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Abstract

This paper introduces a new Capital Asset Pricing Model (CAPM2
G) that in

accordance with recent decision theory models can price the key factors that drive

risky choice behavior: (i) goal achievement (importance of the overall probability

of obtaining positive payoffs), (ii) loss aversion (losses loom larger than gains),

and (iii) preference for security/potential (downside risk aversion and preference

for upside potential). These three factors are also the key drivers of size, value,

and momentum anomalies. Moreover, zero cost portfolios that take long (short)

positions on securities with higher (lower) loadings on the three CAPM2
G factors

deliver positive and statistically significant risk adjusted returns.
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1 Introduction

The traditional mean-variance Capital Asset Pricing Model (CAPM) developed by

Sharpe (1964) and Lintner (1965) has long served as the backbone of academic finance,

and it has been used in numerous important applications. However, several studies in-

dicate that the cross-section of stock returns cannot be explained by market beta alone,

as predicted by the CAPM. In particular, the CAPM fares poorly in explaining the high

risk premiums of portfolios formed by small cap, high book-to-market securities (Fama

and French, 1992), and momentum winners (Jegadeesh and Titman, 1993). In re-

sponse to the empirical failure of the standard mean-variance CAPM, researchers have

examined the performance of alternative models of asset prices. For example, Harvey

and Siddique (2000) and Dittmar (2002) study the three-moment CAPM, which takes

into account skewness in addition to mean and variance. In contrast, the literature on

downside risk considers semivariance, rather than variance, as the primary source of

risk (e.g., Post and Levy, 2005; Ang, Chen, and Xing, 2006). These alternative asset

pricing models fit stock return data better than the standard mean-variance CAPM,

but size, value, and momentum effects remain.

A fundamental limitation of the existing asset pricing models is the poor descriptive

ability of the utility functions from which they are derived. The extensive literature on

decision making under risk clearly shows that utility functions displaying asymmetries

in the domains of gains and losses can explain risky choice behavior significantly better

than standard utility functions (e.g., Kahneman and Tversky, 1979; Levy and Levy,

2002; Diecidue and Van de Ven, 2008; Piccioni, 2014). However, despite the extensive

use of asymmetric utility functions in the decision theory literature, little effort has

been devoted to studying their implications on the cross section of stock returns.
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The purpose of this paper, then, is to examine whether asset pricing models based

on asymmetric utility functions can shed light on the sources of risk that drive the

cross section of stock returns. In order to do so, I derive a new Capital Asset Pricing

Model by approximating the utility function of the representative agent with Contin-

uous Asymmetric Polynomial Models (CAPM2
G).1

Testing the CAPM2
G on size value and momentum portfolios, I find that the cross-

section of stock returns can be rationalized by a utility function displaying (i) a positive

shift at zero, (ii) a higher slope in the negative domain, and (iii) concavity for losses

and mild convexity for gains.2 These findings are consistent with the results of Pic-

cioni (2014), who shows that a utility function with the same three characteristics

explains how people face risk, because it captures three fundamental factors that drive

risky choice behavior: (i) “Goal Achievement”, i.e., the importance of the overall prob-

ability of obtaining positive payoffs (consistent with a utility function with a positive

shift at zero); (ii) “Loss Aversion”, i.e., the empirical observation that losses loom

larger than gains (consistent with a utility function steeper in the negative domain);

and (iii) “preference for Security/Potential”, i.e., downside risk aversion and preference

for upside potential (consistent with a utility function concave for losses and convex

for gains).

The results of this paper show that Goal Achievement, Loss Aversion, and prefer-

ence for Security/Potential are also the fundamental factors driving size, value, and

1 I approximate utility with polynomial models displaying different parameter values in the positive
and negative domains. In other words, the utility function is approximated with separate polynomial
expansions in the domains of gains and losses. The utility function is continuously differentiable
because I use a continuous weighting function, rather than an indicator function, to weight the upside
and downside components of the utility function. The risk-free rate is the reference point, or target
return, used to distinguish between gains and losses.

2 As shown in Figure 1, the pricing kernel of the CAPM2
G displays (i) a bump around zero, (ii) a

higher level in the negative domain, and (iii) it is decreasing for losses and slightly increasing for gains.
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momentum anomalies. In fact, small cap, high book-to-market securities, and momen-

tum winners deliver (i) lower returns when market returns are close to zero (implying

higher loadings on Goal Achievement), (ii) lower average returns during market down-

turns (implying higher loadings on Loss Aversion), and (iii) higher covariance with

market returns during market downturns and lower covariance with market returns

during rising markets (implying higher loadings on preference for Security/Potential).

Moreover, size, value, and momentum factors do not load when they are tested on the

CAPM2
G, even when tests are conducted on size, value, and momentum portfolios.

Running a wide range of model comparison tests, I find that the CAPM2
G yields a

significant improvement with respect to the existing asset pricing models.3 Moreover,

the CAPM2
G is the most parsimonious model that can explain size, value, and momen-

tum anomalies, since the three CAPM2
G factors are all jointly necessary to explain the

cross-section of stock returns.

The main predictions of the CAPM2
G are also confirmed out of sample. In fact, zero

cost portfolios that take long (short) positions on securities with the highest (lowest)

loadings on the three CAPM2
G factors—Goal Achievement, Loss Aversion, and prefer-

ence for Security/Potential—deliver positive and statistically significant returns, on a

risk adjusted basis.

The first CAPM2
G factor, Goal Achievement, quantifies the importance that in-

vestors attach to the overall probability of obtaining positive portfolio returns. The

theory section of the paper shows that, in contrast with existing models, Continuous

Asymmetric Polynomial Models are able to take into account the effect of goal seeking

behavior on asset prices. This result is obtained by including a positive constant in

3 The CAPM2
G nests several existing asset pricing models (such as mean-variance CAPM, the

three-moment CAPM, and downside risk models), allowing for model comparison tests.
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the upside component of the utility function, and by guaranteeing continuity at zero.

In this way, the utility function displays a positive shift around zero. Since marginal

utility is high around zero, the CAPM2
G predicts higher risk premiums for securities

paying off less when market returns are close to zero. This prediction, confirmed by

the data, implies higher risk premiums for securities that do not contribute to increase

the overall probability of obtaining positive returns in well-diversified portfolios.

The second CAPM2
G factor is Loss Aversion. Since the CAPM2

G pricing kernel has

a higher level in the domain of losses, the model predicts higher risk premiums for

securities delivering lower average returns during market downturns.4 This prediction

is consistent with the intuition, extensively studied in the decision theory literature,

that agents are more sensitive to losses than to gains of the same amount.

Finally, the third CAPM2
G factor is preference for Security/Potential, i.e., prefer-

ence for securities that covary less with the market portfolio during market downturns

and covary more with the market portfolio during rising markets.5 Preference for Se-

curity/Potential implies preference for positive skewness, a factor already priced by the

three-moment CAPM. However, the CAPM2
G can capture preference for positive asym-

metry more effectively than the three-moment CAPM. Since stocks are more correlated

during market downturns, investing in the market portfolio yields a small reduction in

downside risk at the cost of a relatively large reduction in upside potential. Confirming

the results of Post, Vliet, and Levy (2008), I find that the three-moment CAPM cannot

4 Consistent with Loss Aversion, the parameter of the linear term of the CAPM2
G utility function

in the negative domain is higher than the parameter of the linear term in the positive domain (both
linear terms are positive). Therefore the utility function has a higher slope in the domain of losses,
and the pricing kernel has a higher level (a higher constant term) in the negative domain.

5 The parameter of the quadratic term of the CAPM2
G utility function in the negative domain is

negative, and the parameter of the quadratic term in the positive domain is slightly positive. Therefore,

the CAPM2
G pricing kernel has a negative linear term in the negative domain (implying downside risk

aversion), and a positive linear term in the positive domain (implying preference for upside potential).
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rationalize the efficiency of the market portfolio because it cannot predict both strong

downside risk aversion and mild preference for upside potential at the same time. The

CAPM2
G, in contrast, has such flexibility.

The remainder of the paper is organized as follows. In section 2, I examine the

theory behind the asset pricing models tested in this study. Section 3 outlines the em-

pirical analysis, including the estimation methods and model comparison tests. Section

4 reports the estimation results, and section 5 concludes.

2 Theory

2.1 The Investment Problem

I analyze investor preferences by testing if asset pricing models defined on asymmetric

utility functions can rationalize the efficiency of the market portfolio. To focus my

attention on the role of preferences, I adhere to the main assumptions of the standard

CAPM. I consider a single period, portfolio-based, representative investor model of a

frictionless and competitive capital market that satisfies the following assumptions:

1. The investment universe consists of N risky assets with return r ∈ RN , and a

risk-free asset with return r
F
∈ R+ . The returns r ∈ RN are treated as random

variables with continuous joint cumulative distribution function G : RN → [0, 1].

2. The representative investor constructs a portfolio by choosing portfolio weights

w ∈ RN , so as to maximize the expectation of a utility function u : R → R,

differentiable and strictly increasing. The weight assigned to the risk-free asset

is 1− w′ i, with i ∈ RN vector of ones.
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3. The utility function is defined on portfolio returns in excess of the risk-free rate.6

These assumptions are common to several works like, for example, Post and Levy

(2005), Post, Vliet, and Levy (2008), and Shumway (1997). The investment problem

is:

max
w∈RN

E
(
u(rw,t+1)

)
(1)

with

rw,t+1 = w′ rt+1 + (1− w′ i) r
F,t
− r

F,t
= w′ ret+1 (2)

and ret+1 = rt+1− i rF,t
. The value-weighted market portfolio w

M
∈ RN must represent

the optimal solution of the investment problem. The well-known Euler equation gives

the First Order Conditions (FOC) for optimality:

E(mt+1 r
e
t+1) = 0 (3)

where mt+1 = u′(rw
M
,t+1) is the stochastic discount factor, or pricing kernel, that prices

all securities under the law of one price and is non-negative under the condition of no

arbitrage.7

Assumption 3 does not impose global concavity of the utility function (it imposes

only differentiability and monotonicity). Therefore, the FOC are no longer sufficient

for optimality. In fact, we may wrongly classify a minimum or a local maximum (which

also satisfy the FOC) as the global maximum. It follows that we need to verify that the

6 The risk-free rate represents the natural reference point for the problem at hand. Moreover,
unreported estimation results using a reference point equal to r

F
+ τ clearly show that τ = 0.

7 Appendix B provides more details about the efficiency of the market portfolio; the connection
of the pricing kernel defined in this paper and consumption-based models; and unconditional and
conditional expectations models.
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Second Order Conditions (SOC) are satisfied, by checking that the following matrix

E
(
u′′(rw

M
,t+1) r

e
t+1 r

e ′
t+1

)
(4)

is negative definite. Checking the SOC represents an improvement with respect to

several works of the asset pricing literature. As pointed out by Post, Vliet, and Levy

(2008), several works of the empirical asset pricing literature estimate models that

actually imply local convexity of the utility function, but fail to verify whether local

risk-seeking leads to violations of the SOC for optimality. On the contrary, in this paper

I explicitly analyze the implications of local convexity of the utility function, since the

most recent decision theory models display local risk-seeking. Therefore, during the

empirical analysis I verify that the SOC in (4) hold for all models under analysis.

2.2 Continuous Asymmetric Utility Functions

The first contribution of this paper is to show that, in contrast with existing asset

pricing models, models based on continuous asymmetric utility functions can price the

factors that are necessary to explain risky choice behavior. Continuous asymmetric

utility functions can be defined as follows:

u(r
M

) = ũ−(r
M

)
(
1− F

)
+ ũ+(r

M
)F (5)

with r
M

= rw
M
,t+1, to simplify notation. The utility function is continuously differ-

entiable because it is the weighted sum of two continuous functions: ũ−(r
M

) reflects

the risk attitude in the domain of losses, while ũ+(r
M

) captures the risk attitude in

the domain of gains. The weighting function F is a strictly increasing and continuous
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function, with values between zero and one. For example, we can choose F as the

cumulative distribution function, evaluated at r
M

, of a normal random variable with

mean zero and variance σ2. If σ2 is low enough, F is similar to an indicator function

equal to one if r
M
> 0. As discussed in section 2.3.1, the continuity of the utility func-

tion is necessary to price all factors that are studied in the decision making literature.

The utility function in (5) can be rewritten as the sum of a global component

(standard utility function applied to both domains of gains and losses, u
G

(r
M

)) and an

upside component (applied only to the domain of gains, u+(r
M

)):

u(r
M

) = u
G

(r
M

) + u+(r
M

)F (6)

This formulation is equivalent to the weighted sum of upside and downside compo-

nents,8 but it has the advantage of nesting standard utility functions, by setting

u+(r
M

) = 0. Therefore, by testing the significance of u+(r
M

) we can assess the va-

lidity, in the asset pricing context, of the asymmetries in utility advocated in several

models of the decision theory literature.

2.3 CAPM2
G

Utility Function

The CAPM2
G is derived by approximating u

G
(r

M
) and u+(r

M
) with quadratic polyno-

mials:

u(r
M

) = θ1 rM + θ2 r
2
M

+
(
θ+0 + θ+1 rM + θ+2 r

2
M

)
F (7)

8 Models (5) and (6) are equivalent if ũ−(r
M

) = u
G

(r
M

) and ũ
+

(r
M

) = u
G

(r
M

) + u
+

(r
M

):

AAAu
G

(r
M

) + u
+

(r
M

)F = u
G

(r
M

)
(
1− F

)
+
(
u

G
(r

M
) + u

+
(r

M
)
)
F = ũ−(r

M
)
(
1− F

)
+ ũ

+
(r

M
)F.
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Intuition and preference theory (Piccioni, 2014; Diecidue and Van de Ven, 2008; Levy

and Levy, 2002; Tversky and Kahneman, 1992) suggest the following sign restrictions:9

θ1 ≥ 0, θ2 ≤ 0, θ+0 ≥ 0, θ+1 ≤ 0, θ+2 ≥ 0 (8)

Consistent with mainstream asset pricing models, we have standard sign restrictions for

the global component of the utility function: the linear term has a positive parameter

(θ1 ≥ 0, implying monotonicity),10 and the quadratic term has a negative parameter

(θ2 ≤ 0, implying risk aversion).

2.3.1 CAPM2
G Utility Function: Goal Achievement

The constant term in u+(r
M

) is positive—θ+0 ≥ 0—in order to comply with goal seeking

behavior.11 In fact, if we include a positive constant in the upside component of the

utility function, when we compute expected utility we get:

E
(
θ+0 F

)
≈ E

(
θ+0 I

+
)

= θ+0 E
(
I+
)

= θ+0 P (r
M
> 0) (9)

where I+ is an indicator function equal to one if r
M
> 0. The parameter θ+0 quantifies

the importance of goal seeking behavior, or Goal Achievement: the importance that

investors attach to the overall probability of obtaining positive portfolio returns.

The ability of pricing Goal Achievement represents the main innovation of the

9 Estimation results obtained without imposing any sign restrictions confirm the parameters signs
in (8).

10 Imposing θ1 ≥ 0 alone is not a sufficient condition for monotonicity. If θ2 and/or θ+1 are sufficiently
negative, the utility function may be decreasing in some intervals. Any violation of monotonicity is
investigated in the empirical analysis.

11 Parameter θ+0 has to be positive. Both intuition and the results of the empirical decision making
literature point toward this direction (e.g., Diecidue and Van de Ven, 2008). Furthermore, besides
contradicting goal seeking behavior, a negative θ+0 would lead to violations of monotonicity.
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CAPM2
G. It’s important to point out that in order to assess the effect of goal seeking

behavior on asset prices, we need to consider continuous utility functions with a pos-

itive shift at zero, rather than non-continuous utility functions with a discrete jump.

Continuity is required because risk premiums depend upon the covariance between

marginal utility and the excess returns of each security (see section 2.4 below). If we

were to use an indicator function to distinguish between gains and losses, the constant

parameter θ+0 would not appear in the FOC (the first derivative of θ+0 I
+ is zero), and

it would not be possible to price Goal Achievement. If, instead, we use a continuous

weighting function F to distinguish between gains and losses, we end up having an

additional term equal to θ+0 f in the pricing kernel (where f is the first derivative of

the weighting function F ). This additional term produces a bump in the stochastic dis-

count factor (as highlighted in Figure 2). As pointed out in section 2.4, since marginal

utility is high around zero, the CAPM2
G predicts higher risk premiums for securities

that do not contribute to increase the overall probability of obtaining positive returns

in well-diversified portfolios.

2.3.2 CAPM2
G Utility Function: Loss Aversion

The parameter of the linear term in u+(r
M

) is negative: θ+1 ≤ 0. It follows that the

CAPM2
G utility function has a higher slope in the domain of losses, and the pricing

kernel has a higher level (a higher constant) in the negative domain. As a consequence,

the CAPM2
G predicts that investors are willing to sacrifice average portfolio returns in

market booms in order to get higher average portfolio returns during market downturns.

This prediction is consistent with Loss Aversion (e.g., Kahneman and Tversky, 1979),

that is, the observed behavior that agents are more sensitive to losses than to gains of
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the same amount.

2.3.3 CAPM2
G Utility Function: Preference for Security/Potential

Finally, the parameter of the quadratic term in u+(r
M

) is positive: θ+2 ≥ 0. The

sign of θ+2 does not impose any restriction on the shape of the utility function in

the positive domain. In fact, the utility function is convex in the positive domain

only if θ+2 is large enough: θ+2 > |θ2|.12 Convexity in the domain of gains would be

consistent with preference for upside potential (e.g., Post and Levy, 2005). If, instead,

we have 0 < θ+2 < |θ2|, the utility function is concave in both domains of gains and

losses, but concavity is stronger in the negative domain (similar to disappointment

aversion models). This is consistent with the intuition that investors are, at the least,

more averse to downside variance than upside variance. Furthermore, regardless of

the relative magnitude of θ+2 and θ2, imposing θ2 ≤ 0 and θ+2 ≥ 0 is consistent with

preference for positive skewness, as discussed in section 2.5.

Note that Prospect Theory value function (Kahneman and Tversky, 1979) would

imply opposite sign restrictions on the quadratic terms of (7): θ2 ≥ 0 and θ+2 ≤ 0, and

θ2 + θ+2 ≤ 0. In fact, Prospect Theory value function is convex for losses and concave

for gains, implying risk seeking behavior for losses and risk aversion for gains (which

in turn implies preference for negative skewness). As discussed in section 4.2.3, models

with Prospect Theory sign restrictions are rejected.

12 If θ+2 is too large, the SOC are violated. This condition is verified during the empirical analysis.
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2.4 CAPM2
G

Factors and Risk Premiums

The pricing kernel of (7) is given by:

m = θ1 + 2 θ2 rM + θ+0 f + θ+1
(
F + r

M
f
)

+ θ+2
(
2 r

M
F + r2

M
f
)

(10)

where f is the first derivative of the weighting function F . Rearranging the FOC, we

can write the expected excess return of each security i as:

E(ri) =
−cov(m, ri)

E(m)
(11)

Therefore, the CAPM2
G implies

E(ri) =
−θ+0 cov(r+

0,M
, ri)− θ+1 cov(r+

1,M
, ri)− θ2 cov(r

M
, ri)− θ+2 cov(r+

2,M
, ri)

E(m)
(12)

with:

r+
0,M

= f ; r+
1,M

= F + r
M
f ; r+

2,M
= 2 r

M
F + r2

M
f (13)

As long as parameters signs comply with (8), the CAPM2
G implies higher risk premiums

for securities delivering:

(i) lower returns when market returns are close to zero (higher loadings on Goal

Achievement). In fact:

−θ+0 cov(r+
0,M

, ri) = −θ+0 cov(f , ri) (14)

Securities that deliver lower returns when the market portfolio returns are close

to zero do not contribute to increase the overall probability of obtaining positive
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returns in well-diversified portfolios. Therefore, investors displaying goal seeking

behavior demand higher risk premiums to hold these securities.

(ii) lower average returns during market downturns (higher loadings on Loss Aver-

sion). In fact:13

−θ+1 cov(r+
1,M

, ri) ≈ θ+1 cov(I− , ri) (15)

Since θ+1 ≤ 0, equation (15) implies higher risk premiums for securities that pay

off less, on average, during market downturns.

(iii) higher covariance with market returns during market downturns and relatively

lower covariance with market returns during rising markets (higher loadings on

preference for Security/Potential). In fact:14

cov(−2 θ2 rM − θ+2 r+2,M , ri) ≈ −2 θ2 cov(r
M
I−, ri)− 2 (θ2 + θ+2 ) cov(r

M
I+, ri)

(16)

with I− = 1 − I+. Since θ2 ≤ 0 and θ+2 > 0, the model implies that investors

display, at the least, more aversion toward securities with higher downside covari-

ance relative to upside covariance with the market. If we have θ2 + θ+2 > 0 (as

confirmed in the estimation results discussed in section 4.1), the model makes the

stronger prediction of preference (therefore, lower risk premiums) for securities

with higher covariance with market returns during rising markets.

13 Since r+
1,M
≈ I+, we have:

−θ+1 cov(r+
1,M

, ri) ≈ −θ+1 cov(I+, ri) = −θ+1 cov((1− I−) , ri) = θ+1 cov(I− , ri).
14 Since r+

2,M
≈ 2 θ+2 rM I+, we have:

cov(−2 θ2 rM − θ+2 r+2,M , ri) ≈ cov(−2 θ2 rM − 2 θ+2 rM I+, ri) =

= cov(−2 θ2 rM (I− + I+)− 2 θ+2 rM I+, ri) = −2 θ2 cov(r
M
I−, ri)− 2 (θ2 + θ+2 ) cov(r

M
I+, ri).
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These predictions are confirmed by the data. In fact, as shown in section 4.5, secu-

rities with higher loadings on Goal Achievement, Loss Aversion, and preference for

Security/Potential deliver higher average returns. The premiums are statistically sig-

nificant, on a risk adjusted basis.

2.5 Standard Polynomial Models

Besides allowing to test the predictions of several models of the empirical decision

making literature, the CAPM2
G can also nest the main models of the existing asset

pricing literature. For example, the standard mean-variance CAPM can be obtained

by setting u+(r
M

) = 0 in (7). Utility is therefore equal to:

u(r
M

) = θ1 rM + θ2 r
2
M

(17)

The only prediction of the standard mean-variance CAPM is global risk aversion:

higher risk premiums for securities delivering higher covariance with market portfo-

lio returns. The three-moment CAPM, instead, can also price preference for positive

asymmetry (or skewness), as long as θ3 > 0 in the following cubic model:

u(r
M

) = θ1 rM + θ2 r
2
M

+ θ3 r
3
M

(18)

The CAPM2
G can nest the three-moment CAPM if we include a cubic term in the

global component of the polynomial approximation in (7). In this way, by running

model comparison tests between the two models, we can verify whether preference for

positive asymmetry is better captured by the three-moment CAPM or by the CAPM2
G.

Model comparison tests between the three-moment CAPM and the CAPM2
G are neces-
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sary because preference for positive asymmetry and preference for Security/Potential

are interconnected. In fact, downside risk aversion and preference for upside potential

imply preference for positive skewness. However, the results of this study emphasize

the importance of breaking preference for positive asymmetry into strong downside risk

aversion and mild preference for upside potential (see section 4.2.1). This result can

be obtained with asymmetric quadratic models (CAPM2
G), but not with cubic utility

functions (three-moment CAPM).

Several works of the empirical asset pricing literature find that asset pricing models

displaying strong preference for positive asymmetry can fit stock return data bet-

ter than the standard mean-variance CAPM (e.g., Harvey and Siddique, 2000, and

Dittmar, 2002). However, models based on cubic utility functions are not flexible

enough to imply strong preference for positive asymmetry without violating the nec-

essary SOC for optimality. For example, Dittmar (2002) finds that admissible pricing

kernels (obtained from (18)) display very high values of θ3, implying a reverse S-shaped

utility function with concavity for losses and strong convexity for gains, leading to vi-

olations of the SOC for optimality. If global concavity is imposed, instead, models

based on higher-order polynomials are no longer admissible for the cross-section of

stock returns. In other words, if global concavity is imposed, models based on cubic

utility functions (three-moment CAPM) are not able to improve with respect to models

based on standard quadratic utility functions (mean-variance CAPM). This result is

consistent with Tsiang (1972), who demonstrates that a quadratic function is likely

to give a good approximation for any concave utility function over the typical sample

range, and that higher-order polynomials are unlikely to improve the fit. The results

of the empirical analysis of this paper (section 4.1) also confirm that the three-moment
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CAPM cannot improve with respect to the mean-variance CAPM when the SOC for

optimality (rather than the more restrictive condition of global concavity of the utility

function) are imposed.

The optimality issues of the three-moment CAPM are made clear by Post, Vliet,

and Levy (2008), who point out that, since stocks are more correlated during mar-

ket downturns, investing in the market portfolio yields a small reduction in downside

risk at the cost of a relatively large reduction in upside potential. With cubic utility

functions, investors with high preference for skewness assign a relatively high weight to

upside potential. Therefore, the small reduction in downside risk that they obtain by

investing in the market portfolio does not sufficiently compensate them for the large

reduction in upside potential. It follows that the market portfolio is optimal only for

investors displaying strong downside risk aversion and mild preference for upside po-

tential.

Models based on cubic utility functions (three-moment CAPM) are not flexible

enough to predict strong downside risk aversion and mild preference for upside poten-

tial at the same time. On the other hand, as shown in section 4.2.1, such flexibility

can be achieved with asymmetric quadratic utility functions (CAPM2
G).

3 Empirical Analysis

3.1 Estimation Methods

The empirical analysis is focused on testing the CAPM2
G on size, value, and momentum

portfolios. In order to test the significance of each CAPM2
G factor, I also study the

performance of a broad set of asset pricing models nested by the CAPM2
G (see Table 1).
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For every model, we can directly test the implied Capital Asset Pricing Model.

Regarding the CAPM2
G, the FOC for every security i are:

E(θ1 ri + 2 θ2 rM ri + θ+0 r
+
0,M

ri + θ+1 r
+
1,M

ri + θ+2 r
+
2,M

ri) = 0 (19)

with

r+
0,M

= f ; r+
1,M

= F + r
M
f ; r+

2,M
= 2 r

M
F + r2

M
f (20)

As shown in Appendix C, rearranging (19) we get:

E(r̃i) = βiE(r̃
M

) (21)

with:

r̃i = θ1 ri + θ+1 r
+
1,M

ri, r̃
M

= θ1 rM + θ+1 r
+
1,M

r
M

(22)

and

βi =
−E(2 θ2 rM ri + θ+0 r

+
0,M

ri + θ+2 r
+
2,M

ri)

−E(2 θ2 rM r
M

+ θ+0 r
+
0,M

r
M

+ θ+2 r
+
2,M

r
M

)
(23)

Equation (21) is defined on r̃i, rather than ri, in order to avoid including the left hand

side variable in the right hand side (note that θ+1 r
+
1,M

ri ≈ ri if r
M
> 0, since r+

1,M
≈ I+).

In order to get a formula defined on expected returns (rather than adjusted returns r̃i),

note that:

E(r̃i) = E(ri θ̃1) = E(ri)E(θ̃1) + cov(ri , θ̃1) (24)

with θ̃1 = θ1 + θ+1 r
+
1,M

. Therefore, equation (21) can be written as:

E(ri) = γi + βiE(r
M

) (25)
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with

γi =
−cov(ri , θ̃1) + βi cov(r

M
, θ̃1)

E(θ̃1)
(26)

Note that models not displaying Loss Aversion (i.e., models with θ+1 = 0) have γi = 0

in equation (25), or, equivalently, r̃i = ri and r̃
M

= r
M

in equation (21). Note also

that, since we use unconditional expectations, each model displays constant gammas

and betas.

3.2 Generalized Method of Moments estimation

All models under analysis are tested on the following moment conditions:

E

 r − γ − β r
M

mR
F
− 1

 = 0 (27)

r is the vector of the excess returns of the N risky assets; γ and β are the vectors of

CAPM gammas and betas of the risky assets; r
M

is the excess return of the market

portfolio; m is the pricing kernel; and R
F

is the gross risk-free rate: R
F

= 1 + r
F

.

The last moment condition is included to identify all parameters. Furthermore,

Dahlquist and Soderlind (1999) and Farnsworth et al. (1999) find that imposing this

restriction on the pricing kernel is important in the context of performance valuation.

The risk-free rate moment condition is derived from the FOC, as shown in Appendix D.

Equation (27) forms a set of moment conditions that can be used to test each model

via Hansen’s (1982) Generalized Method of Moments (GMM). The sample version

of (27) is:

g
T
(θ) =

1

T

T∑
t=1

ut = 0 (28)
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Where T is the number of observations, θ is the vector of parameters, and

ut =

 rt − γ − β r
M,t

mtRF,t
− 1

 (29)

Equation (29) is a system of N + 1 equations, with K parameters. Hansen (1982)

shows that a test of model specification can be obtained by minimizing the following

quadratic form:

J(θ) = g
T
(θ)′W

T
(θ) g

T
(θ) (30)

where W
T
(θ) is the GMM weighting matrix. Hansen (1982) shows that the efficient

weighting matrix is the inverse of the covariance matrix of the moment conditions:

W
T
(θ) = V ar

(
g
T
(θ)
)−1

(31)

The sample orthogonality conditions (28) can be interpreted as the pricing errors

obtained using the approximate utility function. If the model provides a good descrip-

tion of the data, then these pricing errors should be close to zero and the minimized

value of equation (30) will be small. Hansen (1982) shows that J
T

= T · J(θ̂
GMM

)

has a chi-square distribution with degrees of freedom equal to the number of moment

conditions minus the number of parameters (in our case, N + 1 − K). This statistic

is commonly referred to as the “J test” or as the test of the model’s “overidentifying

restrictions”.

The J
T

statistic tests the magnitude of the weighted average of the pricing errors.

However, using the efficient weighting matrix, there are two ways to get a small value

of the J
T

statistic: first, generate small pricing errors with a high degree of precision;

20



second, generate large pricing errors with even larger standard deviations. In fact, a

model can achieve a low J
T

by simply blowing up the covariance matrix of the mo-

ment conditions, rather than reducing the average pricing errors. It follows that when

evaluating the descriptive ability of a model, it is important to check the magnitude

of the average pricing errors. To this end, for each model, I check the Mean Absolute

Average Error (MAAE):

MAAE(θ̂
GMM

) =
1

N

N∑
n=1

∣∣∣gT,n
(θ̂

GMM
)
∣∣∣ (32)

This metric directly checks the pricing ability of each model and is particularly ap-

pealing in the CAPM context, since it gives a measure of the average distance between

predicted and realized returns.

Furthermore, to ensure that any improvement in the J
T

statistic is not due to

volatile pricing errors, I check the R2 of each moment condition:

R2
i = 1− MSEi

TSSi
(33)

Where TSSi is the Total Sum of Squares of asset i returns, while MSEi is the Mean

Squared Error of asset i. To guarantee that the estimation process does not lead to

regions of the parameter space that simply blow up the errors volatility (rather than

lowering the average pricing errors), I impose the non-negativity of each R2
i as one of

the admissibility conditions that all models have to satisfy.15

For every model, I verify that the following admissibility conditions are satisfied:

15 The maximum value that R2
i can achieve is 1 (if MSEi = 0). A value of R2

i lower than zero
implies that residuals are more volatile than the assets under analysis: MSEi > TSSi.
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1. Monotonicity. Each utility function has to be globally increasing (and the cor-

responding pricing kernel strictly positive). This is a minimum condition that

each model has to satisfy. Any violation would imply that investors prefer less

to more, leading to violations of the no-arbitrage condition in asset pricing.

2. Second Order Conditions. Since global concavity is not imposed, the SOC for

optimality defined in equation (4) have to be verified.

3. Hansen and Jagannathan bounds. The variance of the pricing kernel has to be

sufficiently high, in order to satisfy the Hansen and Jagannathan bounds.

4. Non-negative R2
i . The non-negativity of each R2

i guards against parameter esti-

mates that blow up errors volatility rather than improving pricing ability.

3.3 Model Comparison Tests

The CAPM2
G nests all models listed in Table 1. Since each CAPM2

G factor is priced by

a specific term of the polynomial approximation of the utility function, we can assess

the significance of one or more factors with the following χ2 difference test:

T g
T
(θ

R
)′W

T
(θ

R
) g

T
(θ

R
)− T g

T
(θ)′W

T
(θ

R
) g

T
(θ) ∼ χ2

p (34)

with θ
R

equal to the set of optimal parameters of the restricted model, where the tested

parameters are imposed to be equal to zero.

A low value of the difference test implies that the parameters set to zero are not

statistically significant (since the J test of the restricted model does not rise much by

imposing the restriction). The test statistic is distributed according to a chi-square
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distribution with p degrees of freedom (p is the number of restrictions). For every

comparison, I use the weighting function of the restricted model for both restricted

and unrestricted optimizations.

3.4 Data

To test the moment conditions defined in (27), we need proxies for the market portfolio

and the risk-free asset. I approximate the market portfolio using the CRSP all-share

index, which is the value-weighted average of all common stocks listed on the NYSE,

AMEX, and NASDAQ. For the risk-free asset I use the one-month US Treasury bill.

The main results of the paper are obtained by testing each model on 30 portfolios:

size, book-to-market, and momentum portfolio deciles. I focus on these assets because

they represent the most studied phenomena in the literature (Fama and French, 1992;

Jegadeesh and Titman, 1993). Robustness results are obtained using portfolios based

on different classifications of size, book-to-market, and momentum: 25 double sorted

size and book-to-market portfolios; six double sorted size and book-to-market port-

folios, and six double sorted size and momentum portfolios. Furthermore, I also use

the 48 industry portfolios (based on the four-digit SIC code classification) to check

the results obtained with portfolios built on formation criteria that are independent

of size, value, and momentum effects. For all securities under analysis, I use data at

monthly frequency from July 1963 to June 2010 (564 observations) obtained from the

data library on the homepage of Kenneth French.16 All portfolios are value weighted.

16 Micro-cap stocks are excluded. The data set starts in 1963 because the COM-
PUSTAT data used to construct the benchmark portfolios are biased towards big,
historically successful firms for the earlier years (Fama and French, 1992). See
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html.
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4 Results

4.1 Main Results

Table 2 shows the estimation results of the CAPM2
G (denoted as CAPM2

GA,LA,SP),17

three-moment CAPM (CAPM2
SK), and mean-variance CAPM. For each model, the

table shows the J test of the “overidentifying restrictions”, parameters values (with

p-values in parenthesis), and goodness of fit (MAAE). All models are tested on 30

value-weighted portfolios: size, book-to-market, and momentum portfolio deciles.

Results are consistent with the main predictions of the empirical decision making

literature: the cross-section of stock returns can be rationalized by asymmetric utility

functions, but not by standard utility functions. In fact, the CAPM2
G (derived from the

continuous asymmetric quadratic utility function defined in (7)) is admissible, while the

mean-variance CAPM (standard quadratic utility) and three-moment CAPM (standard

cubic utility) are rejected.18 In particular, the CAPM2
G displays a superior fit: as shown

in Figure 3, the MAAE of the CAPM2
G is 2.73 basis points,19 as opposed to 20 basis

points for both mean-variance CAPM and three-moment CAPM.

Figure 1 shows the utility function and pricing kernel of the CAPM2
G. The utility

function displays (i) a positive shift at zero, (ii) a higher slope in the domain of losses,

and (iii) concavity for losses and mild convexity for gains. The corresponding pricing

kernel displays (i) a bump around zero, (ii) a higher level in the domain of losses, and

(iii) it is decreasing in the domain of losses and slightly increasing for gains. These

17 When not specified, the simple notation “CAPM2
G” refers to model CAPM2

GA,LA,SP: the complete
version of the Continuous Asymmetric Polynomial Model-Capital Asset Pricing Model, which prices

all CAPM2
G factors.

18 In particular, by imposing the SOC for optimality, the three-moment CAPM cannot improve with
respect to the mean-variance CAPM.

19 One basis point is equal to 0.0001.
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three characteristics allow to price the three factors that drive risky choice behavior:

(i) Goal Achievement, (ii) Loss Aversion, and (iii) preference for Security/Potential

(see Piccioni, 2014).

4.2 CAPM2
G

Factors

The CAPM2
G factors (Goal Achievement, preference for Security/Potential, and Loss

Aversion) are all jointly necessary to explain the cross section of stock returns. In fact,

model comparison tests in Table 5 highlight:

1. The joint significance of all CAPM2
G factors: highly significant χ2 difference test

of 40.70 when all CAPM2
G factors are removed from the CAPM2

G, i.e., when

CAPM2
GA,LA,SP is compared with the mean-variance CAPM;

2. The individual significance of each CAPM2
G factor: highly significant χ2 difference

tests when each CAPM2
G factor is removed from CAPM2

GA,LA,SP.

Table 3 and Table 4 show that models pricing only one or two CAPM2
G factors are

rejected. The only CAPM2
G reduced-from model that is not rejected is the model

pricing Loss Aversion and preference for Security/Potential: CAPM2
LA,SP. However,

even though CAPM2
LA,SP is admissible, such a model is not able to drive out size, value,

and momentum factors. As highlighted in section 4.3, we need all CAPM2
G factors

to completely rationalize size, value, and momentum anomalies. Furthermore, we

obtain a significant improvement by including Goal Achievement in CAPM2
LA,SP: highly

significant χ2 comparison test of 22.48 for the CAPM2
GA,LA,SP/CAPM2

LA,SP comparison,

and remarkable improvement in the fit (MAAE of 2.73 basis points for CAPM2
GA,LA,SP,

as opposed to 10.52 basis points for CAPM2
LA,SP).
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4.2.1 Preference for Skewness

As pointed out in the previous section, preference for Security/Potential is one of the

factors that are necessary to explain the cross-section of stock returns. Preference for

Security/Potential implies preference for positive asymmetry, a factor already priced

by the three-moment CAPM. Therefore, it is important to investigate whether pref-

erence for positive asymmetry is better captured by approximating utility with cubic

polynomials (three-moment CAPM, which implies preference for Skewness, as long as

θ3 > 0) or with asymmetric quadratic polynomials (CAPM2
G, which implies preference

for Security/Potential, as long as θ+2 > 0). In order to do so, we need to run model

comparison tests using models that price both preference for Security/Potential and

Skewness, or either one of the two factors.

Table 6 shows the results obtained with CAPM2
SK;GA,LA,SP (which prices both Skew-

ness and preference for Security/Potential), CAPM2
SK;GA,LA (Skewness), and

CAPM2
GA,LA,SP (preference for Security/Potential). Even though CAPM2

SK;GA,LA is not

rejected, it is clear that preference for positive asymmetry is better captured by prefer-

ence for Security/Potential rather than Skewness. In fact, the χ2 difference test for the

CAPM2
SK;GA,LA,SP/CAPM2

SK;GA,LA comparison is 4.41 (preference for Security/Potential

is statistically significant after controlling for preference for Skewness), while the χ2

difference test for the CAPM2
SK;GA,LA,SP/CAPM2

GA,LA,SP comparison is very close to zero

(preference for Skewness is not statistically significant after controlling for preference

for Security/Potential). Moreover, the parameter of the cubic term in CAPM2
SK;GA,LA,SP

utility function is non-significant and close to zero, while the parameter of the upside

quadratic term is significant.
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4.2.2 Downside Risk

Since the CAPM2
G can price preference for Security/Potential (i.e., downside risk aver-

sion and preference for upside potential), this paper is clearly related to the downside

risk literature. Several works in the downside risk literature study models that replace

variance with downside variance, within the standard mean-variance CAPM framework

(e.g., Ang, Chen, and Xing, 2006). This can be obtained by approximating utility with:

u(r
M

) = θ1 rM + θ−2 r
2
M
I− (35)

where I− is an indicator function equal to one if r
M
< 0. This utility function (concave

for losses and linear for gains) can also be obtained by neutralizing the upside quadratic

term in CAPM2
SP, i.e. by setting θ+2 = −θ2 in:

u(r
M

) = θ1 rM + θ2 r
2
M

+ θ+2 r
2
M
F (36)

Model (36) is rejected: J test equal to 47.64 with p-value of 0.01, and MAAE of

21 basis points. Similar results are obtained with the other models in Table 1 if we

impose θ+2 = −θ2. Models that price only downside risk aversion cannot explain the

cross section of stock returns.

4.2.3 Prospect Theory

Asymmetric quadratic utility functions could be used to test Prospect Theory, the most

studied model in the behavioral literature. However, two important considerations have

to be made on this regard. First, Prospect Theory value function is convex for losses

and concave for gains, implying the following parameter signs for the quadratic terms
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of the utility function: θ2 > 0, θ+2 < 0, and θ2 + θ+2 < 0. These sign restrictions

would imply preference for downside risk and aversion toward upside potential (and,

therefore, preference for negative skewness), a counterintuitive result that is rejected

by the data: all models of Table 1 are rejected if we impose Prospect Theory sign

restrictions on the quadratic terms. For example, if we impose θ2 ≥ 0 and θ+2 ≤ 0 in

CAPM2
GA,LA,SP, the J test is equal to 50.32 (p-value of 0.00) and the MAAE is 19.20

basis points. Moreover, the estimation of the CAPM2
G without imposing any sign re-

striction confirms that: θ2 < 0, θ+2 > 0, and θ2 + θ+2 > 0.

The second important consideration to be made on Prospect Theory is that a fun-

damental component of Kahneman and Tversky’s model is the probability weighting

function, according to which individuals overestimate low probabilities and underesti-

mate higher probabilities. Since the econometric methodology used in this work cannot

account for the distortions in expectations that may be produced by the probability

weighting function, the full version of Prospect Theory cannot be tested in this paper.

4.3 Size, Value, and Momentum Factors

Table 7 shows the results obtained by including size, value, and momentum factors in

the three models of Table 2. Size, value, and momentum factors are priced by adding

three terms to the original utility functions: θ
SMB

SMB + θ
HML

HML+ θ
MOM

MOM ;

where SMB, HML, MOM are the “Small-Minus-Big”, “High-Minus-Low”, and “Mo-

mentum” factors obtained from the data library on the homepage of Kenneth French.

The parameters of size, value, and momentum factors are negative, consistent with a

positive premium for securities delivering higher loadings on these factors.

The first two columns of Table 7 clearly show that size, value, and momentum
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factors significantly improve the performance of both mean-variance CAPM and three-

moment CAPM: the two models become admissible and there’s a considerable improve-

ment in their fit. Furthermore, the parameters of size, value, and momentum factors

are highly significant (jointly and individually). These results are consistent with the

extensive literature documenting the importance of size, value, and momentum factors

at improving the performance of existing asset pricing models.

The last column of Table 7 shows that size, value, and momentum factors do not

load when they are tested on the CAPM2
G, even when tests are conducted on size, value,

and momentum portfolios. In fact, size, value, and momentum factors’ parameters are

close to zero and not significant (individually and jointly) when they are included in

the CAPM2
G. The CAPM2

G is the only model considered in this study that is able to

drive out size, value, and momentum factors.

4.4 Robustness Tests

Tables 9, 8, and 10 show the results of several robustness tests, obtained by using differ-

ent sets of test assets: 25 double sorted size and book-to-market portfolios (Table 8);

12 portfolios given by the aggregation of six double sorted size and book-to-market

portfolios and six double sorted size and momentum portfolios (Table 9); and 48 in-

dustry portfolios (Table 10).

The test assets of Tables 8 and 9 have been chosen to check the results obtained

using different aggregations of size, value, and momentum portfolios. The test assets

of Table 10 have been chosen to check the results obtained using portfolio formation

criteria independent of size, value, and momentum effects. Lo and MacKinlay (1990)

and Conrad, Cooper, and Kaul (2003) argue that many of the empirical regularities
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observed studying portfolios built on characteristics such as size and value may be

overstated due to data snooping. It follows that it is important to check that results

are robust to the choice of portfolio formation strategies.

Results of Table 2 are robust to changes in tested assets. In particular, the three

CAPM2
G factors are always significant (individually and jointly), and the CAPM2

G util-

ity function has always the same shape: positive shift at zero, higher slope for losses,

concavity for losses and convexity for gains. Furthermore, the CAPM2
G is always ad-

missible and it always represents a significant improvement with respect to the other

models under analysis. Note that in Table 10 the J test doesn’t have enough power to

reject any model, but the CAPM2
G represents a significant improvement with respect

to the mean-variance CAPM and the three-moment CAPM.

4.5 Portfolios Sorted on the CAPM2
G

Factors

Table 11 shows that the main predictions of the CAPM2
G are confirmed out of sample.

The Table displays the results obtained with zero cost portfolios that take long (short)

positions on securities with the highest (lowest) loadings on the three CAPM2
G factors:

Goal Achievement, Loss Aversion, and preference for Security/Potential. Portfolios

are built by following a procedure similar to Fama-French (1992): every month, all

stocks in the cross section are sorted according to their loadings on each factor (i.e.,

their covariance with each factor over the previous sixty months). Then, I form ten

value weighted portfolios and check their returns over the next month. The procedure

is repeated every month. The zero cost portfolios are given by the difference of the

highest and lowest deciles of every sorting.
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To obtain risk adjusted returns, I consider the “alphas” of the following regression:

SORTi,t = αi + βMKT,iMKTt + βSMB,i SMBt + βHML,iHMLt + βMOM,iMOMt + εi,t

(37)

Where SORTi,t is the return at time t of the zero cost portfolio i (obtained by sorting

on one of the CAPM2
G factors), MKTt is the return of the market portfolio at time t,

SMBt is the size factor at time t, HMLt is the value factor at time t, and MOMt is

the momentum factor at time t. Standard errors (reported in parenthesis in table 11)

are obtained using Newey-West autocorrelation consistent estimation.

Goal Achievement portfolios are obtained by sorting stocks according to their co-

variance with r+
0,M

= f , as defined in (13). The lowest decile is formed by stocks

with the highest covariance with r+
0,M

(lowest loadings on Goal Achievement). In other

words, the lowest decile consists of the securities that pay off the most when the mar-

ket portfolio delivers low returns in absolute value. The CAPM2
G predicts that these

securities should deliver lower average returns, since they contribute the most to in-

crease the overall probability of obtaining positive returns in well diversified portfolios.

The prediction is confirmed by the data. In fact, the average monthly return of the

difference between the highest decile (highest loadings on Goal Achievement) and the

lowest decile (lowest loadings on Goal Achievement) is 0.36% and highly significant.

Loss Aversion portfolios are obtained by sorting stocks according to their covariance

with r+
1,M
≈ I+. The lowest decile is formed by stocks with the lowest covariance with

r+
1,M

(lowest loadings on Loss Aversion). In other words, lowest decile consists of secu-

rities that delivers the lowest average returns when the market rises, and the highest

average returns during market downturns. Since the CAPM2
G implies higher sensitivity
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to losses than gains of the same amount, the model predicts a positive premium for the

difference between the highest and lowest decile, as confirmed by the data: monthly

premium of 0.75%, highly significant.

Security/Potential portfolios are obtained by sorting stocks according to the dif-

ference of their covariances with r
M

and r+
2,M
≈ r

M
I+. The lowest decile contains

the stocks with the lowest difference of the two covariances (lowest loadings on Se-

curity/Potential).20 In other words, the lowest decile contains the securities with the

lowest downside risk relative to upside potential. As confirmed by the data, the CAPM2
G

predicts lower returns for these securities: positive and statistically significant premium

of 1.22% for the difference between the highest and lowest decile.

Finally, Table 11 reports the risk-adjusted returns of the CAPM2
G factors. After

controlling for the market portfolio, and size, value, and momentum factors, the al-

phas of the CAPM2
G zero cost portfolios are generally positive and significant. Two

points are worth mentioning. First, the Goal Achievement factor loses significance

after controlling for size, value, and momentum, while Loss Aversion loses significance

after controlling for the market portfolio. Second, surprisingly, Loss Aversion and Se-

curity/Potential factors increase their significance after size, value, and momentum

factors are included. This is because of the negative correlation of Loss Aversion and

Security/Potential factors with value and momentum factors.

20 Similar results are obtained if we sort stock according to the difference of their covariances with
r−
2,M

= 2 r
M

(1− F )− r2
M
f ≈ r

M
I− and r+

2,M
= 2 r

M
F + r2

M
f ≈ r

M
I+.
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5 Conclusions

This paper shows that models providing more realistic assumptions on how people face

risk can improve our understanding of the cross-section of stock returns. Specifically,

I find that size, value, and momentum anomalies are rationalized by a Capital Asset

Pricing Model based on Continuous Asymmetric Polynomial Models (CAPM2
G). The

estimated CAPM2
G utility function is in line with the results of recent works of the

decision making literature, which show that risky choice behavior can be rationalized

by a utility function with (i) a positive shift at zero, (ii) a higher slope in the negative

domain, and (iii) concavity for losses and mild convexity for gains. Piccioni (2014)

points out that such a utility function can capture the key factors that are necessary

to explain risky choice behavior: (i) Goal Achievement (the importance of the overall

probability of obtaining positive payoffs). (ii) Loss Aversion (losses loom larger than

gains), and (iii) preference for Security/Potential (downside risk aversion and prefer-

ence for upside potential). The results of this work show that Goal Achievement, Loss

Aversion, and preference for Security/Potential are also the key factors driving the

cross section of stock returns.

The first CAPM2
G factor, Goal Achievement, is priced because the utility function

of the CAPM2
G displays a positive shift at zero. Consistent with the implications of

recent decision theory models, I find higher risk premiums for securities that do not

contribute to increase the overall probability of obtaining positive returns in a well

diversified portfolio. Moreover, the theory section of the paper shows that only Con-

tinuous Asymmetric Polynomial Models are able to take in to account the effect of goal

seeking behavior on asset prices.

The second CAPM2
G factor is Loss Aversion. Because of Loss Aversion, the CAPM2

G
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predicts higher risk premiums for securities delivering lower average returns during mar-

ket downturns. Consistent with the data on size, value, and momentum portfolios, the

CAPM2
G predicts higher risk premiums for securities paying off less, on average, when

investors need it the most.

The third CAPM2
G factor, preference for Security/Potential, is related to prefer-

ence for positive asymmetry, a factor already captured by the three-moment CAPM.

However, this study presents clear evidence that the CAPM2
G can capture preference

for positive asymmetry more effectively than the three-moment CAPM. In particular,

I find that the CAPM2
G can imply strong preference for positive asymmetry (which

is necessary to explain the cross section of stock returns) without violating the SOC

for optimality. This result is obtained because the CAPM2
G can break preference for

positive asymmetry into strong downside risk aversion and mild preference for upside

potential. The three-moment CAPM, in contrast, does not have such flexibility.

Size, value, and moment factors do not load when all CAPM2
G factors are taken into

account. Running a wide range of model comparison tests, I find that the CAPM2
G is

the most parsimonious model that can explain size, value, and momentum anomalies.

In fact, the three CAPM2
G factors are all jointly necessary to explain the cross-section

of stock returns. These results are consistent with Piccioni (2014), who shows that the

same three factors are all jointly necessary to explain risky choice behavior.

Finally, the main predictions of the model are confirmed out of sample. In fact, zero

cost portfolios with long (short) positions on securities with higher (lower) loadings on

the three CAPM2
G factors (Goal Achievement, Loss Aversion, and preference for Secu-

rity/Potential) deliver positive and statistically significant risk adjusted returns.

This paper can be extended in several directions. First, further research is needed
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to develop conditional models that are able to incorporate time varying preferences

within the asymmetric utility framework. Furthermore, a deeper analysis is needed to

distinguish between the CAPM2
G factors and other cross-sectional effects. For example,

liquidity effects and downside risk are interconnected, because liquidity typically dries

up when the largest market losses occur and, in turn, liquidity dry-up may cause or

amplify these losses. It follows that an approach that is able to disentangle liquidity

and downside risk is needed.

A Decision Theory: Target Utility Theory

Piccioni (2014) develops a model for risky choice behavior, called Target Utility Theory

(TUT), that rationalizes several puzzles of the empirical decision making literature.

The utility function of Target Utility Theory (TUT) is given by the sum of two

components: a value function that captures the “pure” utility of each payoff, and

an anticipatory feeling component that captures the expected regret/rejoice. More

specifically, the utility of a generic lottery X, when it’s compared with another lottery

Y , is defined as follows:

U(XY ) =
∑N

i=1 pi F
−
xi

(
v(xi)−

∑J
j=1 pj F

+
yj
r(yj)

)

+
∑N

i=1 pi F
+
xi

(
v(xi)−

∑J
j=1 pj F

−
yj
r(yj)

) (38)
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Value—v(xi)—and regret/rejoice—r(yj)—functions are given by:

v(xi) =

 −λ (−xi)ψ if xi ≤ 0

xψi if xi > 0
r(yj) =

 −λ (−yj)γ if yj ≤ 0

yγj if yj > 0

(39)

The weighting functions F+ and F− identify gains and losses, respectively, and satisfy

F− = 1 − F+. Functions F+ and F− are equal to the c.d.f. of a normal distribution.

In this way, the weighting functions are similar to indicator functions, but continuous

around zero.

The value function is concave for losses and convex for gains, implying preference for

security/potential (risk aversion for losses and risk seeking behavior for gains). The re-

gret/rejoice function, instead, creates a jump in utility at the reference point, implying

goal seeking behavior (the desire of achieving relevant aspiration levels). Finally, the

loss aversion parameter λ takes into account the higher sensitivity to losses than gains

of the same amount. It follows that the three parameters of the model—ψ , γ , λ—are

all greater than one.21 Each parameter is associated with one of the factors captured by

the model: ψ controls for preference for security/potential, γ controls for goal seeking

behavior, and λ controls for loss aversion.

Regret is defined as the negative feeling associated with the ex-post knowledge that

a different past decision would have given a positive payoff, instead of the non-positive

payoff obtained with the chosen prospect. Regret depends upon the positive outcomes

of the alternative prospect, and it is experienced only when the decision maker fails

to achieve the target return. Therefore, regret creates a negative shift in utility in the

21 The regret/rejoice function is assumed to be concave for losses and convex for gains, like the value
function. The spirit of the model is that the impact of any outcome increases at an increasing rate
(higher marginal impact of outcomes of higher magnitude).

36



negative domain, equal to −
∑J

j=1 pj F
+
yj
r(yj). Rejoice, instead, is associated with the

avoidance of a loss, and it creates a positive shift in utility in the positive domain,

equal to −
∑J

j=1 pj F
−
yj
r(yj).

Because of the regret/rejoice component, the overall probabilities of realizing gains

and losses play an important role in the decision making process. Since the model

penalizes prospects that deliver a low probability of achieving the target return (i.e., a

low probability of realizing gains), TUT implies goal seeking behavior.

To compare the performance of TUT with several models of the decision making

literature, Piccioni (2014) uses a logit model to run maximum likelihood estimations

over a wide range of results of the empirical decision making literature. The estimation

results show that TUT represents a significant improvement with respect to: Expected

Utility Theory, Original Prospect Theory (Kahneman and Tversky, 1979), Cumulative

Prospect Theory (Tversky and Kahneman, 1992), SP/A theory (Lopes, 1987), Regret

Theory (Loomes and Sugden, 1982), Disappointment Aversion (Gul, 1991), and Ex-

pected Utility Theory with jumps (Diecidue and Van de Ven, 2008). Furthermore,

several comparison tests show that all factors implied by TUT (goal seeking behavior,

loss aversion, and preference for security/potential) are important to rationalize the

phenomena of the empirical decision making literature.

The utility function of TUT can be approximated with the continuous asymmetric

quadratic model in (7). Note that TUT displays a negative shift in the negative domain

and a positive shift in the domain of gains. However, in the context of asset pricing

models estimation, only the overall difference in levels in the positive and negative

domains of the utility function can be assessed, and not the precise extent of positive

and negative shifts. This does not create a problem in the present work, because only
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the overall difference in levels in the positive and negative domains is important to

determine investors’ preferences. In fact, preferences are not affected by positive or

negative shifts affecting the utility function as a whole. It follows that θ+0 contains

enough information for the problem at hand.

B The Optimization Process

B.1 Efficiency of the Market Portfolio

The only two conditions imposed on the utility functions studied in this paper are dif-

ferentiability and monotonicity. The use of non-globally concave utility functions may

raise doubts about the efficiency of the market portfolio. However, Khanna and Kull-

dorff (1999) found that the mutual fund theorem “... holds for all investors, regardless

of their attitude toward risk, as long as they do not prefer less to more [i.e., monotonic-

ity]. This includes investors who are risk seekers as well as those with a combination

of risk seeking and risk averse preferences” (p. 168). Moreover, Vanden (2006) finds

that preferences aggregate in an economy where heterogeneous agents display utility

functions with several switching points, i.e., wealth levels at which the parameters of

the utility function switch to a different set of values.

Nevertheless, as pointed out by Post and Levy (2005), given the large number of

investors who appear to hold the market portfolio in the form of passive mutual funds

and exchange traded funds that track broad value-weighted equity indexes, it is inter-

esting to ask what kind of utility functions could rationalize such behavior, in the face

of attractive premiums offered by size, book-to-market, and momentum portfolios—the

so-called “revealed preferences” approach.
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B.2 Approximation of the Stochastic Discount Factor

The pricing kernel defined in equation (3) is the first derivative of the utility function

of the representative agent. Even though the utility functions studied in this paper

are directly defined over market portfolio returns in excess of the risk-free rate, their

pricing kernels can be related to the pricing kernels studied in consumption-based

models, which are equal to the marginal rate of substitution: U ′(Ct+1)/U
′(Ct), with

Ct consumption at time t. Brown and Gibbons (1985) show the conditions under

which consumption and wealth are equivalent and the marginal rate of substitution

can be expressed as a function of aggregate wealth: U ′(Wt+1)/U
′(Wt). Several works,

like Dittmar (2002) and Harvey and Siddique (2000), run Taylor approximations of

U ′(Wt+1), deriving a pricing kernel that is a polynomial function of the market portfolio

return. The approximation of the pricing kernel in these works is equivalent to the

approximation used in section 2.1.

B.3 Conditional and Unconditional Expectations

In this work, each model is estimated using unconditional expectations. However,

there is a wealth of evidence that the risk/return characteristics of most securities show

structural and cyclical variation, justifying the use of conditional models. The problem

with conditional models is that they entail a large risk of specification error, because

they have to specify how each aspect of investor preferences depends on the state of the

world. As Ghysels (1998) points out, “... if the beta risk [in the capital asset pricing

model with time-varying beta] is inherently misspecified, there is a real possibility that

we commit serious pricing errors, potentially larger than with a constant traditional

beta model” (p. 550). Ghysels finds that pricing errors of the unconditional CAPM are
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smaller than those of the conditional CAPM. In addition, Post and Vliet (2006) point

out that the problem of imposing the regularity conditions is very severe, because we

have to make sure that the utility function is well-behaved for all possible states of the

world. The development of conditional models based on asymmetric utility functions

with time-varying preferences is beyond the scope of the present work, and it is left for

future research.

C CAPM Derivation

The derivation of the Capital Asset Pricing Model from the First Order Conditions

in (3) is quite straightforward. Regarding the CAPM2
G, for every security i, we have:

E(θ1 ri + 2 θ2 rM ri + θ+0 r
+
0,M

ri + θ+1 r
+
1,M

ri + θ+2 r
+
2,M

ri) = 0 (40)

with

r+
0,M

= f ; r+
1,M

= F + r
M
f ; r+

2,M
= 2 r

M
F + r2

M
f (41)

We can rewrite the FOC as:

E(r̃i) = −E(2 θ2 rM ri + θ+0 r
+
0,M

ri + θ+2 r
+
2,M

ri) (42)

with

r̃i = θ1 ri + θ+1 r
+
1,M

ri = ri (θ1 + θ+1 r
+
1,M

) = ri θ̃1 (43)

We keep r̃i on the left hand side (rather than ri) to avoid including the left hand side

variable in the right hand side (note that θ+1 r
+
1,M

ri ≈ ri if r
M
> 0, since r+

1,M
≈ I+).
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The same condition as in (42) holds for the market:

E(r̃
M

) = −E(2 θ2 rM r
M

+ θ+0 r
+
0,M

r
M

+ θ+2 r
+
2,M

r
M

) (44)

Therefore, for every security i, we have:

E(r̃i) = βiE(r̃
M

) (45)

with:

r̃i = θ1 ri + θ+1 r
+
1,M

ri, r̃
M

= θ1 rM + θ+1 r
+
1,M

r
M

(46)

and

βi =
−E(2 θ2 rM ri + θ+0 r

+
0,M

ri + θ+2 r
+
2,M

ri)

−E(2 θ2 rM r
M

+ θ+0 r
+
0,M

r
M

+ θ+2 r
+
2,M

r
M

)
(47)

Moreover, since

E(r̃i) = E(ri θ̃1) = E(ri)E(θ̃1) + cov(ri , θ̃1) (48)

with θ̃1 = θ1 + θ+1 r
+
1,M

, we have:

E(ri) = γi + βiE(r
M

) (49)

with

γi =
−cov(ri , θ̃1) + βi cov(r

M
, θ̃1)

E(θ̃1)
(50)
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D The Risk-Free Rate Moment Condition

The FOC defined in (3) holds for all assets. Then, for each security i we have:

E(mrei ) = 0 ⇒ E(mRi) = E(mR
F

) = φ (51)

with φ positive (since Ri, RF
, and m are positive) and constant (since we have un-

conditional expectations). Therefore, the pricing kernel estimated in this work is the

scaled pricing kernel m̃ that satisfies:

E(m̃ rei ) = 0, E(m̃Ri) = 1, E(m̃R
F

) = 1 (52)

with m̃ = m/φ. Since φ is positive and constant, all considerations made on the utility

function of the CAPM2
G are still valid.
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Table 1: Models under Analysis

Utility Factors

Global
Polynomial

Upside
Polynomial
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CAPM2
GA,LA,SP 3 3 3 3 3 3 3 3

CAPM2
GA,LA 3 3 3 3 3 3

CAPM2
GA,SP 3 3 3 3 3 3

CAPM2
LA,SP 3 3 3 3 3 3

CAPM2
GA 3 3 3 3

CAPM2
LA 3 3 3 3

CAPM2
SP 3 3 3 3

CAPM 3 3

Table 1 provides a partial list of the models studied in this paper. As discussed in section 2.2,
the utility function of each model is given by the sum of a standard polynomial expansion
applied to both domains of gains and losses (“Global Polynomial”), and a polynomial
expansion applied only to the domain of gains (“Upside Polynomial”).
The table specifies the terms of the polynomial approximation that are included in each
model, and which factors are priced as a consequence. “GA” refers to models pricing Goal
Achievement; “LA” refers to models pricing Loss Aversion; “SP” refers to models pricing
preference for Security/Potential.
Models that can price preference for positive Skewness—denoted with “SK”—are discussed
in sections 2.5 and 4.2.1. Models that price size, value, and momentum factors are shown in
Table 7 and discussed in section 4.3.
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Table 2: Testing the CAPM2
G on Size, Value, and Momentum Portfolios

CAPM GA,LACAPM2
SK CAPM2

GA,LA,SP

J test 48.45 46.59 7.75
(0.01) (0.02) (0.99)

MAAE (×10−4) 19.80 19.82 2.73

# parameters 2 3 6

Linear: θ1 1.04 0.99 0.27
(0.00) (0.00) (0.00)

Quadratic: θ2 –8.62 –5.51 –14.36
(0.00) (0.00) (0.00)

Cubic: θ3 8.68
(0.99)

Upside Constant: θ+0 0.04
(0.00)

Upside Linear: θ+1 –0.18
(0.00)

Upside Quadratic: θ+2 16.53
(0.00)

Weighting: σ 0.01
(0.00)

The table shows the results of the GMM estimation of the mean-variance CAPM, three-
moment CAPM (CAPM2

SK, which considers Skewness in addition to mean and variance),

and the CAPM2
G (CAPM2

GA,LA,SP: complete version of the CAPM2
G, which prices Goal

Achievement, Loss Aversion, and preference for Security/Potential).
Each model is tested on 30 value-weighted portfolios given by the aggregation of size,
book-to-market, and momentum portfolio deciles. Data are at monthly frequency over the
period July 1963-June 2010 (564 observations).
The table shows parameter estimates and the J test of the models’ over-identifying
restrictions (p-values are in parentheses), as well as the measure of each model’s fit—the
Mean Absolute Average Error—defined in equation (32) in section 3.2.
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Moment conditions and econometric methodology are defined in section 3.2. The GMM
weighting matrix is the efficient weighting matrix, equal to the inverse of the covariance
matrix of the moment conditions (obtained with Heteroskedasticity and Autocorrelatation
Consistent (HAC) estimation). The optimization process is run with the Continuously
Updated GMM procedure.
All models satisfy the admissibility conditions defined in section 3.2 (monotonicity, Second
Order Conditions for optimality, non-negative R2, and Hansen-Jagannathan bounds), except
the mean-variance CAPM that does not satisfy monotonicity.

50



Table 3: Models with a Single CAPM2
G Factor

CAPM2
GA CAPM2

LA CAPM2
SP

J test 48.45 46.28 46.40
(0.01) (0.01) (0.01)

MAAE (×10−4) 19.80 18.91 20.76

# parameters 4 4 4

Linear: θ1 1.04 1.14 0.57
(0.00) (0.00) (0.00)

Quadratic: θ2 –8.33 –4.15 –17.05
(0.00) (0.00) (0.00)

Cubic: θ3

Upside Constant: θ+0 0.01
(0.99)

Upside Linear: θ+1 –0.23
(0.97)

Upside Quadratic: θ+2 18.25
(0.99)

Weighting: σ 0.00 0.01 0.00
(0.99) (0.99) (0.99)

The table shows the results obtained by testing models that price only one CAPM2
G

factor: CAPM2
GA prices only Goal Achievement; CAPM2

LA prices only Loss Aversion;

CAPM2
SP prices only preference for Security/Potential. The table shows the results of the

GMM estimation of the moment conditions defined in (27). Test assets and econometric
methodology are the same as in Table 2.
All models satisfy the admissibility conditions defined in section 3.2 (monotonicity, Second
Order Conditions for optimality, non-negative R2, and Hansen-Jagannathan bounds), except

CAPM2
GA that does not satisfy monotonicity.
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Table 4: Models with Two CAPM2
G Factors

CAPM2
GA,LA CAPM2

GA,SP CAPM2
LA,SP

J test 46.28 46.40 30.23
(0.01) (0.01) (0.26)

MAAE (×10−4) 18.91 20.76 10.52

# parameters 5 5 5

Linear: θ1 1.14 0.57 1.11
(0.00) (0.00) (0.00)

Quadratic: θ2 –4.16 –17.05 –13.58
(0.00) (0.00) (0.00)

Cubic: θ3

Upside Constant: θ+0 0.00 0.00
(0.98) (0.99)

Upside Linear: θ+1 –0.23 –0.88
(0.90) (0.00)

Upside Quadratic: θ+2 18.25 16.08
(0.99) (0.00)

Weighting: σ 0.01 0.00 0.01
(0.98) (0.99) (0.23)

The table shows the results obtained by testing models that price two CAPM2
G factors:

CAPM2
GA,LA prices Goal Achievement and Loss Aversion; CAPM2

GA,SP prices Goal Achieve-

ment and preference for Security/Potential; CAPM2
LA,SP prices Loss Aversion and preference

for Security/Potential. The table shows the results of the GMM estimation of the moment
conditions defined in (27). Test assets and econometric methodology are the same as in
Table 2.
All models satisfy the admissibility conditions defined in section 3.2 (monotonicity, Second
Order Conditions for optimality, non-negative R2, and Hansen-Jagannathan bounds).
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Table 6: Models with Preference for Skewness and/or Security/Potential

CAPM2
GA,LA,SP GACAPM2

SK;GA,LA CAPM2
SK;GA,LA,SP

J test 7.75 12.16 7.75
(0.99) (0.98) (0.99)

MAAE (×10−4) 2.73 3.31 2.73

# parameters 6 6 7

Linear: θ1 0.27 1.99 0.18
(0.00) (0.00) (0.00)

Quadratic: θ2 –14.36 –2.33 –15.31
(0.00) (0.00) (0.00)

Cubic: θ3 24.50 0.00
(0.00) (0.99)

Upside Constant: θ+0 0.04 0.02 0.04
(0.00) (0.00) (0.00)

Upside Linear: θ+1 –0.18 –0.72 –0.12
(0.00) (0.00) (0.00)

Upside Quadratic: θ+2 16.53 17.63
(0.00) (0.04)

Weighting: σ 0.01 0.01 0.01
(0.00) (0.00) (0.00)

The table shows the estimation results of models that can price both preference for
Security/Potential and Skewness (CAPM2

SK;GA,LA,SP), or either one of the two factors

(CAPM2
GA,LA,SP and CAPM2

SK;GA,LA). These models are studied to test whether preference
for positive asymmetry is better captured by approximating utility with higher order
polynomials (three-moment CAPM: Skewness) or with asymmetric polynomials (CAPM2

G:
preference for Security/Potential).
The table shows the results of the GMM estimation of the moment conditions defined
in (27). Test assets and econometric methodology are the same as in Table 2.
All models satisfy the admissibility conditions defined in section 3.2 (monotonicity, Second
Order Conditions for optimality, non-negative R2, and Hansen-Jagannathan bounds).
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Table 7: Models including Size, Value, and Momentum Factors

CAPM GA,LACAPM2
SK CAPM2

GA,LA,SP

J test 37.83 35.81 7.08
(0.06) (0.07) (0.99)

MAAE (×10−4) 9.31 7.06 2.73

# parameters 5 6 9

Linear: θ1 1.07 0.89 0.34
(0.00) (0.00) (0.01)

Quadratic: θ2 –5.29 –9.04 –12.96
(0.00) (0.00) (0.00)

Cubic: θ3 69.80
(0.18)

Upside Constant: θ+0 0.03
(0.00)

Upside Linear: θ+1 –0.21
(0.00)

Upside Quadratic: θ+2 15.88
(0.00)

Weighting: σ 0.01
(0.00)

Size –3.55 –2.21 –0.87
(0.01) (0.00) (0.77)

Value –4.55 –7.09 –0.00
(0.00) (0.00) (0.99)

Momentum –2.47 –3.12 –0.00
(0.00) (0.01) (0.99)

Joint Significance of Size, Value, and Momentum Factors

χ2 difference test 12.64 10.78 0.61
(0.01) (0.01) (0.89)
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The table shows the estimation results of models that are extended to include size, value,
and momentum factors. The table shows the results of the GMM estimation of moment
conditions defined in (27). Test assets and econometric methodology are the same as in
Table 2.
The table also shows the results of the χ2 difference test for the joint significance of size,
value, and momentum factors (with p-values in parentheses). The difference tests are
obtained by comparing the J test values of table 2 with the the J test values of table 7.
A low value of the difference test implies that size, value, and momentum factors are not
jointly significant. The test has three degrees of freedom.
All models satisfy the admissibility conditions defined in section 3.2 (monotonicity, Second
Order Conditions for optimality, non-negative R2, and Hansen-Jagannathan bounds), except
the mean-variance CAPM that does not satisfy monotonicity.
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Table 8: Robustness, Testing the CAPM2
G on 25 Size and Book-to-Market

Portfolios

CAPM GA,LACAPM2
SK CAPM2

GA,LA,SP

J test 49.53 46.93 7.96
(0.00) (0.00) (0.99)

MAAE (×10−4) 29.16 29.26 3.69

# parameters 2 3 6

Linear: θ1 1.06 0.99 0.63
(0.00) (0.00) (0.00)

Quadratic: θ2 –9.60 –5.90 –9.40
(0.00) (0.00) (0.00)

Cubic: θ3 8.30
(0.99)

Upside Constant: θ+0 0.02
(0.00)

Upside Linear: θ+1 –0.38
(0.00)

Upside Quadratic: θ+2 12.42
(0.00)

Weighting: σ 0.01
(0.00)

The table shows the results of the GMM estimation of moment conditions defined in (27).
Econometric methodology and models under analysis are the same as in Table 2. The
test assets are the 25 double sorted Size and Book-to-Market (value-weighted) portfolios.
Data are at monthly frequency over the period July 1963-June 2010 (564 observations).
All models satisfy the admissibility conditions defined in section 3.2 (monotonicity, Second
Order Conditions for optimality, nonnegative R2, and Hansen-Jagannathan bounds), except
the standard mean-variance CAPM that doesn’t satisfy monotonicity.
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Table 9: Robustness, Testing the CAPM2
G on 12 Portfolios (Six Size and

Book-to-Market, Six Size and Momentum)

CAPM GA,LACAPM2
SK CAPM2

GA,LA,SP

J test 70.87 55.42 6.81
(0.00) (0.00) (0.45)

MAAE (×10−4) 28.03 28.20 3.07

# parameters 2 3 6

Linear: θ1 1.05 0.83 0.25
(0.00) (0.00) (0.00)

Quadratic: θ2 –9.55 –9.33 –13.84
(0.00) (0.00) (0.00)

Cubic: θ3 62.57
(0.99)

Upside Constant: θ+0 0.03
(0.00)

Upside Linear: θ+1 –0.16
(0.00)

Upside Quadratic: θ+2 17.83
(0.00)

Weighting: σ 0.01
(0.00)

The table shows the results of the GMM estimation of moment conditions defined in (27).
Econometric methodology and models under analysis are the same as in Table 2. The test
assets are the six double sorted size and book-to-market (value-weighted) portfolios, plus
the six double sorted size and momentum (value-weighted) portfolios. Data are at monthly
frequency over the period July 1963-June 2010 (564 observations). All models satisfy the
admissibility conditions defined in section 3.2 (monotonicity, Second Order Conditions
for optimality, nonnegative R2, and Hansen-Jagannathan bounds), except the standard
mean-variance CAPM that doesn’t satisfy monotonicity.
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Table 10: Robustness, Testing the CAPM2
G on 48 Industry Portfolios

CAPM GA,LACAPM2
SK CAPM2

GA,LA,SP

J test 51.88 51.27 15.47
(0.29) (0.27) (0.99)

MAAE (×10−4) 18.19 18.42 6.43

# parameters 2 3 6

Linear: θ1 1.07 0.99 1.03
(0.00) (0.00) (0.00)

Quadratic: θ2 –10.82 –6.74 –4.19
(0.00) (0.00) (0.00)

Cubic: θ3 15.57
(0.99)

Upside Constant: θ+0 0.01
(0.00)

Upside Linear: θ+1 –0.53
(0.00)

Upside Quadratic: θ+2 6.08
(0.00)

Weighting: σ 0.01
(0.00)

The table shows the results of the GMM estimation of moment conditions defined in (27).
Econometric methodology and models under analysis are the same as in Table 2. The test
assets are the 48 industries portfolios (value-weighted), which are based on four-digit SIC
code classification. Data are at monthly frequency over the period July 1963-June 2010 (564
observations). All models satisfy the admissibility conditions defined in section 3.2 (mono-
tonicity, Second Order Conditions for optimality, nonnegative R2, and Hansen-Jagannathan
bounds), except the standard mean-variance CAPM that doesn’t satisfy monotonicity.
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Table 11: Out of Sample Results, Portfolio Sorted on CAPM2
G Factors

Sorting on Goal Achievement

α 0.36% 0.31% 0.24%
(2.12) (1.94) (1.36)

βMKT 0.14 0.12
(2.98) (2.35)

βSML 0.22
(2.80)

βHML 0.11
(1.24)

βMOM −0.01
(-0.11)

Sorting on Loss Aversion

α 0.75% 0.32% 1.00%
(1.95) (1.10) (3.78)

βMKT 1.14 0.79
(10.48) (11.12)

βSML 0.56
(5.98)

βHML −0.82
(−6.89)

βMOM −0.43
(−4.04)
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Sorting on Security/Potential

α 1.22% 0.77% 1.46%
(2.82) (2.29) (4.87)

βMKT 1.20 0.77
(11.13) (9.85)

βSML 0.86
(9.09)

βHML −0.89
(−6.33)

βMOM −0.43
(−3.18)

The Table shows the results obtained with zero cost portfolios that take long (short)

positions on securities with the highest (lowest) loadings on the three CAPM2
G fac-

tors: Goal Achievement, Loss Aversion, and preference for Security/Potential (see sec-
tions 4.5 and 2.4). For every zero cost portfolio, the table reports the coefficients of the
following regression (standard errors, in parenthesis, are obtained using Newey-West
autocorrelation consistent estimation):

SORTi,t = αi + βMKT,iMKTt + βSMB,i SMBt + βHML,iHMLt + βMOM,iMOMt + εi,t

Where SORTi,t is the return at time t of the zero cost portfolio i (obtained by sorting

on one of the CAPM2
G factors), MKTt is the return of the market portfolio at time t,

SMBt is the size factor at time t, HMLt is the value factor at time t, and MOMt is
the momentum factor at time t.
Zero cost portfolios are built by following a procedure similar to Fama-French (1992):
every month, all stocks in the cross section are sorted according to their loadings
on each factor (i.e., their covariance with each factor, as defined in section 2.4, over
the previous sixty months). Then, I form ten value weighted portfolios and check
their returns over the next month. Portfolios are rebalanced every month. Zero cost
portfolios are given by the difference of the highest and lowest deciles of every sorting.
The dataset is composed of all common stocks listed on the NYSE, AMEX, and
NASDAQ, with monthly data from July 1963 to June 2010.
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Figure 1: The CAPM2
G

(a) CAPM2
G Utility Function
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(b) CAPM2
G Pricing Kernel
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The graph shows the utility function and the pricing kernel of the CAPM2
G. The utility

function is approximated with the Continuous Asymmetric Polynomial Model defined in (7),
with parameter estimates shown in table 2. The utility function displays:

(i) a positive shift at zero, consistent with Goal Achievement (the importance that investors
attach to the overall probability of obtaining positive portfolio returns);

(ii) a higher slope in the negative domain, consistent with Loss Aversion (losses loom larger
than gains);

(iii) concavity for losses and mild convexity for gains, consistent with preference for Secu-
rity/Potential (downside risk aversion and preference for upside potential).

The corresponding pricing kernel displays (i) a bump around zero, (ii) a higher level in the
negative domain, and (iii) it is decreasing for losses and slightly increasing for gains. As a

consequence, the CAPM2
G predicts higher risk premiums for securities delivering:

(i) lower returns when market returns are close to zero (higher loadings on Goal Achieve-
ment);

(ii) lower average returns during market downturns (higher loadings on Loss Aversion);

(iii) higher covariance with market returns during market downturns and lower covariance
with market returns during rising markets (higher loadings on preference for Secu-
rity/Potential).

As discussed in section 4.1, the CAPM2
G can explain size, value, and momentum anomalies

because small cap, high book-to-market securities, and momentum winners deliver higher
loadings on Goal Achievement, Loss Aversion, and preference for Security/Potential. These
results are consistent with Piccioni (2014), who shows that Goal Achievement, Loss Aversion,
and preference for Security/Potential are also the key factors driving risky choice behavior.
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Figure 2: The CAPM2
G and Goal Achievement

(a) Utility Function with/without θ+0
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(b) Pricing Kernel with/without θ+0
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(c) Utility Function with/without continuity
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(d) Pricing Kernel with/without continuity
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The graph highlights the positive shift of the utility function of the CAPM2
G, and the

corresponding bump of the pricing kernel. The positive shift in utility is obtained by
guaranteeing continuity and by including a positive constant—θ+0 —in the upside component
of the utility function. The solid lines show the utility function and the pricing kernel of the
CAPM2

G. The dotted lines in (a) and (b) show the utility function and the pricing kernel
when we set θ+0 = 0; while the dotted lines in (c) and (d) show the utility function and the
pricing kernel when we use an indicator function to distinguish between gains and losses.
Because of the positive shift of the utility function at zero, marginal utility is high around
zero. Therefore, the CAPM2

G predicts higher risk premiums for securities paying off less
when market portfolio returns are close to zero. This, in turn, implies higher risk premiums
for securities that do not contribute to increase the overall probability of obtaining positive
returns in well-diversified portfolios. As a consequence, the CAPM2

G can price goal seeking
behavior, or Goal Achievement.
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Figure 3: Predicted and Realized Returns

(a) Mean-Variance CAPM
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(b) CAPM2
G
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The graph shows the fit of the mean-variance CAPM and CAPM2
G. A model with a perfect

fit (i.e., a model whose average predicted returns are equal to the realized returns of the
securities under analysis) would display all the dots (predicted returns) lying on the forty five
degree line (realized returns). As shown in Table 2, the Mean Absolute Average Error (the
measure of fit defined in equation (32)) is equal to 19.80 basis points for the mean-variance

CAPM and 2.73 basis points for the CAPM2
G.
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