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In Satellite applications, modeling is extremely important in order to predict behavior 
during launch and in orbit. Today detailed finite element models of satellites are accurate 
and agree well with experimental data. However once the satellites are hung with cable 
harnesses, the ability to model the system dynamics has eluded modeling engineers. Here we 
investigate in a simple way the effects of adding cables to a simple structure with the goal of 
developing an understanding of the physics of cables interacting with a structure. In this 
paper, we present Spectral Element Method (SEM) approach to accomplish the modeling of 
cable harnessed structure. The cable harnessed structure is considered as a double beam 
system with both beams connected by spring at specific locations to emulate the effect of 
attaching cables to the satellite structure. First, the SEM is applied and compared with the 
conventional FEM. Based on the exact solutions of the governing equation of the element, 
SEM has much better accuracy in higher frequencies. SEM shows the extremely high 
accuracy with minimum number of DOFs. Next, the validation of SEM approach was 
conducted by using comparison with experimental measurement. Last, the changes of 
damping matrices were investigated to obtain the effect on the damping due to attaching the 
cable bundles. 

I. Introduction 
o obtain the predictive and accurate modeling of a cable harnessed structure. A cable harnessed structure is 
simplified and considered as a double beam system to emulate the effect of attaching cables to the structure. The 

response of single beam has an exact solution, which can be obtained in various ways [1]. However, when a 
secondary beam is attached to the main beam by means of several spring connections, obtaining the solution of 
system becomes more complicated. Several authors have investigated double-beam systems elastically combined by 
a distributed spring in parallel. Seelig and Hoppman II [2], worked out the solution of differential equation of 
elastically connect parallel beams. Gürgöze [3], [4] dealt with the derivation of the frequency equation of a clamped-
free Euler Bernoulli beam with several spring-mass systems attached in mid of span by means of the Lagrange 
multipliers method. Vu [5] presented an exact method for the vibration of a double-beam system subject to harmonic 
excitation. The system consists of a main beam with an applied force, and an auxiliary beam, with a distributed 
spring k and damper c in parallel between the two beams. Wu and Whittaker [6] considered the beam connected 
with two degrees-of-freedom systems at specific locations.  

An important problem is to determine the best way to model the connection between the two beams (called cable 
ties in the literature) To find the cable properties and proper modeling, Coombs [7] conducted the experiments and 
showed that the Timoshenko beam theory was most appropriate for modeling cables.  

Rao [8] considered the free response of several Timoshenko beam systems.  Doyle [9] and Lee [10] present 
excellent texts on the spectral element method. Doyle introduced the basic formulation of spectral element matrix by 
using an Euler-Bernoulli beam. Lee summarized the various ways to derive the spectral element matrix for structural 
elements such as Euler beam, Timoshenko beam and plate. Lee also presented several practical applications of SEM. 
Many authors have used the dynamic stiffness approach to modeling, which is very closely related to the SEM 
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approach. Banerjee [11] and Chen [12] used the dynamic stiffness matrix for the beam with attached two DOF 
systems. Li and Hua [13], [14] considered elastically connected two and three parallel beams by using dynamic 
stiffness analysis. Jiao et al [15] investigated the Euler beam with an arbitrary cross section.  

This paper is organized as follows. In Section II, the simplified model of a cable harnessed structure is 
introduced. In Section III, the Spectral Element Method for a single beam is introduced. And its validation is 
performed with numerical model and experiment. Once validated, the SEM approach has extended to double beam 
system. In section IV, The cable attachment is considered as a beam to simplify the material properties of cable 
bundles. The numerical analysis is conducted and the experiment with the real double beam system is presented. The 
FRF measurement data is compared with those of SEM. Through section III, IV, Through the SEM approach, we 
can obtain an accurate result with a minimum number of DOFs. In addition, this approach may be considered as a 
numerically “exact” solution because the SEM is based on the exact solutions of the governing differential equation 
of the element.  

Lee [16], [17] presented the experimental method to identify the damping matrices. In section V, the change of 
damping matrices was investigated, which reveals the effect on the damping due to adding a cable bundles. Closing 
remarks and future perspectives are briefly outlined in Section VI.  
 

II. Description of the Model 
A simplified model of a cable harnessed structure is shown in Figure 1. The main structure is modeled as a beam 

with rectangular cross section. The cable attachment is treated as a circular beam. The interconnections between 
beams can be defined by means of their location and their spring constants. By utilizing this model, the SEM for a 
combined system will be validated and compared with the FEM results.  

 

 

III. Spectral Element Method for Timoshenko Beam 

A. Formulation 
The equation of motion of the Timoshenko beam can be expresses as 
 

	
  
 

κGA ′′w − ′θ( )− ρA w = 0

EI ′′θ +κGA ′w −θ( )− ρI θ = 0
 (1)	
  

 
where w and θ are the transverse deflection and the slope respectively. The solutions of equation (1) in 
spectral form are: 

 

	
  
  
w x,t( ) = 1

N
Wn x( )eiωnt

n=0

N−1

∑ , θ x,t( ) = 1
N

Θn x( )eiωnt

n=0

N−1

∑
 
	
   (2)	
  

 
And the spatial solution W x( )  and Θ x( )  can be written as 
 

 
Figure 1. The model of a cable harnessed structure 
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W x( ) = a1e− jβ1x + a2e− jβ2x + a3e− jβ3x + a4e− jβ4x

Θ x( ) = a1b1e− jβ1x + a2b2e− jβ2x + a3b3e− jβ3x + a4b4e− jβ4x
	
   (3)	
  

 
Substituting equation (2), (3) into (1) yields the relation between b and β  to be 
 

	
  
κGAβi

2 − ρAω 2 − jκGAβi

jκGAβi EIβi
2 +κGA − ρIω 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
bi

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0

0
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

i = 1,2,3,4( ) 	
   (4)	
  

 
The nodal displacement and slope at both ends can be expressed by 
 

	
   d{ } =

W 0( )
Θ 0( )
W L( )
Θ L( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

=

1 1 1 1
b1 b2 b3 b4

e− jβ1L e− jβ2L e− jβ3L e− jβ4L

b1e
− jβ1L b2e

− jβ2L b3e
− jβ3L b4e

− jβ4L

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

a{ } = D ω( )⎡⎣ ⎤⎦ a{ } 	
   (5)	
  

 

where a{ } = A B C D⎡⎣ ⎤⎦
T

. The shear force and moments are V x,t( ) =κGA ′W x( )−Θ x( )( )  

and M x,t( ) = EI x( ) ′Θ x( ) . Thus the transverse shear force and bending moments at the nodal points are given by 
 

	
  
f{ } =

−V 0( )
−M 0( )
V L( )
M L( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

=

−κGA b1 − jβ1( ) −κGA b2 − jβ2( ) −κGA b3 − jβ3( ) −κGA b4 − jβ4( )
jEIβ1b1 jEIβ2b2 jEIβ3b3 jEIβ4b4

κGA b1 − jβ1( )e− jβ1L κGA b2 − jβ2( )e− jβ2L κGA b3 − jβ3( )e− jβ3L κGA b4 − jβ4( )e− jβ4L
jEIβ1b1e

− jβ1L jEIβ2b2e
− jβ2L jEIβ3b3e

− jβ3L jEIβ4b4e
− jβ4L

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

a{ }

= F ω( )⎡⎣ ⎤⎦ a{ }

	
  
(6)	
  

 
By means of equation (6), the spectral element matrix of the Timoshenko beam can be obtained. By following 

the same procedure, the spectral element matrix for Euler-Bernoulli beam can also be obtained. 

B. Numerical Analysis 
The conventional FEM and spectral beam elements will be compared using a simple example to validate the 

efficiency of the SEM. Previous research has focused on the clamped-free or simply supported case. Here we are 
concerned with the free vibration of free-free beam, which is analyzed using both types of elements. The material 
used in the example is aluminum with elastic modulus of 7 ×1010 N m2  and density of 2700 kg m3 . The 
dimensions of beam are 1.2192 × 0.0254 × 0.003175 m( ) . From the characteristic equation of free-free beam 
[1], cos βL( )cosh βL( ) = 1 , the exact natural frequencies are calculated. And the root-finding algorithms [18] are 
used to find the ω n  in SEM. 
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   Table 1. Natural frequencies (Hz) of exact solution, SEM and FEM 

Mode ω exact  ω spec.  
ω FEM (10) ω FEM (30) ω FEM (50) 

1 
2 
3 
4 
5 
6 
7 
8 

0 
11.1794 
30.8165 
60.4127 
99.8654 

149.5272 
208.3612 
277.4040 

0 
11.1794 
30.8165 
60.4127 
99.8654 

149.1817 
208.3612 
277.4040 

0.00001 
11.1798 
30.8242 
60.4683 

100.1052 
149.9387 
210.2857 
281.5237 

0.00009 
11.1794 
30.8166         
60.4135          
99.8687          

149.1928           
208.3915          
277.4749 

0.0002 
11.1794 
30.8165          
60.4128          
99.8658 

149.1831 
208.3652 
277.4134 

 
The natural frequencies of free-free beam are compared in Table 1. The SEM results are identical to the exact 

solution. As the number of elements is increased the FEM results go closer to the SEM results and the exact 
solution. In Figure 2, FEM use 50 Element and SEM use only one element.  Both results show good agreement. 
Considering the high frequency range, the more elements are necessary to obtain the good results in the FEM. This 
means that SEM can predict the dynamics of a system with minimum number of D.O.Fs. 

C. Experimental Validation 
To validate the accuracy of SEM, The Frequency Response Function (FRF) was measured with experimental 

setup as shown in Figure 3. The experiment was conducted by using PCB impact hammer, Polytec Laser vibrometer 
and its controller, and RT pro measurement software. The test specimen is 34-inch long Al beam with the cross 
section of 1-inch width and 1/8 inch thickness. The material properties of specimen are shown in Table 2. The FRFs 
were measured at total 9 points. 
 

Table 2. Material properties of Al single beam 
 L (m) A (m2) I (m4) E (GPa) G (GPa) ρ (kg/m3) κ  

Al Beam 0.8636 8.0645e-05 6.7746e-11 70 46 2700 0.889 

 
Figure 2. Comparison of FEM (blue dot) and SEM (red) 
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Figure 4 shows the FRF from the measurement data and Spectral Element method. The peaks present the natural 
frequency of the experiments and analytical model. Both results show good agreements. We can conclude that the 
SEM can present the accuracy results.  

IV. Spectral Element Method for a Combined System 

A. Formulation 
In many papers ([2], [5], [8], [13], [14]), a double beam was considered such that two beams are connected with 

numerous distributed springs. However, Author [19] has presented the SEM approach to define the specific 
locations at that the connections exist. The effect of number of connections and the stiffness of connection has also 
been investigated by numerical analysis. Through the definition of locations of interconnections, the simplified 
model can reflect the real structure more realistically. Figure 5 illustrates the specific connection points. A specific 
set of locations are defined in or that the effect of the number and locations of connection can be identified and 
studied. 

 

 
Figure 3. Experimental configuration 

 

 
Figure 4. FRF from measurement (blue) and SEM (red bold) 
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After obtaining the spectral element matrix from equation (6), we can assemble elements to generate the global 
spectral matrix. And we apply the boundary conditions to the global system. The global system can be expressed by 

 
	
   Sg⎡⎣ ⎤⎦ dg{ } = fg{ } 	
   (7)	
  

 
Considering the double beam system in Figure 5, each beam is 2N D.O.F. system where N is total number of 

nodes. And the spring connection exists between ith nodes of beam 1 and 2. For beam 1 and 2, we can formulate the 
global stiffness matrix by means of equation (7). From the relation between nodal displacement and force, the 
combined global stiffness matrix without the spring connections is 

 

	
   	
  
Sg,1 0

0 Sg,2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dg,1{ }
dg,2{ }

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

fg,1{ }
fg,2{ }

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	
   (8)	
  

 
where  

 

	
   	
  

 

dg,1{ } = W1,1 Θ1,1  Wi,1 Θi,1  WN ,1 ΘN ,1
⎡
⎣

⎤
⎦
T

dg,2{ } = W1,2 Θ1,2  Wi,2 Θi,2  WN ,2 ΘN ,2
⎡
⎣

⎤
⎦
T

fg,1{ } = V1,1 M1,1  Vi,1 Mi,1  VN ,1 MN ,1
⎡
⎣

⎤
⎦
T

fg,2{ } = V1,2 M1,2  Vi,2 Mi,2  VN ,2 MN ,2
⎡
⎣

⎤
⎦
T

	
   (9)	
  

 
The global stiffness matrix of each beam, Sg,1  and Sg,2 , are 2N×2N matrices and the global displacement and 

force vector dg,1, dg,2 , fg,1  and fg,2  are 2N×1 vectors. The force fi  between the ith nodes of beam 1 and beam 2 due 
to the spring connection, fi is  

 
	
   	
   fi = k(Wi,1 −Wi,2 ) 	
   (10)	
  

 
Considering the relation of force and displacement, the total combined system can be expressed as 
 

	
   	
  
Sg,1⎡⎣ ⎤⎦ dg,1{ }+ fi

i=1

p

∑ = fg,1{ }

Sg,2⎡⎣ ⎤⎦ dg,2{ }− fi
i=1

p

∑ = fg,2{ }
	
   (11)	
  

 

 
Figure 5. Double Beam Model 
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where p is the total number of connections. Let { Li } denote a locator vector defining the location of the ith 
connector. The vector { Li } is 4N×1 vector correspondent with [dg, 1 dg, 2 ]

T . The 2i-1th component of { Li } is 1 and 
the 2N+2i-1th component of { Li } is -1 and the remainders are zero. 

 

	
   	
  
Sg,1 0

0 Sg,2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

dg,1
dg,2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ k Li{ } Li{ }T

i=1

p

∑
dg,1
dg,2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

fg,1
fg,2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
	
   (12)	
  

 
Owing to usage of the exact dynamic stiffness matrix to formulate the spectral element matrix, we can solve 

exactly for the system characteristics with a minimum number of element matrices. Now, we can calculate the 
natural frequencies by solving the eigenvalue problem for spectral element model given by 

 
	
   Sg⎡⎣ ⎤⎦ dg{ } = 0 	
   (13)	
  

 
Similar to the regular eigenvalue problem, setting the determinant of the global spectral matrix [Sg] to zero, 

det(Sg (ω n )) = 0 , yields the natural frequencies ω n . However, the spectral element matrix consists of transcendental 
functions such as sine, cosine, hyperbolic cosine (cosh), and hyperbolic sine (sinh). Thus the linear eigensolver such 
as ‘eig’ in MATLAB cannot be used. The several approaches to find the eigenvalues are summarized by Lee [10].   

B. Numerical analysis 
A free vibration of free-free double beam will be analyzed for a combined system with 5 connections. For 5 

connections case, the FEM used 60 elements and the SEM used 6 elements. The material properties of both beams 
are summarized in Table 3. The spring constant k is 10 N/m. Root-finding algorithms [18] are utilized to find the ω n  
in the SEM. The natural frequencies for the following four cases are obtained.  

• FEM: Euler-Euler beam and Euler-Timoshenko beam 
• SEM: Euler-Euler beam and Euler-Timoshenko beam 
 
 Table 3. Material properties of Al beam and Copper rod 

 L (m) A (m2) I (m4) E (GPa) G (GPa) ρ (kg/m3) κ  
Al Beam 1.2192 8.0645e-05 6.7746e-11 70 - 2700 - 
Cu Beam 1.2192 7.9173e-06 4.9856e-12 117 46 8940 0.889 

 

 

 
Figure 6. Comparison of 4 cases of Al beam + Cu beam (EB: Euler beam, TB: Timoshenko Beam) 
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           Table 4. Natural frequencies of 4 cases for a combined system (Al beam+ Copper beam) 

Mode EB, TB Euler Timosh. Euler-Euler Euler-Timoshenko 
Al Cu Cu FEM SEM FEM SEM 

1 
2 
3 
4 
5 
6 
7 
8 

10 
11 
12 
13 
14 

11.179 
30.817 
60.416 
99.878 
149.22 
208.47 
277.67 
356.87 
446.18 
545.7 

655.62 
776.17 
907.62 

6.8806 
18.967 
37.184 
61.472 
91.842 
128.31 
170.9 

219.64 
274.61 
335.86 
403.52 
477.71 
558.61 

6.8806 
18.966 
37.182 
61.466 
91.828 
128.28 
170.85 
219.57 
274.49 
335.69 
403.28 
477.39 
558.19 

3.2156 
4.4891 
8.2777 
11.652 
19.421 
30.914 
37.441 
60.459 
61.573 
91.914 
99.906 
128.34 
149.25 

3.2156 
4.4891 
8.2777 
11.652 
19.421 
30.914 
37.441 
60.459 
61.573 
91.914 
99.874 
128.27 
149.19 

3.2156  
4.4891  
8.2777  
11.652  
19.421  
30.914  
37.441  
60.459  
61.573  
91.914  
99.906   
128.3  

149.25 

3.2156 
4.4891 
8.2777 
11.652 
19.421 
30.914 
37.441 
60.459 
61.542 
91.883 
99.874 
128.24 
149.19 

 
The results in Table 4 show that the SEM gives very accurate results with a minimum number of elements 

compared with the FEM. In general SEM calculations require fewer elements than FEM to obtain higher 
frequencies.  

C. Experimental validation 
To validate the SEM results, the modal tests were conducted to obtain the FRF from two double systems. 
 
1) Experiment 1: Two identical beams connected by 5 springs 
The experimental configuration is shown in Figure 7. The free-free boundary condition applied to this 

experiment. Two identical Aluminum beams were used and connected by 5 springs that have a spring stiffness k=10 
N/m. The springs are attached by using the Epoxy adhesive. The material properties are summarized in Table 5. 

 

 
 

Table 5. Material properties of Aluminum beams 
 L (m) A (m2) I (m4) E (GPa) G (GPa) ρ (kg/m3) κ  

Al Beam 1.2192 8.0645e-05 6.7746e-11 70 46 2700 0.889 
 

To verify that both beams work as a combined system, MFC was actuated at the second beam and the FRF was 
measured at the first beam. Figure 8 shows the FRF measurement. From the FRF, it was found that the two beams 
works together as a double beam system. The FRF from measurement and SEM present very close natural 
frequencies. We can conclude that the presented SEM approach can predict the dynamic behavior accurately.  

 

  
Figure 7. Experimental configuration D
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Figure 8. FRF from measurement (blue) and SEM (red dot) 

 
2) Experiment 2: Al beam with Copper beam connected by tie-down and zip-tie 
The experimental setup is the same with Figure 3. The clamped-clamped boundary condition applied to this 

experiment. In this experiment, the real connection was applied as shown in Figure 9. The FRFs were measured 
with 9 points. The 9x9 full FRF matrix was obtained. Figure 10 shows the FRFs of measurement and SEM at point 
1. The spring stiffness of connections was applied with the value of k=1 N/m. Both results show good agreement in 
natural frequencies. This shows the same results in previous test that the SEM presents the accurate prediction for 
the dynamic characteristics of a combined system. 

 

 
 

 

  
Figure 9. Tie-down connection and clamped B.Cs 

 
Figure 10. FRF of a double beam from measurement (blue) and SEM (red dot) 
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V. Identification of effect on damping matrices due to attaching cable bundle 

A. Calculation of damping matrices from FRF measurement 
Lee [16], [17] presented the way to calculate the damping matrices from measured FRF. The procedure to obtain 

the damping matrices can be summarized as followings. The equation of motion of a dynamic system with damping 
is: 

 
	
    Mx t( ) +C x t( ) + K + jD( )x t( ) = f t( ) 	
   (14) 

 
where M, K, C and D are the mass, stiffness, viscous damping and structural damping matrices. x(t) and f(t) are the 
displacement vector and the applied forces vector. For a harmonic excitation, x(t) and f(t) are shown: 

 
	
   x t( ) = X ω( )e jωt , f t( ) = F ω( )e jωt 	
   (15) 

 
Substituting equation (16) into (15) yields 
 

	
   K −ω 2M( ) + j ωC + D( )⎡⎣ ⎤⎦X ω( ) = F ω( ) 	
   (16) 
 
The dynamic stiffness matrix (DSM) is expressed as 
 

	
   H ω( )c⎡⎣ ⎤⎦
−1
= K −ω 2M( ) + j ωC + D( ) 	
   (17) 

 
where H ω( )c is the frequency response matrix (FRM) in the form of 

 

	
   H ω( )c = H c
ij⎡⎣ ⎤⎦ = Xi / Fi[ ], i, j = 1,2,3,... 	
   (18) 

 
H c

ij is the complex frequency response function (FRF) measured between the nodes i and j. The DSM is 
expressed as a inverse of measured complex FRM. FRM is much easier to measure than DSM. After the obtaing the 
DSM by inverting the FRM, Equation (17) can be express as 

 

	
   imag H ω( )c⎡⎣ ⎤⎦
−1
=ωC + D, real H ω( )c⎡⎣ ⎤⎦

−1
= K −ω 2M 	
   (19) 

 
where imag and real represent the imaginary and real part. The imaginary part of equation (19) can be shown as 

 

	
   I ω⎡⎣ ⎤⎦
D
C

⎡

⎣
⎢

⎤

⎦
⎥ = imag H ω( )c⎡⎣ ⎤⎦

−1
	
   (20) 

 
Finally, the damping matrices C and D can be obtained by pseudo-inverse of equation (20) 
 

	
  

 

D
C

⎡

⎣
⎢

⎤

⎦
⎥
2n×n

=

I
I



I

ω1I
ω 2I



ω k I

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

+

kn×2n

imag H ω1( )c⎡
⎣

⎤
⎦
−1

imag H ω 2( )c⎡
⎣

⎤
⎦
−1



imag H ω k( )c⎡
⎣

⎤
⎦
−1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
kn×n

	
   (21) 

 
where + means the pseudo-inverse of the matrix.  
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B. Damping matrices of a single beam model 
The complex full FRF matrix was measured with a clamped-clamped beam. The experimental setup is the same 

with Figure 3 in section III-C. The 9x9 full FRF matrix was obtained with 9 measurement points. By using the 
equation (21), the damping matrices of a single beam was calculated such as 

 
Table 6. Viscous damping matrix: C (N s/m) 
 1 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

-0.0018124 
 -6.2658e-05 
  0.00010996 
  3.2181e-05 
 -4.7225e-06 
 -2.7944e-05 
 -0.00014896 
  -9.923e-05 
  -0.0010684 

0.0011592 
   1.328e-05 
 -8.6434e-05 
  -2.997e-06 
  1.4639e-05 
  7.5972e-05 
   3.177e-05 
  2.8563e-05 
 -0.00038676 

0.0003113 
 -0.00021983 
   0.0001857 
 -4.1983e-05 
 -0.00019912 
  1.9912e-05 
  6.7934e-05 
  -0.0003389 
   0.0017091 

-0.00082678 
  -2.348e-05 
  4.7132e-05 
  7.3048e-05 
  7.9781e-05 
   6.151e-06 
 -2.2777e-05 
   0.0001473 
  0.00043266 

0.00059658 
  0.00011535 
 -2.9129e-06 
 -3.3086e-05 
 -0.00013775 
   5.746e-05 
  6.8568e-05 
  9.0285e-05 
 -0.00070154 

-0.0010402 
  0.00023929 
 -0.00015185 
 -5.9301e-05 
  0.00020552 
 -6.8759e-05 
 -0.00014025 
  4.5104e-05 
  -0.0014187 

0.00083864 
  -0.0001088 
 -5.8864e-05 
  3.4225e-05 
  7.1104e-05 
   1.696e-05 
  0.00012438 
 -6.0074e-05 
  0.00065738 

0.00034757 
 -4.2801e-05 
  1.7678e-05 
 -3.6291e-05 
 -0.00014255 
  0.00011011 
 -2.7277e-05 
 -7.8473e-05 
 -0.00010954 

-0.00083814 
 -0.00086291 
  0.00056615 
  0.00010612 
  2.3086e-05 
  1.0836e-05 
 -2.1455e-05 
 -0.00035404 
    0.003057 

 
Table 7. Structural damping matrix: D (N/m) 
 1 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

  -0.67853 
  -0.022402 
    0.03991 
   0.011983 
 -0.0069825 
  -0.013913 
  -0.057174 
  -0.038141 
   -0.42273 

  0.45101 
 0.0014781 
 -0.029297 
  0.007416 
  0.024816 
  0.036291 
  0.027131 
  0.014045 
  -0.12425  

   0.15552 
  -0.091263 
   0.063894 
 -0.0072523 
  -0.073289 
   0.030548 
   0.020737 
   -0.11908 
    0.64482 

  -0.31214 
 -0.0088955 
   0.016647 
   0.031087 
   0.028265 
   0.010027 
  -0.019201 
   0.054072 
    0.16405 

   0.23651 
   0.046514 
 -0.0061497 
  -0.021549 
  -0.049014 
   0.016854 
   0.023579 
   0.034551 
   -0.28594 

-0.37845 
  0.089895 
 -0.049452 
 -0.017871 
  0.064807 
 -0.032486 
  -0.05367 
  0.027519 
  -0.51122 

   0.30493 
  -0.040283 
  -0.020055 
  0.0048495 
   0.021538 
  0.0063037 
   0.040738 
 -0.0076088 
    0.26492 

  0.11844 
 -0.011641 
 0.0056383 
 -0.012307 
 -0.049281 
   0.04495 
 -0.013247 
 -0.018524 
 -0.038956 

  -0.30007 
   -0.32626 
    0.21323 
   0.039017 
   0.012523 
  0.0021203 
 -0.0055219 
   -0.13184 
     1.1466 

C. Damping matrices of a combined system 
A comparison of the obtained damping matrices was conducted with two test specimens to verify the effect of 

attaching the cable bundle. The specimens are shown in Figure 11. In specimen 1, Copper beam (1/8-inch dia.) was 
treated as a cable bundles. And an electric cable was attached to Aluminum beam in specimen 2. Attached electric 
cable is shown in Figure 12. 

 

 
 

 

 
 

 
 

 
Figure 11. Test Specimens: front view(top), specimen 1(middle), and 2(bottom) 

   
Figure 12. Electric cable in specimen 2 
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By using the equation (21), the damping matrices of the combined systems were calculated. Table 8, 9 show the 

viscous damping matrices of specimen 1, 2. Table 10Table 11 show the structural damping matrices of specimen 1, 
2. 

 
Table 8. Viscous damping matrix of specimen 1: C (N s/m) 
 1 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

  0.0002112 
 -0.00020638 
  0.00015628 
 -3.5489e-05 
  9.4382e-05 
 -6.9925e-06 
 -1.4257e-05 
 -9.6403e-05 
  2.7461e-05 

   0.000465 
 -2.7286e-05 
 -5.3529e-05 
   0.0001123 
 -5.0421e-05 
  -3.368e-05 
  8.4066e-05 
  -0.0001417 
 -0.00026815 

0.00011749 
 -0.00017578 
   0.0002842 
 -0.00015932 
  0.00016689 
   4.316e-05 
  2.2353e-05 
 -0.00032673 
 -7.7382e-05 

-0.00029022 
  3.2052e-05 
  2.3136e-05 
  0.00017199 
 -0.00011788 
 -2.3138e-05 
 -6.7059e-05 
  0.00030282 
 -9.6061e-06 

-0.00016072 
  0.00022129 
  -0.0001998 
 -3.6639e-06 
  1.2861e-05 
  7.2684e-07 
 -4.0943e-05 
  0.00025792 
  8.8285e-05 

0.00021873 
  0.00017643 
 -8.7489e-05 
 -5.9577e-06 
 -0.00010861 
 -1.3912e-05 
  5.8036e-05 
   8.834e-05 
  2.3088e-05 

0.00011707 
  0.00016157 
 -0.00011874 
  1.4991e-05 
 -8.9761e-05 
  6.2963e-05 
  -9.217e-05 
   0.0002452 
 -4.1612e-05 

0.00028805 
 -0.00058665 
  0.00036937 
 -0.00011206 
  0.00028859 
 -6.5373e-06 
  0.00015638 
 -0.00064797 
 -1.6101e-05 

0.00075833 
 -0.00011018 
  3.0244e-05 
  -9.103e-05 
  7.0342e-05 
  1.8287e-05 
 -3.5083e-05 
 -2.4724e-05 
 -0.00079623 

 
Table 9. Viscous damping matrix of specimen 2: C (N s/m) 
 1 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

-0.0068727 
   0.0010792 
  0.00090496 
 -0.00035206 
 -0.00065665 
 -0.00012144 
   0.0001941 
  0.00015933 
   0.0020779 

0.00050382 
 -3.3739e-05 
 -4.4023e-05 
 -2.4831e-05 
  6.3473e-07 
  1.7689e-05 
  1.5446e-05 
  1.6439e-06 
 -0.00016883 

  0.0029817 
 -0.00049901 
 -0.00017986 
  0.00012846 
  0.00011994 
  2.8576e-05 
 -9.3257e-05 
 -2.2542e-05 
 -0.00038717 

-5.0139e-05 
  2.2046e-05 
 -0.00011639 
  3.7089e-05 
  3.6576e-05 
  1.4847e-05 
 -3.3447e-05 
  9.1534e-06 
  9.6781e-05 

0.00010373 
 -5.9744e-05 
 -4.7155e-05 
 -1.7199e-06 
   0.0001252 
 -5.3038e-05 
 -2.5807e-05 
 -5.4269e-05 
  0.00029737 

-0.0020976 
  0.00026122 
   0.0003263 
 -8.8655e-05 
 -0.00024264 
   -4.36e-05 

  0.00011822 
   3.139e-05 

 -0.00011313 

0.00066007 
 -0.00010414 
 -6.1665e-05 
 -8.3108e-06 
  2.4733e-05 
  7.1802e-05 
  -4.303e-05 
 -2.7629e-05 
 -0.00024543 

7.8252e-05 
  1.8882e-05 
 -3.3646e-05 
  4.2696e-06 
  4.1267e-05 
  -1.842e-06 
  2.4419e-06 
  7.8229e-06 
 -2.1636e-05 

  0.0059399 
 -0.00058955 
 -0.00060403 
  0.00023448 
  0.00038949 
 -5.3894e-05 
 -0.00012731 
 -1.0036e-05 
 -0.00024242 

 
Table 10. Structural damping matrix of specimen 1: D (N/m) 
 1 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

  0.078787 
  -0.077949 
   0.059358 
  -0.013569 
   0.034903 
 -0.0031179 
 -0.0056185 
  -0.036502 
  0.0044129 

   0.14304 
 -0.0084654 
  -0.027804 
   0.039341 
  -0.024674 
 -0.0054326 
   0.037505 
  -0.058061 
  -0.065677  

   0.015506 
 -0.059285 
  0.092866 
 -0.060639 
   0.06293 
  0.017025 
 0.0049975 
  -0.11846 
 -0.058445 

     -0.10987 
    0.009216 
   0.0037706 
    0.068321 
   -0.042133 
   -0.011936 
   -0.025942 
     0.11533 

 -0.00022131  

-0.042206 
   0.079809 
    -0.0716 

 -0.0050271 
  0.0053336 
 -0.0022765 
  -0.016036 
    0.09899 
   0.028917 

  0.084764 
   0.058877 
   -0.02584 

 -0.0048105 
  -0.042909 
  -0.010294 
    0.02523 
   0.027175 
   0.020886 

0.032467 
  0.066105 
 -0.050975 
  0.013144 
 -0.035304 
  0.028006 
 -0.040209 
  0.097824 
 -0.019149 

    0.13287 
    -0.21644 
     0.13527 
   -0.039022 
      0.1092 

 -0.00042103 
    0.051497 
    -0.24774 
   -0.019009 

   0.26095 
  -0.044787 
   0.012787 
  -0.037148 
   0.025366 
  0.0074266 
  -0.010357 
 -0.0090696 
   -0.29835 

 
Table 11. Structural damping matrix of specimen 2: D (N/m) 
 1 2 3 4 5 6 7 8 9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

   2.5786 
  -0.40221 
  -0.34054 
    0.1313 
   0.24516 
  0.044257 
 -0.072958 
 -0.059798 
  -0.80011 

   -0.20648 
    0.015279 
    0.011355 
     0.01326 

  -0.0073319 
  -0.0092782 
 -0.00047667 
  -0.0037793 
    0.074302 

   -1.116 
   0.18503 
  0.078742 
 -0.046907 
 -0.046298 
 -0.017398 
  0.033278 
 0.0073318 
   0.14423 

  0.030149 
 -0.0095088 
   0.045408 
  -0.016118 
  -0.015005 
 -0.0056502 
   0.013796 
 -0.0029246 
  -0.044887 

  -0.048319 
    0.021621 
    0.019622 

 -0.00092474 
   -0.046305 
    0.016574 
   0.0069839 
    0.021138 
    -0.11469 

  0.78609 
   -0.1022 
  -0.11695 
  0.033508 
  0.088978 
  0.011596 
 -0.047196 
 -0.015099 
  0.051796 

-0.28727 
  0.041895 
 0.0039884 
 0.0025948 
 -0.019661 
  -0.03423 
  0.019561 
 0.0054632 
   0.10699 

  -0.01406 
 -0.0084177 
   0.016425 
 -0.0051058 
  -0.013667 
  0.0028583 
 -0.0020507 
  0.0019825 
  0.0081979 

  -2.2465 
   0.22525 
   0.22611 
 -0.088731 
  -0.14567 
  0.020936 
  0.050059 
  0.004477 
  0.083651 

 

D. Comparison of the damping matrices 
Figure 13 shows the viscous damping matrices C. After connection occurs, the viscous damping coefficients 

were decreased in specimen 1. The viscous damping matrix increases in specimen 2.  The same phenomenon was 
found in the structural damping matrices D as shown in Figure 14. The norms of matrices are summarized in Table 
12. From these results, it can be concluded that the type of cables can affect the damping. Because the real cable 
bundle, that applied in the satellite structures, are twisted and wrapped together. The damping effect due to adding a 
cable bundle will be closer with specimen 2. This means that the real structure will experience the increase of 
damping.  
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Table 12. Norms of damping matrices 

Norm Single Al beam 
(Base structure) 

Al beam + Copper beam 
(Specimen 1) 

Al beam + Electric cable 
(Specimen 2) 

Viscous damping (N s/m) 0.0051867 0.0019407 0.010269 
Structural damping (N/m) 1.9507 0.71062 3.871 

 

 
 

 

VI. Conclusion 
In this paper, the Spectral Element Method (SEM) approach is proposed to model the dynamics of a cable 

harnessed structure. From numerical analysis and experiments, SEM was validated providing an accurate model for 
a dynamics of a combined system. In addition the damping effect due to attaching a cable bundle was investigated 
by calculating the damping matrices from the measured complex FRF matrix. Two types of cable attachments are 
considered. We can conclude that the type of cables can affect the damping differently. The damping in real 
structures will increase by adding a cable bundle. 
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Figure 13. Viscous damping matrix: single beam (left), specimen 1 (center), and specimen 2(right)    
 

 
Figure 14. Structural damping matrix: single beam (left), specimen 1 (center), and specimen 

2(right) 
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