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Precipitation Constrains Amphibian Chytrid Fungus Infection Rates in a Terrestrial
Frog Assemblage in Jamaica, West Indies
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ABSTRACT

We model Batrachochytrinm dendrobatidis (Bd) infection rates in Jamaican frogs—one of the most threatened amphibian fauna in the world.
The majority of species we surveyed were terrestrial direct-developing frogs or frogs that breed in tank bromeliads, rather than those
that use permanent water bodies to breed. Thus, we were able to investigate the climatic correlates of Bd infection in a frog assemblage
that does not rely on permanent water bodies. We sampled frogs for Bd across all of the major habitat types on the island, used
machine learning algorithms to identify climatic variables that are correlated with infection rates, and extrapolated infection rates across
the island. We compared the effectiveness of the machine learning algorithms for species distribution modeling in the context of our
study, and found that infection rate rose quickly with precipitation in the driest month. Infection rates also increased with mean temper-
ature in the warmest quarter until 22 °C, and remained relatively level thereafter. Both of these results are in accordance with previous
studies of the physiology of Bd. Based on our environmental results, we suggest that frogs occupying high-precipitation habitats with
cool rainy-season temperatures, though zcurrently experiencing low frequencies of infection, may experience an increase in infection
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rates as global warming increases temperatures in their habitat.

Key words: Batrachochytrinm dendrobatidis; Elentherodactylus; infectious disease; machine learning; niche modeling; Ostegpilus; West Indies.

THE FUNGAL PATHOGEN BATRACHOCHYTRIUM DENDROBATIDIS (BD)
HAS CAUSED EXTINCTIONS and catastrophic population declines in
over 350 amphibian species (Lips ef a/. 2006, Blaustein ef al.
2012), with particularly high impacts in tropical regions. The
pathogen has been little studied on Jamaica. Identifying the
threats to Jamaican frogs is a conservation priority because they
are little studied, and face the same threats, such as habitat loss
and introduced predators, which are causing amphibian declines
elsewhere in the Caribbean (Hedges 2011). The current Carib-
bean amphibian biodiversity crisis is compounded by widespread
Bd infection in the region (Burrowes e al. 2004, Diaz et al. 2007,
Alemu et al. 2008, Longo & Burrowes 2010, Patel ef al. 2012,
Longo ¢t al. 2013). The fungus has caused documented declines
in Puerto Rican and Central American amphibians, many of
which are ecologically and phylogenetically similar to Jamaican
frogs (Lips e al. 2006, Puschendorf e al. 2009, Whitfield ez al.
2012). Several of our focal frog species have disappeared from
undisturbed sites at which they were formerly abundant, raising
concerns about their population trends (Holmes e o/ 2012).
Here, we ask which climatic variables are correlated with
increased proportions of infected frogs in Jamaica, and form
hypotheses as to why significant correlations occur based on Bd
physiology.

Jamaica has 21 endemic species of frogs in the genera Eleut-
herodactylus (17 species) and Ostegpilus (4 species) (Hedges 1989,
Moen & Weins 2009). The Jamaican Eleutherodactylus are direct
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developers and lay their egg under rocks, logs, or in caves (Diesel
et al. 1995, Gomez-Mestre et al. 2012). The Osteopilus species
deposit their eggs in tank bromeliads (Lanoo ez 4/ 1987). Thus,
Jamaica’s endemic frogs are independent of large, permanent
water bodies, and so provide an opportunity to examine the epi-
demiology of Bd in a terrestrial frog fauna. The Bd organism is
primarily aquatic (Berger e al. 2005). Batrachochytrium dendrobatidis
begins its life cycle as a flagellated, free-living zoospore, which is
the dispersal phase for the fungus. Zoospotres of Bd can swim
short distances, and exhibit chemotaxis and phototaxis (Moss
et al. 2008). Zoospores can remain viable in damp ground for up
to 3 mo (Longcore e al. 1999), but desiccate within 3 h when no
moist microclimate is available (Piotrowski e a/ 2004). High
humidity increases the likelihood that an amphibian host will be
reinfected when current encysted sporangia telease zoospores
(Murray ez al. 2013).

Batrachochytrium  dendrobatidis is also temperature sensitive.
Temperatures below 10 °C and above 25 °C reduce the fungus’s
growth rate 7 vitro (Piotrowski ez al. 2004), while long-term expo-
sure to temperatures between 26 and 33 °C allows frogs to clear Bd
infecion in  the laboratory  (Chatfield &  Richards-
Zawacki 2011, Geiger ez al. 2011). Even short-term exposure (1 h)
to temperatures above 30 °C can drastically reduce the growth
rate of Bd in vitro (Daskin ez /. 2011). In the field, high tempera-
tures are correlated with low to absent Bd loads in frogs that car-
ried the fungus at lower temperatures (Forrest & Schlaepfer
2011, Rowley & Alford 2013). Growth rates of Bd within an indi-
vidual frog show a strong correlation with disease prevalence in a
population, both in the field and in simulation studies (Murray
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et al. 2013). Therefore, interpretation of landscape-scale niche
modeling results can be usefully informed by 7 vitro or individ-
ual-focused laboratory studies of Bd physiology.

Previous model-based studies of B4 in tropical and subtropi-
cal regions have identified both high temperatures and low pre-
cipitation as correlates with reduced infection rate (Drew e al
2006, Forrest & Schlaepfer 2011, Ghirardi ez o/ 2011, Murray
et al. 2011, Whitfield et al. 2012). However, Bd does occur where
large-scale models predict its absence (Puschendorf ef al. 2011,
Flechas ¢z al. 2012, Whitfield ez a/. 2012, Ocock et al. 2013). Fur-
ther, there are multiple strains of Bd worldwide, and their diver-
sity has yet to fully cataloged (Martel ¢/ a/. 2013, Rosenblum ez al.
2013). In vitro experiments with the physiological tolerance of one
Bd strain do not necessarily reflect the climatic tolerance of the
local strain, or the interaction between that strain and the
immune systems of the focal frog species (Van Rooij ¢t al. 2012,
Stevenson ¢ al. 2013). Hence, local sampling and modeling are
vital for conservation planning;

Life-history strategy of amphibian hosts is relevant to Bd
epidemiology. In studies comparing sympatric frogs, species asso-
ciated with permanent water bodies have higher B4 infection rates
than those that breed by direct development or use ephemeral
water bodies (Rowley & Alford 2007, Bancroft ez a/. 2011, Hau-
selberger & Alford 2012, Olson e a/. 2013). Time spent in water
is positively correlated with individual Bd infection rates within
species (Hossack ez a/. 2013). As host life-history strategy influ-
ences Bd dynamics on a species-specific level, we hypothesize that
a largely terrestrial frog community will impose an unusual set of
epidemiological constraints on the fungus. Jamaica has such a
frog fauna (Lanoo ez al 1987, Diesel et al. 1995, Gomez-Mestre
et al. 2012).

Our study will facilitate conservation planning for Jamaican
frogs as well as other primatily terrestrial amphibian assemblages
that may be at risk from Bd. We also compare the results of dif-
ferent niche modeling approaches. Such comparisons have been
performed on many taxa (Sehgal et al. 2011, Bisrat et al. 2012,
Oppel et al. 2012), but have been rare for Bd. Using multiple
niche modeling techniques allows us to distinguish between cli-
matic variables that have a consistent correlation with Bd infec-
tion rates across approaches, and those that appear significant
only as a result of the assumptions of one approach. If a variable
is consistently uncovered by multiple methods, we increase our
confidence that it is biologically relevant. Our work contributes
new tools for conservation planning both in Jamaica and other
tropical locations where terrestrial frogs are common.

METHODS

SAMPLING.—We sampled a variety of habitats across the island
(Table S1). All sampling sites were separated by more than 5 km.
To check for autocorrelation in infection rate between our sam-
pling sites, we used the Moran’s I (Moran 1950) statistic imple-
mented in R v. 2.12.1 (R Development Core Team 2010) using
the package ‘ape’ (Paradis e¢f a/. 2004). For each site, we scored
the season during which it was sampled as: major wet from 1

September to 1 December, major dry from 2 December to 1
April, minor wet from 2 April to 1 June, and minor dry from 2
June to 1 September. Although we visited most sites once, we
sampled cach of the major habitat types (wet, moist, and dry
tropical rain forest, cloud forest, and Amazonian swamp forest)
in several seasons. We made a linear model in R with sampling
season as the independent variable and infection rate as the
dependent variable to capture broad-scale seasonal changes in Bd
infection rate. We opportunistically sampled non-native frogs and
crustaceans. For further details, please see the online Supporting
Information.

LABORATORY PROTOCOLS.—We extracted Bd genomic DNA from
our swabs using PrepMan Ultra, and used the DNA for quantita-
tive polymerase chain reaction (qQPCR) tests to evaluate infection
status (Hyatt ez 2/ 2010). Although our laboratory protocol gave
us load data in zoospore equivalents for each infected frog, we
considered only the per-individual presence or absence of infec-
tion for our statistics. For further detail on our rationale for this
approach, please see the online Supporting Information.

INFECTION RATE CORRELATES.—We used macroclimatic data from
WorldClim (Hijmans ef @ 2005) for niche modeling Bd in
Jamaica. We chose to focus on climatic variables rather than
proxies (ie., elevation), so that we could directly model the cli-
matic niche of the fungus in Jamaica. The variables we used, and
the abbreviations by which we have referred to them in this
paper, are in Table S2. The layers reflected average values for at
least 10 yr between 1960 and 1990. In addition, we used latitude
and longitude to identify patterns of Bd distribution that are not
explained by climatic variation. Such patterns could have arisen if
Bd was introduced recently and was still radiating through the
island from its introduction point, or if some geographical or cli-
matic feature presented a barrier to the fungus, preventing it
from occupying otherwise suitable habitats. We also used a cate-
gorical representation of the season during which each site was

sampled.

VARIABLE
REDUNDANCY.—T0 identify the set of WorldClim variables that
best explained infection rates in our sampled locations, and nar-

SELECTION: MAXIMUM RELEVANCE, MINIMUM

row the number of variables passed to the modeling algorithms,
we implemented an information theoretic variable selection algo-
rithm using the ‘infotheo” package (Meyer 2008, 2009) in R. Our
selection method identified a set of variables that, as a group,
explain as much variation in the data as the entire set of vari-
ables. Although the minimum redundancy criterion reduced colin-
earity among explanatory variables, it did not completely account
for it. We handled colinearity issues separately in our subsequent
modeling approaches.

Following the default setting, we binned the data into five
bins, the square root of the number of localities rounded to the
nearest integer. We used mutual information to quantify the
reduction in uncertainty of the predicted value of a variable given
known values of another variable at the sampling sites. Mutual



information was zero when the two vatiables are independent of
each other, and increased with the ability of the value of one var-
iable at a site to predict the value of the other. We measured
mutual information in nats, a unit based on the natural logarithm
e. One nat is approximately equal to 1.44 bits, a measure based
on log base 2.

We used a filter-based forward selection approach whose cri-
terion for selection was minimal redundancy and maximal rele-
vance (MRMR) (Meyer 2008). We first selected the variable that
had the highest mutual information with the infection rates. We
added subsequent variables by sclecting the temaining variable
that had the optimal trade-off between having high individual
mutual information with the infection rates (maximizing rele-
vance) and low mutual information with the already-selected vari-
ables (minimizing redundancy). We continued adding variables
until our selected set reached the mutual information of the
entire set of WorldClim variables, indicating that all further vari-
ables were redundant to those already selected.

VARIABLE SELECTION: RANDOM FOREST.—We used a Random For-
est algorithm (Breiman 2001) implemented in the R package ‘ran-
domPForest’ (Liaw & Wiener 2002) to build a forest of regression
trees. Individual regression trees were weak predictors that parti-
tion a given data set into maximally homogeneous groups based
on provided explanatory variables. For each split, the tree
searched through all possible breaking points in the explanatory
variables, and selected the variable and split point that grouped
the data into maximally homogenous clusters. The Random For-
est algorithm introduced stochasticity to the process of building
regression trees, thereby eliminating over-fitting and improving
the predictive ability of the final forest over any single tree. For
each tree, the algorithm randomly selected two-thirds of our sam-
pling locations for use as training data. These localities were the
‘in-the-bag’ data for that tree. The remaining data were ‘out-of-
bag’ data, and were used to assess the predictive ability of the
tree. The Random Forest algorithm introduced additional sto-
chasticity to its individual trees by randomly selecting a subset of
the explanatory variables for the tree to examine at each node.
The algorithm arrived at its final prediction by taking the majority
votes of the trees (as determined by the tree’s performance on
the out-of-bag data) for the correct splitting of the training data
at each node (Breiman 2001).

By iteratively removing and permuting the values of the
explanatory variables and comparing the resulting increase in
mean squared error (MSE) in the out-of-bag predictions to those
of the original tree, Random Forest assessed variable importance.
Randomizing important variables resulted in greater increase in
MSE than randomizing unimportant variables. We ran the vari-
able selection ten times to account for stochasticity in model
development and averaged the MSE’s to identify important vari-
ables.

We built Random Forests with the most important variable
identified by the above process. We also built forests with the
two most important variables, and the eight variables that
increased MSE when noised, and with the MRMR identified vari-
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ables. We selected the model with the best predictive ability by
jack-knifing over collection locations. We extrapolated the per-
centage of individuals infected at each sampled site based on a
model trained on the data of all other sampling locations. We
assessed the success of each model in extrapolating by finding
the MSE of these predictions using the ‘hydroGOF’ (Zambrano-
Bigiarini 2011) package in R. We found the correlation coefficient
R? of the predictions using the function Im’ and the Pearson
correlation using the function ‘cor” We use the variables selected
by the Random Forest with the highest R* for extrapolation of
infection rates to all of Jamaica.

MODELING: RANDOM FOREST.—We used the variables identified
by the MRMR wvariable selection and the best fitting model from
the Random Forest variable selection to predict Bd infection
intensities across the island. We plotted the results in R using the
package ‘sp’ (Pebesma & Bivand 2005, Bivand ez a/. 2008).

MODELING: GAM.—We used the package ‘gam’ in R to calculate a
Generalized Additive Model for our data (Hastie & Tibshirani
1990). We used Aikaike information criterion (AIC) scores to
identify the best fit model. We tested all individual predictors,
and selected the predictor with the highest AIC. We then tested
all combinations of the selected variable and the remaining vari-
ables. Adding any third variable decreased AIC, so we selected
the best two-variable model for prediction of infection rate across
the island. We validated the model using the MSE of predictions
from jack-knifing over sites. We determined the R* and Pearson
correlation of the predictions in R. We predicted infection rates
across the entire island and plotted them using the ‘sp’ package
(Pebesma & Bivand 2005, Bivand ez a/. 2008).

MODELING: MAXENT.—The Maximum Entropy algorithm used
presence-only data to predict the likelihood that Bd will occur
in a given area (Phillips e @/ 2006, Phillips & Dudik 2008,
Puschendorf ¢z al 2009). The algorithm used explanatory habi-
tat variables to build potential distributions of Bd across
Jamaica, such that the expected values of those distributions
were identical to the empirical average of the variables at the
locations where we detected Bd. The algorithm selected the dis-
tribution that displays maximum entropy, that is, the distribution
closest to uniform. By transforming our linear features
(WorldClim variables) into quadratic features, we constrained
the variance of the explanatory variables in the selected distri-
bution to be identical to the variance of the variables between
the collection locations.

We first assessed the importance of each environmental vari-
able in the MRMR set by building a model using the entire set of
positive collection locations. We jack-knifed over the environmen-
tal variables to determine which ones held the most explanatory
power for our data in presence-only form. We then predicted Bd
infection rates over the entire island using the variable selected
by jack-knifing. We used the area under the curve (AUC) values
calculated in MaxEnt to identify the model with the highest

explanatory power. AUC measured the probability that a site that
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is positive for Bd is classified correctly by the algorithm. We pre-
dicted the Bd distribution across Jamaica using L+Q features
from the MRMR selected variables and the model with the high-
est AUC value.

EFFECT SIZE OF BIOLOGICALLY RELEVANT VARIABLES.—TO account
for sampling effects introduced by unequal sample sizes at our
various sites, we generated 500 synthetic data sets by resampling
ten infection records from each location with replacement. We
plotted the resulting data against the precipitation in the driest
month (PDM) and mean temperature in the wettest quarter
MTWQ) (the climatic variables most consistently identified as
biologically relevant) for each site, and fit a smoothing spline with
seven degrees of freedom to assess the robustness of the effect
of the variable to stochasticity in the sampling process (Cleveland
et al. 1992). We also fit a loess curve based on a first-degree poly-
nomial with PDM or MTWQ as explanatory variables and infec-
tion rate as the response variable (Hastie & Tibshirani 1990,
Cleveland ez al. 1992, Green & Silverman 1994). We found the
95 percent confidence interval for the curves, and located the
peak of each using the ‘optimize’ function in R.

RESULTS

SAMPLING SITES AND BD LOADS.—The Moran’s I test for autocorre-
lation in infection rates between sampling sites was not significant
(P = 0.4830). The linear model of sampling season vs. infection
rate did not show a significant effect of sampling season on Bd
load (P = 0.2168, R* = 0.8344). One of two Sesarmid land crabs
and one of 12 crayfish, all sampled along the Stony River, tested
positive for Bd (Table S3). With the caveats presented in the
methods section regarding swab storage and copy number varia-
tion, across our sites, the average Bd load per infected frog was
110.1 (&£379.3) zoospore equivalents. The median load was 7.36
zoospore equivalents. The highest load was 2635.0 and the lowest
was 0.07 equivalents.

VARIABLE SELECTION: MRMR.—The mutual information between all
twenty WorldClim variables, latitude, longitude, and sampling sea-
son and infection rates was 1.12 nats. The MRMR criterion
selected eight variables: AP, latitude, PDM, MTWQ, MDR, TS,
PS, and ISO. After the addition of ISO, the set of seven reached
a mutual information value of 1.12 nats, the same as the total
data set. The addition of further variables did not change the
total mutual information value, and we considered all other vari-
ables redundant.

VARIABLE SELECTION: RANDOM FOREST.—Random Forest variable
selection identified PDM and precipitation in the driest quarter
(PDQ) as the two most important variables (Fig, S1). Neither lat-
itude nor longitude was identified as an important variable. Jack-
knifing results showed the lowest MSE and highest correlation
for the PDM-only model, while the PDM/PDQ, MRMR, and
the model with all variables identified by the Random Forest vari-
able selection had lower values (Table 1).

TABLE 1. Models tested by jack-knifing over collection locations, with the mean squared

error, correlation coefficient, and Pearson correlation for each model.

Pearson
Model MSE R correlation
RF-MRMR 0.0122 —0.035 0.151
RF-PDM 0.0089 0.183 0.478
RF-PDM+PDQ 0.0093 0.168 0.463
RF—all variables 0.0105 0.060 0.335
GAM 0.0114 0.079 0.360

MODELING: RANDOM FOREST.—Partial dependency of infection
rates on variables showed that infection rate increased gradually
with AP, from an average of 13 percent of frogs infected in areas
with 1000 mm of rainfall per year to a 17 percent infection rate
where annual precipitation is 2500 mm. Infection rate increased
from 12 percent when PDM is 60 mm to 18 percent when it is
above 80 mm. The response of infection rate to MTWQ was
smaller than to the precipitation variables. When MTWQ is
16 °C, the average for the marginal distribution of infection rate
is 15.5 percent. As MTWQ increases to 24 °C, this value steadily
rises to 16 percent, and then drops to below 15 percent when
MTWQ increases over the 24 °C threshold.

Predictions of infection rates by the MRMR model showed
that infection should be highest in the eastern mountains, inter-
mediate in the central lowland rain forest, and lowest along the
southern and western coasts (Fig. 1A). Predictions by the PDM
model indicated that infection rates should be high in areas of
the eastern mountains and the central lowland tropical rain forest.
The PDM model predicted higher infection rates over much of
the country (Fig, 1B).

MODELING: GAM.—In the model with the lowest AIC, infection
rates were explained by PDM and MTWQ, smoothed with one
degree of freedom. AIC was —30.89463, and the MSE of the
jack-knifed sites was 0.00912, close to the PDM-only Random
Forest model. We used the PDM+MTWQ model to predict
infection rates for the entire island (Fig. 2). Predicted rates were
much higher than those of the Random Forest model, reaching
predictions of 70 percent infected, a value much higher than any
of our samples. As we were unable to sample in the area pro-
jected to have a 70 petrcent of frogs infected, we cannot directly
test the accuracy of this prediction.

MODELING: MAXENT.—The variable identified as most important
by jack-knifing was PDM. The AUC for this variable alone was
the highest of any individual variable. Several other precipitation
variables showed similar but smaller AUC’s, but all of these vari-
ables have high levels of dependence on PDM, and the MRMR
results showed that all but AP are redundant when PDM was
included in the data set.

The average AUC value for the model PDM model was
0.775. The average AUC for the MRMR variable set was 0.697.
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at which frogs tested positive for Bd are indicated with a white squate, while those with no Bd are indicated by a black triangle.

We used the PDM model and the MRMR model to predict infec-
tion rates across the entire island. The PDM model showed more
even rates, with an area of high infection likelihood on the north-
east coast (Fig. 3A). The MRMR model added an area of high
likelihood near the peak of Blue Mountain, and predicted lower
infection rates along the southern and western coasts (Fig. 3B).

EFFECT SIZE OF BIOLOGICALLY RELEVANT VARIABLES.—Resampling
within locations showed an increase in the lower bound of the
infection rate splines at approximately 55 mm of PDM and an
increasing trend in infection rate with mean temperature of the
wettest quarter (Fig. 4). Infection rate increased slightly with
MTWQ. Results were similar for the loess curves, with the 95
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petcent confidence interval for the lower bound of the PDM
curve becoming significant at 58 mm and the high point of the
peak at 68 mm. The MTWQ loess curve peaked at 21.7 °C.
Both approaches showed that our while data are scattered and
variable effect sizes are small, the 60 mm PDM threshold is con-
sistently recovered. In the randomizations, the smallest infection
rates shown by smoothing splines rose above zero percent infec-
tion, and the 95 percent CI for the loess model stops including
zero percent infection. Both approaches show a gradual increase
in infection rate relative to MTWQ (Fig, 4).

DISCUSSION

BIOLOGICALLY RELEVANT VARIABLES—OQur variable selection and
species distribution modeling methods all identified PDM as criti-
cal for determining the proportion of frogs infected with Bd at
our sampled sites (for MRMR variable selection, Random Forest,
GAM) or probability of presence (for MaxEnt). Batrachochytrinum
dendrobatidis infection rates were lowest in areas with less than
60 mm rainfall in the driest month, and increased with precipita-
tion above that threshold (Fig. 4).

Previous modeling studies on Bd have identified precipitation
variables as important to Bd distribution. A worldwide model
used temperature variables to split temperate and tropical areas,
and used PDM to model infection probability within each of
these zones (Ron 2005). MaxEnt modeling of Bd in Costa Rica
found that PDQ and annual mean temperature were the most
important correlates to Bd presence (Puschendorf ez al 2009).
Previous laboratory studies demonstrate that Bd is strongly con-
strained by moisture levels. While it can remain viable in damp
ground for up to 3 mo (Longcore ¢ al.1999), zoospores desiccate
within 3 h in dry areas (Poirtrowski ez a/ 2004).

Batrachochytrium dendrobatidis physiology may also explain why
MTWQ is the most important temperature vatiable identified by
the MRMR and GAM algorithms. If dry periods constrain the
times at which Bd can persist in the environment, the wettest
month should be a window of opportunity for Bd to infect new
hosts. Therefore, the fungus’s rate of reproduction in this month
should be crucial to its ability to spread and increase infection
rates. At 23 °C, Bd zoospores can clonally reproduce within 24 h
of infecting a host (Voyles ¢ al. 2012). At lower temperatures, it
takes longer to encyst and reproduce (Voyles ef al. 2012). Slight
increases in the rate of Bd life cycle can result in large differences
in disease dynamics, as infection rate can increase exponentially
both within an individual and within a population (Murray e al.
2009, 2013, Briggs et al. 2010). The loess model shows that Bd
rates raise with temperature until mean temperature of the wet-
test month reaches 22 °C, and are relatively stable thereafter, a
result in accordance with previous work on the thermal optimum

of the fungus (Poirtrowski ez al 2004).

MeTHOD cOMPARISON—The MRMR model did not find that sea-
son of sampling was an important predictive variable for Bd
infection rate, and there was no significant correlation between
infection rate and season in a linear model. Each of our major
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habitats was sampled in two or more seasons, so we do not
explicitly model season of sampling in our predictive techniques.
Predictions at a given location are best understood as the infec-
tion rate of the probability of presence of Bd averaged through-
out the year.

All of our modeling approaches are necessarily based on sets
of assumptions. MaxEnt assumes that the most accurate distribu-
tion will be the most uniform in terms of the explanatory vari-
ables (Phillips e a/ 2006, Phillips & Dudik 2008). Random
Forest assumes that it is useful to break the collection locations
into maximally homogeneous groups, cach identified by a set of
values of the explanatory variables (Breiman 2001). GAM’
assume that the variation in the infection rate can be explained
by a linear smooth of a set of explanatory variables (Hastie &
Tibshirani 1990). These assumptions are all intuitively reasonable,
but not directly testable with our data set. They ate also not
mutually exclusive.

Because it is extremely difficult, @ priori, to identify the set of
assumptions that best fit the distribution of B4 in our study area,
we used multiple modeling approaches and compared their suc-
cess in extrapolating to areas not included in the training data
(Bisrat es al. 2012, Oppel e al. 2012). To do so, we jack-knifed
over our collection locations and found the MSE, RZ) and Pear-
son correlation coefficient of the predictions. We found that the
Random Forest PDM-only model was the best predictor accord-
ing to all of these tests, followed by the PDM and PDQ model
and the GAM (Table 1). Our extreme values for infection rate (0
percent and 30 percent) are derived from smaller sample sizes
than those in the mid-range of infection rate. To determine
whether these samples drove the patterns we found, we resam-
pled the infection status of the frogs collected at each location
with replacement, thereby forming 500 synthetic data sets with
equal sample sizes at each location, whose variation reflected the
uncertainty introduced by sampling. We plotted the synthetic data
against PDM and MTWQ at each sampling site and fit smooth-
ing splines. These splines show that we can expect considerable
variation at the top range of our estimates of infection rate, but
the lower bounds are relatively constant across randomizations.
Thus, the conservative approach for conservation planning is to
accept observed infection rates as the probable lower bound for
actual infection rate at a given location.

FUTURE DIRECTIONs.—Vertical transmission is another factor to
consider in disease dynamics. Many frog species in Jamaica dis-
play parental care. At least two species of Eleutherodactylus show
parental transport of newly hatched froglets (Diesel ez o/ 1995, 1.
Holmes pers. obs.). Osteopilus brunneus lay sterile eggs as food for
their oophagous tadpoles, which are reared in tank bromeliads
(Lanoo e al. 1987). The high level of contact between froglets
and parents may present a greater opportunity for infection in
the next generation than is found in other frog assemblages, or
an opportunity to transmit skin flora that protect young frogs
from Bd (Walke e al. 2011).

Jamaican frogs should also be tested for emerging infectious
diseases other than Bd. Various Ranaviruses infect frogs world-
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wide and may lead to decline, either on their own or in concert
with Bd (Gray et al. 2009). Recent work has identified a new spe-
cies in the genus Batrachochytrium, B. salamandrivorans, which has
similarities to Bd but is not amplified by the Bd primer we used
in this paper (Martel ez al. 2013). These and other infectious dis-
eases should be investigated and considered in future conserva-
tion planning,

CONSERVATION  IMPLICATIONS.—Batrachochytrium dendrobatidis dynam-
ics are highly variable depending on the life-history strategies of the
infected frogs, the strain of Bd present, and the macroclimate in
which infection occurs. Without heavy use of a permanent water
body by widespread infected species, variation in precipitation
becomes more important to infection rates than temperature, even
when annual precipitation is relatively high by global standards.
Our results indicate that the wet eastern coast of Jamaica is the area
with highest risk for Bd-related decline. Areas with less than
60 mm of rain in the driest month and average temperatures above
22 °C in the wettest quarter show low Bd infection rates. Infection
rates are also lower where the MTWQ is below 18 °C.

As temperatures increase in high-precipitation habitat due to
global warming, Bd growth rates are likely to increase, which will
increase the frogs’ risk for chytridiomycosis-related declines. Con-
tinued monitoring should be focused on areas of high precipita-
ton and those in which the MTWQ is greater than 20 °C but
less than 24 °C.

Our results are generalizable to other tropical amphibian
populations that are composed of mainly terrestrial species, at
local and regional scales. The ecology and epidemiology findings
of Bd show unique dynamics in terrestrial species. As such, vul-
nerable terrestrial species should be monitored.
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