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Abstract

The increased availability of spatial data and methodological developments in species distribution modelling has

lead to concurrent advances in phylogeography, broadening the scope of questions studied, as well as providing

unprecedented insights. Given the species-specific nature of the information provided by ecological niche models

(ENMs), whether it is on the environmental tolerances of species or their estimated distribution, today or in the past,

it is perhaps not surprising that ENMs have rapidly become a common tool in phylogeographic analysis. Such infor-

mation is essential to phylogeographic tests that provide important biological insights. Here, we provide an overview

of the different applications of ENMs in phylogeographic studies, detailing specific studies and highlighting general

limitations and challenges with each application. Given that the full potential of integrating ENMs into phylogeo-

graphic cannot be realized unless the ENMs themselves are carefully applied, we provide a summary of best prac-

tices with using ENMs. Lastly, we describe some recent advances in how quantitative information from ENMs can

be integrated into genetic analyses, illustrating their potential use (and key concerns with such implementations), as

well as promising areas for future development.
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Background

Building upon a tradition of interdisciplinary

approaches, recent integration of ecological niche models

(ENMs) in phylogeographic studies is improving our

understanding of the processes structuring genetic varia-

tion across landscapes (Knowles 2009; Chan et al. 2011).

Because ENMs generate information about abiotic pref-

erences and tolerances of species (i.e. the existing funda-

mental niche sensu Peterson et al. 2011), and hence,

estimates of the current, past and possible future poten-

tial distribution of species, they are invaluable tools (Sco-

ble & Lowe 2010; Chan et al. 2011; Svenning et al. 2011).

ENMs are an independent data source that can be used

to evaluate or develop phylogeographic hypotheses

about the processes generating patterns of genetic varia-

tion in disparate taxa from virtually anywhere across the

globe (reviewed in Richards et al. 2007).

Given the broad applicability of ENMs and the

increasing availability of environmental data in the form

of GIS (Geographic Information Systems) layers and of

species’ distribution data (the main inputs for ENMs,

Box 1), it is perhaps not surprising that ENMs are becom-

ing widely used in phylogeographic studies, although its

use remains taxonomically and regionally biased (Fig. 1).

Developments in the different uses of ENMs in phyloge-

ography have also progressed quickly. This includes the

use of ENMs to: identify the potential location of past

populations (e.g. Swenson 2006; Knowles et al. 2007;

Morgan et al. 2011), characterize species environmental

preferences and tolerances (e.g. Stockman & Bond 2007;

Wooten et al. 2010), evaluate adaption to local environ-

mental conditions across populations (Fournier-Level

et al. 2011; Banta et al. 2012), test whether niche diver-

gence accompanies species divergence (e.g. McCormack

et al. 2010; Kalkvik et al. 2012), evaluate alternative bioge-

ographic hypotheses about community responses to cli-

mate change (e.g. Galbreath et al. 2009; Edwards et al.

2012), and provide quantitative information for predict-

ing how distributional shifts might leave species-specific

signatures in patterns of genetic variation (e.g. Knowles

& Alvarado-Serrano 2010; He et al. 2013).

In the following section, we review the different uses

of ENMs in phylogeographic studies, highlighting the

advantages and limitations of ENMs in each of these

applications. In particular, we focus on the integration of
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ENMs with coalescent-based approaches, some of the

potentially most insightful, but also challenging, applica-

tions of ENMs in phylogeography. We provide some

guidelines for the successful implementation of ENMs,

including a brief discussion of the assumptions and limi-

tations of ENMs (Warren 2012). However, we do not

cover in detail the theory behind ENMs or specifics of

individual modelling approaches, for which there is an

extensive literature (Guisan & Zimmermann 2000;

Guisan & Thuiller 2005; Peterson et al. 2007; Elith &

Leathwick 2009; Franklin & Miller 2009; Elith et al. 2010;

Pearson 2010; Sillero 2011).

Box 1 ENMs: an overview

ENMs can be divided into correlative and mechanistic approaches (Peterson et al. 2011; but see Sillero 2011). Mecha-

nistic approaches use biophysical properties of organisms to directly link functional traits with environmental condi-

tions to determine areas where species may exist (Kearney & Porter 2009; Dormann et al. 2012). Correlative

approaches, on the other hand, focus on identifying statistical associations between the distribution of a species (or

set of species) and environmental conditions without the identification of causal links. Although both mechanistic

and correlative approaches can be integrated into phylogeographic studies and can be used in combination (Elith

et al. 2010; Dormann et al. 2012), mechanistic approaches have had limited use because of the detailed information,

beyond the sampling coordinates, they require. In this box, we focus on correlative approaches (hereafter referred to

generically as ENMs), which rely on two sources of information: (i) distribution data and (ii) environmental layers.

Below, we present a brief description of the steps involved in generating ENMs with some general guidelines (see

also Table 2).

Distribution data

Distribution data can be compiled from primary surveys, natural history collections, published species ranges (e.g.

Barnes & Wagner 2004), or public databases (e.g. Natureserve, Patterson et al. 2007; GBIF, Telenius 2011). Although

different sources contain information relevant for ENMs, the accuracy and precision of distributional data is tightly

linked to their origin and format, and hence, all distributional data should be vetted (e.g. confirm taxonomic identi-

ties and screen for possible errors in recording collection point information). Once distribution data have been com-

piled and vetted, all presence records (and sometimes absence records) should be mapped into a predefined map

coordinate system that matches the one from the environmental data. If geographic coordinates are not available,

georeferencing that ideally quantifies geographic uncertainty (e.g. Wieczorek et al. 2004) might be used. Tools for

removing redundant data (i.e. points in the same locality or that fall within the same grid cell of environmental data),

which can artificially bias ENM predictions, are available (e.g. Warren et al. 2010); more complex methods of filtering

redundant data, such as those-based on spatial variograms (Goovaerts 1998), could also be used.

Environmental data

Environmental data in the form of digital grids can be derived from field data, interpolated surfaces (e.g. climatic

data from WorldClim; Hijmans et al. 2005), or remote sensing (e.g. landcover from MODIS, Friedl et al. 2002; for addi-

tional examples of available data see Richards et al. 2007; Pearson 2010). Once compiled, all environmental data (i.e.

both data used to train the model and for projecting the distribution) need to be processed. Most commonly this

involved either transforming the environmental data into raster grids with a single predefined map coordinate sys-

tem with GIS software (Bolstad 2008). Techniques to deal with correlated variables, such as orthogonal transforma-

tions (e.g. principal component analysis) are available and should be considered whenever the goal of the study does

not include the identification of the relative contribution of different environmental variables to the model.

Model generation and calibration

The performance of different algorithms for determining the association between species distribution and environ-

mental variables (Table 1) may vary. Likewise, data requirements (e.g. requirement of presence/absence or presence

only data or ability to deal with categorical environmental variables) and output (e.g. continuous vs. discrete predic-

tion) differ among algorithms. Thus, algorithm selection choice depends on the characteristics of the data and goal of

the study. Although no simple basis for algorithm selection exists, general guidelines for deciding which approach to

use are available (reviewed in Thuiller et al. 2003; Elith et al. 2006; Peterson et al. 2007; Elith & Graham 2009). After

deciding upon an approach or group of approaches, sensitivity analyses of parameter settings (Haegeman & Etienne

2010; Anderson & Gonzalez 2011; Royle et al. 2012), as well as sensitivity analyses for the inclusion/exclusion of
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variables in the model (especially when the variables are highly correlated with each other, as it is commonly the

case), should be conducted in conjunction with model selection procedures (e.g. Warren & Seifert 2011). Tools for

identifying optimal ENM models are freely available (Warren et al. 2010); yet, uncertainty associated with model

selection and parameterization should always be assessed.

Model validation

Assessing the accuracy of a model is essential and can be accomplished by different means (Liu et al. 2009; Jimenez-

Valverde 2012), depending upon the model and data type used (for review of validation procedures see Pearson

2010; Peterson et al. 2011). Model validation should be performed using multiple alternative accuracy measurements

(Hernandez et al. 2006; Lobo et al. 2008; Liu et al. 2009) and on independent data (e.g. occurrence data from a new

survey of the species), or if sample size is limited, on pseudo-replicated partitions of the data (e.g. bootstrapping or

jackknifing the data). It is important to note that model utility depends on the application intended, and hence, that

the accuracy required from a model should be considered on a case-by-case basis. If generating projections of species

distributions in the past or future, it may be possible to validate these projections using historical data (e.g. palyno-

logical, or fossil records) or using biophysical models as reference (e.g. Kearney et al. 2009), respectively.

Model projection

Once the model has been validated, it can be projected across different regions and/or for different time periods

(PMIP2, Braconnot et al. 2007; e.g. using climatic variables estimated for the past or future; CliMond, Kriticos et al.

2012). However, it is always important to consider all potential errors that might impact both the accuracy of the

model and the projection (see Table 2), and ideally, this uncertainty should be considered in all downstream analy-

ses. The robustness of the projections to different climatic estimates (e.g. MIROC, CCSM3; Braconnot et al. 2007) and

model parameterizations should also be considered.

Ecological niche models

The approaches collectively referred to as ENMs (Warren

2012) include different methods that aim to identify the

environmental niche and potential distribution of species

and/or communities (Ferrier & Guisan 2006; Peterson

et al. 2011; Svenning et al. 2011) (Box 1). This is accom-

plished by statistically establishing an association

between the locations where a species (or set of species)

live and the environmental conditions of these locations,

or, as in the case of mechanistic models, by directly cal-

culating the physiological tolerances of a species based

on biophysical principles (Kearney & Porter 2009).

Although the exact procedure followed varies among

methods (Table 1), all of them first establish the environ-

mental space the species under study inhabits (hereafter

referred to as suitable, as is commonplace in the litera-

ture; however, note that in this context, suitable refers

only to the set of inhabited environmental conditions; see

Anderson 2013). This environmental space is then pro-

jected onto a geographic space, finding the geographic

areas where the suitable environment is represented (for

details see Box 1). Although in principle both correlative

and mechanistic ENMs can be used in phylogeographic

studies, mechanistic approaches have seldom been used

in phylogeography. Hence, our review is focused on

correlative approaches.

Despite the insights of an integrative perspective in

phylogeography (Knowles 2009) that ENMs can bring to

phylogeography, ENMs are not without their own set of

challenges and potential pitfalls (Elith et al. 2010). The

realized distribution of a species at any point in time is

of course conditioned by a plethora of factors, including

those that may not be accounted for in an ENM but play

an important role in structuring distributions, such as

biotic interactions (Davis et al. 1998; Meier et al. 2010; but

see Anderson 2013). In addition, individual populations

may differ in their responses to particular environmental

conditions because of local adaptation (Fournier-Level

et al. 2011). This raises the possibility of not only inaccu-

rate inferences from ENMs based on the entire species

range (see below), but also that phylogeographic analy-

ses might be compromised (i.e. local adaptation may

impact gene flow rates and evolutionary responses to cli-

mate change, but the impact of such fitness variation on

population genetic structure is not directly accommo-

dated by typical phylogeographic models). These and

other caveats should be considered and best practices

used to minimize errors with ENMs (see Table 2). Fortu-

nately, there have been significant advances for the gen-

eration and refinement of ENMs (Peterson et al. 2011).

To guard against inaccurate inferences, it is also

important to first clearly define the phylogeographic

question that is being addressed with information from

an ENM. Because the assumptions, performances and

data requirements differ among potential methods for

ENMs construction (Table 1) (Elith et al. 2006; Peterson

et al. 2011), the choice of a particular modelling approach
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Fig. 1 Uses of ecological niche models (ENMs) in the phylogeographic literature. Number of articles recovered according to (a) the

region and organism studied, and (b) how the ENM was applied given the year of publication; note that overall, 77.5% of studies to date

used ENMs in a corroborative application (bottom three categories in legend), and only 22.5% of studies used ENMs to generate phylog-

eographic hypotheses independent of genetic data. This summary is based on a search of articles containing the topic terms ‘phylogeog-

raphy’ and ‘niche model*’ or ‘distribution model*’ on the Web of Science (the asterisk represents a wild card used to find words with

alternative endings, for example, model* = model, models, modelling). The results of this search were filtered to exclude all articles that

did not include any of the following phrases in the abstract: ‘niche model*’, ‘distribution model*’, ‘potential distribution*’, ‘ENM*’,
‘SDM*’. Although not exhaustive, this search procedure probably provides a fair representation of the available literature.

Table 1 Main distribution modelling methods available

Method Procedure Input Reference

BIOCLIM Environmental envelope Presence Busby (1991)

HABITAT Environmental envelope Presence Walker & Cocks (1991)

DOMAIN Gower distances Presence Carpenter et al. (1993)

GARP Genetic algorithm Presence/pseudoabsence Stockwell & Peters (1999)

Classification and Regression Trees Regression Presence/absence De’ath & Fabricius (2000)

Artificial Neural Networks (ANNs) Machine learning Presence/absence Hilbert & Ostendorf (2001)

Ecological Niche Factor Analysis (ENFA) Eigensystem computation Presence/background Hirzel et al. (2002)

Generalized Linear Models (GLMs) Regression Presence/absence Lehmann et al. (2002)

Generalized Additive Models (GAMs) Regression Presence/absence Lehmann et al. (2002)

Support Vector Machines (SVMs) Environmental envelope Presence or presence/absence Guo et al. (2005)

MAXENT Maximum entropy Presence/background Phillips et al. (2006)

Multivariate Adaptive Regression

Splines (MARS)

Regression Presence/absence Elith & Leathwick (2007)

Boosted Regression Trees (BRTs) Boosting Presence/absence Elith et al. (2008)

Deduced Distribution Model (DDM) Expert knowledge Presence/absence Kitchener & Rees (2009)

BIOMOD Model combination1 Presence/absence Thuiller et al. (2009)

Depending upon the input, the specific procedures used in ecological niche models vary across methods. With presence only data, an

environmental envelop approach is used in which environmental tolerances are determined from the environmental variables associated

with specific occurrence records. In contrast, suitable areas are identified by contrasting the environmental conditions from known spe-

cies occurrences against those (i) where the species is known to be absent (presence/absence models), (ii) is presumed to be absent (pres-

ence/pseudoabsence models), or (iii) against the environmental variation across the study region (presence/background algorithms).
1Combining models should be carefully considered as there is a risk of obtaining positively mislead answers (analogous to problems

with concatenation in phylogenetics).
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Table 2 Summary of some basic considerations when generating ecological niche models (ENMs) (for a more extensive discussion and

details see Barry & Elith 2006; Sober�on & Nakamura 2009; Elith et al. 2010; Peterson et al. 2011)

Assumptions that may compromise

ENM accuracy Specific considerations Relevant references

1. Data compilation

Are species presences (and absence) records

representative of the actual distribution?

� effects of species’ natural history

� geographic/environmental bias

� intraspecific variability

� positional uncertainty

� sample size

� sampling bias (e.g. towards

more accessible areas)

� taxonomic accuracy

(e.g. subspecies or races)

� temporal coverage

in relation to environmental data

Stockwell & Peterson (2002), Hernandez

et al. (2006), Pearson et al. (2007), Hortal

et al. (2008), Jackson et al. (2009), Lozier

et al. (2009), Phillips et al. (2009), Barve

et al. (2011) and Gonzalez et al. (2011)

Do environmental variables accurately

capture the association between

species subsistence and the

environment at the relevant scale?

� data quality and biases

� effect on species distribution

(direct vs. indirect)

� resolution in space and time

� spatial autocorrelation

� spatial extent

� temporal coverage and stability

� type (categorical vs. continuous)

Van Niel et al. (2004), Barry & Elith

(2006), Anderson & Raza (2010),

Kriticos & Leriche (2010), Pearson

(2010), Barve et al. (2011), Peterson

et al. (2011) and Synes & Osborne (2011)

2. Model generation and calibration

Is the modelling algorithm appropriate

given the data available

and research question?

� algorithm assumptions

� algorithm performance

under different scenarios

� input data type (e.g. presences only

vs. presence/absences)

� output generated (e.g. presence/absence

vs. continuous prediction)

� sensitivity to model parameters

Austin (2002), Segurado & Araujo (2004),

Pearson et al. (2006), Guisan et al. (2007),

Elith & Graham (2009) and

Barbet-Massin et al. (2012)

Is the model appropriately calibrated

for the data available

and research question?

� model complexity

� model selection procedure

� setting of model parameters

� variable selection strategy

Maggini et al. (2006), Anderson &

Gonzalez (2011), Austin & Van Niel

(2011) and Warren & Seifert (2011)

3. Model validation

Is validation performed on truly

independent data and under

appropriate settings?

� assumptions/limitations

of accuracy measurement

� importance of use of multiple metrics

� sensitivity to model parameters

� threshold transformation of

continuous predictions

Fielding & Bell (1997), Liu et al. (2005),

Hirzel et al. (2006), Peterson et al. (2008)

and Elith & Graham (2009)

4. Model projection

Is the species–environment relationship

likely to be maintained in

space and/or time?

� availability of validation

data in projected regions

� likelihood of niche shifts

� model uncertainty

� model transferability

� risks of interpolation

and extrapolation

Thuiller et al. (2004), Randin et al. (2006),

Peterson et al. (2007), Elith et al. (2010),

Peterson (2011) and

Wenger & Olden (2012)
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will vary depending upon the application. For example,

if the goal is to estimate the similarity of niches between

phylogeographic lineages, a regression-based model,

which is not particularly robust to spatial autocorrela-

tion, should be avoided (Sokal & Rohlf 1981). Likewise,

if the goal is to generate projections of past distributions,

ENM approaches, such as environmental envelope mod-

els, should be avoided as they are not ideal for such

applications because of sensitivities with extrapolating to

conditions that are beyond those used in the training set

(i.e. when current environmental conditions are a small

subset of those present at different time periods) (Field-

ing & Bell 1997; Roberts & Hamann 2012a). The spatial

structure of the taxon of interest is another important

consideration when selecting a modelling approach. For

example, broadly distributed species are often composed

of locally adapted populations with distinct environmen-

tal tolerances and potential ranges (Fournier-Level et al.

2011; Banta et al. 2012). Under this scenario, community-

based approaches that allow for the modelling of each

population independently may be a well-suited alterna-

tive to species-based models that assume a common

response of populations across the entire species range

(Crego et al. 2013; Gray & Hamann 2013; for a compari-

son of these approaches see Chapman & Purse 2011).

Applications of ENMs in phylogeographic
studies

Here, we review some of the common uses of ENMs in

phylogeographic studies. The application of ENMs vary,

with ENMs most commonly used in a correlative (or cor-

roborative) manner vs. as tools for generating hypothe-

ses (or predictions) that can be tested with genetic data

(Fig. 1). This reflects in part the differences in the type

and availability of required data for specific applications

(i.e. whether physiological data or genomic data might

be needed), as well as differing levels of analytical devel-

opment across applications (i.e. some new applications

discussed below show promise but require further devel-

opment for their full potential to be realized).

Visual assessments of concordance with genetic
variation

One of the most common applications of ENMs in phy-

logeography (Fig. 1b) is to interpret patterns of genetic

variation based on the post hoc concordance between

patterns of genetic divergence and projections of the spe-

cies distribution. For example, a deep phylogenetic split

between geographically proximate populations may be

suggestive of long-term isolation. Support for this

hypothesis might be obtained by visual inspection of pro-

jections of past species distributions (i.e. from ENMs

based on paleoclimatic variables), where the distribu-

tional disjunctions correspond to the genetic differentia-

tion observed between regions (e.g. Moussalli et al. 2009).

These analyses are typically qualitative, seeking cor-

roborative evidence visually from the ENMs, and are

often implemented in one of two ways. An ENM may be

generated for the entire species of interest and compared

visually to the pattern of genetic variation, for example,

to identify plausible isolating barriers (e.g. areas of low

suitability) or past distributions during glaciations that

may explain observed genetic breaks (e.g. Beatty & Pro-

van 2010; Lawson 2010). Buckley et al. (2009), for exam-

ple, compared the spatial arrangement of genetic

diversity of a New Zealand stick insect (Argosarchus horri-

dus), to past distribution models created from all reliable

records of the species. With geographic regions of high

and low genetic diversity coinciding with suitable and

unsuitable regions identified by the ENMs, respectively,

these authors conclude that it is probably that differences

in genetic diversity across the species range reflects dif-

ferences in population persistence during glacial periods.

Alternatively, ENMs can be generated separately for

each group of individuals (or populations) identified

from genetic analyses and the geographic overlap of the

projected distributions of the different genetic groups

assessed (Jezkova et al. 2009; Banta et al. 2012; Hornsby

& Matocq 2012). For example, to evaluate the role of

environment differentiation in the divergence of three

distinct genetic lineages of the Spanish lizard (Psammo-

dromus hispanicus), Fitze et al. (2011) modelled the current

distribution of these three distinct genetic lineages. With

marginal overlap in their predicted distributions, the

authors conclude that the ENMs support a hypothesized

role of environmentally driven isolation as a driver of

divergence in this lizard.

Because these applications are correlative, ad hoc inter-

pretations might be misleading given that other pro-

cesses might have generated the observed genetic

patterns (Box 2; Wagner & Fortin 2013). This is especially

a concern when the landscape has been dramatically

altered (such that genetic variation may be associated

with past, rather than current, landscape configurations;

see Zellmer & Knowles 2009), the species distribution

has been historically dynamic (as with climate induced

distributional shifts; see Hewitt 2000; Greenstein & Pan-

dolfi 2008), or the distribution of a species is structured

by biotic interactions not captured by the ENM model

(Wisz et al. 2013).

Identification of landscape effects

This application is focused on correlative tests between

landscape features and patterns of genetic variation

and/or gene flow (inferred from genetic data). Using

© 2013 John Wiley & Sons Ltd

238 PRIMER



habitat suitability scores from ENMs, the impact of the

landscape on population connectivity can be predicted.

For example, habitat suitability information can be trans-

lated into probable migration paths between populations

using either least-cost path analysis or isolation by resis-

tance calculations (McRae 2006). The resulting matrix of

pairwise connectivity values among populations is then

statistically compared with a corresponding matrix of

pairwise genetic distances or genetic diversity using

regression or ordination methods (e.g. canonical corre-

spondence analysis; ter Braak 1986) or correlation meth-

ods (e.g. Mantel tests; Mantel 1967). For example, using a

series of Mantel tests, Ortego et al. (2012) examined the

explanatory power of current vs. the past distribution

(during the last glacial maximum) from ENMs with

respect to patterns of genetic relatedness of an endemic

oak from southern California (Quercus engelmannii). Their

analyses showed that both current and past distribu-

tions, in addition to elevation, were significant predictors

of pairwise genetic distance, even after accounting for

the geographic distance between populations, indicating

the joint influence of current and historical landscape

configurations on genetic structure of the species.

Alternatively, spatial association methods (e.g.

boundary overlap statistics, Jacquez 1995) can be used to

statistically determine whether spatial breaks in the

ENM-based suitability of habitats (as identified from

boundary delineation methods; Fortin et al. 1996) overlap

with genetic boundaries (such as those estimated using

Monmonier’s or Womble’s bilinear algorithm; Monmo-

nier 1973; Barbujani et al. 1989) (reviewed in Legendre &

Fortin 2010; Wagner & Fortin 2013). Such analyses, for

example, were used to assess whether the dispersal of

foxsnakes in Canada and northern US was limited by

habitat degradation (Row et al. 2010). Using assignment

tests that explicitly incorporate spatial information of the

samples (e.g. Corander & Marttinen 2006; Chen et al.

2007) coupled with spatial interpolation to identify the

location of genetic breaks, Row et al. (2010) were able to

show that patterns of genetic differentiation were spa-

tially coincident with areas of low habitat suitability, as

determined by the ENMs, supporting the impact of habi-

tat suitability on population connectivity in these snakes.

As with applications that seek concordance (dis-

cussed in the previous section), the correlation between

the landscape, or habitat suitability and genetic data may

not be causal. For example, genetic patterns may not be

exclusively linked to the present landscape configura-

tion, but instead reflect the past configuration of habitats

or the effects of range shifts themselves (Knowles & Al-

varado-Serrano 2010; He et al. 2013). Tests of the role of

past population connectivity in shaping current patterns

of genetic diversity (e.g. when past and present land-

scape configurations differ; Zellmer & Knowles 2009) are

also for populations in mutation–drift equilibrium (i.e.

they assume that the rate of input of new mutations is

equal to the rate of loss of mutations by genetic drift).

Furthermore, they generally view current genetic diver-

sity as a simple product of environmental isolation (i.e.

they do not consider how species-specific characteristics

that might affect local population demography would

impact the relationship between genetic divergence and

landscape configurations; Chan & Hadly 2011).

Niche differentiation

There are several different ways ENMs can be used to

examine whether different phylogeographic lineages

may have diverged in their respective niches (Peterson

et al. 2011). Niche similarity can be assessed by evaluat-

ing whether an ENM generated for one phylogeographic

lineage recovers the distribution of another (Peterson

et al. 1999; Warren et al. 2008). Alternatively, the spatial

or environmental overlap of ENMs generated for differ-

ent phylogeographic lineages can be assessed (e.g. War-

ren et al. 2008; McCormack et al. 2010). For example,

niche divergence across many different environmental

factors might be assessed by ordination, in which the dis-

tribution of phylogeographic lineages across environ-

mental space, or differentiation along environmental

axes, is characterized (e.g. Graham et al. 2004). Regard-

less of the chosen method, a diversity of questions

related to niche differentiation can be addressed with the

coupling of genetic data and ENMs in this context. These

include the importance of local adaptation among popu-

lations (Fournier-Level et al. 2011; Banta et al. 2012) and

species diversification (e.g. Beukema et al. 2010; Kozak &

Wiens 2010), tests of the likelihood of niche conservatism

(e.g. Cordellier & Pfenninger 2008), delimitation of spe-

cies (e.g. Rissler & Apodaca 2007), or even cryptic specia-

tion (e.g. Florio et al. 2012).

When ENMs are applied to study niche differentia-

tion, some interpretations need to be made cautiously.

As a sole measure of niche differentiation, ENMs obvi-

ously may not capture all dimensions relevant to defin-

ing a species niche (for discussion see Guisan & Thuiller

2005; Sober�on & Peterson 2005; Kearney 2006; Sober�on

2007; Sillero 2011; Warren 2012). Tests of niche diver-

gence, including those that test for divergence relative to

a particular background level (e.g. McCormack et al.

2010; Warren et al. 2010) can be sensitive to the environ-

mental variables included in the analyses (see McCor-

mack et al. 2010; Rodder & Lotters 2010). Likewise, when

species distributions don’t overlap spatially, differences

in the niches characterized from the ENMs may not have

an adaptive explanation (Ree & Sanmartin 2009). It may,

for example, reflect that the taxa simply occupy different

geographic regions, which could reflect the mode of
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speciation (e.g. isolation by a geomorphic feature that

acts as a barrier to dispersal). Nevertheless, to the extent

that ENMs capture relevant aspects of the niche (e.g.

environmental tolerances), ENMs can provide valuable

insights about niche similarity or divergence (as

highlighted by the studies referenced above), not

withstanding certain limitations.

Generation of hypotheses

Rather than seeking visual corroboration or correlations

between information from ENMs and patterns of genetic

variation, ENMs can instead be used to generate hypoth-

eses that are subsequently tested with genetic data (Rich-

ards et al. 2007). This approach generally consists of

using ENMs to identify population distributions for the

present and/or past that can inform the choice of partic-

ular phylogeographic models to test (e.g. Lehrian et al.

2010; Ralston & Kirchman 2012). With the identification

of discrete populations, demarcated by regions of low

predicted occurrence from an ENM (and perhaps differ-

ent ancestral source populations in the past), expected

patterns of genetic variation can be generated for these

ENM-informed scenarios using coalescent simulations

(Carstens & Richards 2007). This general framework can

also be used to test hypotheses (Knowles 2009). For

example, genetic simulations were used to test whether

contemporary populations were founded from one com-

mon glacial refugial population, as opposed to different

ancestral source populations in montane grasshoppers

(Melanoplus marshalli) from the Rocky Mountain sky

islands (Knowles et al. 2007). The hypotheses were in this

case inspired by an ENM based on paleoclimatic data

that identified more than one possible refugial popula-

tion. The estimated habitat suitability differed between

refugial areas, which raised the question of whether the

montane populations were actually colonized from only

one of the two putative glacial refugia – a hypothesis that

was rejected based on coalescent simulations tested

under the models (Knowles et al. 2007).

A primary challenge with this application of ENMs

revolves around the translation of information from the

ENMs into models (i.e. hypotheses about the processes

generating patterns of genetic variation). There may be

many different configurations of possible current popu-

lations and/or routes of colonization from past popula-

tions. For example, differing habitat suitability levels

may not clearly delimit geographic regions that have

been more or less isolated. The models generated from

the visual inspection of projected distributions from

ENMs also may not capture the primary demographic

events experienced by a species. Co-distributed species

may not exhibit similar patterns of genetic variation for a

particular landscape configuration, for example, because

of differing dispersal capabilities, ecologies and/or natu-

ral histories that leave different genetic signatures as taxa

experience species-specific bottlenecks and/or rates of

population expansion as they move across a landscape

(Knowles & Alvarado-Serrano 2010; Marske et al. 2012).

Although it is important to remain cognizant of these

caveats, these challenges represent a more general con-

straint of model-based inference in phylogeography. In

fact, the independent information ENMs provide are an

important source for generating hypotheses about the

processes impacting patterns of genetic variation. As

such they can be key in developing models that can then

be tested using a variety of statistical phylogeographic

approaches (reviewed in Knowles 2009; Beaumont et al.

2010; Hickerson et al. 2010).

Areas of stability

Predictions for species distributions at different time

periods from ENMs can be used to identify regions of

environmental stability where a species may (in princi-

ple) have persisted overtime, in contrast to unstable areas

(i.e. areas where climatic changes would have made the

region uninhabitable during particular periods). For

example, Carnaval et al. (2009) assessed the geographic

overlap between projected distributions of tropical for-

ests along the Brazilian coast to identify areas of stability

over the last 21 000 years (i.e. since the last glacial maxi-

mum) that might have served as refugia. Such areas rep-

resent areas of critical conservation concern given the

extent of deforestation of the Brazilian coastal forest and

as species survival under climate change scenarios

become increasingly more pressing. By collecting genetic

data on three frog species, they were able to show that,

as predicted, populations from stable areas identified

from the ENMs not only exhibited a genetic signature

that differed from those in unstable areas, but that the

genetic patterns were also consistent with long-term pop-

ulation persistence in all three species (based on a hierar-

chical approximate Bayesian computation analysis).

Of course the environmental (or climatic) stability of

an area may not correspond to the ecological stability of

an area. Nonanalogue communities can be common, indi-

cating that even for co-distributed species, areas of stabil-

ity may differ among taxa (Williams & Jackson 2007;

Polly & Eronen 2011). There can also be potential prob-

lems with identifying areas of stability associated with

the statistical procedure of projecting the ENM beyond

the data used to train it (i.e. projecting the distributions

for combinations of environments not present today).

Different ENM algorithms deal with this problem in dif-

ferent ways, but the majority of methods constrain the

suitability of novel environments to remain within that of

the training environment (a procedure referred to as
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‘clampling’; Elith et al. 2011). To deal with this issue, for

example, recent implementations of Maxent generate

lower suitability scores in areas with environmental con-

ditions not represented in the training data, effectively

extending the suitability values of the maximum (or mini-

mum) environment conditions to all environments

outside the range of the data used in the training set (cf.

Maxent help file; Phillips et al. 2006). This introduces a

risk of identifying areas of stability from the models sim-

ply because of the increased uncertainty of the projected

distributions across different time periods (e.g. larger

areas of suitability will be represented in ENMs across

time periods characterized by conditions not present in

today’s climate, which may fall outside the physiological

tolerances of the species; Sober�on & Nakamura 2009).

Inflation of the geographic scope of suitable habitats that

leads to the false characterization of stable areas overtime

will create downstream problems when interpreting the

results from phylogeographic analyses. For example, the

importance of stable areas as a key determinant of popu-

lation genetic structure might be rejected because of mis-

specification of what were stable and unstable areas.

Unfortunately, accounting for uncertainty in ENMs is

area in need of further development (see discussion

below), but approaches for identifying areas with non-

analogue conditions (see Roberts & Hamann 2012b) could

be used to guard against misleading conclusions in phy-

logeographic tests of the importance of climatic stability.

An additional concern with identifying regions of sta-

bility reflects the inherent limited temporal resolution of

climatic data for generating ENMs. Specifically, ENMs

are typically generated for fixed temporal snapshots (but

see Brown & Knowles 2012), leaving open the possibility

that suitable habitats (and populations) could have

shifted repeatedly in a manner that was not always spa-

tially concordant overtime, and/or with a frequency that

is beyond the temporal resolution of the climatic data

used for generating ENMs for different time periods

(Graham et al. 2010). Despite these potential limitations,

when coupled with tests of expected genetic signatures

for areas of stability (e.g. higher genetic diversity, no

evidence of bottlenecks) and/or a statistical hypothesis-

testing framework (e.g. likelihood or Bayesian methods;

for review see Nielsen & Beaumont 2009), using ENMs

to identify areas of stability for phylogeographic studies

can be particularly revealing (e.g. Werneck et al. 2012;

Fuchs et al. 2013).

Future distributions

With rising concerns about the impact of current climate

change on species, ENMs offer a potential tool for assess-

ing potential future consequences. However, because of

a number of challenges, such applications have been

limited (Fig. 1b). Not only could there be errors in accu-

rately predicting the configuration of climatic variables

in the future, the factors that limit species distributions

today may not be the same in the future. This may be

especially true if climate change produces unique combi-

nations of environmental conditions that a taxon has not

experienced in the past (Williams & Jackson 2007) or if

the response of a species to climate change is compro-

mised by mismatches between the distribution of adap-

tive alleles and local environmental conditions (Banta

et al. 2012; Gray & Hamann 2013), making predictions

about the genetic consequences of future climate change

challenging.

Nevertheless, by creating ENMs for independent phy-

logeographic lineages under different climate change

scenarios, a suite of possible effects on the genetic diver-

sity of species can be considered. For example, by assess-

ing the overlap between protected areas and future

ENM-predicted distributions of distinct lineages of nine

species of African large mammals, D’Amen et al. (2013)

were able to forecast the likelihood of lineage persis-

tence, and hence, the expected impact of global warming

on genetic diversity in these mammals. Examination of

the ENMs for similar distributional effects between the

future and past (e.g. similar range reductions or levels of

fragmentation) may also provide a window into how

future climate change will impact species by drawing

analogies from genetic signatures of past distributional

shifts (e.g. Taubmann et al. 2011). Such inferences may

be improved upon further by incorporating physiologi-

cal data that identifies what environmental factors are

key to predicting the response of species to environmen-

tal change. For example, using physiological data on lar-

val mosquitoes (Aedes aegypti), Kearney et al. (2009) were

able to not only predict, but also to show that expected

distributional shifts from ENMs were realized in

Australia under recent historical changes in human

water-storage practices. Their results demonstrate how

human practices mediate the impact of global climate

change on species, assessing the expected effects of phys-

iological evolution in these mosquitoes in response to cli-

mate change. Yet, translating the genetic consequences of

expected distributional shifts can be difficult because of

the varying demographic effects that can accompany

these shifts (Excoffier et al. 2009; Arenas et al. 2012).

Expanding the content from ENMs used in
phylogeographic studies

Although ENMs provide quantitative spatial information

that is commonly used in phylogeographic studies (i.e.

the suitability of an area, and hence, how the predicted

occurrence of a species varies across the landscape),

ENMs contain additional information, and in particular
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quantitative information, that is seldom incorporated

into phylogeographic studies. In this section, we over-

view some promising areas of development related to

developing suites of phylogeographic hypotheses/mod-

els and generating species-specific genetic expectations.

Like the applications discussed above, these too share

some of the common challenges (see Table 2), and they

are not repeated here. Moreover, such applications have

not been explored thoroughly, and therefore, should be

used cautiously. We include them here primarily to high-

light directions for future development and to suggest

new ways in which ENMs might be integrated with

genetic analyses to broaden the scope of phylogeograph-

ic hypotheses that might be tested.

Accounting for uncertainty in an ENM

The process of translating information from an ENM into

a hypothesis and/or model has the potential to incorpo-

rate uncertainty of the ENM into phylogeographic tests

with genetic data. The goal here is to avoid treating the

information contained in an ENM as fixed and without

potential biases or errors. For example, a suite of differ-

ent biogeographic histories might be translated from an

ENM if we consider how the number and/or levels of

connectivity among populations may vary depending on

the threshold used to infer occurrence across the land-

scape, (e.g. 4 isolated populations might be apparent for

habitat suitabilities above 85%, but only 2 regions with a

narrow connecting corridor might be inferred for habitat

suitabilities above 40%). In other words, different inter-

pretations of the ENM can alter the spatial configuration

of potential populations and consequently have impor-

tant ramifications for intuiting phylogeographic hypoth-

eses from ENMs. Likewise, uncertainty associated with

the quality of the available data could be quantified (e.g.

issues with irregular sampling or spatial dependency;

Latimer 2007) and ideally incorporated into downstream

analyses. However, this area remains undeveloped.

Incorporating information about distributional shifts

Environments are not constant and populations are not

static (in location or size), as evidenced by the vast litera-

ture on climate-induced distributional shifts (e.g. Stewart

2009; Shafer et al. 2010; Allal et al. 2011). Although paleo-

climatic data provide an opportunity to estimate past

distributions (e.g. Knowles et al. 2007; Buckley et al.

2009; Smith et al. 2011; Marske et al. 2012) and there have

been advances on studying movement patterns across

spatially or temporally variable landscapes in other

fields, such as conservation planning (e.g. Iverson et al.

2004; Lawler et al. 2013), little phylogeographic research

has explored the issue of how to represent the movement

of species from one point to another on the landscape

across different time periods (but see Graham et al. 2010;

Brown & Knowles 2012). Theoretical work suggests dis-

entangling the effects of spatial vs. spatio-temporal pro-

cesses may be difficult (Wegmann et al. 2006).

Considering both the spatial and spatiotemporal compo-

nents of distributional shifts may nonetheless be impor-

tant from a biological perspective. For example, it may

be the rate of change in available habitats, not the spatial

configuration itself, that is key to understanding why

some species diversify during dynamic geologic periods

and others do not (Knowles 2000). Nevertheless, the pre-

dominant approach of incorporating information from

ENMs for different time periods focuses on the spatial

component of distributional shifts, and they do not con-

sider associated demographic changes in populations’

size accompanying shifts in the distribution predicted by

ENMs at different time points (Richards et al. 2007).

A couple of different recent approaches have taken

advantage of the quantitative information contained in

ENMs (i.e. differences in the habitat suitability scores

across the landscape) to extract more detailed informa-

tion about the spatiotemporal component of distribu-

tional shifts by coupling ENMs projected for different

time periods. For example, an amalgam of the ENMs

from different periods might be generated (e.g. an aver-

age habitat suitability surface; Knowles & Alvara-

do-Serrano 2010). Alternatively, local suitability scores

might be defined by a weighted average that varies for

each time period according to the amount of time that

separates these periods from the projected ENMs (see

Brown & Knowles 2012; He et al. 2013), to account for

gradual shifts in habitability of geographic regions over

time. When coupled with independent information about

the rate of climate change, such as information from oxy-

gen isotope ratios, different rates of climatic change, and

accompanying shifts in the distributions, might also be

calculated for the intervening periods for which paleocli-

matic data is available (see Brown & Knowles 2012).

These promising (albeit underdeveloped) approaches

all address the spatiotemporal component of distribu-

tional shifts, but do not consider how species are moving

across the landscape. Such a static view of what is a com-

plex dynamic process could potentially be misleading

(Dyer et al. 2010; Wagner & Fortin 2013). For example,

high levels of genetic differentiation among populations

might reflect long-term isolation of the current popula-

tions, founding of the populations from separate refugial

populations, or, as recently shown by simulations, result

from the demographic process of colonizing contempo-

rary populations from a single shared ancestral popula-

tion (Knowles & Alvarado-Serrano 2010). In the

following section, we highlight two approaches that uti-

lize the quantitative information contained in ENMs to
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inform the demographic component of distributional

shifts, as well as other phylogeographic models more

generally.

Generating species-specific predictions for patterns of
genetic variation

With quantitative information on differences in habitat

suitability across a landscape at different time periods,

there is the potential to use this information on predicted

distributions to infer how individuals have possibly dis-

persed (Crandall et al. 2012). For example, an estimate of

the history of population connectivity over time might

be generated using an optimization algorithm to identify

a probably migration path (Graham et al. 2010). Specifi-

cally, with suitable areas identified at different time

points from ENMs (i.e. those generated from contempo-

rary climatic data and paleoclimatic data, respectively),

the most likely spatiotemporal path can be selected using

a pre-defined criterion, such as minimum cost path. As

with landscape genetic approaches, there are still poten-

tial problems with selecting a single path given that mul-

tiple, complex migration paths may be involved (see

McRae 2006). Yet, with such a species-specific estimated

history of population connectivity over time, the result-

ing information can be used for testing models of isola-

tion by distance that account for how genetic

differentiation may have been impacted by population

connectivity patterns that change over time.

Alternatively, expected patterns of genetic variation

can be generated for a diversity of different models for

testing phylogeographic hypotheses using iDDC model-

ling (integrative distributional, demographic and coales-

cent modelling; He et al. 2013) (see also the approaches

described in Ray et al. 2005; Neuenschwander et al.

2008). Briefly, with the iDDC approach (Fig. S1) habitat

suitability scores are extracted from an ENM across a

landscape to inform a spatially explicit demographic

model, in which population sizes and migration rates

track local habitat suitabilities, and the parameters from

the demographic model are used to inform a spatially

explicit coalescent model. DNA sequences are simulated

upon these coalescent genealogies to generate expected

patterns of genetic variation across the landscape (see

Knowles & Alvarado-Serrano 2010 for details). As local

population sizes and migration probabilities are

informed from the local habitat suitabilities estimated

from the ENM, the iDDC modelling approach generates

patterns of genetic variation that reflect the interaction of

the biological and physical factors that determine popu-

lation connectivity, not just landscape features alone.

Moreover, the likelihood of different models can be

assessed, along with the estimation of demographic

parameters, with the iDDC approach using flexible

statistical tests, like Approximate Bayesian Computation,

ABC (Beaumont 2002), which can accommodate com-

plex, biologically informed models. For example, He

et al. (2013) used iDDC modelling to test hypotheses

about the factors structuring patterns of genetic variation

in a southwestern Australian lizard, Lerista lineopunctula-

ta. As a sand dune specialist, it was conceivable that pop-

ulation divergence could reflect the contemporary

habitat configuration, which limits migration among the

small geographically isolated populations (Excoffier et al.

2009). Alternatively, genetic variation might reflect the

colonization patterns associated with historical shifts in

suitable coastal sand habitats, which expanded and con-

tracted during glacial and interglacial periods, respec-

tively. Tests based on multilocus sequence data showed

that a dynamic model that takes into account the demo-

graphic consequences of the species tracking it habitat

under shifting climatic conditions was a more probable

model than either a static model of isolated populations

or one based on contemporary landscape features alone.

With the complex models accommodated by iDDC

modelling, tests with ABC will not only require multilo-

cus data, but also careful evaluation of the ABC tests

(Bertorelle et al. 2010; He et al. 2013). This includes mean-

ingful selection of model priors in the light of empirical

data (Lombaert et al. 2011; Hickerson et al. 2013), an

appropriate number of simulations run for each model

being tested (Beaumont 2002; Wegmann et al. 2010), the

selection of informative statistics to summarize genetic

variation under each model and the assessment of their

interaction (Wegmann & Excoffier 2010; Robert et al.

2011), and appropriate model selection and parameter

estimation procedures (Neuenschwander et al. 2008;

Leuenberger & Wegmann 2010; Wegmann et al. 2010).

Such quality control measures involve the use of pseudo-

observed data (pods), which are simulations generated

under a known scenario or set of scenarios and com-

pared against a fixed set of parameter values, providing

an assessment of whether the data (and summary statis-

tics used) are sufficient for accurate estimation (Neu-

enschwander et al. 2008; Estoup et al. 2012) (for further

details on model robustness and accuracy assessment see

Thornton & Andolfatto 2006; Guillemaud et al. 2010). If

these precautions are followed, the ABC approach allows

not only for the identification of the most likely scenario

that may have generated observed patterns of genetic

variation but also estimation of the parameters in the

models (e.g. migration rates, times of divergence and

population sizes).

Conclusions

The incorporation of ENMs into phylogeographic studies

has made a significant contribution to the field of
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phylogeography, broadening the suite of hypotheses that

can be tested, as well as advancing integrative methodo-

logical approaches. These contributions, in large part,

reflect the utility of species-specific information obtained

from ENMs, whether ENMs are applied in a corrobora-

tive manner, as most commonly done, or a formal

hypothesis testing framework (reviewed here through

illustrative examples, as well as a discussion of the cave-

ats with specific applications). As such, the use of ENMs

in phylogeography is instrumental for identifying the

processes structuring genetic variation and revealing

previously unrecognized mechanisms shaping the evolu-

tionary trajectories of species and populations. In this

regard, ENMs have also been key to moving the field of

phylogeography towards the development of biologi-

cally informed hypotheses and away from generic statis-

tical tests that provide little biological insight. The rapid

methodological advances in the construction of ENMs,

together with the increasing availability of geospatial

environmental and species distribution data, will no

doubt expand the ways in which ENMs might be used to

address phylogeographic questions, continuing the

impressive trajectory of their applications in phylogeog-

raphy to date. While we highlight some of these new

promising developments, more research is clearly

needed, especially with regards to translating not just

the qualitative information, but also the quantitative

information contained in ENMs, into testable phylogeo-

graphic hypotheses.
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Supporting Information

Additional Supporting Information may be found in the online

version of this article:

Fig. S1 Schematic describing iDDC (integrative distributional,

demographic, and coalescent modelling). Using information on

the local habitat suitabilities derived from ENMs generated for

different time points in the past (a), a time forward demographic

simulation using the program SPLATCHE 2 (Ray et al. 2010) is con-

ducted, where local carrying capacities and migration probabili-

ties of individuals varies across the landscape (b). Based on this

ENM-informed demographic history, coalescent simulations are

used to generate patterns of genetic variation (c). By simulating

over a broad range of parameter sets, as specified by priors

derived from alternative models, expectations for patterns

genetic data, as characterized using summary statistics (e.g. FST
and Tajima’s D), can be generated under an ABC approach and

compared with summary statistics obtained from empirical data

(d) (for details see Beaumont 2002; Csillery et al. 2010). Note that

tools to perform these analyses have already been developed

and are freely available (e.g. Ray et al. 2010; Wegmann et al.

2010).
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