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PREFACE

The dynamics of free surface turbulence at low Froude numbers has been inves-
tigated by direct numerical simulations of a series of temporally growing round tur-
bulent jets issued below and parallel to a clean free surface. The jets had a Reynolds
number of 10000 based on initial jet diameter and centerline velocity (fey = 100),
a Froude number of 0.1 and were issued at depths of 1.0, 1.5, and 2.0 jet diameters
below the surface, respectively. A passive scalar with a Schmidt number of 0.7 was
also included in the simulation.

The statistics and structure of the jet was found to be in good agreement with ex-
perimental measurements in free-surface jets. As the jet approaches the free-surface,
the vertical turbulent fluctuations are damped in a ‘surface layer’ of magnitude on
the order of one lateral Taylor microscale, and the horizontal turbulent fluctuations
are amplified.

Two classes of organized vortical structures could be identified within the surface
layer of the jet; (i) vortex tubes with axis parallel to the free surface oriented along
the direction of the mean flow strain field and, (ii) vortex tubes with axis normal to
the free surface connected to the surface. The interaction of these structures with
the {ree surface leads to the establishment of a secondary flow which pumps the flow
upwards towards the free surface at the jet centerplane and outwards towards the
edges of the jet on the surface. This phenomenon, known as the surface current, has

also been observed in experimental studies. The parallel vortex tubes are subject
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to three-dimensional dynamics and the usual cascade of energy to the small scales.
The reconnected vortex tubes, on the other hand, are not subject to strong vortex
stretching near the free surface and form long-lasting coherent structures which grow
with time and occasionally merge, leading to a reverse cascade of energy towards the
large scales and the establishment of a nearly two-dimensional turbulent state in the
immediate vicinity of the free surface.

The implications of this two-dimensionality for the modeling of free-surface tur-
bulence is discussed. The ability of various subgrid scale models in capturing these
free-surface cffects is assessed by a priori tests. The dynamic two-component model
developed by Ansari el el (1994) is shown to be a promising model for LES of

free-surface turbulence.
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CHAPTER 1

INTRODUCTION

Understanding the interactions of a turbulent {low with a free surface is of inter-
est in many fields such as marine hydrodynamics, oceanic sciences, and industrial
processes. One application that has gained particular interest is the identification
of signatures of ship wakes on the sea surface. The signatures persist for very large
distances behind the ship in the viscous wake region and can be identified by aerial
and space photographs as well as by Syntethic Aperture Radar (SAR) images. These
signatures have been atiributed to surface disturbances created by the ship hull and
propulsion system (Lyden et al 1988) and to short-wavelenght surface waves gen-
erated behind the ship (Munk, Scully-Power & Zachariesen 1987). Milgram et al.
(1993) demonstrated the direct association between the reduced radar return (dark
streaks in SAR images) and reduced scattering wave energy, and showed also that the
principal reasons for the reduced short wave energy in ship wakes are ship-generated
turbulence and surface film distributions. Since the surface film distribution itself is
also affected by the turbulent wake, the interaction of the turbulent flow with the free

surface is very important for the understanding and interpretation of SAR images.
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1.1 Background

There have been a number of investigations dealing with different aspects of the
interaction of turbulent flows with a free surface. Many aspects, however, are still
not completely understood. Farly studies of Evans (1955), Taylor (1955), and later
Longuet-Higgins & Stewart (1961), and Taylor (1962), focussed on the effect of sur-
face currents on the amplitude of surface waves. Longuet-Higgins & Stewart (1961)
found that waves traveling on a non-uniform current that varies in the direction of the
wave propagation undergo an amplification due to a nonlinear interaction between
the waves and the components of the current. Taylor (1962) analyzed the changes
in amplitude and wavelength of standing waves of uniform wavelength existing in an
area of uniform surface divergence. The motivation for his study of this model flow
was the common observation of the appearance of smooth areas in the disturbed
water downstream of a lock when the sluice gates are opened which, As Taylor
points out, these correspond to rising turbulent currents spreading out at the surface
with horizontal divergence. Fabrikant and Raevsky (1994) have recently developed a
theory for the scattering of gravity waves by vortical flows in the ocean. They found
that for homogeneous turbulence the scattering characteristics are determined by the
large scale spectrum components that are usually anisotropic and inhomogeneous.

Rajaratnam & Humphries (1984), Rajaratnam & Subramanyan (1985) and Swean
ct al. (1989) investigated surface jets with applications to civil and hydraulic engi-
neering. They found that growth rates of the length and velocity scales resemble
those of a two-dimensional wall jet at the same Reynolds number. On the related
problem of the interaction of a jet with a solid surface, Launder & Rodi (1981, 1983)

provide a comprehensive review of investigations of the solid wall jet for different jet



exit geometries. Swean et al. (1989) made turbulence measurements in a developing
planar surface jet and noted a decrease in verlical velocity fluctuations near the free
surface.

Experimental investigations of the interaction of a round jet with a free surface
were reported by Bernal & Madnia (1988), Anthony & Willmarth (1992), Madnia
& Bernal (1994) and Walker et al (1994). Madnia & Bernal (1994) chose this flow
because it is one of the simplest flows configurations which incorporates many of
the vortical interactions encountered in the ship wake problem. They reported mea-
surements of the mean velocity and turbulence intensities, using hot-film velocity
measurements, flow visualization and surface curvature measurements. Madnia &
Bernal (1994) observed characteristic dark circular features in shadowgraph images
of the surface associated with concentrated vorticity normal to the surface, which is
believed to be the result of vortex line reconnection processes in the turbulent flow.
Anthony & Willmarth (1992), using three-component laser Doppler velocimeter and
visualizations of the flow using fluorescent dye and free-surface shadowgraphs, ob-
served the formation of a shallow surface current that consists largely of fluid struc-
Lures ejected from the jet. These structures remain coherent within the current,
supposedly as a consequence of reduced turbulent mixing just beneath the surface.
They also observed that when an insoluble surfactant is added to the surface, the
surface current is suppressed.

Measurements of the structure of turbulence beneath a free surface have been
reported. Komori et al. (1982) used a laser velocimeter to measure the turbulent
fluctuations and Reynolds stress beneath a free surface in two-dimensional flows
in open channels. They found Lhat as the free surface is approached, the velacity

fluctuations become anisotropic, the normal component are damped while the parallel



components are enhanced. Similar findings have been reported by Swean (1989) for
the two-dimensional surface jet, and by Anthony & Willmarth (1992), and Walker
et al (1994) for a round jel interacting with a free surface.

Rashidi et al. (1992) studied the effect of surface waves on turbuleni quantities
such as the mean velocities, turbulence intensities, and Reynolds stresses near the
[ree surface, in wall turbulent flows, concentrating their analysis on the effect of the
wavy motion on the wall shear stress, and the frequency of cjection-insweep cycles.

A number of recent works deal with the observation and interpretation of vor-
tex interactions with a free surface. Several experimental papers on the interaction
of tilted vortex rings with a free surface have been published, such as Bernal and
Kwong (1989), Bernal et al (1989), Sarpkaya and Suthon (1991). Tryggvason ct al.
(1991) and Song ct al (1990) have performed numerical simulations with an inviscid
model, and Dommermuth and Yue (1991) performed numerical simulations using a
viscous model. Hirsa & Willmarth (1994) analyzed the cffect of contamination on
the interaction of a vortex pair with a free surface, and observed that when vortex
pairs rise and interact with a free surface they cause characteristic surface deforma-
tions known as scars and striations. These are caused by stretching and interaction
of cross-stream vortices near the surface. When a small amount of surface contami-
nation is present, they observe the formation of contamination fronts on the surface
and secondary vorticity of opposite rotation, that cause the primary vortex pair to
rebound from the surface. Rood (1994) proposes an explanation for the vortex at-
tachment process, which does not rely on vortex image methods, but on the flux of
vorticity to the boundary. As an example Rood explains the experimental observa-
tion of Bernal and Kwong (1989) that in a vortex ring approaching the free surface

along an inclined path the upper arc of the ring "breaks” to form a loop with its



ends terminating at the surface. According to Rood, during this process as the vor-
tex loop approaches the free surface, the core is deformed against the surface leading
Lo large vorticity diffusion. In the limit of low Froude number the surface-parallel
vorticity disappears, leaving the remainder of the loop with ends terminating at the
free surface. One important conclusion is that vortex reconnection to the surface is a
viscous process, and therefore it may be Reynolds number dependent. This Reynolds
number dependence has been observed in Willert and Gharib (1994) experiment on
the interaction of modulated vortex pairs with a clean and contaminated free surface.
In this experimenti, for low Reynolds numbers and a clean surface, the vortex pair
locally "reconnects” by removing the vorticity from the vortex tube closest to the
surface to form two parallel lines of U-vortices, whereas for higher Reynolds numbers
the reconnection process is not as clearly seen, the vortical structure being "shat-
tered” as it reaches the surface, presumably because there is insufficient time for the
lobe of the spatially modulated vortex closest to the surlace to loose its vorticity
to the surface by accelerating the surface locally, forming a reconnection site (i.c.
surface normal vorticity). These vortex free-surface interaction studies provide with
some basic tools for the understanding of free-surface turbulence.

A theory for the structure of turbulence in the vicinity of plane boundaries de-
veloped by Hunt and Graham (1978) was extended to a free surface in the limit
of negligible surface deformation by Hunt (1984). Hunt and Graham’s (1978) de-
velopment is based on a linear theory and is restricted to short times of interaction
belween the turbulent flow and the shear-free boundary. Over longer times nonlinear
effects develop, such as large eddies straining smaller eddies near the boundary, and
Hunt (1984) suggests some estimates of this effect.

Hunt’s (1984) theory was found to be in general qualitative agreement with ex-



perimental measurements of spectra and profiles of turbulence intensities in a {ree-
surface grid-stirred tank by Brumley and Jirka (1987). Nevertheless, these measure-
ments reveal important dynamical effects which are not properly accounted for by
the purely kinematical theory of Hunt. In particular, the experimental data show
a higher concentration of turbulence energy at the low wavenumbers in the tangen-
tial velocity components near the free surface than that predicted by Hunt’s theory.
Measurements also show the surface induced anisotropy in the velocity fluctuations
to extend to high wavenumbers, well into the inertial subrange, as the free surface
is approached. However, closer examination of the one-dimensional energy spectra
in the experiments of Brumley and Jirka (1987) shows the presence of two distinct
subranges in the spectra of horizontal velocity components within the surface influ-
enced layer; a £~5/3 subrange at intermediate wavenumbers and a k=3 subrange at
high wavenumbers. At large distances away from the free surface, the A= range
disappears. Similar trends can also be observed in the experimental measurements
of turbulent planar free-surface jets by Swean et al. (1991). Close examination of the
one-dimensional energy spectra of horizontal velocily components within the surface
layer in these experiments also show the presence of two distinct subranges; a &=5/%
range at intermediate wavenumbers and a ™2 range at high wavenumbers. Fur-
thermore, the data indicate a trend for pile-up of energy in the horizontal velocity
components near the surface as the jet moves downstream. The authors attribute
this to the presence of slowly dissipating vertically oriented coherent vortex tubes
which connect normal to the free surface.

These connected vertical vortex tubes, which have also been observed in a num-
ber of other experimental studies of free-surface flows (Madnia and Bernal 1989,

Sarpkaya and Suthon 1991, Gharib et al. 1992, Dommermouth 1993), are indeed



a major distinguishing feature of {ree surface turbulence from wall-bounded or free
turbulent shear flows. At low Froude numbers, these vortices are not subject to
significant vortex stretching in the immediate vicinity of the free surface. Therefore,
the cascade of energy to the small scales within such vortices is inhibited, leading to
their longevity and the establishment of a nearly two-dimensional turbulent state in
the immediate vicinity of the free surface. These vortex tubes, however, are not the
only admissible class of vortical structures in the vicinity of a free surface. Another
class might consist of vortex tubes which are oriented parallel to the free surface. In
contrast to the former structures, these vortices are subject to strong vortex stretch-
ing and the usual cascade of energy to the small scales. Thus the overall dynamics
of turbulence near a free surface may be determined by a delicate balance between

the two classes of structures,

1.2 Objectives

The objective of this study is to provide a better understanding of the dynamics
of turbulence near a free surface, in particular with regards to the importance of
two-dimensionality within the surface influenced layer and implications for the de-
velopment of accurate subgrid-scale models for LES of free-surface turbulence. The
studies are based on results from direct numerical simulations of a temporally grow-
ing submerged turbulent round jet which is issued parallel to a clean free surface.
This flow exhibits many of the features of ship wakes and because of its inherent
simplicity has served as a protolype flow in a number of recent experimental studies
of free-surface turbulence (Madnia & Bernal 1989, Anthony 1990, Liepmann 1999,
Walker et al (1994).

Specifically, our studies will provide information on the topology and dynam-



ics of large- and small-scale coherent structures and the detailed interscale cnergy
translers near the free surface, assess the importance of two-dimensionality and the
reverse cascade of energy near the free surface and relate the observed phenomena
to the underlying dynamics of vortical structures to provide a physical basis for the
evaluation of subgrid-scales model for LES of free-surface turbulent flows.

‘The organization of this work is as follows. In §2 the physical parameters of the
problem arc introduced and the numerical methods are discussed. The evolution
of the jel from laminar to turbulent stages is presented in §3. In §4 the statistics
of the free-surface turbulent jet are compared to known experimental results. The
small-scale structures of the jet are examined in §5, followed in §6 by a discussion
of the dynamical role of these structures in the interscale energy transfers and the
dynamics of the cascade. The implications for the development of more accurate
subgrid-scale models of free-surface turbulence are discussed on §7. Conclusions are

presented in §8.



CHAPTER II

NUMERICAL METHODS

In this chapter we discuss the numerical schemes which were employed in our direct
numerical simulation study of an incompressible, temporally growing, round turbu-
lent jet issued parallel to a free surface. The governing equations are presented first,
followed by a general description of the boundary conditions, the numerjcal methods,

the initial conditions and other flow parameters used in the simulations.

2.1 Governing Equations

We investigate the evolution and dynamics of a temporally growing round jet which
is issued parallel to a clean free surface at a depth varying from one to two jet
diameter below the surface (4 = 1, 1.5, and 2). A schematic of the jet and of the
coordinate system used in this study is shown in Figure 2.1. The initial laminar
jet had a Reynolds number, Re, = D—fﬂ, of 10000 based on initial jet diameter and
centerline velocity and a Froude number, Fr = 7%‘3, of 0.1. This Froude number
is small enough to allow the use of linearized free-surface boundary conditions in
the simulations, thus resulting in significant savings in the required computational

resources.

The evolution of the jet is tracked in a Cartesian coordinate system by solving
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the Navier-Stokes equations
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where & = V x @ is the vorticity and 7 = p+ 5 + 3 | @ |* is the dynamic pressure
head. These equations were combined to give a second order equation for the normal

component of vorticity and a fourth order equation for the normal component of

velocity
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In addition, in order to provide direct comparisons with experimental flow visualiza-
tion studies, a passive scalar with a Schmidt number of 0.7 was imposed on the initial

jet profile and its evolution was tracked by solving the scalar transport equation
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2.2 Boundary Conditions

Periodic boundary conditions were imposed in the homogeneous (x) direction.
The assumed periodicity length was chosen to be L./R, = 167 /a, where o = 2.85
corresponds to the wavenumber of the least stable (axisymmetric) eigenmode of the
initial laminar profile. Figure 2.2 shows the least stable eigenmodes of the initial
laminar profile (equation 2.18) as computed by a solution of the linearized stability
equations (Kambe, 1969; Lessen and Singh, 1973). The details are described in

Appendix C. As shown in Figure 2.2, both axisymmetric and helical modes are
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nearly equally amplified at this wavenumber. The periodicity length of 167/ was
chosen to accommodate the development of not only the fundamental mode, but
also two successive subharmonics. Based on available experimental data on the
two-point longitudinal correlation lengths in turbulent round jets (Wygnanski and
Fiedler, 1969) this domain is also large enough to ensure that the two-point statistics
of the fully-developed turbulent jet are uncorrelated at a separation of one half the
domain length in the streamwise direction. The flow was assumed to be quiescent
(@ = 0) at large distances away from the jet (y = oo and z = 00), while at the free

surface (z = 0) the linearized free-surface boundary conditions were imposed

ah dh oh

ot +u—éz+va =w (2.6)
du Jdw
9z ar =0 (2.7)
dv  Jdw
— —_— = 9
£p + T 0 (2.8)

h 2 Jw

—_ = T 2.
Pt Fr2  Re 0z (2.9)

where 4 is the surface elevation.
Boundary conditions 2.7 and 2.8, can be combined to obtain boundary conditions
for w. and w by using the continuity equation, leading to
Ow,

5= =0 (2.10)

Pw _ Pw | Pw
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2.3 Discretization and Numerical Solution

The computations were performed using standard pseudospectral methods (Canuto
ct al. 1987) employing Fourier series in the streamwise (z) direction and mapped

Chebyshev polynomials in the spanwise (y) and normal (z) directions.

M2

P N
Vo) =35 S lmn,p e T (y)(z) (2.12)

p=0n=0m==7Af/2

Two algebraic mappings
A

'1%, =y 213

and
= BO-¢'~
R, (140

were used to map the —oo < y/R, < o0 and 0 € z/R, € oo physical domain to

(2.14)

the —1 < ¢ €1 domain of Chebyshev polynomials. The scale factors A = 5.0 and
B = 9.6 were chosen to produce a nearly uniform distribution of grid points in the
central portion of the jel and a more concentrated distribution of grid points near
the free surface. In the computations the so-called 3/2 rule was used to de-alias all
the variables.

Time advancement was carried out by a semi-implicit {full-step time-stepping
scheme (Orszag and Patera 1983), involving explicit evaluation of the convective
terms using a second-order Adams-Bashforth scheme and an implicit evaluation of
the viscous terms using a Crank-Nicholson scheme.

wn+1 _ wn -
At
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At each step, & was computed according to

Al _pn 3 ah ah 1 dh ah

a3 gy e g S ) 1)
These equations were solved subject to boundary conditions given by equations 2.10
and 2.11, and quiescent conditions far from the jet. One additional free-surface
boundary condition for w, required in the solution of the viscous term in equation

2.16 was obtained from equation 2.9 by using the normal component of the Navier-

Stokes equations as

d*w _i; ﬂ
adz Oz

(Fx @) —

(2.18)

The fourth order equation for w (2.16) was solved by decoupling it into two second
order Poisson operators and imposing the boundary conditions (2.11) and (2.17)
using an analytical Green’s function technique (Domaradzki, 1990) (sce Appendix
A).

The resulting second-order Poisson operators were inverted using a collocation/
diagonalization technique (Haidvogel and Zang, 1979; Haldenwang et al., 1984). Each
Poisson solver requires O(NX - NY - NZ* 4 NX - NY? - NZ) operations, roughly
twice as many operations as in a Fourier/Fourier/Chebyshev code. The application
of the diagonalization procedure using the Green’s function approach is detailed in
Appendix A.

These methods lend themselves to high efficiency parallel implementation on
medium-grained distributed memory parallel processors (Mangiavacchi and Akhavan,
1993). The only operation that requires communication is the evaluation of the
multi-dimensional FFT’s, which can be computed using a transpose algorithm. A
description of the parallel implementation of the Fourier-Double Chebyshev code on

a message-passing architecture is given on Appendix B,
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Resolution Ny=Nz=128
a ON_S g0-§ % error
1.0 0.2664884 | 0.266490 | 6 x 10~
2.0 0.4692816 | 0.469300 | 4 x 1073
3.0 0.5135206 | 0.513540 | 3.5 x 1073
4.0 0.4332315 | 0.433232 | 1.1 x 1074
5.0 0.2509230 | 0.250924 | 3 x 10~

Table 2.1: Quantitative comparison between the growth rates of the least stable
eigenmodes of the linearized equation for a free round jet from the so-
lution of the Navier-Stokes equations to the growth rates predicted from
solution of the linearized equation (Appendix C).

2.4 'Tests of the Code

A number of test problems have been conducted to ensure the accuracy of the
numerical schemes. Individual routines were tested for accuracy by comparing with
analytical results. The complete code was tested by comparing the evolution of the
most unstable axisymmetric mode to the solution of the linearized viscous stabil-
ity (the Orr-Sommerfeld) equations. The details are described in Appendix C. To
perform the tests, the Navier-Stokes solver was initialized with a laminar jet profile
(equation 2.18), on which a pure mode of the Orr-Sommerfeld equation was super-
imposed. Figure 2.3 shows a comparison between the growth rates of the least stable
eigenmodes of the linearized stability equation for a free round jet computed from
the solution of the Navier-Stokes equations to the growth rates predicted {rom direct
solution of the linearized equation. Excellent agreement is seen between the two

results. Table 2.1 shows a quantitative comparison between the results.
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The linearized free-surface boundary conditions were verified by comparing the
period P of small amplitude sinusoidal standing waves of wavelength & with the

predictions from linear theory,

P Qi

fak
where g is the gravity acceleration. The error in the period was found to be smaller

than 1.0% when using a time step compatible with the simulations.

2.5 Imitial Conditions

Initial conditions for the runs were specified as a laminar jet with a blunt velocity
profile
UjU, = 0.5{1 + tanh{6.25(1 — r/ R)]} (2.19)

on which a divergence-free, random noise disturbance field given by
u'(x) =V x (®(x) - I(r)) (2.20)

was superimposed. Here @ is a three-dimensional isotropic random disturbance field

ogallo, whose spectral components were chosen to give u’ an energy spectrum
Rogallo, 1981) wi tral t I to giveu' gy spect

A

B0 = (e

) (2.21)

The experimental data of Wygnanski and Fiedler (1969} were used to choose the value
of A = 0.45R, and Lhe profile of I{r} = exp(—1.9r2/R?). The initial disturbance field
had an energy of 10~* relative to that of the mean flow. The passive scalar field was
initialized with a profile identical to that of the mean flow (equation 2.18). No
disturbances were imposed on the passive scalar.

The temporally-growing round jet was issued at depths ranging from one to two

jet diameters below the free surface (H/D = 1.0, 1.5, and 2.0). A relatively low
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Froude number jet was studied (Fr = \—%}3 = (.10, based on initial jet centerline ve-

locity and jet diameter). This prevents the production of large amplitude waves and
allowed us to use the lincarized [ree-surface boundary conditions in our simulations,
thus resulting in significant savings in the required computational resources. For the
scope of this study, the free surface is assumed to be clean of surfactants and surface
tension effects are assumed to be negligible.

Simulations were carried out with a resolution of 128 x 129 x 129 de-aliased modes
in the streamwise, spanwise and normal directions on a partition of the SDSC 400-
node Intel Paragon. The turbulent jet had a turbulent Reynolds number ol = 10,000
based on initial jet diameter and centerline velocity, and a final Rey = 100 bascd on
longitudinal Taylor microscale (e, & 75). At this time, the grid spacing was on

the order of 3 Kolmogorov scales in the central portion of the jet.
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Figure 2,1: Schematic of the jet and of the coordinate system
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Figure 2.3: Comparison of the growth rates {w) of the least stable eigenmode of the
blunt velocity profile (equation 2.18} from the solution of Navier-Stokes
equations (o), to the predicted value from the solution of the linearized
stability equation C.10-C.12,(solid line) for various wavenumbers «



CHAPTER III

INITIAL EVOLUTION

The evolution of the free-surface jet flow from a laminar to a fully developed tur-
bulent state is discussed in this chapter. IFor the jets studied here, which were all
issued at a depth of H/D > 1.0, the early stages of the evolution of the jet are
not significantly affected by the presence of the free-surface. Similar to a free jet,
the random disturbances that are superimposed on the base flow initially grow as a
result of linear interactions with the base profile. The growth and saturation of these
disturbances results in the formation of axisymmetric vortex rings, which undergo
a rapid secondary instability and result in the transition of the jet to a turbulent
state. As the jet grows and approaches the free-surface, the growth, evolution and
vortical structure of the flow is influenced by the presence of the free-surface. In this
chapter, we review the evolution and growth of the jet and compare the results with
analytical predictions as well as experimental measurements, in submerged and free

jets.

3.1 Vorticity and Passive Scalar Fields

The initial evolution of the free-surface jet can be visualized with the help of

three-dimensional iso-surfaces of constant value vorticity and passive scalar fields.

19



20

The resulting images are useful in observing the general features of the flow, such as
the large scale structure of the flow.

Figures 3.1-3.12 show the evolution of the vorticity and passive-scalar fields for the
free-surface jet issued at one diameter below the free surface (i.e. with H/D = 1.0).
It is also shown in these figures the surface elevation, which was amplified for the
scope of the visualization. The actual amplitude of the surface elevalion is very
small for the present simulations (on the order of 1072). Since the level of the
random noise present in the initial velocity profile is very small (£ ~ 10~1) the initial
vorticity and passive scalar fields at tU/,/R,=0 (Figures 3.1 and 3.2) are composed
of isosurfaces that are almost perfectly cylindrical. As the most linearly unstable
modes begin to grow, the cylindrical surfaces begin to undulate (see Figures 3.3
and 3.4). The initial structures formed from the saturation of the most linearly
unstable modes are in the form of axisymmetric vortex rings (Figure 3.5). These
correspond to mushroom shaped structures in the passive scalar field (Figure 3.6).
Subsequent evolution of these structures involves the instability of these vortex rings
to azimuthal perturbations, already visible in Figure 3.5, the development of helical
modes and pairings between various vortical structures, In particular, the structure
of the vorticity field at this time shows the presence of an azimuthal mode with
m = =5, the development of asymmetry due to the presence of a helical mode with
m = 1 and symmetric as well as asymmetric pairings between the various vortical
structures. The azimuthal instabilities rapidly lead to the formation of braids, that
are streamwise vortex tubes, strengthened during the vortex pairings, thus resulting
in rapid transition to small-scale turbulence.

In contrast to the planar jet and the mixing layer, more than one pairing of the ax-

isymmetric vortex rings is rarely seen in round jets. After the first pairing, azimuthal
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modes become very strong considerably increasing the level of three-dimensionality
in the jet and thus triggering the transition to turbulence before the next pairing
has a chance to occur. These azimuthal modes have also been observed in a number
of experimental and numerical studies (Liepmann and Gharib, 1992; Abid and Bra-
chet, 1993; and and Brancher et al 1994) are belived to be precursors to ejections of
fluid from the sides of the jet, known as side jets. Traces of all these effects can be
observed in the siructure of the vorticity and passive scalar fields at tU,/R, = 20
(figures 3.7-3.8). By tU,/R, = 40 (Figures 3.9-3.10}, the jet has rcached a fully
turbulent state. The development of the shallow jet beyond this time is strongly
influenced by the presence of the free surface (Figures 3.11-3.12). Among other ef-
fects, this interaction leads to significantly higher spreading rates of the jet in the
lateral direction in a shallow layer near the free surface (Figures 3.11-3.12). This
phenomenon, known as the surface current, has also been observed in a number of
experimental studies of frec-surface jet (Madnia and Bernal 1989, Anthony et al.
1991, Anthony and Willmarth 1992).

That this spreading is caused by the presence of the free surface can be verified by
comparing the passive scalar and vorticity fields at tU,/ R, =80 {for H/D =1 (Figures
3.11-3.12) with that of H/D =1.5 (Figures 3.13-3.14) and H/D =2 (Figures 3.15-
3.16). Ior these two cases, the free-surface effect is much smaller and the lateral

spreading of the jet near the {ree-surface is considerably smaller.
3.2 Evolution of the Jet

The overall evolution of the free-surface jet with time is shown in Figures 3.17-3.19.
The growth of the free-surface jet (H/D =1.0, 1.5, and 2.0) is tracked by following

the time histories of the jet hall-widths in the vertical and transverse directions
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z172(1), in Figure 3.17, and yy2(¢) in Figure 3.18), defined as the distance between
the location of the maximum mean velocity and the locations along vertical and
transverse planes where the mean velocity has dropped to half the maximum value.
Also shown in Figure 3.17 are the time histories of the maximum mean jet velocity,
U.(t), and the jet Reynolds number, Rez’} = B:I—C, normalized with respect to the

initial Reynolds number of the jet, e, = Eﬂugﬂ

The interval between 0 < U,/ R, < 15 represents the growth and saturation of
the most unstable modes of the initial disturbance field. During this period, the sharp
shear layers at the edges of the jet grow by viscous diffusion and the jet becomes less
blunt. Nevertheless, since an inviscid core continues to exist at the center of the jet,
the jet half-width and the centerline velocitics are not affected. The time tU,/ R, ~ 15
signifies the start of the first vortex pairing in the jet, after which the jet experiences
rapid transition to small-scale turbulence. By a time of tU,/R, ~ 40, the jet has
become fully turbulent. This time also represents the start of the interaction between
the jet and the {ree surface, for the shallow jet case (H/D =1.0). In general, the
effect of the free surface is felt when the jet is about on-half radius from the surface.
As seen in Figure 3.17 and 3.18, the evolution of the shallow jet (H/D =1.0} is
dramatically different from that of the deeper jet ({/D =2.0) beyond this point.
While the deep jet (/D =2.0) still behaves as a free jet and gradually approaches a
self-similar fully-developed turbulent state, the shallow jet experiences a rapid rise in
its vertical jet half-width upon first interaction with the free surface at tU,/ R, ~ 30.
This is accompanied by a simultaneous decrease in the transverse jet width (Figure
3.17). These trends are reversed later on (beyond tU,/ R, ~ 60 when the free-surface
jet begins to approach a self-similar state. In the final fully-developed turbulent free-

surface jet (tU,/R, > 85), the transverse jet half-width is nearly 50% larger than
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the half-width in the vertical direction. The same trends are also observed for the
(H/D =1.5) jet, but at later times. These results are consistent with experimental
measurements in free-surface jets {(Madnia and Bernal 1989, Anthony and Willmarth
1992).

Figure 3.19 shows a comparison of zy2(1), ¥1/20:=2.,(t), and ¥1/2@:=0(t), for the
case of the shallow jet H/D =1.0. The plane z = z,, is the horizontal plane that
cuts through the point of maximum mean streamwise velocity, while z = 0 is at the
surface. This figure shows clearly how the jet first grows in the vertical direction,
then in the horizontal direction, and finally, the spreading of the jet is maximum at
the surface.

The initial vertical spread observed in the shallow jets may be attributed to the
effect of the the free surface on the initial perturbations of the laminar jet. The
presence of the free surface introduces the observed helical and azimuthal perturba-
tions with m=1, that can cause the jet to grow preferentially in the vertical direction
by means of ejections or side jets. This initial growth in the vertical direction has
also been obhserved by Liepmann and Gharib (1992) using DPIV on a free-surface jet
issued parallel to the surface at H /D=1, showing that during the initial evolution,
the jet becomes elongated vertically.

In the deeper jet, the spread of the jet for 70 < tU,/ 1, < 200 is consistent with

the existence of self-preserving profiles for the mean velocity and the Reynolds shear

stress of the form,

Ur,t) r
v ) G-
—upup(nt) r

2y~ S
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Substitution of these expressions inlo the equation of motion

au J(ulul)

W e (3:3)

and the momentum integral constraint
ifm U(r,t) r dr =0 3.4
dtJo 77N "= (34)

leads to the conclusion that under conditions of self-preservation, ry/2(t) ~ (t —,)'/?
and U (t) ~ (L — 1,)"%3, consistent with the evolution of the deep jet beyond
tU,/R, ~ 70. The evolution of the femporally growing round turbulent jet is,
therefore, different from that of spalially growing round turbulent jets, for which
self-preservation requires that the jet radius-width grow as ryj; ~ (2 — x,) while
its centerline velocity drops as (z — 2,)~! resulting in a Reynolds number which is

constant (Tennekes & Lumley 1972).



Figure 3.1: Isosurfaces of vorticity magnitude, |w|/|wmaz| =0.5 (|w|D/U, = 1.5),
HID =1.0, at tU,/R, = 0. The initial surface elevation is h{x,y,t =
0)=0

Figure 3.2: Isosurfaces of passive scalar, ¢/cma: =0.5 (¢/c, = 0.5), H{D =1.0, at
tU,/ R, = 0.
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Figure 3.3: Isosurfaces of vorticity magnitude, |w|/lwmaz| =0.5 {|w|D/U, = 2.0),
H/D =1.0, at tU,/ R, = 10. The maximum surface elevation is /R, =
4.5 x 1075, and was magnified to 0.3 for visualization purposes.

Figure 3.4: Isosurfaces of passive scalar, ¢/cmar =0.5 (¢/c, = 0.5), H/D =1.0, at
tU,/ R, = 10. The maximum surface elevation is /R, = 4.5 x 10~%, and
was magnified to 0.3 for visualization purposes.



Figure 3.5: Isosurfaces of vorticity magnitude, |w|/|wmez] =0.5 (jw|D/U, = 24),
H{D =1., at tU,/R, = 15. The maximum surface elevation is /R, =
4.5 x 101, and was magnified to 0.3 for visualization purposes.

Figure 3.6: Isosurfaces of passive scalar, ¢/cpez =0.5 (¢fc, = 0.5), H/D =1.0, at
tU,/ R, = 15. The maximum surface clevation is /R, = 4.5 x 10™", and
was magnilied to 0.3 for visualization purposes.



Figure 3.7: Isosurfaces of vorticity magnitude, |w|/|wmar| =0.5 (jw|D/U, = 4.0),
H/D =1.0, at tU,/ R, = 20. The maximum surface elevation is h/R, =
1.25 x 1073, and was magnified to 0.3 for visualization purposes.

Figure 3.8: Isosurfaces of passive scalar, ¢/cnar =0.5 (¢/c, = 0.5), H/D =1.0, al
tU,/R, = 20. The maximum surface elevation is h/R, = 1.25 x 1073,
and was magnified to 0.3 for visualization purposes.



Figure 3.9: Isosurfaces of vorticity magnitude, |w|/|wymaz| =0.5 (lw|D/U, = 3.0),
H/D =1.0, at tU,/ R, = 40. The maximum surface elevation is /R, =
1.90 x 1072, and was magnified to 0.3 for visualization purposes.

Figure 3.10: Isosurfaces of passive scalar, ¢/c,0. =0.5 (¢/c, = 0.36), H/D =1.0, at
tU,/ R, = 40. The maximum surface elevation is /R, = 1.90 x 1073,
and was magnified to 0.3 for visualization purposes.
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Figure 3.11: Isosurfaces of vorticity magnitude, |w|/|wmez| =0.5 (Jw|D/U, = 1.5},
H/D =1.0, at tU,/ R, = 80. The maximum surface elevation is o/ R, =
5.31 x 10~1, and was magnified to 0.3 for visualization purposes.

Figure 3.12: Isosurfaces of passive scalar, ¢/emar =0.5 (c/c, = 0.25), H/D =1.0, at
tU,/ R, = 80. The maximum surface elevation is h/R, = 5.31 x 10~1,
and was magnified to 0.3 for visualization purposes.
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Figure 3.13: Isosurfaces of vorticity magnitude, |w|/|wmez| =0.5 ([w|D/U, = 1.5),
H/D =1.5, at tU,/ R, = 80. The maximum surface elevation is h/ R, =
4.46 x 10~*, and was magnified to 0.3 for visualization purposes.

Figure 3.14: Isosurfaces of passive scalar, c¢f/cyqar =0.25 (¢/c, = 0.5), H/D =1.5, at
tU,/ R, = 80. The maximum surface elevation is A/ R, = 4.46 x 10™1,
and was magnified to 0.3 for visualization purposes.
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Figure 3.15: Isosurfaces of vorticity magnitude, |w|/|wmaz| =0.5 (Jw|D/U, = 1.5),

1
H|D =20, at tU,/R, = 80. The maximum surface elevation is /R,
3.65 x 1071, and was magnified to 0.3 for visualization purposes.

Figure 3.16: Isosurfaces of passive scalar, ¢/cmq =0.25 (¢/c, = 0.5), H/D =2.0, at
tU,/ R, = 80. The maximum surface elevation is /R, = 3.65 x 1074,
and was magnified to 0.3 for visualization purposes.
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Figure 3.17: Evolution of the [ree-surface jet centerline velocity and half-width in the
normal direction. O, 22/ R,y H/D = 1.0; +, 2152/ R,, H/D = 1.5; D,
zip2/Roy HID = 2.0; x, U fU,y HID = 1.0; A, U fU,, HID = 1.5; *,
UefUs, HID = 2.0, —, Re, ,[Rep,, H/D = 1.0; ————, Re,, , [ Rep,,
HID=15 —«-—-—- , ez, [ Rer,, HID = 2.0,
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Figure 3.18: Evolution of the free-surface jet half-width in the transverse direction.
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Figure 3.19: Evolution of the free-surface jet half-width, H/D = 1.0. &, zy,/ Ro; +,
ylﬂ/Rm ab z = zy; O, yl[2/Ra, at z =0,



CHAPTER IV

STATISTICS OF THE FREE SURFACE
TURBULENT JET

In this chapter, the statistics and large scale structure of the simulated turbulent
free-surface jet is presented and the results are compared to existing experimental
data. This will help characterize the present database which will be used in the
following chapters to study the structure and dynamics of free-surface turbulence.
Three cases will be discussed; a deep jet issued at (H/D =2.0), and two shallow jets

( H/D =1.5, H/D =1.0),

4.1 'The Deep Jet

4.1.1 Mean Velocity Profiles

The profiles of mean velocity in the deep turbulent jet (H/D =2.0), plotted as a
function of (z — H)/L., are shown in Figures 4.1 and 4.2 for tU,/z, = 100 and 150.
Here I is the depth of the jet below the free surface and L. is the vertical distance
between the original centerline and the point where the velocity drops to half the
centerline value. These profiles, as well as all other statistics discussed in this chapter,
were calculated by temporal and spatial averaging of the Flow (in the = homogeneous
direction) over a short time interval of AtU,/R,=1. Since the computational domain

contains only a few large-scale structures and due to the time-dependent nature of

35
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the flow, the averaging can be done only over a short period of time, the statistics are
not expected to fully converged and are somewhat noisy. Cleaner statistics can only
be obtained by repeating the simulations a number of times with different random
noise initial conditions and averaging the statistics over the different runs. This is a
very expensive procedure and was attempted in the present study.

The early stages of the evolution of the jet is not significantly affected by the
presence of the free surface. Figure 4.1 shows that even at tU,/ R, = 100 the deep jet
has barely begun to interact with the free surface and still shows an alinost perfect
axisymmetry. The mean velocity profile at this stage is in good agreement with the
experimental data of (Wygnanski and Fiedler 1969) in self-preserving free turbulent

jet as well as the Gaussian curve

U(z,1) —0.693(r [y 12)?
— K LEAN ¥} 4.1
T "€ (4.1)

which represents the self-preserving mean velocity proftle in a temporally-growing
turbulent jet assuming a constant eddy viscosity 1. An exact agreement between
the two sets of data, however, can not be expected, since spatially growing jets
have a non-zero normal component of the mean velocity which is nol present in the
temporally growing jet.

After tU,/ R, =100 the presence of the free surface begins to break the symmetry
of the jet. At tU,/R, = 150 (TFigure 4.2), the velocity profile in the upper-half of
the jet is affected by the presence of the surface. The computed velocity profileat
this time is seen to be in good agreement with the experimental of Anthony and
Willmarth (1992) and Walker etal (1994). the free surface. The observed velocity
profile is typical of the early stages of interaction of the jet with the free surface,

when the mean velocity at the surface is less than U,,,/2 (where U,, is the maximum

—————
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velocity); or equivalently, when the distance from the point of maximum velocity to
the surface is larger than the half-radius.

Figure 4.3 shows the mean velocity profiles in the horizontal direction at U,/ R, =100
and tU,/ R, =150, plotted as a function of y/y,/, (where y;/2 represents the distance
between the the point of maximum velocity and the point where the velocity drops to
half the maximum value). The data is seen to be in excellent agreement with the free
jet data of Wygnanski and Fiedler(1969) and the Gaussian curve which represents

the similarity profile obtained analytically.

4.1.2 Turbulence Intensities and Reynolds Stresses

Figure 4.4 shows the distributions of the turbulence intensities and the Reynolds
shear stress in the deep jet (H/D =2.0) at tU,/R, = 100 and 150 compared to the
experimental measurements of Anthony and Willmarth (1992), and Walker el al.
(1994) in spatially growing free-surface turbulent jets. Despite some oscillations in
the numerical results, which are caused by the relatively small number of samples
used in the computation of the statistics, the agreement with experimental data is
seem to be quite good. The effect of the free surface is most prominantly felt in the
vertical turbulence intensities. Here the presence of the [ree surface at low Froude
numbers requires that the vertical turbulence intensities at the free surface nearly
vanish. The distribution of the other components of the turbulence intensity as well
as Reynolds shear stress are still quite symmetric and similar to those in a frec jet.

As mentioned before, the deep jet results up to tl/,/ R, =150 are representative of
the initial interaction of the jet with the free surface. Since the Reynolds number of
the temporally growing jet decreases with time, the maximum time of the simulation

is restricted to tU,/ R, = 200, after which the Reynolds number becomes too small
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to be representative of fully turbulent flows. On the other hand, this time is still not
representative of the final stages of the interaction of the jet with the free surface.
This interaction can be better observed by analyzing more shallow jets.

Figure 4.5 shows the distribution of the turbulence intensities and the Reynolds
shear stress in the deep jet (H/D =2.0) at tU,/R, =100 and 150, in the plane z = z,,,.
The general features in the plane z = z,, are qualitatively similar to those for the

plane y = 0.

4.2 The Shallow Jets

The effect of the free surface is felt much earlier on the shallow (H/D =1.0 and
1.5) jets. Therelore, results of the simulation for these two cases at carlier times
can be expected to have features that correspond to much later times of the deep
(H/D =2.0) jet. 1L is convenient to compare the results of various depth jets at the
same time when all jets have the same Reynolds number. for different depths to
infer the effect of the free surface, and isolate it from effects of the decay of the jet
Reynolds number. This will isolate the effect of the free surface on the evolution of

the jet, independent of Reynolds number.,

4.2.1 The Mean Velocity Profiles

The development of the mean velocity profile in the (H/D =1) free-surface jet is
shown in Figure 4.6. Profiles of the mean velocity are presented along the vertical
(ym = 0) plane passing through the location of the maximum mean streamwise
velocity in the jet. While the lateral location of the maximum mean streamwise
velocity always remains in the center-plane of the original jet (i.e., the plane (y, =
0}), the vertical z = z,, location of this maximum begins to shift towards the free

surface as the jet begins to interact with the free-surface. For the case of the H/D =1
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jet this begins to happen at tU,/ R, ~ 40, shortly after the jet experiences transition
to turbulence, The maximum velocity reaches the free surface at tU,/ R, ~ 75 (Figure
4.6) and remains there for the remainder of the evolution of the jet. figure 4.7 shows
a comparison between the computed mean velocity profiles and the experimental
data of Anthony and Willmarth. (1992) and Walker et al.{(1994) at z/D=32. The
agreement is quite good.

The lateral mean velocity profile in the jet is shown in Figure 4.8. The profile is
in good agreement with the experimental data of Anthony and Willmarth (1992) and
Walker et al.(1994) at x/D=32. The free jet data of Wygnanski and Fiedler(1969)
along with the Gaussian curve are also shown. The good agreement between all
curves shows that the jet grows like a free jet in the lateral direction.

The presence of the free surface results in the development of a secondary flow
in the jet. Figure 4.9 shows the profiles of V(y) in the plane z = 0 and W(z) in the
plane y = 0, respectively. The mean normal velocity W is seen to be negative on
the centerplane of the jet (plane y = 0) causing an upwelling of the jel fluid towards
the free surface. At the same time, the transverse velocity V in the plane z = 0 is
seen to change sign on passing the centerplane of the jet. This behavior is caused by
the development of a secondary flow, which is better visualized by means of contour
plots of mean streamwise velocity and streamlines of secondary mean velocity shown
in Figure 4.10. The predominant features of this secondary flow are two pairs of
counter-rotating vortices, which pump the fluid towards the surface at the center
plane of the jet and eject the fluid towards the edges of the jet at the surface. This
secondary flow is of Prandtl’s second kind; i.e., it arises from the anisotropy and non-
uniformity in the normal and tangential Reynolds stresses. This can be shown by

considering the equation of the streamwise mean vorticity which, for the temporally
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growing free-surface jet analyzed here, reduces to

D&y ?

Dt~ Oybz

— —. W 0% 0w
12 __ a2 _ o x _
(w? — v"?) + by pp; + u( a7 + 8::2) (4.2)

The last term on the right hand side of eq. 4.2 is a diffusive term and cannot
generate mean streamwise vorticity. The anisotropy and spatial variation of the
turbulent intensities and Reynolds shear stresses are, therefore, the main source of
creation of a mean streamwise vorticity and development of a secondary flow. A
similar secondary flow also develops in turbulent wall jets (Launder and Rodi 1983).
The effect of the secondary flow on the profiles of mean streamwise velocity can be
betler visualized by means of contour plots of mean streamwise velocity, as shown
in Figure 4.11. The effect of the secondary flow is to increase the spreading of the
jet at the surface, creating thin a layer at the edges of the jet, also know as surface
current,

Figures 4.12 and 4.13 show the mean velocity profiles in the vertical and horizontal
directions respeclively, for the case of the shallow jet (/D =1.5). The [eatures
observed in this jet are similar to the case (H/D =1.0}. Good agreement is seen also

between these results and the experimental data of Anthony and Willmarth (1992)

and Walker et al. (1994).

4.2.2 Turbulence Intensities and Reynolds Stresses

The evolution of the mean turbulence intensities and Reynolds stresses in the
(H/D =1.0) [rce-surface jet is shown in Figures 4.14 through 4.16. At carly times
the turbulence statistics in the free-surface jet are indistinguishable from those which
would be obtained in a free jet. As the jet begins to interact with the free surface,

shortly after experiencing transition to turbulence, the presence of the frce surface
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inhibits the vertical velocity fluctuations (\/F) within a thin ‘surface layer’ in the
immediate vicinity of the free surface {(see Figures 4.14c, 4.15c)-. Within this layer, the
vertical turbulence kinetic energy is re-distributed to the kinetic energy of horizontal
(Vu,Vw'?) motion and the turbulent fluctuations attain a strongly anisotropic
character. The thickness of this ‘surface layer’ is estimated to be on the order of one
lateral Taylor microscale (or 1/4 of the local vertical jet half-width in the present
jet).

The evolution of the vertical Reynolds shear stress, u'w’ in the plane y = 0 is
shown in Figures 4.14d, and 4.15d. The —uw'w’ Reynolds shear stress develops an
asymmetry about the centrerline of the jet as the free surfce is approached (Figures
4.14d), Tor large times (tU,/R, >100), when the velocity profile becomes mono-
tonically decreased with its maximum at the free surface, the uw'w’ Reynolds stress
becomes entirely negative such that turbulence production is always positive. Sim-
ilat trends can also be observed in the experimental measurements (Figure 4.15d).
The profile of the ©v' Reynolds stress in the horizontal plane z = 0 is shown in
Figure 4.16d at tU,/ R, =100 and compared to experimental data. These profiles
are not too dillerent from those in a free jet. The sign of ©/v7 is always such that its
contribution to the turbulence production (u'v'dU//8y) is always positive. Figures
4.17 and 4.18 show the distributions of the turbulence intensities and the Reynolds
shear stress in the intermediate jet (H/D =1.5) at tU,/R, = 100, compared with
experimental mcasurements of Anthony and Willmarth (1992), and Walker el al.
(1994) in spatially growing free-surface turbulent jets. The results are qualitatively
similar to those for the shallow jet (H/D =1.0). Good agreement with experimental

measurement is also observed here.
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4.2.3 Turbulent Kinetic Energy Dissipation and Production

The distribution of the average turbulent kinetic energy dissipation, the average
turbulence production and the average turbulent kinetic energy in the (H/D =1.0)
jet at tU,/ R, = 150 are shown in Figures 4.19-4.21. The two-dimensional contour
plot of average dissipation al tU/,/ R, = 150 in figure 4.19 shows that the maximum
dissipation occurs close to the edges of the jet in a region at a depth of = 0.5Z),.
Not surprisingly, the maximum production also occurs approximately in the same
regions as shown in figure 4.20. These regions correspond to the location of maximum
strain,

IMigure 4.21 shows the contour plot of turbuleni kinetic energy at tU,/ R, = 150
for the shallow jet{H/D=1.0}). The location of the peak is not at the free surface
but slightly below it. The peaks agree well with the location of peak production and

dissipation.

4.3 Kinetic Energy and Dissipation Spectra

The conversion of the vertical kinetic energy of turbulence into the kinetic energy
of horizontal motion within the ‘surface layer’ of the jet leads to the establishment
ol a strongly anisotropic, nearly two-dimensional turbulent state within this layer.
To gain a hetter understanding of the dynamics of turbulence within this layer, we

next examine the spectra of kinetic energy and kinetic energy dissipation in the jet.

4.3.1 Deep jet

Figures 4.22 and 4.23 show the three-dimensional kinetic energy and dissipation
spectra in the deep jet (H/D =2.0) at tU,/R, = 150. These spectra were computed

by interpolating the data onto a uniform Fourier grid using spectral interpolation
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and calculating the spectra using the definition

2
B(k) = A7k

>l (13)

k—t<|klghk+d
where u/(k) are the Fourier coeflicients of the disturbance velocity fluctuation field
in the three-dimensional Fourier box, and N is the number of wave vectors k which
fall into a spherical shell of radius &. The three-dimensional kinetic energy spectrum
shown in figure 4.22 displays a short inertial subrange with a Kolmogorov constant
Cr = 1.4 which is in good agreement with the value of Cr =~ 1.5 suggested by
Monin and Yaglom (1981, pp. 485) based on analysis of numerous experimental
data. The normalized kinetic encrgy dissipation spectrum in the jet is shown in
figure 4.23. The dissipation spectrum displays a peak at Ly < n >= 0.2, where
1 is the Kolmogorov scale, suggesting the presence of a dominant length scale for
the dissipative structures on the order of Iy & § < 7 > (or & 0.2),). The value
of ky < n >= 0.2 at which the peak of the dissipation spectrum is observed in
the present database is in good agreement with results observed in other numerical
simulations of turbulence (Domaradzki 1992) and the wavenumber of peak dissipation

predicted by Pao’s (1965) spectrum with a Kolmogorov constant of 1.4.

4.3.2 Shallow Jet

Figure 4.24 shows the one-dimensional spectra of the turbulent velocity fluctua-
tions in the jet at tU,/R, = 100 at various depths below the free surface. At large
depths (z/R, > 2.0) the turbulence is seen to have an isotropic character, mani-
fested in IMigure 4.24 by a collapse of the curves of one-dimensional spectra for the
three components of velocity. As the free surface is approached, the low wavenumber
components of the vertical velocity fluctuation is suppressed and the kinetic en-

ergy of these Ructuations is transferred into the horizontal (particularly streamwise)
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components of velocity. This anisotropy in the velocity fluctuations extends into pro-
gressively smaller scales, well into the inertial and dissipative ranges of turbulence,
as the free surface is approached.

The behavior observed in Figure 4.24 is qualitatively consistent with that pre-
dicted by Hunt’s (1984) theory, in which the free surface is assumed to affect a
turbulent eddy of size € only when the eddy is within a distance £ of the free sur-
face. The primary effect of the free surface being the creation of an image eddy
which suppresses the vertical velocity fluctuations at the surface and inhibits further
movement of the original eddy towards the free surface. Thus the effect of the free
surface is expected to be first felt at the lowest wavenumber components of the ve-
locity and to then gradually extend to the high wavenumbers, consistent with the
form of the spectra in the jet. Nevertheless, the results shown in Figure 4.24 also
reveal important dynamical effects which are not properly accounted for in Hunt’s
theory. Figure 4.24 shows the anisotropy in the velocity fluctuations to extend to the
smallest wavenumbers at the free surface. TPurthermore, these results indicate the
presence of two distinct subranges in the energy spectra; a £73/3 subrange at interme-
diate wavenumbers and a £~ subrange at high wavenumbers. These two subranges
are typical of ‘two-dimensional’ turbulence and suggest that the dynamics of turbu-
lence in the ‘surface layer’ may indeed follow the governing laws of two-dimensional
turbulence. Examination of the 3d spectrum (I'igure 4.25) shows the presence of
the same two sub-ranges. Similar trends can also be observed in the experimental
measurerments of the energy spectra in planar free surface turbulent jets by Swean

et al. (1991) and in the free surface grid-stirred tank of Brumley and Jirka (1987).
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4.4 Surface Elevation Spectra

The effect of the underlying turbulence on the surface clevation can be studied
by examining the surface elevation one-dimensional spectrum shown in Figure 4.26.

IJ, was computed according to
k= ¥ Ll (1.4)

k-bake el ©

where & is the Fourier transform of the surface elevation. A k=3 range can also be
observed in the surface elevation spectrum, indicating that at low Froude numbers the
surface elevation is mostly determined by the energy of the sub-surface turbulence.
The relationship among vortical sub-surface structures and surface signatures has
been investigated by various authors (Bernal and Kwong, 1989; Bernal el al.,1989;
Sarpkaya and Suthon, 1991, Tryggvason et al, 1991, Madnia and Bernal, 1994).
Their interrelation will be discussed further in the analysis of the structure of the

small scales (§5), and in the dynamics of the free-suraface turbulence (§6).



Figure 4.1: Profile of the mean velocity in the plane y=0. — numerical results at
time tU,/ R, = 100, for the decp jet (H/D =2);— — — Gaussian curve
(eq. 4.1); © experimental data of Wygnanski and Fiedler (1969) for a
free jet.
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Figure 4.2: Profile of the mean velocity in the plane y=0. —, numerical results at
time tU,/R, = 150, for the deep jet (H/D =2); O, experimental data
of Anthony and Willmarth (1992), at =/ D=186; x, experimental data of
Walker et al. (1994), at a/D=16;
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Figure4.3: Profile of the mean velocity in the plane = = =z, for the deep
jet(H/D =2.0); —, numerical results at time tU,/R, = 100, — — —,
tU,/ R, = 150, — - —-, Gaussian curve (eq. 4.1), O experimental data of

Wygnansky and Fiedler (1969), for a free jet.
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(1992), at x/D=16; x, experimental data of Walker ef al. (1994), at
x/D=16;
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Figure 4.5: Profile of the turbulent intensities and Reynolds stress in the plane » =
Zm. —, numerical results at time tU,/ R, = 100, — — —, tU,/ R, = 150;
for the deep jet (H/D =2.0).
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Figured.7: Profile of the mean velocity in the plane y=0. —, numerical results at
time tU,/ R, = 100 for the shallow jet (H/D =1.0); A, experimental data
of Anthony and Willmarth (1992) at /D=32; 4, experimental data of
Walker el al. (1994) at 2/ D=32;
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Gaussian curve{eq 4.1), + experimental data of Walker ef al. (1994),
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Figure 4.9: Profiles of the mean velocities in the horizontal and vertical directions at
time tU,/ R, = 100 for the shallow jet (/D =1.0); — horizontal profile
V(y) along plane z = 0, — — — vertical profile W(z), along plane y = 0.
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Figure 4.10: Streamlines of the mean secondary flow at time tU,/R, = 100, for the
shallow jet (H/D =1). The streamlines are from ¢ /(U,R,) =-0.0152 to
0.0152, with an increment of 2.78 x 1072,
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Figured.11: Contours of constant mean streamwise velocity (U) at time tU,/ R, =
100 for the shallow jet (H/D =1). The contours are from
U/U,) =0.0145 to 0.132, with an increment of 2.3 x 1072,
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Figure 4.12: Profile of the mean velocity in the plane y=0. —, numerical results at
timetl,/ R, = 100, for the intermediate jet (H/D =1.5); A, experimen-
tal data of Anthony and Willmarth (1992), at =/ D=32; +, experimental
data of Walker et al. (1994), at a:/ D=32;
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Figurc4.13: Profile of the mean velocity at time tU,/R, = 100. for the shallow jet
(H/D =1.5); — at the plane z = z,,, — — — at the [ree surface, —- —-—
Gaussian curve(eq 4.1), + experimental data of Walker et al. (1994),
at /D=32, O experimental data of Anthony and Willmarth {1992), at
x/D=32, O, experimental data of Wygnanski and Fiedler(1969).
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Figure 4.15: Profile of the turbulent intensitics and Reynolds stress in the plane
y=0. —, numerical results at time tl/,/ R, = 100, for the shallow jet
(H/D =1.0); A, experimental data of Anthony and Willmarth (1992),
at /D=32; 4, experimental data of Walker et al. (1994), at x/D=32;
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Figure 4.17: Profile of the turbulent intensities and Reynolds stress in the plane y=0.
—, numerical results at time tU,/R, = 100, for the intermediate jet
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Figure 4.19: Contour plots of average kinetic energy dissipation ¢ at time tU,/ R, =
150 for the shallow jet (H/D =1). The contours are from eR,/U3 =
1.0 x 107% to 81.0 x 107%, with an increment of 1.0 x 1079,
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Figure 4.20: Contour plots of average turbulence production p at time tU,/ R, = 150
for the shallow jet (H/D =1). The contours are from pR,/U3 = 1.05 x
107° to 9.55 x 10~7, with an increment of 1.92 x 10-€.

Figure 4.21: Contour plots of average turbulent kinetic energy ¢* at time tU,/ R, =
150 for the shallow jet (H/D =1). The contours are from ¢*/U? =
9.39 x 1079 to 5.63 x 1071, with an increment of 9.4 x 1073,
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Figure 4.22: Three-dimensional spectrum of kinetic energy in the deep jet H/D =2.0
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Figure 4.23: Three-dimensional spectrum of kinetic energy dissipation in the deep
jet H/D =2.0 at {U,/R, = 150,
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CHAPTER V

TURBULENCE STRUCTURE

In this chapter, the structure of turbulence in the free-surface jet is examined and
free-surface effects are discussed. An understanding of the dynamics of these struc-
tures will help identify the physical-space mechanisms responsible for the transfer of
energy between scales of turbulent motion, and the role played by the free surface in
the overall dynamics of turbulence.

The structure of turbulence will be first examined in the deep jet (H/D =2.0),
where the jet is just beginning to interact with the free suraface, and free surface
effects are still small. The discussion will then turn to the shallow jets, for which

free surface effects are strong.

5.1 Large Scale Structure of the Jet

The existence of organized large-scale structures in jets has been verified experi-
mentally in a number of works. Yule (1978) investigated the vortices in the transition
region and the large eddies in the turbulent region of a jet, by using flow-visualization
and hot-wire techniques. Using a conditional sampling technique, eddies moving near
the center-line were measured. The sampled eddies were found to contribute greatly

to local velocity fluctuations and statistical correlations. Yoda ef al, (1992) investi-
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gated the structure and evolution of natural and forced turbulent round jets in the
far field and found both helical and axisymmetric instability modes o be present in
the natural jet. Schefer el al. (1994) studied the existence of organized large-scale
structure in jets using planar imaging of the C'/{; concentration in a turbulent jet.
They observed a non-symmetric behavior, with vartical structures appearing on one
side or the other, but not necessarily both sides. They also observed instantancous
concentration fields which were consistent with the axisymmetric instability mode.
Overall this jet showed clear evidence of the axisymmetric instability mode on 40%
of the images analyzed, while 30% showed evidence of the helical instability, and 30%
showed no clear evidence for either instability mode. Another important feature was
the observation of ramp-like structures, associated with vortical structure formation
during the axisymmetric instability mode. The sudden increase in concentration
in the ramp corresponds to the leading edge of the vortical structures, while the
subsequent gradual decrease is associated with the remainder of the structure.

In these experiments the large scale vortical structure is derived either by some
conditional sampling or by observation of the spreading of a passive scalar. In this
work, since the complete velocity field is available, the vorticily distribution can be
computed directly. However, the vorticity field emphasizes the small scale features
of the flow. In order to analyze the large-scale vortical structures, it is necessary
to apply a filtering operation that emphasizes the large scale contributions. The
simplest such approach is to apply a sharp low-pass Fourier cut-off filter at various
wavenumbers. The resulting vorticity (or vorticity magnitude) field is representative

of the fluid motion at the scales close to the cut-off.



5.1.1 The Deep Jet

Figure 5.1 shows the large scale vortical structure of the deep jet at { =200, for
two sharp cut-off filter at £, < 5 >=0.070, and 0.025. The energy above these cut-offs
corresponds to about 40% and 25% of the total turbulent kinetic energy, respectively.
The shape of the isosurface of vorticity magnitude suggests the predominance of the
antisymmetric instability mode, but there are indications of the presence of the
symmetric mode as well. This is consistent with the experimental observation that
the jet switches between the axisymmetrical and helical modes and is in each mode
about 50% of the time.

At the largest scales (scales representative of the size of energy-containing eddies)
the vorticity field consists of hybrid structures, that combine features of both axisym-
metric and helical modes. These eddies give rise to a predominantly ‘flapping’ type
of motion, although at certain locations they appear symmetrically aligned about
the jet center-line and locally give rise to a ‘pufling’ type of motion. Increasing the
magnitude of the cutofl wavenumber to a size representative of the smaller energy-
containing eddies (figure 5.1b) reveals the presence of coherent vortical structures
which are formed by the cut and reconnect of the primary eddies shown in figure
5.1a. The predominant structures at this cutoff continue to be helix-like, or deformed
ring eddies whose axis lies in the £ — y plane. These eddies are consistent with one
class of organized structures which have been described in experimental studies of
spatially growing turbulent jets (Mumford 1982, Thomas & Goldschmidt 1986). A
sccond class of structures suggested in experimental studies (Mumford 1982) con-
sists of roller-like eddies whose axes are aligned along the direction of the mean flow
strain field. While such ‘strainwise’ eddies were found to be rare at the scale of

energy-containing eddies, at the smaller scales (on the order of inertial range and
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dissipative scales) the organized vortical structures in the flow consisted primarily of
such clongated vortex tubes with axes oriented along the direction of the mean flow

strain field.

5.1.2 The Shallow Jet

Figure 5.2 shows the large scale vortical structure of the shallow jet at ¢t =200, for
the same sharp cut-off filters at k. < 3 >=0.070 and 0.025. As the jet reaches the {ree
surface, the presence of Lhe surface precludes the existence of the initial axisymmetric
mode. The helix and ring shaped eddies become further deformed, giving origin to
clongated eddies almost parallel to the surface, and there are indications ol the
reconnection of the large scale eddies with the surface, leading to large scale vortical
structures normal to the surface. The overall appearance of the {ree-surface large
scale eddies is of a helix cut in half by the surface. There are also indications of
the formation of half-ring shaped eddies, which are attached to the surface, but are
not necessarily aligned with the center of the jet, being therefore a combination of

axisymmetric and helical instability modes.

5.2 Two-Point Correlations

The two-point correlations of the three components of the disturbance velocity with
separations along the streamwise (), and lateral (y) directions are shown in figures
5.3 and 5.4 for the deep (H/D =2.0) jet at tU,/ R, = 200. In the streamwise direction,
the two-point correlations were computed on the center-line of the jet according to

the definition

Ru(r) = SO T T)

PP ()] (5.1)
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where x is the position on the center-line and r is the separation vector. In the lateral
direction, (figure 5.4) the two point correlations were measured between points which

were symmetrically located on opposite sides of the jet center-line,

T T 1)
[uf?(x — r/2)]1/2 [uf?(x + r/2)]1/2

Rii(ig) = (5.2)

This form of the correlation coefficient in the lateral direction has been commonly
used in experimental studies of turbulent jets to deduce the large-scale coherent
structure of the flow. An example of these measurements for the ¥ component from
the data of Wygnanski and Fiedler (1969) is also shown in figure 5.3 and 5.4.

The two-point correlations for the deep jet show good qualitative agreement with
experimental data for the velocity components of free jets, for which experimental
data is available. In the streamwise direction, these correlations drop off to small
values at a separation of one-half the domain length, indicating that the computa-
tional domain is adequately large to ensure that the assumption of periodicity does

not significantly affect the dynamics of the large scale structures.

5.3 The Fine Scale Structure

5.3.1 The Deep Jet

We begin by examining the spatial distributions of the fluctuating vorticity, the
passive scalar, and the kinetic energy dissipation fields for the deep jet (¥ /D =2).
Figure 5.5 shows the distribution of these fields in two perpendicular planar cuts
through the jet at tU,/ R, = 200; one (planc y = 0) oriented along the streamwise
direction, and the other (plane x = 1.38R,) along the transverse direction. All
quantitics have been normalized with respect to their respective averages (denoted
by < >) in a box extending from —4 < y/R, < 4 and 0 < z/R, < 8, and are

plotted using a linear gray-scale color scheme. Figure 5.5 shows the regions of high
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intensity vorticity in the jet to be in the form of vortex tubes with a preferential
orientation along the direction of the mean flow strain field; i.e., at 45 degrees to
the direction of the mean flow lying on conocal surfaces around the centerline of the
jet. In the streamwise cut through the jet, the projection of these structures appears
elongated and at 45 degrees to the streamwise direction, while in the transverse cut
their projection is seen to form a ring around the centerline of the jet.

A similar picture is also observed for the structure of the kinetic energy dissipation
fields (Figure 5.5b). The regions of high intensity kinetic energy dissipation are seen
to be well correlated with the regions of intense vorticity, occurring at the periphery
of the intense vortical structures,

Figure 5.6 shows a three-dimensional view of these structures in the jet. High
intensity vortex tubes, oriented at 45 degrees to the direction of the mean flow, can
clearly be seen in this picture. These vortex tubes have a diameter on the order of
10 Kolmogorov scales (0.3A;) and a length on the order of an integral scale. The
presence of similar tube-like vortical structures with characteristic diameter on the
order of the Kolinogorov scale and a length on the order of an integral scale has been
observed in a number of databases of homogeneous, isotropic turbulence (Yamamoto
& Hosokawa 1988, She et al. 1990, Ruetsch & Maxey 1991, Vincent & Meneguzzi
1991, Jimenez et al 1992), as well as turbulent shear flows (Ansari 1993). These
structures give rise to high intensity kinetic energy dissipation at their periphery
in rod-like regions of diameter on the order of 10 Kolmogorov scales, similar to a
Burger vortex tube. The size of these intense regions of kinetic energy dissipation
corresponds Lo the scale at which the dissipation spectrum reaches its peak, providing

a physical explanation for the presence of this peak (Ansari, 1993).
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5.3.2 The Shallow Jets

To begin to investigate the effects of the [ree-surface on the dynamics of turbu-
lence, we next examine the structure of turbulence in the shallow jets.

Figure 5,7 shows the structure of the vorticity, kinetic energy dissipation and
passive scalar field in two perpendicular streamwise and transverse cuts through the
shallow (H/D = 1.0) jet at time tU,/R, = 200. The transverse cuts of the various
fields show dramatic spread in the jet width in the transverse direction as the jet
approaches the free suraface. This phenomenon, known as the surface current, has
also been observed in a number of experimental studies of free-surface jet (Madnia
and Bernal, 1989; Anthony and Willmarth, 1992; Walker et al., 1994).

High intensity regions of vorticity and kinetic energy dissipation are again seen
to be well-correlated and to have rod-like structures, with intense kinetic energy
dissipation occurring at the periphery of the intense vortical structures.

IMigure 3.8 shows a three-dimensional view of the vortical structures in the shallow
jet jet at U,/ R, = 200. Two classes of organized vortical structures can be identified
near the free-surface; (i) vortex tubes with axis parallel to the free surface oriented
along the direction of the mean flow strain field and, (ii) vortex tubes with axis
normal to the free surface connected to the surface. Close-up view of these two
classes of structures, together with their respective free-surface signature, is shown
in Figure 5.9 and 5.10. Due to the downward motion induced by the images on the
free surface the parallel vortex tubes can only get to within a distance on the order
of their own diameter of the {ree surface. The self-induced lateral motion of these
structures under the influence of their images leads to a large-scale mean secondary
flow (chapter 4) known as the surface current. In effect, the free-surface provides a

mechanism that ‘sorts’ vortical structures parallel to it, causing the clockwise vortices
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to move right, and the counter-clockwise vortices to move to the left. This motion is
the origin of the significantly higher lateral spreading rates of the jet compared to its
spreading rates in the vertical direction. These vortices are subject to 3D dynamics
an the usual cascade of energy to the small scale.

The normal vortex tubes, on the other hand, connect to the free surface and
form long-lasting structures at the edges of the jet. The origin of these structures
is underlying vortex tubes which approach the free surface at an angle and connect
to it. These vortices are pumped to the edges of the jet by the mean secondary
flow, where they form long lasting whirls. This effect can be seen by looking at the
distribution of the average normal vorticity magnitude accross the surface of the jet,
shown in Figure 5.11. The normal vorticity magnitude has a plateau at the center
of the jet, and peaks at the edges of the jet, where the long lasting whirls dwell. The
longevity of these structures is due to the lack of strong vortex stretching in them.
The connection of these structures to the free surface constrains their motion, and
prevents them from f{reely changing their orientation to align with the direction of
mean flow strain. The only strain that can act on these vortices is due to variation
in the normal component of the velocity near tha surface, which is small compared
to the mean flow strain. Consequently, the cascade of energy in these vortices is
inhibited, leading to the establishment of a nearly two-dimensional turbulent state
in the immediate vicinity of the free surface.

‘The surface signature of the two classes of structures is shown in Figures 5.12.
The top view of the surface shows elongated elevations and depressions aligned with
the direction of the main flow strain field, i.e., at 45 degrees to the direction of the
mean flow, and circular depressions at the edges of the jet. Figure 5.13 shows the

same surface rendered semi-transparent showing the underlying vortical structures.
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The overall dynamics of turbulence within the ‘surface layer’ is determined by a
balance between the ‘two-dimensional’ dynamics of the connected vortical structures

and the ‘three-dimensional’ dynamics of the parallel vortex tubes.



Figure 5.1: Isosurfaces of vorticity magnitude, |w|/|wmez] =0.5, H/D =2.0, at
tU,/ R, =200, for k, < n >= 0.025 (left) and 0.070 (right)

Figure 5.2: Isosurfaces vorticity magnitude, |w|/|wmez| =0.5, H/D =1.0, at
tUs/ R, = 200, for k. < 5 >= 0.025 (left) and 0.070 (right)
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Figure 5.3: Longitudinal correlation on the deep jet(H/D =2.0) at time tU/,/R, =
200. 0O, u component; <, v component; +, w component; — — —, u

component from experimental data of Wygnansky and Fiedler (1969).
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Figure 5.4: Lateral correlation on the deep jet(H/D =2.0) at time ¢tU,/ R, = 200. O,
u component; ¢, v component; +, w component; — — —, u component
from experimental data of Wygnansky and Fiedler (1969).
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Figure 5.5: Spatial distributions of the (a) fluctuating vorticity magnitude, (b) ki-
netic energy dissipation and (c) passive scalar fields in two perpendicular
planar cuts through the jet for the deep jet (H/D =2.0} at tU, /R, = 200.
Left column, plane y = 0, right column, plane = = 1.38R,.
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Figure 5.6: Three-dimensional view of the high intensity vortical structures and their
associated kinetic energy dissipation fields in the deep jet (H/D =2.0)
at tU,/ R, = 200. The structures are visualized by isosurfaces of |w|/ <
jw| >= 2.5 (dark gray) and ¢/ < ¢ >= 4.0 (light gray).
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Figure 5.7: Spatial distributions of the (a) fluctuating vorticity magnitude, (b) ki-
netic energy dissipation and (c) passive scalar fields in two perpendic-
ular planar cuts through the jet for the shallow jet (H/D =1.5) at
tU,/ IR, = 200. Left column, plane y = 0, right column, plane z = 1.38R,.



77

[ 3]

Figure 5.8: Three-dimensional view of the high intensity vortical structures and their
associated kinetic energy dissipation fields in the shallow jet (H/D =1.0)
at tU,/R, = 200. The structures are visualized by isosurfaces of |w|/ <
lw| >= 2.5 {(dark gray) and ¢/ < € >= 4.0 (light gray).
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Figure 5.9: Close-up view of a vortex tube with axis parallel to the surface oriented
along the direction of the mean flow strain field, with respective [ree-
surface signature amplified for visualization.

Figure 5.10: Close-up view of a vortex tubes with axis normal to the surface con-

nected to the surface, with respective {ree-surface signature amplified
for visualization.
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25 30

Figure 5.11: Profile of the mean normal vorticity magnitude in the plane z=0, for
the shallow jet (H/D =1.0), — numerical result at time tU,/ R, = 150,
— — — at time U,/ R, = 200.
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Figure 5.12: General view of the surface deformation, for the shallow jet (H/D =1.0)
at tU,/ R, = 200.

Figure 5.13: General view of the surface deformation and underlying vortical struc-
tures, for the shallow jet (H/D =1.0} at tU, /R, = 200.



CHAPTER VI

DYNAMICS OF FREE SURFACE
TURBULENCE

In the previous chapters, the effect of the free surface on the structure of tur-
bulence was discussed. In this chapter, the free-surface effects on the dynamics of
turbulence will be addressed. Our interest lies, in particular, on the importance of
two-dimensionality near the free surface and the modifications to existing models

that are needed to account for these two-dimensional effects.

6.1 Energy Transfer in Spectral-Space

We begin by considering the spectral energy transfer, T'(&,£), representing the
nonlinear transfer of energy to a mode % as a result of interactions between the tur-
bulent fluctuations. The transfer T'(%,1) can be computed according to (sece Appendix
D)

T(k,)=~ Y.  Real{u(k,t)N(k,1)} (6.1)
k-L<|k|gk+ L

where u';(k,t) represents the complex conjugate of the Fourier transform of the
velocity fluctuation u;(x,t), and N'i(k, 1) is the Fourier transform of the nonlinear

term

H
Nafo,t) = G (ut) + 2

p dz (6:2)
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. 2.0
with L -2

02 : , :
5 Gradza = ~Drads;(Ualip). NVi(x,t) represents the mutual nonlinear interactions

between the turbulence fluctuations. The transler defined in this manner has the
same form as in isotropic turbulence and satisfies the same conservation properties,
such as 3. T(k,t) = 0. To compute T'(k,t) in the free surface jet the jet data
was reflected about the surface, the data was truncated to a box of size L, = L, =
L, = 17.637R, and the data was interpolated to Fourier representation using spectral
interpolation.

Figure 6.1 shows the spectrum of energy transfer (%) in the shallow (H/D = 1.0)
jet, at tU,/=, ranging [rom 160 to 200. As expected, the transfer is negative at
the low wavenumbers and positive at the high wavenumbers, indicating that on
average energy is being transferred from the large to the small scales of motion. As
mentioned carlier, the transfer spectrum defined by equation (6.1) should satisfy the
conservation property, >, T'(k, 1) = 0. We have checked that this is indeed the case

for the spectrum shown in figure 6.1.

6.2 Energy Transfer in mixed Spectral-Physical Space

‘The energy transfer, T'(k), as defined by equation 6.1 is appropriate for homoge-
neous turbulent flows, where there are no boundaries or spatial variation to influence
the turbulence. For non-homogeneous flows, such as the free surface jet analyzed
here, T'(k) is useful, but provides only an average description of the dynamics of
the flow. To separate the effects of the surface on the dynamics of turbulence, it
is necessary to be able to keep the spatial resolution in the direction normal to the

surface in the energy transfer analysis. This can be achieved by defining the transfer

T(knyz) == 3 Real{a (ke ky, 2)N%(key by, =)} (6.3)

k=b <kl Sh+]
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where kf = k24k2 and w'(kz, ky, z) is the 2D Fourier transform (in = and y directions)
of u'i(z,y,z) and N';(ky, ky,,z) is the 2D Fourier transform (in = and y directions)
of the nonlinear term, given by equation 6.2. The quantity 7'(k, z) represents the
net transfer of energy to the wavenumber &, in the plane z. This transfer, however,
is not solely the result of interactions between the turbulent fluctuation, but can
also arise from the advection of energy to wavenumber &, on plane z from another =
plane. Consequently, T'(ky, z) is not conserved in each plane; i.e. [ T(ky,z)dbky # 0.
However, the volume average of T'(ky, z) is conserved; namely, [ [ T'(k, z)d> dk = 0.
The integral [ T'(ky, 2z)dz can be viewed as the projection of T(f_»‘) onto a horizontal
plane, for those wavenumbers & for which A2 + k2 = k.

Figure 6.1 shows a comparison between the volume average of T'(ky, z) in the jet
and the volume average of the true three-dimensional transfer T'(k). The similarity
between the two curves indicates that the dynamics of both quantities is similar,

Ifigure 6.2 shows the energy transfer T'(kj,z) at various depths from the free
surface in the shallow jet (H/D = 1.0). The statistics have been average over
five times [or tU,/ Ry ranging from 160 to 200. The transfer spectra shown in 6.1
demonstrated that on the average in the jet the dynamics of turbulence follows the
rules of three-dimensional turbulence and is dominated by a net forward transfer
of energy from the large scales of turbulent motion to the small scales. The same
behavior is observed on the detailed transfer for planes not close to the free surface.
However, as the free surface is approached (Figure 6.2 a} the turbulence attains a
two-dimensional character and its energetics is dominated by a net reverse transfler
ol energy (backscatter of energy) to the large scales. Translated to an effective
eddy viscosity, this means that the cffective eddy viscosity may be negative near the

free surface. In the intermediate locations (Figure 6.2 b-c), the overall dynamics
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of turbulence is determined by a delicate balance between the three-dimensional
dynamics of the deep turbulence and the two-dimensional dynamics of turbulence in
the immediate vicinity of the {ree surface.

This transition to ‘4wo-dimensicnal’ turbulence in the immediate vicinity of the
frec surface has to be accurately captured in any turbulence models used for the
prediction of free surface turbulent flows. This makes the modeling of such flows
substantially different from the well-studied examples of wall-bounded or {ree-shear

flows,

6.3 Subgrid-Scale Energy Transfer

The quantity T (%) plotted in figure 6.1 represents the net transfer of energy to a
scale k as a result ol nonlinear interactions with all other scales of turbulent motion.
A quantity of more practical interest in the development of subgrid scale models
of turbulence is the energy transfer Ts(k|kn) to a large scale k& < %, as a result
of nonlinear interactions with scales having a wavenumber higher than a certain
cutoff ky, (the subgrid scales). The subgrid-scale energy transfer, T(k|k,.), can be

computed as (see Appendix D).

Ts(blkw) == Y Real{d; (RN (k)} (6.4)

k=L <lk)<he-L
where 11’:: is the large-scale disturbance velocity (defined by low-pass filtering the
velocity field to include only scales with |l-:| < k) and
oSy 1 0 nels

cls 4
NP (x,t) = %g(u‘;ub —u'u'g)  + ;—a—l;p (6.5)



with
2. nLlS 2
la P - _ d (ul ey ~
p 0T, 0% dugaldxg” @ A

u'fju'f;)“ (6.6)
represents the nonlinear interactions of the large-scale fluctuating velocity field with

the subgrid scales. By analogy to T'(%y, z), one can also define

Ts(kalkm,z) =~ 5o Real{w (kus by, )N (hey by 2)} (6.7)
k= b <ty |Sh+L
which represents the nonlinear interactions of the large-scale fluctuating velocity field
with the subgrid scales in mixed spectral-physical space.
Using Ts(k|k.) one can compute the spectral eddy viscosity w(k|k,,) acting on
a (large-scale) mode k as a result of nonlinear interactions with all wavenumbers

greater than £k, (the subgrid scales). As shown by Kraichnan (1976), »(&|k,) can

be defined as

_TS(karn)

V(klkn) = =5 By

ke < ko (6.8)

By analogy, in the mixed representation one can define the spectral subgrid-scale

eddy viscosily acting on wavenumber &y, at location z as

Ts(khlkmsz)

_V(kh|km,3)) (6‘9)

V(khlkm'.l 3) =
where

V(kalkm,2)=— S Real{t; (kg, by, 2)V201 (ks, by, 2)} (6.10)
k—§<Iknigk+d

represents the viscous effect of the large scales. The mean of v(ky|ky,, z) over all =

physical locations is then the equivalent of v(ky|kn),

L
Vi (ep i) = 1/LfD v (ko 2)dz (6.11)
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Figure 6.3 shows the mean spectral eddy viscosity, vy, (k|ky,), in the jet com-
puted using equations (6.8) and (6.11), for four values of the cutoff wavenumber;
km < >= 0.1, 0.22 (in the inertial range) and &, < n >= 0.32, 0.42 (in the
dissipation range). Figure 6.3 also shows the predicted spectral eddy viscosity from
Kraichnan’s theory. The behavior of spectral eddy viscosity observed in this Figure
is similar to that predicted by Kraichnan (1976) using a test-field model of turbu-
lence in the limit of infinitely long inertial range. For all values of k,,, the curves
of v(k/k,,) plotted in Figure 6.3 have a similar character, consisting of a positive
plateau at low wavenumbers and a cusp-like behavior near the cutioff %,,. This is
similar to Kraichman’s curve for 3D turbulence. In 2D turbulence, however, Kraich-
man’s Lheory shows a negative plateau at low wavenumbers, The plateaus in each
curve represent the long range interactions between the resolved and the subgrid
scales of motion while the cusps represent the interactions between scales near the
cutoff. The area under the curve represents the net average elfective eddy viscosity
in the flow. In 2D turbulence, in the enstrophy transfering range, the negative area
at the large scales should be same as the positive area at scales close to the cutoff
(Kraichman, 1976). To see if such 2D eflects are also present near the free surface in
Figure 6.4 we plot v(k/k,, z) for various cutoff wavenumbers &, and various depths
z. It is seen that as the surface is approached, the positive plateau at low wavenum-
bers is replaced by negative values, similar to 2D turbulence. The area under the
curve represenis net transfer to the resolved scales. Depending on where the cutoff
is, this area can be positive or negative.

The importance of this two-dimentionality depends on where the LES cutoff
wavenumber lies with respect to the scales where the injection of energy occurs at

the small scales, and on the relative importance of the two dimensionality effect,
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which varies with the distance from the surface.
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Figure 6.1: The transfer spectra of cnergy to a wavenumber in the shallow
(H/D =1.0) jet at tU,/R, = 160 — 200 k; — — —, T(k); —, mean
T(ky, z).
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Figure 6.2: Energy transfer spectra, I'(ky, z), in the shallow jet (H/D =1.0) at var-
ious depths z/ R, from the {ree surface
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Iigure 6.3: Mean eddy viscosity spectra for various cutoff wavenumbers, numerical
results at time tU,/R, = 160 — 200, for the shallow jet (H/D =1.0);
Xy by < 3 >=0.1; 0, &, < 75 >= 0.22; +, &, < 7 >= 0.32; O,
by < n >= 042; —, Kraichman (1976) 3D eddy viscosity spectra;
— — —, Kraichman (1976) 2D eddy viscosity spectra.
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Figure 6.4: Eddy viscosity spectra, v(kylkm, 2), in the shallow jet (H/D =1.0), at
various depths z/R,, at time tU,/ R, = 160 — 200, x, b, <7 >=0.1; O,
kp < >=022 +, by <9 >=0.32; O, by, < p >=0.42.



CHAPTER VII

IMPLICATICONS FOR LES MODELLING OF
FREE-SURFACE TURBULENT FLOWS

In this study, Direct Numerical Simulation (DNS) was used to investigate the
dynamics of a free surface turbulent jet. DNS involves the explicit computation of
all scales of turbulent motion and is an invaluable tool for the study of the detailed
dynamics of turbulence for simple geometries and moderate Reynolds. However, it is
a well known fact that, in the foreseeable future, Direct Numerical Simulations for re-
alistic flows involving high Reynolds numbers and complex geometries will be outside
the realm of computational capabilities. The computation of such realistics flows can
only be accomplished if part of the scales of motion are modeled. Large Eddy Simu-
lation (LIS} is at present considered one of the most promissing techniques for the
simulation of complex engineering flows, where simpler modeling approaches (such
as single-point closure) are inadequate. In LES the 3-D, time dependent large scales
of the motion are computed explicitly using a filtered Navier-Stokes equation, while
the effect of the unresolved {or subgrid) scales is modeled. Obviously the success or
failure of LES depends criticaly on the accurancy with which the subgrid interaction
have been modeled.

As seen in the previous chapters, the interaction of turbulence with a free surface

92
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leads to a reverse cascade (backscatter) of energy from the subgrid to the large scales
of motion in the immediate vicinity of the free surface. For application in LES, it is
important that the subgrid model be able to account for these effects.

In this chapter, the performance ol various existing subgrid stress models in a
priori tests of free surface turbulence is compared. The comparisons will include
the Smagorinsky (1963) model, the dynamic eddy viscosity model of Germano et al

(1991), and the Dynamic Two-Component model of Ansari el al. (1994).

7.1 Large Eddy Simulation Equations

In LES, the velocity field is decomposed into resolved (or filtered) components,
i, and subgrid (or residual) fields, u{. The equation governing the large scale compo-
nents can be obtained by filtering the Navier-Stokes and continuity equations. The

resulting equations, for the large scale velocity field #;(x, 1) are given by

du; J — = 8ﬁ B'r,-,- 1 9%
En + Bm;(u‘ ) = T 0z Ox; + Re 0z;0x; (7.1)
au;
= 2
83:; 0 (7' )

where the overbar denotes filtering at the LES cutoff {corresponding to scale &,,,) for
an appropriate filler G (one which computes with the derivative operators) defined
in physical space as

T() = [ Blx—x)J(x)dx (7.3)

Some common filters used in practice are the Gaussian filter given by
G(x — x') = (6/7A)exp[6(x — x)* /A?]

the box filter defined as

Tlx—x) = 1/A, for [(x—x")| < A/2

0, otherwise
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and the Iourier sharp cutoff filter which is most conveniently defined in Fourier space

—_— 11 if kl' < km
Gk:) =

0, otherwise

where G(k;) is the Fourier coefficient of the filter function, G(x — x') and ky,, = 7/A
is the cutoff wave number, In all of these filters A is the filter width in the physical
space and ky, is the cutoflf wavenumber which is related to A by &, = v/A.
The term
i (X, 1) = Ww; — wiH; (7.4)
represents the nonlinear interactions of the large-scale flow field with the subgrid

scales. This term needs to be modeled, or parameterized, and various works have

addressed this issue with various degrees of success.

7.2 Smagorinsky Model

Smagorinsky (1963), based on the assumption of quasi-equilibrium turbulence,
developed and applied an eddy viscosity model for the sub-grid stresses of turbulent.
atmosplheric flows. Using dimensional arguments, Smagorinsky related the eddy

viscosity, v, to the resolvable-scale rate of strain tensor Sj;

vy = (CA)2[S] (7.5)

where

15| = (25;5:;)'/?
— 1, Ju; @

%= 355 oz,

Cs is a constant and A is a length scale, usually taken to be the filter width.
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Because of its simplicity, this model has been widely used in Large Fddies Simula-
tions, with reasonable success. However, this model has a number of limitations: (i)
the model includes an empirical ”constant” that needs to be tuned for various flows;
(ii) the model can not account for backscatter of energy, and (iii) the model does not
have the correct behavior near solid boundaries or in transitional or relaminarizing

flows.

7.3 Germano DEM Model

The Dynamic Eddy Viscosity model of Germano ef al (1991) is, in principle,
simnilar to the Smagorinky model, but it tries to overcome some of its limitations.
In particular, the model constant is computed dynamically during the course of the

simulation. Similar to the Smagorinsky model, the subgrid-scale stress term
Ti; = Uy — Wy (76)
is modeled using an eddy viscosity assumption
‘Sij i 1=
Ti; — -3—- = —-21/'1'.51} = =2C0A"S8 .5,'_,' (77)

To find C(z, ¥, z,1) dynamically, a second test filter Gis applied to the Navier-Stokes

equations. The subgrid stresses at this filter,

—— ~

Ty =, — i (7.8)
is modelled in the same way
bij ., S22
Ti; — 3 w=—204 85 (7.9)

assuming C(z,y, z,t) remains the same as in ;.
Noting that

Li; = wu; — w; (7.10)
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is known, the resolved turbulent stress can be rclated to the subgrid and subtest
stresses by
Lij =T — 75 (7.11)
to compute C, resulting in
LiSu
e o UG T
A [tslismmsmn - A I'-SISmnSmn

In applying this expression to LES of wall-bounded flows, Germano ef al. [ound

(7.12)

I | -

that this expression could result in a negative or an indeterminate C, which would
make the solution procedure unstable. To overcome this problem, they suggested
that for homogencous flows the denominator and numerator should be averaged in
the homogencous direction;

1 < L;,-;.g“ >
=32 =~ =~ _ .
2 A < IlS‘IlS‘;nnLS‘n;n > ""32 < IS[STH.“‘S.TNH >

The resulting C' is always positive. It was later suggested by Lilly that a morc

C(z,t) = — (7.13)

consistent procedure for evaluating C is to compute C according to

_ 1 < LMy >

)=
C( ’ ) 2 < ﬁ’f.'jﬂ’f;j =

(7.14)

——

=2 o = —_ —_
where Mi;; = A < |5]5m > -7’ < |S]Smn >

The Germano ef al. DEM has been shown to provide the appropriate behavior
near solid boundaries and in transitional flows. It’s main limitation is that it requires
the averaging procedure described above, and as such is restricted to simple flows

with homogeneous directions and can not account for local backscatter of energy.

7.4 The Two-Component Dynamic Subgrid-Scale Model

A dynamic two-component subgrid-scale model (DTM) was proposed by Ansari

el al. (1994) to overcome Lhe limitations of DIEM. In this model, the effect of inter-
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actions between the subgrid and the resolved scales far from the cutolf is modeled
separately from the interactions between the subgrid- and the resolved scales close
to the cutoff. The detailed derivation of the model has been given by Ansari ef «l.
(1994). Here the more important features of the method will be briefly described. To
model 7;;, two additional filters G = GG and _CE;. = GGG are introduced correspond-
ing to cutoffs £,/ and ky/0® (@ > 1), respectively. If &y, kn/a and &, /a? all
fall within the inertial range, a model for the subgrid-scale stress 7;; is constructed

assuming that

T,'jS.'J' =~ 7}5 i} (7.15)

Ti; ™ —_; = (7'16)

The subgrid-scale dissipation 7;; is modeled [rom the dynamics of the resolved scales

using the two-component model

——

6 = =
151555 -+ (g —

ij =2
Ti; - -3—713; ==2CA

&l

(_;,-_Lk — u;_.u;_.) (7.17)

uj) ~

where the first term is & Smagorinky type term to account for forward cascade of
energy, and the second term is added to account for local backscatter of energy. With
the exception of the coefficient €, all the other variables in equation (7.17) involve
only large-scale quantities and are known. The coefficient C{z,y, z,t) is computed
dynamically using the procedure suggested by Germano et al. (1991), from the
subgrid-scale stress T;; (see equation 7.11) at % filter level. Assuming that the
two-component subgrid-scale model suggested in equation (7.17) can also be applied

(with the same C(z,y, 2,1)) to model 7};, we obtain

6i; 22
Ty — Ty = —204A |

3 '|§;j + (wm; — wu;) — T — Uply ) (7.18)

|ty
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A dynamical equation for the computation of C' can then be obtained {Germanao et

al. 1991) by noting that
Lij = Ty — Ty = Wty — % (7.19)

involves only large-scale quantities and is, therefore, known. Substitution of (7.9)

and (7.10) into (7.11) gives

bij 8
Lij — “3—3['&& = —20M;; + By; — ”;Bkk (7.20)
where
22z 2 T
‘AI‘J = A |S|*5U '_A l ‘I ’u (721)
and
B;; = (T, — &1;) — (4w, — Uw;) (7.22)

where it is assumed that the spatial variation of C is small at the level of the & filter
so that €' o €. The expression for C' can then be obtained using the least-squared

approach suggested by Lilly (1992).

__(Lij = Bij) My .
U= 2M;; My; (7.23)

Equations (7.8), (7.9) and (7.15) form a complete set, from which the subgrid-
scale stress 7;; can be evaluated. The model coefficients C'(x, y, z,1) computed from
(7.15) are substituted directly into (7.9) without the need for any spatial averaging.
Unlike the dynamic eddy viscosity model (Germano et al. 1991, Moin et al. 1991),
in the DTM model this does not lead to numerical instability. This is because the
intense backscatter of energy is accounted for separately (by the second and third
terms on the RHS of cquation 7.9). The role of the eddy viscosity term in the DTM

model is primarily to account for the background forward transfer of encrgy.
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The D'TM subgrid-scale stress model yields zero subgrid-scale stresses in laminar
flow and at solid walls, and has the correct asymptotic behavior in the near-wall
region. The only adjustable parameter in this model is the ratio o = E/Z = i-/f&_
The a priori tests of Ansari ef al. (1994) suggest that for 1 < a < 2 the model is

very insensitive to the choice of a.

7.5 Evaluation of the Models

To evaluate the suitability of these models for LES of free-surface turbulence, the
performance of each of the above models in the free-surface jet was tested against
results from DNS in @ priori tests. In a priori tests, the subgrid model is applied
to the truncated DNS database of the turbulent free-surface jet and its predictions
for the subgrid-scale dissipation are compared to results from DNS. To facilitate the
application of the various models, the DNS data was interpolated onto a uniform
three-dimensional Fourier grid using spectral interpolation. This allowed the use of
a sharp Fourier cutoff filter, with the same filter width in all three directions. The
cutolf £, (corresponding to the LES filter -C"') was chosen to be at &, < 7 >= 0.08
or 0.20 and the other cutoffs were chosen with a filter ratio of a = 1.25 for DTM,
and o = 2 for DEM.

Figure 7.1 and 7.2 show the spatial distributions of the subgrid-scale dissipation
1;;95; al the free surface (plane z = 0) in the shallow (H/D = 1.0) jet at the two cut-
offs &,, < n >=0.08 and 0.20, respectively. The subgrid-scale dissipation computed
from the full DNS database is compared to the subgrid-scale dissipation predicted
by the dynamic two-component model (DTM), the dynamic eddy-viscosity model
(DEM} of Germano et al. (1991) and the Smagorinsky (1963) eddy viscosity model

with a Smagorinsky constant of 0.1 (C = .01). The Germano model was implemented
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with a test-filter-width to grid-filter-width ratio of 2, as recommended by Germano
et al. (1991) and with the model coefficient computed after a spatial averaging was
performed in the horizontal directions (i.e, according to equation 17 of Germano et
al. (1991). The average subgrid dissipation computed from the DNS data, and the
three models is shown in table 7.1. It can be seen that the dynamic two-component
model not only predicts an average subgrid dissipation in better agreement with the
DNS data compared to DEM, but also is far more successful in capturing the correct
spatial distribution of the subgrid-scale dissipation (Figures 7.1-7.2). In particular,
regions of intense forward and reverse transfer of energy are accurately described. In
contrast, the structure of the subgrid-scale dissipation predicted by IDEM is seen to be
essentially identical to that predicted by the Smagorinsky model which has little cor-
relation with the structure of the subgrid-scale dissipation field observed in the DNS
database. The DTM ability to predict negative subgrid transfer (backscatter) is very
promising and suggests that it should be able to account for the two-dimensionality

effects assoclated with free-surface turbulence.
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Figure 7.1: Subgrid-scale dissipation 7;;5;; at the [ree surface (z = 0) in the shallow
jet H/D =1.0 at tU,/R, = 200, for k, <75 >=0.8; (2) DNS results, (b)
DTM, (C) Smagorinsky model, (d) DEM.,
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Figure 7.2: Subgrid-scale dissipation 7;;5;; at the free surface (z = 0) in the shallow
jet H/D =1.0 at tU,/R, = 200, for k,, < 5 >= 0.20; (a) DNS results,
(b} DTM, (C) Smagorinsky model, {d) DEM.
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Kn < >=020 K, <n>=0.80
muSulte 100 muigfle 10

Min Max | Mean Min Max Mean

DNS -17.872 | 89.649 | 2,787 || -39.451 | 86.037 | 1.193

Smagorinky (1963) 0.00 | 13.304 | 0.994 0.00 23.989 | 0.874

Lilly (1992) 0.00 | 31.111 | 2,325 0.00 7.403 | 0.308

DTM -68.358 | 86.394 | 2.003 || -84.364 { 182.037 | 1.284

Table 7.1: Subgrid dissipation for the shallow jet (H/D =1), at tU,/R, =200 at the

surface.



CHAPTER VIII

SUMMARY AND CONCLUSIONS

The dynamics of free surface turbulence at low Froude numbers has been inves-
tigated by direct numerical simulations of a series of temporally growing round tur-
bulent jets issued below and parallel to a clean free surface. The jets had a Reynolds
number of 10000 based on initial jet diameter and centerline velocity (Rey = 100),
a Froude number of 0.1 and were issued at depths of 1.0, 1.5, and 2.0 jet diameters
below the surface, respectively. A passive scalar with a Schmidt number of 0.7 was
also included in the simulation.

The statistics and structure of the jet was found to be in good agreement with ex-
perimental measurements in free-surface jets. As the jet approaches the free-surface,
the vertical turbulent fluctuations are damped in a ‘surface layer’ of magnitude on
the order of one lateral Taylor microscale, and the horizontal turbulent Auctuations
are amplified.

Two classes of organized vortical structures could be identified within the surface
layer of the jet; (1) vortex tubes with axis parallel to the free surface oriented along
the direction of the mean flow strain field and, (ii} vortex tubes with axis normal to
the [ree surface connected to the surface. The interaction of these structures with

the free surface leads to the establishment of a secondary flow which pumps the flow
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upwards towards the free surface at the jet centerplane and outwards towards the
edges of the jet on the surface. This phenomenon, known as the surface current, has
also been observed in experimental studies. The parallel vortex tubes are subject
to three-dimensional dynamics and the usual cascade of energy to the small scales.
The reconnected vortex tubes, on the other hand, are not subject to strong vortex
stretching near the free surface and form long-lasting coherent structures which grow
with time and occasionally merge, leading to a reverse cascade of energy towards the
large scales and the establishment of a nearly two-dimensional turbulent state in the
immediate vicinity of the free surface.

Examination of the small-scale structure of the flow reveals the presence of co-
herent small-scale vortical structures in the form of vortex tubes with diameter on
the order of 10 Kolmogorov scales and length on the order of an integral scale. These
vortex tubes give rise to coherent regions of intense kinetic energy dissipation and
intense scalar dissipation at their periphery, which have scales of the same order of
magnitude as the scale at which the kinetic energy and scalar dissipation spectra
attain a peak.

The presence of the free surface is found to affect the dynamics of turbulence
within a ‘surface layer’ of thickness on the order of one lateral Taylor microscale.
Within this layer, the turbulence has a two-dimensional character and is dominated
by a net reverse transfer of energy to the large scales. These effects should be
incorporated into any turbulence models intended for the prediction of free surface
turbulent flows.

The implications of the two-dimensionality of the free-surface turbulent jet flow
on the modeling of sub-grid has been analyzed. The performance of various subgrid

models has been assessed by e priori testing. The dynamic two-component model
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based on the dynamics of the resolved scales developed by Ansari ef al. (1994)
for LES of incompressible turbulence which captures the observed dual character
of subgrid-scale energy transfer in this database has shown to be a very promising
model. Two separate terms are included in this model; one representing the low-
intensity background forward transfer of encrgy due to ‘nonlocal’ (in wavenumber
space) energy exchanges, and the other representing the intense forward and reverse
transfers of energy duc to ‘local’ energy exchanges between scales near the LES
cutoff. The former is modeled using a Smagorinsky-type eddy viscosity model. The
latter is modeled using the dynamics of the velocity field in the neighborhood of the
cutoff wavenumber. A dynamic procedure is used for computing the model coefficient
dynamically, without the need for any external input. The only input parameter to
the model is the ratio of test filter to LES filter, &. The model has been shown to be
insensitive to the exact value of o. The model has the correct behavior in laminar
and transitional flows and near solid boundaries.

Tests of the model show the model to be superior to existing subgrid models
in being able to provide a spatial distribution of subgrid-scale dissipation in good

agreement with results from filtered DNS in « priori tests.
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APPENDIX A

IMPLICIT SOLVER

A.1 Introduction

In this section we describe the numerical procedure used for the solution of the
Poisson and Helmholtz equations, which arise from the discrete time integration of

the vorticity and velocity fields (equations 2.15 and 2.16).

A.2 Solution of Second-order Poisson Operators

For the vorticity, for example, we need to solve

Hie) ot = (w24 H s (A1)

2 p—
(v AV At

where

a n-1 — —
520" (z=0)=0 (A.2)
Wtz =) =10 (A.3)

Wty = —0c0) =0 (AA4)
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Wity =00) =0 (A.5)

=

periodic in (A.6)

which is a Helmbholtz-type equation, for each time step, that for simplicity we can

re-write as
(VPeoju=f (A7)

Denoting by U and F the Fourier transforms (in the z direction) of # and f respec-
tively, we may write

82 82

(-5_‘?)._2+F)?—k§_a)U(krayaz) ZF(kraysz) (AS)

The discrete version of this equation can be written symbolically as:
(D2 + D% — k2 — &)U (ke y,2) = (ko y, 2) (A.9)

where the discretized operators correspond to

2 0°
82

al the interior points, and equations A.2-A.5 at the boundaries. This equation is
solved using the collocation/diagonalization method proposed by Haidvogel and Zang
(1979), and Haldenwang et al. (1984). In this method, the D2 and D? operators are

first diagonalized
D} =E\E (A.12)

D? = B A E! (A.13)

where £ and A are the matrices formed by the eigenvectors and eigenvalues of the

one-dimensional D? operators.
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The discretized Helmholtz equation A.14 then becomes
(ByAyE]' + EALET' — (B 4+ o))U = F (A.14)

which can be solved for U to give

1
U=EFL,
y Ay + A, — k%2 — o

EJETF (A.15)
In practice the discretized D? operator matrices are diagonalized as a pre-processing

step. The solution of each Helmholtz operator during each time step involves the

combination of four matrix-vector products and the product of a diagonal matrix

with a vector. This requires O(mnp? + mn?p) operations, roughly twice as many as

a double Fourier, single Chebyshev code.

A.3 Solution of Fourth-order Operators

The fourth-order equation for the z component of the velocity, w

(V? - %E)v?w"“ =g (A.16)
where
g=k- curlz(%(v xw+f)" - é(v Xw+ )"+ (Vi + %)(Vﬁw” (A7)

was solved using an analytical Green’s function approach (Domaradzki 1990). The

fourth-order equation can be split into two second-oder equations,

21te
(V2= S =g (A1)
Vit = ¢ (A.19)

These equations need to be solved subject to boundary conditions

w(y =o00) =10 (A.20}



ruly = o0) =
Zuly = —o0) =0
Sz = 0) = az,)
B e = 0) = ary)
w(z =00) =10
aaT;w(z =00)=0

periodic in @

(A.21)
(A.22)
(A.23)

(A.24)
(A.25)
(A.26)
(A.27)

(A.28)

The two equations are couppled through the bondary conditions. They can be un-

couppled by using an analytical Green’s functions approach. The solution is decom-

posed into two contributions:

(A.29)

where w,, is the solution of equation (20), (21), and (22), with homogeneous boundary

conditions £,(y = oo} = wy(y = too) = €,(z = 0,00) = wp(z = 0,00} = 0, and wt

is a Green’s function which is obtained by solving,

SO R

subject to boundary conditions:

(A.30)

(A.31)
(A.32)

(A.33)



112

O ity = =0 A3

57310 (= —o0) = (A.31)

L wt(z = 0) = ale,) — 2wz = 0) (A.35)
? (')2

322 (2 - 0) - l)(.’E J) 6 2 ( 0) (ASG)

w"'(z =o0) =10 (A.37)

e ez = =0 A8

P (2= oo) = (A.38)

periodic in 2 (A.39)

To find the soluiton to (A.30-A39) we take the Fourier transform of the equations in

the x direction and diagonalize the equations in the y direction. Then A.34 becomes

2R

(DIE; 4 A BN ~ REE) — X

EJVWDIE 4+ AE] — BZESV)YWH =0 (A40)

where W*(k;,y,z) is the z-Fourier transform of w*, E, and A, are the matrices
formed by the eigenvectors and eigenvalues of the one-dimensional D?. Defining W
as W+ = E;'W we get

2Re

(D? 4+ A, — A2 — N — WD+ A, - YW =0 (A.41)
which has the general solution
WH(kpy Ay 2) = c167%°  cge™"" (A.42)
where
= —A, -+ k2 + % (A43)
K= —A, + k2 (A.44)

The coeflicients ¢; and ¢; are chosen such that the boundary conditions (A.35

and A.36) are satisfied,
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d - . g -

5;W+(2 = 0) = —h1€] — K€z = A(kr, Ay) - a—pr(z = 0) (A.45)
2 - g% -

%W"'"(z =0) = &i¢; + kic; = B(k,,,Ay).—- ﬁWp(z = 0) (A.46)

where A(k;, y) = E;1A(kz, Ay), B(k;,y) = E;'B(k:, Ay) and A and B are x Fourier
transform of a and b.

Once ¢; and ¢; are found, the solution is obtained as:

Wk, 2) = By(W, + W) (A7)
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APPENDIX B

PARALLEL PSEUDO-SPECTRAL
ALGORITHM

B.1 Introduction

In this section we describe the sleps required to parallelize the Fourier-Double
Chebyshev pseudo-spectral method described on §2. for non-homogeneous turbu-
lence on a medium grained, distributed memory MIMD computer. A similar Double
Fourier-Chebyshev code has been described by Mangiavacchi and Akhavan (1993).
The pseudo-spectral approach not only leads to improved accuracy but also to work-
intensive concurrent native parallelism with minimal communication, allowing to
reach MFLOPS ratings surpassing today's vector supercomputers, and high parallel
efficiencies.

The governing equations {2.3), (2.4), and (2.5), are solved by expanding the flow
variables in Fourier series in the streamwise (x) directions, and mapped Chebyshev
polynomials in the spanwise (y), and normal or transverse (z) direction. The second-
order Adams-Bashforth scheme is used for the discretization of the nonlinear and
pressure terms, and Lhe second-order Crank-Nicholson scheme in the viscous term.

The discretized Navier-Stokes equation is given by



vu-{-l —y" 3 1 -1 1 2 ! 2
T = E(V X - VH)"— §(V X — VH)“ + m(v V"+ +V Vn). (Bl)

Equation (2) is split into two steps: one containing the nonlinear terms, and one
combining the pressure and viscous terms. To solve the second step equations the
analytical Green’s function approach is applied. Other time-stepping methods could

be implemented similarly.

B.2 The Parallel Code

The parallelization of the code is based on a ”domain decomposition” approach
in latu sensu. We may note that the time-stepping algorithm involves three kinds of
operators: (i) the nonlinear terms, (ii) the evaluation of inverse Poisson operators,
and (iii) the discrete Fourier transforms. The nonlinear term computation in physical
space involves only velocities and vorticities at that same physical location. If the
data is distributed among the nodes such that each node contains all the variables
for a certain physical region, all computations involved in the nonlinear step can be
done in parallel without communications. The inverse Poisson operalor in Fourier
Space is diagonal in the @ direction, the domain can be divided in groups of or
¥z planes in Fourier space, and the computations can still be performed without
communications. The same applies to the computation of the vorticity. Assigning
an equal number of planes to each processor either in Fourier space or in physical
space guarantees load balance. The transformation in the z direction, [rom physical
space Lo Pourier space, and back, which requires a Fourier transform is the only
aperation that requires communication between nodes.

Assume p processors P, arenumberedbyn =0,1, ... ,p~1. Ifv(1..N.,1..N,, 1..N;)

is an array containing real data v at the respective physical points, when in Fourier
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space the same amount of storage will be required to contain the complex array

V(1..N./2,1..Ny, 1..N;). In Fourier space we distribute data among the nodes such

that processor /3, will have in its local memory ¥(1+n.N;/2p..(n+1) N /2p,1..N,, L..N,).

When data is stored in this way, the inversion of the clliptic operators in the  and =
directions can be done without communication, and the z direction is uncoupled (the
clliptic operator is diagonal). The same applies to the computation of the vorticity.
Data in the x (Fourier) direction is now distributed among processors. Therefore,
to proceed and perform the 1-D FFTs will require communication. There are two
possible options to proceed: (i) to compute the 1-d FFT keeping the data distributed
in the z direction across nodes; (ii}) to transpose the data before the computation.
since the number of operations in both approaches is essentially the same, the total
amount of communication can be minimized using the transposition, and as sin-
gle node library FI'T routine performance is very high, we decided to follow the

transpose approach.

After the transposition, each node will contain ¥(1..N, /2, 142N, /p..(n+1)N, /p, L..

complex modes. When data is stored in this way, 1-D FFFTs in the 2 direction can
be performed concurrently, without communication, on the whole data.

To avoid edge contention and have an ”in place” algorithm, reducing the amount
of scratch memory, we use some properties of the binary hypercube addressing
method, such that at each step of the communication algorithm the processors are
divided in pairs, and each processor only communicates with its pair. At each step
a different set of pairs is defined, using the concept of relative address.

The transposition algorithm can be summatized as follows:

e Fori=1,2,..,p—1 do:
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~ Each node m collects and sends to n = XOR(m,1) all blocks that have
node r as final destination, and replaces them with the blocks that receives

from n.

e Unshuflle the resulting data in each node.

This algorithm combined with the routing algorithm used by the iPSC/860 hardware
avoids edge contention.

The Poisson operator is diagonal in the Fourier x directions. In the general case
of a mapped Chebyshev expansion the solution in the y and z directions requires the
inversion of a full matrix. Using Haidvogel-Zang [6] method, at each step requires
two matrix-vector multiplies for each direction (y and z) at a cosl proportional
to NY2)Nz 4+ NyN2. After decomposition of the domain among the nodes, the

N2

Poisson operator will require O(%) computations per node at each time step,

( Ny Ny Na(logy Nx+logy Ny--klog, Nz))

and no communications. The FFT's will require O -

computations and (p—1) bidirectional communications of length &‘%}ﬂﬂ when using
the described transposition algorithm. Since the latency time is much shorter than
the communication time for large problem sizes, the total communication time is
essentially O(&‘ﬂpﬂz) Therefore the ratio of communications to computations is
O(le—) Longer vectors result in better performance because vectorize better in the

i860 processor, This will result in better performance [or larger problems.
B.3 The Results

The methods described in the previous section have been implemented on the
SDSC 64 node iPSC/860, and later on the SDSC 400 node Paragon. . All computa-

tions were performed using double precision (64 bits) arithmetic.
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The most computationally intensive tasks are the FFTs, and the matrix-vector
multiplies in the elliptic solvers. Vectorized all-Fortran codes for these tasks do not
show very high performances. Much better single-node performance was obtained
using optimized ['FT and BLAS library routines. The matrix-vector multiply was
performed using DGEMV BLAS routine. The performance of the elliptic solver
increased with the size of the matrix, from 9.6 Mflops for N, = 64 to 18.4 Mflops for
N, = 256.

The complex to complex factor-2 IFI'TI's performance also increased with the
length, varying from 8.0 Mflops for N = 64 to 12.8M{lops for N = 256. The average
performance over the whole code for problems that fit on the memory of a single pro-
cessor is not very impressive, because of the reduced length of the vectors involved.
For example, in the 32 x 32 x 32 size of problem the average performance is about
4.7 Mflops (table I).

With increasing problem sizes, using a larger number of nodes, the individual
node performance can improve, as long as the communication overhead in the parallel
code is moderale. Timings performed on tests with different numbers of processors
and different resolutions are also shown in table I. A parallel efficiency is defined as
7= f‘—‘"?i’;‘:‘lﬂ where Tioq1 is the total execution time, and Teomputation is the time
spent on the actual computation, which excludes communication, synchronization
times, and other overheads due to parallelization of the code. Typically 50% of
the execution time is spent on the elliptic solvers (matrix-vector multiply), 20% in
the FFTs, 20% is the communication overhead, and 10% is used by the rest of the
code. This is in contrast with the number of operations, where up to about 90%
of the computations are performed in the elliptic solvers, and emphasizes the high

performance of the matrix-vector multiplication library routines.
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Problem Size
(Nz x Ny x N;) 323 643 128°
Number ‘otal Mflops Total | Miflops Total Mflops
of Nodes Mflops | per Node || Mflops | per Node || Mflops | per Node
1 4.661 4.661
2 8.292 4.146
4 14.88 3.720 24.02 6.004
3 24.08 3.010 44.83 5.604
16 31.92 1.995 76.34 4,771
32 101.7 3.178 226.3 7.071
64 416.0 6.501

Table B.1: Mflops ratings for different problem sizes and cube dimensions.
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Efficiencies of about 80%, and sustained rates in excess of 7 Mflops per node can
be obtained for problems that scale with the size of the hypercube. The maximum
sustained performance was obtained on 64 nodes, with 7.18 Mflops per node, for
a total of 460 Mflops and an efficiency of 76%, when running the 128 x 128 x 256
case. Bxecution time for this case was 37.4 seconds per time step. Due to its storage
requirements this size problem cannot be executed ”in core” on a CRAY YMP. The
128 x 128 x 128 case on 64 nodes runs in 16.4 seconds per time step, which compares
favorably by more than a factor of 2 with timings on a CRAY YMP, which requires
40 seconds per step for a vectorized code that utilizes very fast FT routines and

assembly coded matrix-vector products.
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APPENDIX C

VISCOUS HYDRODYNAMIC STABILITY

In this section the methodology used to study the linear evolution of axisymmetric
and helical perturbations on a temporally growing circular jet is deseribed. The
complete set of linearized viscous equations of stability is solved for the axisymmetric
and helical modes using appropriate boundary conditions. The results can then be

used as initial conditions to test the 3-D unsteady Navier-Stokes solver.

C.1 The Governing Equations

The basic flow field is a uni-directional jet with a velocity profile having compo-
nents U,,0,0, expressed in cylindrical coordinates x,r,¢ respectively. On this mean
!

flow field, we superimpose small velocity and pressure perturbations v}, v}, v/, and p'.

The type of perturbations that are analysed in this study are given by:
Uz, Uyt = R{F(r),1G(r), H(r)}emeHolrmed] (C.1)
?_ — R[P(r)ein¢+ia(r—ct)] (0.2)
p
where « is the wave number and the imaginary part of the complex velocity ¢ = ¢, +i¢;

determines the stability of the jet to this particular perturbation. If we substitute

the total velocity as v = V 4 ¢’ and p = P + p/, and linearize the equations, all
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terms related to the mean flow drop out and we get a set of linearised equations for

perturbations:

] [
0w Ly Loy Ly

o T TV T VPR (C.3)

Substituting (3) in (1)~(2), we obtain the scalar equations for the four unknowns I,

G, I and P:

2

alU - ) +U'G=—aP —iv{lF"+ :—.F' — (a® + :—Q)F} (C4)
.2 ¢

U = )G = P' — in{G" + ;1-0 ~(a? + )G - 1) (C.5)

— __E - " l_f_ 2 712+l _E
a(U —-c)H = rP iw{H" + TH (a* + = VH ; G} (C.6)
aF+G+%G+%H=U (C.7)

in which a prime denotes differentiation with respect to r. The conditions to bhe

satisfied at the outer boundary are

F,.G,H,P—0 as T—00 (C.8)

At the inner boundary r=0, u, and p must be independent of ¢. Thus we have

FO)=G(0) =0 n#0
GO)=H(®) =0 n#l
G(0) = —H(0) n=1 (C.9)

C.2 Solution

To obtain the solution, it is convenient to deal with the governing equations
separately for n=0 (axisymmetric perturbation) and n#0 (helical perturbation), as

done by Kambe(1969).
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For axisymmetric perturbations (% and vy=0) H=0. Eliminating I and P
from equations (C.4)~(C.7), we obtain the following fourth order equation for
G:

ATATG = ial{(U — c)ATG + WG} (C.10)

where

W= lU’ - U
r

2 2
po =& 14 m (C.11)

nE gty T
and R is the Reynolds number. The boundary conditions to be satisfied by G

are

G(0) = 0 Gloo) =0 G'(00) = 0 G'0)=0 (C.12)

o nl
In this case, it is convenient to introduce new variables 5{r) and T(r) defined

by

S=G-H

T=G+H (C.13)

Eliminating F and P in (C.4)~(C.7), we obtain the system of governing equa-

tions for S and T as:

DA%, T — Dy A5 S = iaR{(U ~ c)(DaT — D_n8) + U'(T — §)}(C.14)

S = iaR{{U = &)(EaT + E-nS) ~ U'(T + S)}(C.15)

-n

BuA T + E_ AT
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where

E,= D, + f;—r (C.16)
The boundary conditions for § and T are

S{oo) = T(o0) = T'(0) = S§'{c0) =0
S5(0)=70)=0 for n#1

§'(0) = T(0) =0 for n =1 (C.17)

Equations C.10 with boundary conditions C.12, and C.14-C.15 with boundary
conditions C.17 are discretized using mapped Chebyshev polynomials. The resulting
generalized eigenvalue problem is solved using the subroutine GENEIGC to find the
complex eigenvalues ¢, and EIGREVC is used to find the cigenvectors (G for n = 0,

and T, 5 for n#0) associated with each eigenvalue.



125

APPENDIX D

ENERGY TRANSFER IN SPECTRAL-SPACE

The spectral energy transfer, T'(%), in the jet representing the nonlinear transfer
of energy to a mode & as a result of mutual interactions between the turbulent fluctu-
ations can be computed by considering the Navier-Stokes equation for the fluctuating

velocity field uf, (see Hinze, 1975; chap. 4). In the physical space, u!, satisfies

dul, 09U du; ad J — 1 apf D%,
7— a1 + U2 + —(ulujy) — —(w! uh) = —— D.1
at + Y3 G, ! + da, * dxg (4o p) Bms(u“u:"') p Oz, Ty (’1‘:1:,?3.1:., (D-1)
where U/ = U(x3a) represents the mean velocity in the jet, and p’ satisfies
1 &% a? ¢ Ouly QU 7 LE—
: - - —9 3 ! ol D.2
p O0x,0z, dz .0z (tatg) dz, Ors  Ja,0zg (wqu3) (D-2)
In symbolic form, equation 1 can be written as
(— — vV (x,1) = —N.(x,t) — N'M(x,¢) (D.3)
where,
l a It
N'(x,1) = (uf uh) + = a’;o (D.4)
with ;l:df f,:,o = —azfzxﬁ(u:,u"a) represents the mutual nonlinear interactions between

the turbulence fluctuations, and

ou dul, @8 10 p"M

M f
= b4
N (x,1) 1‘38.1:3 1+ 7z, 0:!:3( uhuf) -+ = p Ore
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with 1222 _ _oduou | o (u),u3) represents the nonlinear interactions of the
p Oradrg 8ry Ara Oradry o3 P

fluctuating velocity with the the mean flow, The spectral transfer of energy to a

wavenumber k can then be obtained from the Fourier transform of (3)

(% + k) a(k, 1) = —Ka(k,t) — N7 (K, 1) (D.6)

by considering the evolution equation for the energy amplitude %[zz’(k, )2 = %z]'a(k, £)
' (k,1), where hat denotes Fourier transform and asterisk denotes complex conju-

gate. It follows from (6) that

) 2
(%-I—Qukz)ul;t—)' = T'(k,t) + TM(k, 1) (D.7)
where
T(k,t) = —Real{u’. (k, )N'o(k, 1)} (D.8)

represents the nonlinear transfer of energy to a wavenumber k due to mutual inter-

actions between the turbulent fluctuations and
TM(k, 1) = — Real{i"-(k, )N (k, 1)} (D.9)

representis the productjon of turbulent energy by the mean shear and the transfer of
energy Lo a wavenumber k as a result of the deformation of the turbulent eddies by
the mean shear. The energy equation for a mode & can the be obtained by summing

equation 7 for all modes with a wavelength & — % <lk|£k+ %

(-aa—t+2:/k2)E(k,t) = T(k,t) + TM(k, ) (D.10)
where
1 - .
Ekhty= X o) (D.11)

._ Ak L Ak
k=S5 k| <k + 5
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is the three-dimensional energy spectrum, and
T(k,t) = — 3 Real{u’. (k,£)N'o(k, 1)} (D.12)
k8% k| <k SE
is the energy transfer spectrum in the jet. Note, in particular, that the transfer
defined in this manner has the same form as in isotropic turbulence and satisfies the
same conservations properties, such as for example that [;° T'(k,t)dk = 0.
Similarly, the subgrid-scale transfer of energy Ts(k|ky) to a scale & (b < k)
due to nonliz-~ar interactions with scales having a wavenumber greater than &, (the

subgrid scales) can be obtained by considering the evolution equation for the large-

scale fluctuating velocity «'S(x, t). It follows from (3) that

g
(5 = VI Rgxt) = =N, 1) = NP (x,0) — N, 1) (D.13)
where
d o 1 0 e
Nu:|c x,t) = —(u'5e’ £, 2 "Ll D.14
o ( ) amﬁ(uauﬁ) +pa$0 ( )
with -:;gi’:;jj = —Orfzrﬁ(u’gu'g)‘: represents the mutual nonlinear interactions be-

tween the large-scale velocity fluctuations, and

1Lls _ i TR N 7 2V 1__0_ nL|s "
NP (x, 1) = e (uqup — wou'z)" + O:Bap (D.15)
&) P
with
2. #E[S 2
1 a IJ - a (u;u;g . ulgulg)c (D.].G)

p 0T Ore  Or.0zg
represents the nonlinear interactions of the large-scale fluctuating velocity field with
the subgrid scales. It follows by analogy with (10) that the large-scale turbulent

energy spectrum I£¢(k,1) is governed by

(567 + 2k EE(k,t) = Tp(klkm) + Ts(k|km) + TME(R)km) (D.17)



where

Tlkln) == 5 Real{u" ()8 (k) (D.18)

k=8k < |k|<h+ B

represents the transfer of energy to the mode & as a result of mutual interactions
between the large-scale velocity fluctuations, and
nel, \ & LIS
Ts(Hha)=— 5 Real{u (k)W (k) (D.19)
k= BE <kl <k 45
represents the transfer of energy to the mode & as a result of interactions with the

subgrid-scale velocity fluctuations.
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