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A new set-up is proposed to numerically investigate turbulent multi-material mixing
in the presence and in the absence of a gravitational field. The set-up consists of an ini-
tial unperturbed interface that separates two fluids in an existing isotropic velocity field.
The initial unperturbed interface evolves into a turbulent multi-material mixing region
due to the fluctuating velocity field. For simulations without gravity, the initial velocity
field decays, while the simulations with gravity are Rayleigh-Taylor unstable, such that
the misalignment of the pressure and the density gradients generates baroclinic vorticity
feeding the instability. The flow parameters are chosen such that the density fields are dif-
ferent, but that the kinetic energy decays at the same rate in both fluids. Direct numerical
simulations are performed using a high-order accurate minimally dissipative kinetic-energy
preserving and interface-capturing scheme. Results with and without gravity are compared
to investigate flow isotropy and intermittency. The current results suggest that the initial
anisotropy in the composition is not sufficient to make the initial isotropic field anisotropic
in the absence of gravity.

I. Introduction

Many astrophysical problems are driven in large part by hydrodynamics. For instance, in core-collapse
supernovae, astrophysical jets, stellar formation, etc., large density gradients interact with shock waves

or are accelerated, thus leading to hydrodynamic instabilities (e.g., Rayleigh-Taylor, Richtmyer-Meshkov,
Kelvin-Helmholtz) that grow and evolve into turbulence. Specifically, the Rayleigh-Taylor instability (RTI),
a process by which the misalignment of the pressure, e.g., through a gravitational field, and the density
gradients at unstably stratified interfaces generates baroclinic vorticity, can transition from a laminar flow
field to a fully mixed turbulent field.1 In many cases, the pressure gradient is produced by a hydrostatic
gravitational field.

A better understanding of turbulent mixing can significantly improve our knowledge of late-time behavior
of these instabilities. Turbulent mixing is a multiscale process in which fluids are entrained at the largest
scales, transported (dispersed) by eddies of varying sizes, and molecularly mixed at the smallest scales where
diffusion acts.2 This multiscale process is an effective means to mix different fluids with several consequences
in nature and engineering. While turbulent mixing is beneficial in combustion and supernova explosion, it
can provide challenges in the design of inertial confinement fusion capsules as mixing between the fuel and
ablator quenches the fuel, preventing high pressures and temperatures to be achieved. Turbulent mixing is
categorized based on its influence on flow dynamics into three different levels based on Dimotakis:2

• Level I: Flow dynamics are decoupled from mixing. Examples include mixing of density-matched gases,
advection of passive scalars, e.g., the dispersion of nonreacting trace markers, such as pollutants.

• Level II: Mixing and flow dynamics are coupled. For instance, mixing in the RTI has a direct conse-
quence on flow dynamics as it can significantly change the amount of baroclinic vorticity deposited in
the mixing region.
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• Level III: Mixing is coupled to the dynamics by modifying the fluid(s). The changes can be in compo-
sition, density, pressure, or enthalpy, e.g., due to chemical reactions in combustion.

Level II mixing, the focus of this work, has been mostly studied in the context of the multi-mode RTI.3,2, 4

Theoretical and experimental investigations of such flows are challenging due to the highly nonlinear dynam-
ics and wide range of spatial and temporal scales. Numerical simulation has emerged as a useful tool that
can provide a wealth of data otherwise difficult to obtain. Over the past few decades, computations of these
instabilities have been able to test the accuracy of assumptions in analytical models and address some of the
fundamental questions regarding these hydrodynamic instability-driven turbulent fields.4,5 However, there
remain significant unknowns in these flows, particularly regarding the late-time turbulent multi-material
mixing behavior, especially with multi-mode initial conditions. Previous direct numerical simulations (DNS)
suggest that while these flows become anisotropic at large scales, they remain isotropic at small scales.4,3 In
the RTI, the anisotropy at large scales is typically related to the directional gravitational force as well as the
initial anisotropy in the mass fraction and density profiles. Much of the efforts in past studies was focused
on predicting the growth rate; flow intermittency was only reported recently.6,7

In this paper, we propose a novel set-up to investigate Level II mixing in the presence and in the absence
of gravity. Two fluids in an existing decaying isotropic field are considered. The initial unperturbed interface
between the two fluids evolves into a turbulent multi-material mixing region. The simulations without gravity
allows us to determine whether anisotropy in the composition alone leads to anisotropy in the velocity field.
Flow isotropy and intermittency in different directions are investigated in detail. This paper is organized as
follows. In Section II, the governing equations and the numerical method are described briefly. The decaying
isotropic turbulence problem is discussed in section III. Sections IV and V contain the description and results
for the new set-up with and without gravity, respectively.

II. Problem framework

A. Physical model

The focus of the present work is on mixing mechanisms between two perfect gases due to a turbulent field in
the presence and in the absence of gravity. The non-dimensional compressible Navier-Stokes equations are
considered:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0, (1a)

∂(ρui)

∂t
+

∂

∂xj
(ρuiuj + pδij) =

1

Re

∂τij
∂xj

+ ρgi, (1b)

∂E

∂t
+

∂

∂xj
[uj(E + p)] =

1

Re

[
∂

∂xj
(uiτij) +

∂

∂xj

[
k
∂T

∂xj

]
+

1

Sc

∂

∂xj

[
ρ
∂Y

∂xj

]
(h1 − h2)

]
+ ρujgj , (1c)

∂ρY

∂t
+
∂ρujY

∂xj
=

1

ReSc

∂

∂xj

[
ρ
∂Y

∂xj

]
, (1d)

where ρ is the density, p the pressure, ui the velocity, gi the gravity, E the total energy per unit volume, T
the temperature, Y the mass fraction, k the thermal conductivity, h the enthalpy, Re the scaled Reynolds
number, and Sc is the Schmidt number. The viscous stress tensor τij for Newtonian fluids is given by

τij = µ

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3

∂uk
∂xk

δij

]
, (2)

where µ is the viscosity. The viscosity (and similarly for the thermal conductivity) of the mixture is deter-
mined from Herning and Zipper8 approximation:

µ =
µ1Y1M

−1/2
1 + µ2Y2M

−1/2
2

µ1M
−1/2
1 + µ2M

−1/2
2

, (3)

where M is the molecular weight. The ideal gas law for a binary mixture reads

p

ρ
=
R̄T

M
, with

1

M
=

Y1
M1

+
Y2
M2

(4)
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where R̄ is the universal gas constant.
The two fluids can have different density, pressure, temperature, molecular weight, viscosity, and thermal

conductivity based on the initial set-up. Non-dimensionalization is performed using the light-fluid density,
ρ1, the length l = L/ (2π) where L is the computational domain width, the velocity uref =

√
gl, the pressure

p = ρ1u
2
ref , the light-fluid gas constant, R1, and the temperature of unity. The specific heats ratio, γ, is set

to 1.4 for both fluids; the Schmidt number is unity corresponding to a gas-gas mixture; the Prandtl number,
Pr, is set to 0.7 in both fluids and the gravity vector is (0, 0,−1) in the non-dimensional space corresponding
to the Froude number, Fr, of unity for the simulations with gravity. The non-dimensional quantities are
related to the scaled variables as

Re =
ρ1luref
µ1

, Sc =
µ1

ρ1D
, Pr =

cpµ

k
, Fr =

uref√
gl
, (5)

where D is the mass diffusivity, and the specific heat at constant pressure cp can be written:

cp =
γ

γ − 1
R. (6)

For simplicity, we set µ1 = 1 and define the scaled Reynolds number, Re, in Eq. 12 later.

B. Numerical method

Finite differences are used to numerically solve the compressible Navier-Stokes equations for multiple fluids.9

A sixth-order explicit central scheme is used to approximate advection fluxes. Aliasing errors are minimized
using the split form for advection. In particular, the cubic advection terms in Eq. 1 are expanded as

∂

∂xj
(ρujφ) =

1

2

∂

∂xj
(ρujφ) +

1

2
uj

∂

∂xj
(ρφ) +

1

2
ρφ
∂uj
∂xj

, (7)

following Blaisdell et al.10 where φ = (1, ui, (E + p)/ρ, Yi). The flux of Ducros et al.11 for the split form is
used to satisfy the summation by part in periodic domains and ensures conservation as well. Diffusive terms
are discretized in non-conservative form:

∂

∂x

(
µ
∂u

∂x

)
= µ

∂2u

∂x2
+
∂µ

∂x

∂u

∂x
, (8)

thus resulting in better accuracy, robustness, spectral representation of diffusive effects at high wavenumbers,
and preventing odd-even decoupling.12 A third-order accurate strong stability preserving (SSP) Runge-
Kutta scheme is used for explicit time marching.13 When needed, nonreflecting boundary conditions are
implemented in characteristic form using one-sided differences.14 The code is written in FORTRAN and
parallelized using MPI, including HDF5 for parallel I/O.

III. Freely decaying homogeneous isotropic turbulence

In this section, we discuss the decay of homogeneous isotropic turbulence,15 which is used to initialize
the problems under consideration. The initial conditions consist of a random solenoidal velocity field in a
triple periodic box of size [2π]

3
with an energy spectrum that satisfies

E (k) = 16

√
2

π

u2rms
k0

k4

k40
exp

(
−2k2

k20

)
∼ k4 exp

(
−2k2

k20

)
, (9)

where k0 is the most energetic wavenumber and λ0 = 2/k0 is the initial Taylor microscale.15,16 The density
and pressure fields are initially uniform. The turbulent Mach number, Mt, and Reynolds number based on
the Taylor microscale, Reλ, are the main parameters defined as

Mt =

√
〈uiui〉
〈c〉

, Reλ =
〈ρ〉urmsλ
〈µ〉

, (10)
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where

urms =

√
〈uiui〉

3
, λ2 =

〈
u2i
〉〈(

∂ui
∂xi

)2〉 . (11)

Here c is the sound speed, and λ is the Taylor microscale. The important time scale of the problem is the
eddy turn-over time defined as τ = λ0/urms0 . The viscosity, µ, is set to unity and the scaled Reynolds
number can be obtained in terms of the initial Taylor-scale Reynolds number:

Re = Reλ

[
ρurms,0λ0

µ

]−1
. (12)

For each k0, the velocity field is generated on the finest grid (N3 = 5123) and filtered spectrally onto
coarser grids. The initial energy spectrum corresponds to Batchelor turbulence (E(k) ∼ k4) at low wavenum-
bers and has an exponential decay at high wavenumbers in the viscous subrange. The energy cascade transfers
energy to higher modes during the process, resulting an initial increase in the vorticity field and in an in-
ertial range. During this transition, different turbulent modes (acoustic, vorticity, and entropy) also reach
an equilibrium state.17 Fig. 1 shows the evolution of different quantities of interest at Reλ = 60 − 200 and
Mt = 100. The skewness of the velocity derivatives,

S =

〈
1
3

(
∂ui
∂xi

)3〉
〈

1
3

(
∂ui
∂xi

)2〉1.5 , (13)

reaches a maximum negative value of approximately −0.55 at t ≈ 0.6τ , consistent with past work.18 A
skewness of zero corresponds to a Gaussian field, expected for an isotropic problem; however, the skewness
of the velocity derivatives becomes negative as a direct consequence of the energy cascade. The vorticity
reaches its peak after an initial transient. This transient and the maximum peak increases as the initial Reλ
is increased. Another observation is that λ decreases as the initial Reλ increases, as expected since larger
Reλ leads to a greater scale separation. Since there is no external source providing energy to the turbulence,
the total kinetic energy decays due to viscous dissipation. This results in a continuous decay of Mt as well.

Mach number effects are summarized in Fig. 2 where several simulations at Reλ = 100, and Mt = 0.1−0.5
are reported. Shocklets may form at sufficiently high Mt and may thus require shock capturing, but the
central scheme in the split form used here was found stable for all of the simulations. Although the average
values of normalized dilatation at Mt = 0.1 is negligible, it increases at higher Mt as compressibility effects
become more important.

IV. Multi-material mixing in the absence of gravity

A. Initial set-up

The computational domain consists of a rectangular parallelepiped with square cross-section of size L×L×
10L, with L = 2π (see Fig. 3). The initial mass fraction field is generated in z without any perturbations in
the x− y plane (Fig. 4):

Y (z) =
1

2

[
1− erf

(
z − z0
δ

)]
, (14)

where z0 = 0 is the mid-plane location separating the two fluids corresponding to Y1 = 0.5. The δ = 8
128L

corresponds to the sharpest interface profile that the central scheme is capable of resolving with no shock-
capturing on a N = 128 point per L grid. The density in the light fluid, ρ1, is the reference density. Pressure
is uniform initially in the absence of gravity. To achieve an isothermal field the properties of the heavy and
light fluids are related as follows:

R2

R1
=
M1

M2
=
ρ1
ρ2
, pinitial = Tinitial = 2πL (ρ1 + ρ2) . (15)
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Figure 1. Temporal evolution of different quantities for the decaying isotropic turbulence problem at Reλ = 60
(gray), 100 (blue), 140 (green), 200 (red) and Mt = 0.1.

In the mixing region, the initial density profile is obtained by assuming the limit of two miscible incompress-
ible flows as:3

1

ρ
=
Y1
ρ1

+
Y2
ρ2
. (16)
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Figure 2. Temporal evolution of different quantities for the decaying isotropic turbulence problem at Reλ = 100
and Mt = 0.1 (red), 0.2 (green), 0.3 (blue), 0.4 (gray), 0.5 (yellow).

The velocity field described in section III is used to initialize the problem. An initial velocity field is
generated in a box of size L3 and, given the periodicity of the problem, ten boxes are put next to each other
in the z-direction to make up the full domain. Although Thompson’s approach14 is followed to simulate
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Figure 3. Computational set-up for the mixing problem. An unperturbed diffuse material interface separating
two fluids evolves to a multi-material mixing region in the presence of an existing isotropic turbulent field.

z/L

Y
1

-5 -4 -3 -2 -1 0 1 2 3 4 5

0
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0.4

0.6

0.8

1

(a) Mass fraction.

z/L

ρ

-5 -4 -3 -2 -1 0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

(b) Density.

Figure 4. Initial mass fraction (left) and density (right) profiles for ρ2/ρ1 = 3, and N = 256 per L.

non-reflecting boundary conditions in the z-direction at the ends, numerical errors may occur if the initial
turbulent region is extended up to the boundaries. To avoid these challenges, an error function is used to
damp the turbulence close to the boundaries and a long domain length in the z-direction (10L) is considered
to minimize the effects of boundaries on the evolution of the mixing region. To prevent generating unphysical
waves at the interface in the presence of finite mass physical diffusion, an additional velocity is prescribed
at the interface:

ui = − D

ReSc

1

ρ

∂ρ

∂xi
. (17)

In the current set-up, pressure is initially uniform. Thus, unlike in the Rayleigh-Taylor instability, no
significant baroclinic vorticity is generated at the interface (other than from the interaction between acoustic
and entropy modes). Thus, the turbulence decays similarly to that described in section III, as there is no
source to feed energy into the system. While the initial velocity field is isotropic and homogeneous, an
inhomogeneity is introduced into the set-up at the interface due to the composition and density change
across the interface in the z-direction. Mixing between the two fluids can be considered as simplified Level
II mixing. The key turbulent properties in the heavy and light fluids are related as follows:

Reλ2
Reλ1

=
ρ2µ1

ρ1µ2
, Mt2 = Mt1

√
ρ2
ρ1
. (18)
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Figure 5. Temporal evolution of the mass fraction field.

B. Results

In this section, we will consider the following initial conditions to investigate Level II mixing and quantify
isotropy and intermittency in the mixing region:

ρ2
ρ1

=
µ2

µ1
= 3, Reλ1

= Reλ2
= 60, Mt,1 = 0.1, Sc = 1. (19)

1. Growth rate

The average velocity in all directions is zero for the initial velocity field, i.e., there is no mean advection.
Thus, any variation in the mass fraction is a consequence of the flow being transported by turbulence (eddies
of different sizes) in the presence of finite mass diffusion. The mixing between the two fluids falls in the
category of Level II mixing as the two fluids have different densities, and the interdiffusion of the two fluids
into each other introduces an additional energy transfer mechanism through the following term in the energy
equation:

1

ReSc

∂

∂xj

[
ρ
∂Y

∂xj

]
(h1 − h2) . (20)

It is noted that Soret and Dufour diffusion processes are expected to be small and are thus neglected.
The initial fluctuating velocity field perturbs the interface and spikes/bubbles of the heavier/lighter fluid

penetrate into the lighter/heavier fluid. The spike and bubble locations are defined as the position where
〈Y1〉 ≤ 0.99 and 〈Y1〉 ≥ 0.01, respectively, where the brackets 〈·〉 represent the mean average operator in
the x − y plane. The amplitude of growth is defined as the average of the bubble and spike growth; this
amplitude is thus sensitive to the threshold chosen. To minimize statistical fluctuations, amplitude can also
be measured as follows:3

h = 2

∫ ∞
−∞

min (〈Y1〉 , 〈Y2〉) dz. (21)

Fig. 6 shows the time evolution of the bubble, spike and amplitude. The Atwood number A = (ρ2 −
ρ1)/(ρ2 + ρ1) is 0.5. For simulations with gravity at this Atwood number, the spike growth rate is expected
to be larger than that of the bubble. A similar behavior is observed here in the absence of gravity. The
higher growth rate of the spike can be associated with the higher mass-average kinetic energy of the heavier
fluid, which makes it easier for the heavier fluid to push the lighter fluid and penetrate into it. The mass
fraction field shown in Fig. 5 suggests that the mixing region grows self-similarly after 5τ . One-dimensional
turbulence-diffusion models can be used to describe the observed growth rate.19
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Figure 6. Temporal evolution of the amplitude of the mixing region.
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Figure 7. Temporal evolution of (a) kinetic energy and (b) enstrophy during the first five eddy-turn over time.

2. Turbulence statistics

The spatial distribution of the kinetic energy, 〈uiui〉, and enstrophy, 〈ωiωi〉 are depicted at different times
in Fig. 7. Although the two fluids have different densities, the velocity field decays at the same rate in both
fluids since the kinematic viscosity, and thus Reλ, are the same in the two fluids. This feature is desirable
here as an energy jump across the interface leads to flow anisotropy.20,21 The same decay rate ensures that
any anisotropy at later times, if observed, is a consequence of the anisotropy in the composition rather than
the energy jump across the interface.

Fig. 8 shows the root-mean-square (rms) fluctuations of the density and mass fraction, and also the
velocity-mass fraction correlation. At each x− y plane, the rms of a fluctuating field X is defined as:

Xrms =
〈

(X − 〈X〉)2
〉
. (22)

The fluctuation profiles at the spike front are very similar when h is used for non-dimensionalization. This
is in agreement with the self-similar growth described in the previous section. The fluctuations also decay as
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the velocity field decays due to viscosity. There is a positive scalar flux from fluid 1 to fluid 2. The results
suggest that the center of high intensity in the mixing region is skewed toward the lighter fluid. This shift
of the highest intensity fluctuations from the mid-plane is in agreement with the higher growth observed for
the spike compared to the bubble.

Next, we consider the different length scales relevant to the problem. These length scales are evaluated
in the mixing region, defined as the region between x − y planes of mean mass fraction values of 0.25 and
0.75. The Taylor microscale can be considered representative of the internal viscous shear-layer thickness
associated with large-scale motions spanning the full transverse extent of the flow, i.e., the smallest scale
of the large-scale eddy motions.2 The Kolmogorov scale is the smallest scale of turbulence associated with
viscous dissipation of turbulent kinetic energy. The Taylor microscale, λi, and an estimate of the Kolmogorov
microscale, ηi, in the ith direction can be defined as:4

λi (z, t) =

 〈
u2i
〉〈

(∂ui/∂xi)
2
〉
1/2

, ηi (z, t) =

(
(νRe)

3

εi

)1/4

(no sum in i), (23)

where

εi (z, t) = 15νRe

〈(
∂ui
∂xi

)2
〉

(no sum in i), (24)

is the directional dissipation rate. These scales can be used to quantify the isotropy of a turbulent field at
different scales in different directions. Fig. 9 suggests that the turbulence remains isotropic at both the Taylor
and the Kolmogorov microscales, despite the anisotropy in the composition and density at the interface.

3. Intermittency of velocity derivatives

The small-scale intermittency of the velocity field is measured by looking at the directional skewness (S)
and kurtosis (K) of the velocity derivatives. These quantities are defined as:

S ∂ui
∂xj

=

〈(
∂ui
∂xj

)3〉
〈(

∂ui
∂xj

)2〉1.5 , K ∂ui
∂xj

=

〈(
∂ui
∂xj

)4〉
〈(

∂ui
∂xj

)2〉2 . (25)

A comparison between the flow intermittency of our set-up and the decaying isotropic turbulence problem
can also be used as a means to measure flow isotropy. Fig. 10 summarizes the skewness and kurtosis of the
z−velocity derivatives in different directions. Kurtosis remains relatively close to four on average. Skewness
remains close to either 0 or −0.5 on average. These values correspond to an isotropic field as reported in
section III. This suggests that the level of anisotropy is small for the current set-up in the absence of gravity.
We will compare these statistics in the next section with a similar set-up in the presence of gravity to quantify
the effects of gravity on small-scale intermittency and isotropy.

Since we are considering compressible fluids, it is of interest to investigate the skewness and mass fraction
of the mass-averaged momentum derivatives as well. These quantities are similarly defined as

S ∂ρui
∂xj

=

〈(
∂ρui
∂xj

)3〉
〈(

∂ρui
∂xj

)2〉1.5 , K ∂ρui
∂xj

=

〈(
∂ρui
∂xj

)4〉
〈(

∂ρui
∂xj

)2〉2 . (26)

Fig. 11 shows that higher levels of intermittency in the mass-averaged velocity derivatives exist in the z-
direction. In other directions, the skewness and kurtosis remain similar to those in Fig. 10 since the density
variation in each x− y plane is not very large.

V. Rayleigh-Taylor instability

A. Initial set-up

Numerical simulations of the Rayleigh-Taylor instability are traditionally initialized by perturbing the inter-
face either through density perturbations or by converting these density perturbations to velocity perturba-
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Figure 8. Spatial distribution of different turbulence statistics at 5τ (red), 10τ (green), 15τ (blue), and 20τ
(gray).

tions using linear theory.6 In this study, the same set-up as that described in Section A is used, the only
difference being an acceleration field in the negative z-direction. Thus, the turbulent velocity field perturbs
the interface.
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Figure 9. Temporal evolution of different quantities.

The initial mass fraction and density fields are the same as the set-up discussed in Section A. The
following equations are combined to obtain the pressure and temperature in both fluids:22,23

R = R0

2∑
i=1

Yi
Mi

, p = ρRT,
dp

dz
= −ρg. (27)

Here both temperature and pressure vary in each fluid. The computational domain again consists of a
rectangular parallelepiped with square cross-section of size L × L × 10L, with L = 2π. The density in the
light fluid, ρ1, is the reference density and ρ2 = 3ρ1 corresponding to an Atwood number of A = ρ2−ρ1

ρ2+ρ1
= 0.5.

To achieve a similar dissipation rate for the initial decaying turbulence (i.e., same Reλ), the properties of
the heavy and light fluids are related as follows:

R2

R1
=
M1

M2
=
µ1

µ2
=
ρ1
ρ2
, Reλ1 = Reλ2, Mt2 = Mt1

√
ρ2
ρ1
. (28)
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Figure 10. Spatial distribution of skewness and kurtosis at 5τ (red), 10τ (green), 15τ (blue), and 20τ (gray).

B. Results

Here, we report the results for two sets of RTI simulations with the new set-up at a resolution of N = 256
points per box width until 20τ for k0 = 4, and 80τ for k0 = 16. Note that τ for k0 = 4 is four times larger
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Figure 11. Spatial distribution of mass-averaged skewness and kurtosis at 5τ (red), 10τ (green), 15τ (blue),
and 20τ (gray).

(a) Full domain. (b) Zoomed in.

Figure 12. Mass fraction contours from the Rayleigh-Taylor set-up for k0 = 4, and t/τ = 5.

than τ for k0 = 16, such that simulations are completed at the same time in terms of the RTI development.
Figs. 12 and 13 show contours of the mixing region after 5τ . The initial fluctuating velocity field perturbs
the interface, and the baroclinic vorticity provides energy for the growth of the instability. As observed in
the mass fraction field, spikes/bubbles of the heavier/lighter fluid penetrate into the lighter/heavier fluid.
Fig. 14 shows the time evolution of the bubble and spike. The initial growth rate is dominated by turbulence
diffusion in the early stages. As the initial Taylor microscale is larger for k0 = 4, a higher growth is observed
for this case during the initial transient, up to t ≈ 5τ ; turbulence diffusion is the main mechanism for the
growth of the mixing region. The spike growth is higher than the bubble growth, as expected for A = 0.5
after this initial transient period.

Fig. 15 shows the temporal evolution of the Taylor microscale and the Kolmogorov microscale for
k0 = 4, 16. Unlike the simulations with no gravity where the Kolmogorov microscale keeps increasing,
the Kolmogorov microscale for the RT unstable set-up remains almost uniform after the initial transient. At
this time, a balance develops between the energy generated by the instability and the amount of energy that
is dissipated at small-scales due to viscosity.24 Results also demonstrate a clear anisotropy in the Taylor
microscale in the z-direction. Results with k0 = 16 result in a value of Reλ in the z-direction beyond the
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(a) Full domain. (b) Zoomed in.

Figure 13. Vorticity contours from the Rayleigh-Taylor set-up for k0 = 4, and t/τ = 5.
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Figure 14. Temporal evolution of the mixing region width for k0 = 4 (left) and k0 = 16 (right).

mixing transition.2 The flow remains almost isotropic in the x- and y-directions. However, in the z-direction,
it is isotropic at the Kolmogorov scale as well, although the large scales and Taylor microscale are not.

Fig. 16 shows the skewness and kurtosis for the z−velocity derivatives in different directions. With
increasing time, the results starts to deviate more and more from the results with no gravity. Higher
values of kurtosis and skewness are achieved. In particular, high levels of intermittency are achieved at the
bubble/spike fronts. These peaks start to move toward the boundaries as the mixing region grows.
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Figure 15. Temporal evolution of different quantities at k0 = 4 (left) and k0 = 16 (right).
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Figure 16. Spatial distribution of skewness and kurtosis at 5τ (red), 10τ (green), 15τ (blue), and 20τ (gray) at
k0 = 4.
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VI. Conclusions

The evolution of a freely decaying isotropic turbulent field is investigated through DNS and important
integral quantities of the flow field are reported till late times. This field is then used to perturb an interface
separating two fluids in the absence and presence of a gravitational field. The current configuration is
Rayleigh-Taylor unstable. The bubble and spike amplitudes are reported and a self-similar growth is observed
for the simulations without gravity. Important length scales in each direction are measured to investigate
the isotropy of the flow field at different scales. The flow remains isotropic at the Kolmogorov length scales
where the kinetic energy is dissipated while the flow becomes anisotropic at the Taylor microscale for the
simulations with gravity. Flow intermittency in different directions at small scales is measured. The RT
unstable set-up shows much higher levels of intermittency. The comparison between simulations with and
without gravity suggests that the initial anisotropy in the composition is not a sufficient condition to make the
velocity field anisotropic and gravity is the dominant factor forcing the velocity field to become anisotropic.
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