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In the present study, a discontinuous Galerkin (DG) framework is developed to
simulate chemically reacting flows. The algorithm combines a double-flux method
to account for variable thermodynamic properties, a Strang-splitting scheme for the
stiff reaction chemistry, a robust WENO-based shock limiter, and the non-linear
viscous-diffusive transport is discretized using the BR2 method. The algorithm
is verified and validated by considering a series of one- and two-dimensional test
cases, and results are compared with self-similarity solutions and experiments to ex-
amine critical algorithmic components. These cases include low-Mach deflagration
systems and supersonic inviscid and viscous problems. Multi-dimensional configu-
rations consider the shock-flame interaction and detonation initiation process. It is
shown that the reactive DG-method provides an accurate description of key-physical
mechanisms that control the ignition onset in confined detonation systems.

I. Introduction

Over recent years, considerable progress has been made on the theoretical and computational
development of Discontinuous Galerkin (DG) methods for hyperbolic conservation laws.1,2, 3, 4, 5

Compared to low-order finite difference/finite-volume schemes, DG-methods offer several advan-
tages. Specifically, the DG-method (i) allows for arbitrarily high order of accuracy that is deter-
mined through the selection of the basis functions; (ii) is able to capture discontinuities and strong
gradients of the solution without spurious oscillations; (iii) enables a compact discretization that
is, unlike conventional FD and FV methods, confined to the local element; (iv) is well suited for
advanced refinement strategies utilizing both local mesh-adaptation and refinement in polynomial
order (hp-refinement); and (v) exhibits optimal convergence properties.

Despite these advantages, main issues towards the successful utilization of DG-method are im-
proved robustness-requirements and the treatment of shocks and contact discontinuities.6 Two
main strategies have been proposed for shock capturing in the DG framework, namely artificial
viscosity7 and limiters. Since, however, we are interested in unsteady flow problems, the additional
stiffness that is accompanied with the artificial viscosity ansatz increases the computational com-
plexity. Therefore, the utilization of limiters appears to be a more suitable approach for application
to time-dependent chemical reacting systems.

Early efforts on developing limiters for DG-methods were presented by Cockburn & Shu.1,2

These schemes were restricted to quadratic polynomials, and over recent years, more robust limiting
procedures have been reported. In particular, Zhang & Shu8 developed a positivity-preserving
limiter for DG, which has been utilized in Euler flows with source terms. Later, Wang et al.9

∗Research Assistant, AIAA Member
†Assistant Professor, AIAA Member

1 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

1,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
30

67
 

 21st AIAA Computational Fluid Dynamics Conference 

 June 24-27, 2013, San Diego, CA 

 AIAA 2013-3067 

 Copyright © 2013 by Yu Lv, Matthias Ihme. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. 

 Fluid Dynamics and Co-located Conferences 



simplified this method, and employed this limiter in simulations of detonation waves with one-step
chemistry. Zhong & Shu10 developed a WENO-based limiter for structured meshes. Only recently,
the same group extended this limiter to unstructured tetrahedral meshes.11

The objective of this work is the development of a DG framework for compressible multi-
component chemically reacting flows under consideration of detailed reaction chemistry and complex
thermo-viscous-diffusive transport properties. This work extends previous developments for chem-
ical reacting Euler flows.12 The present work focuses on the fully reacting Navier-Stokes equations
with particular emphasis on the viscous-diffusion discretization. Based on the above-mentioned lim-
iting procedures, an element-local shock-capturing scheme is employed. Special attention is hereby
directed towards the utilization of detailed chemical kinetics and non-linear transport properties.
To this end, a Strang-splitting scheme is employed combining a time-explicit scheme for advec-
tive fluxes and a point-wise implicit scheme for advancing the stiff reactive and diffusive terms.
The computational method enables the description of combustion-physical processes in the full
Mach-regime, including deflagration and detonation systems.

The remainder of this paper is outlined as follows. The governing equations are presented in
Sec. II, and the spatial discretization is discussed in Sec. III. Algorithmic developments regarding the
treatment of non-uniform transport properties, time-integration, and shock-capturing are discussed
in Sec. IV. The resulting DG-method is applied to a series of test-configurations of increasing
physical complexity to demonstrate the accuracy and capability of this algorithm. The paper
finishes with conclusions and a discussion of further research directions.

II. Governing Equations

The present study is concerned with the two-dimensional multi-component reacting Navier-
Stokes equations. Written in vector form, these equations can be written as:

∂tU + ∂kF
c
k = ∂kF

v
k + S, (1)

where U is the state-vector, F c
k and F v

k are the convective and viscous fluxes in the kth direction,
and the source term is denoted by S. These terms take the following form:

U =



ρY1
...

ρYN

ρu

ρv

ρE


, F c

1 =



ρuY1
...

ρuYN

ρu2 + p

ρuv

u(ρE + p)


, F c

2 =



ρvY1
...

ρvYN

ρuv

ρv2 + p

v(ρE + p)


, (2)

F v
1 =



−Jx,1
...

−Jx,N
τxx

τxy

uτxx + vτxy − qx


, F v

2 =



−Jy,1
...

−Jy,N
τyx

τyy

uτyx + vτyy − qy


, S =



ω̇1
...

ω̇N

0

0

0


, (3)

where u, v, Yi, E and p refer, respectively, to the velocity components in x- and y-directions, mass
fraction of species i, specific total energy, and pressure. The total number of species is denoted by
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N . The density ρ is evaluated as

ρ =
N∑
i=1

(ρYi) , (4)

and Eqs. (1) are complemented by a state equation, relating pressure to density, temperature, and
species composition. In the present case, we consider the ideal gas law,

p = ρ
Ru

W
T , with W =

(
N∑
i=1

Yi
Wi

)−1

, (5)

where Ru is the universal gas constant, Wi is the molecular weight of species i, and W is the mean
molecular weight. The specific total energy of the mixture is given by:

E =

N∑
i=1

Yi

(
h0
f,i +

∫ T

T0

cp,i(T )dT

)
+

1

2

(
u2 + v2

)
− p

ρ
, (6)

where h0
f,i and cp,i denote the heat of formation and specific heat capacity of the ith species,

respectively. The specific heat capacity is temperature-dependent and evaluated in terms of a
polynomial expression.13

The viscous-diffusive terms, appearing in Eqs. (1), are written as:

Jk,i = −ρDi∂kYi , (7a)

τkl = µ(∂kul + ∂luk)− 2

3
µδkl∂mum , (7b)

qk = −κ∂kT , (7c)

in which the diffusive flux Jk,i is represented using Fick’s law, the viscous stress tensor is represented
by Newton’s law, and the conductive heat-flux is modeled using Fourier’s law. In Eqs. (7), Di refers
to the mixture-averaged diffusivity of the ith species, µ is the dynamic viscosity, and κ is the mixture
conductivity. These transport properties are evaluated using Chemkin transport libraries.14

III. Discontinuous Galerkin Discretization

To develop a discontinuous Galerkin, we start by writing the reactive Navier-Stokes equations
in index form:

∂tUj + ∂kF
c
kj − ∂kF v

kj − Sj = 0, (8)

where Uj refers to the jth component of the conservative state vector, and F c
kj and F v

kj are the
corresponding jth component of the inviscid and viscous flux along the kth spatial dimension.
F c
kj is a non-linear function of the full state vector, and F v

kj can be linearized with respect to the
gradients of the conservative variables.

A spatial discretization is then obtained by partitioning the computational domain Ω into a
set of non-overlapping cells {Ωe} with boundaries ∂Ωe. Then, we consider the finite-dimensional
functional space Vph, with

Vph = {φ|φ ∈ H1(Ωe), φ ∈ Pp(Ωe) ∀Ωe ∈ Th} , (9)

where Th is the mesh partition, and Pp denotes the space of polynomial functions of degree p. The
solution to Uj is approximated by the polynomial space as:

Uh
j (t,x) =

Np∑
q=1

Ũj,q(t)φq(x) , (10)
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where Ũj,q(t) is the time-dependent coefficient of the qth expansion term. A variational formulation
is then obtained by multiplying Eq. (8) by a test function φ and integrated over each element,(∫

Ωe

φrφqde

)
∂tŨj,q(t) +

∫
Ωe

φr∂kF
c
kjde−

∫
Ωe

φr∂kF
v
kjde−

∫
Ωe

φrSjde = 0 . (11)

In this equation, the first term on the left-hand-side (LHS) is the mass matrix and the fourth term
is element-local and can be directly evaluated using quadrature rule.

The second term is the advection term, and is treated by partial integration:∫
Ωe

φr∂kF
c
kjde = −

∫
Ωe

∂kφrF
c
kjde+

∫
∂Ωe

φ+
r F̂

c
kj(U

+
j , U

−
j )n̂kds , (12)

where n̂k is the outward pointing normal on ∂Ωe. On ∂Ωe, the notation ()+ and ()− refers to
the quantities taken from the interior and exterior of element Ωe, respectively. The elements are
essentially tied to each other through the numerical flux F̂ c

kj , which is here discretized using an

HLLC flux.15

The viscous-diffusive flux, appearing as the third term on the LHS of Eq. (11), includes second-
order derivatives. This term is linearized and expressed in terms of the conserved state-variables:

F v
kj = Aklji∂lUi (13)

with index i and l referring to the state-vector and spatial dimension, respectively. The fourth-
order tensor Aklji accounts for the differentiation of the viscous flux with respect to ∂lUi. The
discretization of the viscous term follows the second form of Bassi & Rebay (BR2),16 which takes
the following form:

−
∫

Ωe

φr∂kF
v
kjde =

∫
Ωe

∂kφrF
v
kjde−

∫
∂Ωe

φ+
r F̂

v
kjn̂kds , (14)

and the first term can be further expand as,∫
Ωe

∂kφrF
v
kjde = −

∫
Ωe

∂l
(
∂kφrAklji

)
Uide+

∫
∂Ωe

∂kφ
+
r A

+
kljiÛin̂lds (15a)

=

∫
Ωe

∂kφrAklji∂lUide−
∫
∂Ωe

∂kφ
+
r A

+
klji

(
U+
i − Ûi

)
n̂lds . (15b)

The two terms on the right-hand-side (RHS) of Eq. (15b) represent the interior contribution and
the dual consistency term, and the second term on the RHS of Eq. (14) refers to the viscous flux
across two neighboring elements. The notation ·̂ refers to the flux function at each discontinuity
between two elements. The selection of these flux functions is not arbitrary. By considering the
stability properties, the following flux function is used in BR2:

F̂ v
kj = {Aklji∂lUi} − η{δkj} and Ûh

i = {Uh
i } (16)

where the operator {·} := 1
2

(
(·)+ + (·)−

)
is the mean value across the element face, η is a constant

and δkj is a stabilization term that is associated with the element faces. In the BR2-method, δkj is
determined by solving the following local problem on each edge:∫

Ω+
e

δ+
kjφrde+

∫
Ω−e

δ−kjφrdx =

∫
∂Ωe

(
φrAklji

)(
U+
i − U−i

)
n̂lds (17)

where ∂Ωe denotes the face associated with the elements Ω+
e and Ω−e . With this treatment, the

discretization yield a compact stencil with good stability properties.
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IV. Algorithmic Developments

A. Treatment of Variable Thermodynamic Properties

The dependence of thermodynamic properties on temperature for a set of selected species is shown
in Fig. 1(a). Since the specific heat capacity has a direct effect on the combustion temperature and
species conversion, the commonly employed calorically perfect gas approximation cannot be used.
Therefore, variable and temperature-dependent thermodynamic properties require consideration.

1000 2000 3000 4000 5000
10

20

30

40

50

60

70

T [K]

c
p
[J

/
(
m
o
l·

K
)
]

(a) Specific heat capacity.

1000 2000 3000 4000 5000
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

T [K]

γ

 

 

Ar

H
2

O
2

H
2
O

(b) Adiabatic index.

Figure 1. Illustration of temperature-dependence of thermodynamic properties, showing (a) constant-
pressure mole-specific heat capacity and (b) adiabatic index.

However, it has been recognized that the consideration of variable thermodynamic properties
introduces spurious oscillations in fully-conservative flux formulations.17,18,19,20,21,22 This issue
appears to be more severe in the DG-method due to the higher-order discretization and associated
lower dispersion and dissipation properties. To address this issue, we will use the double-flux model
that was originally developed by Billet & Ryan.23 The key-idea of the double-flux method is the
construction of an intermediate state in which all thermal properties are frozen during the time-step
increment [t, t + ∆t]. To completely avoid spurious oscillations, piecewise profiles of the ratio of
specific heat capacities, γ, are assumed in each element. Furthermore, this treatment only affects
convective hyperbolic operators and does not influence diffusion and source terms. Utilizing this
model requires the reformulation of the specific total energy in the form that resembles the perfect
gas model.

By writing ckp = akT + bk for T ∈ [T k, T k+1], we can express the enthalpy as:

h = h0
f +

m−1∑
k=0

∫ Tk+1

Tk

(akT + bk)dT +

∫ T

Tm

(amT + bm)dT , (18)

and by precomputing the specific enthalpy over the discretized subintervals spanning T0 ≤ T ≤ Tm

we can write the above equation as:

h = ĥm0 + cp(T )T , (19)
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where ĥm0 combines the heat of formation and the integrated sensible enthalpy hms . With this, we
can write the specific total energy for the mixture in a form that is equivalent to that of a calorically
perfect gas:

E = ĥ0 +
p

ρ(γ − 1)
+
u2
j

2
.

With this, the procedure for evaluating the flux over the time-interval [t, t+ ∆t] is summarized as
follows:

1. Compute and store γ and ρĥ0 on each element

2. Compute the interior convection term in Eq. (12) using γ, and the boundary flux for two
adjacent elements as:

F+
j = F (U+

j , U
−
j , γ

+, ρĥ+
0 ) , (20a)

F−j = F (U+
j , U

−
j , γ

−, ρĥ−0 ) (20b)

3. Repeat step 2 for every sub-stage of the specified time marching scheme

4. Update γ and ρĥ0 at the new time step t+ ∆t

5. With least-square, correct the energy polynomial representation using updated values for γ
and ρĥ0.

B. Treatment of Stiff Reaction Chemistry

The development of computationally efficient numerical schemes for combustion requires the con-
sideration of chemical species that evolve on vastly different time-scales. Therefore, a splitting
scheme is used in which the non-stiff convection and diffusion operators are advanced using an
explicit scheme and the stiff chemical source terms are treated implicitly. The splitting scheme can
formally be written as:

U(t+ ∆t) = e0.5∆tF c
k e0.5∆tF v

k e∆tSe0.5∆tF v
k e0.5∆tF c

kU(t) (21)

where the solution operator etFu0 denotes dtu = F (u) with initial condition u(0) = u0. In this
scheme, the time step is solely controlled by the convection operator based on the CFL criterion.
The CFL number for different polynomial representations follows 1/(2p + 1). An implicit ODE
solver is employed for evaluating the reaction operator e∆tS , and a strong stability-preserving
Runge-Kutta method1 is used for evaluating the convection and diffusion operators, e∆tF c

k and
e∆tF v

k , respectively.

C. Shock-Capturing Scheme

To represent discontinuities, the weighted essentially non-oscillatory (WENO) based limiter for
quadrilateral elements by Zhong & Shu24 is used, exhibiting good accuracy-preserving properties
in smooth regions and robust shock-capturing capabilities. The limiter proceeds in two step: In
the first step, so-called troubled cells are identified using a shock-detector. In the second step,
the polynomial solution in the troubled cells are limited using information from its correspond-
ing neighbor cells. This is done in characteristic space by diagonalizing the local flux Jacobian
matrix Aj = ∂Fc

∂UUU |Ūj
. By denoting the left and right eigenvectors as R−1 and R, the local char-

acteristic variables are evaluated as V = R−1U . After limiting V in polynomial space using the
WENO-procedure,24 this state-vector is transformed back into physical coordinates. To apply this
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procedure to flows with variable thermodynamic properties, additional compatibility conditions
require consideration and these have been reported in Lv & Ihme.12 Furthermore, it has been
pointed out that the limiter acting on characteristic variables cannot guarantee the positivity of
the pressure value when transformed back into physical space. Therefore, to enhance the robustness
of the algorithm, the positivity preserving limiter25 is adopted on troubled elements after the above
limiting has been conducted.

V. Numerical Test Cases

In the following sections, a series of one- and two-dimensional test cases are consider in order
to examine the performance and accuracy of the developed reactive DG-formulation. We start by
considering three chemical inert compressible flow-field configuration in Sec. A, which is followed
by presenting simulation results for three reacting configurations. Throughout this investigation,
quantitative comparisons with experimental data or reported simulation results are presented.

A. Non-Reactive Test Cases

1. Shu-Osher Problem

The performance of the limiter is tested with a modified Shu-Osher problem. This problem considers
the interaction of a M = 3 shock with an entropy wave. Written in non-dimensional form, the one-
dimensional computational domain is x ∈ [−5, 5] and initial conditions are:

(ρ, u, p, YHe, YN2)T =

(3.8571, 2.6294, 10.3333, 0, 1)T if x ≤ −4,

(1 + 0.2 sin(5x), 0, 1, 1, 0)T if x > −4.
(22)

The computational domain is discretized using 200 elements, and Fig. 2 shown simulation results for
linear and quadratic polynomials at the non-dimensional time t = 1.8. In this figure, open symbols
are simulation results, and the solid line refers to the “exact” solution, which is obtained from a
DG-solution with p = 2 and a discretization having 200 elements. This comparison shows that
significant improvements in accuracy can be obtained with increasing polynomial order. Further,
the benefit of the high-order polynomial representation is not deteriorated by the limiting procedure.

2. Two-dimensional Shock Diffraction at 90◦-Corner

The limiter and high-order polynomial representation are further tested in a 2D shock diffraction
case. In this case, a shock with a Mach number of 2.4 is expanded over a 90◦ corner.26 The detailed
problem configuration and related experimental results are presented in Fig. 3. In this case, two
different element sizes, namely ∆x/D = 0.01 and ∆x/D = 0.005, are used for convergence analysis,
and linear and quadratic polynomials are considered. Computational results on the fine mesh are
shown in Fig. 4 for both polynomial solution orders. Compared to measurements,26 the simulation
results correctly reproduce the wave interaction around the corner. Even for this problem with
corner-singularity, the limiting procedure remains robust. The benefit of the high-order scheme is
apparent, which is most notable in the region of the vortex recirculation (see Figs. 4 and 5(a)).
The computed value of minimum density in the corner vortex is used for validation. Comparisons
with results by Hillier27 and Riplet et al.28 are presented in Fig. 5(b), showing good agreement and
convergence to the reference data for increasing polynomial order.
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(a) p = 1
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x

ρ
(b) p = 2

Figure 2. Simulation results for the multi-component shock/density-wave interaction problem at
t = 1.8, showing density profiles for (a) linear polynomial (p = 1) and (b) quadratic polynomial (p = 2)
basis functions. Open symbols are simulation results, and the solid line refers to the “exact” solution.

(a) Schematic of shock diffraction problem. (b) Schlieren measurements.

Figure 3. Schematic of configuration and experimental results26 for a shock-diffraction problem with
initial shock Mach number of 2.4.
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(a) Polynomial order: p = 1. (b) Polynomial order: p = 2.

Figure 4. Instantaneous density fields for shock-diffraction case using (a) linear and (b) quadratic
polynomial order; contour lines are evenly distributed.
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 p  = 2, x  = 1.20

 p  = 2, x  = 1.25

 p  = 1, x  = 1.15
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(a) Density profile across diffraction region.
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current,  p  = 2

(b) Minimum density inside corner vortex.

Figure 5. (a) Density profiles for the shock diffraction case and (b) comparisons of minimum density
location with reference data by Hillier27 and Ripley et al.28
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3. Supersonic Laminar Boundary Layer

This two-dimensional test case examines the implementation of the viscous fluxes in conjunction
with the limiting procedure. To this end, we consider a supersonic free stream boundary layer
at a Mach number of 2.0. In this configuration, an adiabatic wall boundary condition is imposed
at the bottom, and all other sides are treated by Neumann boundaries. Simulations with linear
and quadratic polynomial order are performed. Parameters that are used for the simulation are
summarized in Tab. 1. The viscosity is computed using Sutherland’s law and the Prandtl number
is set to a value of 0.75. The global Reynolds-number evaluated with respect to the length of the
domain is ReL = 100 and the element size is ∆x/δL = ∆y/δL = 0.16, where δL is the boundary
layer thickness at the end of the computation domain which is computed as δL = 1.978L/

√
ReL

according to the self-similarity assumption.29

Simulation results are presented in Figs. 6-7. The instantaneous temperature field is presented
in Fig. 7, showing the formation of a shockwave that is anchored at the inlet of the domain. Com-
parisons of temperature profiles in wall-normal direction for different polynomial discretizations and
the solution of self-similarity are presented in Fig. 7. From this comparison it can be seen that the
results for p = 1 and p = 2 are both in good agreement with the similarity solution. A quantitative
analysis showed that the higher-order discretization provides a more accurate description of the
temperature in the near-wall region.

ue [m/s] Te [K] pe [Pa] Mae νe [m2/s]

639 289 123616 1.875 1.204×10−5

Table 1. Simulation parameters and operating conditions for the compressible laminar boundary layer
simulation.

x/L

y
/L

Figure 6. Computed temperature field for compressible laminar adiabatic boundary layer.

B. Reactive Test Cases

1. One-dimensional Hydrogen/Oxygen/Argon Deflagration System

The objective of this configuration is to evaluate the viscous implementation using nonlinear trans-
port properties, the assessment of the hyperbolic operator at low-Mach number conditions, and algo-
rithmic compatibility with the detailed chemistry solver. To this end, a one-dimensional H2/O2/Ar
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(a) Polynomial order: p = 1.
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(b) Polynomial order: p = 2.

Figure 7. Comparison of wall-normal temperature profiles for (a) linear and (b) quadratic polynomial
order. Symbols denotes self-similar solution based on the approaches in book.29

deflagration system at a molar ratio of 2:1:7 is considered. The conditions in the unburned mix-
ture are p = 1 bar and T = 300 K. The reaction chemistry is described by the detailed chemical
mechanism due to Westbrook,30 consisting of 9 species and 34 elementary reaction steps. To avoid
acoustic reflections at the boundaries, a characteristic-based non-reflective boundary condition is
imposed at the left side. The temperature field is initialized using a tangent hyperbolic profile. As
shown in Fig. 8, the flame gradually reaches a constant propagation speed after ignition.

Comparisons of the computed flame speed for different spatial resolutions and polynomial orders
are summarized in Tab. 2. The prediction is further verified by comparing against Chemkin results
as shown in Fig. 9. In all computations the flame-speed is evaluated at the location at which the
temperature is equal to 400 K. The predicted flame speed from Chemkin is 1.111 m/s.

∆x = 100µm ∆x = 50µm

p = 1 0.1897 m/s 1.210 m/s

p = 2 1.205 m/s 1.204 m/s

Table 2. Comparison of the computed flame speed obtained for different mesh-resolutions and poly-
nomial orders.

2. One-dimensional Viscous Detonation System

This test-case combines all algorithmic developments to simulate a viscous detonation system under
consideration of detailed reaction chemistry. For this case, we consider the same H2/O2/Ar mixture
as in the previous study, but initial pressure and temperature are now set to 6670 Pa and 298 K. The
spatial discretization is identical to that used in the previous section. The mixture is initialized by
the Chapman-Jouguet jump condition, and after a transitional period the mixture ignites, resulting
in the formation of a stationary Zeldovich-von Neumann-Döring (ZND) detonation structure.

The detonation speed is evaluated by tracking the detonation front-location, which is here
associated with the temperature of 400 K. Figure 10 shows temperature profiles of the converged
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(b) Space-time diagram of flame location.

Figure 8. Temperature and space-time diagram for one-dimensional H2/O2/Ar deflagration system
(p = 2, ∆x = 50µm).

solution obtained on a mesh with element size of 50 µm and quadratic polynomial representation.
From Fig. 10(b) it can also be seen that the detonation front propagates at a constant speed.

Since this problem does not have any analytic solution, a convergence study is first conducted
using different grid sizes and polynomial order. The converged solution is then compared to the
inviscid calculation that was reported by Lv & Ihme.12 The computed detonation speed are sum-
marized in Tab. 3. Figure 11 provides a more detailed comparison of the detonation structure,
showing temperature, density, and species mass fraction of hydroxyl and molecular hydrogen. At
the shock front, the improvement in the shock resolution by increasing the spatial resolution can
be observed. The representation of the reaction zone using quadratic polynomial basis functions
results in comparable accuracy as linear polynomials on the finer grid.

∆x = 100µm ∆x = 50µm

p = 1 1633.3 m/s 1655.2 m/s

p = 2 1649.5 m/s 1654.3 m/s

Table 3. Comparison of detonation speed for different grid resolutions and polynomial orders; Argon-
diluted H2/O2 mixture.

3. Two-dimensional Shock/Flame Interaction

The objective of this test case is to demonstrate the capability of the developed DG framework
for application to multi-dimensional flow-field simulations. For this, we consider a shock-flame
interaction configuration that was also consider by Taylor et al.31 The setup is shown in Fig. 12.
The geometry mimics a shock tube configuration with a length of 22.8 mm in stream wise direction,
and 7.6 mm in height. Symmetric boundary conditions are applied at the center plane so that only
the upper half of the domain is considered in the simulation. The domain is initially filled with a
stoichiometric hydrogen/air mixture at 1 atm and 300 K. To facilitate ignition, a cylindrical kernel
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Figure 9. Comparison of deflagration flame structure for different polynomial representations and
spatial resolutions, and Chemkin reference solution.
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(b) Flame location.

Figure 10. H2/O2/Ar mixture detonation flame evolution along simulation time (p = 2, ∆x = 50µm)

of equilibrium reaction products is placed inside the domain. The kernel has a radius of 3 mm and
is located 11.7 mm away from the end-wall. A shock wave with a Mach number of 2.8 is initially
imposed at 7.7 mm from the left boundary. The shock wave propagates to the right, where it
interacts with the cylindrical flame kernel and is eventually reflected at the end-wall. To simulate
this configuration, we consider quadratic polynomial basis functions (p = 2) and the element size
is ∆x = ∆y = 25µm (corresponding to 138,624 elements). The reaction chemistry is described by
the recently updated high-pressure hydrogen-mechanism due to Burke et al.32 Simulations with
and without consideration of viscous effects are performed for comparisons. All walls are treated
as no-slip conditions for the viscous simulations while slip-walls are prescribed for the inviscid
simulation.

Simulation results are presented in Fig. 13, showing on the left to viscous results, and results of
the Euler simulation are given on the right. The simulations capture all critical features that are
associated with the viscous heating and flame initialization process. Compared with the inviscid
computation, the viscous simulations show that the ignition is initiated by the viscous heating in the
boundary layer, resulting in the formation of a deflagrative ignition kernel away from the end-wall.
Furthermore, shock bifurcation is observed in the viscous case which is a result of the interaction
of the reflected shock/detonation wave with the boundary layer. The ignition in the inviscid case is
followed by a detonation wave, while the viscous case follows a transition process from deflagration
to a detonation mode. These mechanisms that are predicted with the DG-method are qualitatively
consistent with denotation physics. However, additional simulations and refinement studies are
necessary to further assess convergence, and this is the subject of future research.

VI. Conclusion

In this contribution, a discontinuous Galerkin method is developed for the simulation of com-
pressible viscous multi-component flows with detailed reaction chemistry. The algorithm combines
a double-flux method to account for variable thermodynamic properties, a Strang-splitting scheme
for the stiff reaction chemistry, a robust WENO-based shock limiter, and the non-linear viscous-
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Figure 11. Comparison of the current prediction to CHEMKIN calculation

Figure 12. Simulation setup for two-dimensional shock flame interaction case
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(a) Navier-Stokes, t = 14µs (b) Euler, t = 14µs

(c) Navier-Stokes, t = 15µs (d) Euler, t = 15.2µs

(e) Navier-Stokes, t = 16µs (f) Euler, t = 16µs

(g) Navier-Stokes, t = 19µs (h) Euler, t = 19.2µs

Figure 13. Comparison of the viscous and inviscid cases
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diffusive transport is discretized using the BR2 method. A series of one- and two-dimensional
test cases are considered to assess the performance and accuracy of this DG-algorithm. These
cases included low-Mach deflagration systems and supersonic inviscid and viscous problems. The
multi-dimensional configurations considered the shock-flame interaction and detonation initiation
process. It was shown that the reactive DG-method provides an accurate description of key-physical
mechanisms that control the ignition onset in confined detonation systems.
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