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High-aspect-ratio wings present in very flexible aircraft can undergo large deformations, 

which results in significant changes in natural frequencies as well as in static and dynamic 
aeroelastic response. This geometric nonlinear behavior becomes an integral part of any 
aeroelastic analysis to be conducted in such class of vehicles. Aeroelastic scaling is an important 
way to study the aeroelastic behavior of aircraft and it is an integral part in risk mitigation for 
aircraft development. However, the current aeroelastic scaling methodologies have focused on 
geometrically linear structures. This paper demonstrates a methodology for geometrically 
nonlinear aeroelastic scaling of very flexible aircraft. The known linear scaling factors and 
similarity rules are extended to address geometrically nonlinear aeroelastic scaling. A high-
aspect-ratio flying wing in free flight is taken as an example to verify the new scaling procedure 
and numerical studies are conducted using the University of Michigan’s Nonlinear Aeroelastic 
Simulation Toolbox. Numerical results support the new approach for aeroelastic scaling of very 
flexible aircraft. 

I. Introduction 
EROELASTIC scaled models for wind tunnel testing or flight test play a key role in studying the aeroelastic 
characteristics of full-size aircraft, in which the aeroelastic scaling laws are the key elements[1]. The scaled 
models are also widely used in research studies such as active control of aeroelastic response, flutter 

characterization and mitigation, and theoretical or computational methods validation.  Aeroelastic scaled models are 
designed and manufactured so that the results obtained from the wind tunnel tests or flight tests can be directly 
related to the aeroelastic behavior of the full-size aircraft that they represent. The key elements that enable this are 
the aeroelastic scaling laws based upon the relationship among the physical parameters that characterize each model. 
Based on the use of dimensional analysis, the classical approach to aeroelastic scaling was presented by Bisplinghoff 
et al.[2] Since then, wind tunnel models from aeroelastic scaling have been widely used in testing of linear structure 
for more than fifty years, and aeroelastic scaling considerations that enable one to relate wind tunnel test results to 
the behavior of the full-size wing or aircraft have played an important role in aircraft research and development.[3] 

A comprehensive survey on aeroelastic testing for certification process and airworthiness requirement is 
presented in Ref. 4. It is also discussed there the requirements for aeroelastic wind tunnel model test and aeroelastic 
scaling. Wind tunnel models are generally manufactured with a very different internal structure than the full-scale 
aircraft. However, it is optimized to give the design that is closest to the pre-specified target elastic, inertial, and 
aerodynamic properties based upon some scaling parameters. The optimization enables the model to present 
characteristics similar to its full-scale counterpart, e.g., reduced frequencies, mode shapes, gust response, buckling 
limit, control surface effectiveness, etc. An example of the process to design a flutter scaled model of a low-aspect-
ratio wing using genetic algorithm is presented by Wu et al.[5] Another example is the work by Friedmann[3] who 
studied aeroelastic scaling for fixed and rotary-wing aircraft. Therein, he presented the aeroservolelastic scaling 
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solution of a two-dimensional airfoil combined with an actively controlled flap. Scaling laws applied to a modal 
formulation of the aeroservoelastic equations are described by Pototzky.[6] 

Over the past two decades, high-altitude long-endurance (HALE) aircraft have gained greater interest. These 
configurations present high-aspect-ratio wings for high aerodynamic performance, and combined with the low 
structural weight lead to very flexible vehicles. The wings of HALE aircraft may undergo large deformations during 
normal operating conditions, thus exhibiting geometrically nonlinear behavior. Moreover, the low frequency 
response of the very flexible structure is in the same range of frequencies associated with then vehicle flight 
dynamics (e.g., phugoid, short period, Dutch roll, etc.), making it impossible to separate them in tests as typically 
done with more traditional (linear) vehicles. To understand the geometrically nonlinear aeroelastic behavior of 
HALE aircraft, there have been different efforts on simulation and test of fully flexible wings. Nonlinear aeroelastic 
solvers have been under development to improve predictions of aircraft response, stability, and overall performance 
and an overview of those can be found in Ref. 7. Among them, Cesnik and his co-workers have developed a novel 
and practical solution to the nonlinear aeroelasticity and its coupling with flight dynamics of very flexible aircraft, as 
well as built the framework for their simulation known as the University of Michigan’s Nonlinear Aeroelastic 
Simulation Toolbox (UM/NAST).[7, 8] All of these studies have contributed in different ways toward the 
understanding of the nonlinear characteristics of highly flexible aircraft. However, due to its complex coupled nature 
and very limited validation data for the codes, the problem is still not fully understood.  

Aeroelastic scaling in general is a good way to simulate and validate aeroelastic behavior of full-size aircraft. 
According to the corresponding certification process and airworthiness requirement, all numerical efforts must 
eventually be validated by aeroelastic scaling against experimental data so that they can be applied to new aircraft 
concepts. However, the literatures regarding aeroelastic scaling of geometrically nonlinear structure are virtually 
non-existent, and the great majority of existing scaling work focuses on linear structures. Due to the complexities of 
the response of very flexible structure, scaling laws for linear structure are of very limited value.  

In the field of aeroelastic scaling of geometrically nonlinear structure, Refs. 9—11 present the best attempt to 
nonlinear aeroelastic scaling for a joined-wing aircraft for wind tunnel and flight tests. This was done by first 
optimizing the scaled natural frequencies of the model to match the full scale design. This was augmented by the 
corresponding match of modes, and then the first buckling eigenvalue. An optimization method was used for the 
scaled model design. The efficacy of scaling the buckling load as a means of scaling geometrically nonlinear 
response is examined closely in Ref. 10. From that, it can be concluded that it is necessary to match the entire 
geometric stiffness matrix that depends upon internal loads of the deformed structure. More recently, Ref. 11 
extended the previous two-step optimization approach by the same group to include the matching of nonlinear static 
deflections for designing the scaled model. Although these were steps in the right direct, there has been no 
fundamental aeroelastic scaling study for geometrically nonlinear structures that can be applied to generic HALE 
vehicles.  

The objective of this paper is to present a methodology for aeroelastic scaling of geometrically nonlinear 
structures undergoing large deformations through theoretical demonstration and numerical verification. The 
proposed method is exemplified in the aeroelastic scaling of a geometrically-nonlinear flying wing aircraft in free 
flight.  

II. Aeroelastic Scaling Methodology 
The behavior relation between the aeroelastic scaled model to the full-size model is governed by aeroelastic 

scaling laws. The sections to follow present the derivations of those relations for the case of geometric linear and 
nonlinear structures, including the effects of the six rigid-body degrees of freedom present during free flight.  

A. Basic Equations for the Linear Aeroelastic Analysis 

The basic governing equation for the aeroelastic analysis of linear structures can be represented as[12] 

(K ! 1
2
!V 2Q)u +M!!u = 1

2
!V 2Qxux + P                                               1  

where K is the matrix of structural stiffness, !  is the air density, V is the uniform flow speed, Q is the matrix of 
aerodynamic influence coefficients, u is the vector of structural deformation, M is the matrix of structural mass, 

xQ is the matrix of unit aerodynamic loads, xu is the vector of aerodynamic trim parameters (e.g., angle of attack, 
elevator deflection, etc.), which is used to define the deflection of aerodynamic control surface and the overall rigid 
motion of the aircraft. Finally, P  is the vector of additional applied loads. For the static aeroelastic solution and 
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determination of the trim conditions, only the steady terms in Eq. (1) are used. 
Note: As for geometric-nonlinear structures, the iteration of aero-structural coupling calculation should be 

implemented with updated geometric position considering elastic deformation, and Eq. (1) should be evaluated in a 
static equilibrium condition iteratively. This implies that the stiffness matrix (and not only the load vectors) in Eq. (1) 
should be updated for the current deformation state.  

Using harmonic motion into Eq. (1) one can obtain the eigenproblem for the modal vibration analysis as[12] 
[ )] 0!"K M ! =                                                                       (2) 

where !  is the eigenvalue and !  is the corresponding eigenvector. 
Note: As for geometric-nonlinear structures, the modal analysis will depend on the structure’s current state. The 

normal mode analysis should be performed based on the current stiffness and mass matrices, which are dependent 
on the current deformation state. 

The equation governing the gust response analysis can be written as[12] 

 2 2 21 1
2 2

g
h h h h h h h h g

w
u i u u V u V

V
! ! " "# + + = +M C K Q Q  (3) 

where !  is the circular frequency, hM  is the generalized structural mass matrix, hu  is the vector of generalized 

structural degrees of freedom, i.e., structural modes, i is imaginary number, hC is the generalized (structural) 

damping matrix, hK is the generalized structural stiffness matrix, hQ is the matrix of generalized unsteady 

aerodynamic forces due to vehicle motion, gQ is the matrix of generalized unsteady aerodynamic forces due to gust, 

gw  is is vertical gust speed, and the other symbols are consistent with those in Eq. (1). The analysis of flight 
dynamic stability can be further attained on the basis of Eq. (3) with some transformation for stability analysis and 
ignoring the gust term. 

A discrete vertical gust model can be applied to the vehicle on its intended flight path as shown in Fig. 1. 
Without loss of generality, the shape of the gust can be the “1-cosine” gust defined by: 

 
max

1 21 cos( )
2g

g

xw w
x
!" #

= $% &% &' (
                                                          (4)  

where maxw  is the maximum vertical gust speed, gx  is the gust wavelength, and x  is the distance that the vehicle 
penetrated into the gust, and the gust is considered to be uniformly distributed along the span of the vehicle.  

 
Figure 1. “1 !!  cosine” uniform gust profile. 

B. Scaling Factors for Linear Aeroelastic Structures  

The selection of scaling factors is a critical first step of any aeroelastic scaling model design. The length scaling 
factor, bk , the speed scaling factor, Vk  and the air density scaling factor k!  are generally selected as the three 

basic scaling factors for aeroelastic model design of linear structure for wind-tunnel testing. Here, bk  is the 
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length ratio of the scaled model to the full-size model, Vk  is the speed ratio of the scaled model to the full-size 

mode, and k!  is the air density ratio of the scaled model to the full-size model environment. 
It is usually desirable to make aeroelastic models as large as possible for ease of fabrication and structural 

strength, as well as to make it easier to install instrumentation in them.[1] Aeroelastic scaling models are 
typically larger relative to wind tunnel test section dimensions than conventional aerodynamic models. Low-
speed models may have a larger span, perhaps as large as 75 percent of the test section width of the wind 
tunnel. As for the scaled model for flight test, the length ratio is expected to be as low as possible. But it 
depends on the target gross takeoff weight (associated with the intended payload for instrumentation and 
controls) and the acceptable overall cost of the experiment. 

Generally, an air density that is well up within the wind tunnel capability is selected.[1] The larger the test 
density for the model, the heavier the model can be made. Usually the heavier an aeroelastic model is, the 
easier it is to design and fabricate. Very lightweight structures are not only fragile, but are also costly to make 
and maintain. 

For low-speed tests where compressibility effects are not important, an available wind-tunnel speed or a 
suitable flight speed is selected to represent some speed of the full-size model.[1] But for tests where 
compressibility effects are important, there must be a matched Mach number between the scaled and the full-
size models so that the speed scaling factor becomes in effect the speed-of-sound scaling factor. 

To meet the flutter similarity between the scaled model and the full-size model, four similarity criteria as 
described next must be met on the basis of the above three basic scaling factors.[2, 5] A fifth similarity criterion 
must be met as an additional condition when similarity is performed on static aeroelastic response and gust 
response under the effect of gravity. 

 
1. Geometrical Similarity 

The scaling factor of geometrical similarity can be described as the abovementioned bk . The geometrical 
similarity means that all size ratios of the scaled model to the full-size model, including the span ratio, chord 
ratio, etc., are the same as bk . It also assumed that the scaled model and full-size model have the same airfoils. 

 
2. Mass Similarity 

The mass similarity criterion can be written as 
3

m bk k k!=                                                                                  (5) 
which means that the mass distribution of the scaled model should be proportional to the one of the full-size 
model via the mass scaling factor, mk . 
 
3. Stiffness Similarity 

The stiffness similarity criterion can be described as 
2

K V bk k k k!=                                                                                (6) 
which means that the stiffness distribution of the scaled model should be proportional to the one of the full-size 
model via the stiffness scaling factor, Kk . 

As for high-aspect-ratio wings, the scaling factors of bending, torsion, and extensional beam stiffness 
coefficients are more useful in practice, and can be written, respectively, as: 

3 2 4
EI K b V bk k k k k k!= =                                                                     (7) 

3 2 4
GJ K b V bk k k k k k!= =                                                                     (8) 

2 2 2/EA EI b V bk k k k k k!= =                                                                    (9) 

where EI is the equivalent beam (out-of-plane or in-plane) bending stiffness, GJ is the beam torsional stiffness, 
and EA is the beam extensional stiffness.  

Based on the relation of natural frequency with mass and stiffness, the frequency scaling factor naturally 
follows to be: 
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/ /K M V bk k k k k! = =                                                                      (10) 
where the time scaling factor is simply defined as: 

/t b Vk k k=                                                                              (11) 
 

4. Aerodynamic Similarity 
The geometrical similarity results in aerodynamic similarity when the Mach number and Reynolds number 

between the scaled and the full-size models are consistent, respectively. However, neither Mach number 
similarity nor Reynolds number similarity is easy to meet. As for low-speed flight as typical of HALE aircraft, 
the Mach number similarity could be ignored because of the almost incompressible air. However, the Reynolds 
number between the scaled and the full-size models should be the same or at least on the same order of 
magnitude. 

The scaling factor of Reynolds number can be defined as:  
/Re V bk k k k k! µ=                                                                         (12) 

where kµ is the scaling factor for the dynamic viscosity of air.  
Based on the equation for lift, the scaling factor for lift can be attained as 

2 2
L V bk k k k!=                                                                                (13) 

Similarly, based on the equation for aerodynamic moment, the scaling factor of moment can written as 
2 3

M V bk k k k!=                                                                                (14) 
 

5. Froude Number Similarity 
The Froude number determines the ratio of the deflection under steady gravitational load to deflection due 

to aerodynamic and inertial loads. To meet similarities on static aeroelastic response and gust response, or 
when the gravity effect should be considered in flutter test, the Froude number between the scaled model and 
the full-size model should be the same. The matching of Froude number can be satisfied by[10] 

V bk k=                                                                                (15) 

C. Connection Between the Scaling Factors of Linear to Geometrically Nonlinear Structures 

In comparison with linear structures, a geometrically nonlinear structure has its special stiffness 
characteristics, which depend on the current structural deformation. It is obvious that geometrical similarity, 
mass similarity, aerodynamic similarity, and Froude number similarity can be also met in the deformed state 
when the scaled model and the full-size model meet the abovementioned similarity in the undeformed state and 
present similar deformation in any given deformed state. Therefore, it depends on whether the stiffness of the 
geometrically nonlinear structure varying with structural deformation can be maintained similar between the 
scaled and the full-size models. This will directly impact the applicability of the linear aeroelastic scaling laws 
to the geometrically nonlinear structure. 

Generally, the stiffness of the geometrically nonlinear structure varying with the structural deformation can 
be represented as[13] 

   [KT ] = [KL]+[KNL]+[K! ]                                                             (16) 

where    [KT ] is the tangential stiffness matrix of an element in global coordinate system,    [KL] is the linear stiffness 

matrix due to small deformations,    [KNL]  is the nonlinear stiffness matrix due to large geometric deformation, and 

  [K! ] is the geometric stiffness matrix due to pre-stress. 

Therefore, the    [KT ]  of the full-size model and the scaled model will be similar if it can be guaranteed that 

the scaling coefficients of    [KL] ,    [KNL]  and   [K! ]  are the same. 
 

1. Correlation between Stress and Strain 
The principle of virtual work of an element can be written as 
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{!u}T{"" }= {! ##}T{$$}dV %{!u}T{R}& = 0                                                      (17) 

where  {!u} is the virtual displacement, { }!! is the summation of the internal and external forces,  {! ""}is the virtual 

strain, { }!! is the stress, dV is the domain volume, and { }R is the column vector of external forces. 
The strain-displacement relation can be written in the form of strain increment as: 

   {!""}= [B]{!u}                (18) 
where [ ]B

 
is the differential operator that defines the strain-displacement relation. 

For the problem of large displacements, the relation between strain and displacement is nonlinear, therefore, 
[ ]B  

is a nonlinear function of   {u} , which can be written as  

       [B] = [BL]+ [BNL({u})]                                                                      (19) 

where    [BL]  
is the term corresponding to the linear strain-displacement operator, and    [BNL({u})]  is the additional 

term containing the nonlinearity in the strain-displacement relation. 
Even though the problem is geometrically nonlinear, it remains materially linear. That is, the relation 

between stress and strain meets the linear elastic relation, which can be written as 
0 0{ } [ ]({ } { }) { }= ! +D"" ## ## ""                                                                 (20) 

where   [D]   is the material matrix,  {!!0}  is the column vector of initial strains, and  {!! 0}  the intial stresses. 
Based on the above relation between stress and strain, and keeping in mind that   {!"}={!"}S ={!"}F , the 

following equations can be attained to describe the relation between the scaled model and the full-size model: 
    {!u}S = kb{!u}F                                                                       (21) 

     [BL]S = [BL]F / kb                                                                      (22) 

     [BNL]S = [BNL]F / kb                                                                     (23) 

       ! [BNL]S = ! [BNL]F / kb                                                                (24) 
2{ } { }S V Fk k!="" ""                                                                      (25) 
2[ ] [ ]S V Fk k!=D D                                                                   (26) 

3
S b FV k V=                                                                              (27) 

where the subscripts S and F represent the scaled model and the full-sized model, respectively. 
 
2. Linear Stiffness Matrix due to Small Deformation 

Based on Eqs. (17)—(20), the linear stiffness matrix due to small deformation is represented by: 

   
[KL] = [BL]!

T
[D][BL]dV             (28) 

For the full-size model, Eq. (28) can written as: 

   
[KL]F = [BL]! F

T
[D]F [BL]F dVF

                                                        (29) 

and for the scaled model as: 

   
[KL]S = [BL]! S

T
[D]S [BL]S dVS

                                                           (30) 

Substituting Eq. (22), Eq. (26), and Eq. (27) into Eq. (30) yields:  

   
[KL]S = k!kv

2kb [BL]" F

T
[D]F [BL]F dVF = k!kv

2kb[KL]F
        (31) 

and, therefore, the scaling factor for    [KL]  is: 

  
kKL

= k!kV
2kb                                                                              (32) 

 
3. Nonlinear Stiffness Matrix due to Large Geometric Deformation 

Based on Eqs. (17)—(20), the nonlinear stiffness matrix due to large geometric deformations is given by: 
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[KNL] = ([BL]!

T
[D][BNL]+ [BNL]T [D][BNL]+ [BNL]T [D][BL])dV                                   (33) 

For the full-size model, Eq. (33) can written as: 

   
[KNL]F = ([BL]! F

T
[D]F [BNL]F + [BNL]F

T [D]F [BNL]F + [BNL]F
T [D]F [BL]F )dVF

                        (34) 

and for the scaled model as: 

   
[KNL]S = ([BL]! S

T
[D]S [BNL]S + [BNL]S

T [D]S [BNL]S + [BNL]S
T [D]S [BL]S )dVS

                           (35) 

Substituting Eq. (22), Eq. (23), Eq. (26), and Eq. (27) into Eq. (35) yields:  

   
[KNL]S = k!kV

2kb[KNL]F                                                                        (36) 

and, therefore, the scaling coefficient of    [KNL]  is: 

  
kKNL

= k!kV
2kb                                                                              (37) 

 
4. Geometric Stiffness Matrix due to Pre-Stress 

Based on the Eqs. (17)—(20), the geometric stiffness matrix due to pre-stress satisfies the following energy 
relation: 

   
{!u}T [K" ]{u}= {!u}T [BNL]#

T
{"" 0}dV             (38) 

For the full-size model, Eq. (38) can written as: 

   
{!u}F

T [K" ]F{u}F = {!u}F
T [BNL]# F

T
{"" 0}F dVF

          (39) 

and for the scaled model as: 

   
{!u}S

T [K" ]S{u}S = {!u}S
T [BNL]# S

T
{"" 0}S dVS

                                                         (40) 

Substituting Eq. (21), Eq. (23), Eq. (25), and Eq. (27) into Eq. (40) yields:  

   
{!u}T

S [K" ]S{u}S = k#kV
2kb

3 {!u}F
T [BNL]$ F

T
{"" 0}F dVF

          (41) 

Substituting Eq. (21) and Eq. (39) into Eq. (41), one has: 

   
{!u}T

S [K" ]S{u}S = k#kV
2k3

b{!u}T
F [K" ]F{u}F = k#kV

2kb{!u}T
S [K" ]F{u}S        (42) 

which results in: 

   
[K! ]S = k"kV

2kb[K! ]F                                                                       (43) 

Therefore, the scaling coefficient of [ ]!K  is given by: 
2

K V bk k k k
! "=                                                                                (44) 

 
5. Condition for Aeroelastic Similarity for Geometrically Nonlinear Structures 

Based on Eq. (32), Eq. (37), and Eq. (44), one must impose similarity between the scaled model and the full-
scale model for the three stiffness terms, that is: 

 
kK = kKL

= kKNL
= kK!

                                                                        (45) 

This similarity condition along with the scaling factors for linear aeroelasticity defined by Eqs. (5)—(15) form 
the basis for the geometrically nonlinear aeroelastic scaling between two different scale models.  

The above derivations are based on the assumption of constant loads, i.e., not considering variation of load 
with deformation. However the aerodynamic loads vary with deformation during flight. Nevertheless, it does 
not affect the stiffness similarity because the aerodynamic loads of the full-size model and scaled model have 
similar variation in direction and magnitude. 

Therefore, the aeroelastic behavior between the scaled and the full-size models will also be similar both at 
the state of small deformation and in the state of large deformation, if the scaled model is designed on the basis 
of the abovementioned scaling factors. 
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III. Numerical Verification 
To verify the aeroelastic scaling criteria for geometrically nonlinear structures, a high-aspect-ratio flying 

wing in free flight is used. The full-size model is based directly on the vehicle definition presented in Ref. 14.  

 
Figure 2. Geometry of the full-scale flying-wing vehicle. 

 
Figure 3. Level-flight trimmed flying wing vehicle configuration with respect to its undeformed shape. 

A. Model Description 

The high-aspect-ratio flying wing in free flight used as the full-size model is shown in Fig. 2 and Fig. 3. Based 
on that, two scaled models with different scaling factors were considered. In the analysis, all vehicles are trimmed 
for level flight. Flaperon control surfaces are distributed along the wing trailing edge. 

The full-size vehicle has a span of 72.8 m and a constant chord length of 2.44 m. The outboard one-third of the 
wing semi-span has a dihedral angle of 10 deg. As indicated in Fig. 2, there are three pods, which are located at 
middle span and at two-thirds of the semi-span at each side. The side pods have a mass of 6.0 kg each, and the 
center one has a mass of 27.23 kg. The payload is applied on the center pod with a mass of 40.0 kg. 

There are two scaled models. One is scaled to match Froude number and Reynolds number where the scaled 
model is described as scaled Model 1. The other is scaled to only match Reynolds number and not the Froude 
number, where the scaled model is described as scaling Model 2. The geometric and physical properties and air 
parameters of the full-size model, the scaled Model 1, and the scaled Model 2 are listed in Table 1 and Table 2, 
respectively. For all cases, the Reynolds number is approximately 250,000. 

B. Comparison of Results Between the Two Scaled Models and the Full-size Vehicle 

In this section, comparison of static aeroelastic response, natural frequencies, and gust response between the full-
size model and the two scaled models are investigated for the flying wing vehicles in free flight.  

 
1. Trim Comparison 

Aerodynamic shape, stiffness distribution, and mass distribution have direct effect on the static aeroelastic 
response (vehicle deformation) as well as on trimmed parameters (angle of attack and control surface deflection). In 
order to investigate the consistence of the static aeroelastic response between the scaled models and the full-size 
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model, the comparison of trimmed body angle of attack and flaperon angle are presented in Figs. 4 and 5, 
respectively. The flight speed is held constant at 30 m/s for the full-size model, and payload on the center pod of the 
full-size model varies from 0 kg to 80 kg. The comparison of the relative wing flatwise bending deformation 
normalized by the vehicle half wingspan between the full-size model and the scaled Model 1 is shown in Table 3, 
while the results between the full-size model and the scaled Model 2 are shown in Table 4.  

Table 1. Geometric Properties, Air Parameters and Scaling Parameters for Flying Wing Vehicle, Scaled 
Model 1 (Matching Froude and Reynolds Numbers), and Scaled Model 2 (Only Matching Reynolds Number). 

  Full-size Vehicle Scaled Model 1 Scaled Model 2 

Geometric 
Properties 

Half wing Span (m) 72.8 14.6 5.97 
Chord Length (m) 2.44 0.488 0.200 
Beam Reference 
Axis (% chord) 25% 25% 25% 

Air 
Parameters 

Air Density (kg/m3) 0.1096 1.225 1.225 
Air Speed 1 (m/s) 25.0 11.18 27.38 
Air Speed 2 (m/s) 30.0 13.42 32.73 
Angle of Attack Trimmed Trimmed Trimmed 

cl! 2" 2" 2" 
Independent 

Scaling 
Parameters 

Length  0.200 0.082 
Air Density  11.180 11.180 
Air Speed  0.447 1.091 

Dependent 
Scaling 

Parameters 

Mass  8.94 10-2 6.16 10-3 
EIy  4.47 10-1 1.09 
EIz  3.58 10-3 6.01 10-4 
GJ  3.58 10-3 6.01 10-4 
EA  8.94 10-2 8.94 10-2 
Lift  8.94 10-2 8.94 10-2 

Natural Frequency  2.24 13.31 

Table 2. Stiffness and Mass Properties for Flying Wing Vehicle, Scaled Model 1 (Matching Froude and 
Reynolds Numbers), and Scaled Model 2 (Only Matching Reynolds Number). 

 Full-size Vehicle Scaled Model 1 Scaled Model 2 

Extensional Stiffness, EA  (Pa. m2) 1.00 1010 8.94 108 8.94 108 
Torsional Stiffness, GJ  (N.m2) 1.65 105 5.90 102 9.91 101 
Flat Bending Stiffness, EIy (N.m2) 6.00 105 2.15 103 3.60 102 
In-plane Bending Stiffness, EIz (N.m2) 1.24 107 4.44 104 7.45 103 
Mass per Unit Span, m (kg/m) 2.000 8.944 10-1 1.502 10-1 
Torsional Inertia, Ixx (kg.m) 4.150 7.424 10-2 2.095 10-3 
Flat Bending Inertia, Iyy (kg.m) 6.900 10-1 1.234 10-2 3.483 10-4 
In-plane Bending Inertia, Izz (kg.m) 3.460 6.189 10-2 1.746 10-3 
Concentrated mass at a side pod (kg) 6.000 5.366 10-1 3.695 10-2 
Concentrated mass at center pod (kg) 27.23 2.435 1.677 10-1 
Concentrated payload mass (kg) 40.00 3.578 2.463 10-1 

 
As presented in Figs. 4-5 and Tables 3-4, the trimmed parameters and relative displacement of the scaled model 

matching Reynolds and Froude numbers (scaled Model 1) are consistent with those of the full-size model. However, 
there is no consistence between the full-size model and the scaled Model 2 where only Reynolds number is matched 
and not Froude number.  
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Figure 4. Trimmed body angle of attack for 
different payload mass values. 

Figure 5. Trimmed flaperon deflection for different 
payload mass values. 

 

Table 3. Comparison of Relative Vehicle (Wing) Deformation  (Matching Froude and Reynolds numbers). 

Spanwise 
Station 

Airspeed 1 Airspeed 2 

Full-size 
Model 

Scaled 
Model 1 Ratio Full-size 

Model 
Scaled 

Model 1 Ratio 

33.3% 1.97% 1.98% 1.01 1.97% 1.98% 1.01 
66.6% 6.28% 6.31% 1.00 6.27% 6.30% 1.00 
100% 11.11% 11.16% 1.00 11.10% 11.15% 1.00 

 

Table 4. Comparison of Relative Vehicle (Wing) Deformation (Matching Reynolds Number). 

Spanwise 
Station 

Airspeed 1 Airspeed 2 

Full-size 
Model 

Scaled 
Model 2 Ratio Full-size 

Model 
Scaled 

Model 2 Ratio 

33.3% 1.97 % 0.15 % 0.077 1.97 % 0.17% 0.086 
66.6% 6.27 % 0.49 % 0.078 6.27 % 0.57% 0.091 
100% 11.11 % 0.88 % 0.080 11.10 % 1.02% 0.092 

 
 
2. Comparison of Frequencies 

As the basis for dynamic aeroelastic response and stability, natural frequencies are very important. To investigate 
the comparison of natural frequencies between the full-size model and the two scaled models, natural frequency 
analysis are carried out for both the vehicle at a given deformed state (corresponding to flight speed of 30 m/s) and 
for its undeformed state. The natural modes of the deformed structure are different from those of the undeformed 
structure. Table 5 presents comparison of natural frequencies between the full-size model and the scaled Model 1 
(matching Reynolds and Froude numbers). Table 6 shows comparison of natural frequencies between the full-size 
model and the scaled Model 2 (matching Reynolds number but not Froude number).  

The results indicate that natural frequencies for the scaled Model 1 are consistent with those of the full-size 
vehicle once parameters are factored to match the units of the full-size model. However, there is no consistence 
between the full-size model and the scaled Model 2 results.  
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Table 5. Comparison of Natural Frequencies  (Matching Froude Number and Reynolds number). 

Mode 
Full-size Model (Hz) Scaled Model 1 (Hz) Ratios (Nominal k"=2.24) 

Undeformed Deformed Undeformed Deformed Undeformed Deformed 
1st flat bend + plunge  0.30 0.29 0.66 0.66 2.24 2.24 
1st flat bend + roll 0.64 0.63 1.42 1.42 2.24 2.24 
1st torsion + yaw 1.25 1.14 2.79 2.54 2.24 2.24 
1st edge bend + lead-
lag + pitch 1.52 - 3.40 - 2.24 - 

2nd flat bend +  
plunge 1.60 1.59 3.58 3.57 2.24 2.24 

2nd flat bend + roll 1.61 1.60 3.60 3.58 2.24 2.24 
2nd torsion + lead-lag 
+ pitch - 1.85 - 4.14 - 2.24 

2nd torsion + pitch  2.37  5.31  2.24  
edge bend + lead-lag 
+ pitch - 2.66 - 5.95 - 2.24 

2nd torsion-1st edge 
bend + yaw 2.97 2.96 6.64 6.61 2.24 2.24 

3rd flat bend + roll 4.10 4.10 9.17 9.17 2.24 2.24 
 

3. Stability Comparison 
To assess the vehicle stability, a linearization of the aeroelastic equations of motion at each trimmed condition is 

performed for the full-size model, and the scaled Model 1 and 2 for different payload values. Then the longitudinal 
flight dynamic modes are evaluated for their stability. Figure 6 shows the root loci of the phugoid mode of the three 
models, where the results for the scaled models have already been factored by their corresponding frequency ratios. 
The flight speed of 30 m/s is kept constant for the full-size model while the payload varies (solid symbols standing 
for the zero payload cases). 

Table 6. Comparison of Natural Frequencies (Matching Reynolds Number only). 

Mode 
Full-size Model (Hz) Scaled Model 2 (Hz) Ratios (Nominal k"=13.31) 

Undeformed Deformed Undeformed Deformed Undeformed Deformed 
1st flat bend + plunge  0.30 0.29 3.93 3.93 13.30 13.37 
1st flat bend + roll  0.64 0.63 8.46 8.46 13.30 13.33 
1st torsion + yaw 1.25 1.14 16.62 16.50 13.31 14.53 
1st edge bend + lead-
lag + pitch 1.52 - 20.24 - 13.31 - 

2nd flat bend +  
plunge / Hz 1.60 1.59 21.31 21.02 13.30 13.18 

2nd flat bend + roll 1.61 1.60 21.39 21.30 13.30 13.32 
2nd torsion + lead-lag 
+ pitch - 1.85 - 21.38 - 11.54 

2nd torsion + pitch 2.37 - 31.59 - 13.31 - 
edge bend + lead-lag 
+ pitch - 2.66 - 31.71 - 11.93 

2nd torsion-1st edge 
bend + yaw  2.97 2.96 39.51 39.77 13.31 13.44 

3rd flat bend + roll 4.10 4.10 54.48 54.49 13.30 13.30 
 
As shown in Fig. 6, the root loci of the phugoid mode for the scaled Model 1 (matching Froude and Reynolds 

numbers) is consistent with the one of the full-size vehicle at different values of payload (after parameters are 
factored to match the units of the full-size model). However, the same does not hold for scaled Model 2, indicating 
once again the importance of enforcing the Froude number similarity as well. 
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Figure 6. Phugoid mode comparison between the full-size model and the two scaled models. 
 

4. Comparison of Gust Response 
To understand the consistence of gust response between the full-size model and scaled Models 1 and 2, the 

discrete gust model described above is used. The wavelength is equivalent to 25 times the vehicle chord length, 
which corresponds to 61 m for the full-size model. The maximum vertical gust speed is 10 m/s for full-size model, 
while the vehicle is flying at 30m/s. The gust excitation is applied for the full-size model after 0.1 s of flying 
trimmed in calm air (no change in trim parameters while going through gust). The gust parameters for the scaled 
models have been properly scaled according to the scaling factors in Table 1. 

The longitudinal and vertical displacements of the origin of the body frame (center span, at the beam reference 
line position) are plotted in Fig. 7 for the full-size model and the scaled Models 1 and 2.  The comparisons for body 
pitch angle and wing tip displacements are shown in Figs. 8 and 9, respectively. Finally, flatwise bending and 
torsional moments at the vehicle mid-span are also plotted in Figs. 10 and 11, respectively. For all these results, the 
results from the scaled models have been scaled to match the units of the full-size model. 

From those plots, the body frame displacements, the body pitch angle, the relative wing tip displacement, and the 
flatwise bending moment and torsional moment at the center of the vehicles for the scaled Model 1 are consistent 
with those of the full-size model (after results are factored to match the units of the full-size model). Once again, 
there is no consistence between the full-size model results and the scaled model which only matches Reynolds 
number but does not match Froude number. 

 
(a) Longitudinal displacement  

(b) Vertical displacement 
Figure 7. Body frame displacement response due to gust. 
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Figure 8. Body pitch angle response due to gust. 

 

 
Figure 9. Relative tip wing displacement with respect to vehicle half span response due to gust. 

 

 
Figure 10. Bending moment at the vehicle center response due to gust. 
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Figure 11. Torsional moment at the vehicle center response due to gust. 

 

IV. Conclusions 
An aeroelastic scaling methodology for (geometrically-nonlinear) very flexible aircraft has been presented. 

Based on theoretical derivation and numerical verification on a flying wing vehicle in free flight, the aeroelastic 
scaling laws for linear structure were extended to address geometrically nonlinear structures. A nonlinear aeroelastic 
analysis including static aeroelastic response, gust response and frequencies have been conducted on the full-size 
model and two sample scaled models using the University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox. 

The analysis results indicate that the current existing aeroelastic scaling law for linear structure is also suitable 
for geometrically nonlinear structure with large deformation. It was shown that the scaling factors for the linear and 
nonlinear parts of the stiffness matrix follow the same similarity rule. Moreover, it is imperative that the Froude 
number similarity be met. Reynolds number similarity is also important particularly for low-speed aircraft. In 
practice, however, matching the Reynolds number criterion may present a challenge in view of the other scaling 
factors when flying at low Reynolds numbers.  
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