
High-order schemes for cylindrical/spherical

geometries with cylindrical/spherical symmetry

Sheng Wang∗ and Eric Johnsen†

University of Michigan, Ann Arbor, MI 48109, USA

In this paper, we implement finite volume Weighted Essentially Non-Oscillatory (WENO)
schemes in both cylindrical and spherical coordinate systems for the Euler equations with
cylindrical or spherical symmetry. We analyze three different spatial discretizations: one
that is shown to be high-order accurate but not conservative, one conservative but not
high-order accurate, and one both high-order accurate and conservative. For cylindrical
and spherical coordinates, we present convergence results for the advection equation and
the Euler equations with an acoustics problem. We then use the Sod shock tube and the
Sedov point-blast problems in spherical coordinates coordinates to verify our analysis and
implementations.

I. Introduction

Across a variety of disciplines in science and engineering, physical systems that exhibit either cylindrical
or spherical symmetry are often encountered. Examples of interest include astrophysics (e.g., supernova
collapse), nuclear explosions, inertial confinement fusion (ICF) and naval engineering (e.g., cavitation-bubble
dynamics and collapse), amongst others. A natural approach to solving these problems numerically is to
discretize the governing partial differential equations in cylindrical/spherical coordinates. Historically, the
first such numerical studies were conducted by Von Neumann and Richtmyer17 in the 1940s for nuclear
explosions. To treat the discontinuities in a stable fashion, they introduced artificial dissipation terms to
the Euler equations. While this method correctly captures the position of shocks and satisfies the Rankine-
Hugoniot equations, discontinuities in the numerical solution are smeared out due to the excessive dissipation.

The collapse of cavitation bubbles and supernovae, and ICF share similarities in that they are all, un-
der ideal circumstances, spherically symmetric converging flows that involve material interfaces, accelera-
tions and shocks. Such flow are rarely ideal, insofar as they are prone to interfacial instabilities due to
accelerations (Rayleigh-Taylor16), shocks (Richtmyer-Meshkov2), or geometry (Bell-Plesset3,4). For large
three-dimensional perturbations, cylindrical/spherical coordinates may not be advantageous. However, in
a number of problems such as sonoluminescence,5 the spherical symmetry assumption is remarkably valid.
Modeling the bubble motion with spherical symmetry can greatly reduce the computational cost. Akhatov,
et al.1 used a first-order Godunov scheme to simulate the fluid behavior outside of bubble and the Rayleigh-
Plesset equation for the bubble dynamics. This approach is based on spherical symmetry assumption and
not able to capture the shock wave inside of single bubble.

Several recent studies in cylindrical and spherical coordinates have focused on the Lagrangian form. The
compressible Euler equations in cylindrical or spherical geometry have been studied by Maire,14 using a cell-
centered Lagrangian scheme, which ensures conservation of momentum and energy. These equations were
also studied by Omang et al.15 using Smoothed Particle Hydrodynamics (SPH), though SPH methods are
generally not high-order accurate. On the other hand, solving the equations in Eulerian form is not trivial,
especially when trying to ensure conservation and high-order accuracy. Li13 attempted to implement Eulerian
finite difference and finite volume weighted essentially non-oscillatory (WENO) schemes9 in cylindrical and
spherical grid, but did not achieve acceptable results. Johnsen & Colonius10,11 used cylindrical coordinates
with azimuthal symmetry to directly simulate the axisymmetric collapse of initially spherical gas bubbles in
shock-wave lithotripsy, by solving the Euler equations inside and outside the bubble.
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In this paper, we investigate three different spatial discretizations in cylindrical/spherical coordinates
with cylindrical/spherical symmetry using finite volume WENO. The governing equations are stated in
Section II and the spatial discretizations are presented in Section III. In Section IV, we test the different
discretizations on smooth problems (scalar advection equation, acoustics problem for the Euler equations)
for convergence, and with shock-dominated problems (Sod shock tube and Sedov point blast problems) for
conservation. The last section summarizes the present work and provides a future outlook.

II. Governing equations

The Euler equations describe the physics of inviscid, compressible flow. In cylindrical/spherical coordi-
nates with cylindrical/spherical symmetry these equations can be written in divergence form:

(ρ)t +
1

rα
(rαρu)r = 0, (1a)

(ρu)t +
1

rα
(
rαρu2

)
r

+ pr = 0, (1b)

(E)t +
1

rα
(rα (E + p)u)r = 0, (1c)

where t is time, r is the radial coordinate, p is the pressure, ρ is the density, E is the total energy, and α is
a geometric parameter, which is 0, 1, or 2 for Cartesian, cylindrical, or spherical coordinates, respectively.
Subscripts denote derivatives. For an ideal gas, the equation of state to close this system can be written:

p = (γ − 1) ε, (2)

where ε = E − ρu2/2 is the internal energy, and γ is the specific heats ratio. Here, diffusion effects are
neglected.

III. Spatial discretization

In this section, we analyze three different discretizations of the Euler Eqs.(1) in cylindrical/spherical
coordinates, based on different forms of the convective terms. While the discretized form of the Euler
equations in Cartesian coordinates is generally designed to conserve mass, momentum and energy, the
conservation condition does not necessarily hold in cylindrical or spherical coordinates, depending on the
numerical treatment of the equations. Here, finite volume refers to the WENO approach that is followed: first
a reconstruction of the appropriate variables, then application of a Riemann solver to obtain the appropriate
cell-edge value.

Method One

The first spatial discretization, labelled Method One here, can be found in Toro.18 The mass, momentum,
and energy equations are written in semi-discrete form:

dρi
dt

= −
(ρu)i+1/2 − (ρu)i−1/2

∆r
− α

ri
(ρu)i , (3a)

d(ρu)i
dt

= −
(ρu+ p)i+1/2 − (ρu+ p)i−1/2

∆r
− α

ri

(
ρu2
)
i
, (3b)

dEi
dt

= −
((E + p)u)i+1/2 − ((E + p)u)i−1/2

∆r
− α

ri
(u(E + p))i , (3c)

where ∆r is the linear radial cell width. Here,

ρi =
1

∆V

∫
Ii

ρdV, (4)

where Ii denotes cell i, and dV ∼ rαdr.
In Method One, physical variables expected to be conserved are not necessarily conserved numerically

because this approach is derived from differential form of the equations, rather than integral form. High-order
accuracy may be achieved with this method.
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Method Two

The second discretization, Method Two, is based on the integral form of the equation. The mass, momentum,
and energy equations are written in semi-discrete form:

dρi
dt

= −
rαi+1/2(ρu)i+1/2 − rαi−1/2(ρu)i−1/2

∆V
, (5a)

d(ρu)i
dt

= −
rαi+1/2(ρu2 + p)i+1/2 − rαi−1/2(ρu2 + p)i−1/2

∆V
+ S(r), (5b)

dEi
dt

= −
rαi+1/2((E + p)u)i+1/2 − rαi−1/2((E + p)u)i−1/2

∆V
, (5c)

where ∆V = 1
1+α (rα+1

i+1/2 − rα+1
i−1/2) and S(r) is the source term in momentum equation, which depending on

the chosen coordinate system can be expressed as:

S(r) =
rαi+1/2pi+1/2 − rαi−1/2pi−1/2

∆V
−
pi+1/2 − pi−1/2

∆r
. (6)

Depending on the reconstruction procedure, the first term may cancel the corresponding term in the mo-
mentum equation. In Method One, setting the geometrical source term to an average ((·)i+1/2 + (·)i−1/2)/2
in an attempt to preserve conservation yields Method Two. Again,

ρi =
1

∆V

∫
Ii

ρdV. (7)

With this approach, the relevant physical variables are expected to be conserved. However, high-order
accuracy may be difficult to achieve. This latter point can be readily understood by subtracting Method
Two from Method One, which is high-order accurate.

Method Three

The third spatial discretization, Method Three, is inspired by solutions to acoustics problems in cylindrical
and spherical coordinates. Multiplying Eqs. (1) by rα, the mass, momentum, and energy equations are
written in semi-discrete form:

d(rαρ)i
dt

= −
(rαρu)i+1/2 − (rαρu)i−1/2

∆r
, (8a)

d(rαρu)i
dt

= −
(rα(ρu2 + p))i+1/2 − (rα(ρu2 + p))i−1/2

∆r
+ α(prα−1)i, (8b)

d(rαE)i
dt

= −
(rα(E + p)u)i+1/2 − (rα(E + p)u)i−1/2

∆r
. (8c)

Here,

(rαρ)i =
1

∆r

∫
Ii

ρrαdr. (9)

With this approach, the conserved variables are (rαρ, rαρu, rαE). This approach is expected to be both
conservative and high-order accurate.

IV. Numerical results

In this section, we apply the three discretizations introduced in the previous section in four test cases
using fifth-order WENO in characteristic space with Local Lax-Friedrichs, and fourth-order accurate explicit
Runge-Kutta with a Courant number of 0.5 for time marching. First, we use two smooth problems (scalar
advection and acoustics for the Euler equations) to demonstrate the convergence properties of each method
for the interior solution, with no regards for boundary schemes. Next, we test conservation with two shock-
dominated problems (Sod shock tube and Sedov point blast problems).
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Exact solution at t = 1
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Figure 1. Initial conditions and exact solution after t = 1 for the advection equation.

1. Scalar advection problem

Before considering nonlinear systems, the scalar advection equation is investigated. The advection equation
in cylindrical and spherical coordinates with symmetry is written:

(φ)t +
c0
rα

(rαφ)r = 0, (10)

where φ is a scalar field, c0 is the (constant and known) wave speed. Here, c0 = 1. The initial conditions are

φ(r, 0) =

 sin4(πr)
rα , if 0 ≤ r ≤ 1,

0, if r > 1.
(11)

For this problem, the exact solution at time t = 1 is

φ(r, t) =

 sin4(π(r−c0t))
rα , if c0t ≤ r ≤ c0t+ 1,

0, otherwise.
(12)

The initial conditions and exact solution at t = 1 are shown in Fig. 1. Nearly identical set-ups are used for
the cylindrical and spherical cases, the only difference being the geometrical parameter: α = 1 for cylindrical
problems, and α = 2 for spherical problems.

The goal is to determine the convergence properties of each scheme, independently of boundary schemes.
The problem set-up is specifically chosen to prevent any boundary effects. Here, we show only the convergence
analysis results for cylindrical coordinates, as the convergence rate is similar for the spherical case. Grids
with N = 21, 41, 81, 161, 321, 641 are considered with constant ∆r, and the exact solution is used to evaluate
the error of each solution. Fig. 2 shows the L2 error norm to verify the order of accuracy. Methods One and
Three both achieve fifth-order accuracy, while Method Two is only second-order accurate, as expected from
the discussion in the previous section.

2. Euler equations: acoustics problem

Since a smooth problem is needed to verify convergence with the Euler equations, the acoustics problem
from Johnsen & Colonius6 is adapted to spherical coordinates. The initial conditions are

ρ(r, 0) =1 + εf(r), (13a)

u(r, 0) =0, (13b)

p(r, 0) =1/γ + εf(r), (13c)

(13d)
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Method Three, rate = 4.95

Figure 2. L2 error norm for all three discretizations for the advection equation.

with perturbation

f(r) =

 sin4(πr)
r , if 0.4 ≤ r ≤ 0.6,

0, otherwise.
(14)

For a sufficiently small ε (here 10−4), the solution remains very smooth. In this problem, the initial per-
turbation splits into two acoustic waves traveling in opposite directions. To prevent the singularity at the
origin and boundary effects, the solution is not computed there. This is not a problem, since the wave has
not yet reached that point by the final time. Again, grids with N = 21, 41, 81, 161, 321 and 641 are used
with constant ∆r. Although an exact solution to order ε2 is known, the result on the finest grid is used as
the reference to evaluate the error.

Fig. 3 shows the L2 error in density for this problem. The results show that Methods One and Three
remain high-order and in fact fall on top of each other, although the rate now is reduced to fourth order; it
should be noted that in Johnsen & Colonius6 fifth-order accuracy is not always readily achieved. For Method
Two, the rate is close to second order, as expected.

3. Sod shock tube

In this subsection, we consider the Sod shock tube problem12 in spherical coordinate. The initial condition
for the Sod’s problem is  ρ

u

p


L

=

 1

0

1

 ,

 ρ

u

p


R

=

 0.125

0

0.1

 . (15)

The domain size is 1 and 100 equally spaced grid points are used. The location of the “diaphragm” separating
the left and right states is r = 0.5. Non-reflecting boundary conditions are used at the origin and outlet;
since no wave reaches the boundaries over the duration of the simulation (final time: tfinal = 0.2), the
boundary scheme is irrelevant.

Fig. 4 shows density, velocity, pressure and internal energy profiles for this problem at the final time. On
this grid, all three methods produce similar profiles. However, the residuals of the total mass yield different
results, as observed in Fig. 5. While Methods Two and Three are conservative to round-off level, Method
One is not discretely conservative, as expected. Differences in shock position due to lack of conservation are
not clear in this case.
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Figure 3. L2 error norm for each discretization when solving the Euler equations. Results for Methods One
and Three fall on top of each other on this scale.

4. Sedov point-blast

Finally, we consider the Sedov point-blast problem in spherical coordinates. The problem starts from a
delta-function initial pressure perturbation at the center of uniform medium. Following the set-up of Fryxell
et al.7 the initial conditions are  ρ

u

p

 =

 1

0

1

 , (16)

except for a few computational cells around the origin, whose pressure is

p
′

0 =
3(γ − 1)ε

(α+ 1)πδrα
. (17)

Here, ε = 1 is the dimensionless energy. The domain size is 1, and N = 100 with uniform spacing. We
choose a constant δr to be three times as large as the cell size for N = 100. Reflecting boundary conditions8

are used along the centerline, and non-reflecting conditions are applied at the outlet. Due to the reflecting
boundary condition at the center, the high pressure region is made up of 6 cells, i.e., 3 ghost cells and 3 cells
in the interior. The solution is plotted at t = 0.2.

Density, velocity, pressure and internal energy profiles are shown in Fig. 6. The density profile and mass
residual for different grid size are potted in Fig. 7. The difference in shock location is striking for this
problem. Method One is non-conservative and thus produces an incorrect shock speed and thus location; it
appears to converge to the correct location with grid refinement. This result is confirmed by considering the
mass residual. For this problem, Method Three proved to be unstable at the present Courant number due
to the boundary scheme.

V. Conclusion

We analyzed three different spatial discretizations in cylindrical/spherical coordinates for the Euler equa-
tions using finite volume WENO. In particular, high-order accuracy and conservation were evaluated. Only
one of the methods achieved high-order accuracy and was conservative, but it could not handle the Sedov
problem at the present CFL. The other methods are either conservative or high-order accurate, but never
both.

Current work is underway to extend the analysis and implementations to finite difference and discontin-
uous Galerkin finite element methods and to incorporate diffusive effects. Reflecting boundary conditions
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Figure 4. Profiles at t = 0.2 for the Sod problem with 100 points.

are not trivial in terms of both high-order accuracy and conservation, and will be investigated subsequently.
This approach will form the basis for simulations of cavitation-bubble dynamics and collapse in the context
of cavitation erosion.
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Figure 6. Profiles at t = 0.2 for the Sedov problem with 100 points.
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(a) Method One, density
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(b) Method Two,density
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(c) Method One, mass residual
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(d) Method Two,mass residual

Figure 7. The density profile and mass residual for the Sedov blast problem, with different grid size, at t =
0.2
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