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PREFACE

T he dynam ics of free surface turbulence at low Froude numbers has been inves­

tigated by direct numerical sim ulations of a series of tem porally growing round tur­

bulent jets issued below and parallel to a clean free surface. The jets had a Reynolds 

number of 10000 based on initial jet diam eter and centerline velocity (Re^ & 100), 

a Froude number o f 0.1 and were issued at depths of 1.0, 1.5, and 2.0 jet diam eters 

below the surface, respectively. A passive scalar with a Schm idt number of 0.7 was 

also included in the sim ulation.

T he statistics and structure of the jet was found to be in good agreem ent with ex ­

perim ental m easurem ents in free-surface jets. As the jet approaches the free-surface, 

the vertical turbulent fluctuations are damped in a ‘surface layer’ o f m agnitude on  

the order o f one lateral Taylor m icroscale, and the horizontal turbulent fluctuations 

are amplified.

Tw o classes of organized vortical structures could be identified w ithin the surface 

layer o f the jet; (i) vortex tubes with axis parallel to the free surface oriented along 

the direction of the mean flow strain field and, (ii) vortex tubes with axis normal to  

the free surface connected to the surface. The interaction of these structures w ith  

the free surface leads to the establishm ent of a secondary flow which pum ps the flow 

upwards towards the free surface at the jet centerplane and outwards towards the  

edges o f the jet on the surface. This phenom enon, known as the surface current, has 

also been observed in experim ental studies. The parallel vortex tubes are subject



to three-dim ensional dynam ics and the usual cascade o f energy to the sm all scales. 

T he reconnected vortex tubes, on the other hand, are not subject to strong vortex  

stretching near the free surface and form long-lasting coherent structures which grow  

w ith tim e and occasionally merge, leading to  a reverse cascade of energy towards the 

large scales and the establishm ent of a nearly two-dim ensional turbulent sta te  in the  

im m ediate vicin ity of the free surface.

T h e im plications of tins two-dim ensionality for the m odeling of free-surface tur­

bulence is discussed. The ability of various subgrid scale models in capturing these  

free-surface effects is assessed by a priori  tests. T he dynam ic two-com ponent m odel 

developed by Ansari et ah (1994) is shown to be a promising m odel for LES of 

free-surface turbulence.
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CHAPTER I

INTRODUCTION

Understanding the interactions o f a turbulent flow with a free surface is o f inter­

est in m any fields such as marine hydrodynam ics, oceanic sciences, and industrial 

processes. One application that has gained particular interest is the identification  

of signatures of ship wakes on the sea surface. The signatures persist for very large 

distances behind the ship in the viscous wake region and can be identified by aerial 

and space photographs as well as by Syntethic Aperture Radar (SA R ) im ages. These  

signatures have been attributed to surface disturbances created by the ship hull and 

propulsion system  (Lyden et al 1988) and to short-wavelenght surface waves gen­

erated behind the ship (M unk, Scully-Power & Zachariesen 1987). Milgram et al.

(1993) dem onstrated the direct association between the reduced radar return (dark 

streaks in SA R  im ages) and reduced scattering wave energy, and showed also that the 

principal reasons for the reduced short wave energy in ship wakes are ship-generated  

turbulence and surface film distributions. Since the surface film distribution itself is 

also affected by the turbulent wake, the interaction of the turbulent flow w ith the free 

surface is very im portant for the understanding and interpretation of SA R  im ages.

1



1.1 Background

There have been a number of investigations dealing with different aspects of the  

interaction of turbulent flows with a free surface. Many aspects, however, are still 

not com pletely understood. Early studies of Evans (1955), Taylor (1955), and later 

Longuet-IIiggins & Stewart (1961), and Taylor (1962), focussed on the effect of sur­

face currents oil the am plitude of surface waves. Longuet-IIiggins Sz Stewart (1961) 

found that waves traveling on a non-uniform current that varies in the direction of the 

wave propagation undergo an am plification due to a nonlinear interaction between  

the waves and the com ponents of the current. Taylor (1962) analyzed the changes 

in am plitude and wavelength of standing waves of uniform wavelength existing in an 

area of uniform surface divergence. The m otivation for his study of this m odel flow 

was the com m on observation of the appearance of sm ooth areas in the disturbed  

water downstream  of a lock when the sluice gates are opened which. As Taylor 

points out, these correspond to rising turbulent currents spreading out at the surface 

w ith horizontal divergence. Fabrikant and Raevsky (1994) have recently developed a 

theory for the scattering of gravity waves by vortical flows in the ocean. T hey found 

that for hom ogeneous turbulence the scattering characteristics are determ ined by the 

large scale spectrum  com ponents that are usually anisotropic and inhom ogeneous.

Rajaratnam  &z Humphries (1984), Rajaratnam  & Subramanyan (1985) and Swean 

et al. (1989) investigated surface jets with applications to civil and hydraulic engi­

neering. T hey found that growth rates of the length and velocity scales resemble 

those o f a two-dim ensional wall jet at the sam e Reynolds number. On the related  

problem of the interaction of a je t w ith a solid surface, Launder & Rodi (1981, 1983) 

provide a com prehensive review of investigations of the solid wall jet for different jet
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ex it geom etries. Swean et al. (1989) m ade turbulence measurem ents in a developing  

planar surface jet and noted a decrease in vertical velocity fluctuations near the free 

surface.

Experim ental investigations of the interaction of a round jet with a free surface 

were reported by Bernal & M adnia (1988), A nthony Sz W illm arth (1992), M adnia 

Sz Bernal (1994) and Walker et al (1994). M adnia & Bernal (1994) chose this flow 

because it is one of the sim plest flows configurations which incorporates m any of 

the vortical interactions encountered in the ship wake problem. They reported m ea­

surem ents of the mean velocity and turbulence intensities, using hot-fllm  velocity  

m easurem ents, flow visualization and surface curvature m easurem ents. M adnia 

Bernal (1994) observed characteristic dark circular features in shadowgraph images 

of the surface associated w ith concentrated vorticity normal to the surface, which is 

believed to be the result of vortex line reconnection processes in the turbulent flow. 

A nthony & W illm arth (1992), using three-com ponent laser Doppler velocim cter and 

visualizations o f the flow using fluorescent dye and free-surface shadowgraphs, ob­

served the formation o f a shallow surface current that consists largely of fluid struc­

tures ejected from the jet. These structures remain coherent w ithin the current, 

supposedly as a consequence of reduced turbulent m ixing just beneath the surface. 

They also observed that when an insoluble surfactant is added to the surface, the 

surface current is suppressed.

M easurem ents of the structure of turbulence beneath a free surface have been  

reported. Komori et al. (1982) used a laser velocim eter to m easure the turbulent 

fluctuations and Reynolds stress beneath a free surface in two-dim ensional flows 

in open channels. T hey found that as the free surface is approached, the velocity  

fluctuations becom e anisotropic, the normal com ponent are dam ped while the parallel
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com ponents are enhanced. Similar findings have been reported by Swean (1989) for 

the two-dim ensional surface jet, and by Anthony &z W illm arth (1992), and Walker 

et al (1994) for a round jet interacting w ith a free surface.

Rashidi et al. (1992) studied the efFect of surface waves on turbulent quantities 

such as the mean velocities, turbulence intensities, and Reynolds stresses near the 

free surface, in wall turbulent flows, concentrating their analysis on the efFect of the 

wavy m otion on the wall shear stress, and the frequency of ejection-insw eep cycles.

A number of recent works deal with the observation and interpretation of vor­

tex interactions with a free surface. Several experim ental papers on the interaction  

of tilted  vortex rings with a free surface have been published, such as Bernal and 

Kwong (1989), Bernal et al (1989), Sarpkaya and Suthon (1991). Tryggvason et al. 

(1991) and Song et al (1990) have performed numerical sim ulations w ith an inviscid  

m odel, and D om m erm uth and Yue (1991) performed numerical sim ulations using a 

viscous m odel. Hirsa & W illm arth (1994) analyzed the effect of contam ination on 

the interaction of a vortex pair w ith a free surface, and observed that when vortex  

pairs rise and interact with a free surface they cause characteristic surface deforma­

tions known as scars and striations. These are caused by stretching and interaction  

of cross-stream  vortices near the surface. W hen a sm all am ount of surface contam i­

nation is present, they observe the formation of contam ination fronts on the surface 

and secondary vorticity of opposite rotation, that cause the primary vortex pair to  

rebound from the surface. Rood (1994) proposes an explanation for the vortex at­

tachm ent process, which does not rely on vortex im age m ethods, but on the flux of 

vorticity to the boundary. As an exam ple Rood explains the experim ental observa­

tion of Bernal and Kwong (1989) that in a vortex ring approaching the free surface 

along an inclined path the upper arc of the ring 11 breaks” to form a loop w ith its
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ends term inating at the surface. According to Rood, during this process as the vor­

tex loop approaches the free surface, the core is deformed against the surface leading 

to large vorticity diffusion. In the lim it of low Froude number the surface-parallel 

vorticity disappears, leaving the remainder of the loop with ends term inating at the 

free surface. One im portant conclusion is that vortex reconnection to the surface is a 

viscous process, and therefore it may be Reynolds number dependent. T his R eynolds 

number dependence has been observed in W illert and Gharib (1994) experim ent on 

the interaction of m odulated vortex pairs with a clean and contam inated free surface. 

In this experim ent, for low Reynolds numbers and a clean surface, the vortex pair 

locally ’’reconnects” by removing the vorticity from the vortex tube closest to the 

surface to form two parallel lines of U-vortices, whereas for higher Reynolds numbers 

the reconnection process is not as clearly seen, the vortical structure being ’’shat­

tered” as it reaches the surface, presumably because there is insufficient tim e for the 

lobe of the spatially m odulated vortex closest to the surface to loose its vorticity  

to the surface by accelerating the surface locally, forming a reconnection site (i.e. 

surface normal vorticity). These vortex frce-surface interaction studies provide with 

som e basic tools for the understanding of free-surface turbulence.

A theory for the structure of turbulence in the vicinity of plane boundaries de­

veloped by Hunt and Graham (1978) was extended to a free surface in the lim it 

of negligible surface deformation by Hunt (1984). Hunt and Graham ’s (1978) de­

velopm ent is based on a linear theory and is restricted to short tim es of interaction  

betw een the turbulent flow and the shear-free boundary. Over longer tim es nonlinear 

effects develop, such as large eddies straining smaller eddies near the boundary, and 

Hunt (1984) suggests som e estim ates of this effect.

H unt’s (1984) theory was found to be in general qualitative agreem ent with ex-
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perim ental m easurem ents of spectra and profiles of turbulence intensities in a free- 

surface grid-stirred tank by Brum ley and Jirka (1987). N evertheless, these m easure­

m ents reveal im portant dynam ical effects which are not properly accounted for by 

the purely kinem atical theory of Hunt. In particular, the experim ental data show  

a higher concentration of turbulence energy at the low wavenumbers in the tangen­

tial velocity  com ponents near the free surface than that predicted by H unt’s theory. 

M easurements also show the surface induced anisotropy in the velocity fluctuations 

to extend to high wavenumbers, well into the inertial subrange, as the free surface 

is approached. However, closer exam ination of the one-dim ensional energy spectra  

in the experim ents of Brum ley and Jirka (1987) shows the presence o f two distinct 

subranges in the spectra of horizontal velocity com ponents w ithin the surface influ­

enced layer; a k~5 3̂ subrange at interm ediate wavenumbers and a k ~3 subrange at 

high wavenumbers. At large distances away from the free surface, the A-3 range 

disappears. Similar trends can also be observed in the experim ental m easurem ents 

of turbulent planar free-surface jets by Swean et al. (1991). Close exam ination of the 

one-dim ensional energy spectra of horizontal velocity com ponents w ithin the surface 

layer in these experim ents also show the presence of two distinct subranges; a k~5^  

range at interm ediate wavenumbers and a A'-3  range at high wavenumbers. Fur­

thermore, the data indicate a trend for pile-up of energy in the horizontal velocity  

com ponents near the surface as the jet moves downstream. The authors attribute  

this to the presence of slowly dissipating vertically oriented coherent vortex tubes 

which connect normal to  the free surface.

T hese connected vertical vortex tubes, which have also been observed in a num ­

ber of other experim ental studies of free-surface flows (M adnia and Bernal 1989,

Sarpkaya and Suthon 1991, Gharib et al. 1992, Dom m erm outh 1993), are indeed
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a m ajor distinguishing feature of free surface turbulence from wall-bounded or free 

turbulent shear flows. At low Froude numbers, these vortices are not subject to  

significant vortex stretching in the im m ediate vicin ity of the free surface. Therefore, 

the cascade of energy to the small scales within such vortices is inhibited, leading to  

their longevity and the establishm ent of a nearly two-dim ensional turbulent sta te  in 

the im m ediate vicin ity of the free surface. These vortex tubes, however, are not the  

only adm issible class of vortical structures in tiie vicinity of a free surface. Another 

class m ight consist o f vortex tubes which are oriented parallel to the free surface. In 

contrast to the former structures, these vortices are subject to  strong vortex stretch­

ing and the usual cascade of energy to the small scales. Thus the overall dynam ics 

of turbulence near a free surface may be determ ined by a delicate balance between  

the two classes of structures.

1.2 Objectives

T he objective o f this study is to provide a better understanding of the dynam ics 

of turbulence near a free surface, in particular with regards to the im portance of 

tw o-dim ensionality within the surface influenced layer and im plications for the de­

velopm ent of accurate subgrid-scale m odels for LES of free-surface turbulence. The  

studies are based on results from direct numerical sim ulations of a tem porally grow­

ing submerged turbulent round jet which is issued parallel to a clean free surface. 

T his flow exhibits m any of the features of ship wakes and because of its inherent 

sim plicity has served as a prototype flow in a number of recent experim ental studies 

of free-surface turbulence (M adnia & Bernal 1989, Anthony 1990, Liepmann 1990, 

Walker et al (1994).

Specifically, our studies will provide information on the topology and dynam-
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ics of large- and sm all-scale coherent structures and the detailed interscale energy  

transfers near the free surface, assess the im portance of tw o-dim ensionality and the  

reverse cascade o f energy near the free surface and relate the observed phenom ena  

to  the underlying dynam ics o f vortical structures to provide a physical basis for the 

evaluation of subgrid-scales m odel for LES of free-surface turbulent flows.

The organization o f this work is as follows. In §2 the physical parameters of the  

problem  are introduced and the numerical m ethods are discussed. The evolution  

of the je t from laminar to turbulent stages is presented in §3. In §4 the statistics  

o f the free-surface turbulent jet are compared to known experim ental results. T he  

sm all-scale structures of the jet are exam ined in §5, followed in §6 by a discussion  

of the dynam ical role of these structures in the interscale energy transfers and the 

dynam ics of the cascade. The im plications for the developm ent of m ore accurate 

subgrid-scale m odels of free-surface turbulence are discussed on §7. Conclusions are 

presented in §8.



CHAPTER II

NUMERICAL METHODS

In this chapter we discuss the numerical schemes which were em ployed in our direct 

numerical sim ulation study of an incom pressible, tem porally growing, round turbu­

lent jet issued parallel to a free surface. The governing equations are presented first, 

followed by a general description of the boundary conditions, the num erical m ethods, 

the initial conditions and other flow parameters used in the sim ulations.

2.1 Governing Equations

We investigate the evolution and dynam ics of a tem porally growing round jet which 

is issued parallel to a clean free surface at a depth varying from one to two jet 

diam eter below the surface =  1, 1.5, and 2). A schem atic of the je t and of the 

coordinate system  used in this study is shown in Figure 2.1. T he initial laminar 

jet had a  R eynolds number, R e 0 =  of 10000 based on initial jet d iam eter and 

centerline velocity and a Froude number, F r  =  o f 0.1. This Froude number 

is sm all enough to  allow the use of linearized free-surface boundary conditions in 

the sim ulations, thus resulting in significant savings in the required com putational 

resources.

T he evolution of the jet is tracked in a Cartesian coordinate system  by solving

9
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the Navier-Stokes equations

9 $  -  -  r ,  1 ^ 2 -—  =  u x w — V tt -(■ - ~ - V u  (2.1)
at  Re  v '

subject to the incom pressibility constraint

V  • u =  0 (2.2)

where w  =  V  x u is the vorticity and w =  p  +  ^ T +  £ | u |2 is the dynam ic pressure

head. These equations were com bined to give a second order equation for the normal

com ponent of vorticity and a fourth order equation for the normal com ponent of 

velocity

Du~ —
=  [ " V x  (it x  lj) +  u V w, (2.3)

dt

~ P  =  4 - V x 7 x ( « x w ) +  i/V jw (2.4)

In addition, in order to  provide direct comparisons with experim ental flow visualiza­

tion studies, a passive scalar with a Schmidt number o f 0.7 was im posed on the initial 

je t profile and its evolution was tracked by solving the scalar transport equation

l + ' I V c = ^ v ’c <2-5’

2.2 Boundary Conditions

Periodic boundary conditions were imposed in the hom ogeneous (x) direction. 

T he assum ed periodicity length was chosen to be Lxj R a =  16?r/a, where a  =  2.85 

corresponds to the wavenumber o f the least stable (axisym m etric) eigenm ode o f the  

in itial laminar profile. Figure 2.2 shows the least stable eigenm odes of the initial 

lam inar profile (equation 2,18) as com puted by a solution of the linearized stability  

equations (Kam be, 1969; Lessen and Singh, 1973). The details are described in 

A ppendix C. As shown in Figure 2.2, both axisym m etric and helical m odes are
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nearly equally amplified at this wavenumber. The periodicity length o f IG jt/o was 

chosen to accom m odate the developm ent o f not only the fundam ental m ode, but 

also two successive subharmonics. Based on available experim ental data on the 

two-point longitudinal correlation lengths in turbulent round jets (W ygnanski and 

Fiedler, 1969) this domain is also large enough to ensure that the two-point statistics  

of the fully-developed turbulent jet are uncorrelated at a separation o f one half the  

domain length in the stream wise direction. T he flow was assumed to be quiescent 

(if =  0) at large distances away from the jet (y =  ± o o  and z  =  oo), while at the free 

surface {z  ~  0) the linearized free-surface boundary conditions were im posed

dh dh  dh ,
T t  +  +  v a j  =  “  (2 'G)

du d w
f c + f e = °  <2-7>
d v  d w
Wz +  -  0 (2 '8)

h 2 d w
+ T c d l  (2 '9)

where h is the surface elevation.

Boundary conditions 2.7 and 2.8, can be combined to obtain boundary conditions 

for u>~ and w  by using the continuity equation, leading to

diO-r
- g f - O  (2.10)

d 2w  d 2w d 2w
~dz* ~  d x 2 + ~d^:  ̂ *
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2.3 Discretization and Numerical Solution

T he com putations were performed using standard pseudospectral m ethods (C anute  

et al. 1987) em ploying Fourier series in the stream w ise (x ) direction and m apped  

Chebyshev polynom ials in the spanwise (y ) and normal (2 ) directions.

P N  Af/2

v(x,l) = £ E  £  /)T,(r) (2.12)
; j= 0  71=0 m = - M / 2

Two algebraic mappings

y

and

(2.13)

(2.14)
R-  ( l  + C )1/2

were used to  map the —oo <  y j  R 0 <  oo and 0 <  z ( R Q <  oo physical dom ain to 

the —1 <  (,’ < 1  domain of Chebyshev polynom ials. T he scale factors A =  5.0 and 

B  =  9.6 were chosen to produce a nearly uniform distribution of grid points in the  

centra] portion of the jet and a more concentrated distribution o f grid points near 

the free surface. In the com putations the so-called 3 /2  rule was used to de-alias all 

the variables.

T im e advancem ent was carried out by a sem i-im plicit full-step tim e-stepping  

schem e (Orszag and Patera 1983), involving explicit evaluation o f the convective 

term s using a second-order Adams-Bashforth schem e and an im plicit evaluation of 

the viscous term s using a Crank-Nicholson scheme.

^ . ti+ 1   ^ . 7 1  3  1 y

" At  * =  k ■ j (V  x (3  x *3))” -  j (V  x ( u x  <3))”-* +  j  V V +1 +  «?) (2.15)

1 =  - k - V  x  V  x  (~ (u  x w ) T1 — x u;)n _ l) +  ~-V'*(u;"+1 -t-iw") (2.16)
L & £t
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A t each step, h was com puted according to

/iB + l- A n 3 . dh d h . n 1 ,  dh d h . a_, 1 , n+1
— —  =  2 ( - “ a I  -  V  -  2 < - ” *  -  V  +  S * ®  +  "  > < 2 ' 1 7 >

T hese equations were solved subject to boundary conditions given by equations 2.10

and 2.11, and quiescent conditions far from the jet. One additional free-surface

boundary condition for w , required in the solution of the viscous term in equation

2.16 was obtained from equation 2.9 by using the normal com ponent of the Navier-

Stokcs equations as

d 2iv 0  -+ d  d 2n d 2ir_  =  x w ) _ _ , . ( u x w )  +  _  +  _ + v _  (2 . 18)

T he fourth order equation for w  (2.16) was solved by decoupling it into two second 

order Poisson operators and im posing the boundary conditions (2.11) and (2.17) 

using an analytical Green’s function technique (Dom aradzki, 1990) (see A ppendix  

A ).

The resulting second-order Poisson operators were inverted using a co llocation / 

diagonalization technique (Haidvogel and Zang, 1979; Haldenwang et al., 1984). Each 

Poisson solver requires 0 ( N X  • N Y  • N Z 2 +  N X  ■ N Y 2 ■ N Z )  operations, roughly 

tw ice as m any operations as in a Fourier/Fourier/Chebyshev code. The application  

of the diagonalization procedure using the Green’s function approach is detailed in 

A ppendix A.

These m ethods lend them selves to high efficiency parallel im plem entation on 

m edium -grained distributed m em ory parallel processors (M angiavacchi and Akhavan, 

1993). The only operation that requires com m unication is the evaluation of the 

m ulti-dim ensional F F T ’s, which can be com puted using a transpose algorithm . A 

description of the parallel im plem entation of the Fourier-Double Chebyshev code on 

a m essage-passing architecture is given on Appendix B,
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Resolution N y= N z= 1 2 8

a & N - S (To-s % error

1.0 0.2664884 0.266490 6 x 10"4

2.0 0.4692816 0.469300 4 x 10“3

3.0 0.5135206 0.513540 3.5 x 10"3

4.0 0.4332315 0.433232 1.1 x  10“ 1

5.0 0.2509230 0.250924 3 x 1 0 -4

Table 2.1: Q uantitative comparison between the growth rates of the least stable  
eigenm odes of the linearized equation for a free round jet from the so­
lution of the Navier-Stokes equations to the growth rates predicted from 
solution of the linearized equation (A ppendix C).

2.4 Tests of the Code

A number o f test problems have been conducted to ensure the accuracy o f the  

num erical schem es. Individual routines were tested for accuracy by com paring with  

analytical results. The com plete code was tested by comparing the evolution o f the 

m ost unstable axisym m etric m ode to the solution of the linearized viscous stabil­

ity  (the Orr-Sommerfcld) equations. The details are described in A ppendix C. To 

perform the tests, the Navier-Stokes solver was initialized with a laminar jet profile 

(equation 2.18), on which a pure m ode of the Orr-Sommerfeld equation was super­

im posed. Figure 2.3 shows a comparison between the growth rates of the least stable  

eigenm odes of the linearized stability equation for a free round jet com puted from 

the solution of the Navier-Stokes equations to the growth rates predicted from direct 

solution of the linearized equation. Excellent agreem ent is seen between the two 

results. Table 2.1 shows a quantitative comparison between the results.
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T he linearized free-surface boundary conditions were verified by com paring the 

period P  of sm all am plitude sinusoidal standing waves o f wavelength k with the  

predictions from linear theory,

where g  is the gravity acceleration. The error in the period was found to be sm aller 

than 1.0% when using a tim e step com patible with the sim ulations.

2.5 Initial Conditions

Initial conditions for the runs were specified as a laminar je t with a blunt velocity  

profile

U/Uo -  0.5{1 +  tanh[6.25(l -  r j R ) } }  (2.19)

on which a divergence-free, random noise disturbance field given by

u '(x ) =  V x  ( $ ( x )  * 7 (r)) (2.20)

was superim posed. Here ^  is a three-dim ensional isotropic random disturbance field 

(R ogallo, 1981) whose spectral com ponents were chosen to give id an energy spectrum

=  < T T F F >  <2'21>

T he experim ental data o f W ygnanski and Fiedler (1969) were used to choose the value

of A =  0.4572,, and the profile o f 7(r) =  exp (—1.9r2/722). The initial disturbance field 

had an energy of 10-1 relative to that of the mean flow. The passive scalar field was 

initialized w ith a  profile identical to that of the mean flow (equation 2.18). No 

disturbances were im posed on the passive scalar.

The tem porally-growing round jet was issued at depths ranging from one to two 

jet diam eters below the free surface (77/77 =  1.0, 1.5, and 2.0). A relatively low



Froude number jet was studied ( F r  =  =  0.10, based on initial jet centerline ve­

locity and jet diam eter). This prevents the production of large am plitude waves and 

allowed us to use the linearized free-surface boundary conditions in our sim ulations, 

thus resulting in significant savings in the required com putational resources. For the  

scope of this study, the free surface is assumed to be clean of surfactants and surface 

tension effects are assum ed to be negligible.

Sim ulations were carried out with a resolution of 128 x 129 x 129 de-aliased modes 

in the stream wise, spanwise and normal directions on a partition of the SDSC 400- 

node Intel Paragon. The turbulent jet had a turbulent Reynolds number of «  10,000  

based on initial jet diam eter and centerline velocity, and a final Res  «  100 based on 

longitudinal Taylor m icroscale { R e \ g a; 75). At this tim e, the grid spacing was on 

the order of 3 Kolmogorov scales in the central portion o f the jet.
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Figure 2.1: Schem atic of the jet and of the coordinate system

axisymmetric

h e l ica l(m = l)

Figure 2.2: Growth rates of axisym m etric and helical modes in the initial lam inar 
profile as a function of the disturbance wavenumber
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Figure 2.3: Comparison of the growth rates (u>) of the least stable eigenm ode of the  
blunt velocity profile (equation 2 .IS) from the solution of Navier-Stokes 
equations (o), to the predicted value from the solution o f the linearized  
stability  equation C .10-C .12,(solid line) for various wavenumbers a



CHAPTER III

INITIAL EVOLUTION

T he evolution o f the free-surface jet flow from a laminar to a fully developed tur­

bulent state is discussed in this chapter. For the jets studied here, which were all 

issued at a depth of I i j D  >  1.0, the early stages of the evolution of the jet are 

not significantly affected by the presence of the free-surface. Sim ilar to a free jet, 

the random disturbances that are superimposed on the base flow in itially grow as a 

result of linear interactions with the base profile. The growth and saturation of these 

disturbances results in the formation o f axisym m etric vortex rings, which undergo 

a rapid secondary instability and result in the transition of the jet to a turbulent 

state. As the jet grows and approaches the free-surface, the growth, evolution and 

vortical structure of the flow is influenced by the presence of the free-surface. In this 

chapter, we review the evolution and growth o f the jet and compare the results with  

analytical predictions as well as experim ental m easurem ents, in subm erged and free 

jets.

3.1 Vorticity and Passive Scalar Fields

T he initial evolution o f the free-surface jet can be visualized w ith the help of 

three-dim ensional iso-surfaces of constant value vorticity and passive scalar fields.

19
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T he resulting im ages are useful in observing the general features of the How, such as 

the large scale structure of the flow.

Figures 3.1-3.12 show the evolution of the vorticity and passive-scalar fields for the 

free-surface jet issued at one diam eter below the free surface (i.e. w ith H f D  =  1.0). 

It is also shown in these figures the surface elevation, which was amplified for the  

scope of the visualization. The actual am plitude of the surface elevation is very 

sm all for the present sim ulations (on the order of 10~3). Since the level of the 

random noise present in the initial velocity profile is very sm all (E  ~  10~‘l ) the initial 

vorticity and passive scalar fields at tU0f R 0—Q (Figures 3.1 and 3.2) are com posed  

of isosurfaces that are alm ost perfectly cylindrical. As the m ost linearly unstable 

m odes begin to grow, the cylindrical surfaces begin to  undulate (see Figures 3.3 

and 3.4). The initial structures formed from the saturation o f the m ost linearly 

unstable m odes are in the form of axisym m etric vortex rings (Figure 3.5). These  

correspond to mushroom shaped structures in the passive scalar field (Figure 3.6). 

Subsequent evolution of these structures involves the instability o f these vortex rings 

to azim uthal perturbations, already visible in Figure 3.5, the developm ent of helical 

m odes and pairings between various vortical structures. In particular, the structure  

of the vorticity field at this tim e shows the presence of an azim uthal m ode with  

m  =  ± 5 ,  the developm ent o f asym m etry due to the presence of a helical m ode with  

m  =  1 and sym m etric as well as asym m etric pairings between the various vortical 

structures. T he azim uthal instabilities rapidly lead to the formation o f braids, that 

are stream wise vortex tubes, strengthened during the vortex pairings, thus resulting  

in rapid transition to sm all-scale turbulence.

In contrast to the planar jet and the m ixing layer, more than one pairing of the ax­

isym m etric vortex rings is rarely seen in round jets. After the first pairing, azim uthal
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m odes becom e very strong considerably increasing the level of three-dim ensionality  

in the jet and thus triggering the transition to turbulence before the next pairing 

has a chance to  occur. These azimuthal m odes have also been observed in a number 

of experim ental and numerical studies (Liepmann and Gharib, 1992; Abid and Bra- 

chet, 1993; and and Brancher et al 1994) are belived to be precursors to ejections of 

fluid from the sides of the je t, known as side jets. Traces of all these efFects can be 

observed in the structure of the vorticity and passive scalar fields at tU0j R a =  20 

(figures 3.7-3.8). By tU0( R 0 — 40 (Figures 3.9-3.10), the jet has reached a fully 

turbulent state. T he developm ent of the shallow jet beyond this tim e is strongly  

influenced by the presence of the free surface (Figures 3.11-3.12). Am ong other ef­

fects, this interaction leads to significantly higher spreading rates of the jet in the 

lateral direction in a shallow layer near the free surface (Figures 3.11-3.12). This 

phenom enon, known as the surface current, has also been observed in a number of 

experim ental studies of free-surface jet (M adnia and Bernal 1989, A nthony et al. 

1991, A nthony and W illm arth 1992).

T hat this spreading is caused by the presence of the free surface can be verified by 

com paring the passive scalar and vorticity fields at tU0j R 0 = 80  for H j D  =1 (Figures 

3.11-3.12) w ith that o f H f D  = 1 .5  (Figures 3.13-3.14) and H j D  = 2  (Figures 3.15-

3.16). For these two cases, the free-surface effect is much sm aller and the lateral 

spreading of the jet near the free-surface is considerably smaller.

3.2 Evolution o f the Jet

T he overall evolution of the free-surface jet with tim e is shown in Figures 3.17-3.19.

T he growth of the free-surface jet (H j D  = 1 .0 , 1.5, and 2.0) is tracked by following

the tim e histories of the jet half-widths in the vertical and transverse directions



z \ / 2 {t) ,  in Figure 3.17, and y i/2 (0  in Figure 3.18), defined as the distance between  

the location o f the m axim um  mean velocity and the locations along vertical and 

transverse planes where the mean velocity has dropped to half the m axim um  value. 

Also shown in Figure 3.17 are the tim e histories of the m axim um  mean je t velocity,
ziUc

Uc{t),  and the je t R eynolds number, , normalized w ith respect to the

initial Reynolds number of the jet, R c 0 =  .

T he interval between 0 <  tU0/ R 0 <  15 represents the growth and saturation of 

the m ost unstable modes of the initial disturbance field. During this period, the sharp 

shear layers at the edges of the jet grow by viscous diffusion and the jet becom es less 

blunt. Nevertheless, since an inviscid core continues to exist at the center of the jet, 

the jet half-width and the centerline velocities are not affected. The tim e t U0{ R 0 ~  15 

signifies the start of the first vortex pairing in the jet, after which the jet experiences 

rapid transition to sm all-scale turbulence. By a tim e of tU0j R 0 ~  40, the je t has 

becom e fully turbulent. This tim e also represents the start of the interaction between  

the jet and the free surface, for the shallow jet case (H j D  = 1 .0 ). In general, the 

effect of the free surface is felt when the jet is about on-half radius from the surface. 

As seen in Figure 3.17 and 3.18, the evolution of the shallow je t { H j D  = 1 .0 )  is 

dram atically different from that of the deeper jet { H J D  = 2 .0 ) beyond this point. 

W hile the deep jet { H j D  = 2 .0 ) still behaves as a  free jet and gradually approaches a 

self-sim ilar fully-developed turbulent state, the shallow jet experiences a rapid rise in 

its vertical jet half-width upon first interaction with the free surface at tU0f R 0 ~  30. 

This is accom panied by a sim ultaneous decrease in the transverse jet w idth (Figure

3.17). T hese trends are reversed later on (beyond tU0j R a ~  60 when the free-surface 

jet begins to approach a self-similar state. In the final fully-developed turbulent free- 

surface je t { tU0/ R 0 >  85), the transverse jet half-width is nearly 50% larger than
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the half-width in the vertical direction. The sam e trends are also observed for the 

( IIf  D  = 1 .5 )  jet, but at later tim es. These results are consistent w ith experim ental 

m easurem ents in free-surface jets {M adnia and Bernal 1989, Anthony and W illm arth  

1992).

Figure 3.19 shows a comparison of z i / 2 (t),  y i / 2®z=sm(t)i  and y i / 2@z=a(t), for the 

case of the shallow je t H f D  = 1 .0 . T he plane z  =  z m is the horizontal plane that 

cuts through the point of m axim um  mean stream wise velocity, while z — 0 is at the  

surface. This figure shows clearly how the jet first grows in the vertical direction, 

then in the horizontal direction, and finally, the spreading of the jet is m axim um  at 

the surface.

T he initial vertical spread observed in the shallow jets may be attributed to  the 

effect of the the free surface on the initial perturbations o f the laminar jet. T he

presence o f the free surface introduces the observed helical and azim uthal perturba­

tions with m = l ,  that can cause the jet to grow preferentially in the vertical direction  

by means of ejections or side jets. This initial growth in the vertical direction has 

also been observed by Liepmann and Gharib (1992) using D PIV  on a free-surface jet 

issued parallel to  the surface at H j D — 1, showing that during the initial evolution, 

the je t becom es elongated vertically.

In the deeper jet, the spread of the jet for 70 <  iU0( R a <  200 is consistent w ith  

the existence of self-preserving profiles for the mean velocity and the Reynolds shear 

stress of the form,

u <-r ’ l '> =  {{  r  1 f 3 n
W )  > , / ! ( ( ) ) 1 ’

—u'u'Jr,  t) . r  .

- y >  = s i ^ m ] (3 -2)
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Substitution of these expressions into the equation o f m otion

dt  ~  d r  { i  }

and the m om entum  integral constraint

It Jo pU{r't) rdr = ® (3-4)

leads to the conclusion that under conditions o f self-preservation, r 1/ 2 ( 1) ~  (t —t 0)1̂ 3 

and Uc(t)  ~  (£ — £0)"2̂ 3, consistent with the evolution of the deep jet beyond  

tU0/ R 0 ~  70. T he evolution of the temporally  growing round turbulent jet is, 

therefore, different from that o f spatial ly growing round turbulent jets , for which 

self-preservation requires that the jet radius-width grow as r i /2 ~  — .r0) while

its centerline velocity drops as (a; — .t0)-1 resulting in a Reynolds number which is 

constant (Tennekes h  Lumley 1972).
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F igure3.1: Isosurfaces of vorticity m agnitude, |oj|/|ujr„aa7| = 0 .5  ( |u |D j U a — 1.5), 
H j D  = 1 .0 , at tU0j R 0 =  0. The initial surface elevation is h ( x , y , i  =  
0) = 0

Figure 3.2: Isosurfaces of passive scalar, c / c max = 0 .5  (c /c 0 =  0.5), H j D  = 1 .0 , at 
lUo/ R 0 =  0.
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F igu re3.3: Isosurfaces of vorticity m agnitude, |u;|/[ajmai:| = 0 .5  (\u?\D/U0 =  2 .0), 
I i f D  = 1 .0 , at tUo/Ho  =  10. T he m axim um  surface elevation is h f R 0 =
4.5 x  10- 5 , and was magnified to 0.3 for visualization purposes.

F igu re3.4: Isosurfaces of passive scalar, c jcmax = 0 .5  (cfc0 =  0 .5), H j D  = 1 .0 , at
tU0j R 0 =  10. T he m axim um  surface elevation is hf R 0 =  4.5 x 10“5, and
was magnified to 0.3 for visualization purposes.
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F igu re3.5: Isosurfaces of vorticity m agnitude, |tu|/|w mox| = 0 .5  { \ w \ Dj U0 =  2.4), 
H j D  = 1 .0 , at tUojRo  =  15. The m axim um  surface elevation is h j R 0 —
4.5 x  10 1, and was magnified to 0,3 for visualization purposes.

Figure 3.6: Isosurfaces of passive scalar, cjcma£ = 0 .5  (c /c 0 =  0 .5), H j D  = 1 .0 , at
tU0j R o =  15. T he m axim um  surface elevation is h j R a — 4.5 x lO"'1, and
was magnified to 0.3 for visualization purposes.
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Figure 3.7: Isosurfaces of vorticity m agnitude, |u?|/|tumax| = 0 .5  { ju?|D f U 0 =  4 .0), 
H / D  = 1 .0 , at tUofRo =  20. The m axim um  surface elevation is h ( R 0 =  
1.25 x  10- 3 , and was magnified to  0.3 for visualization purposes.

Figure 3.8: Isosurfaces o f passive scalar, cfcmax = 0 .5  (c/c0 =  0.5), H j D  = 1 ,0 , at
tUo/Ro =  20. The m axim um  surface elevation is h ( R 0 — 1.25 x 10~3,
and was magnified to 0.3 for visualization purposes.
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Figure 3.9: Isosurfaces of vorticity m agnitude, |t*j|/|ujTriaarj = 0 .5  (|u;|D ( U a — 3.0), 
H j D  = 1 .0 , at tU0/ R 0 =  40. The m axim um  surface elevation is h ( R 0 =  
1.90 x 10- 3 , and was magnified to 0.3 for visualization purposes.

Figure 3.10: Isosurfaces o f passive scalar, c(cmax = 0 .5  (c /c 0 =  0 .36), H f D  = 1 .0 , at
tU0f R 0 =  40. The m axim um  surface elevation is h j R a ~  1.90 x  10- 3 ,
and was magnified to  0.3 for visualization purposes.



30

F igu re3,11: Isosurfaccs o f vorticity m agnitude, |u;|/|u;mnj:| = 0 .5  (\u>\D/U0 =  1.5), 
I I j D  = 1 .0 , at tU0j R 0 =  80. The m axim um  surface elevation is h / R 0 =  
5.31 x 10 1, and was magnified to 0.3 for visualization purposes.

Figure 3.12: Isosurfaces of passive scalar, c/cmar = 0 .5  (c /c 0 =  0.25), H j D  = 1 .0 , at
tUofRo =  80. T he m axim um  surface elevation is h / R 0 =  5.31 x 10 1,
and was magnified to 0.3 for visualization purposes.
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Figure 3.13: Isosurfaccs of vorticity m agnitude, |w |/|w mar| = 0 .5  (|w |D j U 0 — 1.5), 
H j D  = 1 .5 , at tUo/ R 0 — 80. The m axim um  surface elevation is h / R a =  
4.46 x  10- 4 , and was magnified to 0.3 for visualization purposes.

Figure 3.14: Isosurfaces o f passive scalar, cjcmax = 0 .25  (c jc0 =  0 .5), H j D  = 1 .5 , at
tU0j R 0 =  80. T he m axim um  surface elevation is h / R 0 — 4.46 x 10“'*,
and was magnified to 0.3 for visualization purposes.
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F igu re3.15: Isosurfaces of vorticity m agnitude, |w|/|u>mai| = 0 .5  ( \u \D f U 0 =  1.5), 
H J D  = 2 .0 , at tU0j R 0 — 80. T he m axim um  surface elevation is h j R 0 =  
3.65 x 10—1, and was magnified to 0.3 for visualization purposes.

Figure 3.16: Isosurfaces o f passive scalar, c /cmax = 0 .25  (c /c 0 =  0.5), I l f D  = 2 .0 , at
W 0j R a =  80. The m axim um  surface elevation is h / R 0 =  3.65 x  10 1,
and was magnified to 0.3 for visualization purposes.
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Figure 3.17: Evolution of the free-surface jet centerline velocity and half-width in the 
normal direction. O, zx/2/Ro,  H f D  — 1.0; + ,  z i/2 /7 i0, H j D  =  1.5; □ , 
z x{2f R 0, H { D  =  2.0; x ,  Ucj U 0, H j D  =  1.0; A , Uc/ U a, I i f D  =  1.5; *,
Ucj U 0, I i j D  =  2.0, — , R e 2l/J R e Ro, H j D  =  1 .0 ;----------- , R e ZlJ2f R e no,
H f D  =  1 .5 ; -------------- , R e Zi/j R e no, H f D  =  2.0.
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Figure 3.18: Evolution of the free-surface jet half-width in the transverse direction.
V1/ 2!Ra,  H j D  — 1.0; + , yxji lRoi H f D  =  1.5; □ , yxfvjRa, H j D  =
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Figure 3.19: Evolution of the free-surface jet half-width, H j D  — 1.0. O, 21 /2  j R 0\ + 5 
y i / 2/Rai  at z  =  z m\ □ , y i / z jR o ,  at z  ~  0.



CHAPTER IV

STATISTICS OF THE FREE SURFACE 
TURBULENT JET

In this chapter, the statistics and large scale structure of the sim ulated turbulent 

free-surface jet is presented and the results are compared to existing experim ental 

data. T his will help characterize the present database which will be used in the  

following chapters to study the structure and dynam ics of free-surface turbulence. 

Three cases will be discussed; a deep jet issued at [ H j D  = 2 .0 ) , and two shallow jets  

( H f D  = 1 .5 , H f D  = 1 .0 ).

4.1 The Deep Jet

4.1.1 M ean V elocity Profiles

T he profiles of mean velocity in the deep turbulent jet [ H j D  = 2 .0 ), p lotted  as a 

function o f [ z  — I I ) j L x, are shown in Figures 4.1 and 4.2 for tU0l z o =  100 and 150. 

Here II is the depth of the jet below the free surface and Ls is the vertical distance 

betw een the original centerline and the point where the velocity drops to half the  

centerline value. These profiles, as well as all other statistics discussed in this chapter, 

were calculated by temporal and spatial averaging of the Flow (in the x  hom ogeneous 

direction) over a short tim e interval of AH7o/i? 0= l .  Since the com putational dom ain  

contains only a few large-scale structures and due to the tim e-dependent nature of

35
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the flow, the averaging can be done only over a short period of tim e, the statistics are 

not expected to fully converged and are som ewhat noisy. Cleaner statistics can only  

be obtained by repeating the sim ulations a number of tim es w ith different random  

noise initial conditions and averaging the statistics over the different runs. This is a 

very expensive procedure and was attem pted in the present study.

T he early stages o f the evolution of the jet is not significantly affected by the 

presence o f the free surface. Figure 4.1 shows that even at tU0j  R Q — 100 the deep jet 

has barely begun to interact w ith the free surface and still shows an alm ost perfect 

axisym m etry. T he mean velocity profile at this stage is in good agreem ent w ith the 

experim ental data of (W ygnanski and Fiedler 1969) in self-preserving free turbulent 

je t as well as the Gaussian curve

=  e -O .803<r/r1/a)3 fA  1 )
u c(t)  1 ' }

which represents the self-preserving mean velocity profile in a tem porally-growing  

turbulent jet assum ing a constant eddy viscosity f/(. An exact agreem ent between  

the two sets of data, however, can not be expected, since spatially growing jets  

have a non-zero normal com ponent o f the mean velocity which is not present in the 

tem porally growing jet.

After W o jR o  = 100 the presence of the free surface begins to break the sym m etry  

of the jet. At tU0f R 0 =  150 (Figure 4 .2), the velocity profile in the upper-half of 

the je t is affected by the presence of the surface. T he com puted velocity profileat 

this tim e is seen to be in good agreement with the experim ental o f A nthony and 

W illm arth (1992) and Walker etal  (1994). the free surface. The observed velocity  

profile is typical of the early stages of interaction of the jet with the free surface, 

when the mean velocity at the surface is less than Umf 2 (where Um is the m axim um
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velocity); or equivalently, when the distance from the point of m axim um  velocity to  

the surface is larger than the half-radius.

Figure 4.3 shows the mean velocity profiles in the horizontal direction at tUQj R 0 = 100  

and tU0f R 0 =150, plotted as a function of y f y \ j 2 (where y i / 2 represents the distance  

between the the point o f m axim um  velocity and the point where the velocity drops to  

half the m axim um  value). The data is seen to be in excellent agreement w ith the free 

je t data of W ygnanski and Fiedlcr(1969) and the Gaussian curve which represents 

the sim ilarity profile obtained analytically.

4.1.2 Turbulence Intensities and R eynolds Stresses

Figure 4.4 shows the distributions of the turbulence intensities and the Reynolds 

shear stress in the deep jet { H f D  = 2 .0 ) at tU0/ R 0 =  100 and 150 compared to the  

experim ental m easurem ents of Anthony and W illm arth (1992), and Walker ei al. 

(1994) in spatially growing free-surface turbulent jets. D espite som e oscillations in 

the numerical results, which are caused by the relatively sm all number of sam ples 

used in the com putation of the statistics, the agreement with experim ental data is 

seem  to be quite good. The efFect of the free surface is m ost prom inantly felt in the 

vertical turbulence intensities. Here the presence of the free surface at low Froude 

numbers requires that the vertical turbulence intensities at the free surface nearly 

vanish. The distribution of the other com ponents of the turbulence intensity as well 

as Reynolds shear stress are still quite sym m etric and sim ilar to those in a free jet.

As m entioned before, the deep jet results up to iUQj R a = 150  are representative of 

the initial interaction of the jet w ith the free surface. Since the Reynolds number of 

the tem porally growing jet decreases with tim e, the m axim um  tim e of the sim ulation  

is restricted to tU0f R a «  200, after which the Reynolds number becom es too sm all
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to be representative of fully turbulent flows. On the other hand, this tim e is still not 

representative of the final stages of the interaction of the jet with the free surface. 

This interaction can be better observed by analyzing more shallow jets.

Figure 4.5 shows the distribution o f the turbulence intensities and the Reynolds 

shear stress in the deep jet (H j D  = 2 .0 ) at tU0/ R 0 = 100  and 150, in the plane * =  z m. 

T he general features in the plane £ =  z,„ are qualitatively similar to  those for the  

plane y  =  0.

4.2 The Shallow Jets

The effect of the free surface is felt much earlier on the shallow (H j D  = 1 .0  and

1.5) jets. Therefore, results of the sim ulation for these two cases at earlier tim es  

can be expected  to have features that correspond to much later tim es of the deep 

{ H f D  = 2 .0 ) jet. It is convenient to compare the results of various depth jets at the  

sam e tim e when all jets have the sam e Reynolds number, for different depths to  

infer the effect of the free surface, and isolate it from effects o f the decay of the jet  

Reynolds number. This will isolate the effect of the free surface on the evolution of 

the je t, independent of Reynolds number.

4.2.1 The M ean V elocity Profiles

T h e developm ent of the mean velocity profile in the { H f D  = 1 ) free-surface jet is 

shown in Figure 4.6. Profiles o f the mean velocity are presented along the vertical 

(y m =  0) plane passing through the location o f the m axim um  m ean stream wise  

velocity  in the je t. W hile the lateral location o f the m axim um  m ean stream wise  

velocity  always remains in the center-plane of the original jet (i.e ., the plane ( ym =  

0)), the vertical z =  z m location o f this m axim um  begins to shift towards the free 

surface as the jet begins to interact with the free-surface. For the case of the H f D  =1
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jet this begins to happen at tUo/ R 0 ~  '10, shortly after the jet experiences transition  

to turbulence. The m axim um  velocity reaches the free surface at tU0j R 0 ~  75 (Figure

4.6) and remains there for the i*emainder of the evolution of the jet. figure 4.7 shows 

a comparison between the com puted mean velocity profiles and the experim ental 

data o f A nthony and W illm arth. (1992) and Walker et al,(1994) at x j D = 32. T he  

agreem ent is quite good.

T he lateral mean velocity profile in the jet is shown in Figure 4.8. T he profile is 

in good agreem ent with the experim ental data of A nthony and W illm arth (1992) and 

Walker et al.(1994) at x / D = 32. The free jet data of W ygnanski and Fiedler(1969) 

along w ith the Gaussian curve are also shown. The good agreem ent between all 

curves shows that the je t grows like a free jet in the lateral direction.

The presence o f the free surface results in the developm ent of a secondary flow 

in the jet. Figure 4.9 shows the profiles of V( y )  in the plane z  =  0 and VF(s) in the 

plane y  =  0, respectively. The mean normal velocity W  is seen to be negative on 

the centerplane of the jet (plane y  =  0) causing an upwelling of the je t fluid towards 

the free surface. At the same tim e, the transverse velocity V  in the plane z  — 0 is 

seen to change sign on passing the centerplane of the jet. This behavior is caused by 

the developm ent of a secondary flow, which is better visualized by m eans of contour 

plots of mean stream wise velocity and stream lines of secondary mean velocity  shown 

in Figure 4.10. T he predominant features o f this secondary flow are two pairs of 

counter-rotating vortices, which pump the fluid towards the surface at the center 

plane of the jet and eject the fluid towards the edges of the je t at the surface. This 

secondary flow is of Prandtl’s second kind; i.e., it arises from the anisotropy and non­

uniform ity in the normal and tangential Reynolds stresses. T his can be shown by 

considering the equation of the stream wise mean vorticity which, for the tem porally
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growing free-surface jet analyzed here, reduces to

d 2v'w' d

d y 2

T he last term on the right hand side of eq. 4.2 is a diffusive term  and cannot

generate mean stream wise vorticity. T he anisotropy and spatial variation of the  

turbulent intensities and Reynolds shear stresses are, therefore, the main source of 

creation of a mean stream wise vorticity and developm ent of a secondary flow, A

T he effect o f the secondary flow on the profiles of mean stream wise velocity  can be 

better visualized by means of contour plots of mean stream wise velocity, as shown 

in Figure 4.11. The effect of the secondary flow is to increase the spreading of the

Figures 4.12 and 4.13 show the mean velocity profiles in the vertical and horizontal

between these results and the experim ental data of A nthony and W illm arth (1992) 

and Walker ct al. (1994).

4.2,2 Turbulence Intensities and R eynolds Stresses

T he evolution of the mean turbulence intensities and Reynolds stresses in the 

{ H f D  = 1 .0 ) free-surface jet is shown in Figures 4.14 through 4.16. A t early tim es 

the turbulence statistics in the free-surface jet are indistinguishable from those which 

would be obtained in a free jet. As the jet begins to interact w ith the free surface, 

shortly after experiencing transition to turbulence, the presence of the free surface

sim ilar secondary flow also develops in turbulent wall jets (Launder and Rodi 1983).

jet at the surface, creating thin a layer at the edges of the je t, also know as surface

current.

directions respectively, for the case of the shallow jet ( H f D  = 1 .5 ). The features 

observed in this je t are similar to the case { I i f D  = 1 .0 ). Good agreem ent is seen also
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inhibits the vertical velocity fluctuations (Vu)'2} w ithin a thin ‘surface layer’ in the 

im m ediate vicinity o f the free surface (see Figures 4.14c, 4.15c). W ithin this layer, the 

vertical turbulence kinetic energy is re-distributed to the kinetic energy o f horizontal 

( \ ^ ,  V w >2) m otion and the turbulent fluctuations attain a strongly anisotropic 

character. T he thickness of this ‘surface layer’ is estim ated  to  be on the order of one 

lateral Taylor m icroscale (or 1/4  of the local vertical jet half-width in the present 

je t).

T he evolution of the vertical Reynolds shear stress, u'w’ in the plane y  =  0 is 

shown in Figures 4.14d, and 4.15d. The —u'w' Reynolds shear stress develops an 

asym m etry about the ccntrerline of the jet as the free surfce is approached (Figures 

4.14d), For large tim es (tUo[ R 0 > 100), when the velocity profile becom es mono- 

tonically decreased with its m axim um  at the free surface, the u'w' Reynolds stress 

becom es entirely negative such that turbulence production is always positive. Sim- 

ilat trends can also be observed in the experim ental m easurem ents (Figure 4.15d). 

T he profile of the u'v' Reynolds stress in the horizontal plane z  =  0 is shown in 

Figure 4.1Gd at iU0j R a = 100 and compared to experim ental data. These profiles 

are not too different from those in a free jet. The sign of u'v' is always such that its 

contribution to the turbulence production (t t ' v 'd U fd y ) is always positive. Figures 

4.17 and 4.18 show the distributions o f the turbulence intensities and the R eynolds 

shear stress in the interm ediate jet ( I l j D  = 1 .5 ) at tU0( R o =  100, com pared with  

experim ental m easurem ents of Anthony and W illm arth (1992), and Walker et al. 

(1994) in spatially growing free-surface turbulent jets. The results are qualitatively  

sim ilar to those for the shallow jet ( I I / D  = 1 .0 ). Good agreement w ith experim ental 

m easurem ent is also observed here.
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4.2.3 Turbulent K inetic Energy D issipation and Production

The distribution of the average turbulent kinetic energy dissipation, the average 

turbulence production and the average turbulent kinetic energy in the ( I l j D  = 1 .0 )  

jet at tU0f  R 0 =  150 are shown in Figures 4.19-4.21. The two-dim ensional contour 

plot o f average dissipation at tU0/ R o =  150 in figure 4.19 shows that the m axim um  

dissipation occurs close to the edges o f the je t in a region at a depth o f ^  0 .5 Z1/ 2 . 

Not surprisingly, the m axim um  production also occurs approxim ately in the same 

regions as shown in figure 4.20. These regions correspond to the location of m axim um  

strain.

Figure 4.21 shows the contour plot of turbulent k inetic energy at tU 0/ R 0 =  150 

for the shallow j e t ( / / /D = 1 .0 ) .  The location of the peak is not at the free surface 

but slightly below it. The peaks agree well with the location of peak production and 

dissipation.

4.3 Kinetic Energy and Dissipation Spectra

T he conversion o f the vertical kinetic energy of turbulence into the k inetic energy 

of horizontal m otion within the ‘surface layer’ o f the jet leads to the establishm ent 

of a strongly anisotropic, nearly two-dimensional turbulent state w ithin this layer. 

To gain a better understanding of the dynam ics of turbulence within this layer, we 

next exam ine the spectra of kinetic energy and kinetic energy dissipation in the jet.

4.3.1 D eep jet

Figures 4.22 and 4.23 show the three-dim ensional kinetic energy and dissipation  

spectra in the deep jet ( I I / D  = 2 .0 ) at tU0/ R 0 =  150. These spectra were com puted  

by interpolating the data onto a uniform Fourier grid using spectral interpolation
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and calculating the spectra using the definition

E w  =  ^ r  E  5 i“W  (4-3)
A— §-<|k|<A-|-i

where u'(lc) are the Fourier coefficients of the disturbance velocity fluctuation field 

in the three-dim ensional Fourier box, and N is the number of wave vectors k which 

fall into a spherical shell of radius h. The three-dim ensional kinetic energy spectrum  

shown in figure 4.22 displays a short inertial subrange with a Kolmogorov constant 

C k  =  1.4 which is in good agreement with the value o f C k  ^  1-5 suggested by 

M onin and Yaglom (1981, pp. 485) based on analysis of numerous experim ental 

data. T he normalized kinetic energy dissipation spectrum  in the jet is shown in 

figure 4.23. The dissipation spectrum  displays a peak at kd <  i/ > ~  0.2, where 

T) is the Kolmogorov scale, suggesting the presence of a dom inant length scale for 

the dissipative structures on the order of Id ss 5 <  7} >  (or ss 0.2Afl). T he value 

of k,i <  7/ > «  0.2 at which the peak of the dissipation spectrum  is observed in 

the present database is in good agreement w ith results observed in other numerical 

sim ulations o f turbulence (Domaradzki 1992) and the wavenumber of peak dissipation  

predicted by Pao’s (1965) spectrum  with a Kolmogorov constant o f 1.4.

4 .3 .2  S h a llo w  J e t

Figure 4.24 shows the one-dim ensional spectra of the turbulent velocity  fluctua­

tions in the jet at tU0j R 0 — 100 at various depths below the free surface. At large 

depths ( z f R 0 >  2.0) the turbulence is seen to have an isotropic character, m ani­

fested in Figure 4.24 by a collapse of the curves o f one-dim ensional spectra for the 

three com ponents o f velocity. As the free surface is approached, the low wavenumber 

com ponents of the vertical velocity fluctuation is suppressed and the k inetic en­

ergy of these fluctuations is transferred into the horizontal (particularly stream wise)
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com ponents of velocity. This anisotropy in the velocity fluctuations extends into pro­

gressively sm aller scales, well into the inertial and dissipative ranges of turbulence, 

as the free surface is approached.

The behavior observed in Figure 4.24 is qualitatively consistent with that pre­

dicted by H unt’s (1984) theory, in which the free surface is assum ed to affect a 

turbulent eddy of size £ only when the eddy is w ithin a distance £ of the free sur­

face. T he primary effect of the free surface being the creation of an im age eddy 

which suppresses the vertical velocity fluctuations at the surface and inhibits further 

m ovem ent of the original eddy towards the free surface. Thus the effect o f the free 

surface is expected  to be first felt at the lowest wavenumber com ponents of the ve­

locity and to then gradually extend to the high wavenumbers, consistent w ith the 

form of the spectra in the jet. Nevertheless, the results shown in Figure 4.24 also 

reveal im portant dynam ical effects which are not properly accounted for in H unt’s 

theory. Figure 4.24 shows the anisotropy in the velocity fluctuations to extend to  the  

sm allest wavenumbers at the free surface. Furthermore, these results indicate the  

presence o f two distinct subranges in the energy spectra; a h~5 3̂ subrange at interm e­

diate wavenumbers and a k~3 subrange at high wavenumbers. These two subranges 

are typical of ‘tw o-dim ensional1 turbulence and suggest that the dynam ics of turbu­

lence in the ‘surface layer’ may indeed follow the governing laws of two-dim ensional 

turbulence. Exam ination o f the 3d spectrum  (Figure 4.25) shows the presence of 

the sam e two sub-ranges. Similar trends can also be observed in the experim ental 

m easurem ents of the energy spectra in planar free surface turbulent jets by Swean 

et al. (1991) and in the free surface grid-stirred tank o f Brum ley and Jirka (1987).
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4.4 Surface Elevation Spectra

T he effect of the underlying turbulence on the surface elevation can be studied  

by exam ining the surface elevation one-dim ensional spectrum  shown in Figure 4.26, 

E 3 was com puted according to

£ .< * ) =  E  5 l'‘W |2 t'i-4)

where h is the Fourier transform of the surface elevation. A fc~3 range can also be 

observed in the surface elevation spectrum , indicating that at low Froude numbers the 

surface elevation is m ostly determ ined by the energy of the sub-surface turbulence.

T he relationship am ong vortical sub-surface structures and surface signatures has 

been investigated by various authors (Bernal and Kwong, 1989; Bernal el n/.,1989; 

Sarpkaya and Sutlion, 1991, Tryggvason et ah, 1991, M adnia and Bernal, 1994). 

Their interrelation will be discussed further in the analysis of the structure o f the 

sm all scales (§5), and in the dynam ics of the free-suraface turbulence (§6).
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Figure 4.1: Profile of the mean velocity in the plane y = 0 . —  numerical results at
tim e t 0 o/ R o =  100, for the deep jet (I I / D  = 2 );  Gaussian curve
(eq. 4.1); O experim ental data of W ygnanski and Fiedler (1969) for a 
free jet.
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Figure 4.2: Profile o f the mean velocity in the plane y = 0 . ---- , numerical results at
tim e tUo/Ro  =  150, for the deep jet { H f D  = 2 ); O, experim ental data  
of Anthony and W illm arth (1992), at x j D —16; x ,  experim ental data of 
Walker et «/. (1994), at x / D —16;
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Figure 4.3: Profile of the mean velocity in the plane z  =  z m for the deep
jet [ H j D  = 2 .0); ----- , numerical results at tim e tU0j  R 0 ~  1 0 0 , ---------- ,
tUafRo =  150, — • — , Gaussian curve (cq. 4.1), O experim ental data of 
W ygnansky and Fiedler (1969), for a free jet.
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Figure 4.4: Profile of the turbulent intensities and Reynolds stress in the plaue y = 0 .
— , numerical results at tim e tUojRo — 1 0 0 ;-------- , tU0f  R 0 =  150, for the
deep jet (H j D  = 2 .0); O, experim ental data o f A nthony and W illm arth  
(1992), at x / D = 16; x ,  experim ental data of Walker el al. (1994), at 
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Figure 4 .G: T im e evolution of the profile of the mean velocity in the plane y = 0 , for 
the shallow je t { I l j D  = 1 .0 ). — , numerical result at tim e tUojRo  =  0,
 , tlJ0f R o =  2 5 ; ----------, W ojR o  =  5 0 ; ......... , tUQ/ R 0 =  7 5 ; -------------- ,
IU0/ R 0 =  100.
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Figure 4.7: Profile of the mean velocity in the plane y = 0 . — , numerical results at 
ixm etU ol  R 0 =  100 f°r the shallow jet (H f D  =1 .0 ); A , experim ental data  
of Anthony and W illm arth (1992) at x f D —32; + ,  experim ental data of 
Walker et al, (1994) at x j D —32;
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F igu re4.S: Profile of the mean velocity at tim e lU0j R 0 =  100. for the shallow jet
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Figure 4.9: Profiles of the mean velocities in the horizontal and vertical directions at 
tim e tUojRo  =  100 for the shallow jet (H f D  = 1 .0 ); —  horizontal profile 
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Figure 4.10: Stream lines of the mean secondary flow at tim e tU0( R 0 — 100, for the 
shallow jet (H j D  = 1 ) . The stream lines are from ip/ (UoR 0) = -0 .0152 to 
0,0152, with an increm ent of 2.78 x 10"3.
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F ig u red .11: Contours o f constant mean stream wise velocity ( (J) at tim e tU0f R 0 =  
100 for the shallow jet (H j D  = 1 ) . The contours are from 
UjUa)  =0.0145 to 0.132, with an increment o f 2.3 x  10- 2 .
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Figure 4.12: Profile of the mean velocity in the plane y = 0 , — , numerical results at 
tim  e t Uof Rg  =  100, for the interm ediate jet (H / D  =1 .5 ); A , experim en­
tal data of Anthony and W illm arth (1992), at x j D = 32; + ,  experim ental 
data of Walker et al. (1994), at x j  D =32\
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F igure4.13: Profile of the mean velocity at tim e lU0j R a — 100. for the shallow jet
(H j D  = 1 .5 ); —  at the plane s =  zm,  at the free su r fa ce ,-----------
Gaussian curve(eq 4 .1), +  experim ental data of Walker ct al. (1994), 
at x / D = 3 2 , □  experim ental data of Anthony and W illm arth (1992), at 
x f D = 3 2 , O, experim ental data of W ygnanski and Fiedler(1969).
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Figure 4.19: Contour plots of average kinetic energy dissipation e at tim e tU0f  R 0 
150 for the shallow jet ( I I / D  = 1 ). The contours are from t R 0fU^ 
1.0 x  10-G to 81.0 x 10"G, with an increment of 1.0 x 10-G,
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Figure 4.20: Contour plots of average turbulence production p  at tim e tU0f  R 0 =  150 
for the shallow jet ( H f  D  = 1 ). The contours are from p R a/ U £ =  1.05 x 
10-G to 9.55 x 10“7, with an increment of 1.92 x 10- 6 .
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Figure 4.21: Contour plots of average turbulent kinetic energy q2 at tim e tUo/ R 0 =  
150 for the shallow je t ( H f D  = 1 ). The contours are from q2/ U 2 =  
9.39 x  10”s to 5.63 x  10- 4 , with an increm ent of 9.4 x IQ-5 .
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Figure 4.22: Three-dim ensional spectrum  of kinetic energy in the deep je t / / / D  = 2 .0  
at tUaf H0 =  150. O numerical results, —  1.4 &-5 / 3 slope line.

2uk2__
(<£>J>)3

m

10

0.01

0.001
0.01 0.1

k  <  7] >

F igure4.23: Three-dim ensional spectrum  of kinetic energy dissipation in the deep  
jet H I D  = 2 .0  at tU0/ R 0 =  150.
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Figure 4.26: One-dim esional spectrum  of surface elevation in the jet surface. O nu­
merical results at tim e i Uo j Ra =  150; —  k ~5 3̂ slope l in e ;  k ~3
slope line.



CHAPTER V

TURBULENCE STRUCTURE

In this chapter, the structure of turbulence in the free-surface jet is exam ined and 

free-surface effects are discussed. An understanding of the dynam ics of these struc­

tures w ill help identify the physical-space m echanism s responsible for the transfer of 

energy betw een scales of turbulent m otion, and the role played by the free surface in 

the overall dynam ics of turbulence.

T he structure of turbulence will be first exam ined in the deep jet (H f  D  = 2 .0 ), 

where the jet is just beginning to interact w ith the free suraface, and free surface 

effects are still sm all. The discussion will then turn to the shallow je ts , for which  

free surface effects are strong.

5.1 Large Scale Structure of the Jet

T he existence o f organized large-scale structures in jets has been verified experi­

m entally in a number of works. Yule (1978) investigated the vortices in the transition  

region and the large eddies in the turbulent region of a jet, by using flow-visualization  

and hot-wire techniques. Using a conditional sam pling technique, eddies m oving near 

the center-line were measured. The sam pled eddies were found to contribute greatly  

to local velocity fluctuations and statistical correlations. Yoda et al. (1992) investi­
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gated the structure and evolution of natural and forced turbulent round jets in the 

far field and found both helical and axisym m etric instability m odes to be present in 

the natural jet. Schefer et al, (1994) studied the existence of organized large-scale 

structure in jets using planar im aging of the G'//4 concentration in a turbulent jet. 

T hey observed a non-sym m etric behavior, w ith vortical structures appearing on one 

side or the other, but not necessarily both sides. They also observed instantaneous 

concentration fields which were consistent with the axisym m etric instability mode. 

Overall this jet showed clear evidence of the axisym m etric instability  m ode on 40% 

of the images analyzed, while 30% showed evidence of the helical instability, and 30% 

showed no clear evidence for either instability mode. Another im portant feature was 

the observation of ramp-like structures, associated w ith vortical structure formation  

during the axisym m etric instability m ode. T he sudden increase in concentration  

in the ramp corresponds to the leading edge of the vortical structures, while the 

subsequent gradual decrease is associated with the remainder of the structure.

In these experim ents the large scale vortical structure is derived either by some 

conditional sam pling or by observation of the spreading o f a passive scalar. In this 

work, since the com plete velocity field is available, the vorticity distribution can be 

com puted directly. However, the vorticity field em phasizes the sm all scale features 

of the flow. In order to analyze the large-scale vortical structures, it is necessary 

to apply a filtering operation that em phasizes the large scale contributions. The  

sim plest such approach is to apply a sharp low-pass Fourier cut-off filter at various 

wavenumbers. The resulting vorticity (or vorticity m agnitude) field is representative 

of the fluid m otion at the scales close to the cut-off.
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5.1.1 The D eep Jet

Figure 5.1 shows the large scale vortical structure of the deep jet at t =200, for 

two sharp cut-off filter at kc <  t] > = 0 .0 7 0 , and 0.025. The energy above these cut-ofTs 

corresponds to about 40% and 25% of the total turbulent kinetic energy, respectively. 

T he shape of the isosurface of vorticity m agnitude suggests the predom inance of the 

antisym m etric instability m ode, but there are indications of the presence of the 

sym m etric m ode as well. This is consistent with the experim ental observation that 

the jet sw itches between the axisym m etrical and helical modes and is in each m ode 

about 50% of the tim e.

At the largest scales (scales representative of the size of energy-containing eddies) 

the vorticity field consists of hybrid structures, that com bine features of both axisym ­

m etric and helical m odes. These eddies give rise to a predom inantly ‘flapping’ type  

of m otion, although at certain locations they appear sym m etrically aligned about 

the je t center-line and locally give rise to a ‘puffing’ type of m otion. Increasing the  

m agnitude of the cutoff wavenumber to a size representative of the sm aller energy- 

containing eddies (figure 5.1b) reveals the presence of coherent vortical structures 

which are formed by the cut and reconnect of the primary eddies shown in figure 

5.1a. T he predom inant structures at this cutoff continue to  be helix-like, or deformed 

ring eddies whose axis lies in the x  — y  plane. These eddies are consistent w ith one 

class o f organized structures which have been described in experim ental studies of 

spatially  growing turbulent jets (Mumford 1982, Thom as h  G oldschm idt 1986). A 

second class of structures suggested in experim ental studies (M umford 1982) con­

sists of roller-like eddies whose axes are aligned along the direction of the mean flow 

strain field. W hile such ‘strainw ise’ eddies were found to  be rare at the scale of 

energy-containing eddies, at the smaller scales (on the order o f inertial range and
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dissipative scales) the organized vortical structures in the flow consisted primarily of 

such elongated vortex tubes with axes oriented along the direction of the mean flow 

strain field.

5.1.2 The Shallow Jet

Figure 5.2 shows the large scale vortical structure of the shallow jet at t = 200 , for 

the sam e sharp cut-off filters at kc <  jj > = 0 .0 7 0  and 0.025. As the je t reaches the free 

surface, the presence of the surface precludes the existence of the initial axisym m etric  

m ode. The helix and ring shaped eddies becom e further deformed, giving origin to 

elongated eddies alm ost parallel to the surface, and there are indications of the 

reconnection of the large scale eddies with the surface, leading to large scale vortical 

structures normal to the surface. The overall appearance of the free-surface large 

scale eddies is of a helix cut in half by the surface. There are also indications of 

the formation o f half-ring shaped eddies, which are attached to the surface, but are 

not necessarily aligned with the center o f the jet, being therefore a com bination of 

axisym m etric and helical instability modes.

5.2 Two-Point Correlations

T he two-point correlations of the three com ponents of the disturbance velocity with 

separations along the stream wise (x ), and lateral (y) directions are shown in figures

5.3 and 5.4 for the deep ( H f  D  = 2 .0 ) jet at tU0f R 0 — 200. In the stream w ise direction, 

the two-point correlations were com puted on the center-line of the jet according to 

the definition

_ . «j(»M(» + r)
[«?(*)]'/’ K J(x)]'/»
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where x is the position on the center-line and r is the separation vector. In the lateral 

direction, (figure 5.4) the two point correlations were measured between points which  

were sym m etrically located on opposite sides of the jet center-line,

n r uj(x -  r/2)t/((x + r/2)
2 — r/2)]1/2 [uj2(x +  r/2)]1/2

T his form of the correlation coefficient in the lateral direction has been com m only  

used in experim ental studies o f turbulent jets to deduce the large-scale coherent 

structure of the flow. An exam ple of these m easurem ents for the u com ponent from 

the data of W ygnanski and Fiedler (1969) is also shown in figure 5.3 and 5.4.

The two-point correlations for the deep jet show good qualitative agreem ent with  

experim ental data for the velocity com ponents of free jets , for which experim ental 

data is available. In the stream wise direction, these correlations drop off to sm all 

values at a separation o f one-half the dom ain length, indicating that the com puta­

tional dom ain is adequately large to ensure that the assum ption of periodicity does 

not significantly affect the dynam ics of the large scale structures.

5.3 The Fine Scale Structure

5.3.1 The D eep Jet

We begin by exam ining the spatial distributions of the fluctuating vorticity, the 

passive scalar, and the kinetic energy dissipation fields for the deep je t (11/D  = 2 ). 

Figure 5.5 shows the distribution of these fields in two perpendicular planar cuts 

through the je t at tUa/ R 0 =■ 200; one (plane y — 0) oriented along the stream wise  

direction, and the other (plane x  =  1.38f?0) along the transverse direction. All 

quantities have been normalized with respect to their respective averages (denoted  

by <  > )  in a box extending from —4 <  y / R 0 <  4 and 0 <  z / R 0 <  8, and are 

plotted  using a  linear gray-scale color schem e. Figure 5.5 shows the regions o f high
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in tensity vorticity in the jet to be in the form of vortex tubes with a  preferential 

orientation along the direction of the mean flow strain field; i.e., at 45 degrees to  

the direction of the mean flow lying on conocal surfaces around the centerline o f the 

jet. In the stream wise cut through the jet, the projection o f these structures appears 

elongated and at 45 degrees to the stream wise direction, while in the transverse cut 

their projection is seen to form a ring around the centerline o f the jet.

A sim ilar picture is also observed for the structure of the k inetic energy dissipation  

fields (Figure 5.5b). T he regions of high intensity kinetic energy dissipation are seen 

to  be well correlated w ith the regions of intense vorticity, occurring at the periphery 

of the intense vortical structures.

Figure 5.6 shows a three-dim ensional view of these structures in the jet. High 

intensity vortex tubes, oriented at 45 degrees to the direction of the m ean flow, can 

clearly be seen in this picture. These vortex tubes have a diam eter on the order of 

10 Kolmogorov scales (0.3AS) and a length on the order of an integral scale. The  

presence of sim ilar tube-like vortical structures with characteristic diam eter on the 

order of the Kolmogorov scale and a length on the order of an integral scale has been 

observed in a number of databases of hom ogeneous, isotropic turbulence (Yam am oto  

& Hosokawa 1988, She et al. 1990, Ruetsch M axey 1991, V incent & M eneguzzi 

1991, Jim enez et al 1992), as well as turbulent shear flows (Ansari 1993). These  

structures give rise to high intensity kinetic energy dissipation at their periphery 

in rod-like regions o f diam eter on the order of 10 Kolmogorov scales, similar to a 

Burger vortex tube. The size of these intense regions of kinetic energy dissipation  

corresponds to the scale at which the dissipation spectrum  reaches its peak, providing  

a physical explanation for the presence of this peak (Ansari, 1993).
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5.3.2 The Shallow Jets

To begin to investigate the effects of the free-surface on the dynam ics o f turbu­

lence, we next exam ine the structure of turbulence in the shallow jets.

Figure 5.7 shows the structure of the vorticity, kinetic energy dissipation and 

passive scalar field in two perpendicular stream wise and transverse cuts through the 

shallow ( H j D  — 1.0) jet at tim e tU0j R 0 — 200. T he transverse cuts of the various 

fields show dram atic spread in the jet width in the transverse direction as the jet 

approaches the free surafacc. This phenomenon, known as the surface current, lias 

also been observed in a number of experim ental studies of free-surface jet (M adnia  

and Bernal, 1989; A nthony and W illm arth, 1992; Walker et al ., 1994).

High intensity regions of vorticity and kinetic energy dissipation are again seen 

to be well-correlated and to have rod-like structures, with intense kinetic energy 

dissipation occurring at the periphery of the intense vortical structures.

Figure 5.8 shows a three-dim ensional view of the vortical structures in the shallow  

je t je t at tU0j  R 0 =  200. Two classes of organized vortical structures can be identified  

near the free-surface; (i) vortex tubes with axis parallel to the free surface oriented 

along the direction of the mean flow strain field and, (ii) vortex tubes with axis 

normal to the free surface connected to the surface. Close-up view o f these two 

classes o f structures, together with their respective free-surface signature, is shown 

in Figure 5.9 and 5.10. Due to the downward m otion induced by the im ages on the  

free surface the parallel vortex tubes can only get to within a distance on the order 

of their own diam eter o f the free surface. T he self-induced lateral m otion o f these  

structures under the influence of their im ages leads to a large-scale m ean secondary 

flow (chapter 4) known iis the surface current. In effect, the free-surface provides a 

mechanism  that ‘sorts’ vortical structures parallel to it, causing the clockwise vortices
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to m ove right, and the counter-clockwise vortices to m ove to the left. T his m otion is 

the origin of the significantly higher lateral spreading rates of the jet compared to its 

spreading rates in the vertical direction. These vortices are subject to 3D dynam ics 

an the usual cascade of energy to the sm all scale.

T he normal vortex tubes, on the other hand, connect to the free surface and 

form long-lasting structures at the edges of the jet. The origin o f these structures 

is underlying vortex tubes which approach the free surface at an angle and connect 

to it. These vortices are pumped to the edges of the je t by the mean secondary 

flow, where they form long lasting whirls. This effect can be seen by looking at the 

distribution of the average normal vorticity m agnitude accross the surface o f the jet, 

shown in Figure 5.11. The normal vorticity m agnitude has a plateau at the center 

of the je t, and peaks at the edges of the je t, where the long lasting whirls dwell. T he  

longevity of these structures is due to the lack of strong vortex stretching in them . 

The connection of these structures to the free surface constrains their m otion, and 

prevents them  from freely changing their orientation to align w ith the direction of 

mean flow strain. T he only strain that can act on these vortices is due to  variation 

in the normal com ponent of the velocity near tha surface, which is sm all compared  

to the mean flow strain. Consequently, the cascade of energy in these vortices is 

inhibited, leading to the establishm ent of a nearly two-dim ensional turbulent state  

in the im m ediate vicinity of the free surface.

The surface signature of the two classes of structures is shown in Figures 5.12. 

T he top view o f the surface shows elongated elevations and depressions aligned with 

the direction o f the main flow strain field, i.e., at 45 degrees to the direction of the  

m ean flow, and circular depressions at the edges of the jet. Figure 5.13 shows the  

sam e surface rendered semi-transparent showing the underlying vortical structures.
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The overall dynam ics of turbulence within the ‘surface layer’ is determ ined by a 

balance between the ‘two-dim ensional’ dynam ics o f the connected vortical structures 

and the ‘three-dim ensional’ dynam ics of the parallel vortex tubes.
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Figure 5.1: Isosurfaces of vorticity m agnitude, |o>|/|ujmaJ:J = 0 .5 , H / D  = 2 .0 , at 
tUo/Ro  =  200, for kc <  t] > =  0.025 (left) and 0.070 (right)

Figure 5.2: Isosurfaces vorticity m agnitude, |w|/ja;mai| = 0 .5 , H / D  = 1 .0 , at 
t U j R o  =  200, for kc <  V > =  0.025 (left) and 0.070 (right)
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Figure 5.3: Longitudinal correlation on the deep jet ( H / D  = 2 .0 ) at tim e tU0/ R 0 —
200. □ , u com ponent; O,  v  com ponent; + ,  w  c o m p o n e n t;---------- , u
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Figure 5.4: Lateral correlation on the deep je t ( H / D  = 2 .0 ) at t i me  tU0f  Ro =  200. □ ,
u component; O, v  component; + ,  u> co m p o n en t; , u com ponent
from experim ental data of W ygnansky and Fiedler (1969).
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Figure 5.5: Spatial distributions of the (a) fluctuating vorticity m agnitude, (b) ki­
netic energy dissipation and (c) passive scalar fields in two perpendicular 
planar cuts through the je t for the deep jet ( H / D  = 2 .0 )  at tU0/ R 0 =  200. 
Left colum n, plane y =  0, right colum n, plane x — 1,38R a.
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x

Figure 5.6: Three-dim ensional view of the high intensity vortical structures and their 
associated kinetic energy dissipation fields in the deep jet ( H / D  = 2 .0 )  
at tU0f  R a =  200. The structures are visualized by isosurfaces o f \u)\! <  
|a>| > =  2.5 (dark gray) and e( <  e > =  4.0 (light gray).
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Figure 5.7: Spatial distributions of the (a) fluctuating vorticity m agnitude, (b) ki­
netic energy dissipation and (c) passive scalar fields in two perpendic­
ular planar cuts through the jet for the shallow jet (H / D  = 1 .5 ) at 
tUo/Ro =  200. Left colum n, plane y  =  0, right colum n, plane x  =  1.3S/20.
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Figure 5.8: Three-dim ensional view of the high intensity vortical structures and their 
associated kinetic energy dissipation fields in the shallow jet { H / D  = 1 .0 )  
at iUo/Ro  =  200. The structures are visualized by isosurfaces of |w |/  <  
|w| > =  2.5 (dark gray) and cj  < t  > =  4.0 (light gray).
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Figure 5.9: Close-up view of a  vortex tube with axis parallel to the surface oriented  
along the direction o f the mean flow strain field, w ith respective free- 
surface signature amplified for visualization.

Figure 5.10: Close-up view of a vortex tubes with axis normal to the surface con­
nected to the surface, w ith respective free-surface signature amplified  
for visualization.
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Figure 5.11: Profile o f the mean normal vorticity m agnitude in the plane z = 0 , for 
the shallow jet { / / / D  = 1 .0 ). —  numerical result at tim e lU0j R 0 =  150, 
 at tim e tUoj I i 0 =  200.
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Figure 5.12: General view of the surface deformation, for the shallow je t (H j D  = 1 .0 )  
at tUa/ R 0 =  200.

Figure 5.13: General view of the surface deform ation and underlying vortical struc­
tures, for the shallow je t (H j D  = 1 .0 ) at tUo/ R 0 =  200.



CHAPTER VI

DYNAM ICS OF FREE SURFACE 
TURBULENCE

In the previous chapters, the effect of the free surface on the structure o f tur­

bulence was discussed. In this chapter, the free-surface effects on the dynam ics of 

turbulence will be addressed. Our interest lies, in particular, on the im portance of 

tw o-dim ensionality near the free surface and the m odifications to  existing m odels 

that are needed to account for these two-dim ensional effects.

6.1 Energy Transfer in Spectral-Space

We begin by considering the spectral energy transfer, T ( k \ l ) ,  representing the 

nonlinear transfer of energy to a m ode k as a result of interactions between the tur­

bulent fluctuations. T he transfer T ( k , t ) can be com puted according to (see A ppendix

D)

T { k , t )  =  -  R ea l{w ';(k ,f)tf'i(k ,< )}  (6.1)

where u'*(k, 0  represents the com plex conjugate of the Fourier transform of the  

velocity fluctuation u ,(x , f) , and N ' i ( k , t )  is the Fourier transform of the nonlinear 

term

o  , I dp"
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with ^ dfjoln =  ~Wx%xfi(u'au'p)‘ N l { x , t )  represents the m utual nonlinear interactions 

between the turbulence fluctuations. T he transfer defined in this manner lias the 

sam e form as in isotropic turbulence and satisfies the sam e conservation properties, 

such as =  0- To com pute T { k , t ) in the free surface je t the je t data

was reflected about the surface, the data was truncated to a box of size L x =  Ly =  

L z =  17.G37/?0 and the data was interpolated to Fourier representation using spectral 

interpolation.

Figure 6.1 shows the spectrum  of energy transfer T ( k )  in the shallow ( H f  D  =  1.0) 

je t, at lUoj-o  ranging from ICO to 200. As expected, the transfer is negative at 

the low wavenumbers and positive at the high wavenumbers, indicating that on 

average energy is being transferred from the large to the sm all scales o f m otion. As 

m entioned earlier, the transfer spectrum  defined by equation (6 . 1 ) should satisfy the 

conservation property, Ha, T(fc, f) =  0. We have checked that this is indeed the case 

for the spectrum  shown in figure 6 . 1 .

6.2 Energy Transfer in mixed Spectral-Pliysical Space

The energy transfer, T(k) ,  as defined by equation 6.1 is appropriate for hom oge­

neous turbulent flows, where there are no boundaries or spatial variation to influence 

the turbulence. For non-homogeneous flows, such as the free surface je t analyzed  

here, T ( k )  is useful, but provides only an average description of the dynam ics of 

the flow. To separate the effects of the surface on the dynam ics of turbulence, it 

is necessary to be able to keep the spatial resolution in the direction normal to the 

surface in the energy transfer analysis. This can be achieved by defining the transfer
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where k\  — k%+ky and a',(Arr , z)  is the 2D Fourier transform (in x  and y  directions)

o f ufi ( x , y , z )  and z)  is the 2 D Fourier transform (in x  and y  directions)

of the nonlinear term , given by equation 6.2. T he quantity T(k/ t , z )  represents the 

net transfer of energy to the wavenumber kh in the plane s . This transfer, however, 

is not solely the result o f interactions between the turbulent fluctuation, but can 

also arise from the advection of energy to wavenumber At, on plane z  from another c 

plane. Consequently, T{ kh t z)  is not conserved in each plane; i.e. f  T{kh,  z)dkh ^  0. 

However, the volum e average of T( kh , z )  is conserved; namely, /  f T ( k , z ) d z  dk  =  0. 

T he integral f  T(kh,  z )d z  can be viewed as the projection o f T { k )  onto a horizontal 

plane, for those wavenumbers k for which +  ky =  k\.

Figure 6.1 shows a comparison between the volum e average of T(k/n z)  in the jet  

and the volum e average of the true three-dimensional transfer T(k) .  The sim ilarity  

between the two curves indicates that the dynam ics o f both quantities is similar.

Figure G.2 shows the energy transfer T(k)t, z ) at various depths from the free 

surface in the shallow jet (H j D  =  1.0). The statistics have been average over 

five tim es for tU0fRo  ranging from 160 to 2 0 0 . The transfer spectra shown in 6 . 1  

dem onstrated that on the average in the jet the dynam ics of turbulence follows the  

rules of three-dim ensional turbulence and is dom inated by a net forward transfer 

of energy from the large scales of turbulent m otion to the sm all scales. T he sam e 

behavior is observed on the detailed transfer for planes not close to the free surface. 

However, as the free surface is approached (Figure 6.2 a) the turbulence attains a 

two-dim ensional character and its energetics is dom inated by a net reverse transfer 

of energy (backscatter of energy) to the large scales. Translated to  an effective 

eddy viscosity, this means that the effective eddy viscosity may be negative near the  

free surface. In the interm ediate locations (Figure 6.2 b-c), the overall dynam ics



of turbulence is determ ined by a delicate balance between the three-dim ensional 

dynam ics of the deep turbulence and the two-dimensional dynam ics o f turbulence in 

the im m ediate vicin ity o f the free surface.

T his transition to ‘tw o-dim ensional’ turbulence in the im m ediate vicinity of the 

free surface has to be accurately captured in any turbulence m odels used for the 

prediction of free surface turbulent flows. This makes the m odeling of such flows 

substantially different from the well-studied exam ples of wall-bounded or frce-shear 

flows.

6.3 Subgrid-Scale Energy Transfer

The quantity T ( k )  plotted in figure 6.1 represents the net transfer of energy to a 

scale k  as a result or nonlinear interactions with all other scales of turbulent m otion. 

A quantity of more practical interest in the developm ent o f subgrid scale m odels 

of turbulence is the energy transfer ?s(A:|fcm) to a large scale k <  km as a result 

of nonlinear interactions w ith scales having a wavenumber higher than a certain  

cutoff km (the subgrid scales). The subgrid-scale energy transfer, T(fc|A:m), can be 

com puted as (see A ppendix D).

=  -  Y .  Real{tI'rC(k)JV'f'^(k)} (6.4)

* £
where «',■ is the large-scale disturbance velocity (defined by low-pass filtering the 

velocity field to include only scales with |A:| <  km) and
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with

i d 2p',cls d 2 , . . ,c ,c , t
P d x ad x a ~  d x ad x ^ UaU0 u ° u ^  (6 ,6>

represents the nonlinear interactions of the large-scale fluctuating velocity  field w ith  

the subgrid scales. By analogy to T{ kh , z ) ,  one can also define

T s { h \ k m, z )  =  -  2 2  Rea \ {u' iC( ^ k y, z ) N ' f lS(kx , k y, z ) }  (6.7)
*-£<|*h|<fc+£

which represents the nonlinear interactions of the large-scale fluctuating velocity field 

with the subgrid scales in m ixed spectral-physical space.

U sing Ts(A|Am) one can com pute the spectral eddy viscosity v(A:|&m) acting on 

a (large-scale) m ode k as a result of nonlinear interactions with all wavenumbers 

greater than lcm (the subgrid scales). As shown by Kraichnan (1976), i/(A'|A:m) can 

be defined as

*'W ™ ) =  — 2 k 2 E { l y  k ~ km (6,8)

By analogy, in the mixed representation one can define the spectral subgrid-scale 

eddy viscosity acting on wavenumber at location z  as

/ i i i  \ TV (A’/t |hm , z )  r r n \
( " I" ”  ) ~  V(/fcn|*,„,*)) 1 *

where

V(kh\km>z) =  ~  2 2  (6 . 1 0 )

represents the viscous effect of the large scales. The mean of r'(A’/i|A’m,^ ) over all z 

physical locations is then the equivalent of ^(AvJA',,,),

I'miA*/ijAm) =  1 / L J  A';,\hm, z ) d z  (6 . 1 1 )
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Figure 6.3 shows the mean spectral eddy viscosity, in the je t com ­

puted using equations (6 .8 ) and (6 . 1 1 ), for four values o f the cutoff wavenumber; 

krn <  V > =  0.1, 0.22 (in the inertial range) and km <  t/ > — 0.32, 0.42 (in the 

dissipation range). Figure 6.3 also shows the predicted spectral eddy viscosity from  

Kraichnan’s theory. T he behavior of spectral eddy viscosity observed in this Figure 

is similar to that predicted by Kraichnan (1976) using a test-field m odel o f turbu­

lence in the lim it of infinitely long inertial range. For all values of km, th e  curves 

of u [ k f k m) plotted in Figure 6.3 have a similar character, consisting of a positive  

plateau at low wavenumbers and a cusp-like behavior near the cuttoff km. This is 

sim ilar to Kraichman’s curve for 3D turbulence. In 2D turbulence, however, Kraich- 

m an’s theory shows a negative plateau at low wavenumbers. The plateaus in each 

curve represent the long range interactions between the resolved and the subgrid  

scales of m otion w hile the cusps represent the interactions between scales near the 

cutoff. T he area under the curve represents the net average effective eddy viscosity  

in the flow. In 2D turbulence, in the enstrophy transfering range, the negative area 

at the large scales should be sam e as the positive area at scales close to the cutoff 

(Kraichm an, 1976). To see if such 2D effects are also present near the free surface in 

Figure 6.4 we plot u { k j k m, z)  for various cutoff wavenumbers km and various depths 

z.  It is seen that as the surface is approached, the positive plateau at low wavenum ­

bers is replaced by negative values, sim ilar to 2D turbulence. T he area under the 

curve represents net transfer to the resolved scales. Depending on where the cutoff 

is, this area can be positive or negative.

The im portance of this two-dim entionality depends on where the LES cutoff 

wavenumber lies with respect to the scales where the injection of energy occurs at 

the sm all scales, and on the relative im portance of the two dim ensionality effect,
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which varies w ith the distance from the surface.
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CHAPTER VII

IMPLICATIONS FOR LES MODELLING OF 
FREE-SURFACE TURBULENT FLOWS

In this study, Direct Numerical Sim ulation (D N S) was used to investigate the 

dynam ics of a free surface turbulent jet. DNS involves the explicit com putation of 

all scales of turbulent m otion and is an invaluable tool for the study of the detailed  

dynam ics of turbulence for sim ple geom etries and m oderate Reynolds. However, it is 

a well known fact that, in the foreseeable future, Direct Num erical Sim ulations for re- 

alistic flows involving high Reynolds numbers and com plex geom etries will be outside  

the realm of com putational capabilities. T he com putation of such realistics flows can 

only be accom plished if part of the scales of m otion are m odeled. Large Eddy Simu­

lation (LES) is at present considered one of the m ost promissing techniques for the 

sim ulation o f com plex engineering flows, where simpler m odeling approaches (such 

as single-point closure) are inadequate. In LES the 3-D , tim e dependent large scales 

of the m otion are com puted exp licitly  using a Altered Navier-Stokes equation, while 

the elFect of the unresolved (or subgrid) scales is m odeled. Obviously the success or 

failure of LES depends criticaly on the accurancy with which the subgrid interaction  

have been m odeled.

As seen in the previous chapters, the interaction o f turbulence with a free surface
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leads to a reverse cascade (backscatter) of energy from the subgrid to the large scales 

of m otion in the im m ediate vicinity of the free surface. For application in LES, it is 

im portant that the subgrid m odel be able to account for these efFects.

In this chapter, the performance of various existing subgrid stress m odels in « 

prior i  tests of free surface turbulence is compared. The comparisons will include 

the Smagorinsky (1963) m odel, the dynam ic eddy viscosity m odel o f Germano el al 

(1991), and the D ynam ic Two-Com ponent model of Ansari et al. (1994).

7.1 Large Eddy Simulation Equations

In LES, the velocity field is decomposed into resolved (or filtered) com ponents, 

uj,  and subgrid (or residual) fields, uj. The equation governing the large scale com po­

nents can be obtained by filtering the Navier-Stokes and continuity equations. T he  

resulting equations, for the large scale velocity field u ,(x , I) are given by

— I \ ^  dr,-,- 1 d 2Uj
dt d x r U' Uj> Ox, dxj Re dxjdxj { }

S = °  ( 7 - 2 >

where the overbar denotes filtering at the LES cutofT (corresponding to scale km) for

an appropriate filter G  (one which com putes w ith the derivative operators) defined

in physical space as

7 (x) = /  G(x -  x')/(x')rfx' (7.3)

Som e com m on filters used in practice are the Gaussian filter given by

G (x  -  x ') =  (6 / 7rA )1/ 2 exp[6 (x  -  x ')2/ ^ 2] 

the box filter defined as

' 1 /A ,  for |(x  —x ' ) |<  A /2
G (x  — x  ) =

0 , otherwise
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and the Fourier sharp cutoff filter which is m ost conveniently defined in Fourier space

1 , if ^

0 , otherwise

where G'(k;) is the Fourier coefficient of the filter function, G’(x  — x') and km — w / A  

is the cutoff wave number, In all of these filters A  is the filter width in the physical 

space and km is the cutoff wavenumber which is related to A  by km =  t t /A .

T he term

r,j(x, t ) =  ujuj  — UiUj (7.4)

represents the nonlinear interactions o f the large-scale flow field with the subgrid 

scales. This term  needs to be m odeled, or parameterized, and various works have 

addressed this issue with various degrees of success.

7.2 Smagorinsky Model

Smagorinsky (1963), based on the assum ption of quasi-equilibrium turbulence, 

developed and applied an eddy viscosity model for the sub-grid stresses o f turbulent

atm ospheric flows. Using dimensional arguments, Smagorinsky related the eddy

viscosity, f/7-, to the resolvable-scale rate of strain tensor Sij

ur =  ( CsA ) 2\S\ (7.5)

where

|5‘| =  (2 S ,y S y ) ‘ / 2

I f  , d T l i \
“  2  d x j  +  d x /

C s  is a constant and A  is a length scale, usually taken to be the filter width.
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Because of its sim plicity, this model has been widely used in Large Eddies Sim ula­

tions, with reasonable success. However, this model has a number of lim itations: (i) 

the m odel includes an em pirical ’’constant” that needs to be tuned for various flows; 

(ii) the model can not account for backscatter of energy, and (iii) the m odel does not 

have the correct behavior near solid boundaries or in transitional or relaminarizing  

flows.

7.3 Germano DEM Model

T he Dynam ic Eddy V iscosity m odel of Germano ct al (1991) is, in principle, 

sim ilar to the Smagorinky m odel, but it tries to overcom e som e of its lim itations. 

In particular, the m odel constant is com puted dynam ically during the course of the 

sim ulation. Similar to the Smagorinsky m odel, the subgrid-scale stress term

T{j =  u ju j  — Tiiiij (7.6)

is m odeled using an eddy viscosity assumption

r tJ =  - 2  uTS i j  =  - 2 C A 2S  Si j  (7.7)

To find C ( z ,  y, z , t)  dynam ically, a second test filter G  is applied to the N avier-Stokes 

equations. The subgrid stresses at this filter,

7 ■ — 1 1 i j  1 tij't/j ( 7 . 8 )

is m odelled in the same way

Tij -  =  - 2 C S 2?  %  (7.9)

assum ing C ( x , y ,  z , i )  remains the sam e as in r,j.

N oting that

Lij =  UfUj — uiTiJ (7.10)
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is known, the resolved turbulent stress can be related to the subgrid and subtest 

stresses by

L { j  — l i j  — Ti j  ( 7 . 11)

to com pute C , resulting in

C (». 0  =  - 4 s r s:'v  _  LuSkL 1 _  (T.12)
- A  A 2 |S*|5mn5’m„

In applying this expression to LES of wall-bounded flows, Germano et al. found

that this expression could result in a negative or an indeterm inate C,  which would

make the solution procedure unstable. To overcom e this problem , they suggested  

that for hom ogeneous flows the denom inator and numerator should be averaged in 

the hom ogeneous direction;

c (2. 0 = ~ L *  ^  < L US u >  -----  (713)
1 A  <  >  - A  <  |A |S  S mn >

T he resulting C  is always positive. It was later suggested by Lilly that a more

consistent procedure for evaluating C  is to com pute C  according to

( ’ } =  2  <  MijMi j  >  (7 ' 14)

where M;j — A  <  |6 '|6 ’17in >  - A 2 <  |5 |5 mil >

T he Germano et al. DEM has been shown to provide the appropriate behavior 

near solid boundaries and in transitional flows. I t’s m ain lim itation is that it requires 

the averaging procedure described above, and as such is restricted to sim ple flows 

with hom ogeneous directions and can not account for local backscatter of energy.

7.4 The Two-Component Dynamic Subgrid-Scale M odel

A dynam ic two-com ponent subgrid-scale m odel (DTM ) was proposed by Ansari 

el al. (1994) to overcom e the lim itations of DEM. In this m odel, the effect of inter­
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actions between the subgrid and the resolved scales far from the cutoff is m odeled  

separately from the interactions between the subgrid- and the resolved scales close 

to the cutoff. T he detailed derivation of the model has been given by Ansari et al. 

(1994). Here the more im portant features of the m ethod will be briefly described. To 

m odel r,j, two additional filters G  =  G G  and G  — G G G  are introduced correspond­

ing to cutofTs km/ a  and k m / a 2 (a  >  1 ), respectively. If km, km/ a  and km/ a 2 all 

fall w ithin the inertial range, a model for the subgrid-scale stress r,j is constructed  

assum ing that

TijSij ~  Th%  (7.15)

is a valid approxim ation, This is further approxim ated to

T.j „  TijStmSlm (7 1(j)
Opijjpq

The subgrid-scale dissipation is m odeled from the dynam ics of the resolved scales 

using the two-com ponent model

£  ^  ^  ^  ^  ^  ^    _  _  ^

— 3 ^ *  — j.S'j.S’ij +  (tiillj — TiiUj) — “ •(u/.-u'r- — «*.-«*) (7.17)

where the first term is a Smagorinky type term to account for forward cascade of

energy, and the second term is added to account for local backscatter of energy. W ith  

the exception of the coefficient C , all the other variables in equation (7.17) involve 

only large-scale quantities and are known. The coefficient C ( x ,  y, a, t) is com puted  

dynam ically using the procedure suggested by Germano et al. (1991), from the  

subgrid-scale stress (see equation 7.11) at G  filter level. A ssum ing that the 

two-com ponent subgrid-scale m odel suggested in equation (7.17) can also be applied  

(w ith the sam e C ( x , y , z , t ) )  to model T^,  we obtain

Tij -  ^ T „  =  - 2 C £  | f  \%j +  ( W j  -  m j )  ~  y  ( 1 ^  -  Tikn h) (7.18)
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A dynam ical equation for the com putation of C  can then be obtained {Germano et 

al. 1991) by noting that

f —  T ' j j  i} —■ XtiXi j  (t { It  j  (7.19)

involves only large-scale quantities and is, therefore, known. Substitution  of (7.9) 

and (7.10) into (7.11) gives

L tJ -  Sf L hh -  - 2 CMi j  +  (7.20)

where

and

Mtj =  A  | S | S « - A  |S |SU (7.21)

B,j =  ( u , U j  -  i i j U j )  -  ( u t u j  -  U j U j )  (7.22)

where it is assum ed that the spatial variation of C  is sm all at the level o f the G  filter 

so that C  ~  C.  The expression for C  can then be obtained using the least-squared  

approach suggested by Lilly (1992).

2  Mi j Mn  ( ]

Equations (7 .8), (7.9) and (7.15) form a com plete set, from which the subgrid- 

scale stress can be evaluated. The model coefficients C(;r, y, z , t )  com puted from  

(7.15) are substituted  directly into (7.9) w ithout the need for any spatial averaging. 

Unlike the dynam ic eddy viscosity m odel (Germ ano et al. 1991, Moin et al. 1991), 

in the DTM  m odel this does not lead to numerical instability. This is because the 

intense backscatter of energy is accounted for separately (by the second and third 

terms on the RHS of equation 7.9). The role of the eddy viscosity term  in the DTM  

m odel is primarily to account for the background forward transfer o f energy.
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T he DTM  subgrid-scale stress model yields zero subgrid-scale stresses in laminar 

flow and at solid walls, and has the correct asym ptotic behavior in the near-wall 

region. The only adjustable parameter in this model is the ratio a  =  A /A  =  A /A .  

T he a pr ior i  tests of Ansari ct al. (1994) suggest that for 1 <  a  <  2  the m odel is 

very insensitive to the choice of a .

7.5 Evaluation of the Models

To evaluate the suitability of these m odels for LES of free-surface turbulence, the  

perform ance of each of the above models in the free-surface jet was tested  against 

results from DN S in a priori  tests. In a priori  tests, the subgrid m odel is applied  

to the truncated DNS database o f the turbulent free-surface jet and its predictions 

for the subgrid-scale dissipation are compared to results from DNS. To facilitate the 

application of the various m odels, the DNS data was interpolated onto a  uniform  

three-dim ensional Fourier grid using spectral interpolation. This allowed the use of 

a sharp Fourier cutoff filter, with the sam e filter width in all three directions. The  

cutoff km (corresponding to the LES filter G)  was chosen to be at km <  tj > =  0.08 

or 0.20 and the other cutoffs were chosen with a filter ratio of a  — 1.25 for DTM , 

and a  =  2 for DEM .

Figure 7.1 and 7.2 show the spatial distributions o f the subgrid-scale dissipation  

TijSij at the free surface (plane z  =  0 ) in the shallow (H f D  =  1 .0 ) jet at the two cut­

offs km <  tj > — 0.08 and 0.20, respectively. T he subgrid-scale dissipation com puted  

from the full DNS database is compared to the subgrid-scale dissipation predicted  

by the dynam ic two-com ponent model (D T M ), the dynam ic eddy-viscosity m odel 

(D E M ) of Germano et al. (1991) and the Smagorinsky (1963) eddy viscosity model 

w ith a Sm agorinsky constant of 0.1 (C  =  .01). The Germano m odel was im plem ented
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with a lest-lilter-w idth  to grid-filter-width ratio of 2, as recom m ended by Germano 

et al. (1991) and with the model coefficient com puted after a spatial averaging was 

performed in the horizontal directions (i.e, according to equation 17 of Germ ano et 

al. (1991). The average subgrid dissipation com puted from the DNS data, and the 

three m odels is shown in table 7.1. It can be seen that the dynam ic tw o-com ponent 

m odel not only predicts can average subgrid dissipation in better agreem ent with the 

DNS data compared to DEM , but also is far more successful in capturing the correct 

spatial distribution of the subgrid-scale dissipation (Figures 7.1-7.2). In particular, 

regions of intense forward and reverse transfer of energy are accurately described. In 

contrast, the structure of the subgrid-scale dissipation predicted by DEM is seen to be  

essentially identical to that predicted by the Smagorinsky m odel which has little  cor­

relation with the structure of the subgrid-scale dissipation field observed in the DNS  

database. T he DTM  ability to predict negative subgrid transfer (backscatter) is very 

prom ising and suggests that it should be able to account for the tw o-dim ensionality  

cfFects associated w ith free-surface turbulence.
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Figure 7.1: Subgrid-scale dissipation TijSij at the free surface (z  =  0) in the shallow  
jet H J D  —1.0 at iU0( R 0 — 200, for km <  r\ > =  0 .8 ; (a) DNS results, (b) 
DTM , (C) Smagorinsky m odel, (d) DEM.
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Figure 7.2: Subgrid-scale dissipation at the free surface ( z  — 0) in the shallow
jet H j D  = 1 .0  at tU0/ R 0 =  2 0 0 , for km <  tj > — 0 .2 0 ; (a) DNS results, 
(b) D TM , (C) Smagorinsky m odel, (d) DEM.
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Km <  tj > =  0 . 2 0

x  1 0 °

K m <  t) > =  0.80 

x 1 0 °

Min Max Mean Min Max Mean

DNS -17.872 89.649 2.787 -39.451 86.037 1.193

Sm agorinky (1963) 0 . 0 0 13.304 0.994 0 . 0 0 23.989 0.874

Lilly (1992) 0 . 0 0 31.111 2.325 0 . 0 0 7.403 0.308

DTM -68.358 86.394 2.003 -84.364 182.037 1.284

Table 7.1: Subgrid dissipation for the shallow jet ( H j D  = 1 ) , at W of R 0 = 200 at the 
surface.



CHAPTER VIII

SUMMARY AND CONCLUSIONS

The dynam ics of free surface turbulence at low Froude numbers has been inves­

tigated by direct numerical sim ulations of a series o f tem porally growing round tur­

bulent jets issued below and parallel to a clean free surface. The jets had a Reynolds 

number o f 1 0 0 0 0  based on initial jet diam eter and centerline velocity  (R e \  ps 1 0 0 ), 

a Froude number of 0.1 and were issued at depths o f 1.0, 1,5, and 2.0 jet diam eters 

below the surface, respectively. A passive scalar w ith a Schm idt num ber of 0.7 was 

also included in the sim ulation.

The statistics and structure o f the jet was found to be in good agreem ent w ith ex ­

perim ental m easurem ents in free-surface jets. As the jet approaches the free-surface, 

the vertical turbulent fluctuations are dam ped in a ‘surface layer’ of m agnitude on 

the order of one lateral Taylor m icroscale, and the horizontal turbulent fluctuations 

are amplified.

Two classes of organized vortical structures could be identified within the surface 

layer of the jet; (i) vortex tubes w ith axis parallel to the free surface oriented along 

the direction o f the m ean flow strain field and, (ii) vortex tubes w ith axis normal to  

the free surface connected to the surface. The interaction of these structures with  

the free surface leads to the establishm ent of a secondary flow which pum ps the flow
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upwards towards the free surface at the jet centerplane and outwards towards the 

edges o f the jet on the surface. This phenom enon, known as the surface current, has 

also been observed in experim ental studies. The parallel vortex tubes are subject 

to three-dim ensional dynam ics and the usual cascade of energy to the sm all scales. 

The reconnected vortex tubes, on the other hand, are not subject to strong vortex  

stretching near the free surface and form long-lasting coherent structures which grow 

w ith tim e and occasionally merge, leading to a  reverse cascade of energy towards the 

large scales and the establishm ent of a nearly two-dim ensional turbulent sta te in the 

im m ediate vicinity of the free surface.

Exam ination of the sm all-scale structure o f the flow reveals the presence o f co­

herent sm all-scale vortical structures in the form of vortex tubes w ith diam eter on 

the order of 10 Kolmogorov scales and length on the order of an integral scale. These  

vortex tubes give rise to coherent regions of intense kinetic energy dissipation and 

intense scalar dissipation at their periphery, which have scales of the sam e order of 

m agnitude as the scale at which the kinetic energy and scalar dissipation spectra  

attain a peak.

The presence of the free surface is found to affect the dynam ics o f turbulence 

w ithin a ‘surface layer’ of thickness on the order o f one lateral Taylor microscale. 

W ithin this layer, the turbulence has a two-dim ensional character and is dom inated  

by a net reverse transfer of energy to the large scales. These effects should be 

incorporated into any turbulence m odels intended for the prediction of free surface 

turbulent flows.

T he im plications o f the two-dim ensionality of the free-surface turbulent je t  flow 

on the m odeling of sub-grid has been analyzed. The performance o f various subgrid 

m odels has been assessed by a priori  testing. The dynam ic two-com ponent m odel
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based on the dynam ics of the resolved scales developed by Ansari et ai. (1994) 

for LES of incom pressible turbulence which captures the observed dual character 

of subgrid-scale energy transfer in this database has shown to be a very prom ising 

m odel. Tw o separate terms are included in this model; one representing the low- 

intensity background forward transfer of energy due to ‘nonlocal’ (in wavenumber 

space) energy exchanges, and the other representing the intense forward and reverse 

transfers of energy due to ‘local’ energy exchanges between scales near the LES 

cutoff. T he former is modeled using a Sm agorinsky-type eddy viscosity m odel. The 

latter is m odeled using the dynam ics of the velocity field in the neighborhood of the 

cutofF wavenumber. A dynam ic procedure is used for com puting the m odel coefficient 

dynam ically, w ithout the need for any external input. T he only input param eter to  

the m odel is the ratio of test filter to LES filter, a . The m odel has been shown to be 

insensitive to the exact value o f a.  The model has the correct behavior in laminar 

and transitional flows and near solid boundaries.

Tests of the m odel show the m odel to be superior to existing subgrid m odels 

in being able to provide a spatial distribution of subgrid-scale dissipation in good 

agreem ent with results from filtered DNS in a priori  tests.
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A PPEN D IX  A 

IMPLICIT SOLVER

A .l  Introduction

In this section we describe the numerical procedure used for the solution of the

Poisson and H elm holtz equations, which arise from the discrete tim e integration of

the vorticity and velocity fields (equations 2.15 and 2.16).

A .2 Solution of Second-order Poisson Operators

For the vorticity, for exam ple, we need to  solve

(V 2 -  =  - ( V 2 +  +  a (A.l)

where

8  =  k • |( 'V  x (u x  £ ))"  -  | (  V  x  («  x w ) ) " - 1 

subject to boundary conditions

=  0) =  0 (A.2)

w”+1( j  =  oo) =  0  (A .3)

u "+1 {y =  — oo) =  0 (A .4)
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w"+1(y =  oo) =  0  (A .5 )

periodic in x  (A .6 )

which is a H elm holtz-type equation, for each tim e step , that for sim plicity we can 

re-write as

(V 2 -  tt)u =  f  (A .7)

D enoting by U  and F  the Fourier transforms (in the x  direction) of u and /  respec­

tively, we may write

( q P  + q Z 2 ~ kl ~  a ) U ( k x , y , z )  =  F { k x, y %z)  (A .8 )

T he discrete version of this equation can be written sym bolically as:

( D l  +  D \ - k l -  a ) U { k „ y , z )  =  F [ k x, y , z )  (A .9)

where the discretized operators correspond to

=  (A-10)

^  =  (A -11)

at the interior points, and equations A .2-A .5 at the boundaries. This equation is 

solved using the collocation/diagonalization m ethod proposed by Haidvogel and Zang 

(1979), and Ilaldenwang et al. (1984). In this m ethod, the D 2 and D 2 operators are 

first diagonalized

Dy =  E yAyEy l (A .12)

D l  =  E ^ E ; 1 (A .13)

where E  and A are the m atrices formed by the eigenvectors and eigenvalues of the 

one-dim ensional D 2 operators.
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T he discretized Helm holtz equation A. 14 then becom es

(E yA yE ~ l +  E A . E Z 1 -  {k2 +  a ) I ) U  =  F  (A .14)

which can be solved for U to give

=  +  < A - 1 5 )

In practice the discretized D 2 operator m atrices are diagonalized as a pre-processing  

step . T he solution of each H elm holtz operator during each tim e step involves the 

com bination of four m atrix-vector products and the product o f a diagonal m atrix  

with a vector. This requires 0 ( m n p 2 +  m n 2p) operations, roughly tw ice as m any as 

a double Fourier, single Chebyshev code.

A .3 Solution of Fourtli-order Operators

The fourth-order equation for the z  com ponent of the velocity, w

(V 2 -  ^ ) V 2 w" +1 =  g  (A .16)

where

g  =  k ■ cur/2(^ (v  x w +  f)" -  i ( v  x w +  f)" " 1) +  (V 2 +  ^ j ) ( V  V *  (A .17)

was solved using an analytical Green’s function approach (Domaradzki 1990). The

fourth-order equation can be split into two second-oder equations,

(V 2 -  )̂C'+1 = 9 (A .IS)

V 2u/* +1  =  £ (A .19)

T hese equations need to be solved subject to boundary conditions

w(y  =  oo) =  0 (A .20)
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^ ii o (A .21)

a*
— w {y  — oo) =  0 (A .22)

oII?1II

 ̂
|c5 (A .23)

Q
~q I w (z =  0 ) =  a ( x , y ) (A .24)

d 2
Qz2 w {z  =  0 ) =  b{x ,y ) (A .25)

iu(z — oo) — 0 (A .26)

d 2
d y 2 w ( z  =  co) =  0 (A .27)

periodic in x (A .28)

T he two equations are couppled through the bondary conditions. T hey cfin be un- 

couppled by using an analytical Green’s functions approach. T he solution is decom ­

posed into two contributions:

ru(:r, y , z)  =  iop{x, y , z )  +  w + (x , y,  z )  (A .29)

where u>p is the solution of equation (2 0 ), (2 1 ), and (2 2 ), with hom ogeneous boundary 

conditions £,,(y =  ± o o ) =  wp(y  =  ± o o ) =  £p(z  =  0 , oo) =  w p(z  =  0 , oo) =  0 , and ie+ 

is a Green’s function which is obtained by solving,

(V* -  W  =  °  (A .30)

subject to boundary conditions:

w + (y — oo) =  0  

w + (y  =  —oo) =  0  

■ ^ w  + (y =  oo) =  0
o y

(A .31) 

(A .32) 

(A .33)
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d 2
w (l! ~  - o o )  =  0 (A .34)

-w+(z  =  0) =  a ( x , y )  -  -?r-Wp(z ~  0 ) (A .35)

d y 2

Y W + ( Z  =  0 ) =  <,(*,„) - Q - .

^ 2  Q2

— w + ( z  =  0 ) =  b ( x , y) -  =  0) (A .36)

u,+ (a =  oo) =  0 (A .37)

~ w + (? =  oo) =  0 (A .38)

periodic in x (A .39)

To find the soluiton to (A .30-A39) we take the Fourier transform of the equations in 

the x- direction and diagonalize the equations in the y direction. Then A .34 becom es

9 R p
( D I E ; 1 +  AyE ; '  -  k l E -  - ± e ; ' ) ( d I e ; '  +  AyE ; '  -  h l E ; l ) w +  =  o (A .40)

where W * ( k Xiy , z )  is the x-Fourier transform of iu+ , E y and A y are the m atrices 

formed by the eigenvectors and eigenvalues of the one-dim ensional D 2, Defining il/+  

as W + =  E ; l W +  we get

(D\  +  A, - k l -  ^ ( D l  +  A, -  kl )W+  =  0 (A.-U)

which has the general solution

VF+ ( k ,  A,„ z)  =  Cle - Mi +  cae" '521 (A .42)

where

Ki =  ~ h y +  hi  -f (A .43)

4  =  - A y +  h2x (A .44)

T he coefficients c\ and C2 are chosen such that the boundary conditions (A.35  

and A .36) are satisfied,
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r\ r\

~—W + ( z  =  0) =  - K 1C1 -  k2 c2 =  A (kx, A y) -  ’q ^ W p{z  — 0) (A .45)
«2 *y2

— \ V + (z  -  0) =  /CjC! +  k \c 2 =  B ( k x, A y) -  q ^ W p ( 2  ~  0) (A .46)

where A(fcr ,y )  =  E ~ l A {k Xi Ay), B ( k x,y )  =  E ~ l B {k x , A„) and A  and B  are x  Fourier 

transform of a and b.

O nce ci and c2 are found, the solution is obtained as:

W (k „ y , z )  =  Eu[Wp +  W+) (A .47)
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APPEN D IX  B

PARALLEL PSEUDO-SPECTRAL  
ALGORITHM

B .l Introduction

In this section we describe the steps required to parallelize the Fourier-Double 

Cliebyshev pseudo-spectral m ethod described on §2. for noil-hom ogeneous turbu­

lence on a m edium  grained, distributed memory MIMD com puter. A sim ilar Double 

Fourier-Chebyshev code has been described by Mangiavacchi and Akhavan (1993). 

T he pseudo-spectral approach not only leads to improved accuracy but also to  work­

intensive concurrent native parallelism with m inim al com m unication, allowing to  

reach M FLOPS ratings surpassing today’s vector supercom puters, and high parallel 

efficiencies.

T he governing equations (2.3), (2 .4), and (2.5), are solved by expanding the flow 

variables in Fourier series in the stream wise (.t ) directions, and m apped C liebyshev  

polynom ials in the spanwise (i/), and normal or transverse (r ) direction. T he second- 

order Adam s-Bashforth schem e is used for the discretization o f the nonlinear and 

pressure term s, and the second-order Crank-Nicholson schem e in the viscous term. 

T he discretized Navier-Stokes equation is given by
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v »+i _  v n 3 1 1
— _ —  =  - ( v x w - vn)" -  - ( v  X w -  v n )"-1 + V 2v "+1 + v V ) .  (B .i)

Equation (2) is split into two steps: one containing the nonlinear term s, and one 

com bining the pressure and viscous terms. To solve the second step equations the  

analytical Green’s function approach is applied. Other tim e-stepping m ethods could 

be im plem ented similarly.

B.2 The Parallel Code

T he parallelization o f the code is based on a "domain decom position” approach 

in latu sensu.  We m ay note that the tim e-stepping algorithm  involves three kinds of 

operators: (i) the nonlinear term s, (ii) the evaluation of inverse Poisson operators, 

and (iii) the discrete Fourier transforms. T he nonlinear term  com putation in physical 

space involves only velocities and vorticities at that sam e physical location. If the  

data is distributed am ong the nodes such that each node contains all the variables 

for a certain physical region, all com putations involved in the nonlinear step  can be 

done in parallel w ithout com m unications. T he inverse Poisson operator in Fourier 

Space is diagonal in the x  direction, the domain can be divided in groups o f or 

y z  planes in Fourier space, and the com putations can still be performed without 

com m unications. The sam e applies to the com putation of the vorticity. Assigning  

an equal number of planes to each processor either in Fourier space or in physical 

space guarantees load balance. The transformation in the x  direction, from physical 

space Lo Fourier space, and back, which requires a Fourier transform is the only  

operation that requires com m unication between nodes.

A ssum e p  processors Pn are numbered by n = 0 , 1 , . . .  , p— 1. If v (l..A fx, l..A fy, l-.Ab) 

is an array containing real data v  at the respective physical points, when in Fourier
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space the sam e am ount of storage will be required to contain the com plex array 

v ( l . . N x/ 2 , l . . N in l . . N s). In Fourier space we distribute data am ong the nodes such 

that processor P n will have in its local m em ory v ( l + 7 1 . A(c/2p ..(n + l)./V ;c/2p , l . . N y ,

W hen data is stored in this way, the inversion o f the ellip tic operators in the y and z 

directions can be done w ithout com m unication, and the x direction is uncoupled (the  

ellip tic operator is diagonal). The sam e applies to the com putation of the vorticity.

D ata in the .t (Fourier) direction is now distributed am ong processors. Therefore, 

to  proceed and perform the 1-D FFT s will require com m unication. There are two 

possible options to proceed: (i) to com pute the 1-d FFT keeping the data distributed  

in the x  direction across nodes; (ii) to transpose the data before the com pulation . 

Since the number of operations in both approaches is essentially the sam e, the total 

am ount of com m unication can be m inim ized using the transposition, and as sin­

gle node library F F T  routine performance is very high, we decided to follow the  

transpose approach.

After the transposition, each node will contain v ( l . . A ( r / 2 ,  l+ n A ry//j ..(7i-t-l)Aflf/p , 1..N-)  

com plex m odes. W hen data is stored in this way, 1-D FFT s in the :r direction can 

be performed concurrently, w ithout com m unication, on the whole data.

To avoid edge contention and have an ”in place” algorithm , reducing the amount 

of scratch memory, we use som e properties o f the binary hypercube addressing  

m ethod, such that at each step o f the com m unication algorithm  the processors are 

divided in pairs, and each processor only com m unicates w ith its pair. At each step  

a different set of pairs is defined, using the concept of relative address.

T he transposition algorithm can be summ arized as follows:

•  For i = l ,  2, . . . ,p — 1 do:
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-  Each node m  collects and sends to n =  X O R ( m , i )  all blocks that have 

node n as linal destination, and replaces them  w ith the blocks that receives 

from n.

•  UnshuiTle the resulting data in each node.

This algorithm  com bined with the routing algorithm  used by the iP SC /860  hardware 

avoids edge contention.

T he Poisson operator is diagonal in the Fourier x directions. In the general case 

of a mapped Cliebyshev expansion the solution in the y and z  directions requires the  

inversion of a full m atrix. Using Ilaidvogel-Zang [6 ] m ethod, at each step requires 

two m atrix-vcctor m ultiplies for each direction (y  and z)  at a cost proportional 

to N y 2 ) N z  +  N y N g .  After decom position of the domain am ong the nodes, the  

Poisson operator will require 0 { NxN*N z) com putations per node at each tim e step, 

and no com m unications. The F F T ’s will require 0 (  Nx+\og2 AV+iog? Nz) j

com putations and (p — 1 ) bidirectional com m unications of length A x^r^z w [ien using 

the described transposition algorithm . Since the latency tim e is much shorter than  

the com m unication tim e for large problem sizes, the total com m unication tim e is 

essentially 0 ( n x n y n z ) Therefore the ratio of com m unications to com putations is 

Longer vectors result in better performance because vectorize better in the 

i860 processor. T his will result in better performance for larger problems.

B.3 The Results

T he m ethods described in the previous section have been im plem ented on the  

SDSC 64 node iP SC /860 , and later on the SDSC 400 node Paragon. . A ll com puta­

tions were performed using double precision (64 bits) arithm etic.
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The m ost com putationally intensive tasks are the F F T s, and the m atrix-vector 

m ultiplies in the elliptic solvers. Vectorized all-Fortran codes for these tasks do not 

show very high performances. Much better single-node performance was obtained  

using optim ized FFT  and BLAS library routines. The m atrix-vector m ultiply was 

performed using DG EM V BLAS routine. The performance of the ellip tic solver 

increased w ith the size of the m atrix, from 9.G Mflops for N ,  =  64 to 18.4 Mflops for 

N z =  256.

The com plex to com plex factor-2 FFT s performance also increased w ith the  

length, varying from 8.0 Mflops for N  =  64 to 1 2 .8 Mflops for N  =  256. T he average 

performance over the whole code for problems that fit on the mem ory o f a single pro­

cessor is not very im pressive, because of the reduced length o f the vectors involved. 

For exam ple, in the 32 x 32 x 32 size of problem the average performance is about 

4.7 Mflops (table I).

W ith increasing problem sizes, using a larger number of nodes, the individual 

node performance can improve, as long as the com m unication overhead in the parallel 

code is m oderate. T im ings performed on tests with different numbers o f processors 

and different resolutions are also shown in table I. A parallel efficiency is defined as 

_  ompuni.o.! w iiere Ttotai is the total execution tim e, and TC(nnvXiiation is the tim e
f  f e t a l  r

spent on the actual com putation, which excludes com m unication, synchronization  

tim es, and other overheads due to parallelization of the code. Typically 50% of 

the execution tim e is spent on the ellip tic solvers (m atrix-vector m ultip ly), 2 0 % in 

the F F T s, 20% is the com m unication overhead, and 10% is used by the rest o f the 

code. This is in contrast with the number of operations, where up to  about 90% 

of the com putations are performed in the ellip tic solvers, and em phasizes the high 

performance of the m atrix-vector m ultiplication library routines.
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Problem  Size 

( N z x N y x  N x) 323 643 1283

Number 

of Nodes

Total

Mflops

Mflops 

per Node

Total

Mflops

Mflops 

per Node

Total

Mflops

Mflops 

per N ode

1 4.661 4.661

2 8.292 4.146

4 14.88 3.720 24.02 6.004

8 24.08 3.010 44.83 5.604

16 31.92 1.995 76.34 4.771

32 101.7 3.178 226.3 7.071

64 416.0 6.501

Table B .l: Mflops ratings for different problem sizes and cube dim ensions.
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Efficiencies of about 80%, and sustained rates in excess of 7 Mflops per node can 

be obtained for problems that scale with the size of the hypercube. T he m axim um  

sustained performance was obtained on 04 nodes, with 7.18 Mflops per node, for 

a total o f 460 Mflops and an efficiency of 76%, when running the 128 x  128 X 256 

case. Execution tim e for this case was 37.4 seconds per tim e step. Due to its storage 

requirem ents this size problem cannot be executed ”in core” on a CRAY YM P. T he  

128 x  128 X 128 case on 64 nodes runs in 16.4 seconds per tim e step, which compares 

favorably by m ore than a factor of 2 with tim ings on a CRAY YM P, which requires 

40 seconds per step  for a vectorized code that utilizes very fast F F T  routines and 

assem bly coded m atrix-vector products.
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A PPEN D IX  C 

VISCOUS HYDRODYNAM IC STABILITY

In this section the m ethodology used to study the linear evolution of axisym m etric  

and helical perturbations on a tem porally growing circular jet is described. The  

com plete set o f linearized viscous equations of stability is solved for the axisym m etric  

and helical m odes using appropriate boundary conditions. T he results can then be 

used as in itial conditions to test the 3-D unsteady Navier-Stokes solver.

C .l The Governing Equations

T he basic flow field is a uni-directional jet with a velocity profile having com po­

nents t/r,0 ,0 ,  expressed in cylindrical coordinates x,r,^l respectively. On this mean 

flow field, we superim pose sm all velocity and pressure perturbations v'x, u ', v  ̂ and / / .  

T he type of perturbations that are analysed in this study are given by:

= /i[{/?(r),!G(r),//(r)}e"rf+ta<I- c‘>] (C.l)

-  =  yi[P(r)c'"*+,'“(‘'“cl1] (C.2)
P

where a  is the wave number and the imaginary part o f the com plex velocity c =  cr-M’c, 

determ ines the stability of the jet to this particular perturbation. If we substitu te

the total velocity as v  =  V  +  v r and p  =  P  +  p \  and linearize the equations, all
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term s related to the mean flow drop out and we get a  set of linearised equations for 

perturbations:

d v 1 t d V  dv'  1 , 1 2

9 T + < * + £ / & = - ? v '> + s v V  <c -3>

Substituting (3) in (1 )~ (2 ) ,  we obtain the scalar equations for the four unknowns F, 

G, II and P:

a (U -  c )F  +  U'G  =  - a P  -  i v { F "  +  - F ‘ -  ( a 2 +  % ) F }  (C .4)
r r l

a ( U  -  c )G  =  P ' ~  i v {G "  +  - G ’ -  ( a 2 +  -  ~ H )  (C .5)
r r z r 1

a ( U  -  c )H  = ™ P ~  i v { H ” +  h i 1 -  ( a 2 +  -  ^ G }  (C .6 )

a F  +  G ' F - G  +  - I I  =  0  (C .7)
r r

in which a prime denotes differentiation witli respect to r. T he conditions to be 

satisfied at the outer boundary are

F1, (7, / / ,  P — >0 as r —*oo (C.S)

At the inner boundary r= 0 , ttr and p m ust be independent of <f>. Thus we have

F (  0) =  (7(0) =  0 n^O

<7(0) =  / / ( 0 ) =  0  n ^ l

(7(0) =  - H {  0) n =  1 (0 .9 )

C.2 Solution

To obtain the solution, it is convenient to deal w ith the governing equations 

separately for n = 0  (axisym m etric perturbation) and n ^ 0  (helical perturbation), as 

done by K am be(1969).
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•  n — 0

For axisym m etric perturbations and i^ = 0 ) 11=0. E lim inating F and P 

from equations (C .4 )~ (C .7 ), we obtain the following fourth order equation for 

G:

A “A ?(? =  i a R { { U  -  c )A “ G' +  W G )  (C .1 0 )

where

W  =  - U '  -  U"

d2 1 d m 2

=  ^  +  <c -n >

and R is the Reynolds number. T he boundary conditions to be satisfied by G 

are

G (0) =  0 G’(oo) =  0 G '(oo) =  0 G"(0 ) =  0  (C .1 2 )

•  n / 0

In this case, it is convenient to introduce new variables S(r) and T (r) defined

by

S  =  G  — H

T = G  +  H  (C .13)

Elim inating F and P in (C .4 )~ (C .7 ), we obtain the system  of governing equa­

tions for S and T  as:

D nA « +nT  -  D - n A ° _ nS  =  i a R { ( U  ~  c ) (D nT  -  D . nS )  +  U '(T  -  5 )} (C .1 4 )  

E nA ^ nT  +  E - nA ° _ nS  =  iceR{(E  -  c ) (E nT  +  E . nS ) -  U \ T  +  5 )} (C .1 5 )
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where

£>n =  A  +  I ± ^  E n =  D n +  — r  (C .16)
dr r  n

The boundary conditions For S and T  are

5 (o o ) =  T{  oo) =  T'(  oo) =  £ ' ( 0 0 ) =  0

5 (0 ) =  T{0)  =  0 for n ?  1

S '(0 ) =  T (0) =  0  for n =  1 (C.17)

Equations C . 1 0  with boundary conditions C.12, and C.14-C.15 w ith boundary 

conditions C.17 are discretized using mapped Cliebyshev polynom ials. The resulting  

generalized eigenvalue problem is solved using the subroutine GENEIGC to find the 

com plex eigenvalues c, and EIGREVC is used to find the eigenvectors (G  for n  =  0, 

and T \S  for n /Q ) associated with each eigenvalue.
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A PPEN D IX  D

ENERGY TRANSFER IN SPECTRAL-SPACE

T he spectral energy transfer, T(fc), in the jet representing the nonlinear transfer 

of energy to a m ode k as a result of m utual interactions between the turbulent fluctu­

ations can be com puted by considering the Navier-Stokes equation for the fluctuating  

velocity field u'a (see Iiinze, 1975; chap. 4). In the physical space, satisfies

du' , d U c , „ 0 u' d  . , , ,  d  -j-, 1 dp' 0 2<
“ 777“ +  W3 7  6 a l +  U 7 :------- h —---- — --------------------------------------------- 77----------f  V —---   (D-l)
at  0 x 3 o x  1 oxp  p 0 x 3 p o x Q ox-fOx-t

where U  =  U ( x 3 ) represents the mean velocity in the je t, and pf satisfies

1 t?V  &2 1 t t \  d 2 — — T-

“ 7 7  n   -  “ 7 7 ----------~) (U a U p)  “  2 7 7 --------7 7  H  7 7 ------------~ ( D . 2 )p o x ao x a d x Qaxp 1 o x i  o x 3 d x ad x 3

In sym bolic form, equation 1 can be written as

( 4  -  "V2K(x,<) = -JV£(x, i) -  JV'"(x, l) (D.3)

where,

w fth ~7 0 ^ dr =  ~  ‘di°\x (uau0 ) represents the mutual nonlinear interactions betweenp O r a d r a d x a d x p

the turbulence fluctuations, and

w?<x, o = “ t ,., + ug + (as)
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\ dxldxa ~  ~ +  dx%j-3 (uom3 ) represents the nonlinear interactions of the 

fluctuating velocity w ith the the mean flow, T he spectral transfer o f energy to a 

wavenum ber k  can then be obtained from the Fourier transform of (3)

( -  +  v k 2 )u>a { k , t )  =  - N ' a ( k , t )  -  (D .6 )

by considering the evolution equation for the energy am plitude §[u'(k , / ) | 2 =  ^ u ^ k ,  () 

«'0 { k , t ) ,  where hat denotes Fourier transform and asterisk denotes com plex conju­

gate. It follows from (6 ) that

+  2 ^ ) ! - ' < k2 ’ , ) | 2  =  T ( k , t )  +  T M (k,  t )  (D .7)

where

T(  k, 0  -  —Rsal{u*a (k,  t ) N ’a( k, t)} (D .8 )

represents the nonlinear transfer of energy to a wavenumber k  due to m utual inter­

actions betw een the turbulent fluctuations and

T M ( k , t )  =  - R e a t { u ' a ( k , t ) N > " ( k , t ) }  (D .9)

represents the production of turbulent energy by the mean shear and the transfer of 

energy to a wavenumber k as a result of the deform ation of the turbulent eddies by 

the m ean shear. The energy equation for a m ode k can the be obtained by sum m ing  

equation 7 for all modes with a wavelength k — 4 r  <  |k | <  k +  ^

( —  +  2uk2 ) E ( k , t )  =  T (k ,  t) +  X M ( k , t )  (D.1Q)

where

£ ( M ) =  E  ( o . i i )
k-^<\k\<k+$±
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is the three-dim ensional energy spectrum , and

T { k , t )  =  ~  ^ 2  Real{u*a ( k , t ) N ' a{ k , t ) }  (D .12)

is the energy transfer spectrum  in the jet. N ote, in particular, that the transfer 

defined in this manner has the sam e form as in isotropic turbulence and satisfies the 

sam e conservations properties, such as for exam ple that / 0°° T ( k , t ) d k  — 0.

Sim ilarly, the subgrid-scale transfer o f energy T s(k \km) to a scale k (k <  km) 

due to nonlir. ’ar interactions with scales having a wavenumber greater than km (the  

subgrid scales) can be obtained by considering the evolution equation for the large- 

scale fluctuating velocity (x , t). It follows from (3) that

-  "V2)u'f (x, () = -JV'f c(x, () -  N f s (x, I) -  JV'"£(x, t) (D.13)

vvhere

< l £ ( x ’ 1 >  =  ^ < < v ^ + ; ^ ' c | £  ( D - H )

p =  ~ OxTdXft ( u>n represents the mutual nonlinear interactions be­

tween the large-scale velocity fluctuations, and

+  ) ; £ - / *  <D - 1 5 >

with

i d 2Pt,cls d 2
(Ua U0  ~  U'anlp ) C (D.1C)p d x Qd x a 0 xodxp  

represents the nonlinear interactions o f the large-scale fluctuating velocity field with  

the subgrid scales. It follows by analogy with (10) that the large-scale turbulent 

energy spectrum  E c ( k i t)  is governed by

( j t + 2^ ) E c {k, t) =  TUk\km) + r s(t|i„ ) + T MC[k\k„) (D.17)
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where

TL(k M  =  -  E  i?ea /{u '* /(k )iV ^ |£(k )}  (D .18)
^<|k|<fc+“

represents the transfer o f energy to the m ode A: as a result o f m utual interactions 

between the large-scale velocity fluctuations, and

7sW-™) =  -  E  « « “<{»C£(k )^ ' f l*(k)} (D .19)

represents the transfer o f energy to the m ode k as a result of interactions w ith the

subgrid-scale velocity fluctuations.



BIBLIOGRAPHY

129



130

BIBLIOGRAPHY

[1] ABID, M . A N D  B R A C K E T ,  E . 1993 Numerical characterization of the  
dynam ics of vortex filaments in round jets. Phys. Fluids A 5 (11), 2582- 
2584.

[2] ANSARI, A . 1993 Sm all-scale dynam ics and subgrid interactions in tur­
bulent shear flows. Ph.D. Thesis, University o f  Michigan.

[3] A n s a r i ,  A ., M a n g i a v a c c i i i ,  N ., a n d  A h k a v a n ,  R .  1994 Subgrid scale 
energy transfer in turbulent shear flows. Phy.  Fluids (In press)

[4] ANT HONY, D .G . 1990 The influence of a free surface on the developm ent 
of turbulence in a submerged jet. Ph.D. Thesis, Universi ty of  Michigan.

[5] A n t h o n y ,  D . G ., H ir s a ,  A ., a n d  W i l lm a r t h ,  W . W . 1991 On the 
interaction o f a submerged turbulent jet w ith a clean or contam inated free 
surface. Phy. o f  Fluids A 3 , 245-247.

[6 ] A n t h o n y ,  D . G . a n d  W i l lm a r t h ,  W . W . 1992 Turbulence m easure­
m ents in a round jet beneath a free surface. Journal o f  Fluid Mcch.  2 4 3 , 
699-720.

[7] BARDINA, J. 1983 Improved turbulence models based on large eddy sim ­
ulation o f hom ogeneous, incom pressible turbulent flows. Ph.D. Thesis, 
Dept.  Mech. Eng., Stanford University.

[8 ] B e r n a l ,  L. P . A N D  M a d n i a ,  C . K . 1988 Interaction o f a turbulent 
round jet w ith the free surface. Proc 17th Symp. on Naval  Hydrodynamics,  
79-87.

[9] B e r n a l ,  L. P . ,  H i r s a ,  A ., K w o n ,  J. T . ,  a n d  W i l l m a r t h ,  W . W . 
1989 On the interaction of vortex rings and pairs w ith a free surface for 
varying am ounts of surface active agent. Phy.  Fluids A 1 , 2001-2004.

[10] B E R N A L ,  L. P . A N D  K w o n ,  J. T . 1989 Vortex rings dynam ics at a free 
surface. Phy.  Fluids A 1 , 449-451.

[11] B R A N C H E R ,  P . ,  C i i o m a z ,  J . M ., A N D  H u E U R E ,  P . 1994 D irect numer­
ical sim ulations o f round jets: Vortex induction and side jets, Phys. Fluids 
6 ( 5 ) .



131

[12] B R U M L E Y ,  B . H .  A N D  J l R K A ,  G. H.  1987 Near-surface turbulence in a 
grid-stirred Tank. Journal of  Fluid Mech. 1 8 3 , 235-263.

[13] C a n u t o ,  C ., H u s s a i n i ,  M .Y . , Q u a r t e r o n i ,  A ., a n d  Z a n g  T .A .  
1987 Spectral m ethods in fluid mechanics. Springer-Verlag.

[14] DOMARADZKI, A .  J . 1990 An A nalytic Green’s Functions M ethod in 
Pseudo-Spectral Navier-Stokes Solvers for Boundary Layer and Channel 
Flows. Journal o f  Computational Phys.  8 8 , 232-242.

[15] D O M A R A D Z K I ,  A . J . 1992 Nonlocal triad interactions and the dissipation  
range of isotropic turbulence. Phys. Fluids A 4, 2037-2045.

[16] DOMMERMOUTH, D . G . 1993 The laminar interactions of a pair of vortex  
tubes with a free surface. Journal of  Fluid Mech. 246, 91-115.

[17] EVANS, J .  T .  1955 P neum atic  and similar breakwaters. Proc. Roya l  Soc. 
London A 2 3 1 ,  457-466.

[18] F a b r i k a n t ,  A . L. a n d  R a e v s k y ,  M . A . 1994 T he influence of drift 
turbulence on surface gravity wave propagation. Journal of  Fluid Mech. 
262, 141-156.

[19] G e r m a n o ,  M ., P i o m e l l i ,  U ., M o i n ,  P .,  a n d  C a b o t ,  W . H . 1991 A 
dynam ic  subgrid-scale eddy v iscosity  m odel. Phys. Fluids A 3 ,  1760-1765.

[20] G b a r i b ,  M . ,  W e i g a n d ,  A . ,  a n d  N o v i k o v ,  E .  1992 Interaction of  
sm all scale turbulence w ith  the free surface. Bulletin of  American Physical  
3 7 ,  1763.

[21] G U T M A R K ,  E . A N D  W y g n a n s k i ,  I. 1976 The planar turbulent jet. Jour­
nal of  Fluid Mech. 7 3 ,  465-495.

[22] H a i d v o g e l ,  D . B . AND Z a n g ,  T .  1979 T h e  accurate  so lu tion  o f  the  
poisson equation by expansion in chebyshev polynom ials . Journal of  C o m ­
putational  Phys.  3 0 ,  167-180.

[23] H a l d e n w a n g ,  P .,  L a b r o s s e ,  G ., A b b o u d i ,  S ., a n d  D e v i l l e ,  

M . 1984 Chebyshev 3-D spectral and 2-pseudospectral solvers for the  
Helm holtz equation. Journal of  Computational Phys.  55, 115-128.

[24] H l N Z E ,  J. 1975 Turbulence, McGraw-Hill.

[25] HlRSA, A .  a n d  W i l l m a r t h ,  W .  W ,  1994 M easurem ents o f  vortex pair 
interaction with a clean or contam inated  free surface. Journal o f  Fluid 
Mech.  259, 25-45.

[26] H U N T ,  J . C . R . 1984 Turbulence structure in therm al convection and 
shear free boundary layers. Journal of  Fluid Mech.  1 3 8 , 161-184.



132

[27] H U N T ,  J . C. R . 1984 Turbulence structure and turbulence diffusion near 
gas-liquid interfaces, ed. W. Brutsaert  & G. H. Jirka, Gas Transfer at 
Water  Surfaces , 67-82.

[28] H u n t ,  J . C . R . AND G r a h a m ,  J. M . R . 1978 Free-stream turbulence 
near plane boundaries. Journal o f  Fluid Mech. 8 4  (2), 209-235.

[29] I<AMBE, T . 1969 The stability of an axisym m etric jet w ith parabolic 
profile. Journal o f  the Physical Society of  Japan  26  (2), 566-575.

[30] J i m e n e z ,  J . ,  W r a y ,  A . A .,  S a f f m a n ,  P .  G . ,  a n d  R o g a l l o ,  R .  S .  
1992 The structure o f intense vorticity in hom ogeneous isotropic turbu­
lence. CTR,  Proc. Sum. Prog ., 21-45.

[31] K r a i c h n a n ,  R . H. 1976 Eddy viscosity in two and three dim ensions. 
Journal of  Atmos.  Sci. 33 , 1521-1536.

[32] K o m o r i ,  S ., U e d a ,  H ., O G I N O ,  F ., a n d  M i z u s h i n a ,  T . 1982 Turbu­
lence structure and transport mechanism at the surface in an open channel 
flow. Intl. J. Heat Mass  Transfer 25 , 513-521.

[33] L A U N D E R ,  B . E . a n d  R o d i ,  W . 1981 T he turbulent wall je t Prog. 
Aerospace Sci. 19 , 81-128.

[34] L A U N D E R ,  B . E . a n d  R o d i ,  W . 1983 The turbulent wall je t - M easure­
m ents and m odeling Annual Review o f  Fluid Mech. 15.

[35] L E S I E U R ,  M . 1983 Introduction a la turbulence bidim ensionnelle. Journal  
de Mecanique Theo. et Appl. ,  5-20.

[36] L E S S E N ,  M . a n d  S i n g h ,  P .  J. 1973 T h e  stab ility  of ax isym m etr ic  free 
shear layers. Journal of  Fluid Mech,  6 0  (4), 433-457.

[37] L l E P M A N N ,  D . 1990 The near-field dynam ics and entrainm ent field of 
submerged and near-surface jets. Ph.D. Thesis, University o f  California,  
San Diego.

[38] L l E P M A N N ,  D .  A N D  G h a r i b ,  M . 1992 The role of stream w isc vorticity  
in the near-field entrainm ent of round jets. Journal of  Fluid Mech.  2 4 5 , 
643-662.

[39] LI L L Y ,  D . K . 1992 A proposed m odification of the Germano subgrid scale 
closure m ethod. Phys. of  Fluids A 4 , 663.

[40] L o n g u e t - H i g g i n s ,  M . S. a n d  S t e w a r t ,  R .  W .  1961 T h e  changes in 
am p litu d e  o f  short gravity waves on steady  non-uniform  currents. Journal  
of  Fluid Mech. 1 0 , 529-549.



133

[41] L y d e n ,  J . D . ,  H a m m o n d ,  R . R . ,  L y z e n g a ,  D .  R ., a n d  S h u c h m a n ,  
R . A . 1988 Synthetic Aperture Radar im aging of surface ship wakes. 
Journal o f  Geophysical Research 9 3  (CIO), 12293-12303.

[42] M A D N I A ,  C . K . A N D  B E R N A L ,  L. P . 1989 Interaction of a turbulent 
round jet w ith the free surface. Tech. Report University o f  Michigan,  
Aerospace dept.  8 9 -0 5 .

[43] M a D N I A ,  C . K , A N D  B e r n a l ,  L. P . 1994 Interaction o f a turbulent 
round jet w ith the free surface. Journal of  Fluid Mech. 2 6 1 , 305-332.

[44] M a n g i a v a c C I I I ,  N ., a n d  A k i i a v a n ,  R . 1993 Direct num erical sim ula­
tions of turbulent shear flows on distributed m em ory architectures. Proc.  
6 th S I A M  Conf. 071 Parallel Procedures in Sci. Comp.  1 , 61-64.

[45] M l L G R A M ,  J . H .,  P E L T Z E R ,  R . D . ,  A N D  G r i f f i n ,  O . M . 1993 Sup­
pression of short sea waves in ship wakes: M easurements and observations. 
Journal of  Geophijsical Rescai'ch 9 8  (C 4), 7103-7114.

[46] M o i n ,  P .,  S q u i r e s ,  K ., C a b o t ,  W ., a n d  L e e ,  S. 1991 A dynam ic  
subgrid-scale model for compressible turbulence and scalar transport. 
Plnjs. o f  Fluids A 3  (11), 2746-2757.

[47] M o n i n ,  A . S. A N D  Y A G L O M ,  A . M . 1981 Statistical Fluid M echanics 
II. M I T  Press - Cambridge, Massachusetts.

[48] M U M F O R D ,  J. C . 1982 The structure of the large eddies in fully developed  
turbulent shear flows (Part 1. The plane jet). Joui'nal o f  Fluid Mech.  11 8 , 
241-268.

[49] M u n k ,  W .  H . ,  S c u l l y - P o w e r ,  P . ,  a n d  Z a c h a r i a s e n ,  F .  1987 Ship  
wakes from Space, The Bakerian Lecture, 1986. Proc, Royal  Soc. London  
A 4 1 2 , 231-254.

[50] O R S Z A G ,  S .A . A N D  P A T E R A ,  A .T . 1983 Secondary Instability of Wall- 
Bounded Shear Flows. Joim ia l  o f  Fhtid Mech. 1 2 8 , 347-385.

[51] PAO, Y . H . 1965 Structure of turbulent velocity and scalar fields at large 
wavenumbers. Phys. of  Fluids 8 , 1063.

[52] R a s h i d i ,  M ., H e t s r o n i ,  G ., A N D  B a N E R J E E ,  S. 1992 W ave-turbulence 
interactions in free-surfacc channel flows. Phy.  Fluids A,  4 , (12), 2727- 
2738.

[53] R a j a r a t n a m ,  N . a n d  H u m p h r ie s ,  J. A . 1984 Turbulent non-buoyant 
surface jets. Journal of  Hydi'autic Res.  22  (2), 103-115.

[54] R a j a r a t n a m ,  N . a n d  S u b r a m a n y a n ,  S. 1985 Plane turbulent buoyant 
surface jets. Journal of  IIyd7'aidic Res.  2 3  (2), 131-146.



134

[55] R O G A L L O ,  R . S. 1981 Num erical exper im en ts  in hom ogeneous turbu­
lence. NASA Tech, Mem.  81315 (2), 51-54.

[56] ROOD, E , P . 1994 Interpreting vortex interactions w ith a free surface. 
Journal of  Fluids Eng. 116, 91-94.

[57] RUETSCH, G . R . AND MaXEY, M . R . 1991 Sm all-scale features of vor­
ticity  and passive scalar fields in hom ogeneous isotropic turbulence. Phys.  
of  Fluids A 3, 1587-1597.

[58] S A R P K A Y A ,  T . A N D  S U T H O N ,  P . 1991 Interaction of a vortex couple with  
a free surface. Experiments in Fluids 11, 205-217.

[59] SCHEFER, R . W ., KERSTEIN A . R ., NAMAZfAN, M ., AND KELLY, J . 
1994 Role of large-scale structure in a nonreacting turbulent C1I4 jet. 
Phys. o f  Fluids  6 , 652-661 .

[60] S h e ,  Z. S . ,  J a c k s o n ,  E . ,  a n d  O r s z a g ,  S . A .  1990 In term itten t vortex  
structures in hom ogeneous isotropic turbulence. Nature  344, 226-228.

[61] SMAGORINSKY, J .  1963 General circulation exper im en ts  with th e  prim i­
t ive  equations. Mon. Weath. Rev.  91, 99-164.

[62] S w e a n ,  T .  F . ,  R a m b e r g ,  S . E . ,  P l e s n i a k ,  M . W . ,  a n d  S t e w a r t ,  
M . B . 1989 Turbulent surface jet in channel of lim ited depth. Journal of  
Hydraulic Eng. 115, 1587-1606,

[63] S w e a n ,  T .  F ., R a m b e r g ,  S .  E . ,  M i n e r ,  E .W .  1991 Anisotropy in a 
Turbulent Jet Near a Free Surface. Journal of  Fluids Eng. 113, 430-43S.

[64] S o n g ,  M ., K a c h m a n ,  N ., K w o n ,  J. T . ,  B e r n a l ,  L. P . ,  a n d  T r y g -  
GVASON, G . 1990 Vortex ring interaction with a free surface. Proc 18th 
Symp. on Naval  Hydrodynamics  , .

[65] T a y l o r ,  G . I. 1955 T he action of surface current used as a breakwater. 
Proc. Roya l  Soc. London A 231, 466-478.

[6 6 ] T A Y L O R ,  G . I. 1962 Standing waves on a contracting or expanding cur­
rent. Journal of  Fluid Mech.  13, 182-192.

[67] TENNEKES, H . AND L u m l e y ,  J . L. 1972 A first course in turbulence. 
M I T  Press  - Cambridge, Massachusetts.

[6 8 ] T h o m a s ,  F . O ., a n d  G o l d s c h m i d t ,  V . W . 1986 Structural charac­
teristics of a developing turbulent planar jet. Journal o f  Fluid Mech.  163, 
227-256.



135

[69] T r y g g v a s o n ,  G .,  U n v e r d i ,  S .  O . ,  S o n g ,  M . ,  a n d  A b d o l l a h i -  

AL1BE1K, J .  1991 Interaction of Vortices w ith  a free surface and density  
interfaces. Vortex dynamics and vortex methods. Lectures in Applied Math.  
2 8 ,  679-699.

[70] VERZICCO, R ,  AND O r la N D I ,  P .  1994 Direct s im ulations of th e  transi­
tional regim e o f  a circular jet. Phy.  Fluids , 6  (2), 751-759.

[71] V i n c e n t ,  A .  AND M en egU Z Z I, M . 1991 T h e  spatial structure and s ta ­
t ist ica l properties of hom ogeneous turbulence. Journal of  Fluid Mech.  2 2 5 , 
1- 20 .

[72] W a l k e r ,  D .T .,  C h e n ,  C .Y ., a n d  W i l l m a r t h ,  W .W  1994 Turbulent 
structure in frce-surface jet flows. Submitted to Journal of  Fluid Mech..

[73] WlLLERT, C . E .  AND G h a r i b ,  M . 1994 T h e  interaction o f  m odula ted  
vortices pairs with free surfaces. Free-Surfacc Turbulance -  A S M E  18 1 , 
25-36.

[74] W YGNANSKI,  I. AND FlEDLER, H. 1969 Som e M easurem ents in the Self- 
Preserving Jet. Journal o f  Fluid Mech. 3 8 , 577-612.

[75] YAMAMOTO, K . AND H o s o k a w a ,  I. 1988 A decaying isotropic turbu­
lence pursued by the spectral m ethods. Journal of  Phys. Soc . Japan  5 7 ,  
1532-1535.

[76] Y o d a ,  M . ,  H e s s e l j n k ,  L . ,  AND M u n g a l ,  M . G . 1992 T h e  evolution  
and nature of large-scale structures in the turbulent jet .  Phys. of  Fluids 
A 4 (4), 803-811 .

[77] YULE, A .  J .  1978 Large-scale structure in the  m ix ing  layer o f  a  round  
jet. Journal o f  Fluid Mcch. 8 9 ,  413-432.

[78] Z a n g ,  Y ., S t r e e t ,  R . L ., a n d  K o s e f f ,  J. R . 1993 A dynam ic m ixed  
subgrid-scale m odel and its application to turbulent recirculating flows. 
Phys. o f  Fluids A 5 (12), 3186-3196.


