from it sel than rom the blood, eongequantexponditure
nature IV it cantot k anp up vish the extravagent a tapuaratureavof 98.6, and, establishas a lover level of one or two degrees below that, and kops that up until, a fov hours before death, wen it breaks forn rayidy.

QU:S. In that case, would it stay at that lower level, or would it continually so down?

DR. K. Sup ose a patient's temprature is 93.6, and his heat production is diminished a little, and the elimination pemains the same,-What hapens to him? (There will be a fall of torporatu:e.)

Well sugjose the heat production is decreased and the heat elimination is decreased proportionately-would there be a fall of to porature? (No, but I vas looking at the otier end of the line, to see how he would come out.) Well, if he kenps right on this lower Ivel, wh v not so right on living? 3upose a poor dyspe ptic comes into the officehe is poor, and thin and pale and he is eating but very little food, yet his tomperatare is rormal-sometinas it is subnoraz in the mor i:g. Here is a patient weighing 200, and we ceduce his weight by working hard so tiat the production of heat is greatly increased--yet here, too, the bemperature is :oraal. The principle that we are trying to consider is just tkxt this, -that the body emp orgture is simply the balance between the he at elimination and heat production, and it is no measure of either heat production or heat elimination and we cannot tell anythine about wat the body is doinc by takinc the temperature.

We must knot elther the ie at production or the heat elimination in accition to the body temarature, in order to find out the other. The body temperature is sin iy a balave established betweon these two thing-heat production and heat elinination.

Dr. PAUL ON: The body al: as about tro and a halt millions of hat units in twenty four hours. Now suppose it did not make as many as thatFould the temperature still be norasizall the ay down?

DR. K. I think I seo your point. It might be so un or cortain conditions, but the man would have tohe put in an atmosphere where the production and elimination would be qqual--if his external surfourdinge are so al usted that the heat production and te heat alimination are equal, the bod tenperature will remain the sene. It is just the sa:e as though a lottie of water was wra eed about witis a eloth, so that the hat cannot escape any fastar than it is genorated, and a little candle vill aaintain the teperature of that bot lo of wator. DR. OSSITMR: I would like to ask, if these conditions vary so in individuals, can we ly down an arbitrary rule avd say that all porsans shall live in the same degree of temperature? If in one operson the heat production should be lower, would it not require a dirferent temperature ?

DR. K. The only way in which we can establish a unifora temp aratup is to constantly change our clothes to suit the variations of the atmosphere, for it is necessary to adapt thezc othing to the surrounding atmosphere. on a sciontiric basis ve must consider the body exposed to an actual temperature, and ignore the clothes, but the clothig comes in, ard a a aust consider the clothing a a factor as vell as the air. Out in Arizona amo z the vuman Indians it would not be nedessary
to take the clothine into consideration, for they clothe ehiefly in dizturting paint out there. Clothing comes in as a factor, and I think
is one of thin great equses of dis ase in eivilization. If we did not hve to wear clothes we should have no xame catarih --we would not have fatarrh of the various orcans--the bonchial cattarh and all thos pulmon ry eatarrhs. We get our unhealthy sins becauseof our clothing, and it seams to be next to impossible to have a healthy skin ath clothing. We have beon brought to that condition where the sicin ha lost the equacity to ragute itself. We want to considor that for a moment. It may som to be a startling statenent for me toxasaza make, that c lothes are unhealthy--that it is unhealthy to wear clothes. I will only call your attontion to the delicate are zige ent that is nececsary for the adjustment of he at reculation, of whi h we get but a slight conc ption from these tables. This is absolutely n ecessary to maintain the norasl temp ature of the body, and in order that this shall tale place, we hive a ondertully interesting and complicated mechanism-a complicated group of if chanisms-- brought together to control those functions. sMax foumxamackaxx This inhibitory thermocenic cen or which acts on the blood whe the tempe ature has a tendency to rise--when the conditions of the body are such as to cause a rise of temperature the inhibitory conter is brought into play, which is brought into getivity by the tengerature of the blood, nervous impressions, or by toxic substances in the blood; and when it is brought into action it controls this complicated nechamism. For instance, here is a person who has become warm-what is the thing of notice? Perspi ation, a quickened pulse, dilitation the blood vessels of tho skin . The respi ato y Elands are numored by the millions, na cover an araa of
 symakxtmxaxitx see what a controll ine pover this center has, yet it. is such a little oit of a speck that it took a very long tome to find it.

Why is the grspiration increased ($3 y$ increased oxidalation.) That is one reason-and to hake in more air to cool off the blooe. The heart is working fastor, and the lungs must kesp up with the heart in order to reliave the concastion and purify theblood, which clogs in the two thousand square font of lungs, and that blood that is spread all over them is cooled, ?artly by evaporation and partly by entact with the cool gir.

Now are the e any othor machanisms broucht into play The aproadinc out of the blood upon the skin brings obout evaparation and resifation of the skin. The kidne:r are excited to activity as vell as the liver, for the carrying off of the toxic substances in the blood. The thirst centor is excited--we drink water to holp cool the blood off. The thole body is aroused and excited, and all its functions are more or influanced
less sxaisest and disturbed by the rise of temperature of even 7 of a degree. A rise of temperature of $\mathbf{~ 7 ~ " ~}^{\prime \prime}$ is enough to cause perspiration. Of course there are a great mary variations between. 1 " and .7", and thare are different decrees of pers,iration before visible persifirs tion begins. Ther are a grast many different degreos between invisible perspi ration and visible pepsifiration--. a great many stops--there is a little inerease a dna little more, and so on, until finally it becomes visible. So that wo can see what a delicate arr ancement there is thome controlling this.

> Now we want to consifer somothing quout the acceleratory conter;
3. d it is in erestinc to note what a mechanisn this center controlke. But there is one thing we should notese with regard to the inhibitery centor, and that is that it controls the automatic thermogenic conters in the spine, Which control the thomozenetic tissues, and thus thoy are able to diminish the a ourt of the combustion that is takin ef place in the thermogenetic tissues.

Now the aceeloratory cer erg stimulate maxazxxytx the automatic centers of thespine, and tius the therogenetic ser tissues are stinulated to ectivity and the qetivit: of the muscles is increased. Another thing the aceeloretor center does is to control the eireulation. When cold is applind to the skin, what happens? It becomes pale. What happens when the skin becomes pale? Contraction of the capillaries Is there arythincelse? Radiation is decreased because there is less blood there. Emexmaxaxxx Nov is thore any other way in wich the heat Ca. got to the surface of the body, than through the blood" ("No.") suppo e have a hot at or bottle wraped up in a blanket--can the heat get through that? ("No.") Can the heat get from that bottle to the surface of th ody in some ray? ("Yes.") It works it way out throub the blanket, and so it is with the body, ...the heat works through the tisss and membranes, manically, as we might say, just as it vould pass throp wood or iron.
of the blood vessels
Now what is the consequance of this contraction, is regards the state of the slin? It becomes a poor conductor. The conducting power of the kin is wonderfully diminishod by the lessening of its blood sup ly. he skin becomes tough and hard--have you over noticod that when giving a beth? When the patient is persiring the skin is sott and pliable, but on the aplication of cold water it becomes hard and clossy, like marble. That is an indication of a changr condition of the stin, -Perapication is decreased, evapor ation is diminished, and the action of the kidneys is increased as a componsating means by which the condition of the blood may be maintained. So you soo the mehanism by which the condition of the skin is regulted is very extensive and nieely adjusted mechanism, and it is a very important mechani m, as well.

Now what do θ do whan ve put on clothes" Ne a sume an artifieial skin, widi has no mever bloodvessels, and wich carnot be nodified except by taking it off or putting it on so wer livin in a low tenperature and the re is a rise of three or four de rees of temperaturs or a lowering, there is o change in the skin, and in this way wo protect the skin so the there is no opportunity for it to exercise its functions The stin is in this way aze one of the best non-conductors we can find, so that its functions are ot eallod into activity. Then again, the skin deteriorates, just the same as he muscle detoriorates--it becomes weak and inactive, -- and just so the slin becomes weat and inactive from lack of exercise.. Now you remenber the Indian on the western plains, with his exposed body and limbs; On a cold wintry day a white man asked an Indian, if he wasn't cold. No, he wasn't cold. The Indian asked "Is whito man's face coldp" "No" Mell, Indian all face." There is nomoce reas on why the legs of the Indian should be cold than that the face of the white man should be cold, and they vere warm for the same reason--that they hd learnd to take care of themselves just the same a the face hed--they hd the ability to take care of thenselves, and the skin of the less was as active as the skin of the face. Sometimes we soo people with roses on their cheoks-nnot always, but sonetimes we see then. One of my little rexica boys said to me the other day, "I wish I had roses in my choeks, like Helona;" and I felt quite sorry for the little fellow because he could not have them. Now the indian does not have any roses that we can see, but his whole skin is in that active vaseular condition --the skin of the limbs and arms, just as well as the skin of the face.

DR. PAULSON:--I would like to ask, concorning the comparitive vascularity, tf nature has, throughout these suecessive generation s, developed a more extensive vascularity of the face than of any other purt of the body.

DR. K. Yes . "earing clothing has ceteriorated the skin, gut it is possible to regain its functions to a considerable degree, but not to so great an extent as in the face, bucause its anatomical structure is different. It is the result of changes talirc place perhaps through degencrations--but you see a person by using his haplis just as he does his face will cet thea just a strong to resist cold. and would not have
to wear gloves and mittens any more than he vould have to wear a mask for his face. I ke would be just as likely to freeze ay face as my han s I hive been compelled by my circumstances to be a sort of a hothouse plant. I was ricinc through a blizzard one day to see a patient-the day was particularly severe, and I hadmy fur gloves on, and my fur collar around ny neck, and I was pulline my head down furthor and further inder the fur as I was more exposed to thecold, when I sag a man come riding along on top of a great bic wacon load of wood, and I could hrdly believe my eyes when I saw tht he ha no overcoat, nothing on his hands, nothing about his acexox or his ears,--and yet he seemed as happy as anybody needs to be, and I stopped and asked him to stop. I thought perhaps his havds were hold and I thought perhaps I would give him my eloves. I asked him if his ha nds were cold and he said "No, my hands are never cold--I never xame eloves in ny life." "Do you not wear on oveccoat?" "No, it is not realthy to war an overcoat-I know botter." This man vas living on the Indian plank as far as he could. I an not sure but that the prglish psople are right about the matter, where they make their little ones run around vith bare legs or 11ttle short stockungs. Vu see them so about in the coldest weather

7ith legs as red as stewed lobsters. Mfy were not blue, but they were red--those childra blu hed clear up to their knees--there were roses on their legs as wall as on their faces because their limbs had acquired the eascularity of a healthy s in.

Now tho hoalthy s in is one whore we find this power of reulation.
Sut when we put on the elothing txxkx it do 3 not have this power of rasulation-it has no n rves, and it cannot be reculted every second, ad every minute , as the voralal skin is, so that the skin is claxed ard weakence still more. warath is confortable. All the arimals seek the sun--it is very comfortable to get into a wara corner --
it breods indolence--and the tendency is to clothe one's self more and more armly until the skin loses al 1 its powers, and the whole sustem is weakenod and rolaxed in consequence. In Mexico wa seo babies rolling about on the cound just as they were born--rolli g around-Getting is to the nud and then runnire off on all fours, just like a monkg of coursdsome of them die--and inded a good many of thea die. It is really a survival of the fittest. But by keoping the weak and rouble alive we are really main concitions which favor race heter oration-so that we cannot expect to be perfectly healthy as long as we remain in this wicked world. So lon as man is no longer clothed in light, he must be clothed in some sort of ar artific ial skin which he cannot control, and he has of necessity to live in an unatural and abnormal state, and he cannot help it.

But here is one thile we can do--wear clothes to the slightest extent ith confort, an take exercise to keop warm. Wo won't save any mongy by this method, for what we save in the clothing we will sacri fice in food, for we will eat allthe more heartily, for that has a
great deal to 0 with the bodily heat. Vou know wien a faraer wants, to keop bic sheap cheaply he drives then in tho barn, ard does not let then have any exercise, and so he coesn't have to give thea so much food. This is a good thirg for the faruer, because he wants to get a big shoop or ox for the butcher. But on the other hand if he were raising oxen for hardihood and enduranee, he woule not let then stand in the barn and be idle: Fe would give them plonty of exercise, even thou they did eat more food. I was down on a stock farm in Kentucky, one of the preatest stock farias in the country, where sone of the best horses in the country have boon raised, which is owned by a con "atate Colonel. I was very u ci interested in lookirg over his fara to 300 that there was not a single barn door. The stables were arranged in lone rows, in the forn of a square, and they were absolutely open on the hask side, so that the horses wore never indoors. I a kod him wh he reared his horges in that way, for the tomperature gets pret $\%$ low there sometimeseit gets cown in the reighborhood of zero, and he said ve raise thos horses in th t way so that thay will have grast po ors of endur nee and be hardy. A race horse must be possessed of freater powss of endurance and hardihood than th t of any ordinary animat. The race horse must be ossessed of two or thr e times the erdurance of the average horse, and he must be trained to this by ard vork. Then
a ain, you knov the ponies from the vestorn plains are possessed of ereat erduance: A man can ride one of those ponies th a hundred a lles a day for a weok at a stretch, and they seem to hink nothing of it., while twooor three days of that kind of riding would kill one of our horses. Why is this? It is because of their tramendous endurance. These horses are exposed ard they often have to dic. their orass or rots for fod out of the crozen snow, -and thoy are hrdy. So by the
vory protection which we give ourcelves we diminich our vital activtake

So by the very conforts of life tnat we consider necessary we weaken our bodies and bring orselv s into the endition ofohothouse gints and of cordi d babies who have very little andurance. So dne of the things ie can do is to elothe as lightly as confort will allow. Be carefil that or roois are not too waniz. If the teperatuce be kept at 60", it wial be far bett, 5 than at 70 or 75 . Atotieer thing of pararabunt importance is to do forks of supererogation. Ting savase does not need to take a bath overy day, because he takes a cold air bath every day, and hescours the dirt off as he zoes theough the bushes by rubing against thetwies a d limbs. There is another thing that we have lear ed, and that is thatit isnot necessary to clean tie middie ear. It is not necessary to ha'e an ear syoon and toxtixit up the ed of a taxakxac towel and dig it into the ear--there has beon a great fell of injury don in that way. I rement r suffering a great deal of excruciating torture by my mother's investigating my ears to theif extreme depths two or threetimes a day. It gave me many an eqrache, that I did not know how to account for. The reason for this is that thare is an excration in the ear that expoliates and it comes fom uncernesth, and Wien it peels off it carries all the dirt away with it. The cells become flattened and $r y$, and by and by they die upon thesarface, and as these fall off they carcy off evarythen that is on the surface Withtiem. So that the currying and rubing and grooming is al 1 the body n ods for cleanliness. Wator is not an absolute nocessity for cleanliness, becuae the body knovs hov to take care of its $1 f$. The natives of Africa rub themselv s with oil. The stomach ordinarily kegps itself perfectly clean. Tle e is not the smallostparticle or fracment of food to be found aftor a in al in the ordiary stomach; itxknex has the ability to care for itself. The sa:ne is true in the cectum; the very least iittle bit of lecal mattor is expelled from t e bovels-and so it
is with the oye and the nostrils--the nose is hept absolutely aloan. Natur is a splendid housekesper, and k eps the whols bo $d y$ clean and pure. But untr the conditions in which we live this exfolitting process is interfered with by the wearing of clothing. When we wear showe, you know if he coesn't clean his faot three orfour times a week what a terribly foul condition they get isto. our shoes are perfectly inpervious and so these atters cannot escape. Solae of us are fogring a folt shoe which partly obviates this. Dr. pearsons noticed it the other day, a pronounced it quita sensible. Now re ses what a tercible condition the feet get into becausa of the impervious e varings which we zear over them-now the rest of the body jets iuto Just the sane condition, only not quite so bad, because of t e
evaporation, theattrition of air, and the contact of bodi ss which scours off the e foliating epidermis. becau our cathing x events it. We must maxixx do vorks of supererogation. In other words, we muat take a daily bath--not simply for the purpose of cleanliness, but partiy for the sake of the rubbins which accompanies the ath and for the vasomo for gymnastics witich we give the skin by chilling it, for then the raust come a reaction, and we give the skin the sane sor of an experience that the Indian rocoives when he springs out of his smoky hut into the open air-but he doesn't shityer-there is a reaction and this reaction is aintained continually.
You have seon the patient oo out from the room with the "ace pale, and
Ensures Yor ain aud and En mack with rosk cheeks--
reaction in the face, and the face maintains that reaction. If one wers a swage he could $\mathrm{g} O$ out with the least chothing which odesty demanded and come back with his wholeskin rosy--with a rosiness of his who te body, and in a perfectly healting condition.
(Description of Calorimeter.)

I TOTUES TO HFDICAL STUDENTS. (No. S.)

FEVERS.

I think we will take upthis nownire the conditions un or wich fevers occur. It is vary importart to know that a rise of tompersture occurs indar a er at many fifferert con itions asch one of witich aly ordinarily be callad a fever, and each of these different conditions require different aplications of the remedial masures . Porhaps we might say that the simplest cause of a fever or disturbance or the bodily temperature ip heat. ...e sometimes find a person who has beel: expesed to extreme heat of the sun, and those tanperature has sucidenly risen, and he is sufforing rrom an a ack or sunstrokeWhat is the concition of that person? There is but little elimintion; the skin is usually hot and dry and rad. Sometimos, hovever, the stin is pale and cold ane clamy--it any be ale and drylinstead of hot and dry. It is we I to notice these conditions in which the applications wouls be differert. You know with sunstroke there is always a rise of tenparature. Noy what is the reason? (It is due to disturbance of the heat regulating functions.) Now suppose a person should have his feet exposed to the sun, and should have a tremenduously strone sur-heat applied bo them-woul he have sumstroke? No. Sppo e vepy part of his body, with the exception of his head, which was carefully packed in ice, was exposed to the powerf lays of the sun-would he have sunstroke? (No.) But su poserill the rest of his body was protected from ties s n's heat but his head - wuld he be likely to have sunstrokel (Yes.) It seens then that sunstroke is lar ely, but no quite abso-
solutely, due to the effect of the d irect r ays of the sun u on the brain. Then a protection for the head agair the sun's rays is tho best protection gain t sunstroke, excejt a sober temperate life Here in this room you see t e s n^{\prime} s rays passing through this window on to the wall. I hold my hand on the wall in thesunshine, and it feels wari. Shen I put my hand on the glass, and it feeis cold. It is possible for the glass to be so c old on a cold day that a dro p of water will freeze upon it, and vet the sun's ravs are passing t rouch and varming the wall beycnd. Here on the beard wire the oun has not been shininc, and where it has bogn shinire but passed away, it is cool, and the glass is C ool, but whare the rays strike the wa 11 it is varal. What is the reason that the sun's rays pass through theglass without war ine it? The glass is transparent to thesun's ravs, or translucert. Now there is the s ame thing t aies place then the sun's ravs strike the scalp. You see when the rays pass through that they do not war but that they onlywarm whenthoy are interrupted. so the sun when it strikes the head does not have to stop and warm the hair and the scalp and the bone andthe duramater etc., but the sun's ras go r ight through into the brain cells just as thay though this glass, and the light is then converted into heat, The sunlight may shine into this room and pass tight through the room, and not heat the room at all-unless it strikes the walls, when it warms the just as it warmsjthis bleckboard. It is onlyrwhen these roys arm resistedxxoxxax of onorey are pasisted thratthxx that they become heat. When an electric current iasses through a irn, that wire is not heated, only $s 0$ far as it offers resistance. Wenver a conducting body of any sort offers resistance to the passace of the electric current, then the electricity is coneerted into hoat. So the sunli ght passs throuch the hair anc the scalp--

of course there is some littleresistance there, and some little heat,-and then it passes into the brain cells and there the heat is formed and these centers are af ected and disturbed by thedrackect action of the sun's rays. That is sunstroke. But we have also another form-meat-stroke-nlass blowers and non exposed to very high temperatures are affected by the same condit ion.
ordinarily these conditions are relieved by what means? (By clothing.) Well, sometimes the nothing is more of an encumbrance than a protaction. (By perspiration.))By evaporation from the surface. The perpiration keeps the to mature dow and cools him off. When in this condition ho has a dry skin, consequently the temprature coesup, and this heat regulating enters are disturb d. The hat production goons on, and the heat is a cumulating, and finally a temperature is reached that may badangerous to life.

So one cause of the r is of temperature of sunstroke? is exposure of the ha to t h at of the sun.
(QUES. X Is there not another form ingat stroke?)
We nartioned that briefly when we spoice of the case where there is pallor instead of a redness of the skin. Union the influence of this ab normal teperature there is a toxic procured in the body which produces the p culiar phenomena which w he recognized..

We ought ald to member that hot eth vile al produce a rise of temp stature, and that we may bring the patient almost into a condition of h at stroke by the wrong application of a hot ath--whetier in a Turkish bath or in a sweating pack or in an electric light bath, or if a pationt has a fever, sutemexxx or is threaten fth a fever, and wo put him in a hot bath, or in a hot pack, and surrounded him by hot bags op packs--prod ivied he doesn't sweat-and this is of especially impotence In the case of the fever patients, for I have sown of cases of fever
where the doctors have erqloyed the hot ath or Turkish bth to break up the fever and as the patient did not sweat, he was kept there for on hour or two to make him swat, and the temarature reachod alarming propottions. And we must remember that in these eases of fever whe there is no sweating, and we place them in the hot bth, if the atlont does not sweat very guickly the ho at aust be ithdrawn, for the patient in the febrile state has alroady lost his pover to respond to some legros, and the heat len ulting ceners sre already disturbed * and have lost their contolover the cente s by which the temgr ture of the body is nulsted, and now if w ereate a ve y emat distur bance by the qpelication o antific ial hat to the skin when the alinination is alragdy unable to kerp up with the hat exiximxxx: proCuction, you see ve ay do the patient a very creat in jury, by encour agine a rise of temp rature to wery dangerous iegroe. This is true of the Turkish byth, the eloctric lieht bath etc., an this is particiza Iy true of the electric licht ath, for I kow of no other bth in which the int rior of the body is so uickly hoated a in the electric light
bath. t We have knov the yemperature to rise rrom the normal to $1031-2$ dogrens in te minutes. You 500 in the hot bath, the hot water bath especially, theraxix it is practically impossible for the atient to eliminate h at, as he is surroun od by a hot modium, and the only possible chance or elídination is throun the lungs and the face which is exposed to the cooler temperature of the surroundinc air. The body being completely inmersed in the hot water, and in such a be th the tom perature may rise very rapidly.

Dr. Pauison:-often it i nec ssary to give a thor uch-goine hot troatmenty and often that mears a prolonced hot treatment, and in these cases thatis an weul thing.

Dr. K. It is the danger of that which I an trying to impress upon the class now. especially in cases of fever. The idea is, if they can on ly make the patient sweat. We must bear in nind that the sweating function may be entirely beyod control. In the rormal man, if you apply hest you can nake him sveat, and themere heat you apply the more you can na'e him swat. But i-the fever patiert whose skin is hot and dry, and whose temp ature is already 103, the sweating mechanism is already disturbed, and he camot swest. If the sweating inechanism were active, he would alresdy be swesting. So I hase found it practically impossible, in m: experionce, to make a peve pitient sweat by means of the application of heat. When the fever is at its heicht, and it is possibl to make the pq ient sweat by the mere applicqtief of heat, he hs practically reached the turninc oint of his disease, and convaleseence has already begun. You lave probably noticed this Iready in casesin hich you have nursod fever patients --hov much more easily controlpd the femperature was when a little perspiration appeared, and hov the fever ra idly yielded to treatment. That is ome of the best possuble sicns in continued fevcer-kyou know your patient is on the roud to recovary-unless it is the sweating of collagse, which sometimes occurs. The niflt sweat is the sweat of collapse; It is an evidence of exhaustion and we akness which comes along during his convalescence. there are some forms of fever in wich the sweating is a com on occtrence, as in intoral tent fever (?) or re ittent iever, but in the case of the continuous fev r it shows that the heicht of the fever is past, and the patient is toroughly rolieved, but in the remit ent frover it is only toraporarily relieved. But we know in the contiruous fevar that the kriximxa\& miveximxerxixxxxx fever has abatod and the whole disnase process is improved-not onl for an hour or two,
but until recovery is rally established.
"ov another word upin this point: It is a dance rous thing to aply heat in cases of fover, and if you d o apply h at it zust be vatched With the groatest care, and this is especially true of the Turkish and electric licht bath, the hot blanket pack, fomentations to the spine hot onema, x a 11 kinds of hot applications. I remomber of aving had an experi nce of this kind mysolf when I was a boy--I had an attack of malarial fover and a dry pack vas given me to b ank u the chill. An old lady recommended a "corn sweat," and so my mother geve it to me. A "corn sweat" consists ofears ofcorn boiled in ot water, wrapped up in clothes, and packed about thespine and limbs, and this ras to be applied at the time $\boldsymbol{x z}$ the chill was axp acted--that is where they get the idea of the ofy pack for breaki g up a chill. I was put into this corn xreat pack, and while I was there Ilell asleep, and while I was asleep the chlll was p actically abated and the fever came on just the 5 ame, and I passed from sleep into cieldrium, and the difforence was rot recognized as my mother found me sleapinc quitely, and was called away ; but hen she came back dhe found me makine. a desparate strugele o get out of that bed and to eet out of the house. In my deldrium I thought that I must make a despe ate struccle for the mastory over that disease, and if I did not succeed in getting out of bed and getting aw from that tyrart I should be an invalid and be sick all my
 could escape from that tyrant that was dominating over ne I would bell right, - and they had a great time, and hac to call in the neichoves to subdue me. I have soonx several cases in thich pationts have been made elirious by keppirc then in the ary pack too long aiting for the chill tampassxamaxy to come, and the chill was mitigated to such a degree that it was not ricognized, and the p tient passed from the lat of the hot
pack--into the heat of the fever, and so he adds the two or three degrees of the hot pack to the ther or three degrees of the fover, and so he has a very high temper ature: So fou car realily soo that these points have a very important bearing.

QUPS.--That do you follow the hoz pack with in these cases?
DR. K. That would delend upon the condition. If it rere a condition in which we wanted to reduce the temporature, we would ap ly cold. If sweating was desird, we wpuld do anything, except to wrap him up. QUFs. I mean in cases where the application of heat produced a bad effect.

ANS. Then I weuld apply cold. . Nov you will find that in many eases where the patient has a fevor, if the tomporature is reducnd slifitily the sweating will begin. It is this hest which has paralyzed
the sweating centers, and after a cold bath the swesting will often begin, and have a good effect. A hot apylication is always an indication for a cold aplications, and if the hot spplication has not had a good offect apply the codr bath directy afterward, for the patient will be bettar prepared for it then.

DR. PAU LSON: Shou ld not the statement be made that hot aplica
tions should not be made in fever cases excest in the very briefest gpplicstion? रou do not mean to exclude hotapplications entirely, do your

DR. K: We are going to take up the stwiy of metlods, and then We will study the efiects of the hot baths, and how to use them. We uncerstand that heat will raise the te perature and the fever produced by heat may be of very brief duration--as when one $t a k e s$ a hot bath the temperature alvays rises a little, -or it may be of long duration. You vill soe a fever in chuldren in the su mer time. This $f=$ ver may be due to the excessive rise of the temperature-or itmay be fie to a heated room, a:d this is especialay true in fever cases, where the rise of tem-
parature may often be attributed to the heat of the room. What is neutral air? (60") Than if we have a terip orature of $80^{\prime \prime}$ in a sickroon, old not that have an apreciable effect upon the temperature of the patient? Yes, it would have a decided effect.

Another ause of rise of telmperature is exercise. If a man
runs for half on hour, he nay have a rise of teperature of two or three degrees. Per aps tigre is someine hare who would like to tas ke the experiment of ranic and note the Frect on an temparature. I do not thint it ould have a bed effect if you all tried this experiment overy, day. It micht be a good pl_{2} for you to take the calorimetor With you and take the temper ature both be ore and a ter the orercis. While so are sp aking on running, I might say a ord in referonce to how to run. The re is one way in hich you can run and get the greatest possible gao unt of work, a d then thers is a way to run in wich you Let the grestest anount of progress without the work. The one is to caise the body when the step is taken, 0 as to gain space in which to put the foot forward, and the other is to keop lose to the cround. If you have a deng run to nake, keep as cl se to the eround a possible,
flo xing the loness instesd of raising the body in order to get space In which to move the foot forvari--flex the rear knee. Then take the tomperature when you first out, and take it when vou retirn, an then take it again ten or fifteon minutes after you feturn and ses how long it will take you to resain the normal temperature. Now tie impotant practical bearing of ths is that exercise will produce a rise of temprature.
faticue
There is another fora of fever known as akuxi-fever, which is the result of violent exercise. Sometimes in soldiers wio have bee making a very lon hard mich, you vill Eind alnost wa khole aray stricken down

Tith ratigue Pever. Rasx This is the result of the proflation in the bocly ofa spocific toxic goison, the resut of muscular etivitar These poisons nay be produced in such quantity as to aykn it possible to have a risg of tempacature by taking the blood of an aimal that has ban runnintich vearied, and iugeting it isto tha veins of another anian. This eap orinent has ban"tried by, an Italisn pysiologist. He oxpreised some dogs itil they wore oxiausted, a i then injected some of tias blood i:to a Presh dog, fith the sult that the Presh dog instantly becaue atigued and showed all the signs of fatigue of the other dogr-the lolldnj and rumbit out of the tongue and the rantinc, and tie other aeans by which the first dog exhibited fatigue were amifostod in this rog.

Now these oi sons may be produced in such a quantity as to make a fever of tw or theee desrees, and this may be contimed for a nurber of days.

Than 70 have another fora, known as secondary fatigue, bwich is the fati $2 e$ or exhaustion which one sxjeriences, - not at the time of the exercise, but q is or two artevard. We ofter find inyalids coming hare trom a ld s ilistance whe tell us that thoy do not fool as wall after being here a lay or two as when the y fstarted fron home. They say "I foxt very woll the first day, but I did not teol so vell on the second or third day. Invalids and old peogle, for this reason, do not thor here to stoptheir rork. Thoy say "I thilk I con walk as for as I ver did-my hoad is just as olesr as it ever was-and I think I an just as voung as I over ras." And so they exercise, mentally plysically and auscularly, and $\boldsymbol{x} x$ the consequence is tht in a cay or two thov find themselyes completgly exhausted. This is one of the symptoms of old age-or secondary fatigue. A man comos to be kk forty or Porty Iive

Yars of age and then tho botins to suffer rom secondary fitigue. The the young man of from 15 to 25 ill exercise himsif to $=19$ vary last degree ondurance, and as I have san then in some of the coanpetitive contests in sone of the gyonaiums, thoy will tall down on the floor almost dead ofthe oxhaustion, yot is ten nimutes they a on the srapeze a,ain, porforaing with just as meh vicor as before. But in the old in in this is not true, -the old man and the invalid--tho rienatic the obese, the neurasthonic-all suffer from secondary fatigue. I say an old man, -ong, may be as old at thicty yers of ace as at sixty; it is his physiolosical condition which detorndens whother he is old or nat young, not the calender or the evnecological record. ("A ann is 3s old as his artncies.") A French quthor wrote that, - that a qan is z old a: his arteries, but there is a bett r way to oxpress it--I think a man is as old ashis liver and his somach. A man is as old asthis bo fy in ceneral. Ol age dopents upon the cenoral condition of the body If a man's liver is oworn out, ho is th ol man, because tre has an old liver: if his stomach is 7 orn out ho is an old nanoscause his stwach is maxkeaxt old, and t e whole bdy is as strone as lis stomach. You hnow that the strength of a chain is the stren th of its reakest point. Now supgose va have a eroat heavy chain hbre, but one of tiae links is roun dw to a anve thread of iron. Now the lifting pover of that chitin is just the lifting pover of that reat link. That is true physiolosically. If the "e is no particular woakness in a man's body, thon that old adage holds true, and he is as old as his artecies. But if a $1 a+$'s kiver is old--if he has lived a physiological lifo of oighty years, even if he is but thirtyl that man isoighty years old. Then ve agy have four conditions under wich wo may have fever from exercise: Iet us consider then: Violent exercisf will alvays raise
thie teng arature and, oy the way, that is that aakes a aun sweat. If a person exereises until the th a arature of the blood is raised . 7 " ther he peis,ires, and tha perspication tonds to cool hin off. If he kapss on exercising viotently thio asount of hat produced by muscular vork will be so grast that the hat eliaination, I though he is porsjiring freoly, will not be able to keop up with the hoat production, and so the body toap rature aill risa until it Eats to be two or the eo degrees above the nomal.

So wo aty have heat rroduction as the cesult of violent exercise. We wy have hoat production as the pault of \mathbf{x} prolonged viclont exercise, resulting in a fovo whicilas s tro or thren days--fatigue fever ma last as long as that and may gvon 1 ast longer than that and be mistaken for ty hoid of other fevers.

Ajain, e my hive a five a the reault of xacaskixyx faticue. Wher a horse has founder it is the rosultof soaskakx fitigue. (4 horse is foundered when he is drivan too hard or exercised too hrd, and drinks too nuch cold water when lie is first put in the barn") Wher he is over-driven. Found 2 is kx a condition vory sinile to rhewnatism, and it m y be produced by overeating or any, thing hich produces an excess of these poisons in the body may produce fover, but as the joints aro used and irritated by exercise, it is more likely to be browisht on by exercise than oy any other means. So heve we ave threo ans of ppoducing fever.

Now de may have an elevation of the tomp rature fr on an ordingy cut cold. Genorally in acold te ave tie tengrature olevated one or two degrees, and sometimes more than that, aud sonetimes only a fow tenths of a degroe.. A cold is simply a cheoking of the a atural eliminative processes of the body, causin an accumulation of waste mattors,-excrementitious bodies--within the tissues. This acumulation of waste
matters sives rise to an edevation of the traperature. There is alyays groducedin the body suostand s which give rise to levat,on of the temperature. If we inject into the vein's of a rabbit for instance aq a portion of the urine it vill equse the tamanture to rise, and the a acs othor toxins wich will case it to fall. These aro usually etiminate throwg the kidneys. Tht is, the eason thy person usually dies vith a subnoragl semperature. Now the idea has ion acivanced tht death is caused in these cases by excersive elimination; but it seas as thought it mould be easy to protect, him against that xaxamxacx by wrapin; hin up so that he wouldn't die. But that hardly accoun ts for the, facts in the ease. Bouchard s ys it is tio action of those temp rature lowering poisons carried off by the skin, which are cotainod in the body, and the kidneys cannot carry it oif, and so the pationt dies. Thore is also a poison wheh causes a rice of temperature alininated throuh the kidneys. Whet a person takgs cold and the action of the sicin is checked and the eliminative activity is focreased, then re have arise of temperature.

Then tho 2 is a cheonic condition hich will roduce a ri of tomparatue. People itia chronic rheumatisu often hve a sudden rise ơf temperature with acute exascerb tions irita the raction of the uri acid and other alli poisons with manthine bodies and all the products. of proteid wastes wila are retained in the of ody and gradually accuante. Hais has called attention to the fact that while we ordinarily secrete six or oicht z ains of uric aci, b_{*} mixod diotwar take in, in addicion to what we normally have, more than the body orisinarily elimin \ddagger tes, so that the blood being more than saturated with the uric acid, whid. is a difficultly soluble substace, deposits some of the wic acid in the tissues, and so the poison will accumulatem and it will keop on
accumalating in thisway and this aceumulation of uric scid establishes a condition which is favorable to fe $v r$, so a person durfering
from chronic uric acid poisoning or accuaudation are usually vary subject to such diseases as pleurisy, endocarditis, pericurditis, etc., in clamations of various sorts thich are classified as anscular theongtisa, articular porametism, and doubless neuritis in man, cases is due to the sare cause . And not only that, but he is broight into a condition where lie is liable to all sorts of inflamatory conditions. So tring are two conditions in wici a person hy have a rise of tam perature--becsus of the rotention of notall poisons, of excrementitioud aaste instbe s, comanly eatlod leucomaines. Firṣt a comion cold,--an cuta condition; escoud, ar reumetic diathosis.

I aight arid nothor class to those soleor of--the ribe of onporature oceasion ty tho introduction of poisons into tho ody diroctly , ,not crom infection, but introduan by the ptiopts thons lves-as from canned saluon; sonetines there is a ptomaino present wioh will cause a rise of tompatwe and the patient's temperature vill vory quickly rise aftar he has eaten the substances which cont in ad it.

Now, tho most conion cause is infection, or soms specific cerm th is capable of manuracturane in the body the poison whicherxx has this effect upon the hoat cogulating centors,--to disturb tien in such a way that the temprature will rise.
of course the ore are poisons producd which will cause a fall of tempe ratues, butxtie the general tondoucy of these poisons is to roduce a riso of the temperature. That is one of the indications of infection. If wo find a patient has suefonly had a chill and an elevation of tenprature, fe feol surg that he has been infected in some way. It $m y$ be notting but a sliver somomere the sur on m a havo puncturod himself in the hand, or it nay be the prick of a pin or a needle --it may be some-
thing in the food we oat or in the atater 7o drink or the attrition of the collar upon tho back of the nock and the ger is upon the back: of the nech he oonrrubbed in and te hy a a kind of a boil We do not always now just how the infection ocaured, but still there is an infection. There are alvays resent in t e alimentary cansl a large number of gerns whish are capablo of producing this infection, and son of these geras are capablo of fithstanding ordinity disintatatex feetion. Nor instance the staghylococous pyogenes aureus is there, which will live in pure bile. That ρ a rticular germ--it is a pus-producing gerin, one of t he nost virulent of pis producing gernas, producing a yellowish pus will live in pure bile. You know pur bilo vill not deconpose, it is a/natural antiseptic and disinfectant, and it preserves the food hilo it is in the intetines so that it does not become infectod, and it ust be a very resisting kind of a gera that an live in that adium. Do you remember of another gern capable of living under the influence of bile, if not actually in pure bile? The bscilli coli combunis, which is alvavs prosant in the alineatary canal in multitudes-- there are millions of temm constantly preanot therg, and the only woner is that we con live at all under the scnatant presence of the e vir ulent cerms. But the fortunate thing is that this gom is not alvays virulent. This gera, i f kept under the qttenuative influence of fruit juices and of wholesons erains proper
anc proparations, its virulency is subdued, but it is only whonared ith meats and meat juices and wit: other substances uponwhich it thrives that its virulency is rovived. We have proven this by absolut a experiments in our laboratory. ti is fortunate that $\%$ do not find this rim present in the saxsxise jx stomach. But cecont observations have shown that the coli communis will sometimes of into the gstric juice, and when it cogs grov there it produces a toxic substance of geat virule ce--but the coli commenis does not grow $w-11$ in the stoma h.

But te take thi eera in in a undanee when tate in coa's milk. People living on cow's ailk aust have plenty of these bacilli in thair stemachs, unless the gstric juice tills then, or they are passec rione Preny io 路 intastines.

But "hsa gera are capable of pro cirg infection, appendicitis, colitis, entritis, poritonitis, cellulitis, abscess of the liver, intestinsl cattarh and pleurisy-- and oven pneunonis has sometimes boon traced to it, and it ha eve: been found in the orain in menengitis, ir supurating eases; it has becn found in multiple abcesse in differont pris of the body. The coli comanis has the jow r to invade th tissues rapidly, and after death if an animal is not "drawn," and the intestines removed within a fev hours aft or death, as has $b \infty n$ frequently ob served, the issues are found irfect d, all through the body. All the tissues and muscles of the body are found to be infected by this ra idpy crowing bacillus, as it is ondy the vital reuistan of the tissues holdine i bsk, so ft r death thoy pass through the tissues and we have inflamation et up in the healthy animal. The same is the case when there is obstruction of the irt estine when peritonitis occurs. Why is this, wher it doe s not ocur unior ordinary conditions? Becaus the circultion is iestroyed, he tissues lose their power of r sistance and congestions occur and the bactili rapicly vort their ay throu the wall, and set up irflanmation on the outside. Vou see then, how we haveppritonitis--we soon have we soomhave an abscess formed on the outsie. We have had a case of irflamation followinga case of la, ar tomy whe the intestinss have bean pulled out a d manipulted and they have baen exposed and sometimes concested--t is condition rasults in a loss of resistance of the tisso sue. I remember a case oncs on which wo had a patient--I bevor shall

intestines from the abdo manal cavity. It aas a very lare tunor, and an extrengly dificult case, and a very fat patiant, and in get in the tumor out thare vas a prossure uion the intestir s. We had to pull the int stines out, and 79 kept thea hot by means if hot towels, and we noticed that their color was feeperdd considerably-- they dig not become black, but there was evicently a pa sivg congestion bocause of the abnorasl position of the iltsetins. I kept thea wrapped in hot towels and did everything possible to $k 0 p$ thea warn, and hstened throuh the operation as quickly as possible, and got the int stines bae: into the abciominal cavity. But I felt yery anxious about the case, and the next iay I was not surpised whe: I found the temperature raised 102 or 103 degrees, and the noxt ay the atint was dead. Fot ap lications were drmexxx mplied and everythicg that was possiboe was done in order to promote the circulation, but the patient died, and the atient died in ay opinion simply because the intestiral walls ad lost their power to rosist the microbes whin wore already in the intestines and ready to pass through. We must bear ic mind that our protection is due to the resistance of the tissues and that the tissues are continually fightint germs.

If we carnot ind ary other source of infection, wo must not ay that this is a nervous fever, or an ephemeval fover, or that the o is no special cause for it. Thare is always a cause for the infection of the body, and the only wonder is that y e do not hve a fever all the time. The only vonder is that we can live un or the ordinary conditions.

But there is a other point that I hope we will remenber, and that is tht there is a darger constantlynpresent with us wich we can geatly and enomously increase by the neglect of a proper dietary-by a flesh dietary--by a diet of at, and milk I myy say, becauce this coli commis bacilli grows readily in milk. But by a diot of fruits grains and nuts and
fruit juices and the atural products of the soil these gerns are attonusted o that they cannot accomplish a intire like the aischief hich they othersis aight do.

I might say furthor that this era, the bacilli coli comun is, when it is pamdasxdxx reated un er certain conditiona is eajable of producirg cholera morbus, cholora infartum, and a fover which cannot be Cistinguished from typhoid fever rodily, 30 that anon the mrench physicians at the pesent time they reognize the bacillus coli conmis fover just as thay recogrize the Bbarth's bacilli revor, and thay pecoge nize that typhoid fov way be due to these grms and that som times these fovers are not de to Bberth's bacillus, but aro due to the colon bacillus wich is madiened, so to speak, --it is rendered more virulent and poisonous by the presence of pierth's bacillus and the conditions which it sots up. When the intnstine becones inflamed then the little inflamation y if arises ives the bacillus oportmat for frowth and evglopment and to taka on a virulonce wich it did not ave botore. when pberth's bacillus invades the intastines, where doe it go to? (To the glamis.) Can it be found at first in the discharges? (No.) We ennot find it until the eichith or ninth day. Why? Secause when ulcoration begins it is throwin off dead tissue. Here then are very pronoun ad syapton--the atient as diarrhea, sut thero is no poerth's bacilli to produce it. What causes it then? You see there are a lot of symptoms of this disease which cannot be racily traceabla to Eberth's bacillus, but to the exacgrate virulence of the colon bscillus. Then it is easy to increase therease these conditions by the use of nilk. see that a physician we physicians have ontored irto by siving the gationt a mi 1 k diet. Then, you say, why co you Eive it? Secause it is better tha benf tea, because a milk diot will starve out somo ferms. Thers are some thirty or forty difforect kincs of germ in the alimentary

Qual, sone of thich are ovor, worse that the sacilli coll co munis, ard some of these vill be starvec out on a milk diet. Anoth r a yantace of milk in this ease is that it is dicasted in the int stine inctead of in the stomach; so the e is a bettep oporfurity for the ighstion of milk tha of bonf. and it is bette o fod the gient on uilk than on ham sandviches, baef tna or baef broth.

Bus e are not confine to milk, wo have it alternative wich is in overy way preferable, in well-boiled farinaceous ruels ; and thil is the diet which Hippocrstes gave to his. 2atients, and thiz dietary is employed in germany at the present time. But inay \because of the leading German physicians have something agreat deal better yet : Lieberaeister and many oth r of the best german plysicians use as a ropul tion diet for typhoid fever, fruit soup. Fruit soup is a Geraan eish anc not an Angricar dish. The first i ea of ruit soup that 1 ever had I received from \& German woman--sistor Louise, who made some fruit soup at our hoyse, and wes. Kelloge experitmentdd w on the and now we have many kinds of fruit soups. It is a very in ee asting thing to me that these on hys found out by practical experience many things which wo lave found out in our laboratory by research, and it is stil more surprising that wo haven't fould out fany mote thince. So we find, as I have saic, that wo ay have a rise of temper ature from infections. There are sev ral forms of infection--there is so-falled infecticus fev r and infoctious maludies, as typhoid fover, cholora, typhus fovor,
 the rost. In all these fovers thece is a specific germ-or a pecific parasite of some kind which manufactures poisons which elevate the tomperature in such disoases as pneumonis, scarlet fever, diphtheria, and in ordinary sors throat th re is always or osert in the throat streptooccei, cocci, etc., zx so that in takine cold they will take on virulence
onough to paralyze so that they car groy u, on thea anc grow upon them, tha resistanee of the tissues being lessened, and then they en get. Co in into the itixiaxx blood yessels ard a risnoof tempraturn will follow and the pitijent has a fevor.

These streptococei can be foundxa in the mouth all the time. A dreg of salivg in a bottle of boef tea will produce ras thot will kill a rabbit. Dr. Nastarx Stornber inade this discovery about tronty years ago. Wille down at New Orleans curing a creat yellow fover epidoaic 3 ixteen or seventeen vears aģ his attention was called to this subject and he went hote and went to experimenting, and in doing so he discovered that a drop of his saliva dropped in a smaxtikn of beofteg vould produce 5 rims which when injected into a rabbit would kill it. He was frichtened, suposing his saliva vas particularly toxic, but he aftervards diseovered that the saliva of others was aqually so. He thoucht that he han become so infected with the yellow rever cerins that it had male his saliva poisonous. But when he experimented with others he found the sane thing. He investicttad fur thar, and found that it was a usual thinc for these toxic substances to be found in the nkxtkx 3aliva. So they are alvays present with us. We also have local infections, as in boils etc., -. nnd in the inlon we lave one instance of local infection. Then wo have sur fical infoction, in wich the wound made by the surgeon becomes in cated-and in all theso conditions Vn_{n} have a rise of temperature. In all these diferent conditions the pplication of hydrotherapy must bs varied nore or less to suit asch individual case. There are othor things to be done besices the ang lication of water and these we will take up later.

LECTUR: TO MTE ICAL SPUDPMPS. (No. 5.)

FEVERS.

The man tho c an sucessfully treat fevers can cope vith noarly all the quate maladies.

Nov unler what conditions would se find rise of tengerature mesent? ("In a mron where the heat elimin tion is deereged and the heat production is increased. The heat eliminstion is decreased begause the temperature of the room or the gedium in wioh the body is placed kongs the heat fron radiating out, wile the inat production is incraged by the poisons --and theve are other ways.y) yes, that micht e. It would be a vary common thine in the case of fover if we should Int the tamperature of the row get too high. In the condition of. foy \vec{r} the poisons or the system would not be oliminated, ant the e is on exagserated heat production; et the sane tine heat elimin tion is diminished by too warn a room.

Now there is another condition in whith we would have that prisent: (") Whre the skin would rotuse to eliningte as much hat as was produced.") \forall " ${ }^{\prime \prime}$, but we w ant to consider the external conditions. of course this would se true, but we could not exacise the sk in to krow whether or not it was in this condition. ("In tropical climates.") Yes, or in hot weather, which vould be the ane thing.

Now let us see what would be the condition of the wagther that would procuce this: Woule warmth alone prodice it? ("No.") We never have sunstroke in vexico, or in westorn Texas, in Arizona or in southern California -- (It is the humidity of the qir.") Yes. We have aunstroke in ehicaco andliew York, whenc we have creat beodies of water whare the air is saturated with moisture--and why Now suppose we have a man

Tho is sw, joan to have sunstroke: if he had an elevation of te p faturn, what would be the condition we should find? ("A dry ir arm skin, probably flushed, but no moisture." Red face and hot skin-there would be some increase of the elimination, but the heat prof duetion is finereased mole. How high gan the tomprature so? ("To 122-3") Now suppose vo took this patient's thaprature, and we found that le had no rise of temperature at all. lie is lying be re and is supposed to have a sunstroke, but there is no rise of temperatres. What is the gator with him? I fart to cq ll your attention to this. The difference is this: Th re is a sunstroke in bot cases, but they are not both technic =ll called sunstroke nowadays, or, rathe, the old tran of "sunstroke n is xintixite divided into two parts; one is thermic fever, t e other heat exhaustion--whore the patient has no rise of tempenture-..but both are the effects of the sun, and the an man may have either of them. For instance a man is working $v \times r$ hard, or exercising himself violently, and is at ties same time ex pound to great hast; he is liable to fad l with heat exhalistion 1 , and he wide have a pale moist skin, and he may be in a state of callas his temperature may even be subnormal. Sutra person who has thermic fever, or real sunstroke, ill befin a vary different conc ion, and he will have arise of temp rature. Tory five yours ago these cinditions were not so clearly tat distinguished as now.

Then we have that condition called sunstroke, or thermic fever. Now suppose a person is in a very hot room or in a Turkish bath-What is the diferxwxelx effect? ("To increase heat elimination.") Yes, a pron is perspiring in a Turkish bath-nand how about isis ton-
 butthis temperature is high, nevertheless--it is above the normal.

Now in that case is the elovation of the teaperature due to incorease of heat production, or to the heat of the bath ? We harcily chat whatih er it is the heat 6 the bath that priduces the rise of temperature, or Fetior it is an increased heat production. supoose the temprature or the roon rises to 30 "--that is the tondency there? ("To increase the beat Efinsmatime production. ") It wo ld also increasefont elimiátion, vould it not? Sut it is also necessary in in reasing the eat oliminttion, to increase the kas: production at the sane time, othervise if the heat elimination were increased vi= lout an inc rease of the he at production, thers would be danger that the body tempratuce would be decreased too mach, for that sudion change of temporature would 1 eave the body in a state in wich it would rapilily loee its hat ard so the torpe ature would fall. Sohature maintains this perfect ba lanee-whon one i inceased they are soth increased. Tht is a ineotant fact-so that thejelance tay benfkept all the time. It is just the same With the macles; you see the same thing when I contract my bicops nusele the teicess musele is not absolutely trnaquil--no, it is at vork also; when I et the bicejs at work the tricgas auscle is at work also, in a ont of antaconim, but nevertheless that antajonisa is nece sary to baintain the balance. So in the very ane way the condition that tend tofincrease heat elimination at the sane tine increase hat produce hast production. Qurs. It seans fo me that flon thace is so much heat frof withQut, that there is not so nuwh ne9d of heat from within.

Ars. \%e will consider that for a a omort. Here is a person papiring freoly: --when a person is perspiring reoly, his elimination may amount bo several timos tho norazl 2nount. We vill co sictor that at the pesent tine to c onditions are zora 1 --hat production
and heat elinigtion sea: exactly balanced. Now wa will increase the host elinination to throes times the nor asl a rount-and it may be fine ceased more than that. We will sug.ose then that ge lave arise of temgcature,
 asl amount. Suppose at the sane tine the heat production was dimin-ished-anlat would became of os? we would freeze up in a short sine?

We will suppose? that thereat production is at the rate of 7 heat units per minute, or 420 per how r--1 et us see how any that would be for the hole body. We vil jay that the man woichs 1601 s , and that his tamp rature is in oven numbers 100". We will multiply the weight by the heat production, and that wide give us the numb of hat units, or 160,000 . Now ie sill say that tais man is made to sweat profusely. I t us see how much of that will be eliminated by the skin if he is male to eliminate three times as much as he ordinarily does. But re may me made to elimingt sixty times as much by the skin as we ordinarily eliminate; we my eliminate an ounce in a minute instead of an kxounce in a hour, --but that would run down the body in the form of later, and we could not call that evaporation, for would have to stand the patient in the vind, or blow upon him with a blast strong enough so that this would be evaportsed as fast as it appears. But will say that it is in ceased rive times what it normally is. The would be at the rate of 2100. Now his heat production is coins on at the rate of $420-$-this is not increased at all. or, we will say that it is dimin shed dow so 200, --abut one-half, or 200 ho gt units p or hour. In other words, heat production is diminishol one-half, boat elis ination is increased fivefold. Suppose that we diminish the hat production at the same time that wo inc lease the heat elimination. This is simply a little problem to clear up this question of beatxt
regulation, and tilis little problan will help us to gat at the botton of it. This is an original ineestigation, if you please, and y my discover something interesting before ve get through.

We will suppose, then, tiat the heat production is decreased onehalf, or to 200 asat units per hour, and that the heat eli minstion is in areased five-fold. We sup ooged to start aith that they were Just salanced, so tht e were roally producing 420 hatunits, and elininating the a e numbar. Now se will incresse this fivo-fold, or to 2100, and nov Ist us sec, what vill happen. The body ould lose 1900 h at units por hour. No fre only have to divile 16000 by 1900 to sae how quickly the temper aturn will, co conn to pero. If we , lose each hour 1900 heat units morn than yo ane, then ve have to subtract Nrom our stock of heqt units. By diviling that ov 1900 we Find that it will taks eight and one-hale four's for the tertp ratuse of the body to be diminish d to zero.

DR. PAULGON: When xs on: is buried in the snow drifts, is not thet hat would tagen--the hat elimingtion is increased and the heat production is dimidisined--isn't that what takes place, and tiqy die?

DR. K. Yes. So it is necessary that the heat production shall be incroqsed a on with the hant edimination . The hast production is inreased beyond the apparent nocessity of tha sace. It is increased more than semas ton be nocess ary. ut 18 that the case? it is only indeasod out of proportion to the aparent necessityoof the cace.

Hint is hat? It is a natural vital stimulus. And when we aplv a vital stimulus to the jofy eannot single out a single part and increase the vigor of that alone, but the agent that is a pital stimu lus to one thing is a vital stimmus to every living thing. Sunlight is a vital stimulus, and it stimulates every living thinc that it comes into conbres ith . It comes into the body and stimulated bath heat oroduc-
tron and heat elimination. Then what is the affect of heat upon t tiv. Hiemal nerves of the skin? These ares are practically -t as zontingle in theskin, and then some of them foal the heat o oaring they communicate the fact to the Crathageali.enand the heat producetion is diminished. But there is also another influence brought to bap high diminish's the host production, so "hat we have both these two things operating to ether.

Now if wo th a man into a hot bath his tome eraturn will rise. The host of the bath will increase heat production. Tatum hin away from the bath and the heat production is diminished. We have this to bear in and when we have geincraace of heat production and tie patient's te operature had risen va y high, j just an in sunstroke. Let us see about that. Here is a case of sunstroke, and the gan iv exhausted under the influence of heat, and tia skinks hot, and the elimination is increased more than the normal, but at the asap time it is not increased in proportion to the increase of heat production; there is a great increase in the heat production. This thole subject is not so simple as it appears upon the surface, and a person has to sep a groat number of physiological facts in mind in order to eh ready to deal with any or these cases. You just think you have gotten nicely to the bottom of it wen something nev happens, and that makes it perennially inter sting. It is ne of theist interesting subjects, in physiology, and on of the most profound subjects, as vol. We find now avenues of thought ogeningup before us all the time.

We might pass on to ot ore inctaves have, but wo shall hardly have ting this morning.

Now that are the thing to be cone hen we find a peri on with an elevation of te peature. This temperature any be recuced-what are the
thangs to be dore? ("Increase the heat aliminstion.") Supose it is a ease of fever--what is to be done? ut the patient to rest. Rest will accomplish mor than a ythinz als in tho roduction of ters perature, --and that is the reason for thiat? Because exarcis e will do more tian a ytimg eife or a rise of tomerature. Restais alingly the antitiesis of ork. If we find a patient colncifloout with a tenperature of 101 or 102 , we say he must co to jed and tave cas plete pest. Now lot us see the rea on why rast il 1 di $\mathbf{i n i s h}_{\text {ish }}$ the tumprature. In the first slace, tiese points will be brought w to you ir the oksanations, a d these examinations aill be qt the brdside of the patient. You do not want to thint: about y exalinations, but you will be brought to the bed ice, and you vi 11 bo staring yacantly at the wall: and if you do not know of your ignora colfourself your phation will find it ont, and God willifind it o t, - God will know it if you ave not fisted yourself for emergencies that may arise. You may be eallad to the beiside wh re you wil havo to apply every one of theso hrinciples. If you knew hovelad twas to get hold of those princis les, and how valuable they are to ae, I qure you would strive to ge hold of every one of them. I beliew tiey are all facts whicin aill bo of practical use to you.

I-speak of this bequase I notice that there are man: in the clam Who a not in tie habit of civing good attontion; theyare maing figures on the hauds or something of the t find. Vou cannothink asy too ha d on this quastion. You cannot be salting thing dewn in your minds and at the sane time be tracing figures, becauce if your eyes are ocouriod by that figure even though you are listening with your ears, the next day that impression will have faded from your mind, add it will be gone. You carnot do two things at the sane time and matre an impres-
sion that vill stay. F You must concontrate your eges and your ears. and your thole soul, if you zould alke an impression that will stick. Ther again, ve have an o. ortunit, to get so.1ethins now, and if you do not get it now the c ances are you wial neyer get it. Ir we lave an
 aill coas back to us araie, forthat opportanity ias cone Into Bternity, acd we nevor on acconitish what we aould liave acconplishod if vo hal embracod that opportaity. We must gaticaco oach op,ore tonily just as it comes along in orier to azke it a etopo me stono to solating else. If we do rot cio taic tve will Sind tiat wher w come to s te, to the next stexing atane, that re cannot quite reach it. We find that by not stepping on asch stepzing stone as we can to tiom, that ve car of quife reach the next, a d wat ve gould reach is just a litble beyond us. We aust tain t ese op or tunities, these steppicg s ones, just as they cons, othorvise zo will find oursolves sinking in the mire bocause we havo nt propared a fothold for oursalkes. But you do not need to be scolded, you only need to be raminde to wale up.

Now let as becin again. we vanted to soo what w as tive reason it was necessary to put te fev reatiest to rest. This is a thing that young physicia.s are vory liable to overlook. TMoy have a patient running around, with a row thing nover think that that exereise is ndoing 211 that it is possible for them for him. That patient must be kept quite, and the only exeoption I know of is in some sta es of tubarculosis, where the e is sometimes a slight risics of the tempe ature, of an 101 or 102 dagrees, han it is sometimes be tor to Let the patient get out into the frosh air a little, but if the tempo a-
tire is much above norias, it is bet tr for the patio nt to be putto bed until the temperature falls, ${ }^{-}$- and I an not sure but it would be be ter in all cases to put the patient in bed and give hin such exercise as he apps by tears of passive exercise, a--ald it must be very foot Ie st that. I have sometimes noticed that a patio t with a ria of toesperature will be laving Swedish aovolonts, massage, and mechanical swedish movements, and with a temperature of 101 or 102 this is a very detrimental ting. The patient must have aboelute rest. Fxeroise increases heat production--and why is it? it causes heat production in t e muscles because the thermogenic tissues are in the muscles. Then if we work those mas es frith a nervous activity: 4 or a circulartory activity, it will stimulate those thermogenic tissues to antral activity.

That is the uncinental reason. Another mason is that exercising the muscies causes a stimuli ion of all the vital activities. It increase os the activities of the thole bociy, and the thole body will be producing heat--not only through the thermogenic maskers tissues in the angeles, but every ti sue in the body will bo prodicine lieat and that will tend to a riseof temperature.
Then thor is another ra on why the patient should go to bed:

And that is that assimilation is decreased, disassiailation is increased. There is increased waste-increased oxidation. Here is a patio t whose \quad linin sion is tiro or three times the normal. His host production must bs so oping up with thatelimintion you see, ard p chap it is a little mo ne, than keep inc up, in order that there should be a rise of tempe ature. Thus you see at once that her a pationt is eliminating heat three times a fast af epought to that his bo y is bein consumed throe times as fast as it ought to be, and no if wo ale that ha: work in adit on to the energies consumed whinime consuming ajojt three -four
of the eiergy, that illl be addad to t eheat production, a tite s pationt will o \#asting a vay very rapidly. We do not appooiate how rapid is this process of distntegration, and how much depencent wa aro upon assinilation ad repair until w eo fliout sieep for two or three Weeks. Have any of you been without thep far two or three days? If so, hoor did you foel? ("Sleepy and dull.") I once asked a s alall boy in chicago who was chewing tobaceo, why he didn't stop, and he said "Because I feel so bumy when I stop," I suppose this illustrates our foelings when wo have been without sleop for a while-w? feel "buray." A an who has een witlo ut sleop for sevoral degateols 3tupid; his mind seems to be almost effaced, and he carnot think, arc ho cannot walk straight, and his mental for es are almost
paralysed, and by and by he will get into a condition wh re he will brave almost any peril for the sake of sleep. I remmber when I was in the West an encineoron the train told me that he had gone to slep and woke up and fourd that he had been aslesp for fifteon minutes, and his firemar had beon asleep, too; tiey wot axixupx to sleep at theirposts, and there that train had beon dashing ahead for fifteon minutes, with the engi neor and firemar both asloop! The ongineor aid the had know of ergineers going to asleep on their e.gines mary times. \#ut these men vere partly excusable, for this was their seconc night out, and they simply ado co to sleep--they couldn't help it. I have known of nurses going to sleap on duty, too, and the patient stayinc avake to vatch them. (Dr. Paulson: i have know of cases where the pationt was dvinc, at that.) But re make it a rule hore that the nurses shall not be allowed to g go without slopp-that is one of our rules, but it it not alvays rofarded--for the fery reason that we know that it is not within human povers to resist tho tor ercy to sleop unlass there is some tremendous stimulus acting uion hia to keop him awake. In oldon

11

times one of the punishments meted out to eriminils zas to sage them EO vithout slop for a veek; they had pe"sons to goad the and keep then awake and force than to oo fithout slasp. I have from doctors to fall agleep when riding horseback to visit their patient:, and to fall froz their horses. So you see that this doand for repair that is made by nature is a very inpefrative demand.

Now to study the candition of the fevor patient: Thre is almost no : ppair. Tho assimilative overs of tho Dody are creatly vealiened: at any rate the dissolution of the bedy is takineplace at two or three times the normal rate, and y et the power to reair is diminish d. So hom important it is that we give a patient as bar absoubte rost as possible in order to lessen as much as possible the disirtecration of tiknmenxax the tissues. So rest is one of the thinge that is abol tely nee assary for the fovefpatient.
("There is a time ornes when you have been ithant slap for two or Shy n diays when you fool orightor than before, and when you faol that you can stay arake for two or three nichts fonger, and tha: you can do almost anythirg.") Yes, that is true. And so we find with the fevor patient that has rot had rest for two or three nights; he is delerions anc requires two or throe nurses to hold him in bed, and yot of his voluntary action be vould be scarcely ablo to litt his head from the pillow. It is a disnased condition. His brain ecomes irritated, and he then be ins to maw uon the stor? of energy intondedm to be used next ear or the year after, ard a man arder these donditions is etting off the other ond of his life very rapidly..

DR. PAULSON : Whon thoy are in tlat condition ard they co to sIep ard do not get but one hour's rest or so, it seens to "take the whole life out of then."

DR. K. I have heard persons who hee not sle t for some time say that if they were to slep then t 'at toy eould not do ano ther thing. Now whe a person gets into that condition he is inan abnoral concition, and it is very imporant that he gets rest st once. Virst of all I think e should take a neutral, bath, an a then 50 to bod for a couple of days until be cets rested.

उut an r st is esaeciatly important in fover--it is nature's remedy for fever, --for to-day a man aly be picrous and string, and to-night he has a chill and a f ver and to morrov he is so ralk that ho con scarcely walk. She aan who to-day could perhass lift half a ton is take with a chill and a fever, and tomorrow he probably could not valk half a mile. What is he atter with him? Ke has not lost a 11 his e orgies, cor all his muscles. hat is the aatter with him? Nature has simply rought hin into a conditicn where he will co to ved, byakinc away his disposition and his apontaceous abilit. to work. So it is importat for us to reconnize that sugesstion of nature, and put the pationt to bed.

And we must not only put him to bed plysically, but we must put him to bed irtollectually, as far as wo can ; shut away from lifm all kinds of mental work and activity; o not let hin road or let people talk to him or thirk about his busicess. It is very important that he Shall be shut away from anertal as all as physical activity.

How another t inc we must nevor forcet is that the ever pationt is farmore suscep̆t ble to all of the tomp eratu e distur ingAnfluences tian is the man in a normal condition. This is fortunate on the one side, ecause it e:ables us to control his temp rature by means which an not Erestly efective in disturbing the temperature under normal conditions. For i nstarce the hot baths would he very ifthle offoct upon the noraal man, but with t a mas in a fabrile condition they have a very marked efect.. hen it is very iquortant hat we should protect the

Qatient againyt sudden changes of temp arture, froan a:1 distur arcos, anc ayainst every kind of work or worry or acolanen of avarytind. o we soantiaes carken tle roog a littlo bit or pu: a'towel on + his e; es so that he vill not, see the figuras pon tle unlpaper and let then set hin to studyirg. We fet him into as nearly a vecetative state as possible. We thll the murses not to talk to the patient; to spoak sopily; to step lizhtly, a \mathbb{d} we put tha patient in a pesition wre thare will be just as littie nolse as possible.

411 this seons simplo, but it is ton ciances to one that the first case you have you will forcet nire tenthe of those hings. Tut you J must reaember that suceess all deponis uponthe namber of a encios you

are able to brine to bear. And the rasson one plysician is successful in a case, and another is not successful in a case simslar to it is because t at one physician will concentrate a large number of helpful agencies in that case, while the otler thicks of one thing ard tries hat, and ther thinks of another thing, and tries that, nd so on, and not a sirgle thinc helps tho patient, becaus they are none of them $2 b 10$ to co it alone. Now here is a big stone down here in a hole, and hern a of twoty uencitancing around wowdoring wich ean lirt that stone. Ong of then $3: s$ "I ca do it," but he can't stif it; and arother says he can lift it, dit he fails to move it; so ofe by one thoy all ty to lift it, but they carnot lift hat stone beowse thare is no angla man the e who is able to lif t that stone alone. liov all of those twonty men could have takon ho lo of that 3 tone ald lifted it out of tat hole with tho greatest ease. So you must bring 311 tie, ssible healinf and curative agencies to par at onetime. No not ty to do it ith a in is reardy, but try the all togethor.

Tirst, then, we have rest in bed. Second wo have fasting, at
the beginning．Ma do we last in these o as os？If you ta e the temper tire just after $=$ dine，it is higher than beforepthat is aft r the dinner is veil settled．If a pa son has ban taking a cold meal the tom－ a perature in the mouth may be a little lover jus it after it is eaten． Now why is the temp Mature higher after bating＂Beaus all the fro－ censes of the sod：are quickened by difation．so yt first it s pooped this to have u ur patient fast in or or that we may get rid of all the rubbish ting pay come in with the food．At to fist onset of the fave 皆 the patio．．that quito a store of elvcosen in his liver and in his muscles，and ifwe are colic to give hi＝absolute rest he doesn＇t noodvery much food．suppose you were ding to bod tonight， to stay there until the day alter tomorrow；you would no：get very hungry．faroe I presume aam of you would not care to eat nasik at all tomorrow．I do not think I show d think of eating at all il I were to stay in bod and not work，because if a person sets to work and works hard， he nods to eat，but if he doosn＇t work he oesn＇t neodso much food． So there is vary lit tie ability to work or the at．Is the castric．juice secreted in normal entity during fever No，t ene is little if any． So then there is no ability to digest the roteids in the atom ch． How about the asliva－－i，it abundant？No，the mouth is dry，and there is lack of a flit：to digest starches；a hd so we might foo on through the thole diff strive apparatus and find the same condition present．Thus nature indicates that there is o a ility to digest food．There is no ability to assimilate it and digest it，so that il we were to eft it We wow d simply worry the body and increase the tempe ature with the fer of indigestion，so that re soc that fasting is a cod ting with the rover patient．

Dr. Paulson:-I notics that there is quite a tide setting in that direction mong physicians.

DR. K. Yos. So ve willhave our pa:ients Iasting on fruit whils qbsolutely abstainicfic Irom food. So of you have triod his, and you know that it is a very leasar t way to ©ast; ze find that fruit s a food tiat doesn't need very mual disestion. We will take for instarce a ri pe peach; what has a ripe peach in it? (lots of feuit ucna.! There is water, and that only nosds to be absotiod; there is levulose, whie requives only absor, tion; there are vegetable acids, seti tev odo not re ui"e any disestion; thero is no int at all, and I-t is one of tio thing \mathbf{s} tliat w ea not assimiate in a fever; fat would on fy feed the fover; we have almost no ability at all to die gest fats; qud tiore is only a verv smal rooortion of proteids--so small that we may alnost ignore then. Dit the: are some dextrins. Jutne have cids--for what are they us rul? For disinfectants, because thoy fora a merium in the alimontary canal which arr/sts the action of the typhoic fevor ferms, because they will no: live in fruit juicos, s o if we Hood the alimentary canal with fruit acids we will do mush to help the patient. The bacilli coli communis will not frow in fruit juices, eithor, so if we flood the a imentary canal aith fruit juices this would be one of the bett metho of checking this increasing virulence or the bacilli coli commanis, which really does the grater part of the samesiexmischief in typhoid fever. It in in realit the accili coli communis that io excited an over eeveloped. It in this serm in typhoid fevor that makes the moss of the trouble. The geras produce these toxic substances, and not only the bacilli coli cominnis, but streptococei, and the ceditions of typhojd fever which are tie worst are pro duced by other ferms than the typtioid serm.

Then the-dextrins, or trape sugars of the peaches and other Iruits,-are they usoful It is fus what we ned to sustain the body. Now is it in refer nce to the increase of he at production on txabxixal feveris it at the expense of the proteid substances in the body, or at the exjense of the carbonaceous portiond of the body? It is an increase of CO_{2} 。 there is a large increase in tho CO_{2} and also an increa so in proteid oxidation, but this is due to the elevation of temperature, and as this is comparitively saall whon co:aparad with the total increasex I tink the great loss in the body is of carbon and carbon conpounds. So re car lessen that waste by supalyan eugar that is all ready to be a sorbed. Fruit is ar iceal diet for forer, and the pationt may be fa sting rom food, and at the same ti mo be taking fruit .

No ow abo t a milk dist? Nilk di t is better than a mixed diet, of joiatoes and Boston baked beans and haa sandwichos, but it is as Bro.
Xaxax Jones alys with reference ti tho city dovernment-- itis bet ev than notivine at Al, but it is not an ideal, by any aeans. Mippocrates hid a better diet tha that, consisting o barlay eruel, stained; 3it the gerinans have a opted the plan of Civing the pationts fruit soup, afd I do ot knor of amythin better that I could suggest . rimit soup is ronlly an ireal thicg, because by the long cooki g of the fruit Il tho rutritive elements arg brought into oolution arc dissolved out, anef are roady to be absorbed, and the wody substance and tose rouch and undigestible arts are elimirated, an then ve have it in perfectly ster ile for:a, and the astiet couli take fruit soup whe he coula not take fruit ir any o ther way. Jow some parson sa s ho can't take grapes, because if ives hima torriblepain in the stanach; what is the aattor? Thy they ipe off the skins of the rapes with their lips, and the skins are cover with germs, hich segn to,sel et the grape for a nesti. 2 paee, and for this rea son they ave faraeniation of the stonach.

Fhat is the reason tre have feniontation in tho ine. The e is a heay eultura of the e ceras, eapabe of straticg farcentation in yeast, ete., on the outsicis of the skin, so that the grapes has e to be boiled in order to be ric of thea. Sut if tha ruits are conec, all the nutritive elements are roady for assimilation, and ve arnot find anythic bettor tha: fruit soup. Sut supposh a parson takes. fruct juice out of a bottle, and still be has trouble with his stomach. The juice has bosn boiled-whet is the mitfor with it? It cotains cane sugr. The e is canc sugar in the bottled grape juice, and there is not the pow \mathbf{r} of digestire it that, there is in the healthy individual and consequently it reacily ferments.

The hunger cure is an olc fashioned cure for fever, perhaps a hundrad yoars old, ard has almost fallen into decay. The medical profeszion goas first in ong way and thas in another ww. is is etavertion onelay, and then it is bleeding, and then it isx foadinge Ve ar nor I thin in the atteruate a tage of the feecing era. Twent.-fin yars Go wher I as a stu ant of medicine, just catinc through with ay inadial
itulies in wer York, Dr. Austin rlint was auvocatin very atrongly the supportive mathodd in fevor casos-.. Up to within ? for years of thas tino is ha boon cus onary to bleod the ationts in fover; up to within bon or fiftann years it had beon the of ton to blod and bleed the fevo putiont until the pationt vas aluost in a atate of collagee, until the th pe-atire was bought down, and cons quently aust of the foy pationts ied because the vitality vas cone and the vory means by wh ar it was nocessary to fight the fover, the blood corpuscles, vitil their plasjocytic action, were taker aray, a a the consuminc power of the fevor was in that ray incroased.

In London it was the custon t give the pationts great quantities of alcghol-a pint a day was a very comon dose. Whickey was a very
eataion fouody fileh nr.., plint very strongly froonand a and urefed. Fin cose was one trinxtxx to two ounees, arc ve aust increase it to four o unce doses, and it was not uncommon for a patient to be given to jints a day. I remonbar va ho used to ins ist oc, a ministering whislyev, and tie uasd $=0$ shack his lizs as though he enjoved it a little hinself. This was an alaost aniversal fanody. In oing into the London Hospitals tennyears later I foundnthat ailk had beqn ubstitubed for the whiskey, and this vas a very ya luable change. The ailk det In: truluoid ifger is comin into vogue. It as a whiskey-and-ailk iint, zut sov it is a mils diet, for it cost oo zuch for the whiskey. In the pooritu ase hospital they gava aach patient a pint of two of whicky a day, but : is vas very expensive, and the people bezan to revolt afainzt uch billa, and the hospitala bouan to vie with otio anothor in cutbin; ofe expenses, and in order to cut off expenses they had to cut off tho rhiskey bill. A :92ge ance hos oital yas established in London, where they used to alcohol, and their patients gut well faster than those of any otiner hospitalh, ane this attracted the astention of the authoritias to tin ract, and so tloy left off the yiskey, and nowin a Eneat mabler of ho spitals it is Ioft out enti oly, excest in: the arav, whore Dr. Plint'sxson still advocatos his fither.s theory of the use of F hiskey in typhoid fover-his in cluancs is stial dominant in the armyThe aray is very conserv tive. Certain things qre sup liod in the comais ary, and cettain things are in the doctor's stock, and tiere are certain rulos and reculations, and the doctor must walk richt in the heath on track: They rave the sane old oflicers in hate ar y for a scors of yeard. One raits a whe generation for a change, and the tall who has bean vaiting taenty yoarg for a pro motion usos the saie old tilngs that hovas aught tyentyvears ago. For instance, pnevmonia vas treated by elugin; the putiont witty whickoy in uuch quantitias as to make him
rants all th time. The asdicalk trostiant in the army during t is last war as something terrible.

No: that is the Fay this ailk treateont cane about, and it was a freas ligurowarent. But the o ss a betsor ifothod, and tias is to disjerse aith the ailk. I sas satiofio that ailk, is ofe of the trings that aakes the mouth so foul and causes diarthea, by rotting in the in-
 fruit dietary.

I thints it is important to be zerl ge under in this, because tran ou iso oft you vinl I ind such akx a balance of authority in tis other direction, that ve nus hava a sound oundation on sefentific fact in order to be able to uphold your position.

Ques: How dift beoft tea come in?
Ars. - Well, b broth was supposod to be stren thering:mand it has binn in use for the last two hundrad years. Now I will teli you a fact, cepulsive as it asy seam; but tro handrad yars aco uitine was used whars boof tea is no: used, and beef tea was its substitute. The uria of a poung child was racularly preseribed and usod, and beof taa is sumply a more esthetio preparati or, and is nut more wholes ne. Indeed, it is the very gane thing. I is so qbsurd to thirk that the poisors of tue body of a doad arima: could erop havo bon conceived to bo of value. I supjos it cam about in this ra, peatazas: poojle su. osed that whiskey vas the strencth of the corn, because it was obtined from it by a process of extraction, and so :ligy suppoesd that bed Cea as an extract of the beef. This fallyoy has beor pub ished so wido 1y that the peoplo hate come to unlieve it. Ta:e a packa of Ieibits Extract of Beof, for example, a d on the wraper it reads "This pound 2ac:aje represents the nutribive ralue of forty p ouncs of the best beot
 to be seated: If one ear swallow forty gourds of beer at a mouthral or two, it is a very easy ray of ta sing nourish an . It has bean cup,osec, or example, that a teaspoonful of the bentextr aet put ito = fla s of water java as much nourish nett as a pound of beef, a. the people have the idea that because the ox is strong --that dy eating the strong an we wet his strength -- that pationts in order to So nourished hat to have "stromgthenini" broths. And we read in the andioal bucks tat we thou 1 d us b of tea, chicken broths, etc. These : in es give a peron t. a impression of strength, just as with the us? of alcohol--but he dons not has a any move strength t an han had before.

Now we must five tho patient rest, a d fastingeobut fe have given tho patient fruits, so it is not absolute fasting, but the rdinary articles of diet are with eld. This is for, the first two or the on days , ard I would not hesitate to st the rn or for davidf tho patient was quite stroy: 5 he fight 30 a wok without jiving furtho food, but fierce ie ac hasa in takin fer frit juice or fruit soup from the begin Ais.

QUES. What abl t the cases whent:ers is asore mouth and tho acids hurt he mouth?

A"S:--Taks ewe ot fruits, such yes as raisins, prunes otc., a α tho may be stewed thoroughly ad the whole nutrient value extracted, and twx that dissolved in the water ar be taken; it should be tainan well diluted. The patient an tale the fruit juice it connection with the fluid that ho drinks. Just this hov, muck better this is than to take milk, hic is such a food food for the poms.

VE will nov consider methods of subduing fever Whet is the first thing to do when ied that a patient has a fey r ? Rest. And why rest? To reduce the metabolism. Arc a reduction of metabolism will result in two things: First it will lessen heat production, and second it will lessen tissue waste and toxin production, and lat production comes in part from toxin production. Again, it will save the patient from wasting away; it will husband his resources. He is going on an expidition, so to speak, where he is cut off from his base of supplies, and he must economise his resources. His resources are all stored away in his body, and it is of the utmost importance that he should take care of his tissues.

Now another thing of importance, we found, is to fast. Is absolute Isting useful in many cases? Yes. Nov fasting is not near so serious a matter as marypeople think. I romomber when I was a boy if a person should miss a meal once in a while that it wa a terrible thing--to go all day without eating, and that it was a dangerous thing to do. I think that the majority of eople who are not accustomed to fasting think that it is a positively ancousthing to even lose a meal-and to lose two meals is a dreadful thing. When you are on board a train you sometimes hecasion to oe how people fool shout mi sine a meal; when the 9 as be on an accident or a delay that leaves t hem out ir the country, --the e is a tremendous clamoring.

I had a letter from a lady yester day morning saying that she had eaten nothing for throe we oks. She was sur faring from chronic ir activity
of the bowels and was taling that mothod of rolievieg it. She haci tried it before, with excellent results. I reag Imber one patient gt the Sanitrine who warforing from that cause, and sbout thirty years ano she rent to : lititie vater cure were they usedto have t eir pationts last the first thing, and so she fastec throe wooks the first thing she dic, and sha vas well for ten gears. The re is a great real or power on fasting, and at this ater cure they used to nale their petients fast for two to three w eks the first thing they did, and then thare was no complaint over the bill of fare. They had surficient apeotite by that time to eat anything that toy micht have inis was in Ohio. An Rnglisi lady vas in the cures of vienna, and s a rrote quite an adcount of the fasting cure. But it is not vory much practicod at the prosent time.

No what aro we going to substitute for th is gosolute fasting? (Fruit diat.) Yes, a fritt diet is an agroogble way of fasting, and the best diet for a fever patient is stewed reits, fruit soups, fruit juices,--and of tha ai I elieve ruit soup is the best thing. The only objection I have a ainst it is that croked fruts are not quite as effective as t e unconked fruits in destroving earas.

UES. Why is it that some people complair of headaches etc., if they lose one or two meals?

Ais.--Well, tharn are certain disturiances wich come from fasting which we will have to take up at another time. But briof 1 V I thirk tht the main troubles cone from an irritation in the stomach set up by the secretion of hydrochloric acid, and that hydrochloric acid having no fod to dilute it, irritrtes the stomach. In ome cases whon ha or indicates that thore is a necessity for food, the h drochloric acic is poured out in advance of the swall owing of the food. This

Thas rot bean uncerstood pntil fecontly. Thon thre are cases in which the stomach secretes gstric juice all the time. This is concition in which there is very likely to be an uleer of the stomich protty soon. But thane are many cases in which the hyrochloric quic is oured out in the stomach in advance of the Xxmitx food, and acts as an irritant to the onprot-ected stomach. Tht is a reason for that "a 11 gonen fooling when a parson whas lot eaten. Another reason is that as in chronic 5 astritis, the valls of the stomach fall tocether and tione is an ir itation of the surerace which ives rise to this cond ition. QUS. If the cooked foods are not ans efficient as the uncooked juics, are thare any means by which e can preserve the raw fruit?

ANS. Yes.. I am tryirg to devise means by whiatg ve my he able to preserve raw fruits, and I hope to se able to do it. I have fone experinezt under way now of about two pints of the ruit juice. It costs about $\$ 2$ for t he pint and a half. It is made directly fro m the gpples and put in a vacum pan. It is vapor ted dovn till it is a geeqt deal thicker than "molasses in canuary,"--it is like mush, and it is wonderfully delicious, amd has all the natural flavow. It has benn boiled it is true, at a tomporature of 130 to 140 , i. a vacuam pan, so that it is thickened, --so that it will keop, I think. Nov we can get fresh imits rearly al tho year and ve can get pemons and orancos etc., all of the time. and you knew lemon juice and orange juice are about the most efficient which we can give to reduce disease. IncTurkey we can always qot fresh fruits, and we can get the pomedrante, and orarges, lomons etc., from Palestine. It youlc be no cross at all to dine o: pomegrantes.

We have rest ir bed, fasting,--and what is the next matter of importance to be considerad in relation to the fevor patient? Regula tion of the temperature of the room. We should have a 1 ow temprature,
of about 60". Then asain, if ve get the tempe atur* too low, wo might have a fisadyantace quising from that. I thit \bar{k} I shoul make this re mark with foforence to the influence of the tempesature: A tenperature below 60" will increase hat production, as W - ll as a tenperature quove 60n. Of course betweon fifty ald sixty degrees the is no ppreciable difference, or betwon sixty and seventy. Botnween firty eicht and sixty eight is the negative area, or neutrál zone.. Now when the tomp erature of the air in a room is elevated that increases heat production, for the rea son that $n x$ arything that will increse he at elimiration will also increase heat production. Evory condition of elimination
the body that will increase the heat maknexixixx, , ill increase the heat production a: vell, and this is a necessity as a protact on to the body, for otherrise, as we figurad out on the blactrboard, the body will. lose so much hoat that it will be brought into a dangerous con ition. But thore is this ooint that I want to male clear to you that heat produvtion is ot increased unless the skir is cooled--unless the body is exposed. So we may have a patig) nt 2 in a room wher tho temp rature is 40", proviced the petiont is kopt ware, and not chilled, and we co not have any increase of the heat production unless there is a chilling of the surface. Then we h ve a signal by hich wo knov then heat procuction bocins, ad that is the sensation of shibering. Now if tho pation is not cooled by the cool air, he does not have increased heat production Now what is the next thing? just as soon as heat production bocins bat elimination bagins, under norual concitions. In fov r the body has lost its power to rofukate these functions, $s o$ in that case it is not so true. For instance when the skin is normal, whon the tomp rature of tho room rises that males the person be in to persire, sud at the same time the temperature goes up-cwhen the temperature coes up to 104
then hov much is the elimination increased? throe times. So heat production mult be incrased right glong with thet elimination. But in the fover patient this is not true when the temperaturg of the room risog. His hoat elimination would be diminishod instead of bein increased, because the skin is cri pled. The stin is qleady hot aed dry, and he cunot perspire. Now when the skin is warm and तry and red, how may the elimin tion be increased? Hoy can the body ine ease the elimiration, by itself? By porspiration. But supose the skin is paralyzod so that it cannot perspire.,-than what? It is helpless to do anything.

Now we will suppose that the tomperature of tho room is inceresed. We will not increase the hat elimination at all. The tomp ature of the \mathbf{r} om rises, and as tho body i glininating heat only as it car throw it ofl from the skin, into the air, apd tho te gorstu e of the air is already above, -here is the tomp rature of the body at 104 ", ard lare is the temperature of the room in ty is case at 60 ". The body is giving off hat i the sane $w_{\text {ay }}$ that a stove would ive ofl hat, and it has not the power to moisten it self. The sweat Elancs, a paralvzed and cannot act. Now ir this way it is fiving off heat at a certain rate. Now suppose We raise the temporature of the rom to a hicher degree. The heat eliminat on is diminished because it ceponds u on the difference between the t ampe ature of the air and the temporature of the body, and thon if we lesser this difference thon we lesser the olimination. The differarce between the emperature of the rcom, 60 " and the te perature of the patient, 104", is $44^{\prime \prime}$, but if waise the temperature of the room to 80" it is but 24 ", so that the elimination \quad ill be twice as ras id the first case as in thesecond. Now if the alimination is still tue hor diminished by raising the tomp rat re of the roon, then the tomporature of
the body must rise, --and car even bell about how ast it will rise. We will say that the nurse has neglected this patient, and aliowed the te peratu e of the room to 0 up to 95"; then the difference betwon the temporature of the pationt and the tompe aturo of the r on would be only 19". Before, the torape a ture of the row was 60 ", and the difference Was 44 ". Now with q pationt with a terp raturo of 104", with a cry hot akin, about how auch do you imacine that that pationt s temporature woul in a probability in crease? I cave you a rule sometime aco, by which you could krow. Wht por cent coss the heat poduction increase with overy degre of rise of tompr ature?
$31-3 \%$
Now this pationt has a dry sin. If he ras pors iring he mould be throving off hat at ar enomous rate, but the skin is dyy, and thore is :o perspiration at all. No let mo ask you a question: When a person ha a diry hot, skin, ard the sweat glands are absotutely paralyzed, is thore any evaporation taking glace? How car th me when there is no sweating? Osmosis is tavi. f place. The stin is not like a rubber coat, impervious, and you know tht if you take a bladder and fill it vith salt water and place it in a different meium, that osmosis takes place. The skin is porous. Indepondant of its secreting overs it texxaxtexx is a porous covering, and rator passes out by osmosis, so that there is some evacoration taking lace even with this dry hot stin, and more than there would bo vith a dry cold skin, bocause we my have a dry cold slin, It is continually fing off more or less heat. So nature is doing all that she ca. to eliminate, but, probably due to some toxic substancos, the sweat glands are paralyzed ard they canot flood the skin with wator, and the persipation is greatly lessened thon if ve had a temperature of 104 from exercise wo vould be pers iring vigorously.

Now how many gegres above the normal is this? We will call it 6. We riil multiply that by $3,1-3$, \%-it is possible for the heat roduction to bo incroased tyanty par cant. Mov I think it is important to mantion tis point, bocause wo might gat the iopression from finding the patient's tomperatu:= so i in fover that the tamenraxx heat proCuction was increased much more tha it is. We find a porson exercising and perspiring, ithout any elovation of tomporature, and vet ve find that that person's hoat production is inoreased $31-3$ por cont. above the norman and wight mensxam im ire that a person suffering from fever has a geator rise. But we must mention les that the Devson surfaring rom a fover ha no such r se of temperature as thit. If he did it vould vaste him avay and use him up in a very shor time. He:o is a man exercisiry and perspiri z freely-- or, he is in a Turpich Dath, ond the $2 e$ siration is uuring richt off. Supose he stay there forty eight hours--what would his condition be? He would lose in Fisi t vory rapidy. And then swpose that ho could take no food, and was vasting at that r ate: His condition vould simply be one of complete exhaustion in a ory short time. Now supose a man with a fovor was boind burnod up as rapidly as by work. In vor it is on'y the heat that is consuming him-it is only one-fith work, and f ur fifths heat-and ho has a hicher intensity of the fires of oxidimion than in fover. Her is a person engaged in vigorous exercise: Th mount or oxycon Which be takn in and pours out may be increased to seve: times the normal amount, and the amount of CO_{2} that he throws offxisay be increased several times, and that is teaction of ta etabolism in the body. Now whe have nothing of this ort in fever. Wo have an increase, but it is comparativoly slicht, of CO_{2} in fever.

I oricinally had an idea that a porson in a fover had an onor-
mousiz repid consumption of the bocy. But there is no such very great ys increase of heat production, only i, pacpotional cases. If it were arything like the rapidity of the tissue consumption and oxicitation thich takes place in viģorous exercise tio jatient wou ld be consumed Kery uch more rapidy. Now o lnow that it this aztie, t parspires Vary so little, down coes his teperature. To all kov that from vour oxporienc in nursing tov r ca es. And there is pochap a double reason for that : One is that the condi ion of the patient thich allows him to perspire is n improved condition, as well as the cooling off of the xaxp body by the fall in temperature.

How we have twenty or cent increase of hoat production, and the normal rate is 420 por minute. There is an easy way to remember the rate of hest production: Hov many degines F. are rapirn to make I"C. I. 8" That papescnts the ntaber of kilogran calories, centigrade, produced in a minute. To convort this into gentigrade kilocram pounds multiply by the number of pounds to the kilogram, 2 1-5, or 11-5ths, and xa wo multiply this by the heat units, $9-5$ ths, and it equals the pro-duct,--four. Then all you have to do is to multiply whatever number you have by four, and it will cive vou t number.

Now will o back to the oricinal 2,700000, which is the number fer a day. Divide that by 24 and wo have 112,500 per hour, ard ve can easily. reduce that to minutes by dividing by 60 , or 1870-.that is gram calories. Divide that by 1,000 , and we have kilogram calories. That gives us 1. 8 kkilogran calories per minute. Now we will multiply that by 4 , and that gives us Farenheit pounds, and that oivs us 7.2--ve will call it 7. for conv nience.

Now I am only goinc through these few problems to show you how easy xttxkait is to have a few hitching posts, so to spoak, and to hang these other things on those "hitening posts ."

When a person's temparature is elevated 7 of a degree, it rill cause parspiring, if he is in noraal condition. When a mar is runeing his perspipatory activity is sevan times riat it is hen he is lying horizontally in bed. Dr. Parke rigured these tiings out.

The nu ber of heat units ger nimute is 3.6 . The heat elimination is such that the ptiont's tomperature is kept down to 104 when the tempelatare of the roon is at 60. Now when the temperature of the poo in is at 85, ve cannot say that the hoat elimination is lessened one-hale, because we do not know what it was in tio first place. For instance, here is a waight--an unknown quantity; and here is another weight that reighs forty pounds more than the other. Now we will diminish the one or increase the other so that it weighs but twenty pounds more. But we cannot say that we have dininishod the woight one-hal, because we do not know what it was originally. Now it vas previously twice as much out now it is only one fourth as auch. But it is onl the differ nce between the two that is diminished. We know that the di ference in the elimination betwen the temperatuces of $60^{\prime \prime}$ and $36^{\prime \prime}$ is onIy about onehalf, but we cannot say that the heat elimination is only one-hale what it was, because we do not know, whe the standara is. We cannot say this, out wo vill make a guess at it. The temperature of the air at $60^{\prime \prime}$ is neutrel, and when we set up to 104" it is increased thees times--three and a hatf times. "e vill suppose it is inc eased by the he at of the 9ir itself. So the tmperatuce isinneeased by the fever conditions, and now we have aded the influe ce of the air in addition, and it is increased fifty per, cent, so we will add this 3.6 and 50% or 12.5 . This is approximately right. So at the rate of 12.9 --is the heat elinination increasing? (No.). Have we a riss of temperature? (No.) It is constavtly diminished. As long as the body does not perspire, the
note it is diminished.
Now we will say that the heat production ha bee increased to pretty nearly. double the ordinal, yet the heat elimination is not increased at all. How suppose, that person is aurirg 4.3 heat units more than before, an the heat elimination is not increa ed at all. The patient weighs 140, and makes 4.3 heat units per minuter or 258 in an hour. Oe, we will say that he weighs 129 pounds, and he has in the course of an hour accumulated 258 heat units, and that distributed through his whole body u uld be two to every pound, or two degrees Cor his whole body, so his temperature will rise two degrees, or to 106 , provided the eliminate Lion remains the same--suppose there was no elimination, or it vas decreased, it would rise faster than that. Suppose we put a man in a hot path at the temper aturs of his on body. How fast will the teaperatiae rise? $l^{\prime \prime}$ in an hour, or two in an hour and a half. So with the tomperatu"n of the room at $95^{\prime \prime}$ it would not be unreasonable to supgos that his temperature would rise 1^{n} in half an hour, and if the room ware kent as war ia as that for an hour it would raise $2^{\prime \prime}$. above the normal. These figures ara not absolute, but are nearly correct. This is to lmpress you with tia fact that the temperature of the room is to be kept down. May institutions have acontad 60 " as the best condition for living rooms, and the most vigorous people ar in the countries wee the tomporatu ρ is maintained at maraxicox a proximately that figure. The body is protected by the clothing so the it doesn't chill, and in wintertime we have our stoves so that they kep warm, and so we are 901 e to ma in tain that temperature of $60^{\prime \prime}$ or $70^{\prime \prime}$. DR. PAULSON: The Testimonies men ion that fact.

It is won erful to notice how in Palestine and the Holy Land these conditions are arra"gxl. (Diagran.) Supaose this is the $3 e a$ 1evel. Here we have a great nountain ranse, and lit. Lebanon, whi has snow eaps nearly all the year around, -and thin ve hava a descont coming down here --and hore wo hys a lake, far below the soa level-- thicteon to fiftep hundred reet belor tie e leyel--the gead Sea. He is the Jordan flowing down i to that lake. So dovn here around the nea d Seave hava all so-ts of tropical fruits roving, and on the top of Mount Lebanon we have the xr horthern fruits, so that they have there in that region every kind of fruit that can be fruw uon the face of the earth, in that litile space. And here it is possible by sif t adjustments of resi ence--living in tents and novinc qbout-- ye can have a unifora temperature--they could have a tmperatu:e of 60 ", or a little Qoove or below, down here, and in sumar thoy could go pore to the aountain, and that way could live a perfectly natural normal life.

Now have wo ary mord questions to discuss? We have learnod that in Pever the consumption of the body is not so rapid as in work. That is one thing. Heat production is not so vonderfully increased. Now lot me call your at ention to this. If the heat production ere so enormously inceased, it vould be impossible to control the ever at all; but this beims true, it is psible to manipulate fovers oy the right sort of measures.

QUES. I would like to ask f by putting water on the surface and let ine it evaporate it would have the sane effect as the evaporation of the perspiration.

DR. K. Yes. It reducos the tomarature. As I intimated a little whilg, ago, the teaper ature falls when the pationt be ins to sweat, not simply because he sweats, but because is able to sweat. The fact tht he sweats is evidence that the morbid condition wich makes it im-
poscible for him to sweat, and which has paralyzed tis sweat ciands, is befter, so that he can begin to sweat, somthat it is an ovidence of liap covenent, as w 11 is a means of improvement.

QUIS. Would a cold air bath be good?

ATS. Splendid.

QuES. When he sweats is he not carrying out the toxins which produce the elevation of the temperature? That is t ue, but not as juch as you zould think. Dr. Bouchard says tht the slimination of poisons from the skin is comparatively insignificent as compared with the elini ation ofthe kidneys. The skin is nore of a heat reculator than an alininator. It is aore important as a means of mixix reculation that of elimination. We made some experimants in our laboratory uon the toxic preperties of the sweat, and found that it was almost impossible to kill a rauit ith it.

QUES. When the patient is in a condition where the skin is unhealty a d will not perfora its functions, is not that an indication that the otho elimi ative orgars are in the sam condition?

ANS. --Yos, that moans that gvery othor organ of the body is unh althy, b eause so long as the other or ans of the body are heal thy, that keeps the sinhealthy. A hile-bound horse is an unhealthy horse bocause the healthy horse keops his hide lonse. It is not the unitea thy skin that makes the unheathay andal, but it is iquossible so have a depraved a d unhealthy skin when the body is gerfectly healtiy, becuuse the ody will heal the skin and ke it healthy.

Now 40 have rest, fasting, regulation of the tempgrature of the room, and vater drincins- which cools to body off and clean it out. That is n an inportant thing. That is not a a en reedy. I think the rule is a glass an hour. But, you say, he cannot drint so nuch. well, take a sp sip at a time, and kep him siping until he has taken as much as he
ought or tale. Or, a pecson gets into a condition in fever in which he 111 do qutomatically almost anything you te 11 him to, anci you can h:ea zias of watar and a sube, and he vill kep drinkine automatiealy wha: youtell into. So it roatly degends upon the nurse no than anviniejs else in tha antter of vator drinksig.

QUES. That kind of water-..cold or varm?
In a case of fever it would be best tr give him cold water, for it is varined quickly, and te pationt has but little tendency to chill. But if tho patient has a 与akency to chill it is better not to give the cold water, because cold wate precipitated into the stomach sudienly produces a tencency to chill, sometimes But if the patient's nouth is dry and his temples are throbing, he villenjoy a little cold water, and a pint or tiv ofcold wator will o him Sod.

What 00 you call cold waterg Just a little below the temperature of the room. We have cold rater, cool water, very cold water, teyid water, warm vatar, xa hot watgr and very hot water. Those ale the different nanes used for the different ogrees of vater. I think that is about as wall as we can expres it in the English. In the Erench Ze coild divide it a little bit nore, beçuse they ha e some different terms theyt we do not have for subdivision.

But a word further in reference to water drinking: It must be systematic. The amount dopends very much a on the am ount of Tluis eaten, or the froits or fruit juices or fluid food he takes. If a persun is living upon ruit he doesn't need so much wa tor.

Suppose he is delirous, and $\%$ e carnot ake him drink? Do not fight with him, but he may take it oy enema. He may take large water enemas, takon slowly. He an take 2 large gaena with the expectation that there will be quite a quantity left behind, or a small onewith the
poscible for him to sweat, and wich has paralyzed ifs sweat flands, is befter, so thit he can begin to sweat, soathat it is an ovidence of Liqucovenant, as w-11 is a means of improvement.

QUIS. Would a cold aif bath be good?

ATS. Splendid.

Quas. Whan he swats is ho not carryite out the toxins which produce the elevation of the tanperature? That is t ue, but not as auch as you would think. Dr. Bouchard says tht tio elimination of poisons from the skin is comparatively insignificant as compared Wich the glini-ation of the kidneys. The skin is aore of a heat reculator bian an eliminator. It is iore important as a means of axixx regulation that of elimination. We aade some experimants in our laboratory uon the toxic preperties of the sweat, and found that it was almost inpossible to kill a ra it ith it.

QUES. When the patient is in a condition where the skin is unhealty a a will not perfora its fanctions, is not that an indication that the othe elimi stive orgars are in the sam condition?

ANS. --Yes, that aoans that avery other organ of the body is unh althy, beause so long as the other or ans of the body are heal thy, that keeps the slinhealthy. A hide-bound hors is an unhealthy horse bresuse the healthy horse keops his hide loose. It is not the uniea thy skin that makes the anheatiay animal, but it is iquossible o have a Cepraved a d umealthy skin when the body is perfectly healty, becuuse the ody will heal the skin and keop it healthy.

Now wave rest, fasting, regulation of the temp orature of the room, and vater drincing--which cools the body off and clean it out. That isn an inportant thing. That is not a a en reedy. I think the rule is a glass an hour. But, you say, he canat drink so much. well, take a sp sip at a tine, an keop him siping until he has taken as much as he
ought so take. Or, a peczon gets into a condition in fever in which he ill do aitomatically almost anything you te 11 him to, ancily you can h:e a ciass of watar and a tube, and he vill kiep drinkipe qutomatiealy wher youtall airto. So it really degonds upon the nurse no ee than anythieg else in tha uatter of vator drinking.

QUES. That kind of atter--cold or varn?
In a case of fover it would be best theivo him cold water, for it
is qaried quickly, and te gationt has but little tendency to chill. But if tia pationt has a LE2dency to chill it is better not to give the cold water, because cold wate precipitated into the stomach sudienly produces a temienoy to chill, sometimes But if the patieut's nouth is dry and his te.ples are throbing, he villenjoy a little cold water, and a pint or tw ofcold wat or will co in Etod.

WHAT 16 you call cold water? Just a little elow the temperature of the room. We have cold ater, cool water, very cold water, tepid ater, warm watar, xa hot wator and voly hot vater. Those are the dirferent names used for the different ogrees of water. I think that is about as wall as we can express it in the English. In the Erench We could divide it a little bit nore, beçuse they aa e some different terms theyt we do not have for subdivision.

But a word further in refecence to water drinking: It must be systematic. The amount depends very much apon the am ount of rluis eaten, or the froits or fruit juices or fluid f ood he takes. If a persun is living upon ruit he doesn't need so much wa tor.
supose he is delirous, and we carnot aake him drink? Do not right with him, out he may take it oy enema. He may take large water enemas, taken slowly. He wan take a large enena with the expectation that there will be quite a quantisy left behind, or a shall onewith the
expectation of retainins it. Introduce it slowly, at a taperature littie above or belo the temperature of the body. Tise neutra 1 temparatiare for the intisior of the body \%ould he 98.92 is ne tral for te outside of the body, but injide the tompersture is a little over a hundrod, so that the neutra telap ratare mould have to be Con 93 to $100^{\prime \prime}$. Wher the enema is retained, a a means of ceducing temprature, it is not necessary to compel tie patient to duink water, be becuuse the e will be enoubh left bphind from tle anoma to d atisfy t'e wants of the ody.. We aust rementer that in fevcr binere is a large alount of water being thrown ofl by the kin. The skin is arying up a 11 te time, a nd he \boldsymbol{W} ater must be survli d on that account. UES. Bould, you give a glass of Iruit juics overy hour? It be conbined with the water. If the gatient doesn't like to take anything ir the shape of food it may be woll diluted and taken right alon! with he water. We rember that floodirg th alimentary canal with ruit juices halps to lessen the growth of the lacili coli conmanis, etc.

Now suppose the pitient has a pevor thom ar infected wound: Then what would you do? suppose tha ztient has an injury, and fever in connction With it. We might have cold irrigation, or ir case of surgical wounds becomirg infected ve must open up the wound and drain it and cloanse it. pisinfoction and draings? are tho two surgical mears. When the pationt has had an operation and in s a fever, it is certain that there is pent-up pus somewhere, and we must rind it out and arain it and wash it out.

Nov our hour is just up, and we cone to the most important means, Hydrotherayy. In the rirst place we have tabmeasures to consider--just wh t is useful in reducine heat production, and those which are useful in in incereasing heat elimination. Measures which diminish heat production, and measures which increase heat elimination.

MEASURES TO DIMINISH HRAT PRODUCTION.

1. Graduated bath.
2. Tegid bath.
3. Cold riction bath.
4. Cold imersipn.
5. Colc immersion followed by short hot bath.
6. Arfusion.
7. Cooling ack.
8. Shower Pack.
9. Compress.
10. Fvaporating sheet.
11. Cold sponges--cold, cool, or tepid.
12. Cold to head or abdomen--ice.
13. Cold enema.
14. Cold wator drinling.
15. Cold air bath.

MEASURES TO ITCREASE HEAT FLIMINATION.

1. Hot Bath Followed by Cold Bath.
2. Hot Blanket Pack.
3. Hot-va, orating shest.
4. Hot Sponging.
5. Tomentations to the spine.
6. Fomentations to the spinenfollowed by Wet Shaet Pack.
7. Fomentation to the sp ine followed by cold Enema.
8. Hot Banket Pack followed by Cold I

Hot Blanket Pack followed by Graduated path.
10. Hot Blan et Pack followed by cold priction ath or Affusion.

Now you will have your quives full of arrows if you leare all thos θ aethods for controliine fevers, and how to use them, and you will be sbie to control any fever, as far as it ca be curtrolled. I have put these nearly in their order in reference to usofulness, with the exception of the last, water dripkir, which is useful all tie way through. The cold air bath and the cold graduated bat at the othor end givo you an idea of the efficioncy relatively,--but you may bring half a dozen o Yhese thirgs to bear at one time. You may use one thie as a main thinc, and half a dozen othor thincs as collateral aears. I They are all useful. Nov you must have these things so fi xed in your. mirds that they will come to you just as do the Ietters of the alphabot And you might say that we have here the whole armanentariun for fevr.

NOW this nor ing we are going to take up metho of reducing tho tor pecature in casa's in which the rise of toperature is due to increased hath production. We alight have three cases in which we could have increased heat production, as follows:

$H P+4$	HE +
HP +	HE $=$
$H P+$	$H E-$

Now we will consider first the methods with would be applicable to this first condition, and in so dole you rill notice that these methods would be applicable note or less in all cases of incrasised host production.

First of P^{11}, as paras tie host useful and the best of all methods that can be employed, aspoially in hos itsis or in sanitariums whom we have al! the receded railities, we will say, the graduated bath. This signuated bath is given in a full bathtub, and is a Tull bath. The patient nay be put in tie e tub with the water at a temperature one or two degrees below that of his own body, or at zoon the normal? tempe ature of tho jody. You must creme ob hat it is not to be much Li recent from whit the pesont temperature is. Tie idea or

- tho graduated bath is to diminish reaction, and wo sight say first of all that in the aghifcation of remedies for the reduction of rixurate temperature in Sever we must-ql vars aim to prevent reaction. Now Why do re rant to prevent coaction--or at least to prevent thermic reaction? Because thermic reaction would produce increase of the at production.
yosed to the cold a d ins q temperatu of of 70", at $\alpha, a, y y$ water at
 Then sugpose v asply vater atriantenpengsune of $4 O^{\prime \prime}$. (Yes.) Yes, that fould produce a theraic ceaction. We must have q temper ature which lovers the temer ature of the stin. There mut je an a plication 4ace vitich will lover the tomp wature of the s in below its nor anl temperature. Now suppose ys apply hot water to the stin intil we raise the temperature of the skin to 120" and the: should aply cold water to the skin sutlicient to uring its tompratute down to $95^{\prime \prime}$. Would that produce a thernie rea action("Yes"--"No.") Therg is a difforemce hre ard it is necessary o make that couar.. A theraic reactic. j.s a protective :gaction whic' protects the body from loxing too much hat. The ciroulatom raction is a raction whic wares the skin, anf tends to cool the intarior of the body, out the thernic works in the oposite dinecton. For instange, under cold the bluod vessels of the slin are contracted, and the heat of the bouy is raised. The cirvulatory reaction ha the erfoct to ilate the vesses of the sin and thus cool, tho body off. The circulatory reaction warms up the part hi h was chilled, out cools the body as a role. Whaceas the theraic reacion potects the bory as a wole by inc:reasing the tast production $n d$ raising the tampatu of the blood. The ther ic has a celation to the body as a whole, whie the cirelatory has a relation to the part o wijet the asication has beormade. So it is when you apoly friction to a art-but shis is cir ulatory raction, not the raic, for that affects the boty as a whole. It is very imortant to distinguish clearly between these two reactions.

No ve cal see th it is very important in fever that the themaic ceaction should be sup, essed, because the thermic reaction produces neat production--at any rate in ordingry cases of fevere whecovor we
 to suppess that heat prociuction; so the best applications so mate will be those riich prem perait circulatory eaction whilefencouraging theraic reaction.

Not in this case we al ays desife txara that the:e shall be a ine eased olimination if possible, because v vant fo lostor the temparate bure of the body; so wo waul pover tariov of sivige an appicution to a pros in ordinary fover cases rhich rould tand to dimisioh the heat eliaination, for when there is incrased hoat production wition ircreased heat elimination se would neve hink of isiving a:y kind
\$6 an aglication which would fond to low r the hoat elianination, ecause thare is in rea od heat production, and althou h there is an inceased host oliminstion it is not sulficient to keop up ith the increased hast production onough to balance it. So we never think of givinc ar aplication to diminish heat elimination, becaue we rant nore heat elimination. Therg is in reased elimination in tris case, case 1, but vernend still more. We va:t if possibl to emplyg u h pasures as will incease hoat dimination without incerasing heat production.

As a rile $\because 2$ avoid all measures which vill produce what is ordinat ily called a raaction. That is the ordinary rule, butwo can mate a istinction hera and say we will avoid those measures wich rill produce a thoraic eaction, ant employ measu es hit will ercourage circulatory reattion.

Nor let us seg: Suppose start with a method which is coming to be quith Cenocally used. It was projosed oy Glenard soue tionty years ago, but was in use longer ago thar that. It has boen advocat d by Boworard, and is now boing used in tis country--tat is the gradusted 2ath. The patient is put inte a bath at a terperature about that of the
body. Now suppoe the patient as a temperature of 104, and fe put him into a sath at the same tomporature as his body,--at a terperature of 10:-"-what eflect would tht ave? Heat production ould is up and heat eliningtid would be stopped. Why? !Secause it would stinulte the tiors Enic centers and consequently therg would be a rise of tem rature.) Yea, it would do that,--and what else beside stinulting heat, roduction? There is no excharge of heat, but is body foes or produc inc hatalll the time. Now the vator is not capable of cuoling the body off at all, and so what will be the n tural consequance? (There ill be a rise of tomperzature.) His body would wata tite water, and the temperatuce of the body would rise with the temperatume of the wat r. The water would be heated, and by the body continuing to muse hoat the temperture of the water and the terperatace of the body wouldrise tu gether.

Now spose we int roduce the gitient into the bativ at a tempe rature 6 ofl03, whe the temeratue of the body id 104--one degree belou the body temperature. Would that increase the temporature? That vould increase the temperature because the body is shroving of heat do rapidly that it will raise the temperature of the bath, and both that and the tamperature of the body will rise together.

Now suppose we put the ptient into the bth at a terqerature of 103"--a temperature one degree below that of the slin, and lower the temperature of the bath, beginning ith 103 ", and lover the temperature of the bath ln $^{\prime \prime}$ every minute, whit will be the effect upon the zero of the temerature sense of the skin? (The heat elimination would be increased as the tempeature of the bath was lowered.) We were speatinc of the zero of the tomperature sense. (It vould come down.) It will ge diminished. No upon what does the thernic rea ction way depend? (It is the rflex effect xa of aplications to the surface.)

If the skin was at the zero point, and we, should apply water at zero, there could be no reflex effect. Butsupjose the temperature of the $g^{\text {tin }}$ In not at zero--3upose $i t$ was at forty, ald re should a. IV ice to the s in, what would to the eff act? It would cool the skin, because the temp acre of the skin is above that of the ice. Th Then -when the ice was withdrawn the skin would be warmed again-there round be a reaction, and the tenforature would rise. The is the reason the lumberman rubs snow on his feat to warm them. His feet ara not yet quite as cold is tho snow, and there sa reaction and a rise of toderature as the result. It brings more blood there. After a while if is feet are not warm ono high he will try it and in, endtill the reaction is well gatablished he can rub ice and so on his foot, and thus warm his feet with snow.

DR. PAULSON: We used to cure chilblains in that way. What was sase it that cured them?

DR. K. It is simply stimulati E the vital processes. There is a relaxed condition, and the aplication of tie snow set up a r flex action. The most essential thing in cases of chilblains is the hot amt cold foot bath. This is a sovereign remedy. I froze my own feat wen I was going to school-there was a bic crack in the wall near where I had to sit, and so T froze my foot. The result was that I suffered with the chilblains for a good while, until I learned of the hot and cold footpath, and in three weals I was fee from them.

Now vo will suppose that this atient'ssin has a temperature of $103^{\prime \prime}$ and the skin is not quite so hot as the temperature of the body, and We cab start at a temperature a little below that indics ted by the then moneter--rould theme by a reaction? (No.) Why? (Because the bath
is about the dane tera, ratike ae the body.) No: suppose ve lower the teaperaturg of the bath at the cate of 1 or two degrees a minute-would there be a strong reactiong (No, I co not nitnts there ill be ary eaction, because the zero of the temparature sensevill be steqdily lowered, and theresil 1 be no efreat reaction.) You see the chase is imperceptible; we do not lover the wat r frum one degree to anot r degree at once, but we lt the vat r run in, and we lowerthe temperature of the bath atiscox at the rate of about 1-100th of a decrea and so the gradation is imporceptible. Tht suppresses the eaction.

Now suppose ve hye a pationt with inceased heat production and incressed hoat elimin ation. His slin would probably be hot and red. In that case there would te all the circulatory reaction that as disic d. wo wou ac rot expect in t ore wouldmbe any particular need of an increase in the circultory activity. We do not need any reaction at all, because the skin is already throwirg the heat off more apicily thar normal. What we ant in this case is to stp the h at production. Thet is in the case in which there is both increased hat elimination a production. We want to suppress the hat production. So we apply our b ath at a temporatureof $102-3$, and we we Iower it st the rate of I degree per minute until get it down to 35 degrees and then we can lot the patient realn in the bath for some tine, and by an by he vill berin to get slightly chilly if you don't take good care of him. What would cause the patient to become chilly" (The teapecature of the s in vould bex lowered below that it is norally and thon there is no resction because ve down so slow. I Now wat eally mak the chilliness--ve have not had any reflex action. We hve lover ed the temporature 30 slowly that there is lo chance for a reaction--now hat maios the man poel chilly? (It is simely the contact With the cold vator.) We have not disturbed the s'in. (I think it is
the stimulation of the thermogenotie centers in the museles to varo in
 te skin.) The proction of the siln is dne to tio difference botregn the object is is brouglt in sontact rith and the to meratur of the skin, and yo have otrod it by such impereptible degrees that ve hav? cot it lower than the temparature of the lood. ow when a person is in a normal condition how much do you have to 10 er the tomperature of the bloud be besore he caels chi ly? I dio not mot, and I do not thin anyone else knows. It might be interesting to see if vo could lind out at
 acall any quthocife won this subject, and it will be an interosting thice to have a normal zeren tak the bath and ratoh the tomperatra $=$ with a tharmoneter in this mouth and note at whet point the sensation of chilliness begins.

I thins oucht to note the facts upon which the sonsation of Ghiliness megks gepends: It depers pon the condition of the blood Vesbets of the stin. Suppose vare a pationtl tamperature in a hot bath at a tempe atuce of 120. Did you ever notice a patient shivering in a hot bathe (ves.) Me There is no loss of hat, and thereiis no rePlex arecting the ther o anetic contars to provote an incrase of heat production. If a pationt id put into a hot bath at a tompatare of 10 ve vill shiver. He ill by coosellesh apearances, the sane as though he ore in a cold poth. What is the eaus of tit. The seromenon of shivering soens to depend upon the condition of the bloodvessels in relation to the nemes of the stin thax more tha atutine else. When thov are contracted the wo get the sensation or chilliness. It may be ia the one case fron excessive heat, or or the othor ham Tron the ffects of cold. When a pationt has been in the
baduatad bath for a lonc time the blood vessels of tie sin will begone contraeted by the dienct affoct of the col upou the blood vessels of the skin. And so the nowes of the skil till be roboed of thet proper supgl of bloqd, and then shiverine vill be produc d. Mon? a perghn is tating a bath of this kind, the monent shiveving oceursWhat doos that signif? Naturo rings a bell add jay that somath ing is coine to hypan-.that increased hoat provetion is beginning..

Now suppose vo ha ve a ationt in tho gaduated bath, steadily lovering the temprature, and the gationt fonls chilly, and ve think thet tize tarpor aturg is not lovereti as nueh as it should be, and we want to pevent th oqcurrence of shiverite-what vould wo for We voild rub hin. Very hard? (No.) Sinply poripheral friction. Yo Id that friction be centrifacal or centripital? Would it be in the divection of the veins, or in the oposita direction" centripital vould be in the diraction of the veins and centrifugal towards the ex tremuties. We vant to empty the veins tovar the hear t b caue the blood in the v ins has been there too long already and got coln, and the yeins aro relaxed, and so ge will move tho blood tovard the liart. Now phat would be the real of act of this friction-- a firm comtripital eriction topard the hart? Ho many think it oul raise The fampertuce of the patient? \%o ld it facilitate heat elimination? It will incrgase hoat elimination because it brings more blood to the suctace. It wonld racilitate the erpocts of the wth bath by bring more blood to the surlace of te body oy encouracing the cireulation of theolood shrou h the stin, and so ve would incerase the hoat jeliminstion DR. PNULSON. It seon: to me that as soon is the tmperature of the blood gets above that of the skin that shivering would be in.
nR. K. It does not sean based upon that for the reason that a hot Sativill produce shjvaithg as son asa cold bith. A very hot baty vity produee shivaring and it seqns to bo a matter in which several thing is que involved--the I owering of the temperature of the blood and the contraction of the blood vessels of the skin. Here is a ease for instafce where a man has aalarial fover. Did you ever harg the ague? When you vere shaking and shjverint, were you thiesty? (I was thirsty, but I only vantod to ivink a little bit.) Did you svor notige about the thaparature at that tine? (I took the tegp rature, and it vas highed The ash had a chill, api th temporature was higher at the sano tigie-tho manhari a ehill an a fover at the saue time. How many timak that Then a man has a hillhe has a fov: at the sane time? Tha* makos me think of a patient who camo into my orfice yesterciay:!.............. it Coas yo throun the top of my had and then it ma'ns me diza, , 2nd then I vomit." The diginass upset his stomath ged ha la saxum inia vomit. . Now the hill is a phenomenon of the fever, but it is not the Qill which makes the fever, but there is a rason for it, because or the corifzetion of the blood vessels of the sin dro ve the blood to the intarior of the body, and so naturally thece was ari se of the tollparature of the body. Mhen you fet a cold bath the contraetion of the intornally
 tempergbur begin to rise before the chill coms; ve ould rinc if Wh noticet carefully that histoapeatu 9 began rising for an hour on tivo before; this is because of tho toxins produced in the blood. The intoresting thing is that this man as shivoring althoughis tempera the Was rising q ilathe whle. A person has a chill, is shiverinct misksiz Skin is pale, het the seaperature of his blood is reall above nor al; so it is not the tomporature of the blood that gokes the chill, after all

So wher ? patinet tells us that ho ha: hi a chill, \%e qlays blow that he as had a rise of temprature. If a ma fives us the history od a chill, we feel qbsolutely certain that he had a fovor aft mard; ve sav "Vere you thirsty after rardo" And we find that he vas çampally thirsty. Maybe he had a persjration aftnivards unless there vas vat ve call a norvous chill. So a chill is an a most universal gvitence that there is a rise of tempatiae fatic lace.

Mov Int us botice about the cr a luated bth: We begin the caduated bith at one out two iogrens below the bodily tempratre. We lover it 1 degren jor ninute until the temperature of thn bbth is about 35". Kanp the patient in tha bath at 35 degrees as $10 n \mathrm{j}$ as he en be kopt there ithout cesting chilly ; we ought to tale him out iust a little before be begins-shivering. Now wo will, ostaone the time of tht shivering by gentle, fira frictio: toans the heart-centripital fric.tion. This till bring tho bloo d th the dureace and ρ gevent the bloodvessels of the sin becoming erpty und to suach au extent that the skin is becoming chilled. I is the coolirg of the sioin and tocntraction of the bloodvossels 6 the $;$ in, and it may be that the lovering of the temperature has something to do vith it, as well for you knov that in fovの nture sets a mark--she rogulates the bodi just as the onfineor sets his stom jauce, or his stean valve-his qutomatic bloworf, say, for twonty-five pouncis pres;ure, and then Wher it gets up thare or a triflo gbove it blows off. Nov in fovor nture senms to set a standard of bodily temperature at a highor p oint, and in this way she makes it unfavorable for the growth of germs which cause the fevor. She doos it as a remedial masure, and it hos the effect of producing a: antitoxin--a toxir which antagonizes the toxic substalcesproduced in the body, and enables the vital processes t 1 efend them elves against the encroachments of the $\varepsilon: m s$

Whien are destraying the ody. Now it myy be that if ve lower the bodily tep orgturs a little below this highor arts wich mire has set for this condition, that ve vill produce a chill ju st the sane as lovering the temperture of the blood below the normal temprature uner ordin ry con itions which produce a chill. Ww here is a pationt who has a fry We should not thin': that it is a hany thing if we ara able to suddenly. Set that gtient's tempratuce dorn to 93 desroos and ep it there, I imagine that it is really a bettor thing if the patient's tempe ature iz mantain d a little above the normal. So we need rot peel hasy because ve car bri nes the temperature dovn to subnomal acd keop it thete. So you sen hor utterly destructive is the action of antipyretics which cet the tomerature down suddenly below the nomal and keop itthere. If it dossn't get abovo 101 do not worey about it; when it goes up to 102 thon vou ca becin to make application of measures to reduce the temperatare; and if it rises above 102 you must toe vory enorgetic in your offorts. ordinarily When you get a fever gatient the tamperture is about 104 . , and we have means by which we ar bring that tenperature cown to 101 or below; but if whu keop it dove to 101 l-2 you feel that the ptient is doing Well and you endeavor to keep the terperatue at about that point. So when we aply the raduated bath, if the pati nt has a tomperature of 105 , we apply the b th at 103 , but rajidly lown it down. I ant to ay that we have no ovidereg that an oxtremely hich temporature is better than qude ate ofe. we find that the body has become r od, that the pa spiratory clands are paralyzed; it is natura forhim to weat, and what yo try to do is to aid natire to do what no ordinary conditions she would do vithout any help. She wa ts to do it, but she is geeventad from doing it by the cripled condition in tohich she is brought by disease.

SHETURE TO MEDTCAS STUDNHIS,NOV. $14,1898$.

> Sevore-mevier.
> J.H.Kolloge. M.D. .

You may each write uyen the blackboard all you can respember in reforence to heat elimination and heat produetion., as a reviot. I wil aleo ask you a P qu quetions for the same purpose: What are the advantages of the graduated bath? ("It stirs up the circulation.") Yes, It may stir the circulation esther up or dom, e-what do we call this stireine up of the eirculationf ("Reaction.) Cireulatory reactien is tho more seientific tarif. How many kinds of reaction are there? ("Thentse and efreulatory.") May we have one without the
 ("Disturbance of the vasomote centerg.") Why do we get 1 te (mbecaise weool the skin.") what then would you say was the real oecarse of cireulatopy reaction then indueed by thermic applieations ("Ralsing or lowering the temperature of the skin.") Can we have a eireulatory reaction as the result of raising the temperature of the sikin? ("Perhape--*) That is a very interesting points it would bring more blood to the eltace, --suppose I apply a hot fomentaIIon to the akin and the skin is red-is that circulatory reaction? (NO.") Ien't a red skin avidence of reaction P ("Yes.") It Is not reaction, --there is action-pthere is a diference betwan action and reaction. Is apply heat to the sin and $1 t$ becones red, what is that? ("Action.") Can re have a reaction by the application of heat to the akinf ("Tt must be very hot.") If we make a very hot application to the skin may we have a reaction ("Yes.")

What sort of reaction is it? ("A eireulatory roaction.) What is the nature of the application (OA short hot application voula be about the sane as a short cold application.") I hope you this subject of reaction, ae you will find it ull holp you to a better undorstanaing of the mole subject.

Now there is reaction from heat, and there is reaction from cold. What ve were talking about then wo last met, was not roaction; it Use esert of peoudoreaction. Whon heat is applied as rectly to the skin the regult is not reaction, --it is aetion; the offoct is dine to the direet stimalus of heat. When a person shivers in consequence of the applieation of cold, is there an inerease of heat produotionf (wro.") Suppose there was agoose-flesh appearance produced, --woula that eause an increase of heat produetiont (MNO.") No, there is really no increase of heat production then.. The offoct of the aotion of cold is to aiminish the eiroulation of blood In the skin; it blanehes the skin and thlekens it, making it a poor conductor, retaining the blood to increase heat production,--that is aetion of cola. Now there is a reaction, in wich the bloodvessels are allated, heat production is inereased, ald heat eliminati on is also inereasea by a rugh of blood to the skin, so we have action and reaction., so the difforence betweon action and reaction is this : Action blanohes the skin, and causes shlliliness and congestion of the internal visespa. In reaction we have rodeening of the $s \mathrm{kin}$, allation of the bloodvessels, inoreasedes heat-production and increasel of heat olsmination; in the application of heat, we have allation of the bloodvessels, ote. Then when we have cold applied to the sht skin it produces reaction, and then wo have hoat applied to the skin

-3-

It preduces dilation of the bloodressels, --and we have rodness of the skin in both eases, - the action of hat produces redness of the slifn a and the reaction of cold produces redness of the skin. Now, if a person should come into that door, having had one hand in hot water and the other hand in hat, water, could you tell wich hand had been m hot mater and wich hand had been in hat waterp (No.) You could not tell mich hand had been made red by hot water, or wich hand had been reddened by cold water,--how could you tell the differencep (By the relaxation of the vessels of the skin.) But could you really see that? ("No.") Who can tell usf ("If the water was hot, there would be a bluish tint.") One would be a dusky red, and the other would be a bright red p ("Yes.") That is because the bloodvessels and arterioles are relaxed by hot water, --in one case it is venous blood, and in the other case it is arterial blood; there is a stasis of venous blood, --what causes that (The relaxation of the venoles.) The hot vater acts more upon the venoles than upon the arterioles; it dilates the small veins, and that produces a stasis of blood, because there is not contraction which will send the blood along.

There was an interesting discovery made in 1781, and the fact discovered was ppublished by an English physician whose name i believe was Crawford; he observed that a cold application produced a brighter broms \wedge color in the binod did a hot application, and that when heat was applied, the difference in color was notimarked between the venous and the arterial blood as when cold is applied. Cold has the effect to accelerate the circulation and to increase oxidation; the same principle applies to the whole body,--but let us procesd.

Heat causes dilatntion of the small veins of the skin, and a dusky redness in the color of the blood, --but you will have to look sharp to see the difference, whon hot or cold vater is applied, $=$ try the oxperiment vith yoar two hands-place ome hand in cold wator until rolaxation takes place, and the other in hot water-youacan easily make the experiment.
Q. Is there not a compensatory action which takes place, -aa contraction of the arterioles-- by a hot application?
A. In a case of anaemia you might apply beatnot a temperature of 118m to $122^{\prime \prime}$, and for congestion you might apply a temperature of 130° to $140^{\circ}--$ in that case there is an interesting diference: it is important to understand the difference in the effects produced by different temperatures; a prolonged application of tem perature at $118^{\prime \prime}$ to 122° will produce a mild congestion of the brain. Then if you apply extreme heat--130" to 140" --you will have congege Tor contraction of the bloodvessels of the brain. When we have heat relaxation, what takes place? We have first, contraction of the bloodvessels, -we-hevo-a-ilght.hlanching of the skin-angosam. Plesh apparances a receding of the blook-pren-the surface tamporam

 a cantraction ai the zessais fi-mmorn
 charectaristie a Coot of zold, it must be entirely cold, and to get the characteristic effect of heat there must be intense heat; in the internediate temperatures we get mixed effects wich are 8 cmo times confusing.. Now let us see the offect of heat, - we have first, contraction of the bloodvessels, a slight blanching of the skin and a goosemlesh appearance, a recedies of blood to the surface temporarily, --and now what flllows all that? Do we have an increase of heat-produetion P (NNO.") What do we have? ("A blanching of the skin and contraction of the bloodvessels. Do we have heats production he increased heat-production after this hot application? (Wro.") We have pallor of the bloodvessels and the effects are almost opposite to the effect of cold; so we have relaxation from heat als0. This seems to be neglected subject--the relaxing effect of heat-but it is a very practical subject; when one inspects it systematically we find there is an almost complete antithesis between the effects of heat and cald. We have a reaction from heat which is an atonic reaction, and we have a reaction fre cold which is tonie; one is in the direction of increased activity, and thefother is In the direction of diminished activity. The immediate effect of cold is a sedative effect; the later effect of cold is an excitant effect; if we have an opportunity to study packs,you will see
cold how beautifuliy this is 111ustrated: The man is put in a pack and he shivers; his chatter and he feels uncomfortable, and for a little time he thinks he would like to get out of there as quickly as possible, but pretty soon he feels rather comfortable, and little by 11ttle he gets to be warm, and then he gets uncomfortably warm
and he is thirsty; a little later, this discomfort disappears with perspiration: beads of perspiration start out upon his face and he stage of has a stoling of confort and vellbelng; first there is ansedation, In which the temperature is lowered; second, a stage of reaction, when the skin is being heated, and third, the eliminative stage. The reaction stage is excitant, and the elimjnative stage or diaphoresis, is the excitant stage carried a little farther, the diaphoresis beirg due to the excitation of the glands of the skin. In the application of heat, unless the heat is renewed, there is a reversed condition-put your hands in hot water and then expose them to the air--they are colder because the power to cre ate heat is diminished by the hot application and hence the circulation is diminished. Suppose you of heat put your hands in cold water--the effect would be first excitant, then depressant. Now cold is just the reverse--first sedative and then excitant--In other words the primary effet of cold is sedative and the secondary effect is exeitant, wereas the primary effect of heat is excitant and the secondary effect sedative. So we have a reaction from cold and a reaction from heat.

We began about the graduated bathbut you must get these exceptions clear in your minds if you don't get anything else clear, and if you get a thorough comprehension of this apartof the subject you will get a better idea of it than you otherwise would. But this is the point we were after: Why do we use the graditatedinthp Andmhow can we get a circulatory reaction without a thermic reaction--what produces a circulatory reaction Suppose we have a pateota patient whose skin is tt 100 " and who is in a warm room: Suppose we make an application at 90°, oor give him a shower-bath--what would be the effect?

Would there be a reactiont ("Yes.") The temperature of the room ahould be about 60%. When th the body temperature is 100", the teaperature of the body rising one degree for every rise of $20{ }^{\prime \prime}$ in the surrounding atmosphere. If a person is vorking in a hot room his temperature will rise unless he perspires freefly, --would there be a reaction ("There would not.") Why not? (Various answers.) What is the noutral temperaturep (n94.") There would be a little reaction with a temperature at "nen" $92^{\prime \prime}$ wich is ywo degrees below the neutral. Suppose we have a temperature of 80 " instead, - would we have a reaction ("Yes.") Suppose the temperature of the skin is $80^{\prime \prime}$ and we apply water at $00^{\prime \prime}-$-rould that produce a reac. tion ((No.") Suppose a person comes in shivering, and we anply eater to him at the temperature of the skin,--would there be a reaction ("No.") Here is some marm water, and here is same cold water, and-when I put my hand in this water (oxperimenting) it feels cold... You see I can got a tonic effect upon one hand and an atonic effect upon the other. So the hanas don't tell the same story. This water is at the neutral temperature. If I take a bath at that temperature will that produce thermic reaction ("It will not.") could I get a eirculatory reaction with it? ("Yes.") If, on the other hand, I should put this hand in icemwater, and then put it there I would got an atonic reaction would I not ? ("Yes.")

We see from this, that circulatory reaction is due to change of temperature-to an application which changes the temperature of the skin, and an atonic circulatory reaction is the result of the application to the skin which lowers the temperature--we must lower the temperature of the skin in order to produce an atonic reaction.

Not wht is thermie reaction (Various answers.) It is an application which produces an elevation of the tempenature of the body,-the total heat production of the body is increased. In order to have themic reaction wast have somothing done wich affects the thermi e centers of the vein brain, and this may be accomplished re110x1\%, by changing the temperature of the blood or through some nervons influence or through toxie substances in the blood. Nov What is the neutral temperature of the alrP $\left.\mathbf{Y}^{\prime} 60^{\circ}.\right)^{\prime \prime}$ If the temperature of the air rises above that, does that produce thermic reactic ("Yos.") This is acort of $111 y$ defined thermic reaction, $-1 t^{\circ}$ is an the exterior acting upon the interior, - if the comperature is depressed much below 58" will that produce a rise of temperaturer (NYes.") What is the effect of the epplseation of long continued cold ? ("Yo lessen heat production.") For this reason people who live In Arctic climates have a lower temperature than people who live in tropical climates or temperate climates.

Now in the graduated bath there are two things to be considered, the circulatory reaction and the thormic reaction wen you first begin to bathof: Suppose we should lower the temper very rapialy be10 the body temperature, --what would be very like to be the effect of that? Wo woula have circulatory reaction and also thermic reaction. Suppose, for instance, the patiepat's temperature is $102^{\prime \prime}$ and we put him in a bath at 85^{m}, -What would be the effects (Heatproduction.") (It vorla vary according to the length of time the pationt was kept in the bath. ") What would be the sensation of the patient? (wie woula be chilly.") What elsef (whe would shiver.") Yes. Then wat would happen?? ("Increased heat production.")

3

Then that ve can objectively aim at is to suppress the shivering. If we have made the application so that the patient loes not shiver, what can we say we have done? (Lovered his temperature.")

Lovered his temperature whout increasing the heat-production.-and that is the thing ve mant to do, because there is too much heatproduction already, --we steal davay the heat of the patient--we steal the heat production from his body; the body does not knov What is being done.; we lower the temperature and we suppress both kinds of reaction, the eirculatory and the thermic. Now is there any advantage in suppressing the circulatory reaction in a bath of this kind? (MO.") What is the condition, when we suppress circulatory reactionf ("Diminished heat elimination.") Do we want to dir minish heat elimination? (NO_{o} ") We do not whe to decrease heat ellmination.

One of the effects of the cold bath is to cause contraction of the bloodressels of the skin, thickening the skin by contracting the tissues, and lessening the conducting power of the skin and th lessening the circulation of the skin, slowing the action of the heart through lessening of the circulation, and so heat elimination is decreased. This is one of nature's means of protecting her house, $s 0$ have tto throw nature off her guard, or neutralize that influence in some way in these cases,--how would we do it? ("By prom ducing eirculatory reaction.") It there any other way byich circulatory reaction may be producedi ("By friction."() Will friction produce circulatory reaction ? ("Yes.") I whll ask you to make a Iittle experiment, --put your pencil on the skin of your hand and hold it there for moment--as you press the pencil dow there is an asea of pallor resulting from the pressure of the pencil. Nov
take up the pencil and match that surface, --you sec the pallor dis eppeare, and a reaness takes its place; it is getting redder--the color is getting deeper and deeper: in five minutes the difference In color will be much more marked than it is now. Now there has been an action which has simply compressed the bloodvessels. Now pass the point of your pencil around this surface were it is a 11ttle rea, - not you see there is quite a fuide area of pallor extending out around the point of the pencil. That seems to be a pressure which is greater than would naturally be produced, --is it not probable that by this pressure you are stimulating the sympathetic ganglia and are thus exeiting the vessels beyond the point of the pencil, and thus causing contraction of the bloodvessels. Nov We have not been using great pressure upon the tissues, and yet there is an area of pallor, so there is an action which stirs the Visceral ganglia of the sympathetic and the vasomotor centers... Then we have a reaction, - the bloodressels are firgt contracted and afterwards ailated. Now friction is nothing but pressure, --by friction you press on different parts, and pretty soon you have a redness of the skin.

There is another thing which will produce reaction, -what is that? ("Percussion.") Percussion of the surface will produce a reaction very quicky; there is first a contraction of the tessels, but you wil very soon see that there is a reaction. Now see how quickly you can get a reaction (Percussion.) You can get a reaction very quickly by percussing the cheekg,--you can get a very Iine blunt pretty 800 n .

Then let us notice that we have not only a reaction from cold,but a circulatory reaction which can be produced by percussion or friction

Mov we have the graduated bath for the purpose of lowering the patient's temperature. Now we have increased leat production and leat elimination already; te desire to decrease the heat production,-and, if poseible, to do that else? To increase heat elimination.i we certainly would not care to decrease heat elimination. Now when we put the pationt in a cold bath there is increased heat elimination in one vay and decreased heat elimination in another way,--then What should be dane ? ("Rubbing, or friction."). So if we gradualIy lower the temperature, we by that means suppress the reaction from the cold, do we not P ("Yes.") Yes, because we imperceptibly lower the temperature of the skin 80 that the skin does not recognize the shock,--there is not that pronounced difference between the temperature of the mater and that of the skin 80 as to produce a strong circulatory reaction--that can be produced in another way--and how 9 ("By friction.") Yes,--by rubbing the hands up towards the shoulders; In that way we can increase the circulation of the skin, and thus do What? ("Increase heat elimination.") ("We could do that in a neutral bath.") Yes. We will consider that next. I thought it worth while to spend this length of tive in explainInc the erabuatad bath, becarse if wo und rstand this, po can wharstand othor iat's quicxly. ("When would you commence rubbing the patient ${ }^{\prime \prime \prime}$) How fast can we lower the temperaturef ("One degree a minute.") When will the patient begin to feel chillyp ("When the bath gets below the body temperature.") Then when you get the tempen ature down below the normal temperature you begin to rub the patient? ("Yes.") Suppose the temperature is 101 " to 103", would you begin to rub the patient then? ("No.") We would begin friction wen the temperature is about $95^{\prime \prime}$, conmencing gently and gradually increasing
the Fifotten- Figote of the Iriction, as the temperature falls, so as to have no shivering; in that way wan keep the shivering off for a long time.
Q. Do you mean to say that when the patient feels cold his heat production is increased?
A. Yes, --unless the cold has been applied too long. But we we
 If wo find that a man is cold wen he ought to be wamm, he is sick.

Now we will examine these lists which you have placed upon the blackboard,--the graduated bath is at the head of the list, because it is the best, and the tepid bath is the next best. The cold Priction bath is the next best, and then the cold immersion bath With the friction left out, the graduated bath and then the tepid bath, and the cold friction bath--the graduated bath without the lowering of temperature. - It $^{\text {it }}$ the graduated bath in part. (5xplaining lists.) It is the cold bath and the friction added. The cold bath immersion is the friction (9) bath with the friction left off. The affusion bath is the only addition applicational application in which we have a volume of water come in contact with the patient. The first six cases is when the body of water is applied to the patient.

In arranging your facts you will find it of great advantage if you will put them in order: it will not then be very difficult to remember them. I have noted these facts down and read them over, but I have put each one in relation to the others. I acquired the habit of doing that when I was a small boy, and it has been a great help to me, because when my facts are all arranged in a string, I

Just get hold of the ond of the string and the rest of the string comes along easily. Just got into the habit of tying your facts In a string, so that wen you puil the atring for one thing, all the rest comes in order.

LECTURES TO MEDICAL STUDMNTS,11-21-98. J.H.Kellogg, M. D.

Baths . Temperatures, ete.
(Recapitulation.) We will begin the bath at a temperature a little below that of the body,--perhaps five or ten degrees below the temperature of the body, thermic reaction being induced by a tem perature which is below that of the skin,- -what is the temperature of the neutral bath ? ($992^{\prime \prime}$ - 96^{n}.) Now notice the temperatures on the blackboard which we will call cool, cold, etc.--ve will start with "very cold." What is the temperature? ("320-65.").

 ("fo4" and upward.") Water is much cooler than air,--this is a point to which I wish to call your attention. Somewhere between these limits which we have named there would be no thermic reaction produced. We must be careful and not lower the temperature of the patient too rapidy; it should be lowered gradually,--about one degree a minute. If we start at $95^{\prime \prime}$ and lower the temperature one degree a minute for thirty minutes, what is the temperaturep ("65".) When the patient begins to shiver we should keep the temperature right down.

Now suppose we consider the physiological effect of rubbirg friction, which comes in with this bath (the graduated bath?) If you will try the experiment of tapping the skin you will notice that it becomes kexy pale when you percuss gently; a light tapping causes a contraction of the bloodvessels and maker the skin pale at that point while hard percussion will dilate the bloodvessels and make gkin red. Try the experiment. (Students try experiments.)

LECTURES TO MEDICAS STUDENTS,11-21-98.
J.H.Kellogg, M. D.

Bathe Temperatures, ete.
(Recapitulation.) We will begin the bath at a temperature a little below that of the body,--perhaps five or ten degrees below the temperature of the body, thermic reaction being induced by a tem perature which is below that of the skin, - what is the temperature of the neutral bath ? ("92" - $96^{\prime \prime}$.) Now notice the temperatures on the blackbcard which we will call cool, cold, etc.--we will start with "very cold." What is the temperature P (" $32{ }^{\circ}-6^{\circ}{ }^{\circ}$.).

 ("foun and upward.") Water is much cooler than air, --this is a point to which I wish to call your attention. Somewhere between these limits which we have named there would be no thermic reaction produced. We must be careful and not lower the temperature of the patient too rapidly; it should be lowered gradually,--about one degree a minute. If we 8 tart at $95^{\prime \prime}$ and lower the temperature one degree a minute for thirty minutes, what is the temperaturep ("65".) When the patient begins to shiver we should keep the temperature right down.

Now suppose we consider the physiological effect of mubbing friction, which comes in with this bath (the graduated bath?) If you will try the experiment of tapping the skin you will notice that it becomes vexy pale when you percuss gently; a light tapping causes a contraction of the bloodvessels and maker the skin pale at that point while hard percussion will dilate the bloodvessels and make the skin red. Try the experiment. (Students try experiments.)

Now frietion has the very same effect as percussion, only not so Vigorous; the natural effect will be the acceleration of the bloodcurrent and an increase of the heart-pressure and consequent slowed pulse and slowed respiration,--and what would be the natural result? ("Decreased heat-production.") The thermometer shows a silight rise of temperature under these condition, because the superficial vessels , and the bloodvessels contract; the first thing noticed is a slight rise of temperature. I will illustrate this,--this is the curve of thermic reaction (blackboard di agram.) When you apply cold to the surface there is a contraction of the vessels, and the effect of that is a lessening of the elimination of heat. There is at first a slight rise of temperature, but as the blood comes to the sufface, cooling off begins and the reaction occurs,--here is the curve of reaction. (Blackboard.) there is heat production and then there is reaction. As I have said, moderate friction of the surface has the effect to cause first, a contraction of the bloodvessels, and directly afterwards it causes a dilatation of the bloodvessels,-- I might also say here, that the elimination of heat is diminished by a diminution of the rate of respiration. With moderate friction we have first a very short contraction of the bleedvessels followed by a dilatation marked dilatation of the bloodvessels which continues for some time; there is at first a slowed heart-pulse, and afterwards a quickened heart-pulse. When the bloodvessels dilate, the pulse is increased; the same is true with the respiration-at first s low, afterwards increased. Moderate iriction has the same effect as does gentle percussion, as I have said..

Very $V 10 l e n t$ friction has only a secondary effect; there is doubs less a little contraction of the vessels, but it is not observed; the bloodvessels being dilated, there is increased circulation of the
skin, there is increased heat-production in the case of animals upon whom experiments have been tried, the temperature falls and the ani mal falls into a state of collapse. These experimants have been made chiefly upon rabbits, and it is very interesting to notice the almost parallell effects of friction and percussion. Percussion pro duces the same offect as friction, only it is more violent measure. effect of the
Let us see what the, application of this principle would be in the graduated bath. Suppose we put a patient in a graduated bath light,
and rub him in a sort of desultory way, - I have seen patients rubbed in that way in the graduated bath, --what would be the effect? (It would antagonize reaction.) We want dilatation of the surface vessels, and this would antagonize that. When we take the patient out of the cold bath how should we rub himp (wVigorously.) Yes, but he must not be rubbed too long and too vigorously; you may do this, and if you do, the patient will have a secondary chill and be injured; and if we apply too light friction we may antagonize reaction, so this, as well as violent friction would be wrong I have seen patients rubbed in such a weak, inefficient way that the patient was worse off after the friction than he muxxateretruxxxx would have been if he had not been rubbed at all. This is not simply because the effect of the light rubbing, $--1 t$ is not only inefficied but it is actively pernicious, because it contracts the bloodvessels When we want a dilatation of the bloodvessels. These experiments were worked out some years ago by--
Q. In giving friction after removing a patient from a cold bath should the friction be given until a reaction sets in?
A. We will come to thet. Now we have a graduated bath, and With this we will combine--what ? (Frdetion.") Let us see what are the essential elements of the graduated bath: The temperature is is s omewhere in the neutral zone, - not because that is a few degrees below the temperature of the body, but because it is approximately the neutral temperature, --we use this temperature, not because the temperature of the body is about that of the body in fever-not because we want, approximately the tepperature of fever, but because we want, approximately the temperature of the body. Now we wish to increase the tepperature of the body one degree, --how will we do it ? ("By friction.") We will rub the patient, and thus encourage ther circulatory reaction without thermic reaction. Now by using the bath in this way, we can lower the temperature gradually. We get crculatory reaction when the temperature of the skin goes up so that the temperature of the bath is below that of the skin. So we encourage ciralatory reaction by what sort of rubbing? ("Moderate rubbing.") In what direction should it bep (nnit should be centripetal iriction.") And we ought to give special attention to theflimbs, in rubbing the patient, --we payperit should pay especial attention to the legs, arms and chest and back of the patient,--wherever we haw hve a mass of muscles; wherever there is a mass of flesh we can squeeze the muscles and the flesh overlying the bones; we cannot do much in the way of moving the blood along by pressure upon the abde dominal wall, but we can do much by the other procedure. There is a question in reference to rubbing the patient after the bath,--as to whether it would be beneficial; that would depend upon the condition
of the patient after the bath. Suppose he is shivering, --we may stop the shivering by covering the patient with alothing, or by bringing more blood to the surface-provided he has not lost so much heat that he needs heat production; if $s o_{0}$ we may suspend for a mom ment, $s 0$ as to give nature a chance to eatch up and stop the shivep ing; if we should take the patient from the bath we might rub him 80 as to stop this effect. When we have decided that a patient has had a bath as long as he should have it, ought we to continue the bathf (${ }^{N} N O, s i r . "$) Rubbing has the offect to stimulate heat production, because it is mechanieal work; the pressure upon the muscles and the stimulus of friction may produce heat production as well as heat elimination, and we may overdo the application;so, as I sald, it depends very much upon the condition of thepadient. After we have left the patient in the bath as 7 ong as we think we should, shall wo put him in bed and ever him, giving him a slight Featien rubbing $s o$ as to cause him to reacct well, ,-wouldn't that be as well as to continue the bath? Tht depends: If we desired to continue the refrigerating action a little longer, we might take him from the bath uncorered and wet and cool him off by evaporation. But the question is, whether we want to stop this refrigerating action: If we do, we cover up the patient and let him react: if he shivers qand wants to go to bed, we cover him up and let the rem action occur. Now wouldn't the patient eliminate more heat if you allowed the reaction to occur than if you allowed the skin to remain cold? ("Yes.".) Suppose here is a patient to whom we apply a cold bath, and the temperature rises, we will say to XxXXxyoxex
99.4. Now the thing that yquickly follows is, that the temperature
goes down below and is normal, because the bloodvessels are contracted and the skin is cooled, ,-when the bloodvessels are dilated ? $^{\text {? }}$ the skin is being cooled off, the blood is being cooled and the tear perature is lowered. That is the condition of a patient when comIng from an ordinary beth cold bath . Suppose the bloodvessels remained contracted, --what would be the effect? ("They would remain contracted.") and the heat production would be increased.") Yes, and the temperature would then rise; we want the bloodvessels of the skin relaxed and the skin warmed up; wen the patient has been In the bath so long that he cannot react any longer we take him out of the bath 80 as to allow the skin to warm up, --so as to allow cirdlatory reaction to take place so that the skin may be cool for some time afterwards. Then, if the cold bath has had the proper effect we let the temperature come up immediately after taking the patient out of the bath, and the temperature will fall for some time afterwards. But suppose the temperature comes up just as soon as the petient comes out of the bath,--we conclude either that the man had not been properly managed, or that he had not been kept in the th long enough. Now if we take the patient from the bath and rub him tgorously we might in so doing increase the effect of the ba th beyond the point destred; or, if we take the patient from the bath and expose him to the air without rubbing him, the bloodvessels are contracted and there would not be a proper raaction, and the cooz Ing effect would not continue.. But we want reaction to occur soon, and the skin to become warm,--after a patient has been taken out of the bath and put in bed under proper conditions, does a cool skin mean increased or diminished heat elimination (Diminished heat elimination.") Then the patient must remain in bed $s 0$ as to allow a
reaction to oceur-..-
Q. Suppose we apply friction through the blanket, - -in that case the patient would get the benefit of the friction without exposure . Would that be vellp
A. It is not the friction that cools the pationt off; it is. the dilatation of the bloodvessels in contact with the air; if the pationt is covered up well there will not be much heat elimination.
Q. Yousald it was better to wrap the pationt up 80 as to give the patient a good chance to get a reaction?
A. I meant to say that we allow the patient to be wrapped up for a moment $s 0$ as to encourage reaction, -and we might also rub him 80 as to encourage reaction,--or we might combine both together, - . the question 1s, whether we should continue the bath by exposing the patient and rubbing him. Pristion would of course warm up the sking but we might continue the friction so long as to produce an excessive effect, first, by too much dilatation of the surface vessels. and second, if the friction were too long continued and vigorous; and second, by increasing the heat production by $t 00$ much disturbance of the patient. We should consider this,--that a fever patient is very easily disturbed; that the temperature will rise by a little work, or if the patient sits up in bed, or if he is talking with Irinds-sub things as these excite the fever patient, 80 too much friction is also undesirable for the same reason. Friction as well as all other things which disturh hout peoduetionin-a eover pationt. the heat-regulating processes in a fever patient will dimtyrb the heat production in that patient very much more than would be the case in a heatehy person in ordinary health. So that J think we

8.

might say, as a rule, that the fever patient should not be rubbed much outsiae of the bath; we might rub his limbs a little , but not gigorous ly: we might rub them with a firm pressure, but not so as to agitate the patient too much; we must not agitate the patient.

Now let us consider the tepid bath : The temperatare of the tepid bath would be what ? (" $88^{\circ}-99^{\circ} 0^{\prime \prime}$) Wolny put the patient in a bath with a temperature anywhere from $85^{\circ}-92^{\circ}$, and with this grauated bath we may combinne the effects of the gavit bath, --but we are now talking about the tepid bath; the patient would feel cold at first, but he would quickly marm up. We would then have in the tepid bath something of the effect of the graduated bath; we wouldn't have so strong a tendency to thermic reaction, and if we continued the bath for a time, we would get an excellent effect. We have noticed in some of our cases, for instance in one of case in Marinette, and in one of Dr. Hunter's eases.

DR. PAULSON: In Dr. Hunter's patient the lowered temperature did not have much offect.

DR. KRLLOGO: It depends upon the patient,--the condition of the patient is changing all the time. In this case the patient had been sick and exhausted, and the nervous system was extremely-iffitem the susceptible? and greatly agitated..

DR. WINEGAR: She was in a very nervous condition.
DR. KELLOOGG: Yes, and when a patient is very nervous and irritable it is not only the intellectual faculties which are disturbed, bt but the whole body is in that condition, and so the refflexes are more exceted, and the tepid bath is better adapted to such persons than the cold bath. In Dr. Hunter's case I found that a
bath at the temperature of 92° would lower the temperature of the body more than a bath at a lover temperature would. There was a case of this kind in Harinette; the nurse in that case reported to me that a lowered temperature did not affect his patient much, and I suggested the tepia bath instead of the cold bath.

The next bath that we mll consider is Branatis cold bath, in Which the pitiss patient is putin a bath at a temperature of 64° - 68°. There are advantages in this cold bath,--there is no doubt about that; it has the effect to enormously increase the toxicity of the urine; it increases it six times the normal amount in preumonia. One of the effects of the cold bath is to excite the kidneys, and its effect upon the kidneys and the metabolism of the body is to increase the toxicity of the urine sixefold. The method of the Brandt bath is to put the pationt into a bath at a tpmperature of $62^{\circ}-64^{\circ}$, and then a pailful of water at much lower temperature is poured over him-ssay a temperature of $45^{\circ}-50^{\circ}$. Suppose you were going into the sea to swim, --what would you do first? (Wet your head.") And it is better to wet your chest also; so if you were going to give your patient a cold bath you would wet his Pace and head and chest. Why do you do that? ("It isn't so hard on $n i m,{ }^{n}$). And why notp Decause $1 t$ warms up the nervous system, and then what? ("It produces a reaction in that part of the body.") If you plunge into the water head-foremost the effect is not so bad as it is to go in feet-foremost, for in that case there is a contrae tion of the bloodvessels of the lower part of the body, and there is t no protection to the upper part of the body, so that the bloodvessels of the brain otc, would become congested. But if we anply cold to the back of the head and neck the reaction in the brain would cause a con-
traction of the bloodvessels so as to tone up and protect that part of the body. When the patient is lying in the cold bath, if cold vater is applied the brain would dangerously exposed to congestion. In orier to obviate that difficulty, Brandt has his patient sit up in the bath once every five minutes during the bath and pours a pail of vater over him at a temperature of $45^{\circ}-50^{\circ}$, the effect of this is to jrprotect the head and chest.

Another thing wich is important in the administration of this cold bath, --and that is, the shoulders must be kept under water., otherwise you might cause excitement of the lungs and pneumonia. cold The Weter manst be poured on the patient at the beginning and evcry five minutes auring the bath. . The patient must sit up in the bath and have water poured over him at the beginning of the bath and at the end of every five mfnutes, and the shoulders must be carefully kept under water, --and the bath ould be properly administered. Brand't requires that the patient shall be kept in the bath until he shivers well; that he must shiver so hard that he shivers for fifteen minutes after he is put in bed, so as to make a profound impression upon him; and that when the temperature gets up to 102° the bath should be administered. Brandt has found that this method reduced typhoid fever $14 \%-16 \%$, and it is universally admitted that by the use of this bath typhoid fever can be reduced one half. Dr. Wilson of Philadelphia has been using the cold bath there for 10 or 12 years, and, although his colleagues laugh at him for using cold mater in these cases, he says that he is satisfied that it cuts typhoid fever right in two in the miade.
Q. After thres or four successive pours, don't your patient arrive at such a stage that pouring has no effect?
A. It is of tomporary duration-contraction; it antagonizes the etrone contraction of the skin which follows very hot or very cold applications: there is a relation between the internal and external aroas, --
Q. Hov long is this bath to continue?
A. Fiftcen to twenty minutes, and repeated every two or three hours, or until the temperature rises to 102°. There as been some discussion as to whether this mode of bathing is advantageous. The beliof has been expressed by some that rubbing the patient during the bath increases the heat production to sutha degree that, although the offect at the moment is greater, it is less durable. Winternits has shown that by rubbing, the heat elimination is increased more than 30\%; thet heat elimination is greatly increased by vigorous fric-tion,--1t may be doubled.. I think the balance of opinion is in favor of friction in the cold bath.Here we havif four baths,--let us see Wich one of them is preferable: we have the cold friction bath Which stimulates heat and thermic reaction by two methods, --first, by extreme cold, and second by vigorous friction which is required to prevent shivering, so as to keop the patient comfortable in the bath. The Brandt bath has the same advantages, but in an extremely low temperature there is danger of internal congestion; when cold water is poured over the head every few minutes there is danger of cerebral congestion. The tepid bath is very useful, and so we put it second in the list; it is well adapted to very nervous pationts, and patients who have been sick and weak from typhoid fever; it is particularly active in these cases and in cases in which the skin reacts quickly to the action of cold. In the graduated bath we have the advantages of all these baths combined; we can start the tepid bath at the temperature of the boay, and we can stop anywhere,--we can
manage the tepid bath exactly--we can carry it down until it becomes a cald beth or a Brandit bath; Py the use of this bath we can avoid the intense stimulation of the skin which is likely to produse Internal congestion, so we don't require the cola pail pour when we haven't reached the condition rendering that necessary. We can also have, in the tepid bath, the temperature of the cold friction bath. we can have all the different kinds of baths in the graduated bath, $s 0$ the graduated bath is the king of them all.

LRCTURE TO MEDICAI STUDKNTS. (NO. 10.)

FRVERS.

Before taling up the methods of reatirg fovers, let me call your attention to the fact that in all cases in which there is an increased heat production we must have an increased heat elimination. Let us consider the following table:

HP	HR
++	+
+	-
+	-+
\vdots	4

Here is a case in which we have excessive heat production: How are we goirg to treat it ve want to increase the heat olimin ation. Here is a case in which the heat production is increased, and the hoat elimination is less, although it is normal, and here the necessity for increasing the heat elimination is still greater. In the next case in which the eat production is increased and the heat elimination is dimir:ished, there is a still greater need for increasing the elimination. s° we see in all cases in which there is a rise of temperature due to increased heat production, or in which increased heat production is presebt, there must be an increase of heat elimination.

Now we hev cases in which the heat production is normal, but in Which the heat elimination is diminished, and there it is just as plain as in these other cases that we must have a rise of temperature, and we must have an increase of he at elimination in order to establish the normal relationships. Here is a case in which we have a diminu tion of the heat production, but we also hye a greater diminution of the heat elimination, so in this case also we have a rise of tenpe rature.

Now may ve have such a thing as anct increase of heat production, With ut having any rise of tomperature? (Yes.) The re woulc have to be a diminished rate of increased heat elimination in order to produce such a state cof things. Now in this case where we have a diminution of the elimination with an increaseof h at production, would we want a cold bathl (No.) Now ve can establish the normal by increasing the rate of elimination, can we not? (Yes.) Well, what do you think would be a wise thing to dof We want to make the patiert live a little more actively. Now shall we attack that patient with all the means at our disposal for increasing the elimination, and apply them as vigorously as we can? If we did, what might be the resuly? (A subnormal temperatuat This patient is producing how many heat calories in a minute? (7) suppose this was diminished to 5. That is the normal heat elimination per minute?

In this case we will suppose that the rate of elimination is four instead of seven.

Now what would be the ofrect of that relation--five produced, and only four eliminated There is one calorie left in the bocy. We have here heat production lessened, hat and heat elimination lessened, but zessened more than the heat production. Would this be a subnormal temperature9. Heat production is diminished, but elimination is diminished more. Vould not that cause a rise of temperature?.

Now we must koep these different conditions in our mindspand the reasons why we supply these different classes of remedies.

Now there are two general classes of remedies; those for cases in which the chiefcamse of the rise of temperature is increased heat production, and the other, for those in which the chief cause is decreased heat elimination.

Now let us sog in which of these cases these conditions are present In this case we would have heat elimination increasid and heat production uincreased, and there must be measures applied which in 11 greatly increase the hoat elimination, and that would at the same tine decrease the heat produc tion. Here are othar cases in this table tn which the nesessity for this is still greater, unless it be in the first case, where we alrgady have an increase of elimingtion. In the other cases in which therg is a paise of the temperature there is no increase in the elimination, suixe except, as I said, in the first class, in which there is an increase of elimination, and this is the class found in cases of fever in which there is an increase of heat production and anot dry le red skin, and there is a rise of teaperature.. In all these other cases there is simply a nor or a diminished he at olimination. So you see that there is quite a large class of cases,--four--in which there is no increase of elimination. Now what is the condition which We will find prosent? We will divice these classes into two classes, one on one class and four in the other, and then in all these other case in which there is a rise of temperature there is a condition which is not present in the first cem-there is noilncrease of the heat elinination. Now in these conditions what is the indication present--in all these cases save in the first? To produce, if possible, circulatory r enction.

We have two kinds of reaction, themic and circulatory. We neod the circulatory reaction in this second class of cases; we want more blood brought to the surface of the skin; the blood distributes the heat and we must have more blood to the skin, and so we must have a greater surface circulat ion.. Now sometimes with creculatory raction We have therinic reaction also. Now do you desire thermic reaction
for instance in this case in which there is an increase of heat production andnormal heat elimination--would thermic reaction, or an increase of the heat production, be of any benefite No, it would be most undesisable. Take the third class of cases, in which there is increased heat production with diminished he at elimination--mould it be desirable heref (No.) To nesd simply to increase the heat elimination, and to suppress the heat production. Take the fourth case, in which the heat production is normal,--would it be desi -able in this case to have a thermic reaco tion, or increase of h at production herel It is not especially desirableifn this case, but still if we increase the elimination sufficientIy it might do no particular harm, because nature is trying to keep up a normal temperature, and it is kept dowe so that the heat elimination might not overbalance 1t.....Now the the last class of cases,--would the thermic reaction be undesirable in this class of casesp No, it night be benericial. It might be well if in this case there should be an increase of the heat production, or thermic reaction.

Now we are reitgrating these subjects in so many different ways, and endeavoring to pry into every little corner of the subject so that when you go out from hers you will be better prepared to treat fevors tha anybody on earth, and thare is no reason why you should not be better prepared than anyone slse on earth if you study these subjects thoroughly, for I do not think there is anyone else has ever studied it thorougly in this way, so far as I can ascertain. I do not know that anyone hasmex evor undertaken to arshall the whole mexkeskinusue battalion of hydrotherapeutic procedures vith which to subdue and conbat fover. They only use a portion of them. One man uses grandt's bath, another the enerna, affusion, or wet sheet packs, but I do not know of anyone who hs ever be ore undertaike to employ the whole of these dif-
ferent procedures of hydr otherapy, and to. apply the whole ganut of hidrotheragy against this morbid conditiono

QUES. I would like to know what mould be the condition of the skin in that last condition.

ANS. Well, let us consider first, what would be the conditions Fit pirst, dry, second, hot. In the first class we have a hot dry skim-TV have a little mosture, but only a little. Again, Te ay have a cold skin - there might simply be a deficieney of the circuation and the
skin would be white and cold. The body might be warm and the legs by cold. We might find a patient complaining of feeling chilly when the skin is hot. In the class where we find heat production normal and heat eamination diminished, the re we night find the skin cold, but would not be likely to find very profuse elimibation by sweating, --sweating would greatly increase the elimination, which in this case is diminished, and the flesh is perhos quite coldo It is in the condition of man having chill, when the surface is cold?. but the interior is warin and his temperature may be up to 102-3.. We must remember that paleness of the skin does not always mean an increased elimination, but that it hs not been heated as much as normally. . If the skin be warm it will be cooled by contact. with the air. A hot bottle will throw off more heat than a cold bottle. Here is a ho t stove: it is trowing off heat much more rapidly than a cold stove would. The redhot stove represents elimination incressed, and the cold stove elimination decreased. Now we m geht have a state In which the fire might be very hot, but be covered with ashes-- there m may be plenty of red hot coals in there, but they are covered up with the ashes and smothered, and the stove itself feels cold to the thuch. That represents heat production normal, but heat elimination diminished The heat is there, but it is retained. The stove Surrounded by a
non-conductor does not throw off heat, but the internal teng grature would rise.

In the fifth state mentioned we have the same thing, the skin cold, and the thient in a state of collapse. Here is a condition of chill: that would be a condition of collapse.

QUBS. I would like to ask if we can have. a pathological condition,
ith a profuse pers irgtion--2 wet, moist skin., with rise oif te perature
ANS. We could have a cold clanny skin, with moisture standing on it, Ith a rise of terperature--the temperature 104, and the sin cold and clainy--a clemmy perspiration. "hat tas the diagnosis of that patients condition respocting the hoat-reguating functions? (Heat elimination was increased, bout to less degree.) Yhere is a rise of temperature and a cold danmy skin. That perspiration on the skin is producing some elimination, and is cooling the body off to some degree. There ust be argat deal of heat production.

A cold s in would indicate a decrease of elimination and the moist skin would in dicate on increase of elimination. In that case we must make a sort of a balance between the increased moisture and the pallor and coldness of the skin. A red warn moist skin indicates he at eliminatic: three times the noralz but a pale, cold, moist skin is a different thing. Suppose we have a pail of water on the stove, and there is no Cire in the stove: One would not spaqe suppose that the water would boil very. rapidly. So if the skin is not hot exaporation is not takInE place. Here is a ptient comes into a Russian b ath and if he should come right out at once his body would be covered with moisture. What dies that indicate? (That dx he is perspiring profusely. The water conden ses upon his body becau e his body is colcer than the surrounding ait.

In that case there would be no evaporation from the skin wher the skin was colder then the surroundirg aip. Now we see a parson who is just dying, and in whom the temperature has gone down to subnormil, and we. see him perspiring very reeely. This is a condition difficult to explah The ptient is in a state of collapse, and the skin is covered with moisture, beads of sweat standing out all over him--but that patient is not disp reing heat in that case.

And we ru:t remember that the patignt will be chilled by the evaporation of the moisture to some degree, and ws mu t sover the patient up so that the skir will not be liable to xhill. I fird it nacessary to brife this matter up contirually. You will irquire what are the rolations of hoat production to he at elimination hre, and what are the nesssary meas ures. Tou nust remember this thing, that the thing that is nesded all the time when we need increased elimination of heat, is to increase the getivity of the kin. Now the question is, how ca: wo inCease the heat elimination--what phrsiological change must be brought about in order to produce incroased h at elimination. The skin is hot add dry. (y the aplication of a cold madium.) By bringing a cold medium in contact with the skin, because here is the skir, and the blood is going throu h it very raidily. Now if the patient is in contact with cold water or air or somethirg else that is cold, it will have the 6 effect to cool it off more rapidly. Suppos the patient is covered up with a bic feather bed, ad they used to treat smallpox atients-they used to smother them with a bic fogther bed. And, too, that is the way in which they used to treat the measles. There was a lesson taught the nedical profession about a hundred years ago, with regard to the effect of water in lowerire the temperature. A man who was sufferinc qith smallpox ran away from his attendant and got info a pond of waterm and went in chear up to his neck. He threatened to kill anybody who should come in thero aftor him, and so he stayed there for several hours. Everyone suppee of course that $2 l l$ hope was lost for him, and hat he rould die, but he made a very ra,id recovery. The water seemed to he ve a beneficial effect, his fever disappeared, and he ade a very raid rocovery. That taught 2 losson to
the medical profes ion that was of service to them. Thus same thing hapered in arother case, where a man sprang out of the window. Thy made a rush to rescue him, for thay thought that he would certainly die, for they thought that the chill would "strike ing" but he made a brilliant recovery. Th treatment of fever cases has entiroly charged within the lst yundred years: A hundred years ago the fever atient was eirtually doomed to die, because he cuold not have any water to drink--or only a few sips--and rone ujon his skin, a:d he was simply doomed toburn up with fever. It was a terrible tyranny that the doctors exercised over their patients in compellirg that to rosist all the atural instin ts of the body.

Now let us recite some of these measures whi h can be employed in cases in which there ss a well doveloped heat elimination-in which there is an increase of heat production and increased hat elimination. First, therg is the 5 aduated bath, second the tepid bath, third, the cold bath with triction.

Now as wo have a fow minutes left to us, I think it can be profitably employed in learnirc how to distinguish betweon these classes of cases. In the first we bve a hot dry skin. Now what is there that we can do to increase the elimination in that kind of a case? In the first place there are two masures: we can apply. a cooler medium to the skin, or wo car induce persiration. Now can we ordinarily produce perspiration readily in this class of casesp No indeed wecqnnot. If we could it would be a bautiful thing. We are not always able to make him perspi re, but we ca cool the skin. Now if wo cool the skin the blood will hoat it right up again, and as soon as it does we can cool it ofr again, the blood will arm it up again, and so we can kenp cooling it off as fast as the blood warms it yp, and if

It is warmed up three times as fast as usual, we can cool it off thre times as fast as usual. Now if the evaporation of a pound of watgr will lower the emparature, it is just the same whether it is sweat or wh thor it is water; it is just the same whther naturg puts itoon from beresth, or whehor wo put it on from the outside. ve do not all appraciate the power that there is in cold water. Now suppose ret we moisten the skin, or apply a sort of a wet skin over it, and then We fan him so that the water will evaparate. suppose a man falls into the water on a warin sunmer day, and he sits around under the trees in his w t clothes,--doesn't he soon become chillyg He will fet chilly and take cold. so we see how much power there is in evaporation from the skin. Then if we cannot make the $a t i e n t$ perspire we can cool the skin by contact with cold water, and we can make the offect still gratior by evaporating it from the skin. And this is pactically the best thirg wo cal do. athough there a some other things, hewever. Now ir class one, where there is an increase of both heat production and elimination, we must stillmore increase the heat elimination, and with the hot dry skin which is present, the thing is to bring it in contact with coaler media, so a to increase the efa poration from the skin. Then is the anything els that we can don Now if we can do anything which will assist in loworing the heat production, which has been increased, the wi\$l help still further. There are thos two things that we can do, diminish the heat production, ard increase the heat elimination--and wht is th re in Hydrothorapy by which Te can do that? (Apply cold appliagtions.)) cold applications incroase the heat production. .ery cold air and water increase the hoat production. But if the Q is anythirg that we can do to lesssen the heat production in conjunction with the effect of increaseng the elimination, that would be a happy combination. Drinking water has the ef-

PCet on the whole to increase the mastxpriekretraxyzand cold wat or to diminish the t emperature. (Hake a dhort application of the hot bath.) That is right, that would have a tendency to decreasethe heat production. The ap glication of a hot bath after a cold bath would have the effect to diminish the heat groduction. Then theme is another way: suppose ve pack the head in ice-rat the base of the brain -and cause 2 continuous application of te cold to the back of the merkx ind \quad. head and around the neck. What is the e fect of applying cold along the course of an artery (It contracts the artery--the peripheral end.) Then if we apply ice clear around the neck, how many arteries will it cross? pour, two vertobral and two carotid. Then by so doing we would make an application of cold to four large arteries and ho many mor, are there that supgly the br aing (No more.) Then those four larce arteries suyly the brain. Then if we make an
 Retexemerece circulation of bl ood to the r ilin, would not that have the effect of lessening the getivity of the thomogenetic centers? (Yes.) Then that would have a tendency to decreases the heat production, because the heat accelatory centers which stimulate heat production would be lessened in their activity, end that would lessen the activity of the heat production; so by this mode of application we would heve lowered the temperature to some degree. Now suppose we cover the head itself with an icecsp-that would also have the effect to olower the temperature . Now by applying heat to the meiphery of the skin, would we have a reflex effect upon the thermogenetic acceleratory centors of the brain, and cause a lessened activity of the thermogenetic ceners of the corde If we apply d83 E8 the he ad we
may affect the centers dire tly, and sssen the he at production, and through ther the activity of the heat production. so may agily ice to the back of the ha and around the met.

These are two ways, or rather two things, to be done: we mast zumenuthmabentrpuntintemaxxxxx lesson the heat production and we latter must incregse the hat elimination. Thisfcan be done in three ways: By cold water, by cold ate, and by ovaporation. Then wo may decrase the heat production by a short hot gpolication to tho skin-and it ought to be quit hot for that purpose-and by prolonged cold applications to the he ad.

Now you soe wht a besutiful balance there is in this work: cxakxa Heat is the converse of cold. Cold has a secondary effect which is oxciting, and stimulating, and heat has a secondary effect which is sedative. So that there is a salance all the way throgit.
genyixxxxx
QUES. Suppose we get hold of a patient who will not t ake these treatinents--how are we going to convince them that they are good for them?

ANS. I have met a case like that--I think it was the first case I ever had. It was an obstetrical case which I had attended, and they thought that I vas quite a wonderful doctor. When the baby was about two weoks old I was callod in again, a I found that the raiby Was very dirty, and needed a bath, and so ifsaid to the mother "This baby naads a bath every morning." The baby had a grandnother there, which was a great misfortune for the baby, and the old grandmother cane around just a I was describing how to give the bath, axidxid in the dish-pan, etc., and she said "Doctor, do you propose to put that baby into water, and give that baby a bath? It will kill its Don't you do snything of the sart. It will kill it, sure." I said nYou haven't heard the whole prescription: You must fill the dishoan half-
full of water, and then you must go around to the distillery and get agt a gint of alcohol, and you nust put a whole teaspoonful into the bathyou must be sure to put a whole teaspoonful into the bth." And the grandmother said that this weould be all Fight, and she spolozized very profusoly for havinc int ormpated me. Tha ileotol was fur tla

after-thought. sometimes in giving a spongebath we will have 0 add a little salt, say a teaspoonful to gallon of water, and you car administor a "salt" spange bth whan the ordinary s,onge bth could not be. Sometimes you may racommeni the steeping of some harmless herb in the water, or something of that kind, but you must nev r leave a case of that kind until you cive then the true principle before you get throveh. Bn order to get yourself a foothold you may have to yivid to their prejudices a little,--that is a better way to put it-- but do not sacr ifice the principle, because the principle is that which is doirg the work. But if you were to state "Very well, if you do not ant to take the bath, I will give you some medicis that would secrificing the principle. But by usirg a ittle etact" we save the principle, and it will do its work, and by and by we can bring it out and explain its effect, ard explain the whole thingAbout twenty years ago we had a case around on Kalamazoo street--a very severe case of inflamation of the bladder, and the lady had the proper tratment, and made ar excellent recovery, but the sanitarium didn't get the oredit for it. She had been improving right along, but one day after she hat been sich about 2 week her son came and said "My mothor is getting no better, and we have send to ur old doctor in Jackson, (a Homeopathic) for some modicine, and she wants to know if you will let her take it." There were about forty powders, which were to be taken one at a time,--and I said I will take th
them and examine them."
So I took them home with me that night ana examined them, and wie up my mind what they were,-and I did a very foolish thing, I put them all in a pile, and I swallowed one half, and I gave Dr. Winegar the other half, and she took then the next morning in her coffee. We took it for granted that this physiciab was was a real Homeopath--and a real Homeo. is a rara avis nowadays--he is a scarce bird at the present time-but we didn't suffer any 111 effects fron our twonty powedrs. Then I filled the papers with white sugam which resembled the owders very closely, and delivered them the ext mornirg, and she took those forty powders, and bgan to get better right away. When she got well whe refused to pay our bill, because it was the medicine that had effected the cure. Finally I confessed the raud, and then they felt worse than they had before, and they sald. that now they wouldn't pay the bill anyway, because we ha deceived them., but I am glad to say that the good lady lived long enough to pay the bill, and to get established on sound principles.

IECTURES TO MEDICAL STUDENTS. (NO .11.)

?RVERS.

I might say that thoy are aving very interesting times in the Chicago medical missions and dispensary, and the work for the medical students as increased five-fold over wht it was last wist or. (Reforring to mission-work.)

Hydrotherapy is one of the most interesting things in the world to me, because it is such a pectical thing, and so convenient. We alway have wat or with us. Now with regard to the method of treating fevers. Pirst we had in mind that. we would give the patient a graduated bath If we hd the conveniences, but attepid bath would answer the purpose If the temperature was properly adapted to the condtitions. Then there is the cold affusion bath that win ernitz has shown us is capable of lowering the temperature very rapidly--thirty per cent more majidly than tha cold bath. Then we have the cold bath with friction: What sort of eriction (Vigorcus friction.) We might keep the patient in the cold bath so long that even though we rubbed him he might be too greatly depressed.

Now did we mention any precaution ith reference to the shoulders? Yes, in the cold bath the shoulders mast be kept under the water.

Then again, we have the dimple cold bith, which is an excellent means of reducing the temperatze. Now would you expect to reduce the temperaturg by a cold ath of two or three ainutes? No, it mit be a prolonged application. And why Bo that the tendency to reaction shal be overcoms Ve must gradually subdue and overcome it.

Now I want to mention the fact that this principle of graduation is by some practidioners introduced into the use of the cold bth. They aro beginning it with the temperaturo of the bthth at sbout 85, and then the next bath a 1ittle cooler, and the next a little cooler, and so on, lowering the temperature of the bath each time four or five degrees. . . This principle of graduation may be moloyed in s great many different шays.

Another mothod is affusion, and in this the pationt sits in the tub, and pails of water at about the temperature of the room are poured over him. Here, again, the principle of graduation may be employed, using the first pail of water at a temperature of about 90--what is the temperature of tepid water? (From 80 to 92 degrees.) 80 is a rather cool topid, and 02 is rather warin tepid, so about 85 for moderate topid. It may be either cool or waxin tesid--there is quite a little magind for graduation.

Now the patient sits in the h th-tub and the water is poured over his shoulders., and his neck. A good glan is to gour the water first ovgr one sholder and then the other, and lot the strean divide. of course the water falls from the shoulders to the limbs. The plug is pulled out of the bath tub and the water runs out as fast as it is poured in. Now ho many pails of wator shallwwe use? Shall we use one every five minutes? You see in this wy we vant to get the effect of a b ath in a $b a t h-t u b$, eve: if we haven't fot a tub, by pouring the water over the peientxaraxitios with a pail. That is the way Curre practiced it. Well, there must be eight or ten pails of water. i It must not be dashed upon the atient, but poured rather slowly, and just so that the water is continually in contact with the body, and
goured just fast enough to kegp ug the refrigerant effect. If poured raidly then the cold water is lying against cold water, and the pationt does not get the benefit, but by going slowly a lagerportion of the atge is brought in contact with the skin. so thare are eight or ter peils of wator emgloyed, and this is continued until the atient begins to shiver. whin the patient gets into a condition where is a start towards shivgring it mans a lowered blood temperature, and when you nhave lowered the temperature of the blood, then it is a question how much longer it should be continued. It might be continued so that the patient has chill, and a degression.

Another application is that of the sponge-bath. In this either the whole surface of the body may be exposed, or only aortion, and the patient is ruboed with asponge. should the sponge be wet or dry The sponge must be very wet, because we mant to bring as much water into contact with the body as possible, and leave as much water on the surface of the body as possible after the sponge is removed.; We want to leave a film or layer of water upon the skin. Now if the soonge were very dry then there would be but a thin layer of water left on the skin, and it would be quickly warmed, but with the very wet sjonge it leaves a thicker layer, and it takes longer for the body to heat it.

QUES. If shivering begins aftor a bath, what is the better ay to Warm him? --By friction, warm application s, bath-e or wouldn't you warm him. at 2119

ANS. What do you think about that? (Friction.) What resson would you give for that? (Because of the increased circulation.) The friction qould produce terers circulatory reaction. Would you administer moderate friction (No, vigorous.) Now if vigorous friction is applied what would be the ef ect if you agitate the ptient--if you stir him up
too much? That is the tindencyp (To increase the menderisp tempe ram ture.) If a person has a fever, or after he has a fever, if he sits ug in bed, or talks, or takes any exercise at all, that tends to an increased h at production. But then there is some advantage in a hot application --what is the reflex effect of the hot application? Don't you have a theralic reaction that is the result of thermic reaction? A rise of tempgrature, then a fall, then a rise, up to or slightly above, the normal. Now when we apply heat let ussee the effect: The heat elimingtion ceases. There will be, then, a little increase of the temperature; but then we will, a little afterward, have a xise fall of temperature--why Because the heat roduction is diminished and hat elimination increased. So in this case we will expect to have alnost the same effect as in the other. So hot and cold applications, provided the conditions are proper, are both capable of groducing a fall of teraperature. ("I thought if a person had a chill it would be necessary to bring the temperatare up Witcut the application of any heat at all.) Yes, that is a point. We don't the patient to actually warm up, we want him to cool off; but we want the skin warm.

Now suppose we make a short hot spplication to the skin--what would be the effect? If we had a hot blanket pack it would warm the pationt up. But suppose this is just simply a hot evaporating sheet, or a very short application of heat, as sprinkling the body with hot water-What would be the effect of thatt As long, as the skin is cold there will be an increase of heat production going on. It would be increasing right along. Now suppose we apply heat transiently: That would hbe an atonic reaction. You see we have a tonic, and an atonic, reaction. We have a tonic reaction from cold, and an atonic reaction from hat.. . Cold produces a tonic themic reaction and an tonic circulatory reaction.

With the application of hat there is a lowered heat production and lessened activity of the circuiation and an atonic effect is the rosult. so with a cold application; an immediate fall of temperature, and the temperature will then slowly return to the novmal; whereas with the hot application it will return more rapidly.

Now ve have one more general application to consider, and that is the cold bath followed by a short hot application. This cold bath may be the grad uated bath, the sopld bath, the cold adcusion bath, or the cold sponge bathe-any form of cold bath, but it must be immeilately followed by a dash of hot water.

The sponge bath may be either cold, cool, or tepid. We then have five forns of cold application, and either of these mayz be followed गy a short hot application, eitier a spray bath or sprinkilng the body with hot watgr. The eifect of this is to ender the loss of temparature more enduring. You have lowered the temperature with the cold beth-how much would you expect to lower it?. (Two to three degreed That will sometimes occur, but it is extraordinary. If you get a degree, or even a few tenths of a dgree, do not de discuraged. It depends upon the stage of the disease. If thetemperature is $10 \mathrm{~h} \mathbf{d}$, then if you get it down six or eight tenths of a degree you may feel satisfied. But if the temperature is at 104, then you must bring it down to 102.

Now suppose you put the patient into the bath, and he resists the bath--his temperature resists the influences of the b ath, and you cannot set the tomperature down, and he shivers so that you don't dare kego him in any longer--what are you going to dop This often happens in the early stage of typhoid fever, and then is wher doctors get discouraged with the use of water. They will say, I have kept the patient In the th for half an hour, and his temparature is 103. Now suppose you give him friction, and the temperature is stil 1 persistent. We

We must see that the temperatur is brought down to 102. It is utter nonsense for a person's temperature to be alloved to run up to 104-.. it is destructive. The gationt is goin to have hemorrhages and a terrible collapse when the temperaturs finaly does some down, and he ay die. Now wat do ve tant to dop. Here is a patient witha temuerature of 10212 after a bath with friction. Now if you put him in a hot bath the tempor ature thax will go up steadily. ((But it will come dorn again.) A short hot bath after a cold bath is one of the vays in which it may be subdugd. The principanaeffect is not so much to lowerthe tempera-
ture nore, but to render the effects of the cold bath more permanent. The is the point I want to emphasize. It is simply to check the tendency to heat production bay a cold bath. It is simply to stop that tendency, that the hot bath is employed. It must be short, just long enough to give the impression of heat, and weuld not expect thit that would increase the hat elimination very much. It helps the circulatory reaction to some degree, while it chekis the thermic regction. By helping the circulatory reaction it assists in cooling off the body, while at the saine time the thermic reaction igsupressed.

Now what did Dr. Weiss, the German, do, but put his patienta into a tepid bath, at 85 to 92 degrees, and he keeps him there for ten to fifteen hours, until his temperature comes down to normal. He just keeps him there uttil his temperature becomes normal. And then Wher it goes up to 101, he puts him back again, -and the patient won't shiver very much, either. The thermic reactian is not induced very much, and thecircula tory reaction is maintained.

Now we must not insist that the patient's temperature shall come down to normal. But put him in a bath tub and give him a long tepid bath, and keep him thore and he will be comfortable. But you must remem ber th is, that the neuttal point is raised in fever. The neutral point

Is raisgd about 23 much as the temperaturg of the patient is quove the norial. So that the bath at 85 degrees would have ambz much greater effect in reducing the temperature of the fever patient than in the normal man.

Now let us see about that: You say a te perature of 35 degrees is warm. When we go in to take a saa bath, the temjerature is never more than 70 to 75 degrees, and how do you expect that the temperature is coing to lower the temperature of the fever atient?
It lowers your temperature if you stay in it a lorg time; it is the vigorous exarcise of swimming that keops up thesupply of heat, oso that the heat oli ination, alt ough great, is not surficiente to bring down the temperature. But the fev r pationt is quibt. You go into the sea bath, and instead of making figorous movementsm simply lie down quietly in the water, and see how quickly you will be chilled. Go into the swimming bahh, at the temperature of 75 degrees, and unless you exercise you soon become chilly.. so with the tepid bath in the case of the fever petient. But, you must not exiect to get great results short of two or three hours.

You can make your patient very comfortable in that bath; put into that bath tub a blanket saturated with the water, and a rubber bag fillod with cold water, and you can make the patient just as comfortable as though he were in bed.

Now if you find te patient socoming chilly at 85 degrees, you may risse the temperature up as high sanetimes as 92, and still get an excellent refrigerant effect, only, the ba ath $\mathrm{m}_{\text {int }}$ be stillinmore prolonged. We must not forget that. I wish you could go from here to a ferer ward, and see the practical application of these timiage principles, an z see how beautifully they will work in all your daily experiences. Bow we have besides this series of baths, the cold pack. And what
is this?. It is simgly a pack applied with the water at heeordinary room temperature, and 33 soon as the sheet begins to get waris, that is, in four or five squaleg minutes, roaove and apply it again, and so continue until the patient's temperature has been sufficiently sducsd. By beirc inductrious and applying the pack assidiously we can obtain refrigerating effects, and lower the tomperature, as vell this way as in any other. It is almost an affusion. I might is to be say that this lessximen kept up for one to two hours, ard contirually chan ing for a cooler pack. Two or three charges are not sufficiart. How long should it Femain there? (Till it be ins to get warm.)) And not till it begins to get warm, but just until it threatens to get warm. Now if it is left on until it gets warm, then the reaction has occurred and you bave done harm instead of good, for that is the very thing you do not want to do. So just as soon as it begins to get arm, or threatens to get warm, --2s soon as it has lost its coldness and the temperature of the skir is approsched, it must be re oved and a colder one substituted.

Another met od is the coolirg wet sheet pack, which is simply a large compress for the entire body, and is managed in the same way.. Now should we wring the sheet very wet, or very cyp (Very dxyx wet.) Why so that there may be more water to be warmed up by the skin, and so that it will approach more nearly to the effect of a full bath. Now it would be a good plan to use a double sheet, so that it would hold more water, would it not?. And we might employ two packs for the sake of convenience. It is ar inconverience for the patient to stand up for the pack to be renewed. In stead of that we might have two compress cs. We might have a sheet folded irto three thicknesses, and have anothe sheet folded in the same way, and the patient lies on his side, and the
the shent is laid there, the patient rolls over on it, and another shet is put above him, and they arg tucked around him, and we have the offect of the wet sheet pack.. In this you ust take paons to tuck the sh et down around the arms and legs carefully. You would not simply co the ugs up in a mass, but tuck the sdges around the legs and ankles. Would you cover the feet? No, we would leave the feet out when we apply the sheet for cooling effects. And why we leave the fent out because they comprise large vasomotor areas, and the contraction is so great--the internal effect is so great, th the feet get chilled and do not readily rarm, and have to be rubbed, and so we have to leave them outside, and ther the natural heat of the reaction of the whole body serds the blood to them and thoy are kept warm. Buti it is many times hrd to get the feet warm in these cases. -e might apply a hot bag to the fort, but sometimes this has a peculiar effect that we must keop in mind; it poduces athermic or atonic raction, and a sedative effect. Now did you ever notice that whon you had a hot bag in bed with you at your fset, that you got chilly around your shoulders? Have you ever noticed that when you co in from outdoors and your feet are a little cold, but your body is warm and comfortable, and you warm your feet at the register or stove, that you begin shiverirg around your shoulders? This is simply the xtoustaxedeaxtroced byataxx effect of the atonic influence of heat. And there is tur darger of producirg this atonic effect in other portions of the body and interfering with the effects of the cold that you wish to get.. It ptibgings all the vasomotor and the heat making centers into play, and if we apply cold to a lar va omotor area, as the foet, the effect would be to antagonize the reaction. (We might apply a warm bag.) Yes, it might be applied at about blood heat, or about 92-8 degrees.

Mow in order to warm the feet the best way is, if you happen to be in a fanily where you can obtain it, is a large flat bag filled with oat meal, cornmeal, or egen sand, have it slightly moistened, and warmed to ju t about blood temporature. Ther thers is no loss of heat, no thene atonic reaction, and the feet arg kept simply in thenormal condition. But it is best not to wet the reet.

It is not always necessary for the compress to be applied to the limbe Cten around the trunk is all that is necessary.. It is often n cessary to employ this measure in connection with other masures, especially around the abdomen, where there is such an amount of heat.

Then we have the shower pack, and in that the wrappings are removed and water is poured over the patient from a sprinkling pot, or poured out of the hand.

Just twenty-six years ago I was called upon to treat an epidemic of typhoid fever that broke out among our students and in the town At that time we had one or two medical students, and no train d nurses. We adopted th than, and we had the patients put in a wet sheet pack, and then the sheet was opened, and wator was poured all over the body and until the sheet was saturated, and then we closed it up again. We had about sixty-five casos in all and not a single patient died. The students tood by and assisted, and hour after hour we looked after then, and opened these wet sheets, ard had the water poured on and sprinkled on, and we had no trouble with them at all. But now we have a sort, of hydrophobia--there is a dread of water--they are afraid of it and mortality is increasirg because of it. It is a sign of deterdoratia

LRGTURE TO MEDICAL STUDINTS. (No. 12.)

FEVRRS.

Let us enumerate the measures we have so far consicered: First the graduated bath, the tepid bath, cold affusion bath, cold bath followed by fiction, cooling wet sheet pack, (etc.) In applying the cooling pack, would you apply the sheet wet or dryp (Pretty wet.) And how would we irtensify the effect? (By doubling the sheet.) The shower pack consists in simply pouring water over the patient. It is a very convenient bath for a private place or a home, and is.a bath that may be used almost anywhere. It is woncierfully conveniet. It is only necessary to have a cot. Cover the cot with oilcloth, and raise on end by means of blocks. Have a pail at the lower end to recoive the water, and by the aid of a pail of water you can shower the patient nicely. This is sometimes called the Keeley cot, for the reason that a physician by that name first used it in this way.

Now snother cooling application is the compress. This is simply a small pack. You ny have two compresses--a divided pack, or you may just have your compress around the trunk. The impor tant thing is to keop the trunk cool in fevers. The most of the mischief is wrought in the certer of the body. How often should we change the compress?--Once inevery fifteen minutes ? I have seen a nurse who had a fever patient asleep. He would make an aplication, and then he would go to sleep, and when the patient got so delirious and hilarious that he made 2 disturbance, the nurse would wake up and apily another compross That will hardly do. It mist be assiduously applied, and ttend to closely--and as soon as it gets hot, chage it? No, you do not want
to wait for the reaction to occus. The compress must be attended to very faithfully, othervise you will have rise of heat production, with very little incresse of the elimination.

Now is there anything more? The cool pack, the shower pick, the compress--how sbout the cooling evaporating sheets Let us see how much we can accomplish b: this: Suppose we take the sheet and vring it out of cold water, and we take up into it say two pounds of water. Do we wrirg the sheet very dry? (No, very wet.) Well, that would depend somewhat upon the susceptibility of the patient. You would usect is in a case in whic h you would not put the ptient into a very col d bath, although wo can make a very severe application if we like. But we will suppose that the cool evaporating sheet cont ains two pounds of water How how may heat units would be used if we were toevaporate it all? How many can you get into a pound of waterp. (1000) somthing over nin hundred, but we will call it a thousand. How many heat unite are required to convert the pound of water from the boiling point into steam Somet'irc over 900. So you see a thousand heat units will be used in the evaporation of a pound of water.. So in the evaporation of a pound of water we take a thousand he at units away from the patient. Now suppose the patient weighs 150 pounds. Dividing we get seven--what The number of degrees of temperature per pound. And if we subtract seve for every pound of the patient's weight, how much have we lowered the patient's temperatur of We have lowered 7° to the pound, but the temarature has also been rising, and we do not know much that would be.. Now we will suppose that theatient is making hat twice as fast as he ought; suppose you have a ptient with a hot dry skin, and a temperature at 104°. What is your estimate as to the increasing heat production? suppose the patient has a moist, whem skim: What is the amount of
heat elimination Three times the normal. Nov wit a dry skir, would it be lomaing heat as ra idly as with a moist skin ${ }^{\text {a }}$ No, because
there is. evaporation from the moist skin more readily than from a dry skin. Fe would hardly expect to lose mor than half that guane. tity of heat. Now how do we know anything about the heat production. Now when the body temperature has raised to 104° the rate of hest elimination is not so very auch groater than at 100°, but When it goes up to the point and reanains the 9 , we know that heat production and heat elimination are balanced., We know that the hot dry slicin cannot eliminate so rapidly as the hot moist skin, so that the heat production cannot be three times as geat as normal. Now how much is the ordinary increase for evary degree of temperature--for every degree of elevation of tengerature, how much is heat production increased? 3 1-3\%. Heat production may be incroased as much as 25% to 30%

We will say that we have a scale-beam bre, and now it is exactly balanced. How much weight would we have to put into this side in order to sink the balance9 Very little. Then here is the body; heat elimination and heat production are exactly balanced. Here we hate increased heat profuction. A raise of \mathbf{l}^{0} in temperature means increased heat production of $31-3 \%$, or about $1-30$ th more than usual. Don't you see that it takes but a very little tex increase of the heat, production toincrease the temperature, because it is such a delicate blance. The rise of temperature simply means that heat elimination is not keeping up with heat production, and on a little increase of the hoat production above the elimination is sufficient to raise the temperature. I think it is inpor tant to get this in mind, so that when you have fever to coal with you do not feel that you have such a terrible malddy. It may be simply a little decrease in the elimination.

No:r let us suppose thet the temperatu e of the patient is 104, ard that 98 is normal. Now 1 we add 1 to that and make it 99 , what would be the increase of heat production there? ($31-3 \%$) Now suppose we add another and another-four mo:e-what would that be? Practi ally twenty per cont. The heat production is increased twentyper cent or nearly one fifth above normal. The normal is what? (7) Ard one-sixth would be about 1.6 , so that would be eight and six-tenths per minute. Now suppose we brought this patient's temperature down in an hour: suppose in the course of ar hour we ha rode ed the temperatu:e that much; the patient's heat production was 3.6 par minute. What is the next step in this problem? . His tempe ature is at 104, and I wart to $f i$ d out what his temperature would be if we appled the evaporating shect for an hour ard had evaporfted a pound of water. That is a practical question. It is by the workirg out of such problems as these that we get at the rell principle, and see what we are really doing when we are treating out patients, and that is the thing we want to accomplish. Now what do we want to do next?
(Find out how much heat it makes in ar hour.) That is right, if it makes 8.6 in a minute, what will it make in ar hour? we will multiply by sixty, giving 516 in an hour. Now how many have we reoved?

Dr. P. He is eliminzting some of his heat, so it is 516 plus 7.
Ars. We have rappehim up so that all the elimination takes. place in the sheet, g-we keep all the heat that escapes from his body. We take it all in this case, just as we do in a bath tub. Well, what do we want to do next, then? Find the difference. 1052 is the rumber of heat units varriod off in the evaporation of the water-of a pound of water, so we will substact this 516 , and that leaves 536 heat units
that is, 536 mowe heat units have been siblacted that have been produced. Now we want to ascertain how much the temparatue will be lowored. Divide by the weight, 150, gives us 3.5 , or the anount the temperature has been gdued in one hour.

Now I wonder if we can deaonstrate this in any way. Here you have the pail of water and the shegt: Put the shegt in the water and veigh the whole, then after applyirg the sheet in such a way ss not to lose any or the water, woigh the pail again, and see how much has been taken. At the end of half an hour put the shest back in the pail and. wich the whole thing again. that would be the simplest way to do 1t. Then take the patient's temperature both before and after the application. It vould be difficult to get at he exact weight of the patient, but we can get at it very closely. This is very practical and tanglble, and is a measure t hat we can apply with confidence. When we f et hydrotherapy upan acientific basis, it is a very practical thing. Some of you will have to train nurses sometime a d will increase their faith enormoualy in the methods which thoy are using to seo that they have such power. Suppose on the other hand that you put ton drops of aconite in glass of water acd say to the nurse, "Give a teaspoonful every fifteen mirutes" --it is rather difficult to explain to the nurse the baxiaxxax principle u on which that infinitesimal dose is going to brig that patientes tomperature down. Id there any scientific or physiological basis upon which we can base a demonstration of the loss of heat units by any such method? There is not. It is all based upon empiricism, and there is no foundation for 1t. The only way it car act is gy depressing the vital powers of the patient--by putting the man to sleep by knocking him in the head. The blood vessels aro paralyzed, the hoart is affected, ard the vital
powers are depressed; the heart is weakened, and doesn't pump the blood around to the skin as fast as it did before, ard the patient is therefore not so able to conterd with the enemy, the disease, as well as before, and whatever effect the drug produces is only by de pressing the vital powers, and is not by increasing the vitality and resistirg oxer of the patient's body. So much for the evaporating sheat.

What will we consider no w? Ekexx Sponging. This is something that is rot eenerally practiced in a marrer to make it a ount to anything. The fever patient is sponged, not for the purpose of cary 1 ug of some of the heat in the sponge, but for the purpose of moistening the surface so that eva,oration will.take place. It is really on the principle of the evaporating sheet. The patient's skin is hot and dry, and elimination may be incresed by the asplication of moisture to the $s \mathrm{kin}$. If the patient could only parpire the elimin. ation would be greatly increased, but as he cannot persifire, we must moisten the skin for himo. It is of no consequence whe ther the water is hot or cold, or warm, but it is the time, which is the principle involvd. The application of cold to the surface may excite oflexes which would increase heat production, a d have seen nurses sponging the p tient in a way that would certainly t nd to incroase the heat procuction rather than to dimirish it. Supose for instance that we apply a cold s onge-bath, deliberately sponging the ead and the back ard the legs and the arms,--just nough to kesp the thermogenctic centers in the spine stimulated and active, and to keop the patiert's teaperature oirg up. But if you are goirg to sponge the patient, it must be done in good earnest, so that the whole surface will be evaporating at once, and the whole surface of the body should be
moistened at once, as nearly as possible--the sionge used nust be a good large one, ard be very wet. I thirk you car readily see the imm gortance of the Then, as the skin bcomes dry, it aust be reneved. How much good o you suppose will come to a patient from a spongin once in half an houre What a ridiculous, thing it is to soorge a patient once in a half hour or an hout. I have known physicians to say Yes, ' have tried hydrotherapeutic treatment, I ordered a sponge bath three times a day, regulrly-I told the nurse to be very particular about it." That toulc have just about enough effect to kgop the . temperature raising, otherwise it would not amount to anything at all. It ould not acunt to anything at all in the way of a reduction of the t empera ture.

CUES. Would it not be a good thing to give an alcohol sponge-in that case will the alcohol assist in the evaporation?

ANS., Yes, or a vinegar rimisponge--being a te perance doctor I think the viregar sponge vould be preferable. There is no harm to use something to promote the evaporation of the water., but there ar other ways, that are just as useful, as for instance, by fanning There ars times wher a little something added to the water helps the patient,s friends ard the people in the neighborhood, wonierfully. It is a good thing to add vinegar sometimes, it is a cleansing agent to some extent, and is entirely whol osome. I think we might just as well do without the use of the alcohol at all, for it really does not aid so much in the evaporation of the water--or rather, we car g et the eff cts we wa.t just as well without it. It is very easy, too, to apply the. same method of observation that we were talkin about, with the sponge. Weigh the vater wi h the splange in it, then take the sponge out and squeeze it just so that it will not drip, and apply it to the patient's
body, ard in the course of an hour you can tell how much water has evsporated. If the sponge bath is. properly managed, you can apply almost as much water as with the sheet.. It must. be appled all over the body so that the whole surface is moistened. Now, would you cover the ptient up vary warmily after the sponge-bath? (No.) The sponge bth is ofter applied with the idea that it is the temper ature of the water applised the 10 ors the temperature, but this is no true, it is the evaporation. . It really does not make so much difference wheth or the water is cold or tepid, ut if cold water, and it makest the pationt shiver, that infeases the heat production, and then it i betterto employ tepid water. Bu suppose that the patient Bs kin is so hot and dry that it takes a very protracted and prolonged sheet, then cold water ds the thinc to apply. You see how the impressions made mpon the patient's themselves are a physiological ruide of the utmost importance in the application of water. When a patient takes a cold bath, and it makes him shiver, of course it will increase the heat production, but it is a thing to be looked fomvard to with leasure, then it is goig to help him. So we must follow the patient's own instincts. The instincts are God's signboards, which show us the way to act.

Cullin said that he would drive natu e out of the sickroom as he would a squalling cat, but we don't do that, we recognize the fact that nature in the sickroom is God in the sickroom, pointing the finger in the right diraction.

QUES. At once time in caring for a case of typhoid fever, I was recomended to omplyy an alcohol rub--it was alcohol diluted a very little--only a little water added to the alcohol.

ANS. It is hard to get rid of the idea that strong drink is
strengthening.
It is one of the greatest of mistakes. People imagine. that if they oat an ox, bocauso the ox is strong it will strengthon shem. We might expestax juet as well expect to make a patient st ong by having a strong wird blowing on him. The patient is not going to be strergthongb by Replying slcohol. Wo dossomstimes put a teaspmonful of alcahol In a large quantity of wator, from the hardness of the people's he arts, but we do not of ter have to do that if we will only take the pains to explain the facts. I had a gentleman come to me the other day who had a sister in the ward, and he insisted tiat his sister should have either some chicken brother or somebeef tea, but he preferred chicken broth. I asked him if he had ever noticed the peculiar color and apearance of baef tea--I asked him if he had ever noticed what they resemble, and I explained matters to him for few minutes, and it was not very long before he said WWell, Doctor, I think I will leave the case with you." The fact is, there is enough to be said on these things, and thy make 2 great impression, if stated in the right way.

Now let us see what applications of water we have: We might begin With the cold applications. There are, the graduated bath, thofrictioh cold bath, the Brandt bath, and cold affusion. We have allthese cold applications, and thoy may all be followed by a cold application afterward, so that makes six, and then we mave the cool bth, the shower pack, the compress, the evaporating sheet, and the sponge bath. That gives us eleven spplications.

Now we wilconsider cold to the abdomen: In the first place, w Why do we apply coldto the abdomenf What are tie three great vascular areas of the body? The skin, the muscles, and the portal circulation.

The skin has a very important visceral circulation; you know what an grormous amount of fluid can be poured into the skin, as in dropsy. Then here are the musviles, and the portal circulation--does that contain the coldest blood in the body? (The hottest.) Here the great viscera are the most active, and here metablaic chang ss are taking place, and catabolic and anabolic changes, and the spleen and the liver and the other viscera are here: so by the application of a com press over the front of the trunk her, we might pe haps succeed in lowering the tenpgratur e when the terdency to increased bat production was not too great. It would be a imexgerexas extreme case in which We could not obtain control by this means. Now what kind of a case in which this should be employed would thet bog It would be toward the end of the foverl--it would not be the first week of typhoid fever, but toward the end, the second or third week, when we put him in a cold bath and we find that the temm peraturg goes down quick, and we need some more moderate means. Another indication for this measure s when the extremities are inclined to be cold, and when you put th p tient in a bath his arms and legs are cold, a nd you have hard work to get them warmed ag ain, and so we will make the cold application where the hoat is the greatest, and leave the foet and limbs dry.

Now another kind of cold application is suggested, cold water drinking. Now let us see when we must use cold water drinking in

from the conversion of sensible heat to latent heat. XBut suppose the patient drinks a pint of water, --what is the temperature of
the patient is 104, i: the interior of the body it is probably 105. We will say that the patient weighs 105, and that the vator has gained 25 heat units. Then how much will have been abstracted fromthe trat of the body? About 3^{0}. Then if you are going to lower the patient's temgerature by water dcinking, he would have to d ink a considerable mount of vater. How much would he have to drink to lower the tomperaturg 10, groviled there was no heat production? About 6 glasses. We do not have to wait for it to evaporate in order to lower the temperature. When the patient swa lows three pints of water--that would be gbout six glasses--now how long would it take to swallow six glasses of water It would take at least half hour for a patient to swallow that. It is a petyy hard thing to do, if the patient doesnfe happon to want to drink, and won't drink,-he may be thirsty, and take just a little, and then he donsn't want to drink any more, and then you would hardly expoct to get six glasses down him in half an hour. Well, how much would that be? If he ta es the three pints, or six glasses, that lowers the temperature 1^{0} in half an hour.

Nowlet us see how much heat he has beer makigg in this tide: How many heat units are prodtced heere. How does this case differ from the previous case There was elimination. In this case heat eliminam tion is taking place independent of the water, and it is not interfer ing with the elimination. There is a exast balance between heat production and heat elimination. . The elimination is keeping the bxternal temporatre ddown to 1040. Now th t elimination is taking place the same as usual, and we make the patient drink some six glasses in half an hour-- that would be just so nuch elimination added to what
is aleady taking place. So if we lower the ternpe ature
........ heat units for every pound, in the course of half an hour we hye lovered the temperature 1^{0}, provided the water taken into the stomach does not have the efect to accelerate heat production, and it may do that little. So we have simple the balance betweon the hest loss and the diminution and increase of heat production by the reflexes from the mucous meabrane of the s tomach.

QUES. I think that would incrase the heat elimination, by swasting.

ANs. Thit would be true, but if he was in a condition where he couldnst sweat, he couldn't get the benefit of that, but it may have some benefit in promoting osmosis throuch the skin, but water-drinking is a serviceable means of reducing the temperature. Dr. Beverly Robinson(l) systematized the plan; he advised the drinkeng of six or seven hundred litres a day. A litre is 1,000 c.c.--it is nearly $2 \mathbf{1 - 2}$; it is supposed to weigh 1 kilogram, or 2 l-2 poundm. Seven kilograms Wonld be hov many glasses of water? About 31. , and how many in an hour? That would be about $1 \mathbf{1 - 2}$ in an hour. He maintained that this athod of water drinking was the most officient of all methods of lovering the temperature. In an ol book I found written by Dr. John Hancock, about 1723, he maintained that wate r drinkig was the bost means of lowering the tomperature in fever, and he combated it very successfully; he was opposed by all the leading physicians of the day, but he held up to the rational postition he hd taken very vigorously; it was a very spicy and interesting controversy. Water-drinkin is really coming to be quite fashionable ng those who are treating fever.

Nor water may be taker throuh the bowels, and this is really a more efficient method. We can introdace it through the rectum. Suppose we
introduce two quarts, or 6 ur pounds, of water at a temerature of say 800 ; we have four pounds of water. The temperature of the patient at 105. The watar reaains in the body ten minutes, and in that time its temperater is raised to 100°, --from 80° to 1000 _-that would be twenty degrees per pound, four pounds would be 80°. That water would be reglaed ny othar water, which would be retained in the s same way, and so on for an hour, until you have introduced six, and then you multiply this 80° by 6 , and we $480^{\circ}, \ldots h 3 a t$ units abstract d in the course of an hour. Now at the same time heat elimination is taing place by the skin just the same. We have added to the he at elimination 480 heat units more, and so we m ay have a petient wighing 150 pounds, and if we hve an increase of leat nika production and dininished heat elimination, just as they were before, we ought to lower the temporature of the pitient 30 , so that you see we have here a powerful means of r-ducing the tomperature. I have fourd it a most efficient means in cases of erysipelas, with a tempera ture of 105° gto 106°, with a temperature absolutely uncontrollable, by rany other means, and I hye found that this would absolutely control the temperature, xaxixatize We have to have a tube about three or four feet in length, in addition to the ordiary tube used in connection with the fountain syringe. This is connectsd to the ordiary tube, and the fountain is held two or three feet atoove the level. The water ixxprestoricuriay passed alowly in at first, so as to avoid producing tiolent peristaltic movements to force the water out; if necessary a napkin is placed over the rectum to assist in retaining the water,. Then the tukexxxxxx end of the tube is lowered, but the tube is left in position, so that the patient will not ha e to be disturbed, and the end is the lowered to a vessel at the side of the bed, and the water allowed to pass out, and the tube is
connected with the fountain ggain, and the vater is allowed to pass in and out as before.

It is also a good thing to graduate it, starting say at 90°, and x e⿻ turning cold water in with aach successive onems, and with each enema a little lower temperature may be used, untsl you get down to 70°, and in that way you can intensify the results without any very serious disturbing results.

This will not do ithe various applieations produce shivering.
I will just add this word with re erence to the local measures:
We have the cold qp,lication over the heart: This lowers the temperature by slowing the heart, diminishing the rate of vascular excitement and secondly by cooling the blood.

Now we have also cold applications to the headi lowering the tom prature by depressing the thermogenic centers, cold applications to the sping also has the effect of depressing the thermogenic centers, and it also has the effect of dilating the peripheral vessels.

One other measure which is useful for local, application, is cool or cold irrigation. Wade the $p a r t$ with a cloth, then let the water run u.on this cloth, so as to keep it perfectly saturated.

Then again we have what we migit call cold application by proxy: If you have a wound, and it is open sothat you o not wish to im erse it in the water, you can put the other hand in, and it will lower the tenperaturg to some degree. The right hand placed in water vill lowar the temperature of the left hand, and so we can treat the oposite side of the body if we cannot treat the affected side. "But this is not a very effective method, as the change of temperature is very slight.

I think it would have a greater influence upon an inflamed condition than when one is in the ordinary state of health.

LECTURES TO MEDICAI STUDENTS. 2 (Lecture No. 13.)

FEVERS.

If we have a contraction of the bloodvessels from the application. of cold to the outside, what is the condition inside? The same thing Suppos a person should have a hot bath, and imm diately afterward should have a cold shower, a cold douche, or cold water poured upon him, , and he should faint avay, wht would be the cause of it? (The contrae tion of the blood vessels of the brain.) That som times happens. We should reaember that. Supposep person fints away in a hot bath, What is the cause of thate Dilatation of the surface vessels, so that there is to much blood drawn into the cutaneous vessels, and there is not gnough th supply the arain. We might have this condition aggraveted. We might have a peron taken out of a hot bath ad have some cold rater applied to him, and he might faint worse yet. A parson vill fain from the sdden application of heat and the sudien withdrawal of the blood--there may be contraction of the bloodvessels and the person is anemic and faits away. There are some pople that arg so susceptible to the influence of watar, that placing the foot in very hot water will cause them to have severe headachs, etc. Ques. Why would this not hapen in the electric ligit bath, when the tendency of the blood will be to go to the cutaneous circulation. It seoms to me it would be to incroase the flow of blood trom the he ad.

ANs. Let us ses a hout that: The body is a very complicated machine, and we mu t look at the various kinx influences exerted when a person is in the hot b th. What is the first effect? It excitos the
heart. There is a very strong action of the heart, ard if the blood vessels of the skin are contracted, and the heart is beating v igorously, the probability is that t^{2} e internal orgars will get the most blood, and the blood will be congested and then will be crowded into the had. Now we apply water to the he ad, ...would you apply ice? The best way is to simply set the hair and scalp, sllowinc the evaporation to cool the head sufficiently. We want moderate aplications, because very soon the action will cease and be reversed, and then we want the effect of moderate cold. Is this to be long-continued? No, long contirued and intense cold will cause a contraction. We aply a moverate warm application, at a temperature of 100 or 105°--what would be the effect of that? (Dilatation.) If we gpply very hot, as 140° for example, what would be the effect? (Contraction ofthe blood vesselso) A very intense application exhausts the blood vessels very quickly-that is the reason sumerxx a subsequent ongestion of the blood vessels is produced; they become exhqusted, and there is a dilatation.

New let us see: A short gpplication of intense cold makes a contrae tion. A prolonged apglicstion of moderate cold, or cool, will cause contraction. Moderate heat will cause congestion and rolaxation. Very intonse heat will cause contraction, so that at the two extremes we have contraction. We will make a table of these effects:

Hery hot application	Brief, sudden contraction. (fust be
Warm or hot,	Dilatation and moderate congestion.
Cool and topid	Cont raction.
Very cold	Brief contraction.

No if you had a petient who hd fint od away, would you apply an extremely hot ap liogtion to his $h a d^{\prime}$ No, it should be a mocerate application. Too hot an ap lication might do the pationt harm.
application of cold to the head ard face? Yes. If we take a little water and sprinkle it in his face, and we get an instantansous reaction. Do you thirk it would be good to wrap a cloth wrung out in ice water ground his heade No. We just fet a brief impression of cold, and it will be immaciately follow by reaction.

There is ju t this suge cotion that we oucht to
keop ir mird, that the thirg that happens to the slin, happens to the mucous membrane. There are (blackboard) two scale-pans, and a pair of balances, and thoy are perfectly lovel. Whe: you touch ofe the other fools that touch, and the eirst movement is in the same direction, and then axsusecedsox subsequently there is a reaction. For instance, We car make a cold application to the skin, and th blood vessels may contract, while the internal organs are dilated--what takes lace? Blood is drive from the interior.

3ut we want to consider wht we would do in cases of fevor, or in cases of elevation of temperature, , in which ve want ax reduction of temporature, but in hich it is necessary to have an increase of heat. elimination in ote to do so: let us see in what cases that would be. We might write down all the cases ib qhich we would have an elevation of tomperature :

Now we have to consider this first case, and possibly the sec ond. In the case we have beo talking about there has beer increase of both production and elimination, and now we want to decrease the production, and increase the elimination. Now what forces have been
brought to bear to diminilk the heat procuction, in all the measures we have bean describing (Cold application.) Does not that increase the heat production There are two thirgs that diminish heat production (The application of heat after a col c_{o} batho) Fow would you apgly this? (By speinkling the face with hot water.) The other method is a lonccontinued application of cold. We mu t ramomber, then, that a long contirued applicstion of cold dimirishes heat production, and a tem-. porary applicat on of heat after abath diminishes heat production also. So then you see that the more we emphasize these two things, the ore we will dimintsh the host production. .

Now of the othor hand, there is the heat elimination: We have bea ondeavoring to ircroase that. In mit ways will these measures incroase the heat olimination First, by abstractirg heat from the body, the same 9 s from a lump of iron--by conduction, byevaporation, and by radiation. Now how by radiation In what ways do these act directly pon the elimination? The water absorbs heat and renders it latent. How many heat units ara rande ed latent in the absorption of a pound of water? A little more or les tha a thousand.

We are to have a report from our investigating committee with regard to the effects of the treatments.

REPORT. No data with regard to evaparating sheet.
Water enema:
Body temperature, rectum, 102.3
Cold erema, 80
" rlme , 35 minutes.

Number of treatments, 3

Average tem., wat or injectedg 6°.
Amount of whyer, quarts, 3
Temperature 1 hour after, 100.7

Now let us see how many he at units were lost：We will call this 6 pounds，and there was 6° ，so how many h at units will that be？36， calories，or hegt units．The pqtient weighed about 130． 36 divided by 130 equals．28．102．3 minus． 28 equals 102.02 ．A little is $3 s$ than one third of iegree．Now was that treatmert efficiente th practical realts were all right．I have seen a G lass of cold vater lover a half patient＇s temperature for more tharnar hour so that it would be sub－ normal in the mouth．The effect of the moderate cold gpplication to the rectu lasted Inger．

REPORT OF RADUATED BATH．

Body teper ture
Temperature of bath
Began at
Ice on head ard constant friction．
Tem．at $4.40 \quad 94$

n	n	4.44	92
n	n	4.45	88
\cdots	n	4.50	$86-b p$

Tem．of patient，102．3．
102.3

94
$4 ; 400^{\prime}$ clock

92
86－ppatient began to feel chilly．

The patient begr to feel chilly at 88 ，but was kept in until 86. DR．K．Whe I was in to see this patient the nurse complained that Jer limbs were cold．The power of calorification is not sufficiert to keep up heat for the whole surface，and ature confines the hegt to the trunk．Nature consequently wrings the alarm boel of danger when the temperature becins to falla very little．．Now what sort of a bath would you use？That bath was a total failuce，the enema didn＇t ginount
to very much，and the result was that the patient＇s temperature was j⿻s口⺕s about where it was at the beginning．

There is a case in wich the is some thing radically wrorg, the patient was shivering, the heat production was inereased, ar the terperature was kept up., unless the bath was kept long enough so that the elinitation set up by the bath would over balance the heat productiong but this bath was for only ten minutes, so tht there was no chance for that. Now what would you suggest? (Give har a tepid bath for a long time.) Give a bath at 94, and bt the atient stay in for a lonc time, say half an hour, so that the heat may be slowly re oved, an even lower ing of the temperature, if not 1° perminute. The patient was not able to co-operate with that amount of cooling off. (It was about 1^{0} in five ainutes.) The main thing then was to suppress heat production. Suppose the patient has a tomporaturo of 1050, with water at 980 ; the tepprature would lower to 85 in five mirutes, that would be about 130. That would be 13 times 5 , equal 650 , beginning with a tomporature four or five below the teppergture of the body. Then you can lower the temperature quite rapidly to 95 , and I an sure you will find it quite helpful.

Now wit reference to the one what should be rone in order to make it more gffective? The te proture might perhaps be raised. We might have gone right on with it. We might have gone right on for an hour.

Bouchard says to lower the toperature 1^{0} in tor minutes, He suge sted started at 36° below the temperature of the body. The flat 1 , that the temperature at which the both begins must be determined by the tomperature of the ptient himself. If the patient had a hot skin, we might becin at a lower point. I thin in this case it might be well to begin at a point near the temperature of the body, in order to suppress the heat production. What is the lowest point
named by pouchard? Never lower thm 86. We carnot make an gbsolute rule, for each case must be adated to the individual himself. A rumber of prench authorities adopted the plan of besinning the temparature at 100 below the tenperature f the body. Brandt begins at 63°, or 30° balov the normal. I think they are all right. I think that it rould be rrong to iy down an arbitrary rule, mx for you see how difficult it is for one to judge the patient's condition by his own condition. xikettertaxamexpentimuaity We fird a case richt on the border line, and you hardly know to which of these classes it belongs, when there is an increase of heat elimination, and diminished heat production.

So by beginnirg near the temperature of the body, we car 2 "apt the bath to the condition of the patient. The graduated bath will be able to take the patient in, romatter what the condition is. I might say haeraxx that there is a little bit of a chip, and I caz hardly see it distirctly,--I am nearsighted, ard I can hardly male out what it is, but I put my hands on both sides of it, and then I know I will gather it in. So with the graduated bath, by beginning the bth at a temperatu a near that of the body, we cantave the case in wherever it is little by little, but you lill be sure to reach it pretty soon. But if the patient begins to shiver, we ought to take the pationt out right away--just as soon as the patient becins to shiver, take him out. So the graciuated bath is the best in the early stages of typhoid fever, and the tepid bath in the later. stages, that is, the gracuat od bath ought to stop at the tepid tomperature. Graduate it down as a tepid bath. It may stop at 82 , or at any point you like.

QUES. Bouchard sqys he givos it sever or eight times, and keps the ptient in for a day.

ANS. Yes. I think I mentionad the other day that tepid baths
may be usad sometimes as mapy 2818 hours by Velss, the German authority, and there is no doubt but good resulte may be obtained in that vay thato would not be obtained in any other way.

QUES. In this case where the patient complained of coldnesss
in the feet and lower limbs, would the tepid bath be indicated-..would it not be abstracting hest?
 temperature near that of the body.

QUES. I was wodering about the cooll g compress.
ANS. Suppose we take this cless of cases up next. There are two general classes in fever patients, the so-called adynamic and the dynamic Wher patients have a hot flushed skin, flushed skin, high temperature,.what do we call that That is the adynamic state. You have not as yet learned these terms. There is the sthenic and the asthenic conditioms. In one condition the forces of ature seem to be very active; the febrile condition seems to be vary active, the patient's pulse is dull, or beating rapidiy, and the patient has plenty of strength. Ehaxtytexthe The other is the adynamic state, and the features are pinched the hands and feet are cold, and in this condition we are liable to have the patient fall into a comatose state, and serious ne rvous disturbances are likely to follow.

Following Pages are Best Copies Available
may be used soinetimes as many as 15 hours by Woiss, the German authority, and there is no doubt but good resulta may be obtained in that way thato would not be obtained in any other way.

QURS. In this case where the patient complained of coldnesss in the feet and lower limbs, would the tepid bath be indicated-..mould it not be abstracting heat?
 temperature near that of the body.

QUES. I was wodering about the cooll g compress.
ANS. Suppose we take this class of cases up next. There are two general classes in fever patients, the so-called adynamic and the dynamic When patients have a hot flushed skin, flushed skin, high temp orature, -What do we call that That is the adynamic state. You have not as yet learned these terms. There i is the sthenic and the asthenic conditioms. In one cordition the forces of ature seem to be very active: the febrile condition seems to be very active, the patient's pulse is eull, or beating rapidiy, and the patient has plenty of strength. gaxtxatextive The other is the adyamic state, and the features are pinched the hands and feet are cold, and in this condition we are liable to have the patient fall into a comatose state, and serious nervous disturbances are likely to follow.
 coltetmatien arit on

 persture iesteve sement. I think the hich tenjepative is this esce

 hoet prodectsen, but ve to not ant to entoy the same vigorove meagures to combet the heat procivetice to. to the onily ategee whon the patsont

 rany to tho peptent have tacteed of guep. Wheve pet hin in the

 is to got the blood to the supfceo--thet ts the reason to give the fric-
 vould ft to wiee to put the gitstemt in a coll batip tho. Whyt Woald you procertbe geantiog bsth is such easeg? We would of have a geed rosetica in this case--sat why In the sirat plsoe, ve would not have a good recetice becsuse the mervous syaten is not in a food atate to reapead quickly to stimaite. The morvous system is in a weskened
-10
 the skin 10 colh Nove 10 es whe 10 Jpightoned os tho bsth, and his

 have both hoot orhemetien and hoet fovep. vila is vory dscoport
 skin, Dessuse of the ordmestion of the heat coatord. Now 18 the welo

 the iffforance botwoon the modite applich and the teaperature of tho
cister Fon 15 the skle is very culdo-es cold as the vator you are
 the stim is mot preptren sep the cold appliselices

Ter To alght projepe the okin seo copla cpplestion, and sleo propere the mermees syate spe a eold applseatice wat is the primary ofteot of heate A stimatents zhon 18 vo appig theat to the surface vo vill stis the nove con orge and ox otte then to setivisy, and
 heart to ineretach. vigep. ascite the nowe caters and beiag then into a conditien in which they wse butter able to throu esf unerg. Imat hot bath coes not give him any alditional streagthes a if continuec for any leagth of time any have the effect to noe up 211 his gavery, but we vill employ it in this case to get out a little mere encrey out of the maseles than maun. Wo mast take ittele difforert View of the offoct of heat than wo do of alcohol, of etrichnes: To talk about nedicinal agente, but cetteinly thoy have difierent reo
letice to the hemen tefy then phyatolezteet aomeurese
 cold eppilesticat. and else gropere the meptow syote for the cold eppllestice-aprogepe the norve centeve to pertem thosp difforont rume-

 vee the newe evatorts

 And soe that purpese Sor what puppee to to epply heat aftore
 productict.) Wẹ wapt to got a mivions fapecesion, se it is a very veter applientiet.

In this case we vent to to canothlitg tifforint with the heat,
 the faee vith the vutor, trut ve wat to methe skin v. palse the temperature of the akin, and entre a otrueger smprisesien upos the aervess centerpe, we ment a gencral meftation-ome wart to get the whole nervons syaten ezeited. The siaple eppimiliag of a 11 tille hot vater upon the akin weuld not be a very macitiag applicatiom. If tre have a man

 chacested soe sould put him into a hot bath ad koop him there from sovar to ton cinutes. His pulse rould be incroased, and we went to keeg

 and then, thoa ho to brought into that ocansticmo then ho juot leagt
 then he is peety for the cose epplsestices
 and stoth aed ho otaye thope uriss to to teat perctotsce.
 hes a goed tiab ghor the gees back to hio thet and has enother. atct. Finet is the seme priaelple thet on mot nekise in velag coll. The

 patient with a hot fepromet, and to eve the supe apply the 18ti!e
 So ceel the thend vo mave heve teth the hasp and the oeeto vet . It

 tivoly at werk, his aeve ose ors ell into sotive pley, end then 00 Fut his inte a cold bath ghea ve have the bloed efroulatiag through the skip, the veasole are fillet with bleod, and thew won ve put him Into the cold bath the the b:ocd ofll be apolcto, and the heart is benting so rapldiy that it will take seme little tito for the sedetero applicatices of hoat
 and propares the body for the resetioa. The application of heat produces-whot kind of an congeation of the akint (A passive coagestion.) A venous congestion. Nhis application of heat to the skin in-
-18
espege the rote of the bloed-rice throwin the velage (wo.) It videas

 cencel vo to the rete of the Dicel gecotre throjh the akin incroased.

 wevo ty firel eppising hoct and then colig ve get the vory condition we
 core Uagit eceling eff of the blect ..

Ever vat would happe a 18 you ald aot apply the colep To eee that the petiont is quite coso se vo just wrep him and apply the heat and wape hiun w-owould that bo goodp (tio.) Whyo The application of theheat would dilate the svoins and artorice, and they would have a
 cold vill make contractiong and make the fiow of bleod more rapide The appliestion of heat iflates the voine and the grteries and the bloot flows mope saz slowiy, but by the application of cold we cause a contrac tion and push the blood along-

Sho enep repicly the blo at is eheaged the mare rapidig it is cooled Sot us cee riat it so that ceole the betys Pisat it is the amtent to
 changets. Tiew suppece to hevee groet big ohmite of 100 in the corper of the roce, and st 10 all vrapget at so thet tho alp of the reen Fill aot
 Will to the orfoet of thace ti vall net ante vecy paplely. Wem sugese ve have a pate of bollew ev, feno yo blew the atp against the oheater of sco--that weust incpotso the co strgo No the pestion is ctrotion ve gre getag to siew tive pate st thich the bloed pascos theough

 skimo Te have the sete recte st thich the viect passes theough the skia,

 Unet to toth thece thime at emoe. Toe tho thise 1 Dich to cell your oftontion to to thias the short tito sftere otho dijasesten si so ameccoted by a comtractice, so to thie ense sithough thore io semperepily - 1stele vemerit, that bea efst to very coom $100 t$ by tho coatrietion mich solicm. If you dip youe hame into hot vatev, end it is god, the hest Is botag rapility olfatiated, but as soon sa it gots rid of the hoat
 again. So you see the metupl valuemet the appliention of heat sione would to almat Uninge. Dy the tiat he tomporitu of the okin of that hand ta rediced to the teapenture of the akin of the other h and, the blocd vessele will be contractinge so that there will be no imergase otheat 0limination. In other words, the veins have treturned

$$
-180
$$

to their normal 3ise.
Iner on the other head, vith the cold applicetions wo hgee not oalt isiotatsice of the volas, vet of the aptepice slee then the rosetion tatree placep, but the eament the cemtrgotion tabos. Dlece the bloed is Popect along of the contraption of the aptepice. Ther the rocetion taltee place thepe is diletation of toth the poise ant the aptepios. and thus the thole skin to epen--ith Ficed gates epe epen, so to ap alk,

 you not jet them into vere vatur smotest of cell to vera then upt
 perature of the atp io at seve. In tian peto hic mands ito mate at a

 Is the thing that weuld vara the foot ont hand then they ape froeso
 ture of the akta se thet to ese male sn applastion of coll, which ofll be followed by a pocotice, thich Fill obetreet some of the heat. The cold apgileation will alanst irotantly fenove the heat you appigo Make a hot appliestion and it paises the temperature; aske the coll appliestion, and that briage it down sbatracts the hoat from the skin
vofo ro tt has hed timo to mork in to the comer of the toly and hat the tedy say ceasiderctiv cutent, sed thea ve heve the recotson

giopg spe ceperal the by wisth ve eet eo thic. give gipot weld be
 to ofthep the tot sull beth ep the tee thentet gecte. focentatioa to

 - greduated balla.

Wo ney heve

 hot eneme

Fenourtation so the sceseme

