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CHAPTER I

Introduction

If you have ever given up on a nuclear criticality calculation and terminated it 

because it took so long to converge, you might find this thesis of interest. We develop 

three methods for improving the fission source convergence in nuclear criticality 

calculations for physical systems with high dominance ratios for which convergence 

is slow. The Fission Matrix Acceleration Method and the Fission Diffusion Synthetic 

Acceleration (FDSA) Method are acceleration methods that speed fission source 

convergence for both Monte Carlo and deterministic methods. The third method is 

a hybrid Monte Carlo method that also converges for difficult problems where the 

unaccelerated Monte Carlo method fails.

1.1 Criticality Calculations

The criticality of a system containing fissionable material is described by its 

multiplication factor. The multiplication factor is the ratio of the number of neutrons 

in one generation to the number of neutrons in the previous generation. A generation 

is essentially the lifetime of a neutron. For finite systems, the multiplication factor 

is denoted as fce//ecti«>e, or kejj.  When a system is critical, it sustains a steady-state 

chain reaction of nuclear fissioning, and fce/ /= l .  The average neutron population

1
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in a critical system stays constant in time. A subcritical system has kef j < \  and 

the neutron population dies off in time. The neutron population in a supercritical 

system, where Are//> 1 , grows without bound in time [Dud76].

Knowledge of kej j  is necessary when designing nuclear reactors and handling 

nuclear waste. W ith reactor design at a lull and waste production not, the latter 

has become a dominant application for criticality calculations, or, more appropri­

ately, criticality safety calculations. Criticality has been a concern since the first 

criticality experiments. Experiments are the best benchmarks for criticality safety, 

but they are costly and specific only to the particular geometry of the experiment. 

Hand calculations have been used for arrays of fissionable material [Tho73]. How­

ever, numerical computer methods are used almost exclusively for criticality cal­

culations at this time. Deterministic and Monte Carlo methods are both used. 

However, because of complicated geometries and increasing computer power, Monte 

Carlo methods are emerging as the tool of choice for criticality safety engineers. In 

the United States, three production Monte Carlo computer codes are widely used: 

M CNP™  1 [Bri93][For94] from Los Alamos National Laboratory, KENO [Bow95] 

from Oak Ridge National Laboratory, and MONK from AEA Technology in the 

United Kingdom [Smi95]. VIM [Blo95] is used extensively at Argonne National 

Laboratory. We have implemented one of our new methods, the Fission Matrix 

Acceleration Method, in MCNP.

1.2 Difficulties with Criticality Calculations

For some systems, criticality calculations take an enormous amount of time to

converge. Both deterministic and Monte Carlo criticality calculations are based

^ C N P  is a trademark of the Regents of the University of California, Los Alamos National 
Laboratory



on the source (or power) iteration method. A deterministic calculation is finished 

upon source convergence, but a Monte Carlo calculation begins accumulating useful 

random variable data only after the (fission) source is converged. The error in the 

source iteration method decreases with each iteration, where the speed of the decrease 

is dictated by the dominance ratio. The dominance ratio is the ratio of the second 

eigenvalue to the first, or dominant, eigenvalue (ke/ / ). If the dominance ratio is near 

unity, the source iteration error will decrease slowly, and thus convergence to the 

dominant eigenmode (the converged fission source) is slow. Two types of systems 

that have high dominance ratios (near unity) are large thermal reactors and arrays 

of nuclear waste components. A system’s high dominance ratio is synonymous with 

weak neutron communication between distant regions of the system.

Slow source convergence is less of a problem when the initial fission source guess 

is very close to the converged fission source. However, sometimes knowledge of the 

solution beforehand is evasive. Sometimes the typically available initial source shapes 

(flat, or uniform, over the fissionable regions, or maybe a cosine shape) in a produc­

tion code are very different from the converged source shape. So, in practice, slow 

source convergence can be quite troublesome. In fact, for some difficult problems, 

Monte Carlo may never converge.

1.3 History of the Fission Matrix

The fission matrix is mainly associated with Monte Carlo criticality calculations, 

but it also has applications in deterministic criticality calculations. The (f,i)th  

element of the fission matrix is the probability that a fission source neutron born 

in region j  of the system causes the subsequent birth of a fission source neutron in 

region i. The fission matrix may be somewhat tediously estimated from a set of
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deterministic calculations.

The fission m atrix may also be estimated in a Monte Carlo calculation by keeping 

track of what happens to the Monte Carlo-simulated neutrons. Each element ( i , j )  

of the fission m atrix is the number of neutrons produced in region i due to neutrons 

starting in region j  divided by the number of neutrons starting in region j .  Because 

the fission m atrix elements are ratios (and probabilities), they may be closer to tru th  

than the Monte Carlo fission source. For example, suppose the source in region j  

is lower than its converged value. Both the numerators and denominators in the 

fission matrix elements associated with region j  will be lower than their converged 

values. The errors tend to cancel out in the fission matrix elements, and are more 

representative of the converged solution. Thus, the eigenvector of the fission m atrix 

tends to converge faster than the Monte Carlo fission source. Note that, because it is 

spatially discretized, the fission matrix eigenvector does not converge exactly to the 

spatially continuous Monte Carlo fission source. The eigenvector has a second-order 

spatial truncation error [Kap58][Car75].

The idea of using the fission matrix as a separate and faster calculation was 

developed by Morton [Mor56] and Kaplan [Kap58]. Morrison, Mihalczo, and Irving 

of Oak Ridge National Laboratory implemented a fission matrix calculation into the 

Monte Carlo code 05R  [Mor66]. They used the number of iterations required to 

converge the fission matrix eigenvector as a guide to know how many Monte Carlo 

iterations it would take the regular Monte Carlo to converge. Both Mihalczo [Mih67] 

and Mendelson [Men68] used the fission m atrix calculations in calculations for real 

systems. The Oak Ridge code, KENO, has the capability of performing fission matrix 

calculations. Unfortunately, hardly anyone uses this option [Pet92]. We speculate 

that the major reason this KENO option is largely unused is the user community’s
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lack of familiarity with the fission matrix.

Both Kaplan [Kap58] and Kalos, et al. [Gre68] suggested using the fission matrix 

eigenvector to adjust the regular Monte Carlo fission source distribution through vari­

ance reduction techniques (Splitting and Russian roulette). Carter and McCormick 

[Car69] presented a method in which the regular Monte Carlo fission source dis­

tribution is adjusted by the ratio of successive fission m atrix eigenvectors. They 

demonstrated the potential acceleration by performing calculations that used dif­

fusion methods to simulate Monte Carlo. Kadontani, et al. [Kad91] attem pted 

accelerating the Monte Carlo fission source by setting it equal to the fission matrix 

eigenvector at each iteration. These attem pts met with limited success.

The big culprit behind these failures of Monte Carlo source acceleration methods 

is the statistical noise inherent in the Monte Carlo algorithm. The acceleration 

attem pts may be carried over from successful deterministic methods, or they may just 

be inherently deterministic, but whatever the reason, they cannot handle statistical 

noise. However, Swaja [Swa72] successfully accelerated Monte Carlo fission source 

convergence with Source Extrapolation, a deterministic acceleration method. He 

filtered the statistical noise by a Kalman filter. Embedded in the Kalman filtering 

process was the fission matrix to account for the dynamic state of the converging 

source.

We consider a  numerical acceleration method as a method that converges to a 

solution equivalent to the unaccelerated solution, only faster. Since the fission ma­

trix is estimated in discrete space, it has a truncation error. Therefore, unless the 

fission m atrix has the same spatial discretization as the regular calculation, a direct 

adjustment of the regular fission source to the fission m atrix eigenvector is not an 

acceleration method. (Depending on how the method of Kalos, et al. [Gre68] is



implemented, it may or may not be an acceleration method.) Monte Carlo calcula­

tions are usually performed in continuous space and the fission m atrix is estimated 

in finite discretized space.

The Fission Matrix Acceleration method derived in this thesis converges to the 

regular, unaccelerated Monte Carlo fission source. It uses the fission matrix as a low- 

order operator to determine an additive correction to the fission source. However, it 

does require filtering the statistical noise.

1.4 The New Methods and Testing Their Feasibility

We develop three new methods that have not been tried before. The Fission Ma­

trix Acceleration method and the Fission Diffusion Synthetic Acceleration method 

are accelerated versions of the regular, unaccelerated Source Iteration method. Each 

iteration contains an additional step in which a low-order approximation to an exact 

additive correction is applied to the fission source. Although each accelerated iter­

ation entails more work, the method accelerates the source convergence such that 

significantly fewer iterations are required for convergence. The low-order approxi­

mations to the exact corrections are what differentiate the two methods: the fission 

matrix and the diffusion approximation. The third method, the Hybrid Monte Carlo 

method, is not an acceleration method, but rather a modified Monte Carlo source 

iteration method. The source at each iteration is sampled not from the Monte Carlo 

tracking, but from the solution of an elliptic equation, some of whose coefficients are 

determined by the Monte Carlo simulation.

We determine the feasibility of the new methods by testing them on idealized 

problems. The problems are far from reality, but nevertheless, they contain enough 

“tru th” to determine the merit and behavior of the methods.



Verification of the testbed’s validity is found by implementing the Fission Matrix 

Acceleration method in the production code MCNP. Its behavior for a real, three- 

dimensional, continuous-energy problem is the same as its behavior in the idealized 

problems.

In a valid testbed then, we demonstrate that these methods are successful and 

warrant further adaptation to real problems. Projected speedups will reduce compu­

tational time investments, thus permitting better evaluation of criticality scenarios.

1.5 Thesis Synopsis

We present an overview of the thesis.

Chapter II: Criticality Calculations

In Chapter II we begin with the general neutron transport equation and derive 

the analytic fixed-source and the analytic criticality equations for one energy group, 

isotropic scattering, and one-dimensional slab geometry. We also derive the adjoint 

transport equation. We derive and present the numerical method of solution for 

deterministic and Monte Carlo methods and the difficulties they have with high 

dominance ratio problems. Lastly, we describe the fission matrix and how it is 

estimated.

Chapter III: Fourier Analysis and Dam ped Acceleration

The acceleration methods we derive produce an additive correction for the fis­

sion source. We will find that sometimes the correction needs to be scaled back, 

or damped, because applying the entire correction results in instability or highly 

oscillatory behavior. Usually the oscillatory behavior is found in Monte Carlo cal­

culations and is due to the statistical noise. Sometimes deterministic acceleration



has to be scaled back if the system and solution are extremely heterogeneous or 

contain severe transport effects. We do not have a direct theoretical justification 

for this damping. However, we gain some indirect theoretical insight by looking 

a t Diffusion Synthetic Acceleration (DSA), an acceleration method for fixed-source 

calculations. We find, through a Fourier analysis, that when the acceleration equa­

tion is discretized inconsistently with the transport equation, damping is required 

for certain mesh sizes in order to inhibit instability. We note that, in methods for 

accelerating the Monte Carlo fission source convergence, the acceleration equations 

are inherently inconsistently discretized with Monte Carlo. Fission source conver­

gence acceleration methods are not amenable to this type of Fourier analysis, so we 

use the inconsistently-discretized fixed-source analysis as a  foundation for damping 

fission source convergence acceleration.

Chapter IV: E xperim ental Fourier A nalysis Tool

This shortest chapter in this thesis explains the tool we use to measure the conver­

gence of a  fission source. The experimental Fourier analysis tool is used throughout 

the thesis to gauge the convergence of various modes of the fission source.

C hapter V: D iffusion-Sim ulated M onte Carlo C alculations

In Chapter V we present Carter and McCormick’s acceleration method [Car69] 

and propose an improvement to it. All neutron transport in this chapter is simulated 

by diffusion calculations.

Chapter VI: Fission M atrix A cceleration M ethod

We develop the Fission Matrix Acceleration method in Chapter VI. We derive 

it and explain the statistical filtering necessary for accelerating Monte Carlo. We
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present the three one-dimensional slab geometry test problems that we use through­

out the thesis: a homogeneous slab, a uniform lattice, and a one-dimensional model 

of the afce/ /  of the world” problem. We present both deterministic and Monte Carlo 

acceleration results.

We also extend the Fission Matrix Acceleration method to the production Monte 

Carlo code MCNP and demonstrate the acceleration for the real, three-dimensional, 

continuous energy- and space-dependent “fce/ /  °f the world” problem.

Chapter VII: Fission Diffusion Synthetic Acceleration

Chapter VII contains the derivation of the Fission Diffusion Synthetic Accel­

eration (FDSA) method and the results for both deterministic and Monte Carlo 

criticality calculations for the one-dimensional problems.

Chapter VIII: A  Hybrid M onte Carlo M ethod for Improved Source Con­
vergence

Sometimes Monte Carlo does not converge to the correct fission source. An ex­

ample of a system where this is the case is the uniform lattice problem. Since a 

true acceleration method converges to the unaccelerated solution, the method can­

not overcome inherent Monte Carlo deficiencies. We present a hybrid Monte Carlo 

method in Chapter VIII that converges when regular, or accelerated, Monte Carlo 

cannot. This method also results in reduced statistical noise.

Chapter IX: Summary, Conclusions, and a Look Ahead

In Chapter IX we summarize, draw conclusions, and list some activities for future 

work.



CHAPTER II

Criticality Calculations

This thesis investigates the acceleration of Monte Carlo (and, to a lesser extent, 

deterministic) nuclear criticality calculations. Criticality calculations, due to the 

presence of fissioning, are an extension of fixed-source calculations. We first present 

the fixed-source neutron transport equation and sketch the derivation of its monoen- 

ergetic, isotropic scattering, one-dimensional slab geometry form. We then introduce 

fissioning to obtain the criticality form of the neutron transport equation that pro­

vides the groundwork for much of this thesis. We also present the diffusion equation, 

an approximation to the transport equation. We use the diffusion equation and its 

associated approximations to develop and study acceleration methods.

2.1 Analytic Equations

2.1.1 Analytic Fixed Source Neutron Transport Equation

A fixed-source calculation solves the neutron transport equation, which is a lin­

earized version of the Boltzmann equation [Cas67][Dud76]. The neutron transport 

equation, for both fixed-source and criticality calculations, is a neutron balance equa­

tion. In general geometry, the time-independent fixed-source transport equation is 

[Lew84],

10
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f l • VV>(r, E, SI) +  Et(r, E ty ir ,  E , SI) =

J  j z , { r , S l ' * S l , E f E)xl>(r,E',Sl')dSl'dE' + -^Q (T ,E )  , (2.1)

where

SI =  direction of particle , (2.2)

r  =  position of particle , (2.3)

E  = energy of particle , (2.4)

E»(r, E) = total cross section (2.5)
=  probable number of interactions a 

particle at r  with energy E  undergoes 
per unit path length , (2.6)

E ,(r, SI' -Sl ,E '  —► E) dSl dE  =  probability per unit path length that a
particle at r  with energy E'  traveling in 
direction f l ' scatters into dE  about E  
and dSl about fl , (2.7)

~ ^Q (r ,E)  =  external (independent of i/>) source
of particles , (2.8)

V»(r, E , ft) =  angular flux (2.9)
=  vn(r ,E,Sl)  . (2.10)

Here

v =  particle speed , (2-11)

n(r,£? ,n ) =  particle density distribution , (2.12)

and

n(r, E , SI) dr dE dSl =  expected number of particles in dr about r
with energy dE  about E  and traveling in 
direction dSl about SI . (2.13)
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In this thesis, we make three simplifications to the neutron transport equation. 

First, we consider only monoenergetic (or, one-group) problems, thereby eliminating 

the dependence on E.  Second, we consider only isotropic scattering. All angles are 

equiprobable in isotropic scattering, so the dependence of on angle is eliminated. 

Third, our analysis is restricted to  one-dimensional slab geometry. These are harsh 

restrictions and deviate greatly from reality, but they provide an appropriate p lat­

form for methods development. If a method is successful under these simplifications, 

extensions of it may be successful for higher-dimensioned, more complicated prob­

lems. In fact, we have successfully implemented the Fission Matrix Acceleration 

method in MCNP and applied it to a three-dimensional, continuous energy problem. 

(See Section 6.6.) The characteristics of the simplified, one-dimensional acceleration 

method extend to the more complicated three-dimensional method.

Let us express the direction vector, 12, in spherical coordinates. We consider a 

right-hand coordinate system with orthogonal unit directions ( i ,j ,k )  in the (x ,y , z )  

directions. Then the direction vector, 12, emanating from the origin is

12 =  n ,  i +  n v j  +  a* k (2.14)

=  sin 0 cos ^  i +  sin 0 sin ^  j  +  cos0 k  (2.15)

=  >/ l - „ * c o . * i  +  y/l  — M2 sin ^  j  +  p  k  , (2.16)

where

0 =  angle between 12 and k  , (2.17)

<f> =  azimuthal angle (2.18)
=  angle between i and the projection of 12 onto the xy  plane , (2.19)

H =  cos 0 . (2.20)
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Then, for any function /(0 )= /( /x ,  <j>), we have that

/  m ) d a =  r  C  . (2.21)
J  4ir J <t>=0 J

An explicit expression for the monoenergetic scattering cross section is that of linearly 

anisotropic scattering,

£ .( r ,n ' - f i )  =  -^ (£ ,o  +  3 f i - n '£ al) , (2.22)
47r

where, for isotropic scattering, E,i =  0.

In one-dimensional slab geometry, there is no dependence upon y or z  or the 

azimuthal angle <f>. Thus, by renormalizing t/>,

r2ir
I  d(j> =  2ir^>(x,/i) , (2.23)

J $=o

we obtain the monoenergetic, one-dimensional slab geometry transport equation for 

isotropic scattering:

^  +  P) ~ \  J  j  S jo (* )0 (® , /*') dy! +  , (2.24)

where

% t 0 ( x )  =  f _ [ S*o(ar, /*') d /  • (2.25)

For a slab of width L, 0 <  x < L, the boundary conditions specify tp for incoming 

directions,

V»(0,/i) =  rj>+ (f*)  , f i>  0 , (2.26)

V»(L,m) =  ^"(M) » M < 0 . (2.27)

2.1.2 A nalytic C riticality N eutron Transport Equation

We obtain the one-group analytic criticality neutron transport equation for

isotropic scattering and one-dimensional slab geometry by introducing a  fission term
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to Equation 2.24:
Q

+  Si(*)0 (a,/*) =

^S ,(x) J   ̂il>(x, fi') dy! +  j_ x 0 (a , A*') dy‘ , (2.28)

where

E/(x) =  fission cross section (2.29)
=  probability per unit path length that a particle at x

undergoes a fission , (2.30)

v =  average number of neutrons produced in a fission event , (2.31)

k =  kef f  =  kefj  ecttve (2.32)
=  the multiplication factor , (2.33)

For simplicity, we denote as E,. For our criticality calculations, we only consider 

sources from fission, no external (either interior or incident) sources. Therefore, we 

have vacuum boundary conditions:

^>(0, y) = 0 , y > 0 , (2.34)

V»(I,p) =  0 , y  < 0 . (2.35)

Since the source depends on Equation 2.28 defines an eigenvalue problem, where 

lc=kej f  is the dominant eigenvalue, k can be viewed as the number by which v 

needs to be divided to make the system model critical, that is, where a nuclear 

chain reaction is just sustainable. It follows that, for k > 1, the system model is 

supercritical and the neutron population would grow in time. For k <  1, the system 

model is subcritical and the neutron population would die out.

2.1.3 Analytic Diffusion Equation

Solving the transport equation is typically difficult. Employing the diffusion ap­

proximation in the transport equation yields the diffusion equation, which is simpler
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to solve. The diffusion approximation rests on the assumption that the angular flux 

is linear in angle:

VKz. m) «  ^ (^o(x) +  3^^i(x)) . (2.36)

Here we have defined

<£n(x) =  > n =  0 ,1 , (2.37)

where <f>o(x) is the scalar flux, (f>(x). Immediately, we substitute the scalar flux into 

Equation 2.28 and obtain

^ t H x , / i )  +  S t(a#(x,M ) =  +  ~ ~ ^ - ^ > { x )  . (2.38)

Now, we take the zeroth angular moment of Equation 2.38 by operating on it by

(2-39)

and obtain

^(j>i{x) + %t{x)Mx ) = %*{x ) M x ) + — ^ - M x ) • (2.40)

Operating on Equation 2.38 by

> (2.41)

we obtain its first angular moment,

d
■ ^J _ i ^ ( x ,ti)dn + 'Lt(x)<f>i{x) = 0 . (2.42)

Substituting the linear approximation of V1, Equation 2.36, into Equation 2.42, we 

obtain

~ ^ ° ( x )  +  Et(x)^i(x) =  0 , (2.43)
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from which we obtain Fick’s Law,

M x ) = ■ { 2 M )

Substituting Equation 2.44 into Equation 2.40 and using the identity that the total 

cross section is the sum of the scattering and absorption cross sections,

£ ,(*) =  £ .(* ) +  £„(*) , (2.45)

we obtain the diffusion equation:

~ § i m S ) T x M x )  +  ■ (2M )

The boundary conditions are obtained by utilizing the linear approximation, 

Equation 2.36, and the first moment equation, Equation 2.42, and integrating over 

incoming directions. At the left side,

0 =  /  MV>(0,p)d/i (2.47)Jo

= fidfX + ^ 1̂  Jo (2,4S)

=  ^o (O ) +  (2.49)

0 -  ■ (2-s0)

Similarly, on the right side,

0 =  J^pil>{L,n)dn  (2.51)

=  7 }M L ) J  i Vdf* + ^ M L) J  (2.52)

=  —^4o(L) + -<f>i(L) (2.53)

°  =  M L )  + 3E^Z) ■ (2'54)

These boundary conditions are commonly called the Marshak boundary conditions 

[Bel70].
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Equation 2.46 is the diffusion equation. The diffusion equation and its associated 

boundary conditions are obtained from the neutron transport equation by assuming 

that the angular flux is linear in angle. The transport equation is a hyperbolic 

equation, but the diffusion equation is an elliptic equation. Hyperbolic equations 

are associated with wave propagation, giving rise to distinctly different domains of 

dependence and zones of influence for a point in phase phase. Elliptic equations 

are associated with diffusion processes where, for a phase space point, the domain 

of dependence is equal to the zone of influence [Hir88j. For example, a localized 

perturbation in a finite system would be propagated to the rest of the system in 

finite time by the transport equation, while the diffusion equation would diffuse the 

effects across the entire system instantaneously.

2.1.4 Analytic Adjoint Transport Equation

The solution of the adjoint transport equation is a valuable tool. Suppose a 

system of volume V  consists of a volume source of neutrons in a nonmultiplying 

(nonfissioning) medium and a detector located some distance away from the source, 

as shown in Figure 2.1. In the world of Monte Carlo, where individual particles are 

simulated, the adjoint calculation is referred to as “running the particles backward 

from the detector.” The adjoint solution is the system-wide importance at each point 

in phase space for a particle to reach the detector [Bel70]. The three main uses for 

the adjoint solution are perturbation calculations, Monte Carlo biasing [Lew84], and 

variational calculations [Bel70]. We briefly present the adjoint equation because we 

And it is necessary in our acceleration methods.

Given an operator R  and the functions fx) and rl>m(x, fi) that satisfy the 

necessary boundary and continuity conditions, the adjoint operator R* is defined by
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detector

source

Figure 2.1: Three-dimensional fixed-source system.

the following equation [Lew84][Bel70],

( ^ R ^ )  =  ( ^ , R y )  , (2.55)

where (•, •) is the inner product,

=  /  dfidx ‘ (2*56) 

Suppose R  is the criticality transport operator from Equation 2.28:

R  =  M  -  , (2.57)

where

MV»(x, fi) =  fi) +  St(x)^(x, f.i) -  ^E .(x ) J   ̂i(>{xy n') dp' , (2.58)

and

l rl N 0(x , fi) -  - i/E /(x ) j   ̂^>(x, fi') dfi' .

Then the criticality transport equation is

R^(x,*i) =  0 ,

(2.59)

(2.60)
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which is called the forward problem in the adjoint context. Considering the fixed- 

source part of R  first, the adjoint of M  is defined by

. (2.61)

Multiplying M  by the adjoint angular flux, iff*, and taking the inner product, the 

form of M* is found as [Lew84]

M*V>*(x, p) = -p-^%f)*{x, p) +  S t(x)xl>*(x, p) -  ^ S ,(x ) J   ̂\f>m(x, p') dp ' . (2.62)

The difference between the forward operator M  and its adjoint, M*, is a negative 

sign on the streaming term. Similarly, the adjoint of the fission operator N  is defined 

by

( t f* ,N * )« ( tf fN*tf*) , (2.63)

where

N > * (x , p) = ^vY,s {x) $*(x, p ') dp' . (2.64)

Since N =N *, N  is self-adjoint (When energy dependence is taken into account, the

fission operator is not self-adjoint.) The adjoint criticality transport operator is

R* =  M* -  p N *  , (2.65)

Utilizing Equations 2.61 and 2.63, we see that, for Equation 2.55 to hold, we must 

have

= o ■ (2.66)

Since the inner product is not zero for positive V* and 0*, the forward and adjoint 

eigenvalues must be equal,

k  =  k* . (2.67)
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We will discover that we need the solution of the adjoint diffusion equation for the 

Fission Diffusion Synthetic Acceleration method. W ithout energy dependence, the 

diffusion operator in Equation 2.46 is self-adjoint. For a  system with a non-reentrant 

vacuum boundary, the adjoint boundary condition is zero for outgoing fluxes. This 

boundary condition coincides with the physical interpretation of the adjoint flux as 

the neutron importance. Neutrons escaping the system have zero chance of causing 

a fission, therefore they have zero importance.

2.2 Numerical Methods for Solving the Neutron Transport 
Equation

Analytically solving the transport and diffusion equations is possible only for 

simple, idealized systems. Therefore, people resort to numerical, or computational, 

methods to solve the equations on a computer. Computational methods are either 

deterministic or stochastic.

Deterministic methods typically require discretizing the equations in every inde­

pendent variable and using finite differencing methods to approximate derivatives 

of functions. An alternative to finite differencing is the finite element method, but 

we will not consider that in this thesis. In neutron transport, a popular way to 

discretize the angular variable is the discrete-ordinates, or S n , method, where the 

Gauss-Legendre quadrature set is used to approximate integrals over angle. The 

main source of error in a deterministic method is the spatial discretization. For 

finite spatial cells, the discretized equation differs from the analytic equation by a 

truncation error that should disappear as the spatial cells go to  zero.

The Monte Carlo method is a stochastic method. Instead of solving a  discretized 

equation, the Monte Carlo method simulates actual particles. Using pseudo-random
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numbers, all events that a particle undergoes are sampled from known probability 

density functions. The location, energy, and angle of a  source particle are sampled 

from a source distribution. The distance the particle travels to a collision, whether it 

is absorbed or scatters, and its properties after a scatter are all sampled according to 

probability density functions. Since Monte Carlo can handle the energy, spatial, and 

angular variables continuously, it does not suffer from truncation errors. However, 

since results are obtained by averaging the individual results from many particles, 

all Monte Carlo solutions have statistical error.

The advantage of the Monte Carlo method is that it is able to model continuous 

energy, space, and angle in irregular, complicated geometries. The advantage of 

deterministic methods over Monte Carlo is that they have no statistical errors.

Figure 2.2 qualitatively shows how Monte Cario and Sn  compare. The Sn  method 

considers an infinite number of particles in a finitely resolved system. Monte Carlo 

considers a  finite number of particles in an infinitely resolved system. The “degree of 

variable resolution” axis could also be, in some sense, “number of collisions.” Monte 

Carlo particles either explicitly or probabilistically experience all of their collisions 

from birth to death. However, in a discrete-ordinates calculation, the n th  iteration 

on the scattering source produces the nth-collided flux.

2.2.1 D eterm in istic  M ethods

By discretizing the independent variables, the integro-differential transport equa­

tion is converted to a system of equations amenable to solving on a computer.

A ngular D iscretization

For discrete-ordinates, or S n , the angular variable, /x, is divided into bins such 

that particles only travel in discrete angles. The Sn  Gauss-Legendre quadrature set
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number of 
particles

N

Monte
Carlo

degree of variable 
resolution

Figure 2.2: A qualitative comparison of discrete-ordinates Sn  and Monte Carlo.

defines the discrete angle, /xm, and weight, wm, in each bin. (An alternative to Sn  

quadrature sets is the spherical harmonics, or Legendre polynomial approximations 

(Pn )- The Sn  and Pn -\  equations are equivalent in one-dimensional slab geometry 

[Lew84].) Integrals over angle are approximated in Sn  by summations over the 

quadrature set:
/>! N
/  f id f i t t  2 J  VmWm • (2.68)
J~1 m=1

In one-dimensional geometries, even-order quadrature sets are almost exclusively 

employed. The even order quadrature sets are symmetric about, but do not include 

fi=0. They exactly integrate polynomials up to order 2N-1 [Bel70]. We use the 

convention that the weights sum to 2:

N
£  tum =  2 .
m =l

(2.69)
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Thus, the angular flux is converted from a continuous function to a discrete vector 

whose N  elements at a particular point in space (and energy, if considered) are the 

angular flux in each discrete angle. So, for fi «  /im,

rj){x,n) «  ipm(x) = ip(x,fim) . (2.70)

The scalar flux, for instance, is approximated as

<f>{x) =  J  \l>{x,ii)dfL
N

V’m(x) W„
m =l

(2.71)

(2.72)

Spatial D iscretization

Spatially, the one-dimensional slab of width L is discretized by dividing it into 

J  cells, as shown in Figure 2.3. The interior cell edges are specified by Xj+1 /2,

1 / 2 X i-1/2 X +1/2 XJ-+1/2

| | | |

X = 0
2 XJ

—  h j — x = L

Figure 2.3: Discretized one-dimensional slab geometry.

1 <  j  < J - l .  The left boundary is denoted by i i /2 and the right boundary by 

xj+i/2 . The cells have width hjy

hj = ®j+1/2 xj~ 1/2 » (2.73)

with the cell center, Xj, located at

xi =  n (xi+i/2 +  xj - 1/2) • (2-74)
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Cross sections and any external fixed-sources in the interior of the system are to be 

constant across a  cell. The spatially discretized angular flux is assumed to reside on 

the cell edges. The spatially analytic Sn  transport equation for a particular direction 

m  is

Q

£  lM ») H  V’n(s) U>n • (2.75)
Z n = l  n = l

Integrating Equation 2.75 over the j th  cell or, specifically, operating on it by

1 /*>+!/*,

we obtain

X  r * ‘n (0 *  . (2-76)
rlj / J

^  ( $ m , j + 1/2 V’m j - 1/ 2)  +

=  ten +  7 (2*77)
Z n = l  ^  K n = l

where 1< m <  iV, 1 <  j  < J ,  and the cell-averaged angular flux for direction m  is

1 fxi+1/2
V w  = T  I ^m{x) dx . (2.78)

D ifferencing Schem e

Equation 2.77, together with specified incoming boundary conditions, consti­

tutes J N + N  equations in 2J N + N  unknowns ((J+1)AT cell-edge fluxes and J N  

cell-average fluxes). The required extra J N  equations are auxiliary equations that 

approximate Equation 2.78 and relate the cell-average flux to the cell-edge flux. A 

common differencing scheme for the auxiliary equations, and one that we use in this 

thesis, is the Diamond Differencing Scheme,

=  9 1/2 +  ^m j+1/2) • (2.79)
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The Diamond Differencing scheme is second order accurate, but it produces negative 

fluxes in some cases, and attem pts to  alleviate the negativity may cause inaccuracies. 

There are several other differencing schemes. For example, one new differencing 

scheme that is positive and very accurate is a nonlinear characteristic scheme [Wal95].

Order o f Accuracy

In Equation 2.77, the derivative of the angular flux is represented as a finite 

difference. The finite difference method is based on the definition of the derivative 

of xjj at x :
£  _  Um f i x  +  A x )  -  t ( x )
dx A x—o Aa; v 7

Representing a derivative as a finite difference is an approximation. The order of the 

accuracy of the approximation is determined by the power n, when the truncation 

error goes to zero as (Aa:)n [Hir88].

We use Taylor series expansions to show that both the Diamond Differencing 

Scheme and the centrally differenced approximation to the first derivative of the flux 

in Equation 2.77 are second order accurate. First, the Diamond Difference scheme, 

for a particular angle m, is shown to be second order accurate as follows:

=  \  (V’i-i/a  +  V'j+i/z) (2.81)

(« * )

=  ${xj)  +  0 { h 2) , (2.83)

where 0 ( h n) represents terms of, at most, order hn. Second, the centrally differenced 

first derivative of the angular flux is, expanded in Taylor series, also shown to be
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second order accurate:

=  * * (2. 84)
ax h

>) m
=  M £ i ) + 0 ( ^ )  . (2.86)

ax

Fixed-Source M ethod of Solution

The method of solution for lixed-source, one-dimensional slab geometries is sweep­

ing left to right, considering the left-going angular fluxes separately from the right- 

going angular fluxes. Equation 2.77 becomes a fixed-source problem if the entire 

fission source is instead a fixed-source, Q j , that is constant within each cell:

j T  ( V w + i /2  -  V W - 1 /2 )  +  E tj& m j  

1 K
=  9 £  tf’nj +  Qj  . (2.87)

Z n= l

The procedure is to guess the scalar flux for the scattering source, then lump the 

scattering source and fixed-source together on the right hand side. Beginning at the 

left boundary, for instance, a transport sweep is made to the right, one cell at a 

time, for particles flowing to the right. Equations 2.87 and 2.79 are solved for the 

exiting flux. Given the incoming flux, the exiting flux from the first cell provides the 

incoming flux for the next cell. The procedure is repeated for each cell, marching 

to the right boundary. Then a transport sweep is made from right to left, where 

the equations are solved for the exiting left-going flux. Upon returning to the left 

boundary, an updated scalar flux is available for each cell. Substituting the updated 

scalar flux into the scattering source, the transport sweep is performed again. The
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whole sweep (back and forth) is repeated until the fluxes converge to within some 

specified criterion.

Criticality M ethod of Solution

Solving the discretized criticality transport equation requires more work. Guesses 

are made for the scattering source as well as for the fission source and the eigenvalue. 

Just as in the fixed-source solution, the flux is converged for the scattering source. 

This allows for updating the fission source. Then all the fluxes are normalized to the 

fission source. Again, the fluxes are converged upon the scattering source, at which 

time the fission source is updated. Thus, there is a hierarchy of iterations. The 

iterations that converge the scattering source are called inner iterations and those 

that converge the fission source are called outer iterations.

Solving the D iscretized Diffusion Equation

For fixed-source problems, solving the discretized diffusion equation is similar to 

solving the discretized transport equation. However, the resulting equations are not 

explicitly dependent upon angle like the Sn  equations. They form a tridiagonal sys­

tem that can be explicitly solved by matrix methods, such as Gaussian Elimination, 

instead of iterating with transport sweeps. For criticality problems, the tridiagonal 

system must be solved repeatedly until the fission source converges. That is, there 

are only “outer” iterations in a criticality diffusion calculation. The explicit solving 

of the tridiagonal matrix replaces the criticality transport “inner” iterations.

2.2.2 M onte Carlo M ethod

The Monte Carlo Method is based upon an entirely different model than deter­

ministic methods. Instead of solving equations that describe an infinite number of
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particles, Monte Carlo simulates enough individual particles to statistically describe 

the actual number of particles. Typically, thousands or millions of simulated particles 

represent an actual number of particles on the order of 108 to 1016.

The relation between fixed-source and criticality calculations in Monte Carlo is 

similar to the relation in deterministic calculations. Each “outer iteration” consists 

of an entire fixed-source calculation.

Sam pling from a Probability D ensity Function

Analog Monte Carlo is conceptually the simplest form of Monte Carlo. Analog 

Monte Carlo is direct, explicit representation of particles. We consider analog Monte 

Carlo for a fixed-source calculation. The foundation of Monte Carlo simulation 

is sampling from probability density functions (pdf). Each event that a particle 

undergoes is randomly sampled from the appropriate pdf. Therefore, the life of a 

particle is a sequence of random events.

Suppose a probability density function (pdf) is p(y) defined on a<y<b. The pdf 

must be positive or zero over the interval, so that

p(y)dy — the probability that y lies between y and dy, (2.88)

and the pdf is normalized over the range a<y<b,

f a P{y)dy = l . (2.89)

We see then that

ria
I p(y) dy — the probability that y lies between yi and y%. (2.90)

Jy  j

We define the cumulative distribution function (cdf), P(x), as

P(x)  =  f  p(y)dy (2.91)
Ja

=  the probability that y lies between a and x , (2.92)
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so that

P(a) =  0 , (2.93)

P(b) =  1 . (2.94)

Given that we have available a pseudorandom number, between 0 and 1, we 

can sample x from the cdf as follows:

techniques [Ham64][Car75][Kal86]. Rejection techniques may require many sampled 

£’s before an x  is found.

The Life of a M onte Carlo Particle

Let us traverse the lifeline of a  Monte Carlo fixed-source particle. First, we must 

sample the source. In one-dimensional slab geometry, suppose the source is isotropic 

and uniform between x —3.5 and x=7.0 cm. The pdf for its location is

(2.95)

If x  is not easily tractable from Equation 2.95, one may need to resort to rejection

6 .0 -3 .5  ’ 3-5 ^ * ^ 6-0 * (2.96)

and the cdf is

P(x) (2.97)

x  — 3.5 
6.0 -  3.5 ‘

(2.98)

Drawing a random number, (, setting it equal to P(x), and solving for x, we have

x  = (6.0 -  3.5)£ +  3.5 . (2.99)

We sample its isotropic direction cosine, (i, from a cdf obtained similarly as before

/i =  - l  +  2£ . (2.100)
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Now that we know the particle’s initial location and direction, we must determine

how far it will travel to its first (next) collision. In order to determine the pdf

for this event, we consider the transport equation without scattering for a particle 

traveling along the determined direction. We may, with no loss of generality, consider 

a coordinate system along the direction of travel, and set fi=1. Therefore, we have

+  r) =  0 , ^ (0) =  1 . (2.101)

The solution is

V>{x) =  e“s,ip , (2.102)

such that the collision rate, and the pdf, is

Z tTj>(x) =  S (e“E*ar . (2.103)

The cdf for traveling a distance d is

P (d)=  [ dY:te-Z'x dx . (2.104)
Jo

Drawing a random number, £, setting it equal to P(d), we solve for d, obtaining,

d =  - ^ l n { l - { )  , (2.105)

or, since l-£ is distributed equivalently to £,

d = - i l n ( 0  . (2.106)

After transporting the simulated Monte Carlo particle to its collision site, we use 

the cross sections to determine what happens to the particle. Assume, for simplicity, 

that we have only absorption and isotropic scattering, so that the total cross section 

is

Et =  E, +  Efl . (2.107)
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With probability

(2.108)

the particle scatters, and with probability l-pa, it is absorbed. The particle continues 

its random walk until its death, through absorption or leakage out the system.

Implicit capture is a non-analog variance reduction technique that does not allow 

the particle to be absorbed. Instead, the particles are assigned a weight (initially 

one) and, at every collision, the weight is reduced, such that only p, of the weight

continues. If the system is highly scattering, the weight may become too low to

unbiased technique called Russian Roulette [Car75][Spa69].

O btaining M onte Carlo R esults

Information is weaned from the Monte Carlo method by running thousands or 

millions of particles and accumulating random variable data of interest. For instance, 

one may be interested in the flux in a region of the system, or the current across a 

surface, or leakage out a boundary, etc. One may accumulate random variable data, 

say gn, for events n = l , . . .N,  where N  is large, and build an average:

justify the computer time spent on it. Low weight particles are terminated by an

(2.109)

where the average is an estimate of the true value g. Suppose the probability density 

function of g is f (g )  and <7, is sampled from f(g).  Then g is an unbiased estimator 

of g if its expected value is g [Lew84]:

JV n = l 

1 N 
=  TF £

n = l

=  m  ,

(2 .110)

(2 .111)

(2 .112)
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where

E[g]= f  9f(9)dg  , (2.113)
J —00

and

Efa] =  E[g) , (2.114)

since gn is sampled from f(g).

According to the Central Limit Theorem [Kal86][Spa69][Car75][Lew84], g ap­

proaches a Gaussian, or normal, distribution, such that we can build a confidence

interval from g. A confidence interval is a range of values that contains, with prob­

ability p, the true value:

[ff — , g +  tp,/v-iSg] , (2.115)

where

Sg =  estimate of the true standard deviation, as,
of the mean, and (2.116)

tp = Student’s 2-percentile for confidence level p
and TV-1 degrees of freedom. (2.117)

The sample standard deviation of the mean is obtained from the sample standard 

deviation of the population with the following relation:

3§~ ~ 7 n  ’ (2.118)

where the sample standard deviation is [Lew84]

I M (  1 N \ V 2

The Central Limit Theorem states that g approaches a normal distribution as N —*oo. 

However, for finite N , the distribution is not exactly normal. To build confidence
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intervals, the departure from a normal distribution is accounted for by the Student’s 

2-percentile [Stu08][Ait57]. The Student’s 2-percentile multiplies the estimated stan­

dard deviation and gives a confidence interval, in Equation 2.115, at the p confidence 

level and for N - 1 degrees of freedom.

The collision estimator for the scalar flux in a volume V  is

• <2 - 1 2 0 >

where wn is the total collided weight for the nth history. The collision flux estimator 

is based on the expression for the average number of collisions per unit time in volume 

V  [Lew84]:

c = V E t<f> . (2.121)

M onte  C arlo  C ritica lity  C alculations

Just like in deterministic calculations, Monte Carlo criticality calculations have 

“outer” iterations, each one consisting of a fixed-source calculation. In Monte Carlo, 

the outer iterations are called cycles. The typical criticality procedure is to make an 

initial fission source guess and run enough cycles to converge the source. These cycles 

are called the inactive cycles, or settling cycles. The difference between determinis­

tic and Monte Carlo criticality calculations is that once the deterministic source is

converged the calculation is finished, whereas, Monte Carlo data accumulation can

begin only after the Monte Carlo source is converged. The cycles after the source is 

converged are called active cycles. Deciding that the source is converged and active 

cycles may begin is not an easy, well-defined task. It requires experience, knowledge 

of the system and quality of the initial source guess, and luck.

During a cycle, the particle tracks determine the initial location of the fission 

source particles for the next cycle. If, at a collision, a fission event occurs, and a
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fission particle is deemed to be born, then its position is banked (stored) until the 

next cycle. At a collision, the fission weight, based upon the collision flux estimator,

is

fission weight =  wn , (2.122)
£ t

Although there are other ways, the typical method involves dividing the fission weight 

by the old (currently available) K j j . Thus, at each collision,

i - r - Q  <2-m >Kef j  2j{

fission source particles are produced for the next cycle. For example, if 7= 0.7, a 

source particle is produced with probability 0.7; or if 7= 1.2, one particle is produced 

with probability 0.8, and two particles are produced with probability 0.2. The result 

of scaling the fission weight by &<.// is that each cycle has roughly the same number 

of histories. With cycles having the same number of histories, computational diffi­

culties of an increasing (problems with storage) or decaying (no particles!) source 

are eliminated. However, the estimate of the scaled fission weight is biased, because 

both the numerator and denominator are random variables, and the ratio of random 

number averages is not equal to the average of the ratios [Elp85]. The bias is usually 

insignificant because it is inversely proportional to the number of histories per cycle 

[Gas75] [Bow83] [Bri86] [Gel90] [Gel91] [Gel94].

We use three kej f  estimators [Lew84]: collision, absorption, and track length. 

Contributions to the collision estimator are made at every collision, so that the 

collision ke/ /  estimate at each cycle is

.̂collision _  £  g  _ (2 m )
n = l mn= l *

where there are N  histories in the cycle and Mn collisions in the nth history. Con­

tributions to the absorption estimator are made at every absorption, so that, for N
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histories, the cycle absorption kej /  estimate is

^absorption =  £  & L  . (2.125)
n = l " a

The cycle track length fce/ /  estimator is accumulated over distances traveled, not at 

particular points. It is

*track length =  £  £  , (2.126)
n = l m n= l *

where Mn is the number of track length segments, £mn, in the nth history. The cycle 

ke/ f  estimators are averaged over the active cycles to give an average ke/ j  estimate 

for each estimator type,

Slype =  7F 5 > type - (2.127)
™ n= l

where “type” is collision, absorption, or track length.

Assuming a limited amount of computer resources, there are optimal values of the 

number of histories per cycle and number of active cycles. The number of histories 

per cycle should be large enough to diminish the bias in the kef f  estimate, but not 

so large that only a small number of cycles can be run. Small numbers of cycles 

may result in large estimated variances in fce/ / ,  and, hence, meaningless confidence 

intervals. Conversely, too many cycles may reduce the estimated variance enough 

such that the bias is no longer negligible [Gel94].

Determining the number of cycles to skip (the number of inactive cycles) is not 

a trivial task. It depends on the quality of the initial fission source guess, the domi­

nance ratio of the system, and the computational parameters (and model). Usually, 

it is difficult to know for sure if the source is converged. Section 2.3 discusses com­

putational difficulties and this thesis addresses accelerating source convergence and 

decreasing the number of necessary inactive cycles.
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2.3 Calculational Difficulties

Monte Carlo criticality calculations sometimes have difficulties tha t manifest 

themselves in inaccurate results or unacceptably large computer times to achieve 

accurate results. These difficulties may originate from the actual physical system 

being modeled, or from computational situations, or both. In this section, we dis­

cuss sampling and the dominance ratio of the system. Generally, if a  problem is 

inadequately sampled, or if the dominance ratio is close to unity, there will be com­

putational difficulties. The discussion regarding the dominance ratio applies equally 

to  deterministic criticality calculations.

2.3.1 Sam pling D ifficulties

When parts of phase space are not sampled adequately, the solution is likely to be 

inaccurate. Such an inaccuracy is considered a bias due to  an improper model. The 

best example of this sampling difficulty is G. Elliott Whitesides’ “&«?// of the world” 

problem [Whi71]. Whitesides used a Monte Carlo code to obtain kej j  for a 9 x 9 x 9 

array of plutonium spheres. All the spheres were identical with radii of about 4 cm 

and separated by 60 cm. The entire array was surrounded by a water reflector. This 

array is a  loosely-coupled, subcritical system with fce/ /  «  0.93. Whitesides found 

kef f  as about 0.93 with 300 histories per cycle. He undoubtedly did not obtain the 

correct fission source shape, because the spheres are very independent and there were 

not even enough histories per cycle to have one particle in each sphere! However, 

since this problem is similar to a homogeneous, infinite medium, the value of kej j  

is not highly dependent upon where the particles are located. When there is little 

communication between the spheres, the kef j  of the system is about the ke/ f  of an 

individual sphere. Indeed, Whitesides obtained the correct fce/ / .
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However, when Whitesides replaced the center sphere of the model with a larger, 

critical sphere, he obtained what he called the “&„// of the world” problem. The name 

comes from the fact that the world is about critical since it has critical reactors, but 

if you were not near a critical reactor, it would be difficult to calculate the critical 

keff. After 200 active cycles [Dic76], his Monte Carlo estimate of fce/ /  was about 

the same as before. With so few particles, the hot center sphere was not detected. 

In this problem, the fission source shape is very important. It is highly peaked at 

the hot center sphere-very different from a typical initial flat source guess. Once 

the particles can “see” the hot center sphere, the Monte Carlo kej /  estimate begins 

drifting upward toward unity. In addition to the poor sampling in this problem, the 

system has a high dominance ratio, resulting in slow convergence.

2.3.2 Dominance Ratio

The dominance ratio is the ratio of the second highest eigenvalue to the domi­

nant eigenvalue, In a source (or power) iteration method, the dominance ratio 

dictates the rate of the slowest error decay, that of the lowest order error mode. 

When the dominance ratio is near one, the low order error decays very slowly, thus 

requiring many iterations for convergence.

Rate of Convergence for High Dominance Ratios

To demonstrate the relevance of the dominance ratio in source iteration, we in­

vestigate its effect on the rate of convergence. We consider the transport equation,

(2.128)
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where

Ttj> =  to -v j> (r ,E , to )  + <rt(r,E)ij>{r,E,to) , (2.129)

S0 =  j  j  <7,(r, to' • fl, £ '  -► E )^{ r, E \  « ')  dto' dE' , (2.130)

F 0  =  J  J  vfff {r,E')il>{rt E \ t o ,)dto, dE' . (2.131)

We manipulate Equation 2.128 as follows,

1
( T - S ) *  =  -x F ^  

1

(2.132)

(2.133)

and we operate on both sides by F , obtaining an analytic integral transport equation,

1 .

Equivalently,

1

(2.134)

/ = %Lf . (2.135)

where

f  =  / ( r )  =  Fi/> =  fission source ,

L =  F (T  -  S)_1x =  integral fission operator .

(2.136)

(2.137)

The integral fission operator is represented in discrete space by the fission matrix L.

The Source Iteration method is represented by introducing iteration indices to 

Equation 2.135,

/« + > «  =  ^ L / »  ,

y(•'+!) _  y(<+i/2)

_  f L f li)dr h<»I f {i+1/2)dr
"  J fW d r  ~  / / W d r

(2.138)

(2.139)

(2.140)
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This satisfies

n—1

/ w  =  n  T7iTLn/ (G* • (2.141)
«=o KV

The integral fission operator L has distinct eigenvalue solutions,

fm =  -r-L /m  » k = k\ > k2 > kz > . (2.142)
fcm

Suppose the initial source guess for the source iteration, Equations 2.138 to 2.140, 

is a  linear combination of the distinct solution eigenvectors [Lew84],

/ (0) =  £ > / <  • (2.143)
t

Then, from Equation 2.142,

Ln/ (0> =  =  a , i ; 7 i  +  ■ (2.144)
t t> 2

We see see that as n  —*■ oo, k ^  converges to the dominant eigenvalue,

*(«+!) =

where

(2.146)
*r+1 /  («•/> +  E (>1 a ,  (& )”+l / , )  dr

*1” /  ( o . / i  +  £ 0 1  f>) dr
-+ fcj as n —► oo . (2.147)

Also, the fission source converges to the dominant eigenfunction,

( i L) " /<0> =  +  (2.148)

—> a j/x  as n —4 oo , (2.149)

p  =  ^  (2.150)
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is the dominance ratio. Reducing an error of order 1 in Equation 2.148 to order 

£ < 1  requires

N  -  ^  (2.151)log/)

iterations. For example, reducing an error by three orders of magnitude in a  system 

with dominance ratio 0.99 requires 688 iterations.

False Convergence

With a dominance ratio near unity, the source iteration method converges so 

slowly that it may appear to be converged, when in fact it really is not. A typ­

ical measure of convergence is the vector norm-say the £«> norm, the maximum 

value-of the difference between two successive fission source iterates. Then, from 

Equations 2.148 and 2.149, the apparent error at iteration n, an, is

a„ =  /<") _ /(n-i) (2.152)

.  , (2, 53)

whereas the real error at iteration n, rn, is

r . =  a i f i  -  /**> =  - p W j  -  £  ( £ )  a ‘f ‘  ■ (2.154)

Considering only the leading terms of r„ and an and taking the vector norms, we 

see that, for dominance ratios near unity, the real error may be significantly greater 

than the apparent error:

1 M  =  - I — » 1  for 1 - / > < 1  . (2.155)
I k l l  i - p

Two types of systems that tend to have dominance ratios near unity are large 

thermal nuclear reactors and isolated arrays of barrels of nuclear waste. We shall 

demonstrate how the dominance ratio approaches unity as a  reactor becomes larger, 

and as elements of an array are increasingly separated.
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L arge T h erm al R eac to rs

The dominance ratio is an indicator of the neutron communication between dis­

tant regions of the systems: the higher the dominance ratio, the weaker the commu­

nication. In general geometry, the diffusion equation for a homogeneous multiplying 

medium, V,  with zero scalar flux at the extrapolated boundary SV  is

- C v ’ « r ) + M r )  =  y ^ ) , r 6 V , (2.156)

^(r) =  0 , r  6 SV  , (2.157)

where

D  =  =  diffusion coefficient , (2.158)
3E*r

Efr =  — fio'La — macroscopic transport cross section , (2.159)

jio =  average scattering angle cosine . (2.160)

Let us consider, as a solution of Equation 2.156, the solution V 'n (r) of the homo­

geneous differential equation [Dud76]

V 2V>n(r) +  B l M r) =  0 , r  € V  , (2.161)

V>„(r) =  0 , r  € SV  , (2.162)

where the eigenvalues are arranged as Bi < B^ < B3 < • • •, and the eigenvectors are 

orthonormal:

J  rl>n(r)tl>m(r)(Pr = 6nm . (2.163)

Comparing Equations 2.162 and 2.157, we observe that V 'n (r) satisfies the boundary 

condition of the diffusion equation, Equation 2.156, and, upon substitution, becomes

-  D  V 2 ^ n ( r )  -I- S aV»n(r) =  ^ V n ( r )  . (2.164)



42

From Equation 2.161, we see that

-  D v 2 tM r) =  D B M * )  , (2-165)

so Equation 2.164 becomes

D B & „(r) +  EaV’n(r) =  ^ > M r )  . (2.166)

Prom Equation 2.166 we have that the fc-eigenvalues are

kn =  . (2.167)
D B * + Z a v '

The two largest A:n’s occur for the two smallest bucklings, B„ (the eigenvalues of the

homogeneous differential equation). Therefore, the dominance ratio p is

_  k2 E0 +  D B \ ,n ^
■ (2168)

For a one-dimensional homogeneous slab of extrapolated width L, the eigenfunc­

tions of the homogeneous differential equation are [Dud76]

tpn(x) =  cos Bnx , (2.169)

with corresponding eigenvalues

■ (2.170)

Substituting these homogeneous equation eigenvalues (bucklings) into the general 

geometry expression for the dominance ratio, Equation 2.168, we obtain

s .  +  g ( f ) 2 0 S .  + D *

Suppose Et =  1.0, Ea =  0.7 (including fission), E , =  0.3 (isotropic scattering), 

and j/E/ =  0.8. Then Figure 2.4 shows, as the slab width increases, how kef j  increases 

toward &<*> and how the dominance ratio asymptotically increases toward unity.



43
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Figure 2.4: Diffusion theory expressions of the dominance ratio and kej j  show how 
kcf f  approaches and how the dominance ratio approaches unity as 
the homogeneous slab width increases.

Arrays  of  Isol ated Fi ssi onabl e Materi al s

Another type of system that typically has a dominance ratio near unity is an ar­

ray of components, such as separated cans of nuclear waste. Using a one-dimensional 

discrete ordinates code, we consider the effects of increasingly separating array com­

ponents on the dominance ratio. Consider two identical 2 cm slabs of fissionable 

material, each with Et =  1.0, E* =  0.7 (isotropic scattering), and i/E / =  0.8. Fig­

ure 2.5 shows that as the slabs are separated by an increasing width of scattering 

material, communication weakens, the dominance ratio approaches unity, and (in 

this case) kef f  decreases. The very high dominance ratio problems proved to be 

difficult for the code. When the dominance ratio is near one, the first and second 

eigenvalues are nearly the same. In this case, the first two eigenstates become less 

distinct, and the code may try to converge to some linear combination of the first 

two eigenstates.

Effects of Increasing Slab Thickness

Et =  1.0 
Ea =  0.7 
pE/ = 0.6

p=domin&nce ratio
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Effects of Separating Two Slabs
1.3

1.2
keff

1.0
* e // ,  Q 9 

0.8
E t =  1.0 
E , =  0.7 
i/E jue' =  0.5
vE'catUrer _ q Q

p=dominance ratio0.7

0.6

0.5
0 4 6

slab separation, cm.
12 142 8 10

Figure 2.5: Several deterministic discrete-ordinates calculations show that as two 
slabs are separated by an increasing width of scattering material, kcj j  
approaches that of a single slab and the dominance ratio approaches 
unity.

2.4 The Fission Matrix

The fission matrix, L, may be estimated in different ways, for instance, by a 

Monte Carlo calculation, a set of diffusion calculations, or a set of discrete-ordinates 

transport calculations.

A fission matrix obtained from a Monte Carlo calculation is merely a m atter of 

bookkeeping. When a fission source particle is born, its cell of origin is logged, say, 

cell j .  After transport, suppose this particle produces a  subsequent fission source 

particle in cell i. This production would be accumulated for element (i, j ) .  After 

all the particles in the cycle are completed, each element is divided by the source in 

cell j , such that each element { i ,j)  is the probability that a particle born in cell j  

produces a  subsequent fission source particle in cell i,

fission weight produced in i due to a  source in j
=

source in j (2.172)
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  A

The numerator of Ly does not directly contain source normalization. It is the fission 

weight from which source neutrons are sampled, not the actual simulated particles. 

Therefore, an element (z, j )  of the fission m atrix may have a nonzero contribution, 

but because of sampling, no simulated fission neutrons are actually produced in cell 

z. The fission weight is equivalent to  the incremental contributions made to the ke/ /  

estimator. Succinctly, then, the numerators of the fission matrix elements are the 

ke/ /  estimates in cell i due to a particle originating in cell j .  Thus, we may have as 

many different types of fission matrices as we have kej j  estimator types. We may 

have a collision fission matrix, an absorption fission m atrix, and a track length fission 

matrix.

Accumulating Monte Carlo data for a single cycle produces a cycle fission ma­

trix. Prom the cycle fission matrix comes the dominant cycle eigenvector and cycle 

eigenvalue. One may obtain an average cycle eigenvalue over many cycles. The 

problem with the cycle fission m atrix is that it is based only upon the number of 

histories per cycle. The number of histories per cycle may be enough for the M  cells 

in the modeled system, but not enough for good statistics in the Af2 elements of 

the fission matrix. Additionally, the bias in the fission matrix elements, and hence 

the eigenvalue, is more prevalent when the number of histories is small. The bias is 

a manifestation of each fission m atrix element being the ratio of the average of the 

numerator and the average of the denominator. Generally, the average of a ratio is 

not equal to the ratio of the average numerator to  the average denominator [Elp85]. 

Experience has shown that this bias is usually positive, that is, the cycle fission 

matrix dominant eigenvalue is higher than the true eigenvalue.

The cumulative fission matrix diminishes the bias in its elements more so than 

does the cycle fission matrix. Instead of accumulating numerator and denominator
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data over just a single cycle, the data are accumulated over all the cycles up to that 

point. The better statistics in the numerator and denominator result in reduced 

bias in the fission m atrix elements. Even if the fission source is not converged, the 

data accumulated for the fission matrix is expected to be accurate since the fission 

m atrix elements are probabilities. The validity of this statement is diminished when 

the fission source is not adequately sampled. The disadvantage of the eigenvalue of 

the cumulative fission matrix is that it is difficult to estimate its error in a simple, 

traditional manner. Eigenvalues from successive cycles are not independent. An 

attem pt to  propagate the errors through the source iteration determination of the 

dominant eigenstate seem cumbersome. However, some propagated error estimates 

have been proposed [Kap58].

The fission m atrix is also deterministically obtainable. Instead of bookkeeping, 

though, this approach requires a separate fixed source calculation for each cell in 

the system. For a single calculation, a  unit source is placed in one cell. If the 

calculation is a cell-edge diffusion calculation, it may require distributing the source 

between two cell-edges. Upon completion, there is a  system-wide response to that 

unit source in the one cell. Scaled by the fission cross section, this response provides 

one column of the fission matrix. Then the calculation is repeated for each cell in 

the system. In this thesis, we use diffusion calculations instead of discrete-ordinates 

transport calculations, because our ultimate intended use is acceleration and the 

diffusion calculations are faster. Also, in practice, most criticality problems tend to 

have fairly isotropic scattering.

Because the fission matrix resides on a spatially discretized system, it suffers from 

a discretization error. For example, with vacuum boundary conditions, the fission 

m atrix’s flat fission source in the boundary cell overestimates the leakage. Therefore,
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the eigenvalue of the fission matrix is not equal to the true eigenvalue.



CHAPTER III 

Fourier Analysis and Dam ped A cceleration

3.1 Motivation

A Fourier Analysis is a way to determine the stability and speed of convergence 

of an iteration method. If the error for any particular mode, or frequency, grows 

with each iteration, the method is unstable. The rate at which the most dominant 

error mode decays gives the speed of convergence. The analysis requires an infinite, 

homogeneous medium and is only applicable to a  linear method.

We will find that our fission source acceleration methods are unstable, or highly 

oscillatory, if the full additive correction is made at each cycle or iteration. Thus 

we damp the additive correction, adding only a  portion of it. Unfortunately, since 

criticality calculations are nonlinear, we do not have the luxury of using a  Fourier 

analysis to see the stabilizing effects of damping. Instead, we turn to fixed source 

acceleration methods, namely Diffusion Synthetic Acceleration (DSA). If the DSA 

method is discretized in an “inconsistent” way, it may suffer instabilities [Ree71]. We 

will show that damping the DSA additive correction can alleviate these instabilities. 

The discretization that causes the DSA instabilities is similar to the discretization we 

are forced to use in Monte Carlo fission source convergence acceleration. Therefore, 

we use the DSA results as a theoretical foundation for damping the Monte Carlo

48
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fission source acceleration correction.

3.2 Transport Equation

The fixed-source, monoenergetic transport equation with isotropic scattering in 

one-dimensional homogeneous slab geometry is

+  £ .* (* , e) =  . (3.1)

where <f>(x) is the scalar flux. Since the Fourier Analysis requires an infinite, homo­

geneous medium, we will not concern ourselves with boundary conditions.

3.3 Source Iteration

The Source Iteration method comes from introducing iteration indices to Equa­

tion 3.1. Its two steps are

+ = + , (3.2)

*<w ,H*) =  ^ +,/,>(*) a  <()<&* . (3-3)

We want to Fourier-analyze the errors in the Source Iteration method. Denoting the 

error E(x,n)  as the difference between the rj) of successive iterations,

E ^ 2\ x ,  n) =  tJ>M 2\ x , h) -  V>(/- 1/3)(*, /0 , (3.4)

and subtracting Equation 3.2 at iteration £1/2  from Equation 3.2 at iteration £+1/2, 

we obtain

+  s,£l<+l/2>CI , /‘>=  5 s * /! i  • <3-5)

where we have assumed constant cross sections. Equation 3.5 tells us that we may 

interpret i/> and <f> in Equation 3.2 and 3.3 as the iteration errors so long as

Q(s) =  0 . (3.6)
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Recognizing that eiXx is the eigenfunction of the errors and u> the eigenvalue, we 

introduce into Equations 3.2 and 3.3 the following Fourier separation of variables 

ansatz

Q(x) =  0 , (3.7)

=  w*eiXs , (3.8)

,̂(<+1/2) =  , (3.9)

and obtain

° w  “  2 ( 5 ^ 0  • (3' 10)

w =  J^a (fi)d fi  . (3-11)

Substituting Equation 3.10 into 3.11, multiplying and dividing by the complex con­

jugate, and dividing numerator and denominator by E*, we obtain an expression for 

the eigenvalue u> of the method,

"  =  / - i  2(£, +  iXn) ^  =  J . i  2(S? +  p i j i>l (3'12)

-  \ L j r k  • (3-13)

where A is in units of cm-1 in Equation 3.12 and, in Equation 3.13, A is in units of 

mfp“1 and
E,

c = —  = scattering ratio . (3.14)

The maximum eigenvalue, called the spectral radius, of the method measures the 

decay (or growth) of the dominant error mode. A spectral radius greater than unity

implies error growth, or instability, and a spectral radius less than unity dictates the

slowest error decay. For Source Iteration,

sup|w| =  c , (3.15)

so it is stable since c < 1, but extremely slow for c near 1 and A «  0.



3.4 Diffusion Synthetic Acceleration

The idea behind the Diffusion Synthetic Acceleration (DSA) Method is to calcu­

late an approximation to the exact correction to the angular flux at each iteration. 

To that end, the exact correction at iteration I  is

gm ) (x, fi) =  if>(x, /i) -  V’(/+1/2)(*, (i) , (3.16)

where if>(x,fi) is the exact angular flux satisfying the transport equation in a homo­

geneous medium,

Q 1 1
fi) +  %tif>(x, fi) -  ^ +  -Q (x)  , (3.17)

<f>(x) =  J  ̂ ip(x,fi)dfi . (3.18)

Subtracting Equation 3.2 from Equation 3.17 yields an equation for the exact cor­

rection,

M) +  E tf<<+1)0r. li) - ^ • j l s ,<+1)(1.

=  i s .  { ^ \ x )  -  * » (* ) )  , (3.19)

where

^+1/2)(X) =  . (3.20)

Solving Equation 3.19 for g t̂+l^(x,fi) and adding it to the most recent angular flux 

results in the exact angular flux;

il)(x, fi) -  V’(m /2,(®, fi) + g(t+1)(x, fi) , (3.21)

and the calculation is finished. Unfortunately, Equation 3.19 is just as difficult to 

solve as the original Source Iteration problem, Equation 3.2. Therefore, we take the
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diffusion approximation of Equation 3.19. First, we define

=  £  fing{t+1)(x, V-W  (3.22)

and assume that the exact correction is linear in angle,

j  (/{ '+ '’(* )+  3ftf!W>(z))) . (3.23)

Operating on Equation 3.19 by

J j - W  (3.24)

and

/ '  t i - W  > (3.25)

we obtain

+ a j T " ^ )  -  s . / r i)( i)

=  E . (fl>«'+,/J»(i) -  # '>(*)) , (3.26)

and

£  £  / iV '+"(x , +  S , / r ’(z) =  0 . (3.27)

Using the linear approximation of g , Equation 3.23, in Equation 3.27 produces an 

expression for / j ,

^ ’W — . (3.28)

which, when substituted into Equation 3.26, yields the diffusion approximation to 

Equation 3.19, the acceleration equation,

-  E. (*<<+,' J>(x) -  #M(*)) . (3.29)
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The DSA method, without considering boundary conditions, consists of a trans­

port source iteration, Equation 3.2; calculating the most recent scalar flux,

^(t+1 / 2 ) ^ )  = j  ^{< + i/2)(a.yfi)dfi ; (3.30)

calculating the correction from Equation 3.29; then applying it to the most recent 

scalar flux

4> W (x)  =  +  / £ +1) ; (3.31)

and continuing this sequence until convergence.

As was performed for the Source Iteration method, we may Fourier analyze the 

DSA method (assuming constant cross sections) and obtain [Lar84]

u> = cA2 1 [ 1 Pa (/*) 
A2 +  3(1 -  c) J J-1 1 +  A2/*

-d a  (3.32)

[ s tA2 +  3EaJ J - \  1 +  A2/x2 ' ( ^

Here P ^n )  is the second Legendre polynomial,

f t W  =  ■ (3.34)

The spectral radius of the DSA method is less than or equal to 0.2247c [Lar84], so 

it is stable and converges for all c. The eigenvalues of both the Source Iteration and 

DSA methods are shown in Figure 3.1. One can see tha t DSA entirely removes the 

low order (A =  0) error modes. These are the modes with which Source Iteration has 

the most difficulty. Additionally, the DSA eigenvalue is always less than the Source 

Iteration eigenvalue for all a;, so DSA will always converge faster.

3.5 Consistently Discretized DSA

The analytic equations for the Source Iteration and DSA methods are useful only 

to a certain degree. Systems more complicated in the way of materials and geom-
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Fourier Analysis of Analytic 51 and DSA

1.0

Source Iteration (SI)0.8  -

c=1.00.6
M

0.4

0.2
DSA

2.0 4.0 8.00.0 6.0 10.0
A

Figure 3.1: Eigenvalues of the Source Iteration and DSA methods for c=1.0.

etry require discretizing the analytic equations and solving them on a computer. 

How does one go about discretizing the transport and diffusion equations in DSA? 

It turns out that independently discretizing each equation, using one’s favorite dis­

cretization schemes, may lead to instability when the mesh sizes are greater than 

about 1 mfp. In 1977, Alcouffe [Alc77] showed that DSA is unconditionally stable 

for the diamond-differenced <Sjv if the diffusion equation is discretized consistently 

with the transport equation. Instead of deriving the analytic DSA equations and 

independently discretizing the transport and diffusion equations, the diffusion part 

of the DSA equation is derived from the discretized transport equation. Larsen de­

vised a four-step method of consistently deriving the discretized DSA equations for 

other transport differencing schemes [Lar82]. The spectral radius of the consistently 

discretized DSA schemes are the same as the analytical DSA, namely 0.2247c, for all 

mesh sizes.
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3.6 Inconsistently Discretized DSA

With the previous paragraph having little good to say about inconsistently dis­

cretized DSA, why on earth would anyone use it? There are at least two good 

reasons:

•  The system being modeled is complicated such that the consistently discretized 

DSA equations are simply not practical, or

•  A deterministic method is being used to accelerate a Monte Carlo transport 

method and the equations are inherently inconsistent.

The last item suggests that instabilities may exist when trying to accelerate Monte 

Carlo with a deterministic correction. We show here that this damning quality of 

inconsistently discretized DSA is stemmed by damping the DSA correction.

Analytically, the damped DSA equations are

+  SW<'+,/:1W )  =  i s .# ' * ! * )  +  5<?(z) , (3.35)

<f>(e+l/2){x) = J l̂ i+1/2)(x,n)dfi , (3.36)

-  £ w , i i f r ) ( x ) + -  * " w )  ’ (3-37)

jP + V fa ) =  ^ (/+l/2)(x) +  f i $ +1) , (3.38)

where fi in Equation 3.38 is the damping factor that defines the method:

fi  =  0 Source Iteration , (3.39)

0 <  fi < 1 Damped DSA , (3.40)

f i=  1 DSA . (3.41)
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Now we spatially discretize our system such that Xj are the centers and Xj+1/2 are 

the edges of uniform cells of width h. The angular variable is discretized using the 

5jv (N  even) Gauss-Legendre quadrature set such that

Hdfi «  52 > (3 .4 2 )
m =l

=  - / / y v - n + l  , ( 3 .4 3 )

Wm =  W jV-n+1 1 (3 .4 4 )

N
2 =  52 ’

m =l
(3 .4 5 )

where wm is the weight (approximating dp) and (im approximates fi in the m th an­

gular bin. Discretization of the transport equation requires auxiliary equations to 

relate the cell edge angular fluxes to the cell center angular fluxes. These auxiliary 

equations constitute a differencing scheme. Many differencing schemes exist, but 

we will look solely at the Diamond Differencing scheme, where the cell center an­

gular fluxes are the average of the two cell edge fluxes. The diffusion equation is

centrally differenced. The inconsistently differenced, damped DSA equations for a

homogeneous medium are as follows:

A/,(<+l/2) ,/.(*+l/2) \ y  .(<+1/2) __ .(/) , i n . /q

=  - (3-47)

, ( 3 .4 8 )
n = l

-  3 ^ 5  ( / j «  ’ -  2 / j ' + ,» +  / £ ” >) +  =  E .  ( * ? + V 3) -  * < ° )  , ( 3 .4 9 )

. ( 3 .5 0 )

Into Equations 3.46 through 3.50 we introduce the Fourier separation of variables 

ansatz,
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(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(where the zero source appears because the fluxes are interpreted as flux errors), and 

dividing by

(jjleiXxi , (3.57)

Qi = 0 ,

=

I.
+ ** --, IO = J a meiXx’ ,

Vmj+1/2 = w<6mea ^+l/a

^ + 1/2) = u/ue’**J ,

= u)tveiXxj ,

we obtain

-  e -“ *'2) +  E,om =  y  , (3.58)

am =  '-b m ( e W  + , (3.59)

N

« =  ]C  • (3'6°)
n = l

"  3 ^ V -  2 +  e" 'Ak) +  S,V =  E‘(“ “  X> - <3-61)

10 = u +  &v . (3.62)

Setting

0 =  Xk/2 (3.63)

and making use of the identities

eie -  e~iB
sin0 = -----—----- , (3.64)

2x
4 . e -i&

cos 0 = -----    , (3.65)
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we find that
E, ^  cos 0

u = ^ ~ l ^  — m — 4— r  ~ a w™ (3-66)2Et “ j cos2 6 +  sin 0

and
_ ( K + 0 2 .  + 3 f c * i n ’ e ) u - 0 Z .

E . +  3E|j lSm2« ' ( ’67)

Unlike the analytic eigenvalue, the damped DSA eigenvalue is periodic with pe­

riod
Oip

T  =  y  , (3.68)

so we consider |A| < ^, or 0 <  A <  j .  At the lowest frequency, A =  0, the eigenvalue 

w, from Equation 3.67, varies linearly with /?,

u>U=o =  ( l - / J ) | ^  , (3.69)

from u> = 0 for DSA and o> =  c =  ^  for Source Iteration. At the highest, most 

oscillating frequency, we find

M » -t =  y  f V  ■ (3-70)
3EIF

In order for the method to be stable, we must have the spectral radius less than or 

equal to 1. This stipulation limits the mesh size according to the following equation:

J.2E ? ((^  +  l ) | l - l ) < |  . (3.71)

We delightfully see from Equation 3.71 that damping the DSA allows stability with 

larger mesh sizes.

Figure 3.2 shows that, for a mesh size of 4/3 and c =  ^ = 1 .0 , the Source Iteration 

method (/? =  0) converges slowly for the low frequencies and that DSA (/3 =  1.0) 

becomes unstable at the high frequencies. Damping eliminates the instability at the 

high frequencies for & =0.2, 0.4, and 0.6. Stability has the compromising price of
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Fourier Analysis of Damped DSA
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c=1.0, A'=32, h=4/31.2
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Figure 3.2: The inconsistently discretized, damped DSA eigenvalues for various fre­
quencies A and damping factors /?.

reduced acceleration. The optimal /3 accelerates the most without going unstable. 

Figure 3.3 shows the DSA spectral radius from the Fourier analysis. The optimal 

beta-the beta for which the spectral radius is minimized-is about 0.429.

Figure 3.4 shows how, at the highest frequency A =  increasing the mesh size 

k  for /? — 1.0 will induce instability at a little over a mean free path thick. Damping 

(decreasing (3) allows larger mesh sizes. For comparison, Figure 3.5 shows that the 

threshold mesh size is more advantageously sensitive to the scattering ratio (with 

/?=1.0) than to /?. That is, assuming the scattering ratio is variable, the method 

stabilizes faster for decreasing c than for decreasing /3. This behavior is verified by 

Equation 3.71.

3.7 Numerical Results

To verify the results of the Fourier analysis, we demonstrate, as a function of 

mesh size, the stability of the following methods using Diamond Differencing:
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Analytic Spectral Radii for Damped Inconsistent DSA
2.0
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Figure 3.3: The spectral radii for inconsistently discretized, damped DSA eigenvalues 
for various values of /?. The optimal beta is depicted at about 0.429.

Fourier Analysis of Damped DSA
3.0

=  1.0
2.5

c=1.0, A'=32, A =  ir/h2.0
0.0

M
0.4

1.0

0.5

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
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Figure 3.4: Damping the inconsistently discretized DSA allows for larger mesh size 
before instability sets in.
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Scattering Ratio Effect on DSA Stability
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c =  1.0
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Figure 3.5: For inconsistently differenced DSA (>9=1.0), the scattering ratio has a 
larger effect on the threshold (to instability) mesh size than does /?.

•  unaccelerated Source Iteration,

•  accelerated with consistently differenced DSA, and

• accelerated with inconsistently differenced DSA,

•  0  =  1.0

•  /3 =  0.6

•  /? =  0.4.

We analyze a  40 mfp homogeneous slab with a nearly normal incident beam on the 

left edge. Using an S32 quadrature set, the incident angular flux, %j>o,m is

V’Q.m =_  °m,32
!

/*32^32
(3.72)

such that the current is unity. The right edge of the slab is a  vacuum. The scattering 

ratio of the slab is 1.0. Using a  convergence criterion of 10-8 for the relative error, we
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use mesh sizes of 0.0625 cm, 0.125 cm, and so on, doubled, up to 8.0 cm, for a total 

of 8 cases. The unaccelerated source iteration took approximately 3080 iterations 

to converge for all cases, except for the 8.0 cm mesh size, where it required 3400 

iterations to converge. Figure 3.6 shows the experimental spectral radii for both the 

consistently and inconsistently discretized DSA. The expression for estimating the 

spectral radius is
IU<»> -  /A(n-1)IL

(3.73)

where || • H2 denotes the £ 2  norm. For the full correction, 0  =  1.0, the inconsistently 

discretized DSA is unstable for mesh sizes of 1.15 cm and larger. For larger mesh 

sizes, damping instills stability, whereas it diminishes the gain for smaller mesh sizes.

Stabilizing Effects of Damping Inconsistent DSA

spectral
radius

1.0
8  = 0.05

0.1 8 =  1.0
Consistent DSA

0.1 1.0
mesh size, cm.

Figure 3.6: The experimental spectral radii for inconsistently discretized, damped 
DSA for increasing mesh size and for various values of 0.

For a specific mesh size, there is an optimal 0  that results in the minimum spectral 

radius. Figure 3.7 indicates that the optimal 0 is about 0.4. This figure generally 

agrees with the plot of the optimal 0  from the analytic Fourier analysis, Figure 3.3.



63

2.0

1.8

1.6

1.4
1.2

spectral , n 
radius

0.8
0.6

0.4
0.2
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Figure 3.7: For a mesh size of 4/3 mfp, an optimal /? exists such that the spectral 
radius is a minimum for inconsistently discretized DSA.

We conclude by noting that if a cell-edge differencing scheme was used for the 

diffusion equation in DSA instead of a cell-center differencing scheme, the method 

would have a wider range of stability. To apply the DSA correction, the cell-edge 

corrections are averaged before adding to the transport flux, which reside on the 

cell centers for diamond-differencing. The result of averaging the corrections is the 

reduction of the high order errors, those that cause the method’s instability.



CHAPTER IV

Experimental Fourier Analysis Tool

We have demonstrated the analytic Fourier Analysis applied to Diffusion Syn­

thetic Acceleration. The analytic Fourier Analysis is not directly applicable to real 

problems because it requires an infinite, homogeneous medium. Moreover, it requires 

a linear method. These reasons exclude it from application to criticality problems.

We present an experimental Fourier analysis that, in the vein of the analytic 

analysis, indicates the stability and convergence of the various modes of the solution. 

In one-dimensional slab geometry, the fission source f (x) ,  0 <  x  <  2L, may be 

represented by the Fourier series [Spi68]

Y  +  ( anC0S“ Z~ +  6nSin“ Z“ )  ’

where the series converges to f ( x )  where f ( x )  is continuous, and to the average 

of f ( x )  where f ( x)  is discontinuous; f ( x)  is periodic on the interval, such that 

f ( x  + 2L) =  /(a?); and the coefficients are

°n ~  x  Jo cos ~ j r dx ’

6n =  { / o /(a:) sin da; . (4.3)

In Equation 4.1, the n =  1 terms represent the fundamental mode, and n >  2 

represent the higher modes. Note that, for each n, the sine and cosine may be

64
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written as [Kap84]

A n s \ n ( ^ -  + ^ j  , (4.4)

where

An = >/°n +  bl  > (4*5)

an = A n sin 7  , (4.6)

bn = A n cos 7 • (4.7)

Computationally, to gauge the convergence of the various modes of the fission 

source, we extract the individual Fourier coefficients of the fission source in a fashion 

similar to that of Equations 4.2 and 4.3, utilizing Equation 4.5. Let us consider a 

one-dimensional slab of width X  with M  cells, each of width A z, and discrete values 

of the fission source in cell m  at iteration, or cycle, t. The Fourier coefficient for 

the nth mode at iteration, or cycle, t  is

(4-8)

a  I c L  / ,<>(I ) s in - J p <b. (4.9)

where n =  1, 2,

Plotting the Fourier coefficient of a particular mode as a function of iteration, or 

cycle, we observe the convergence of that mode when the plot levels off. The slope 

of the plot as it is converging gives an idea of the speed of convergence. However,

unlike the usual Fourier analysis for an infinite medium, the boundary effects here

keep the modes from being entirely independent.

We will use the experimental Fourier analysis to gauge the convergence of both 

deterministic and Monte Carlo criticality methods, and to show the effects of accel­

erating the fission source convergence.



CH APTER V

Diffusion-Sim ulated M onte Carlo Calculations

It is no secret that the statistical noise is the main culprit plaguing a potential 

Monte Carlo criticality acceleration method [Swa72]. Pedagogically then, let us 

investigate potential Monte Carlo criticality acceleration methods using diffusion 

theory to simulate the transport theory. This was the route taken by Carter and 

McCormick [Car69] to examine their proposed Monte Carlo acceleration method. 

Diffusion theory possesses no statistical noise, but the success of an acceleration 

scheme in diffusion theory gives an indication of potential success in transport (Monte 

Carlo) theory.

Realizing the success of Mihalczo [Mih67] with the fission m atrix approach (that 

is, simply using the eigenvalue of the fission matrix), Carter and McCormick incor­

porated this information into the actual criticality calculation. After each iteration, 

they adjusted the newly acquired source in each cell by the ratio of that cell’s fis­

sion m atrix eigenvectors from successive iterations. We will explain their method, 

propose a modification to their method, and compare both to the unaccelerated case.

Carter and McCormick present the continuous, analytic, integral transport equa­

tion as

S(r) =  l f  K(r, tJ)S(r')<Pr' , (5.1)

66
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where ,9(r) is the iission source, k is the eigenvalue, and K{r, r') is the number of 

fission source particles produced per unit volume about r due to a particle born at 

r' [Car69] Introducing iteration indices produces an analytic source iteration scheme 

representing the Monte Carlo method,

£(")(r) =  J L  J  K{r, d V  . (5.2)

The kernel K{r, r') is approximated in discrete form by the fission matrix l / n) whose 

(i, j ) th  element, at iteration n, is

,(„> Si f j K ( r ’ r ')S (n-11(r') <fV <Pr 
•’ -  / ,■ & -» ( r-Jd V  ’ l )

where the indices on the integrals indicate the volume of cell i or j .  The fission 

matrix l / n) depends on the fission source at iterations n and n — 1, so it, too, is 

iteration dependent. is analogous to the cycle fission matrix in Monte Carlo. 

The eigenstate of satisfies

• (5-4)

Here /M  is the dominant eigenvector and k ^  is the dominant eigenvalue of l / n) at 

iteration n.

Carter and McCormick proposed, without derivation, the following acceleration 

method:

S WM  =  . (5.5)

We propose a slight variation to Carter and McCormick’s method by replacing 

the correcting ratio in Equation 5.5 with

( £ ) •
(5.6)
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to obtain

S « (r ) = £  f | ^ J | K ( r , r ' ) S ' - ' H r y r '  , (5.T)

where

S f " 1̂  /  £<*-*>(r')dV (5.8)
J j

is the cell-averaged source in cell j  at iteration n. This modification ties the acceler­

ation more closely to the source being accelerated. The correcting ratio modifies the 

magnitude of the fission source in each cell and the transport kernel K  controls the 

shape of the fission source within each cell.

The kernel K (r, r') represents Monte Carlo or deterministic, say discrete ordi­

nates, neutron transport. Numerically, let us represent K (r,r') by a fine-grid fission 

matrix, K , whose elements are K{j, We calculate K  by a series of fixed-source dif­

fusion calculations. Each calculation has a unit source in one cell. The response to

that unit source is converted from a scalar flux to a fission source by multiplying 

by vtTj. One calculation with the source in cell j  produces the j th  column of K. 

If there are N  cells in the system, N  calculations are required. The unaccelerated 

source iteration method is represented by

= ^ E • (5-9)

We effectively normalize the source iteration by dividing the right hand side of Equa­

tion 5.9 by k^n\  given recursively by

/ S ( ”-i)(r ')< p r' • ( )

The coarse-grid fission matrix is obtained from Equation 5.3 as a  fission source- 

weighted collapse of the fine-grid fission m atrix,

Z Je,

“ •  E * ,s r ‘ • (M1)
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For instance, if there are 4 fine cells and 2 coarse cells, with coarse cell 1 containing

fine cells 1 and 2, and coarse cell 2 containing fine cells 3 and 4, the first row of L is

,M (Ktt +
"  ~  S'"- ■> + 4 " - ‘> ’ 1 '

, ,„) (tfl3 + *23)4”- l> + (*M + J M S f-"

We investigated these two acceleration methods on a one-group, one-dimensional 

slab of thickness 60.0 cm with vacuum boundaries. The physical parameters, with 

isotropic scattering, are

E* =  1.0 cm-1 , (5.14)

E« =  0.3 cm"1 , (5.15)

i/E/  =  0.30713574 cm-1 . (5.16)

This constitutes a critical system when the slab is 20 mfp thick [Kap74]. The slab 

was made larger so as to incur a larger dominance ratio of about 0.991. To make the 

acceleration more visible, we began with a very poor initial fission source distribution: 

flat in the left half of the slab and zero in the right half. The convergence requirement 

was 1.0 x 10~6 and false convergence was taken into account, by multiplying the 

convergence requirement by (1 — p), where p is the spectral radius, estimated by

IISC +D -SC O ll,

p ~  H S M - j i - y i u  ‘

The fine-grid fission matrix is calculated on 0.5 mfp cells, or 120 cells total.

Figure 5.1 shows the number of iterations required for convergence for varying 

numbers of coarse-grid cells. For too few coarse-grid cells, there is not enough res­

olution to provide significant acceleration. For too many coarse-grid cells, the poor 

initial fission source guess makes more of a significant impact on the coarse-grid
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fission matrix and inhibits acceleration. The modified method has a much greater 

range of effectiveness over the number of coarse-grid cells. With the number of com-

IteratioDB to Convergence

1000
Carter-McCormick — 

Modified Carter-McCormick *♦<— 
Source Iteration

number

iterations

100

10 20 30
number of coarse-grid cells

0 40 50 60

Figure 5.1: Acceleration behavior (iterations to converge) for the Carter-McCormick 
and Modified Carter-McCormick methods with varying number of coarse- 
grid cells.

putational operations going up as N 3 with the number of coarse-grid cells, N ,  fewer 

iterations with a larger matrix may take more computer time. The computer times 

on a Sun SPARC20 workstation are shown in Figure 5.2.

We shall also look at the experimental Fourier mode convergence for the unaccel­

erated case, the Carter-McCormick method with 4 coarse-grid cells, and the Modified 

Carter-McCormick method with 10 coarse-grid cells. Figures 5.3, 5.4, and 5.5 show 

the convergence of the first three experimental Fourier modes. They show that the 

Carter-McCormick method is wildly oscillatory before it converges. The Modified 

Carter-McCormick method is also oscillatory, but to a  lesser degree.

In the next chapter, we discuss damping, or reducing an additive correction to 

keep an acceleration method from becoming unstable. If it should become necessary
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Figure 5.2: Acceleration behavior (computer time) for the Carter-McCormick and 
Modified Carter-McCormick methods with varying number of coarse-grid 
cells.

for stability reasons to damp a multiplicative correction 7 , we note that it may be 

damped, or made closer to unity, by the following operation:

r + n
7 ^  , (5.18)

where r  > 0.
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Figure 5.3: Convergence of the first experimental Fourier mode for the unaccelerated, 
Carter-McCormick, and Modified Carter-McCormick methods.
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Figure 5.4: Convergence of the second experimental Fourier mode for the unacceler­
ated, Carter-McCormick, and Modified Carter-McCormick methods.
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Figure 5.5: Convergence of the third experimental Fourier mode for the unacceler­
ated, Carter-McCormick, and Modified Carter-McCormick methods.



CHAPTER VI

Fission Matrix Acceleration Method

Criticality calculations utilizing unaccelerated source iteration require many iter­

ations or cycles to converge the fission source for high dominance ratio problems. We 

wish to remedy this downside of source iteration by devising a method to accelerate 

the fission source convergence. The approach we take is to derive equations for the 

exact corrections to the fission source at any iteration or cycle. After adding the ex­

act correction to the fission source, we arrive, in one iteration or cycle, at the exact 

solution, and the calculation is finished. However, realizing that solving for the exact 

correction is just as difficult as the original problem, the equations for the correction 

are approximated in some fashion so that they are much simpler to solve. W ith an 

approximate correction, the overall method will not converge in one iteration, but it 

can accelerate convergence and overcome the extra time spent computing the cor­

rection. This procedure is common. Diffusion Synthetic Acceleration is an example 

of this approach.

6.1 Derivation of the Fission Matrix Method

For clarity and continuity, we repeat the steps for obtaining the integral transport 

equation. We begin with the monoenergetic, one-dimensional integro-differential
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transport equation with isotropic scattering. We consider a slab of width L with 

vacuum boundaries,

+  ̂= \  (S-(*)+ ̂ f ') J  M l*  » (6<1)

^(0,/i) =  0 ,  n > 0  , (6.2)

= 0 ,  ft < 0  . (6.3)

For simplification, we define the transport operator T as the leakage and collision 

terms,

TV»(z,/0 =  ~  +  S«(a)^(a?, ̂ ) , (6.4)

the scattering operator S as the inscattering term,

S^>(x,/i) =  ^E,(a:) j  tf>(x,fi)d(i , (6.5)

and the fission operator F  as the fission source,

Ftp(x,(t) =  ~ — J  ij)(x,ft)dn . (6.6)

We manipulate the transport equation, first by moving the inscattering term to the 

left hand side,

(T -  S)if)(x, fi) -  tk{x, fi) , (6.7)

then operating on both sides by (T — S)-1, to obtain

V>(*. *0 =  J ( T  -  S ) - 'F ^ ( i ,  M) • (6.8)

Operating on both sides of Equation 6.8 by the fission operator F, we obtain an 

integral transport equation,
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where

f ( x )  = Fij>(x,ii) (6.10)

is the iission source, and

L =  F (T  — S)-1 (6.11)

is an integral operator acting only on the spatial variable. (We approximate L by 

the fission matrix, as we shall see later.) The integral form of the transport equation 

in Equation 6.9 best describes the Monte Carlo criticality method. It is also fitting 

for a type of diffusion calculation where the operator L is approximated by a matrix 

whose elements are estimated by diffusion theory.

The analytic form of the source iteration method is represented by introducing

iteration indices to Equation 6.9, the integral transport equation,

=  P f  , (6.12)

f(t+1) _  f(t+±) (6.13)

We desire the exact additive correction, to the most recent source iteration

fission source, that results in the exact fission source. Using Equations 6.9

and 6.12, we formulate <7̂ +1) as follows:

gi‘+i) =  /_ /(* + !>  (6.14)

=  (6.15)

=  I l ( / - / < <H )) +  I l /<<H > - /< /+*> . (6.16)

Collecting the <7̂ +1) terms on the left and rearranging the right hand side, we obtain
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( I - i L ) / +1> =  (6.17)

=  ( i L - I ) / < /+±> (6.18)

=  (6'19)

=  *WL <6'2°)

=  • (6 '21)

This is an exact equation for the additive correction to the most recent fission

source estimate, This equation is as complicated and difficult to solve as the

original problem in Equations 6.12 and 6.13. Therefore, we shall approximate it.

We must approximate the analytic quantities in Equation 6.21. The quantities

are all densities of fission source particles at x. (The 

correction g is more appropriately a fission source correction density.) We convert 

the fission source particle densities to vectors of cell-average quantities by discretizing 

the system, operating on them by the projection operator P , and normalizing, such 

that, in cell j ,

j f  =  P ,/<«(*) , (6.22)

f i w m  _  _ (6.23)

The projection operator P  in a deterministic calculation amounts to integrating in 

space over cell j ,

j j t )  =  =  /  / « ( , ) *  . (6.24)
J x € j

In a Monte Carlo calculation, the quantities f ^ ( x )  and f^e+̂ ( x )  are collections of 

particles whose discrete locations are represented by 2^  and The Monte
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Carlo projection operator amounts to summing up the fission source particles in cell

jj

; i«  =  P M0/W(a;) =  ^ %is ) (6.25)

where
1 , xf* G cell j

(6.26)
0 , otherwise .

7«<*> =

The operator L is approximated by the fission matrix, L, whose (i, j ) th  element is 

the probability that a neutron born in cell j  produces a subsequent source neutron in
A

cell i. In a Monte Carlo calculation, L may be estimated from the Monte Carlo data 

by mere bookkeeping during the calculation. Another way to estimate the fission 

matrix is through a series of diffusion calculations. Each diffusion calculation has a

source in the j th  cell and the fission production over the entire system produces the

j th  column of the fission matrix. Whatever way it is calculated, the fission matrix
A A

has dominant eigenvalue k and eigenvector / ,  such that

A  1 A  A

/  =  t L /  . (6.27)
k

We will also find the adjoint eigenvector useful. It is obtained from the adjoint fission 

matrix, which is the transposed fission matrix, since the elements of the fission matrix 

are all real. Therefore, we have

r  = i t 'r  . (6.28)
k

Substituting the aforementioned approximations for their analytic counterparts, 

Equation 6.21 becomes

(I -  =  L -  ^ / « > )  , (6.29)
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where ^ /+1) =  — f^i+^  is the cell-averaged correction. Since is known,

solving for is equivalent to solving for the updated fission source.

Unfortunately, Equation 6.29 does not automatically have a solution. Utilizing 

the Predholm-Alternative Theorem [Kre78], we obtain a solvability condition by tak­

ing the inner product of both sides of Equation 6.29 with the adjoint eigenvector,
A___

/*. The left hand side is, by Equation 6.28, identically zero,

( / • ,  ( I - / <' +*>) )  =  ( ( I - i i , - ) / ' ,  (/< '«> -/< '+ *> )) (6.30)

=  0 , (6.31)

giving us the solvability condition,

*”  -  ‘‘" 'tfS S 1

(/•,/< '» )

For arbitrary discrete vectors a and 6, we define the inner product as

J

(a, &) =  ] £  • (6.35)
»=i

Using the value of k î+1  ̂ from Equation 6.34 in Equation 6.29, we solve for <7̂ +1), 

the additive correction. The value of the additive correction is not unique, since any 

multiple of the fission matrix eigenvector, / ,  added to the correction is also a  solution 

of Equation 6.29. Therefore, we make g t̂+1  ̂ unique by requiring it to be orthogonal 

to the adjoint fission matrix eigenvector. Operationally, this condition is satisfied by 

setting the additive correction to gtf+i\  where

h i m  _  £«+i) _  , (6.36)
KJ yJ )
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such that

=  ( r , 9 lM ) ) - ( f \ 3 (W )) (6.37)

=  0 . (6.38)

The additive correction is used to update, or accelerate, the most recent 

fission source. As explained in Chapter III, the correction is scaled by a “damping”

factor /?, 0 <  /? <  1, to enhance stability. The resulting method is unaccelerated

source iteration with /? =  0, and full acceleration with /? =  1. The additive correction 

is converted to a multiplicative correction by the following approximation,

_  /('+*) +  pg(t+i) (6.39)

« •  (m o )

In a deterministic calculation, the fission source is multiplied by the multiplicative 

correction factor. In a Monte Carlo calculation, depending on the departure of the 

multiplicative correction factor from unity, the individual fission source particles are 

either killed, cloned, or left untouched.

The analytic fission matrix acceleration method is unbiased. It converges to 

the unaccelerated result since the right hand side of Equation 6.29, and hence the 

correction, go to zero as the source converges.

The steps for the fission matrix acceleration method are summarized as follows:

1. Perform a transport cycle, Equation 6.12,

/ ('+i) =  • (6.41)

2. Calculate the eigenstate of the fission matrix and adjoint fission matrix,

*  1  »  a  1  A  A

/  «  t L /  , r  =  i l ' T  ■ (6.42)k k



3. Calculate the solvability condition from Equation 6.34,

*«+■) _  *’) . (6.43)
( / • , / « )

4. Calculate the fission source correction using Equation 6.29,

(I -  * L)5<"'> =  L -  ^ / * > )  . (6.44)

5. Apply the correction using Equation 6.40 ,

/ ( '« )  *  ( l  + .  (6.45)

and return to step 1 for another cycle.

6.2 Obtaining and Using the Fission Matrix

A
The fission matrix, L, may be computationally obtained in a number of different 

ways as described in Section 2.4. We will focus on the Monte Carlo and diffusion 

fission matrices. Any type of fission matrix may be used to accelerate any type of 

criticality calculation. A Monte Carlo-obtained fission matrix may be used to accel­

erate a Monte Carlo calculation. A diffusion-obtained fission matrix may be used to 

accelerate a diffusion calculation or a Monte Carlo calculation. Other combinations, 

though not necessarily practical, are possible.

Using a cumulative Monte Carlo fission matrix results in a fission matrix, available 

while the calculation is in process, that statistically improves in accuracy each cycle. 

The Monte Carlo fission matrix is easily accumulated on the typically complicated 

Monte Carlo cells; it does not require a regular spatial grid.

If a series of diffusion calculations is used to estimate the fission matrix, that set 

of calculations need be performed only once at the beginning of the computation, 

thereby eliminating step 2 of the fission matrix method at every cycle. The diffusion 

fission matrix has the advantage of containing no statistical noise.
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6.3 Filtering the Monte Carlo Statistical Noise

Implementing fission matrix acceleration in a Monte Carlo calculation may also 

require “filtering” the statistical noise, whether the fission matrix is from Monte 

Carlo or diffusion. The statistical noise occurs in the driving term -the residual of 

successive fission sources-of the correction equation, Equation 6.40. The statistical 

noise tends to have a high frequency which can affect lower frequencies through the 

acceleration and induce instability. We discuss three ways to filter the statistical 

noise:

•  diffusion filter

•  looping

• chopping

-  local

-  global .

The diffusion filter (for Monte Carlo) selectively smooths the high frequency 

fluctuations in a function, say, p(x). The strength of the filter depends on a user- 

chosen parameter a 2  and produces the smoothed function, say, 7 (1). The filter 

equation is a second-order, diffusion-like equation:

+  l i x ) =  Pi*) ’ (6.46)

7(0) = 7(1) =  0 . (6.47)

The filter behaves like the diffusion equation. It smooths out high-order fluctuations 

in a function while leaving the low-order components untouched. It preserves the
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zeroth moment of the function (or, conserves the neutrons). An assumed form of

? ( * )  =  e ” *  , ( 6 .4 8 )

demonstrates how the smoothed function 7 (x), the solution of Equation 6.46, has 

damped high frequencies:

=  1 + \aX ) 2  ‘ (6,49^

The filter allows low frequencies (A as 0) of p(x) to pass by unscathed, whereas the 

filter suppresses high frequencies of p(x).

The smoothing operation defined by Equation 6.46 is applied to and

on the right side of Equation 6.29. Note that to apply the diffusion filter, we must 

impose a spatial grid and discretize Equation 6.46.

There are many, many other kinds of filters similar in spirit to the diffusion filter. 

One filter might simply consist of replacing a value at a point with the average of it 

and all the surrounding values.

The other two filters, looping and chopping, are more specific to our acceleration 

methods. Looping is an attem pt to filter the driving term  of the acceleration equation, 

Equation 6.29, by multiplying it by the fission matrix n times. The acceleration 

equation then becomes

(I - “ ($"*■ -  m h  ■ <6-50>
The effect of multiplying the right hand side by the fission matrix is to damp out 

the high frequencies, just as the hyperbolic transport equation does. However, larger 

values of n produce more filtering, or damping, and, adversely, less gain in accelera­

tion. More than likely, there are problematic optimal values of n. We did not make
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a lot of use of this filter, because, in one-dimensional slab geometries, the diffusion 

filter seemed more effective. Looping is attractive in problems with complicated 

geometries because it does not require a regular spatial grid.

Local chopping is the simple task of limiting the multiplicative correction, 

to below a ceiling of a and above a floor of 1/a, where a is real and a > 1. Local 

chopping may produce a bias because it does not preserve any qualities of the correc­

tion; portions of the correction may be limited according to a, while other portions 

are not limited. Note that, even when local chopping is not employed, zero always 

acts as a floor because we do not keep track of negative particles.

Global chopping is similar to local chopping, except that it determines the damp­

ing factor, /?, that keeps the most offending multiplicative correction (the smallest or 

largest) above the floor or below the ceiling. Then it recalculates the entire correc­

tion with this value of 0. While global chopping does not instill the bias that local 

chopping may, its acceleration gain may be seriously diminished.

Whatever type of filtering is used, it is not independent of the damping factor 0. 

In Equation 6.40, 0  damps out the correction for all frequency modes. If filtering is 

absent, a lower value of 0  may damp the offending high frequencies, but it also cuts 

back the low-order gain in acceleration. If filtering does its job and smooths the high 

frequency noise, 0  may be increased, resulting in stability and greater acceleration. 

It is evident that there are, interdependently, optimal degrees of Altering and values 

of damping.

6.4 Test Problems

We consider three different monoenergetic, one-dimensional slab geometry prob­

lems, each with isotropic scattering. All three have vacuum boundaries. The first
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is a 60 mfp homogeneous slab with £*=1.0, E#=0.7, and j/£ /  =  0.30713574 cm-1, 

as shown in Figure 6.1. These physical parameters are such that the slab is critical

Homogeneous Slab

60 cm

n Fuel: 2 , - 1 .0 ,  Zs-  0 .7 , u l f« 0.3071

Figure 6.1: Homogeneous slab test problem: 60 mean free paths thick with a scat­
tering ratio of 0.7 and dominance ratio of about 0.991.

when it is 20 mfp thick [Kap74]. We consider a thicker slab so that the dominance 

ratio is closer to unity. The dominance ratio is about 0.991. The fce/ /  of the system 

is about 1.02082. Both these values were obtained from a fine mesh, S& calculation.

The second test problem is a uniform lattice. The fissionable fuel regions are 

made up of the same material as in the homogeneous slab. The fuel regions are 

each 2 cm thick and are separated by 1 cm thick regions of absorbing material with 

a scattering ratio of 0.001. The material at the boundaries is another 1 cm slab of 

absorber material. There are 19 fuel elements as shown in Figure 6.2. The dominance 

ratio of this problem is about 0.996, according to a fine-mesh S32 calculation. kej j  

is about 0.59852.



Uniform Lattice

B i t e M l  Fuel: E , = 1.0, Es-  0 .7 , \>Ef« 0.3071

1 Absorber: Et - 1.0, Es» 0.001, vE^ ■> 0.0

Figure 6.2: Uniform lattice test problem: 58 cm thick system with alternating 2 cm 
fuel regions and 1 cm absorber regions, for a total of 19 fuel elements.

The third test problem is a one-dimensional representation of the “*<// of the 

world” problem [Whi71]. The ukef j  of the world” problem is a 9x9x9 array of sub- 

critical plutonium spheres, except for the middle critical sphere. The problem is 

a difficult one for Monte Carlo calculations since the sampling is inevitably poor 

due to the small percentage of important fissionable material, located in the center 

sphere. Also, the usual initial flat source is very far from the converged source, which 

is peaked at the center critical sphere. Our one-dimensional slab representation of 

the “fce/ /  of the world” consists of replacing the center element of the uniform lat­

tice in the previous test problem with hotter fuel. This representation is shown in 

Figure 6.3. The kef j  of the system is 0.72400 and the dominance ratio is 0.82318. 

For reference, a single regular fuel element surrounded by 1 cm slabs of absorbing 

material has a &e/ /  of about 0.4436. A hot fuel element surrounded by absorber has
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a kef j  of about 0.5881.

"(<Qff of the world"

Absorber: £ { -1 .0 ,  £ s-  0.001 , v£}- 0 .0

Figure 6.3: One-dimensional representation of the “fce/ /  of the world," consisting of 
the uniform lattice with the center element replaced by material with 
i/E/ =0.4071

6.5 Fission Matrix Acceleration Results

We present results using different variations of the fission matrix acceleration 

method. First we use a diffusion fission matrix on a coarse grid to accelerate a fine- 

grid diffusion fission matrix calculation in the homogeneous slab problem. This is a 

setup similar to that used for the Carter-McCormick method. These results give us 

an idea of what to expect for more sophisticated castings of the acceleration equation. 

Second, we present the results of using a diffusion fission matrix to accelerate Sn 

transport calculations for all three test problems. Third is a demonstration of a 

Monte Carlo calculation accelerated with a Monte Carlo fission matrix. In the next
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section, we show the results of implementing Monte Carlo fission matrix acceleration 

into the production Monte Carlo code MCNP™  [Bri94] and performing a calculation 

on a model of the actual 3-dimensional “kej j  of the world” problem.

6.5.1 Diffusion Fission M atrix-Accelerated Diffusion

We use a fine-grid diffusion fission matrix to simulate transport source iteration. 

Acceleration is delivered through a coarse-grid diffusion fission matrix. There are 

(at least) two ways of obtaining the coarse-grid diffusion fission matrix. The first 

is to simply estimate it through a series of diffusion calculations on the coarse grid. 

Therefore the diffusion fission matrix is precalculated-calculated before the source 

iteration begins. The adaptation of this type of diffusion acceleration to discrete- 

ordinates and Monte Carlo is straightforward. The second way to obtain the coarse- 

grid diffusion fission matrix is by a source-weighted collapse of the fine-grid fission 

matrix at each iteration. This was the method used in the chapter investigating 

Carter and McCormick’s method. The analogous fission matrix in a purely Monte 

Carlo calculation is the cycle fission matrix. Effectively, though, it behaves like the 

cumulative fission matrix because it becomes more accurate each iteration (cycle). 

Nevertheless, we will call this the ‘‘cycle” diffusion fission matrix.

Unlike the Carter-McCormick and Modified Carter-McCormick methods, the dif­

fusion fission matrix-accelerated diffusion calculations are stable over all coarse-grid 

cell sizes. The iterations and computing time required for convergence using the 

diffusion fission matrix are shown in Figure 6.4 for the homogeneous system. As the 

coarse grid becomes finer, fewer iterations are necessary. However, more computing 

time is required for the larger matrices in the acceleration equation. The optimal 

number of coarse mesh cells for 120 fine mesh cells is 20, resulting in a speedup of
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Meshing Effects in Diffusion Fission Matrix-Accelerated Diffusion

1000

120 fine-grid cells

100 iterations to converge
iterations, 
cpu tim e 
(seconds)

cpu seconds to  converge

0 20 40number of coarse-grid cells
60 100 12080

Figure 6.4: The iterations and time required for convergence of a diffusion criticality 
calculation when the coarse-grid diffusion fission matrix is precalculated.

28.

The iterations and computing time required for convergence when using the “cy­

cle” diffusion fission m atrix are shown in Figure 6.5. Again, the necessary number 

of iterations for convergence decreases for increasing number of coarse mesh cells. 

The minimum time necessary for convergence occurs for 10 coarse mesh cells, for a 

speedup of 10.5. Compared to the precalculated diffusion fission matrix, the “cycle” 

diffusion fission matrix acceleration requires fewer iterations to converge, but each it­

eration requires calculating the fission matrix and its eigenstate, so computing times 

are longer.

Figure 6.6 shows the convergence of the first and second Fourier modes for un­

accelerated diffusion, precalculated diffusion fission m atrix acceleration, and “cycle" 

diffusion fission m atrix acceleration. The accelerated cases are for the optimal coarse 

mesh cell size. The expected value of the second Fourier mode coefficient is zero be­

cause the system is symmetric.
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Meshing Effects in “Cycle” Diffusion Fission Matrix-Accelerated Diffusion

1000

120 fine-grid cells
iterations to converge

100
iterations, 
cpu time 
(seconds)

cpu seconds to converge

0 20 40 60
number of coarse-grid cells

80 100 120

Figure 6.5: The iterations and time required for convergence of a diffusion criticality 
calculation when the coarse-grid diffusion fission m atrix each cycle by 
the source-weighted collapse of the fine-grid fission matrix.

Diffusiop
Fourier Mode Convergence: 

Fission Matrix Acceleration of ipiffusior

Homogeneous Slab
First Mode,

unaccelerated 
diffusion fission matrix acceleration 

“cycle” fission matrix acceleration

1 Second Mode,

Initial source uniform in left half

100
iteration

200

Figure 6.6: The convergence of the first and second Fourier modes for unaccelerated 
diffusion source iteration, precalculated diffusion fission matrix accelera­
tion, and “cycle” diffusion fission matrix acceleration.
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Flux in Homogeneous Slab
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Figure 6.7: The converged flux for the homogeneous slab problem.

6.5.2 Diffusion Fission M atrix-A ccelerated D iscrete O rdinates Transport

The converged flux corresponding to the converged fission source for the homo­

geneous slab is shown in Figure 6.7. We use an S32 quadrature set for this problem 

and break the system into 240 uniform fine mesh cells. The convergence criterion 

for the fission source norm) is 10-4. We begin with an initial source containing 

2/3 of the source in the left half and 1/3 in the right half with each half distributed 

uniformly. This is a deliberately bad source guess, chosen to demonstrate the efficacy 

of the method. We calculate the diffusion fission matrix on a coarse grid with any­

where from two cells up to the number of fine mesh cells. As the number of coarse 

grid cells decreases, the amount of material smearing, or homogenization, increases, 

which may or may not be beneficial. Note that if the initial source was flat for this 

symmetric problem, two coarse cells would provide no acceleration. As we increase 

the number of coarse cells (more resolution), the acceleration requires fewer itera­

tions to converge, as shown in Figure 6.8. However, acceleration work for N  coarse
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Meshing Effects in Deterministic Fission Matrix Acceleration
1000

240 fine-grid cells

100 iterations to converge
iterations, 
cpu time 
(seconds)

cpu seconds to converge

0 15050 100 200 250
number of coarse-grid cells

Figure 6.8: Effect of the number of coarse mesh cells in the Diffusion Fission Ma­
trix Acceleration of discrete ordinates transport. Although the number 
of iterations required for convergence decreases with more coarse mesh 
cells, more cells require more work and an optimal exist such that the 
computing time is minimized.

cells increases as IV3, so, as Figure 6.8 also shows, an optimal number of coarse mesh 

cells exists, such that the computation time is minimized. We found for all three test 

problems that the optimal coarse mesh cell contained eight (23) fine mesh cells. Also, 

damping was not required for these deterministic problems; reducing ft decreased the 

acceleration.

Figure 6.9 shows the convergence of the Fourier coefficients for the first and 

second modes. For 30 coarse mesh cells, the accelerated case requires 18 iterations to 

converge, whereas the unaccelerated case requires 723 iterations. Since the problem 

is symmetric, the expected value of the second Fourier mode coefficient is zero upon 

convergence. Comparing the running times on a Sun SPARC20 of 106 and 3.15 

seconds, the acceleration realized a speedup of 33.7.

The second test problem is the uniform lattice. This is a very difficult problem
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Figure 6.9: The first and second Fourier mode coefficients for unaccelerated and dif­
fusion fission matrix accelerated discrete ordinates for the homogeneous 
problem.

with dominance ratio 0.996. Beginning with a flat initial source and 464 fine mesh 

cells, the unaccelerated discrete ordinates required 434 iterations (227 seconds) to 

converge. The converged flux is shown in Figure 6.10. Using 58 coarse mesh cells, 

the fission matrix acceleration method required only 18 iterations (12.6 seconds) to 

converge, giving a speedup factor of 18. The Fourier mode coefficient convergence is 

shown in Figure 6.11 for the first and third modes.

The third problem is the one-dimensional uke/ f  of the world” problem. The 

converged flux for this problem is shown in Figure 6.12. For an initial flat source, 

Figure 6.13 shows the convergence of the first and third Fourier mode coefficients. 

The unaccelerated calculation took 66 iterations and 35.5 seconds to converge, and 

the diffusion fission matrix accelerated S 3 2  with 58 coarse mesh cells and 0 = 1  took 

15 iterations and 9.3 seconds for a speedup of 3.8.

Fourier Mode Convergence: 
n

Homogeneous Slab

Diffusion Fission Matrix Acceleration of 5w ,-----------------=7------------------ 1---

First Mode, F(ir)

p ....................

L

unaccelerated 
fission m atrix acceleration -----

Initial source: 2/3 left, 1/3 right 

Second Mode, F(2v)
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Flux in Uniform Lattice
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Figure 6.10: The converged flux for the uniform lattice test problem.

6.5.3 Fission M atrix Accelerated M onte Carlo

If Monte Carlo contained no statistical noise, the results of accelerating Monte 

Carlo criticality calculations would be similar to those of accelerating deterministic 

criticality calculations. Unfortunately, the statistical noise, which is high-order, is 

propagated by the acceleration into low-order errors. This undesirable phenomenon 

is not overcome even when using a diffusion fission matrix instead of a Monte Carlo 

fission matrix. The driving term of the acceleration equation is the primary source 

of the noise. We use the diffusion filter in the cases presented here. Increasing the 

density of particles in important regions of a system reduces the statistical noise 

and therefore reduces the need for filtering. Validity of this statement is found by 

comparing the Monte Carlo results for the homogeneous slab and the one-dimensional 

“kej f  of the world” problem later in this subsection. The latter calculation appears 

nearly deterministic in nature due to the small important fissionable component.

We first apply the Monte Carlo fission matrix acceleration method to the 60 cm
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Figure 6.11: The first and third Fourier mode coefficients for unaccelerated and diffu­
sion fission matrix accelerated discrete ordinates for the uniform lattice.

homogeneous slab. Figure 6.14 shows the convergence of the first and second Fourier 

modes for both the unaccelerated and accelerated cases. For both cases, the initial 

source had 2/3 of the particles in the left half and 1/3 of the particles in the right 

half of the slab. There were 60 uniform 1 cm cells and 5000 histories per cycle. 

For this symmetric system, the second Fourier mode has expected value zero. The 

unaccelerated case takes approximately 110 cycles to converge. The diffusion filter 

parameter was held constant over the cycles, cr2 =  5.0. Since the fission source is 

smooth and slowly varying over space, a  relatively higher value of a 2  is possible. 

For heterogeneous problems, the filter could undesirably smooth out actual physical 

fluctuations in the fission source. The all-mode damping (/?) of the correction is 

held at a constant 0.2 for the first three cycles, then it drops off exponentially. 

Convergence of the accelerated case takes about 20 cycles. Comparing the computer 

times at this cycle and the unaccelerated cycle 110 gives a speedup of 5.0.

The second problem is the one-dimensional simulation of W hitesides’ of

Fourier Mode Convergence:
Diffusion Fission Matrix Acceleration of Sw

Uniform Lattice
First Mode, F(ir)

unaccelerated 
fission m atrix acceleration

Initial flat source

Third Mode, F(3ir)
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Flux in 1-D “kej /  of the world” Problem
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Figure 6.12: The converged flux for the one-dimensional “fce/ /  of the world” test 
problem.

the world” problem [Whi71]. For 5000 histories per cycle in 58 mesh cells, the ini­

tial source was flat across the entire system. The driving terms of the acceleration 

equation were filtered by the diffusion filter with a 2 = 5n/(n  +  10). Thus, the fil­

ter parameter starts out at about 1/2, then approaches 5. If the filter parameter 

is too large, the combined filtering and acceleration will not sufficiently overcome 

the artificial discontinuity at the center of the slab in the initial fission source. In 

some underdamped cases, the fission source oscillates about the initial artificial dis­

continuity. Because eventually and effectively there was a high density of particles 

in the important fissionable regions, the calculations appeared nearly deterministic. 

Therefore the full correction (/? =  1.0) was possible. Figure 6.15 shows that unac­

celerated Monte Carlo converges on the hot component in about 35 cycles, whereas 

the accelerated Monte Carlo takes about 6 cycles. The computational time speedup 

is about 4.8.

Compared to the second problem, the acceleration in the first problem is more
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Figure 6.13: The first and third Fourier mode coefficients for unaccelerated and diffu­
sion fission matrix accelerated discrete ordinates for the one-dimensional 
“kef f  of the world” problem.

sensitive to the damping and filtering parameters, /? and a 2. The difference occurs 

due to the different particle densities in the important fissionable volumes. The 

“ke/ f  of the world” simulation, upon convergence, has a very large particle density 

in the hot component and a  low particle density elsewhere, and appears almost 

deterministic. (In a deterministic calculation, filtering is not required and, unless it 

is severely heterogeneous, neither is damping.) The large homogeneous system has 

more statistical noise, so the filtering becomes very important. The filter may not 

smooth the fission source optimally, and the noise that the filter does not remove 

must be damped out. Therefore, the parameters a 3 and j3 are not independent.

Accelerating the Monte Carlo source convergence in the uniform lattice test prob­

lem is a very difficult task. Acceleration with this geometry is definitely possible as 

evidenced by the deterministic test problems. The acceleration method is unbiased, 

meaning that it yields the same converged solution as the unaccelerated method,

Fourier Mode Convergence: 
Diffusion Fission Matrix Acceleration of S n

1 1 1 1 1 1 
1-dimensional “Jfce/ /  of the world”

J  First Mode, F(ir)

unaccelerated ■ ■ • • 
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V - - .

-

\ \
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Fourier Mode Convergence in a  Homogeneous 60-cm. Slab
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Figure 6.14: Convergence of the first and second Fourier modes for unaccelerated 
Monte Carlo and filtered and damped accelerated Monte Carlo in a 
homogeneous slab.

only faster. However, unaccelerated Monte Carlo has inherent difficulties converg­

ing the source for high dominance ratio problems consisting of a lattice of identical 

components. For example, if there were two identical critical reactors separated by a 

large distance, all the particles in a Monte Carlo simulation would eventually end up 

in one of the reactors. (This example is attributable to Tom Booth of Los Alamos 

National Laboratory.) The basis for this comment lies in the fact that the two-reactor 

example has a dominance ratio very near unity. Each reactor is expected to have 

the same number of particles. However, because of statistical noise, one reactor will 

almost always have more particles than the other. Furthermore, in a  high dominance 

ratio problem, regions that have a  population of particles higher than expected will 

tend to maintain that high population. The end result, after many cycles, is that 

one reactor is depleted of Monte Carlo particles.

The uniform lattice problem possesses similarities to the two-reactor example.

U M i

£ First Mode, F(ir)

unaccelerated 
a 2 =  5.0 , /? =  0 .2e-max(0-n- 3>

60 mesh cells 
5000 hist/cyc 
S, =  1.0 
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vEy =  0.3071
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Figure 6.15: Convergence of the first and third Fourier modes for unaccelerated 
Monte Carlo and filtered and accelerated Monte Carlo in a one­
dimensional “fce/ /  of the world” simulation.

The absorber regions in our uniform lattice are fairly thin, so all the particles will 

not collect in a single fuel element. Still, we see collections of adjacent fuel elements 

persistently maintaining their too large or too small populations. In an unaccelerated 

case, we ran 5000 histories per cycle, began with a flat source guess, skipped 30 

(inactive) cycles, and ran 200 active cycles. The flux, which is still not converged 

after 200 active cycles, is shown in Figure 6.16 at tha t cycle. The very small error 

bars indicate that the population in each fuel element is not changing very much. 

Over 10’s or 100’s of cycles, the fission source would appear converged, when, in fact, 

it really is not.

Accelerating the Monte Carlo calculation for the uniform lattice meets with lit­

tle success. Filtering this system is different than filtering a homogeneous system. 

Here, it is as if there are two frequencies that the filtering should target: the high 

frequencies due to the statistical noise within the fuel elements, and the low frequen-
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Unaccelerated Monte Carlo Collision Flux in the Uniform Lattice
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Figure 6.16: The Monte Carlo collision flux in the uniform lattice after 200 active 
cycles.

cies describing the global shape. The accelerated method essentially arrives at the 

state of incorrect populations faster, although it may not arrive at the same state 

as the unaccelerated method because of statistical noise. So, for this system, the 

acceleration appears unable to overcome the inherent shortcomings of Monte Carlo.

6.6 Fission Matrix Acceleration in MCNP

The fission matrix acceleration method is extendible to more complicated Monte 

Carlo simulations. We demonstrate the acceleration method as implemented in 

MCNP, a general-purpose production Monte Carlo code. MCNP is able to model 

complicated three-dimensional geometries, and simulates transport with continuous 

energy.

The modified version of MCNP uses only the Monte Carlo fission matrix. The 

Monte Carlo fission matrix is obtainable on the typically complicated cells that make 

up an MCNP geometry and is fully self-contained in the code. Using a diffusion
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fission matrix would require a grid, as opposed (or in addition) to complicated Monte
t

Carlo cells, and linking to a production diffusion theory code. The grid would not 

necessarily have to be involved in the particles tracking; it could simply overlay the 

complicated Monte Carlo cells. So, a  diffusion fission matrix in a production Monte 

Carlo code is possible, but much more complicated than a self-contained Monte Carlo 

fission matrix. These same arguments apply to not being able to practically use the 

diffusion-like filter. Instead, we employ the looping filter, where the driving term  of 

the acceleration equation is multiplied by the fission matrix to reduce some of the 

statistical noise. Although not employed, chopping is certainly possible, too.

The test problem we consider for the modified version of MCNP is the uke/ f  of the 

world” problem, a  9x9x9 array of subcritical plutonium spheres with center sphere 

critical and the whole array surrounded by a water reflector. A three-dimensional ren­

dering of the system without the inner surface of the water reflector is shown in Fig­

ure 6.17. Notice the larger, critical sphere in the center. This rendering was done by 

Ken Van Riper of Los Alamos National Laboratory using Sabrina™  2 [Van93][Lee94]. 

MCNP also does two-dimensional geometry plotting; a two-dimensional cross section 

through the center of the geometry is shown in Figure 6.18.

The problem used 5000 histories per cycle with the initial source locations at 

points in the center of each of the 729 spheres. Twenty cycles were allotted to 

converge the source, followed by 100 active cycles. Twenty cycles is not nearly 

enough to converge the source, but it is a typical number used by criticality safety 

people running Monte Carlo codes. The onset of fission matrix acceleration was 

deferred 20 cycles just to make sure tha t sampling would have no adverse effects on

the fission matrix elements. Each fission matrix element contained one sphere. The

2Sabrina is a tradem ark of the Regents of the University of California, Los Alamos National 
Laboratory
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Figure 6.17: Three-dimensional rendering of the uke/ /  of the world” problem without 
the inner water reflector surface by Sabrina. The larger critical sphere 
is located in the center.

value of 20 was probably conservatively large. We employed no filtering and set the 

damping factor to

0  =  0.9e“ *(n_2O) , n >  20 , (6.51)

so that, on the first cycle that was acceleration, cycle 21, the damping factor was

0.9e-1/2 and dropped off exponentially. Since we do not have a regular grid, we do 

not have the luxury of using the informative experimental Fourier analysis to  gauge 

convergence. Other measures exist, though. Figure 6.19 shows the cycle value of 

the collision kej j  estimator at each cycle. After cycle 20, engaging the acceleration
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Figure 6.18: MCNP plot of a 2-D cross section of the water-reflected array problem 
with the larger, critical sphere in the center.

very quickly puts more particles into the important center sphere. The collision 

kef j  jumps immediately to critical and oscillates around 1.0. By cycle 43, 0  was 

small enough so that no additional particles would be killed or cloned, and the 

acceleration automatically shut itself off. It takes unaccelerated MCNP about 90 

cycles to converge. Figure 6.20 shows the number of particles in the center critical 

sphere as a function of cycle. The acceleration may have overshot the correction 

a little at first, and, since 0  was decreasing, it could not as quickly correct the 

overshoot.
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MCNP Cycle Collision fce/ /  in the “k *// of the World” Problem
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Figure 6.19: The cycle collision ke/ /  estimator for unaccelerated and fission matrix 
acceleration MCNP on the of the world” problem.

The three-combined fce/ /  estimator is a linear least squares combination of the 

average collision, absorption, and track length estimators [Urb95]. The average ke/ /  

estimators equally weight the cycle kef j  estimates from each active cycle. There­

fore, in the unaccelerated case, the poorly converged fce/ /  estimates in the early 

active cycles contaminate the average, and hence, the three-combined, ke/ f  estima­

tors throughout the entire run. Figure 6.21, when compared to Figure 6.19, shows 

the contamination on the three-combined fce/ /  estimator due to the unconverged 

source.

MCNP contains statistical checks that help the user assess the quality of the 

calculation [For94]. The unaccelerated case alerted the user that the first and sec­

ond half three-combined fce/ /  estimates did not agree at the 99% confidence level, 

indicating a drift due to an unconverged source. In the fission matrix accelerated 

case, the cycle track length fce/ /  estimates did not pass the normality check. This 

failed test is understandable since the the acceleration began at the beginning of the
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Figure 6.20: The number of source points in the center critical sphere of the “fce/ /  
of the world” problem for unaccelerated and fission matrix accelerated 
MCNP.

active cycles. Ideally the acceleration should converge the source before the active 

cycles. Fortunately, MCNP gives the results for any number of cycles skipped. For 

the accelerated case, the minimum standard deviation occurred at 23 cycles skipped, 

giving a 95% confidence interval of [0.9972,1.0033], meaning that the precise value of 

kef j  lies within this range with 95% confidence. The minimum standard deviation 

for the unaccelerated case occurred at 116 inactive cycles and 4 active cycles, giving 

a 95% confidence interval of [0.9854,1.0247]. However, four cycles is nowhere near 

enough cycles to consider in the averaging. This statistical check is another indica­

tion to the user that the unaccelerated case has problems. The three-combined &e/ /  

estimate by cycles skipped is shown in Figure 6.22.

6.7 Summary and Discussion

The Fission Matrix Acceleration method is obtained by deriving an exact correc­

tion to the fission source from an integral form of the transport equation. Applying
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Figure 6.21: The three-combined kef f  estimator for unaccelerated and fission matrix 
acceleration MCNP on the “fce// of the world” problem.

the exact correction yields the exact solution and concludes the calculation in one 

cycle or iteration. If not impossible, obtaining the the exact correction is impracti­

cal. The fission matrix, on the discretized system, provides an approximation to the 

exact kernel and makes the method practical.

The Fission Matrix Acceleration method is designed to reduce the number of 

deterministic iterations, or Monte Carlo inactive cycles-those required to converge 

the fission source. It works best when the initial assumed fission source is far from 

the true fission source. This method is also efficient for systems with high dominance 

ratios. These are systems for which unaccelerated Monte Carlo would require many 

inactive cycles to converge the source.

We first posed the acceleration in the form where a coarse-grid diffusion fission 

m atrix was used in accelerating a fine-grid diffusion fission matrix. Two different 

ways of obtaining the coarse-grid fission m atrix resulted in speedups of 11 and 28 for 

the homogeneous slab test problem.

w  HBHgffBmaTffl?mnniiimni

unaccelerated * * * 
Fission Matrix Acceleration —
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Figure 6.22: The three-combined fce/ /  estimator for unaccelerated and fission matrix 
acceleration MCNP as a function of cycles skipped for the ukef  j  of the 
world” problem.

Next we used the diffusion fission matrix to accelerate discrete ordinates transport 

calculations. Speedups ranged from 3.8 for the ukef j  of the world” problem to 34 for 

the homogeneous slab.

Applying fission matrix acceleration to Monte Carlo calculations is yet another 

example of trying to make a Monte Carlo calculation behave like a deterministic 

calculation. The major deterrence to success is Monte Carlo’s statistical noise. The 

perfect example is the Monte Carlo criticality calculation itself, where Monte Carlo 

is made to adhere to source iteration. One repercussion is a bias in the eigenvalue. 

Luckily, the bias is inversely proportional to the number of histories per cycle, and 

usually negligible [Gas75][Bow83][Bri86][Gel90][Gel91][Gel94]. Asaoka, et al. had 

some success applying coarse-mesh rebalancing to Monte Carlo eigenvalue calcula­

tions [Asa74]. Accumulating data over coarser meshes implies more particles and 

less statistical noise. Swaja accelerated Monte Carlo source convergence through

Cycles Skipped in the uk„t t  of the World” Problem

unaccelerated 
Fission Matrix Acceleration
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Chebyshev extrapolation [Swa73]. However, Swaja found it necessary to filter the 

statistical noise with a Kalman filter.

If it was possible to totally eliminate the statistical noise in a Monte Carlo criti­

cality calculation, Fission Matrix Acceleration applied to Monte Carlo would behave 

similarly as in a  deterministic calculation. Otherwise, the acceleration magnifies the 

high-order noise. In practice, we eliminate as much of the statistical noise as possi­

ble, so as to approach the deterministic characteristics. Some type of filter is used to 

reduce the high-order fluctuations in the driving term of the acceleration equation. 

Additionally, a damping factor /? damps all frequencies of the additive correction. 

The selection of filtering and damping parameters is not automated. Acceleration 

success can be quite sensitive to these parameters for some problems. The param­

eters are not independent. If the filtering does not adequately rid the calculation 

of statistical noise, the damping will need increasing (lower /5). Unfortunately, the 

damping also reduces the low-order acceleration gain. Too much filtering could intro­

duce artificial and incorrect trends in the calculation that would manifest themselves 

in large oscillations.

For Monte Carlo, the resulting speedups for the homogeneous test problem and 

the one-dimensional uke/ /  of the world” problem were about 5. Monte Carlo criti­

cality code users traditionally perceive source convergence in terms of inactive cycles 

instead of computer time. They are accustomed to performing, say, 10 to 30 inac­

tive cycles, so even a  modest speedup of 5.0 is very beneficial in obtaining accurate 

solutions for these types of systems.

The Fission Matrix Acceleration method cannot, however, overcome some inher­

ent deficiencies in Monte Carlo criticality calculations. The Fission Matrix Acceler­

ation method is essentially unbiased-it arrives at the same solution as the unacceler­
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ated calculation, only faster. Due to statistical noise, unaccelerated Monte Carlo has 

difficulties with the uniform lattice problem in that it may not converge to the cor­

rect source. In this case, the acceleration simply finds an incorrect source quicker. In 

Chapter VIII, we present a hybrid method that, since it is not unbiased, overcomes 

these difficulties.

6.8 Related Techniques for An Improved Initial Source

When the variations of the fission matrix acceleration are in place in a computer 

code, there exist other easy ways to obtain an initial source. For instance, the source 

can be started according to the diffusion solution. A drawback of this technique is 

that the diffusion solution may not adequately describe a system with many transport 

effects. In fact, for a system similar to the uniform lattice, except that it had much 

thicker absorber regions, the diffusion calculation would break down if the cells were 

not fine enough.

Another technique for an improved initial source is to use the eigenvector of the 

fission matrix. A diffusion fission matrix would provide an eigenvector immediately. 

A Monte Carlo fission matrix would have a suitable eigenvector after a few initial 

cycles. We implemented this type of source initialization by running a head start 

cycle that consisted of a very large number of histories. The initial source for the 

head start cycle would require at least a flat distribution so that all fissionable regions 

are sampled. The fission matrix should only have second order errors because the 

elements depend on the source shape over a cell instead of over the entire system 

[Car75]. After the head start cycle, the acceleration coding was used to sample from 

the very large number of source points according to the eigenvector of the fission 

matrix. After the head start cycle, each cycle contained a smaller, practical number
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of histories. This type of source initialization fails if the eigenvector fails. An example 

of where the eigenvector fails is a system like the “h f f  of the world” problem except 

that, instead of one, two hot cells are present. Due to statistical noise and poor 

communication between the fuel cells, the eigenvector would not adequately detect 

both hot cells.



CHAPTER VII

Fission Diffusion Synthetic Acceleration Method

We now present a different form of the source convergence acceleration method, 

called Fission Diffusion Synthetic Acceleration (FDSA). FDSA involves a different 

form of the transport equation and a different low-order approximation than the 

iission matrix acceleration method. Instead of beginning the derivation with an 

analytic integral equation, we consider the integro-differential transport equation for 

the analytic and source iteration cases. We subtract these to obtain an equation 

for the exact correction to the angular flux. This equation is just as difficult as the 

source iteration problem, so we solve its diffusion approximation. Instead of using 

the fission matrix and its forward and adjoint eigenstates, this method requires a 

forward and adjoint diffusion calculation prior to the deterministic or Monte Carlo 

criticality calculation. Analytically, however, FDSA is equivalent to the diffusion 

fission matrix acceleration method.

7.1 Derivation of Fission Diffusion Synthetic Acceleration

We begin with the analytic integro-differential transport equation for a slab of 

width L , isotropic scattering, and vacuum boundary conditions. Using the operators

111
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defined in Equations 6.4, 6.5, and 6.6, we have

V»(0,^) =  0 ,  f i>  0 , (7.2)

i>(L,( i )=Qj n < 0  . (7.3)

The source iteration equations are obtained by introducing iteration indices to Equa­

tions 7.1, 7.2, and 7.3,

T ^ ' + ^ x ,  =  S ^ ' +1 ' 2> (* , !>) +  A*) , ( 7.4 )

^ , « + i / 2) (0 , ^ )  =  0 ,  i t  > 0  , ( 7. 5)

t/,< '+ I ' '2> ( £ , /< )  =  0  , / i  <  0 . ( 7.6)

We desire the exact angular flux correction,

<7(/+1) ( z ,  /x) =  ^ ( z ,  f i )  -  ,̂<<+1/ 2)(a;, . (7 .7 )

Subtracting Equation 7.4 from Equation 7.1 yields an equation for the correction <7,

T j ( ' +1»(I , / 1) - S s <'+1> ( * , / < ) - j F j < ' + i >(x,A<) =  | f ^ ' ' +1 ' j ' ( x , / x ) - ^ F V - < ' > ( i , / i )  ,  

( 7. 8)

and likewise for the boundary conditions,

(7</+1>{0, /x)=0,  f i>Q  , (7.9)

<7<*+1>(L,/z) =  0 ,  / x < 0  . (7.10)

Equation 7.8 is just as difficult to solve as Equation 7.4 ; therefore, we approxi­

mate it. First, we define

<#+1)(x) =  £  nn^ l \x ,ii)d ti  , (7.11)
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where ^ /+1)(x) =  <fio+1Hx) the scalar flux, and

r ' W  =  £ / . V * 1 W M l *  , (7.12)

and assume that the exact correction is linear in angle,

sr<'+1|(*,„) a  i  (fi,+l)(x) +  3)>fl‘+,)(Xj) . (7.13)

Operating on Equation 7.8 by

j \ - W  (7.14)

and

. (7-15)

we obtain

J / , “+,,(z) + E,(x)flw \ x )  -  Z,(X)fi‘+l)(z) -

=  , (7 .16)

and

J i  <‘V ' +1,(*1 P-W  +  £<(*)/{'+,)(*) =  0 • (7.17)

Substituting the linear approximation of g, Equation 7.13, into Equation 7.17, we 

obtain an expression for / i ,

= - 3 4 )^ / r ’(l) ’ (7 -18)

which, when substituted into Equation 7.16, yields the diffusion approximation to 

the acceleration equation, Equation 7.8:

 d i d ,(*+i), >  ,  ( v  ,  v  yS/(a)\  ,(/+i), .

dxZXt{x) dxfo (* )+ ^ E-(*) kd ) f o  (*)

= ^ M ^ m ( x ) _ ^ M ^ (x)  . (7 .19)
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The boundary conditions, called Marshak boundary conditions [Bel70], are obtained 

using the linear approximation, Equation 7.13, and Equation 7.18. On the left side,

0 =  f l ng{e+1\0 ,fi)d n  (7.20)
Jo

=  | / r ,)(0 ) /oI M ‘ +  §/l<<+,>(0)j(V <*/‘ (7.21)

=  j / i <+,)(0) +  i / f +,)(0) (7.22)

0 =  • P -23'

and on the right side,

o =  /_ ° r a (' +1|(£ , /*)<!/* (7.24)

=  +  ’( £ ) / > , .  (7.25)

=  -  j ^ ' +" ( i )  +  l / f +I)(£) (7.26)

0  =  / » ' + 1 , ( i )  +  3 s k £ / » ' + , , ( i )  • < 7 ' 2 7 >

In Equation 7.19, k* is the dominant eigenvalue from the adjoint diffusion equation 

(with vacuum boundaries),

Equation 7.19 does not automatically have a solution. We specify A:̂ +1) to satisfy 

the solvability condition, which is obtained by multiplying the acceleration equation, 

Equation 7.19, by the adjoint diffusion flux and integrating over space,

/  +  ( E”(I)  -  f r > { x ) ] *

=  *(5!) /  (>'E,(* )*< '«« (* )) *  -  ^  /  « ( , )  ( ■ « ,( . ) * » ( ,) )  dx .(7.29)

The left side of Equation 7.29 is zero, giving us a value of k^t+1̂  for the solvability

condition,

/  #J(x)i/I!/(x)^W(x)dx
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After solving Equation 7.19, we see that fo{x) is not unique, since any multiple of 

the forward diffusion solution may be added to it,

# * % )  = $ £ ! L * r ( » ) +  **<(*) . (7-31)

where <f>d is the solution of the forward diffusion equation,

+ . (7.32)

Therefore, we make the correction unique by requiring that the additive correction 

be normal to the adjoint diffusion flux,

/  =  0 . (7.33)

As in the fission matrix acceleration method, we damp the additive correction, if 

necessary, and convert it to a  multiplicative correction factor,

I’S / f i l f 1 =  + (7.34)

»  ( l  . (7.35)

where /(*+1/2) is the fission source projected onto a cell. The projec­

tion causes the approximation between Equation 7.34 and Equation 7.35.

Let us summarize the steps for Fission Diffusion Synthetic Acceleration. Steps 

1 and 2 are performed only once before the calculation begins. The iterations, or 

cycles, proceed over step 3 to 6:

1. Calculate the solution of the forward diffusion equation, Equation 7.32,

" f e  d x ^ d^  +  =  ’ (7*36>

2. Calculate the solution of the adjoint diffusion equation, Equation 7.28,

- E s • ( 7 - 3 7 )



116

3. Perform a transport iteration or cycle, Equation 7.4,

T ^ ( '+ ' / J ) ( a. i / J )  =  s ^ ( '+ ‘ /2 ) ( a.iM )  +  _ |_ F V ' ,'> ( x , p )  , ( 7 .3 8 )

4. Calculate the solvability condition from Equation 7.30,

*<*+i) _  i-M f  ^5(g)yS /(«)^(<+1/a)(g)<fa (7 ogx
“  S fa{x)vZ,{x)4W{x)dx  ' K }

5. Calculate the fission source correction using Equation 7.19 and 7.33,

d 1 d
dx3T,

= .  (7-40)

/« (* W o * fl) (*)«i* =  0 • (7.41)

6. Apply the correction using Equation 7.35 ,

* E ,(* )* (' +»  «  v E /(z ) ^ ' W  f i  +  j  , (7.42)

and return to step 3 for another iteration or cycle.

7.2 Implementing FDSA

The Fission Diffusion Synthetic Acceleration method requires less computer stor­

age since it does not require toting around fission matrices. FDSA has the advantage 

that its diffusion equation may be performed in multigroup, regardless of whether 

the transport is multigroup S n  or continuous energy Monte Carlo. The actual ac­

celeration is collapsed to one energy group and is still dependent only on space, just 

as in the fission m atrix method. Greater accuracy may be achieved from using a 

multigroup diffusion acceleration equation. The disadvantages are tha t it requires
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more pre-calculation and requires a spatial grid on which to perform the diffusion-like 

acceleration calculation.

In the deterministic realm, we are faced with the same dilemma that occurs in 

DSA (Chapter III): How should we discretize the equations? Inconsistent discretiza­

tion is the most straightforward procedure, where the transport equation and the 

diffusion-like acceleration equation are discretized any desired way. As in DSA, in­

consistent discretization may induce instabilities for large mesh sizes. Consistent

discretization arises when FDSA is derived from the already-discretized transport 

equation. While having more desirable features, consistent discretization is not al­

ways feasible in higher dimensioned, more complicated systems. Moreover, how 

exactly does one consistently discretize Monte Carlo FDSA? The concept appears to 

have no clear meaning.

7.2.1 C onsisten tly  D iscretized FDSA

We consider a slab of width L divided into J  cells that are not necessarily uni­

form. We use Diamond Differencing and Sff angular quadrature and consider vacuum 

boundaries. The discretized transport equation is

+  ■ (7.44)

^ m ,l/2  ̂ =  0 > Mm > 0 , (7.45)

^ln,J+l/2 ~  0 , Mm < 0 , (7-46)

* r /2) =  E C /2)^  7 (7.47)
m=1

where, again, wm are the angular quadrature weights such that
N
£ > m  =  2 , (7.48)

m =l
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and the j  ±  1/2 subscripts indicate cell-edge quantities and the j  subscripts indicate 

cell-average quantities.

We begin the FDSA derivation by defining the transport corrections on the cell 

centers and cell edges,

^  . (7-49)

9m,i+1/2 =  V,m,j+l/2 — V'm J+l/2 » (7.50)

such that adding g to the most recent angular fluxes results in the exact angular 

fluxes. Let us subtract Equations 7.43 to 7.47 from the exact problem (that is, 

Equations 7.43 to 7.47 without iteration indices). We obtain a problem for the exact 

angular flux corrections,

j -  W 3 & /. -  d S S / . )  +  ^ * 5 5 ”  -  5 ^  t  + K  £
n = l n = l

2fc 2 1 +  2fc n 2* n ’ t7,51'Ti— 1 n = l

where the last term was added and subtracted to easily get the equation in the 

following form:

h .  \ ^rn, j+\ /2  9 m , j - l / l )  ^ h 9 m , j  9 n ,j w n 2_ / 9n, j  w n
i  n = l  ZK n = l

, ( 7 . 5 2 )

fl(W) _  l ( J f r ' )  'j (7*0)9m,} 2 \9m,j+1/2 ' 9m,j—l/2 j  * ( 7 . 5 3 )

=  0 . /*. >  0 , (7.54)

9m!/+l/3 =  0 - /*» <  0 - (7.55)

^ + , /2 )  =  • ( 7-56)
m = l
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Adding the exact correction to the most recent angular flux yields the exact angular 

flux

. (7-57)
or, integrated over angle, it yields the exact scalar flux,

• (7>5s)
m=sl

Solving this problem gives the exact (discretized) result in one iteration. Not unex­

pectedly, we And that this problem is as difficult to solve as the original problem.

Thus, a t this point, we have gained nothing. The remedy is to take the diffusion 

approximation of the acceleration. We define

A T  =  E a i S V .  , (7-59)
m = l 

N

f i T } =  £  7 (7*60)
m = l

and assume the angular flux correction is linear in angle,

s T ^ l t t T + ^ A T )  ■ (7-6i)

Next, we operate on Equation 7.52 by

E  O m  (7-62)
m = l

and obtain

—  ( ^ _l y  A**1) _  y  /(*+*) r(<+i)
h j V U + l /2 J i , j - i / 2j  ■+■ “ t j J o j  o, j  ~  ^  Jo, j

  jl{̂ +1/2) ,[/) . _ . .
-  —  n  -  ’ 1 - 3 -  J  ’ (7-63)

Operating on Equation 7.52 by

AT
£  , (7.64)
m =l
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and using the linear approximation in Equation 7.61, we obtain

3SJ ($ ? .* /»  -  & , )  +  Z ' X +l> =  0 , 1 <  j  <  J  . (7.65)

Operating on Equation 7.53 by the same two operators yields

/•(<+!) _  i f  /(<+!) I /(<+!)
j OJ -  2  V O j + i / 2 +  Joj-lfV » V'-ODj

/*(<+*) _  i f  /•(<+!) I /•(<+!)  ̂ ( j  <J7\
i i j  -  2 V W + ‘/J +  J W - W  '  ̂ '

Now we look to approximate the boundary conditions. Multiplying Equation 7.54 

by fimwm and integrating (summing) over positive pm, we find the partial incoming 

current for the left boundary, where we utilize the linear approximation for g,

o =  (7-68)
t*m> 0

»  5  r  /*» (/w /V  +  W f t V )  (7.69)
^ /lm>0

=  +  ■ (7.70)

since

£  =  5  X ) \  ■ (7.71)
Mm>0 Z all Mm

Setting

TW — 2 )   ̂ (7.72)
Mm>0

we have as the left boundary condition,

o -  +  2/,‘f #  • (7.73)

Similarly, the right boundary condition is

o =  - 7 « / i ' ; + U  +  2/!‘Z l /2 . (7.74)
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The scalar flux is accelerated by

^ ' + , )  =  . ( 7 .7 5 )

Equations 7.63, 7.65, 7.66, 7.67, 7.73, 7.74, and 7.75 constitute 4 J  +  2 equations 

in 4 J + 2  unknowns. Now we want to eliminate from these equations. First, we 

substitute Equations 7.66 and 7.67 into Equations 7.63 and 7.65 so the corrections 

all reside on the cell edges. This substitution yields the following two equations,

( A l + 1 )  _  A t + 1) \  _  S a A  ( A t + l )  , A t + 1 )  \  v V j j h j  /  (<+1) A t + i )  \
\J i,j+i/2 h,j- i /2)  ~  2 VOj+i/2+  2k V M + W  f  Joj - 1 / 2 )

± i 4f  , 1 < j < J  , (7.76)

( /} ? « ’'/ .  +  C - . / 0  =  3 ^ 7 5 -  -  C - . ’/O  • 1 <  J  <  J  • ( 7 .7 7 )

Adding and subtracting Equations 7.76 and 7.77 produces two different equations:

9 f(* + i) _  ( S a,A-\  / j ( m )  , WM-l) \ , v E f j h ± M + i / 2 )zJi,j+i/ 2  ~  y 2k 2 J v ° - 7+ 1/ 2 +  +  JJ.
v'Zjjbi A t )  _  2 _  f (<+i) \  1 <  i <  /  (7 781

£ ( /)  3 E t j h j  v o j + 1 / 2  • '0 ,3 -1 /2 /  1 1 -  •? -  J

9 /•(<+!) _  / , ( < + l)  , ,( /+ l)  \  At+ 1/2 )
iii—1/2 “  y 2 2Jk /  Voj+i /a+  ■'0J - 1/V j.

. A t)  _  2 /  (, +1) _  (/+1) v

JfeW j 3St|jh j v̂ °*J+1/2

In order to eliminate we shift the indices in Equation 7.79 from j  — 1/2 to

j  -f 1/2 such that the range of applicable j  is shifted to 0 < j  < J  — 1. Equating the

expressions and rearranging yields the acceleration equation,
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1 (A*+l) _  /(<+!) \  I 1 (At+l) _  /■{*+!) \
3Et)j+i hj+i \J°j+V2 Joj+l/2) +  Z2 t jh j \JQ,}+\/2 Joj-1/7)

, 1 f/V L. v X f j + i h j + l \  / .(<+!) , A t+ i )  \
4 | l  J+ J+1 kd )  V°>3+3/2 +Jo,3+ 1/ 2)

+  ( s .  A  -  ( 4 S & ,  +  $ % ) ]

=  5 +  ■’W r ' ” )

+  , 1 < 3 < J - 1  , (7.80)

Note that we introduced the diffusion eigenvalue, kd, on the left side of Equation 7.80

and k̂ t+l\  the eigenvalue satisfying the solvability condition, on the right side. Sub­

stituting Equations 7.78 and 7.79 into Equations 7.73 and 7.74, we obtain the left 

and right boundary conditions,

-Vnr  ̂ (/(*+*) _  /(<+1)\ I 1. ( y  JL _  \  /  A t + 1) , r(<+l)\7 n J 0,1/2 3 ^t i h l V0,m Jo,l/2 ) +  2 \ aA1 kd )  VO,3/2 + Jo,1/2 )
_  v Z f , i h i (/+1/2) vT . j ^ h i  (t) .
~  fc(*+i) _  m  ( }

-Yur 4- ^ (/(*+*) _  /■{*+!) \
7Af/o,j+i/2 +  3Et j h j  v'°<J+1/2 J o ,J - i / 2j

4- — ( y  i h  T — /  i-(<+l) I /■{<+!) \+  2 I ---- jt] I v O.J+l/2 +  J o ,J - l /2 )

vZfjhj ^+1/2) vVl'jbj At) ,M onX
-  — w r * j  ■ (7-82)

Equations 7.80, 7.81, and 7.82 constitute a tridiagonal system for the cell-edge 

scalar flux corrections. Finally, substituting Equation 7.66 into Equation 7.75, we 

have the correction as

+ \ { A ‘£ l n  + & ? ! / , )  • (7.83)

7.2.2 In co n sis ten tly  D iscretized  FD SA

We obtain inconsistently discretized FDSA” when the transport and acceleration 

equations are discretized independently. The discretized transport equation and
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boundary conditions are given in Equations 7.43 through 7.47. We discretize the 

acceleration equation, Equation 7.19, in a usual way by integrating it from cell-center 

to cell-center, with half-width cells at the left and right boundaries. For uniform cell 

width h, we obtain in the interior of the slab,

1 r(*+i)______________ j

+ W Jh + \  (s ^-' + (s" - '+ =«>)]

3T,t,jh 'i+3/2

=  5 ~  * U 3 )

+  -  ^ $ +. ) ]  1 1 S j  S -7 - 1 - f7-84)

and for the left and right boundary conditions,

 ̂ _i_ b. (•£ ^ , 2.1 /(*+*) _   ̂ At+i)
3Et(ih  +  2 V 0,1 kd ;  +  2j /o'1/2 3EtAh J° ^ 2

_  vXftlh /  1 , (< + l/2 )  _  / 7

“  2 U(*+l^ 0>I fc«r°*V ’ ( }

(*+!>
JO.i

1 r (< + l)

3St,j/t/0|J- 1/2 3E(,jh 2 \  ’ jfcd ,/ +  2} Jo'J+1f2

-  y S /- jfe  f  1 At+1/2)  _  J _ A i )  \  f 7  SRV
2 U ( '+ l)^ M  * (7*86)

Solving Equations 7.84, 7.85, and 7.86 yields the correction on the cell edges. The 

correction is applied to the scalar flux by Equation 7.83.

7.3 Fission Diffusion Synthetic Acceleration Results

We consider all three test problems for deterministic FDSA, and the homogeneous 

problem and ukef f  of the world” problem for FDSA applied to Monte Carlo. We defer 

our attack on the inherent difficulties Monte Carlo has with the uniform lattice to the
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Hybrid Method in the next chapter. We make no differentiation between consistently 

and inconsistently discretized FDSA because, unexpectedly, they perform virtually 

the same.

7.3.1 D eterm in istic FD SA  R esu lts

First, we consider the homogeneous slab as shown in Figure 6.1. Using 60 cells 

and starting 2/3 of the source in the left half and 1/3 in the right half, the determin­

istic FDSA method (FDSA applied to discrete ordinates) converges in 6 iterations, 

while the unaccelerated discrete ordinates method requires 722 iterations. The com­

putational speedup was 77. For comparison, the Diffusion Fission Matrix took 10 

iterations and 5.7 times longer than FDSA. The convergence of the first and second 

Fourier mode coefficients are shown in Figures 7.1 and 7.2, respectively.

Deterministic Fourier Mode Convergence for Homogeneous Slab

50 First Mode 
60 mesh cells

_ FDSA (6  iters) 
diffusion fission m atrix (10  iters)

48

46
unaccelerated (722 iters)

44

42
Initial source: § in left half, £ in right half

40

38
0 50 100 150 200

iteration

Figure 7.1: The convergence of the first Fourier mode coefficient in the homogeneous 
slab problem for unaccelerated discrete ordinates, Fission Diffusion Syn­
thetic Acceleration, and, for comparison, Diffusion Fission Matrix accel­
eration.

Second, we investigate FDSA on the uniform lattice problem, which is shown in
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Deterministic Fourier Mode Convergence for Homogeneous Slab
14

Initial source: § in left half, |  in right half
12

10

8
jmaccelerated (722 iters)Second Mode 

60 mesh cells6

4

FDSA (6 iters)
diffusion fission matrix (10 iters)

2

0

0 50 100 150 200
cycle

Figure 7.2: The convergence of the second Fourier mode coefficient in the homoge­
neous slab problem for unaccelerated discrete ordinates, Fission Diffusion 
Synthetic Acceleration, and, for comparison, Diffusion Fission Matrix ac­
celeration.

Figure 6.2. The discrete ordinates calculation was performed on 464 cells and the 

acceleration was performed on 116 cells in the 58 mfp system. Again, the initial 

source was 2/3 in the left half and 1/3 in the right half. The unaccelerated dis­

crete ordinates required 853 iterations to converge and FDSA required only 9, for a 

computational time speedup of 87.5. The Diffusion Fission Matrix acceleration, for 

comparison, took 12 iterations and took about 4 times longer than FDSA. The first 

and second Fourier mode coefficient convergence is shown in Figure 7.3.

Third, we look at the one-dimensional ukef f  of the world” problem, which is 

shown in Figure 6.3. Both the transport and acceleration are on 464 uniform cells 

in the 58 cm system. This problem was unique for deterministic FDSA because it 

was the only deterministic problem that required damping. A possible reason that 

damping was necessary is that the initial source is far from the converged source, the 

latter of which tends to have no diffusion characteristics. In lieu of showing another
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1

0.8

0.6

0.4

0.2

0

Deterministic Fourier Mode Convergence in Uniform Lattice

- First Mode, F(i t )

FDSA (9 iters) 
DFMA (12 iters) unaccelerated (853 iters)

464 fine-mesh cells, 116 coarse-mesh cells 
Initial Source: § in left half, g in right half

Second Mode, F(2i r)

\  DFMA (12 iters) 
FDSA (9 iters)

unaccelerated (853 iters)

.. _L_............. J .. ... J___  .............
0 20 40 60

iteration
80 100

Figure 7.3: The convergence of the second Fourier mode coefficient in the uniform 
lattice problem for unaccelerated discrete ordinates, Fission Diffusion 
Synthetic Acceleration, and, for comparison, Diffusion Fission Matrix 
acceleration.

Fourier plot, we show in Figure 7.4 the iterations and computer time necessary for 

convergence as a function of damping. The optimal 0  was 0.6, for a paltry speedup 

of 2.

7.3.2 M onte Carlo FD SA  Results

We apply Monte Carlo FDSA to the homogeneous slab problem. We begin with 

2/3 of the source in the left half of the slab and 1/3 in the right half and run 5000 

histories per cycle. The diffusion filter parameter is

5 n
a 2 — (7.87)n +  10 ‘

a 2 starts out small so the filtering does not accentuate the artificial (high frequency) 

step in the initial source.

Figures 7.5 and 7.6 show the first and second Fourier mode coefficient convergence 

for unaccelerated Monte Carlo and for FDSA with 0  held constant at 0.06. These
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Damping Effects in Deterministic FDSA for the “Jfce/ /  of the World” Problem

464 fine- and coarse-mesh cells

iterations

iterations and 40 
cpu tim e (b) 
to  converge 30

computer tim e

0 0.2 0.60.4 0.8 1
damping factor, /?

Figure 7.4: The damping effects on the iterations and computer time to converge for 
deterministic FDSA applied to the “fce/ /  of the world” problem.

problems required severe damping, as one would have expected from inconsistently 

discretized FDSA. Holding constant shows how the acceleration converges the 

source in about 10 or 15 cycles. After that, one can see how the high order statistical 

noise is translated into lower order fluctuations by the acceleration. Ideally the 

acceleration should have been shut off after about 13 or 14 cycles.

Setting the damping factor so that the acceleration is tailored to shut off after the 

source is converged eliminates the adverse effects of trying to accelerate an already- 

converged source. Therefore, for the next case, we set /? as

fi =  0.1exp(—5.0m ax(0,n — 11)) , (7.88)

so that /? =  0.1 for 11 cycles then goes to zero almost immediately. Convergence 

of both the first and second Fourier mode coefficients for this case are shown in 

Figure 7.7. The speedup obtained from the times at the unaccelerated 100th cycle 

and the FDSA 10th cycle was about 9.3.
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Fourier Mode Convergence for Monte Carlo in Homogeneous Slab
0.84 

0.82 

0.80 

0.78 

0.76 

F( w)  0.74 

0.72 
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0.66 

0.64
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cycle

Figure 7.5: The first Fourier mode coefficient convergence for the homogeneous slab 
with unaccelerated Monte Carlo and FDSA with 0=0.06.

Lastly, we apply Monte Carlo FDSA to the one-dimensional “ke/ /  of the world” 

problem. Damping appeared unnecessary as there was little difference between 

0  =  1.0 and 0  =  0.6. The Fourier mode coefficient convergence is shown in Fig­

ure 7.8. Just as with the Fission Matrix Acceleration, the Fourier coefficients seemed 

almost deterministic because of the high ratio of particles to important fissionable 

material volume. Comparing the computer times at the unaccelerated 36th cycle 

and the FDSA 6th cycle, the speedup was about 6.1.

7.4 Summary and Discussion

The Fission Diffusion Synthetic Acceleration (FDSA) method accelerates source 

convergence by utilizing the diffusion approximation of the exact correction to the 

angular flux. It is similar to the Fission Matrix Acceleration method in tha t an 

exact acceleration equation is approximated. Whereas the Fission Matrix Accelera­

tion method uses the fission matrix as an approximation, FDSA uses the diffusion

J  „ First Mode
r  /?=°— 2 Bn
/  FDSA: 0  =  0.06 H— “  =  KTtf

60 mesh cells

Initial source: § in left half, 3 in right half 5000 hist/cyc
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Figure 7.6: The second Fourier mode coefficient convergence for the homogeneous 
slab with unaccelerated Monte Carlo and FDSA with /3=0.06.

approximation-an assumption that scattering is linear in angle. The differences were 

mostly subtle for the types of problems we considered. However, in the deterministic 

realm, FDSA required damping for the Mfce/ /  of the world” problem. For all other de­

terministic problems, the optimal acceleration occurred for 0  =  1. When applied to 

the ukef j  of the world” problem, FDSA required damping regardless of whether the 

initial source was flat or had 2/3 in the left half of the slab and 1/3 in the right half. 

The reason FDSA required damping for that problem is probably because the con­

verged source is very “undiffusion-like,” and the initial source contained unphysical 

high-order components at the center of the slab.

We surprisingly found that inconsistently and consistently discretized determin­

istic FDSA performed essentially the same. This finding is inconsistent (no pun 

intended) with the discretization behavior observed in fixed-source DSA. One reason 

may be that the linear fixed-source Fourier analysis results do not apply to the non­

linear eigenvalue calculation. On the other hand, FDSA applied to Monte Carlo met

Second Mode
/? =  0 -----

FDSA: 0  =  0.06 H—

60 mesh cells 
5000 hist/cyc

Initial source: § in left half, g in right half
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Fourier Mode Convergence for Monte Carlo in Homogeneous Slab
1.00 i i i I i

First Mode, F(i r)

°-80
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FDSA: /J =  0.1 exp{—5 max(0, n -  11)) H— 5000 hist/cyc

„  0. 40a _  sn -
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Figure 7.7: The first and second Fourier mode coefficient convergence for the homo­
geneous slab with unaccelerated Monte Carlo and FDSA with /3=0.1 for 
11 cycles and essentially zero thereafter.

expectations and behaved like inconsistently discretized FDSA, in that it required 

(often severe) damping.

For the deterministic FDSA calculations, speedups were about 2 for the “fce/ /  

of the world” problem, 77 for the homogeneous problem, and 88 for the uniform 

lattice. For FDSA applied to Monte Carlo, speedups were 6 for the wfce/ /  of the 

world” problem, and 9 for the homogeneous problem. We did not attem pt the 

uniform lattice problem. The Monte Carlo calculation speedups may be somewhat 

misrepresented because all Monte Carlo calculations, as a default, estimate the fission 

matrix eigenstate at each cycle.

Compared to the Monte Carlo Fission Matrix method, FDSA has the disadvan­

tage of requiring a grid and more precalculation. However, it has the advantage of 

requiring less calculation at each iteration or cycle.

i r
First Mode, F(ir)

unaccelerated ----- 60 mesh cells
FDSA: /J =  0.1 exp{—5 max(0, n -  11)) H— 5000 hist/cyc

a a _  s*» 
a  n+10

Initial source: § in left half, 3 in right half 
J____________I____________I____________L
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Figure 7.8: The first and second Fourier mode coefficient convergence for the uk ef  j  
of the world” problem with unaccelerated Monte Carlo and FDSA with 
>9—1.0.



CHAPTER VIII

A Hybrid M onte Carlo M ethod for Improved 
Source Convergence

Unlike the hybrid method in this chapter, the Fission Matrix and Fission Diffu­

sion Synthetic Acceleration Methods are essentially unbiased. That is, they converge 

to the unaccelerated solution. Converging to the unaccelerated solution is a desir­

able feature of an acceleration method, unless the unaccelerated method itself has 

difficulties converging to the correct solution. Such is the case with Monte Carlo 

criticality calculations for arrays of identical, isolated, and weakly-coupled fission­

able components. This type of system has a high dominance ratio. Because of 

statistics, components in the high dominance ratio system having more particles 

than expected, will tend to continue having more particles. In fact, for a lattice 

with no communication between its components, as the number of cycles approaches 

infinity, all the particles could end up in one component.

We propose a hybrid Monte Carlo method that overcomes this inherent deficiency 

in Monte Carlo criticality calculations. The hybrid method follows the same format 

as unaccelerated Monte Carlo by simulating particles on a cycle-by-cycle basis. How­

ever, the source for each cycle comes not from the fission sites sampled in the previous 

cycle, but from the solution of a modified diffusion equation whose parameters are

132
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estimated by Monte Carlo. The modified diffusion equation tends to have smaller 

statistical errors than regular Monte Carlo. The hybrid method produces two sets 

of solutions: the modified Monte Carlo solution and the modified diffusion equation 

solution. Since the hybrid method's Monte Carlo solution is not exactly the same 

as the regular Monte Carlo solution, the hybrid method is not really an acceleration 

method. In other words, it is not unbiased. The cause of the bias from the regular 

Monte Carlo method is that the hybrid method has a spatial truncation error. We 

will find, however, that the biased nature of the hybrid method is quite beneficial for 

a lattice of weakly coupled components.

This hybrid method is based upon the Quasi-Diffusion method, which was first 

proposed in the deterministic arena by Gol’din [Gol64] and successfully applied with 

newly derived boundary conditions by Miften and Larsen [Mif93].

8.1 Derivation of the Hybrid Monte Carlo Method

Once again, we begin with the monoenergetic, one-dimensional integro-differential 

transport equation with isotropic scattering. We consider a slab of width L with vac­

uum boundaries,

+  =  +  , (8.1)

^ ( 0 , j i )  =  0 ,  f i>  0 , (8 .2 )

VKL,/*) =  0 ,  p < 0  . (8.3)

Defining <f>n, the angular moments of the angular flux i/>, as

{x) = J  , (8.4)
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where <f>o is the scalar flux, we integrate the transport equation, Equation 8.1, over 

angle and obtain

d<f> i(x) 
dx +  £ ,(* )* ,(* ) =  ( e ,(* ) +  *•(*) . (8.5)

Multiplying Equation 8.1 by /z and integrating over angle, we obtain

d<f> %{x)
dx

from which we set

Substituting Equation 8.7 into Equation 8.5, we obtain, without approximation to 

the transport equation,

+  • (8-8> 

Next, we define an uEddington factor,” A2,

* /_* _  M * )  _  / i
H x ) = m ~  • ( 8 - 9 )

Multiplying and dividing the first term in Equation 8.8 by <j>0(x), and multiplying 

and dividing the other two terms in Equation 8.8 by Aj, we obtain an elliptic equation 

for A2(x)0o(^):

" l i^ ) ^ (x)Mx) + j t w M(x)*°(x) = ■ (8-10)

The boundary condition at x — 0, as derived by Miften and Larsen [Mif93], is 

found by integrating Equation 8.2 over p  >  0 and manipulating as follows:
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+  j  i t i p ( Q i / t ) d f i  + (8 .1 1 ) 

=  J o  \ l i \ m n W  +  / _ x

+  j  n ) d i i  +  j  ^ f i i J ) { O t f i ) d f i  ( 8 .1 2 )

=  \ ( J t \ i l > ( 0 , i i ) d f i  + j ^ n i / > ( 0 , t i ) d ( i  . (8.13)

Now, we define an Eddington factor for the boundary,

A ,(0)"  I  )  ■ (8-14)

We also rewrite Equation 8.7 at x — 0 by multiplying and dividing the right hand 

side by ^o(O), and substituting Equation 8.9 to obtain

M O )  =  - £ ^ } ^ ( ° W „ ( ° )  • <8 -1 5 )

Noting that the last term in Equation 8.13 is ^i(O), we substitute Equations 8.14

and 8.15 into Equation 8.13, obtaining the left boundary condition,
*

0 =  Ai(0)^o(O) -  ^ A 2(0)4>°(0) , (8.16)

or, multiplying both sides by A2(0)/A i(0),

« =  . (8.17) 

The right boundary condition, found in a similar fashion, is

+ ■ (8.18)

Equations 8.10, 8.17, and 8.18 constitute a modified diffusion problem, derived, 

without approximation, from the transport problem, Equations 8.1, 8.2, and 8.3. The
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hybrid method involves estimating the Eddington factors A2 and Ai with accumulated 

data from the Monte Carlo simulation. The solution of Equation 8.10 provides the 

distribution from which the subsequent cycle’s fission source is sampled.

8.2 Implementing the Hybrid Method

During the Monte Carlo simulation, data are accumulated for estimating the 

Eddington factors. For example, on the left boundary, A2 is the ratio of an angle- 

weighted surface current estimate and a  surface flux estimate [Lew84],

. ,m k ( o ) M O )  ,
Aa(0) “  r £ ,M 0 ) /M 0 ) |) ’ (8'19)

and Ai is the ratio of a particle current estimate and a flux estimate at the surface,

,(  } E ta i(» i(0 ) /M 0 ) l ) ’ ( ' }

where N  is the total number of particles and to,- is the weight of particle i. Required 

for every cell m  in the system, A2 is obtained as an average of the angle squared, 

weighted by the track length flux estimate,

Sgig.,
£ $ ;1 ,

where £, is the track length in cell m for track k(i) of particle t.

For two reasons, the variance in the estimates of Ai and A2 is expected to be

less than the variances associated with the regular Monte Carlo estimates of flux. 

First, the A’s are constrained between zero and one, while flux values throughout the 

system may differ by many orders of magnitude. Second, the statistical errors would 

tend, in some sense, to cancel out, since the A’s are ratios of similar quantities.

The method entails running enough cycles of regular, unaccelerated Monte Carlo 

to get good cumulative estimates of Aj and A2. Then these estimates are used in

A2m -  K(i) /fl x »
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the modified diffusion equation, Equation 8.10, whose solution requires a  simple 

diffusion solver with modified cross sections. The solution is obtained on the cell- 

edges, allowing the Monte Carlo fission source for the next cycle to be sampled 

according to  a linear fit in each cell.

This hybrid method gives two sets of solutions (flux, fission source, eigenvalue, 

etc.) of the system, one from the Monte Carlo simulation as usual, and one from the 

modified diffusion equation. In addition to truncation error [Mif93], the latter has a 

statistical error associated with it, but this error is less than the error of the Monte 

Carlo solution.

8.3 Results of the Hybrid Monte Carlo Method

We apply the hybrid method to the uniform lattice test problem, whose domi­

nance ratio is approximately 0.996. The initial source contains 2/3 of the particles 

in the left half, and 1/3 in the right. The Eddington factors are accumulated over 30 

inactive cycles, with 5,000 histories per cycle before the hybrid method is engaged. 

The Monte Carlo is performed using 58 meshs cells, with survival biasing (weight cut­

off of 10~4), and the hybrid diffusion calculation is made on 464 cells. In Figure 8.1, 

the experimental Fourier analysis shows the first and second Fourier modes, includ­

ing the converged values from an 532 discrete-ordinates calculation. Once engaged, 

the hybrid method converges faster, and, upon convergence, has smaller statistical 

fluctuations.

Figure 8.2 shows the Monte Carlo collision fluxes from the unaccelerated and hy­

brid cases. It is evident that the Monte Carlo flux of the hybrid method is converged 

with its global cosine shape, while the unaccelerated Monte Carlo flux still retains 

initial source effects. The one-standard deviation error bars on the unaccelerated
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Fourier Mode Convergence in the Uniform Lattice Problem

0.8 

0.6 

0.4
F

0.2 

0.0 

- 0.2

Figure 8.1: Convergence of the first and second Fourier modes for unaccelerated 
Monte Carlo and hybrid Monte Carlo in the uniform lattice test problem.

Monte Carlo flux show how the variance is grossly underestimated due to the lack 

of convergence and the high dominance ratio. Even so, the standard deviations of 

the hybrid Monte Carlo flux were nearly a  factor of two smaller. Given tha t the 

unaccelerated flux error is underestimated, the actual factor of reduction is much 

larger than the apparent factor of two. We cannot easily quantify this actual factor 

because the unaccelerated fission source is not even converged.

For this problem, where the fuel cells are identical and the system is large, the 

eigenvalue, an integral quantity, is not overly sensitive to the fission source shape. 

Thus, the method shows no apparent improvement in estimating the eigenvalue.
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Monte Carlo Flux in the Uniform Lattice Problem
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Figure 8.2: Collision flux estimate after 230 total cycles for unaccelerated Monte 
Carlo and hybrid Monte Carlo in the uniform lattice test problem.

initial source: 2 /3  left, 1/3 right 
464 hybrid transport cells, 58 MC cells



CHAPTER IX 

Summary, Conclusions, and Future Work

9.1 Summary and Conclusions

We have presented three new methods possessing improved source convergence 

properties in criticality calculations for systems with high dominance ratios. The 

three methods are the Fission Matrix Acceleration method, the Fission Diffusion 

Synthetic Acceleration (FDSA) method, and a Hybrid Monte Carlo method. Cur­

rently, practical Monte Carlo and deterministic criticality calculations are based on 

the source iteration method, which converges very slowly for systems with high dom­

inance ratios. In fact, for some difficult problems, the Monte Carlo method will not 

converge to the correct solution. Systems that have high dominance ratios are those 

that have weak neutron communication between their distant regions. Typical high 

dominance ratio systems are large thermal nuclear reactors and arrays of barrels of 

nuclear waste.

The Fission Matrix Acceleration and FDSA methods are unbiased acceleration 

methods. They converge to the same solution as the unaccelerated calculation. Both 

methods approximate an exact acceleration equation for the fission source. Solving 

the approximate equation yields an additive correction for the fission source. The 

acceleration requires extra work at each iteration or cycle, but the source convergence
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is accelerated by requiring fewer iterations or cycles.

The Fission Matrix Acceleration equation uses the fission matrix as a  low-order 

operator in approximating an exact acceleration equation. The fission matrix may be 

estimated deterministically or by Monte Carlo. Fission Matrix Acceleration may be 

implemented in different ways. For instance, a diffusion fission matrix may be used 

to accelerate diffusion, discrete-ordinates, or Monte Carlo calculations. A Monte 

Carlo fission matrix can be used to accelerate a Monte Carlo calculation. The latter 

implementation is important because the absence of a deterministic acceleration 

equation deems a regular spatial grid unnecessary. Unfortunately, the statistical 

noise is amplified by the acceleration method and, therefore, needs to be filtered out. 

To do this we use a diffusion-like filter that requires a regular spatial grid, but filters 

exist that do not require a regular grid.

We test the feasibility of all three methods in a testbed consisting of idealized 

problems. Although these problems are far from reality, they contain enough realistic 

properties to serve as a valid testbed.

We have applied the Fission Matrix acceleration to three one-dimensional test
ri.

problems. These were a homogeneous slab, a uniform lattice array, and a one­

dimensional model of the Mfce/ /  of the world” problem. Their dominance ratios are

0.991, 0.996, and 0.823, respectively. For deterministic calculations, we observed 

computational time speedups of about 20-34 for the homogeneous slab and uniform 

lattice problems. The deterministic speedup for the 1-D akef  /  of the world” problem 

was only 3.8 because the dominance ratio is not very high and, hence, there is little 

gain to be had. The speedups for Monte Carlo fission matrix acceleration were about 

5 for the homogeneous slab and the 1-D of the world” problem. The uniform 

lattice problem proved too difficult for unaccelerated-and therefore, accelerated-
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Monte Carlo to converge to the correct fission source.

We have implemented the new Fission Matrix Acceleration method in the pro­

duction Monte Carlo code MCNP. Applied to the three-dimensional ukef  j  of the 

world” problem, results for the “real” problem were impressive. Fission matrix data 

were accumulated for 20 cycles after which the acceleration was turned on. The 

accelerated Monte Carlo solution converged in about 3 to 4 cycles, while the un­

accelerated Monte Carlo required another 70 cycles. The dominance ratio of the 

three-dimensional of the world” problem is about 0.92, which is higher than 

its one-dimensional representative test problem. The similarity of the method’s be­

havior in this real problem to that in the simplified problems verified the validity of 

the testbed of idealized problems.

The Fission Diffusion Synthetic Acceleration (FDSA) method is similar to the 

Fission Matrix Acceleration method except that the acceleration equation is ap­

proximated by using the diffusion approximation. This acceleration method can be 

applied to discrete-ordinates or Monte Carlo transport and it requires a grid for 

solving the diffusion-like acceleration equation. FDSA requires less storage than the 

Fission Matrix Acceleration method. Applied to Monte Carlo, we saw speedups of 

6 to 9. For deterministic calculations, we saw speedups of 77 and 88 for the homo­

geneous slab and uniform lattice, and a speedup of only 2 for the 1-D of the 

world” problem.

The strength of the diffusion-like filter is controlled by a parameter a. The filter 

is intended to remove the high-frequency statistical noise from accelerated Monte 

Carlo calculations. We often found it necessary to damp the additive correction with 

a parameter /3 that varied between 0 and 1. Damping scales back all frequencies 

of the correction. The parameters a  and /? are not independent. If the filtering
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does not remove enough noise, then the entire correction may have to be damped. 

Using to do the work of filtering and keep the acceleration stable results in a loss 

of acceleration, because the low frequencies of the acceleration are scaled back also. 

Unfortunately, the selection of a  and /? is not automated.

Unaccelerated Monte Carlo was unable to converge for the uniform lattice test 

problem. In this case, attempts to accelerate convergence with an unbiased accel­

eration method also failed. We presented a Hybrid Monte Carlo method that is 

not an unbiased acceleration method because it does not converge to the unacceler­

ated Monte Carlo fission source due to its second order truncation error. Therefore, 

quantifying speedup is difficult, except to say that the Hybrid Method converges 

while, practically, the unaccelerated Monte Carlo does not. The Hybrid Monte Carlo 

method has a truncation error, but in the uniform lattice problem, it proved supe­

rior in converging the source and greatly reducing the statistical error. The method, 

for this problem, realized nearly a factor of two reduction in the apparent standard 

deviation of the collision flux estimate, but a much larger reduction in the actual 

standard deviation.

In conclusion, we have successfully accelerated fission source convergence in both 

deterministic and Monte Carlo criticality calculations. By filtering statistical noise, 

we have incorporated deterministic attributes into the Monte Carlo calculations in 

order to speed their source convergence. We have used both the fission matrix and 

a diffusion approximation to perform unbiased accelerations. The Fission Matrix 

Acceleration method has been implemented in the production code MCNP and suc­

cessfully applied to a real problem. When the unaccelerated calculations are unable 

to converge to the correct solution, they cannot be accelerated in an unbiased fashion. 

A Hybrid Monte Carlo method weds Monte Carlo and a modified diffusion calcu­
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lation to overcome these deficiencies. The Hybrid method additionally possesses 

reduced statistical errors.

9.2 Future Work

We now discuss a few items from the potentially endless list of “things to do.”

1. Automate the selection of a  and /?. We know that as the number of Monte 

Carlo histories per cycle increases, the calculation appears more deterministic 

and filtering requirements diminish. So, a  should be inversely proportional to 

the number of histories per cycle. The damping factor /? may be dependent on 

the dominance ratio, p. If the dominance is near unity, very little information 

is gained each iteration or cycle. So, it may be that /? (1 -  />).

2. Implement a Kalman filter. The diffusion-like filter we use spatially smooths 

the fission source. For a severely heterogeneous system, spatial smoothing may 

introduce unphysical and unwanted errors. A Kalman filter would determine 

the optimal fission source in a region based on all previous cycles.

3. Use powers of the fission matrix. For high dominance ratio problems where 

little information is gained each cycle, it may be that one cycle or iteration is 

too small of a “snapshot” to get a view of the big picture. If instead of collecting 

the fission matrix over one cycle, suppose its n-th power was collected over n 

cycles. Then the acceleration could be applied every n cycles and be more 

effective. See Appendix A for a brief discussion.

4. Implement FDSA in a marriage between a deterministic production code and 

a Monte Carlo production code.
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5. Combine FDSA and the Hybrid method.

6. Accelerate the fission matrix. Currently, the fission matrix is estimated af­

ter the unaccelerated cycle or iteration. Thus, the acceleration effects do not 

show up in the fission matrix until the next cycle or iteration, and, then, only 

implicitly. Accelerating the rows of the fission matrix may prove beneficial.

7. Further investigate using the adjoint fission source as an importance function, 

as suggested by Goad and Johnston [Goa59]. We considered using an impor­

tance function inversely proportional to the adjoint fission source during the 

inactive cycles to speed convergence, and proportional to the fission source 

during the active cycles to reduce the system-wide variance. However, initial 

results were not encouraging.

8. Study the adaptation of Halton’s sequential Monte Carlo methods [Hal94] to 

criticality calculations.
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APPENDIX A

Using Powers of the Fission M atrix

If the fission matrix is accumulated from Monte Carlo results, the possibility 

exists to use multiple powers of the fission matrix in source convergence acceleration. 

The advantage of using the fission matrix to the, say, n-th power to accelerate source 

convergence is that it has a smaller dominance ratio. If, for instance, the dominance 

ratio of the fission matrix is p, the dominance ratio of the fission matrix to the 

n-th power is pn. For systems with high dominance ratios, this modification in the 

fission matrix acceleration may prove useful and maybe even benefit the cases where 

unaccelerated Monte Carlo has difficulty converging to the correct solution.

After three cycles of source iteration (accelerated or otherwise) we would have

f m  =  ~ L f „  , (A.i)
Ko

fs/2 ~  jfc^U l/2  i (A.2)

fs/2 =  k”̂ “A/3/2 (A. 3)

=  * 3 /2  i 3 / °  '  ( A ' 4 )

The last equation may be written

/s /2  =  > (A.5)
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where

~tK  =  k3/2kll2k0L* ' (A‘6)

The elements of the matrix K  would be constructed from the cumulative produc­

tion in cell i at cycle m due to a source in cell j  at cycle (m — n) and the source at 

cycle (m — n). This method would require extra storage because the normally-used 

single power fission matrix would still be required. The construction of K  would 

require at least a  uniform source in its initiating cycle.

The derivation of a fission matrix acceleration equation follows:

f  ~ /s /2  — — fo/2 (A.7)

— “  /s/2) + — / g/2 ' (A.8)

So,

( / - i i ) ( / - / s/2) =  i  l S m - S m  (A.9)

=  l l A / 2  -  j K h  (A.10)

=  o) -  -( K h  (A.11)

=  ( \ l  -  I ) ( j K h )  (A.12)

=  \ k ( \ l  -  / ) / „  (A.13)

=  (A .14)

=  . (A.15)

Then, as before, the appropriate spatial projections are made and the particular 

solution for the correction is obtained by setting k equal to

,  ,  u - M h n )  ( r , m ,„ )
( f . i K f i )  ( f , h n )  • ( )
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Here, /*  is the eigenvector of the adjoint L. The determination of k would require 

an extra matrix multiply, since K  is not explicitly known.

The idea is that the fission source for the i-th cycle can be accelerated by using 

a fission matrix to the n-th power and the fission sources from the (t — n)-th and 

(i — n -f- l)-th  cycles. Extra storage would be required, as well as bookkeeping over 

n cycles, not just one.

This approach could enhance stability and possibly reduce some of the cycle-to- 

cycle correlation effects. It would only be applicable to the case where the Monte 

Carlo fission matrix is used.
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APPENDIX B

Poetic Summary

I needed to know k 
had computer time to burn 
needed Monte Carlo 
nowhere else to turn

sampling and pdf’s 
those are its wares 
I like Monte Carlo 
even though it has errors

I made up the input
so nice and clear
“I’ll get me that number,”
I said without fear

material and densities 
cross sections to discern 
I guessed at a source 
and hit carriage return

I waited and waited 
for that thing to converge 
killing the job 
was my greatest urge

Along came Ed Larsen 
luckily sooner than later 
he said all I need 
is a low-order operator



“I’ve been talking to Art 
we’ve got the fix 
just get yourself 
a good fission matrix!”

so, hold the Mt. Dew 
no shootin’ the breeze 
that run is completed 
it converged with ease

what once took hours 
now takes minutes 
who can believe it? 
it’s gotta be nuts!

but proof of spare time 
before you sits 
I tried to write poetry 
yep. i t ’s the pits
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