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The social value of data collections are dramatically enhanced by the broad dissemination of 
research files and the resulting increase in scientific productivity.  Currently, most studies 
are designed with a focus on collecting information that is analytically useful and 
accurate, with little forethought as to how it will be shared.  Both literature and practice 
also presume that disclosure analysis will take place after data collection. But to produce 
public-use data of the highest analytical utility for the largest user group, disclosure risk 
must be considered at the beginning of the research process. Drawing upon economic and 
statistical decision-theoretic frameworks and survey methodology research, this study seeks 
to enhance the scientific productivity of shared research data by describing how disclosure 
risk can be addressed in the earliest stages of research with the formulation of "safe 
designs". Implications for various research costs are also discussed.  
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Introduction 

Between 2000 and 2010, the National Institutes of Health (NIH) and the National Science 

Foundation (NSF) spent $XX billion on social and behavioral science research, with approximately XX% of 

these funds devoted to data collection [ http://report.nih.gov/budget_and_spending/index.aspx ]. The 

social value of a data collection is reflected by the amount of science produced from the analysis of its 

research data files. "Increasingly, NIH and the NSF have become interested in data sharing as a means of 

supporting the scientific process and ensuring the highest return on these investments." [Pienta, Alter, 

and Lyle 2010; p. 1; Need new phrase.] As Pienta, Alter, and Lyle (2010) have found, research data that 

are archived typically generate 2.42 times as many publications as collections solely utilized by the 

original research team (i.e., not shared), controlling for several principal investigator, institutional, and 

grant award characteristics. 

Scientific productivity also depends on the mode under which data are shared (i.e., access 

modality). As a case in point, let us consider the Adolescent Health Survey (ADDHEALTH), a study which 

has disseminated both public-use and restricted data files. Tallying the number of journal articles, 

agency reports, unpublished manuscripts, meeting presentations, and the like (cite ICPSR's database), 

we find that their one public-use file resulted in 4,060 works. In contrast, all of their 18 restricted files 

had resulted in only 19 works.  These simple statistics illustrate the degree to which access modality 

limits a dataset's production of science. Barriers to access stem from real and perceived informational, 

resource, and time constraints associated with acquiring restricted data. Poor publicity, inadequate 

documentation, difficulty of use, user fees, and administrative work associated with contracting, 

compliance offices and institutional review boards help overshadow the heightened analytical value of 

restricted research data (check citation: O'Rourke et. al. 2006). Consequently it is important that 

datasets are constructed with the long-term goals of unlimited access and wide-ranging utility, so that 

http://report.nih.gov/budget_and_spending/index.aspx
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the social value of data collections are better enhanced.      

However most studies are currently designed with a focus on collecting information that is 

analytically useful and accurate, with little forethought as to how it will be shared.  Both literature 

and practice also presume that disclosure analysis will take place after data collection. But to 

produce public-use data of the highest analytical utility for the largest user group, disclosure risk 

must be considered at the beginning of the research process. Statistical methods, as they are applied 

to existing research data, are hard-pressed when it comes to ensuring safe and unlimited access to 

complex microdata with sensitive content (e.g., persons nested within spaces, places, and time 

reporting risky behaviors) comprised of detailed and accurate measures. Yet it is possible that studies 

can be designed and executed in such a way that subject identities are sufficiently obscured so that 

competing goals of data confidentiality, utility, access and cost are optimally met. Drawing upon 

economic and statistical decision-theoretic frameworks and survey methodology research, this study 

seeks to enhance the scientific productivity of shared research data by describing how disclosure risk 

can be addressed in the earliest stages of research with the formulation of "safe designs". 

Implications for various research costs are also discussed.  

 

The Role of "Safe Designs" in a Portfolio Approach to Data Sharing 

Reflecting the concentration of U.S. federal agency efforts, there exists a considerable amount 

of academic and grey literature on the various statistical and technical methods for protecting 

confidential data of research subjects. But as Lane (2007, p. 300) argues: “[However,] focusing on 

confidentiality protection alone is likely to lead to piecemeal approaches and result in outcomes that are 

in the best interest neither of decision-makers nor of society at large. The appropriate approach is to 
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optimize the amount of data access, subject to meeting key confidentiality constraints.” 

Formulating a decision-theoretic framework encompassing a broad range of statistical, 

economic, and social determinants, Lane (2007) casts data custodians in the role of ensuring that the 

societal value to microdata access (U, data utility) meets or exceeds expected societal costs (S), where 

the method in which confidential data are accessed (access modalities, Mi) is an important determinant 

of both.  Since a single modality is likely not meet all sharing needs, a portfolio of releases holds the 

key to the optimal dissemination of a study's data, contingent on a mix of data products that maximizes 

social value and minimizes social cost.  Paraphrasing Lane (2007, pp. 310-311), the value to society (U) 

depends on data quality (Q), researcher quality (R), and the number of times the data are accessed (N).  

On the other hand, the costs to society (S) stems from the harm incurred to individuals and institutions 

should a disclosure occur (H), times the probability of a disclosure (D), plus the monetary cost of 

providing access (C). A host of factors underlie H, D, and C that consist of: the existence and accessibility 

of other data sources used in reidentification (E), existence of malevolent interlopers (I), population 

characteristics (X), researcher error (Z), technology (T), legal penalties (L), training/adoptable protocols 

(P), and the price of providing a certain level of protection (p).   

Lane and her colleagues (Lane, Heus, and Mulcahy 2008) go on to illustrate how 

cyberinfrastructure can be used to implement their portfolio approach by addressing the five principles 

of “safe projects, safe data, safe people, safe settings, and safe conduct” (citation of presentation or 

particular page of Lane, et.al. 2008). The foundation of this data sharing system rests on remote access 

and the integration of various technical, educational, operational, statistical and legal tools. Following 

established practice and the existing literature, this data sharing approach also presumes that data will 

be processed for disclosure limitation once it has been collected and that emergent confidentiality 

issues are the key constraining factor (Lane 2007). With the ever-growing technological threats to 
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privacy and difficulties with implementing statistical tools, Lane et. al. (2008) focus their discussion on 

how restrictive technologies, legalities, and protocols and accompanying training can help ensure that 

"safe people", within "safe places", have "safe access" to "safe data". While public-use data still plays an 

important role in this system, severe constraints are placed on the production of these preeminent and 

confidentially-formidable data.   

In turn, we expand upon Lane's portfolio approach by incorporating the concept of "safe 

designs".  With the explicit goal of maximizing the utility of public-use files, this principle's foundation 

rests on addressing statistical disclosure risk in the earliest stages of research, where sampling designs 

are specifically formulated to minimize the probability that subjects are reidentified.  As a result, data 

sharing is constrained by the marginal cost associated with supplementing study designs so that 

disclosure risk is sufficiently low.  

As an expository scenario, let us consider the case where a data producer (embarking on a new 

study) has formulated a survey instrument to collect information to be disseminated as microdata, 

where the content of a research data file is of the highest quality (Q) to be used by researchers of a 

particular quality (R). The producer then formulates a safe study design consisting of two components: 

(1) a fundamental sample of sufficient size to meet the study's analytical purposes, as estimated by 

power analyses (Y0); and (2) a supplemental sample that is an expansion of the baseline design 

specifically formulated to minimize disclosure risk (YS).  

The producer must then assess the feasibility of implementing this safe study design (Y0, YS) and 

releasing a predefined set of research data as a public-use file (MP), rather than implementing a 

traditional study design (Y0) and releasing the research data as a restricted-use file (MR).  The selection 

of access modality depends on the relative amount of social value (UP , UR) and social cost (SP , SR).  
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Justification for releasing a public-use file is found when its estimated return-on-investment is greater 

than releasing it as a restricted-use file (Equation 1).   

UP/SP  >  UR/SR    (1) 

Social value is reflected by the number and impact of publications associated with a predefined 

set of research data accessed through a particular modality (UP , UR) (citations from Pienta, Alter, and 

Lyle 2010). Continuing with our scenario, the producer expects that the social value of public-use data is 

a consequence of the relatively higher number of times these data are accessed, as compared to 

disseminating them through a restrictive modality (NP > NR ; holding constant Q and R).   

With this done, the producer turns to the work of estimating the social cost associated with 

each access modality (SP , SR).  Building on Lane's definition of social and monetary cost (Equations 2 

and 3) and an associated constraint (Equation 4), we formulate Equations 5 and 6 for purposes of a 

feasibility study. 

S = HD + C      (2) 

C = ptT + ∑ Mi pAiMi     (3) 

S - C - HD* < 0     (4) 

pA = f (pS , pD)     (5) 

[UP / (pS|P + pD|P)]  >  [UR / pD|R]    (6) 

Given a predefined set of research data, the producer stipulates the same sensitive content for 

public-use and restricted data releases.  Consequently, the harm associated with disclosing this 

information (HP = HR) is held constant across access modality. The producer then determines the 
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conditions under which data can be safely disseminated through each access mode, defined as the 

target risk of disclosure (D*).  As Lane (2007, p. 310) describes: "The probability of disclosure is 

typically set at a 'target' level: since most agencies are charged with using reasonable means to protect 

data, this implicitly means setting reidentification risk to some fixed number." This safety limit reflects 

concerns about the degree to which researcher error (Z) may provide opportunities for existing 

malevolent intruders (I) to acquire research data (M) and associate it with other extant data (E) so as to 

heighten the probability of reidentifying study subjects (D). For purposes of our discussion, we assume 

that the data producer seeks to lower the probability of reidentification to the same "negligible" level 

for both public-use and restricted data (D*P = D*R ~ 0). The ability to meet these safety standards is 

contingent on the monetary cost of providing access (C), as defined by resources devoted to minimizing 

the probability of disclosure (D) such that D < D* (Equation 4).  

Having set these parameters, the data producer begins his/her feasibility assessment by 

estimating the amount of disclosure risk (D0) associated with fundamental and safe study designs (Y0, 

YS).  Next the producer assesses the degree to which different survey and dissemination activities 

lowers disclosure risk, compiling estimates of disclosure risk (D) and monetary costs (C) associated with 

alternative modalities.  Bringing together these disclosure and cost estimates, producers can better 

assess the value added for different expenditures (Lane 2007). 

In Equation 3, Lane defines two dimensions of monetary cost as they relate to: (1) a preexisting 

menu of technologies and institutional supports used in data sharing (ptT) and (2) the provision of "a 

certain level of protection" for each access modality (piAMi). But to ascertain the benefits of addressing 

data confidentiality in the earliest stages of research, it is necessary to fully articulate monetary costs for 

data collection activities that strictly enhance data sharing (pS) as well as data dissemination activities 
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(pD).  For purposes of a feasibility assessment, we formulate Equation 5 where the monetary cost of 

public and restricted access modalities (pA) is a function of pS and pD, where the expense of data 

custodian infrastructures (ptT) and the preemptive disclosure review of a fundamental sampling design 

and its actual data collection (p0) are considered sunken costs that are exogenous to feasibility decisions 

and therefore are set to 0.  

We also assume restricted access precludes the need for a safe design (pS|R = 0), where 

producers follow the established practice of conducting disclosure analysis later in the data lifecycle 

along with implementing a refined set of technical, educational, operational, statistical and legal tools 

(pD|R).  In contrast, the public release of research data requires that a responsive survey design be 

formulated and implemented (pS|P); and that an ex post disclosure review also be executed to reveal 

confidentiality shortcomings that are subsequently addressed (pD|P). Having outlined our "safe design" 

approach to data sharing and bringing all decision-making factors together in Equation 6, we now turn 

to the data confidentiality and survey research literatures to describe different data collection and 

dissemination activities associated with implementing safe designs (as compared to those traditionally 

used), revealing trade-offs in monetary cost.    

 

The Implementation of "Safe Designs" 

The literature on statistical disclosure control (SDC) has assessed how different study design 

factors (implemented at data collection) effect reidentification, among these are: (1) the absolute size of 

the study population, as defined by known geographic boundaries; and (2) the sampling rates of the 

study population.38-40  Holding constant these two study design elements, researchers have also 

assessed how disclosure risk is shaped by database design factors (considered just prior to 
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dissemination), particularly: (3) the types of identifying personal characteristics of subjects (e.g., age, 

gender, race/ethnicity) and directly identified geographic locations (e.g., state, zip code); and (4) the 

application of various disclosure limitation methods (DLMs).41-42 Finally, researchers have investigated 

how different DLMs affect the analytical utility of research data and the ability to broadly disseminate 

these files.43-44  These studies often state that restricted access modes are the only methods for 

retaining the analytical utility of anonymized data, in that not much more can be done since data 

collection has been completed.45   

In conducting a feasibility assessment in lieu of a data collection, this belief may be refuted by 

flipping various empirical assumptions on their head.  Like SDC research, research informing safe 

designs assumes: (1) a study population that is sampled at a rate meeting fundamental analytical 

purposes; and (2) a survey design that gathers a complexity of data where individuals are nested within 

space, place, and time.  But unlike SDC's assessments of how risk varies with database design 

parameters, we assume a single predefined wish list of attributes, comprised of a data release whose 

informational content is of the highest analytical utility as defined by numerous detailed measures that 

are unperturbed. But what is allowed to vary is the supplementing of data collection efforts to meet 

articulated data sharing goals. Activities performed in the design and implementation of safe design can 

usurp or negate those required for sharing restricted-use file, enhancing the social value of research 

data by shifting the monetary costs for data sharing from the end of the data cycle to its beginning. 

 

 Before and During Collection: Circumventing Disclosure Risk 

A priori knowledge of disclosure factors – specifically the number and composition of 

respondents who are at-risk of reidentification – allows data producers to responsively modify their 

study design, such that data collection efforts are extended to meet pre-specified disclosure goals. As 
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Groves and Heeringa 54 (p. 440) discuss, producers formulate responsive study designs by: (1) 

preidentifying design features potentially affecting costs and errors of survey estimates; (2) 

identifying indicators of cost and error properties of these features and monitor indicators in initial 

phases of data collection; (3) altering survey features in subsequent phases based on cost-error 

trade-off decision rules; and (4) combining data from separate design phases into single estimator.    

Data producers capitalize on large amounts of information about how well their survey efforts are 

meeting data collection goals (i.e., paradata), particularly as it relates to statistical inference and cost 

efficiencies. We build upon this survey methodology by conceptually integrating disclosure risk into 

responsive study designs, suggesting empirical data that can be used in their formulation.  

 Studies with the highest social value tend to be those that gather sensitive information from 

respondents. Study designs have also increasingly become complex, with geography playing an 

important role in either sampling designs or informational content or both. Consequently we focus our 

discussion on a scenario where a producer wishes to disseminate sensitive microdata containing 

measures of identifying personal characteristics of subjects (e.g., age of respondent) and attributes of 

geographic locations  (e.g., proportion of population in respondent’s neighborhood that is poor) to be 

used in either fixed-effect or hierarchical linear models. Furthermore we consider a disclosure scenario 

that is empirically conservative, where the largest threat to confidentiality is an "acquaintance" intruder 

seeking to pinpoint a known subject's record within a research database.  A subject is considered easily 

reidentified when they are a sample unique, as when k-anonymity (e.g., k=3) is not achieved.32-38 So 

when producing responsive surveys, producers seek to formulate sampling designs that generate sets of 

3 respondents sharing the same identifying personal and geographic attributes, minimizing the number 

of conspicuous subjects.   

 Given this definition of disclosure risk and sampling goal, the first step in constructing a 
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responsive safe design is the preemptive disclosure review of a project's fundamental (or baseline) 

sampling design. Simulated data that mimic a baseline sampling design is required, where the number of 

synthetic records sharing the same identifying attributes is tallied. Predicted estimates of the number 

and composition of sample uniques help define the scope of a study's disclosure issues. 

 These at-risk populations are then targeted in an ex ante modification of the baseline sample 

design. When addressing k-anonymity, producers rely on well-established surveying techniques for 

oversampling,30 where emphasis is placed on locating populations of interest within pre-specified 

geography.  Simulations are again required to estimate the number of additional draws from a 

population that are needed to meet disclosure goals. The spatial dimensions of a sampling design are 

only modified when targeted recruitment becomes exceedingly expensive, where geographies 

resembling those originally surveyed (bounded within primary sampling units) are brought into study in 

hopes of easing enumeration.1 

 Knowing how many people must be targeted for recruitment and locations where sampling 

quotas can best be filled, the last step of formulating a responsive design is estimating the cost 

                                                             
1 The decisions underlying the modification of geography samples take a different form when addressing the 

disclosure risk associated with "stranger" intruders and population reidentification probabilities. In this case, the 

intruder is searching for an unfamiliar study subject within the general population, where a respondent is 

considered easily reidentified when there are a limited number of look-alike persons within a known location. For 

instance, geographies with populations of 100,000 or more are typically identified in microdata files (such as the 

Current Population Survey) because of the rare chance that the sample will contain a population unique. Unlike 

the approach to k-anonymity, producers are not particularly concerned that a respondent stands out among other 

study subjects (i.e., sample unique).  Instead, disclosure risk is reduced by the amassing of populations dispersed 

across geographic units sharing the same contextual attributes (Witkowski citation), where the scope of study 

(e.g., known state) and the areal size of geographies (i.e., counties, tracts, blockgroups, pixels) are defining 

features of the intruder search.  Consequently the formulation of safe designs relies on radical changes to a 

sampling design, particularly as it relates to expanding the number of geographic-based primarily sampling units 

and/or the spatial scale of contexts. For instance, data collections that characterize a sample of blocks drawn from 

a single, publicized site are likely to face formidable disclosure issues. An alternative safe design would be to 

sample tracts drawn from a large number of sites whose identities have been concealed.   
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associated with its enactment (pS|P). Supplemental sampling will be relatively expensive since 

hard-to-count, precisely-defined populations are the target of safe designs. Therefore producers will be 

particularly concerned with improving the efficiency of survey efforts, where methods will likely include 

the use of administrative data, refined screening techniques, and on-the-fly disclosure review during 

data collection [Need citations].   

 

 After Collection: Ensuring Data are Safely Disseminated 

 Once data have been collected, producers must conduct an ex post disclosure review to reveal 

any confidentiality shortcomings. If necessary, additional statistical protections are then applied to the 

research data, with a final review verifying that they can be safely released though a particular access 

modality.  

 When enacting safe designs, much of this disclosure work has occurred in the early phases of 

research. Simulations predict confidentiality problems that are subsequently addressed in supplemental 

surveying efforts.  On-the-fly disclosure review also provides a large part of the information gleaned 

from ex post reviews. If all goes well, any remaining disclosure risk should be minimal and can be readily 

addressed through statistical means, where a public-use file can be subsequently released with little 

additional expense (pD|P ~ 0).  But when a study is enacted without regard to data sharing outcomes, 

the monetary cost of this disclosure work is accrued late in the data lifecycle (pD|R > 0). This expense is 

likely lowered by efficiencies gained from performing a preemptive disclosure review of the study's 

fundamental study design (Y0), where predicted findings are used to guide ex post processing of 

restricted data. Hence the value of this early work is retained, justifying a safe design approach 

regardless of whether it is fully implemented. 
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 With this disclosure work completed, the producer then engages a variety of technical, 

educational, operational and legal tools so that any remaining disclosure problems can be circumvented 

and a product can be safely shared via restricted access (pD|R > 0, pD|P = 0) (Lane, et. al. 2008). 4  

[FOOTNOTE:  None of these costs exists for the public-use modality, since all previous collection and 

statistical work have rendered these data safe.]   In so doing, the producer will likely rely on 

established infrastructures to provide non-statistical techniques, whose developmental costs have long 

been incurred or are being absorbed by the larger scientific enterprise. Consequently a producer is 

primarily concerned with expenses stemming from (1) maintaining and expanding the capacity of a 

restrictive mode; (2) meeting its compliance standards; and (3) training data users about how 

compliance goals can be effectively and efficiently met. When assessing the trade-offs in social cost 

between access modes, producers must bear in mind that these expenses are a function of the intensity 

and duration of a modality's use and, therefore, are directly related to its social value. 

 For restricted-use agreements, mode capacity is contingent on the ability to efficiently negotiate 

and process material transfer agreements, where compliance is defined by data-usage rules stipulated 

in contracts and is enforced by monitoring and/or legal sanctions. For a virtual data enclave (VDE), mode 

capacity is contingent on cybertechnologies that limit disclosure risk while supporting a complexity of 

analyses, where compliance is defined by the confidentiality of research findings extracted from the VDE 

and is enforced by their disclosure review. Training reduces the expense of compliance by teaching 

researchers the importance of protecting confidential data and how they can most effectively meet 

compliance goals (Lane, et. al 2008). The selection of restricted access modes depends on the sensitivity 

of a study's content (or harm, H) and the residual probability of disclosure (DR) after statistical 

techniques have been applied to render data of a particular analytical quality (Q).  With H and Q held 

constant, data of the highest DR are typically disseminated through a VDE, while those having a 
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sufficiently low DR are accessed through licensing agreements. 

 Now that a file is ready for dissemination and a modality has been chosen, the producer must 

make a formal announcement of the existence of a data product, its scientific value and how it can 

be acquired; thereby enhancing the social value of a product by increasing the likelihood of it being 

accessed and analyzed. Publicizing activities include producing a website and promotional materials 

for distribution through various venues (i.e., electronic announcements, conferences) as well as 

assigning staff to answer questions from would-be and actual users.   

 When estimating the expense of publicizing, it is important to consider the release order of a 

product as well as its trajectory of data usage.  For studies releasing their first data set, a producer is 

likely to devote significant resources launching their flagship product, with initial expenditures 

varying little between access modality. Subsequent releases are likely to be free riders, piggybacking  

on flagship dissemination tools.  This is especially true for restricted files since relatively little social 

value will accrue from a new launch (pD|R < pD|P).  For purposes of our feasibility assessment, we have 

assumed that a data product is the first of a study, where this expense is mode invariant and set to zero 

(pD|R = pD|P = 0). 

 The number of times a data file is accessed typically tapers off over time.  When access 

bottoms out and the benefits of publicizing a dataset are null, it is logical that these expenditures are 

curtailed. Restricted-use files will likely experience lower absolute levels and faster declines in access 

activity (as compared to public-use files of the same data utility), resulting in the abbreviation of 

supports and lowered publicity costs (PD|R < PD|P). 

 Finally, producers need to consider the cost of archival activities (Lane, et. al. 2008) that 

support data sharing by helping users to: (1) locate a study's research data (e.g., metadata, 

measurement identification, cross-referencing in bibliographies and data listings); (2) correctly 
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analyze its data (e.g., codebooks and study documentation); and (3) utilize its preserved data (e.g., 

upgrading of formats).  These expenses increase with the amount and complexity of research data. 

But when conducting a feasibility assessment for a predefined set of data (where file content is held 

constant),  costs of searchability and usability enhancements and preservation are assumed not to 

vary with access modality; and consequently these expenses are set to zero (pD|R = pD|P = 0).   

 We have just described the monetary costs associated with specific project's safe design 

approach.  However some of this expense can be reduced with expanding the data sharing 

infrastructure (ptT).  

 

In Support of "Safe Designs":  A Call for Applied Research 

 As Lane, et. al. (2008, p. XXX) argue:  "a major challenge to the data privacy community is 

developing disclosure limitation techniques that are flexible enough to be used in a wide variety of 

situations" (GET EXACT QUOTE). The "safe design" approach is such a technique, given its potential to 

circumvent a wide range of k-anonymity confidentiality problems by addressing disclosure risk in the 

design of samples.  

 Safe designs maximize the social value of research data by eradicating the need to use 

analytically-devaluating statistical techniques and restrictive access modalities. However the heightened 

productivity of these research data comes at a price as determined by five research activities: (1) 

preemptive disclosure review of a fundamental design; (2) estimation of monetary costs for a 

supplemental survey, statistical disclosure processing, restricted access, publicizing, and archival; (3) 

construction of supplemental survey plan; and (4) implementation of supplemental survey.  These 

research demands can be an inordinate burden to data producers since the planning and 
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implementation of safe designs requires highly-specialized knowledge in the realms of statistical 

disclosure limitation methods, access modality costs, and survey research. Therefore, if the safe design 

approach is to be a viable disclosure limitation technique, it is imperative that applied science be 

conducted to inform all of these activities. 

  When looking for project financing, producers must be able to efficiently and accurately 

predict the resource needs of their safe designs, justifying these expenditures to would-be funders. The 

design and budgeting of projects (under unbillable resource constraints) is best informed by research 

that generates estimates of disclosure risk, data utility, and monetary costs for a variety of stylized 

prototypes (characterized by access modality, population of interest, complex design, sampling rate, 

sensitivity of content, geographic specificity, identifying variables) for use by the broader scientific 

community.  Producers can search among these metadata to identify study/database designs and 

access modes that best address their project needs, extracting estimates which can then be used for 

planning and budgetary purposes. These simulated meta data represent a complexity of guidelines that 

take into account all aspects of the data sharing process, where rules-of-thumb are likely to emerge as 

knowledge evolves from this "multifaceted approach" (term coined by Lane 2007). 

 The foundation of this method rests on small area estimates of detailed study populations that 

allow for the accurate prediction of disclosure risk (D) and utility (Q) outcomes for varying design 

parameters. This method also builds upon expenditure data reported by survey researchers and 

archivists, where detailed cost information (C) is gathered on various data collection, dissemination, and 

archival activities. To round out the picture, this method would benefit from incorporating typological 

estimates of the number of times accessed and the number of works produced, two measures that 

capture a study's social value (S), based on observation data compiled from the administrative systems 

of custodians. Lastly, an assessment of predicted data sharing outcomes is necessary so that modeling 
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inaccuracies can be identified and rectified.  

 This applied research directly addresses the first two research tasks of safe designs, that of the 

preemptive disclosure review and monetary cost estimation. Taking this work a step further, models 

predicting disclosure risk can also be extended to the third research task, the construction of a 

supplemental survey plan. Derived from sampling designs for stylized or actual studies, detailed 

simulated data can be formulated to guide the selection of survey sites so that recruitment goals are 

efficiently met.  In sum, this applied research has the potential for generating significant efficiencies, 

representing a key infrastructural support for data producers wishing to adopt a safe design approach. 
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