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In this study, we present a parallelized adaptive moving boundary computation 

technique on distributed memory multi-processor systems for multi-scale multiphase flow 

simulations. The solver utilizes the Eulerian-Lagrangian method to track moving 

(Lagrangian) interfaces explicitly on the stationary (Eulerian) Cartesian grid where the flow 

fields are computed. Since there exists strong data and task dependency between two distinct 

Eulerian and Lagrangian domain, we address the decomposition strategies for each domain 

separately. We then propose a trade-off approach aiming for parallel scalability. Spatial 

domain decomposition is adopted for both Eulerian and Lagrangian domains for load 

balancing and data locality to minimize inter-processor communication. In addition, a cell-

based unstructured parallel adaptive mesh refinement (AMR) technique is implemented for 

the flexible local refinement with efficient grid usage and even-distributed computational 

workload among processors. The parallel performance is evaluated independently for the 

Cartesian grid solver and sub-procedures in cell-based unstructured AMR. The capability 

and the overall performance of the parallel adaptive Eulerian-Lagrangian method including 

moving boundary and topological change is demonstrated by modeling binary droplet 

collisions. With the aid of the present techniques, large scale moving boundary problems can 

be effectively computed. 

I. Introduction 

NTERFACIAL flows having moving boundaries and interactions between different phases are challenging in 

engineering design and operation phases. For example, the draining and sloshing motion of liquid fuel under 

microgravity in spacecraft have critical impact on its center of mass, and thus the vehicle dynamics control; It 

requires significant efforts in developing suitable computational techniques to address such flows.
1, 2

 Interfacial 

dynamics also plays an important role in the process of liquid fuel droplets collision and atomization.
3
 With the 

advance of numerical methods, we are able to predict interfacial flow in moderate conditions. However, when 

interfaces evolve into multi-scale features, computation mesh resolution are highly demanding to support adequate 

accuracy, and computation is inevitably expensive. The numerical representation of the moving interface either 

implicitly or explicitly requires additional computational resources than application of single-phase flow. Distinct 

physical properties across the interface consequently require specific treatment of material jump. Beside, modeling 
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interfacial dynamics such as phase change or surface tension is necessary to realize actual interfacial flow field as 

well. In summary, multiphase flow computation with moving boundaries is very challenging and computationally 

expensive due to its multiple time/length scales, tracking of moving boundaries, and interfacial condition like 

surface tension and discontinuous properties. It extends the requirements of computational power and grids 

resolution beyond single-processor capabilities. 

In such cases, parallel computing can alleviate this burden by distributing computational loads among multiple 

processors thus allowing the simulation of practical multi-scale flows. On the other hand, adaptive mesh refinement 

technique can significantly ease computational load by improving resolution adaptively in regions of interests such 

as interfaces and region with large flow variation. The 3-D adaptive Eulerian-Lagrangian method developed by our 

group
4-6

 showed outstanding accuracy prediction of multiphase flow in serial computations. In our recent work, we 

studied domain decomposition strategies for Eulerian-Lagrangian method, and tested simple cases without moving 

boundary at fixed initial grid condition.
7
 In present study, we advance our capability to a parallel, adaptive moving 

boundary tracking method. Parallelisms are applied on the Eulerian and Lagrangian domains, and a cell-based 

unstructured AMR technique is introduced to adapt the grid dynamically in a parallel manner while balancing the 

loads between the processors. 

Eulerian-Lagrangian method is a dual-domain interface tracking techniques. It utilizes a separate set of moving 

(Lagrangian) interface mesh on a stationary (Eulerian) grid used to resolve the flow fields. It tracks interface 

explicitly, and provides outstanding in-cell interface resolution when compared with Eulerian methods such as 

volume of fluid method and level-set method.
4, 8, 9

 Because of explicit interface representation, it provides accurate 

prediction on morphology-related variables such as surface tension. The Eulerian-Lagrangian method presented in 

this work use continuous interface method to model material jump around fluid-fluid interface and sharp interface 

method to accommodate no-slip boundary condition.
6
 Besides, it has a dynamic contact-line-force algorithm to 

model moving fluid-fluid interfaces around arbitrary solid boundaries. This Eulerian-Lagrangian method has been 

sucessfully applied to many practical engineering problems, such as binary droplet collision, cryogenic fuel sloshing 

in spacecraft fuel tanks, and interfacial instability.
4-6

 Although it is effective approach for interfacial computation, 

inherently it incurs difficulties toward a parallel implementation. On the perspective of parallelization, it has two 

features that need to be considered: ratio of computaiton load on Eulerian and Lagrangian data and strong data 

dependency between Eulerian and Lagrangian domain. 

Parallel implementation for Eulerian domain is similar to traditional single-phase flow solvers with an additional 

transport equation of material scalar variable. Several large-scale geological simulators using VOF method have 

been successfully applied on distributed memory machines.
10

 For studies related to Cartesian grid approaches, 

Sussman presents a parallelized Cartesian grid solver using coupled level-set/VOF method for flow in general 

geometries.
11

 A parallel sharp-interface method for large scale moving boundary problems in fluid mechanics is 

proposed by Marella.
12

 The Gerris code, which is an open source parallel Navier-Stokes solver using VOF method, 

has performed jet atomization simulation in parallel with octree adaptive refinement method.
13

 In general, parallel 

multiphase flow solvers using the Eulerian method have been well-developed. On the other hand, Eulerian-

Lagrangian method in parallel computation has not been studied widely yet. Darmana et al. introduced parallelisms 

for Euler-Lagrange model aiming for tracking rising bubbles in columns.
14

 Mirror domain technique is proposed to 

decompose Lagrangian particles for load balance while the Eulerian domain is partitioned along z-axis uniformly. 

The study of parallel Eulerian-Lagrangian method is still constrained to limited cases with simple geometries far 

from practical engineering applications. Major difficulty in the parallelization of the Eulerian-Lagrangian method is 

that the computational loads distributed on Eulerian and Lagrangian domains are task-dependent. This characteristic 

brings complexity to parallelism and communication. As a result, in the current work, possible parallelisms for 

Eulerian-Lagrangian method are discussed and then spatial domain decomposition is chosen for both domains with 

the concern of data locality and parallel scalability.  

Besides parallel computing implementation, adaptive mesh refinement technique can effectively save 

computation cost by adjusting space between the computational grid points while maintaining adequate solution. It 

dynamically refines or coarsens grid according to the desired required grid resolution. Dynamic grid adaption 

provides efficient management of grid resolution, but incurs extreme challenges in parallel implementation, 

especially in the aspects of load balance and distributed storage of entire grid. Various strategies have been proposed 

for the design of parallel AMR. They can generally be categorized by the range of adaptation and the data structure; 

block-AMR, cell-based tree AMR, and cell-based unstructured AMR. The performance of these approaches is 

determined either by its inherent data structure or the scale of problems that AMR algorithm are applied on. 

Moreover, the data structure adopted also affects complexity of the algorithm and domain decomposition strategies.  

The cell-based tree AMR utilizes quad-tree or oct-tree data structure to accommodate hierarchy of sub-grids.
12, 15, 

16
 The tree structure forms a cell-based object containing information of coarsest to finest level of cells for desired 
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spatial resolution and parent-children relationship. It is relatively easy to parallelize if the decomposition of 

refinement/coarsening procedure is based on the coarsest level grid due to its hierarchy structure. A parallel sharp 

interface fix-grid method for moving boundary problem was developed using tree-based local refinement by 

Marella.
12

 Agbaglah et al. decomposed the computational domain based on the graph of the coarsest level cells with 

weighting function to adjust load balance for dynamics AMR operation at run time.
15

 Burstedde et al. presented 

library p4est, which is a scalable algorithm for parallel adaptive mesh refinement based on the concepts of forest of 

oct-trees by connecting the z-shaped space-filling curve between oct-trees.  

Although the cell-based tree AMR provides flexible refinement region and organized data structure, the 

computational speed is degraded due to frequent pointer traveling in-and-out of the tree hierarchy when searching 

for data. Instead, the block-based AMR applies new refinement level of grid block upon regions where higher 

resolution is demanded. Each individual block is typically a uniform Cartesian grid, which is highly structured. The 

entire domain is composed by overlapped multiple blocks and domain decomposition is based on block units. At 

runtime, refinement operation can be applied to specific blocks or new blocks, and they can be overlapped with old, 

coarser blocks.
17-20

 In general, adaptive blocks could be non-overlapping. The block-tree type AMR, developed by 

Powell et al., refines a set of grid block by bisecting a parent block in each coordinate direction to generate children 

blocks with higher level refinement
21

. Using tree-like block AMR, they demonstrate good scalability on thousands 

of CPU cores for MHD equations solvers. On the other hand, a patch-block AMR nests finer blocks over coarser 

blocks. One of the most known libraries using patch block AMR is SAMRAI (Structured Adaptive Mesh Refinement 

Application Infrastructure). Gunney et al. discuss several methods for parallelizing the clustering algorithm 

proposed by Berger and Oliger  and compared performance for a model SAMR problem on platform up to 16K 

processors of the BG/L system.
18

 SAMRAI is adopted by many research codes such as IBAMR, an immersed 

boundary solver  developed by Griffith.
22

 PARAMESH library using block-structured AMR  developed by MacNeice 

et al.
19

 has been utilized by Zuzio and Estivalezes
23

 for the simulation of two phase interfacial flow. In general, 

block-structure AMR has merits of better cache optimization due to structured data format. Their communication 

overhead may be less than cell-based tree AMR due to regular partition boundaries. Moreover, block-based AMR 

over-refines the grid so that adaption does not need to be executed as frequently as cell-based AMR. However, this 

feature also increases the amount of data storage and computational time spending on over-refined region, and data 

interpolation between overlapping blocks requires additional communication over processors. 

A block AMR or cell-based tree AMR may tend to waste data storage, and thus computing power, by over-

refining meshes in blocks or keeping all hierarchy information from the coarsest- to the finest-cells. A cell-based 

unstructured AMR, which has no hierarchy information, can be alternative due to its flexibility of adaptation and 

compact data storage. This approach shows outstanding performance in serial computations.
4-6

 However, the 

development of scalable parallel AMR for these methodologies is challenging especially at large number of CPU 

cores because of explicit storage of global connectivity and dynamic behavior of indexing. Choices of domain 

decomposition approach may be limited due to the absence of systematic grid structure and unstructured data 

packing. Using heuristics partition libraries is a relatively popular choice to accomplish the partitioning work of 

unstructured AMR.
24

 ParFUM and is a typical example in this category.
16, 25

 In terms of performance, cell-based 

unstructured AMR has flexible refinement regions and better mesh efficiency especially for problems with complex 

moving boundaries. It has consistent data fetching rate and no level-level interpolation, which insure field equation 

solvers has performance independent of refinement level. Heuristic partition libraries for load balance avoid racing 

at all kinds of situations is favorable. The current work adopting cell-based unstructured AMR method with the 

proposed parallel re-mesh algorithm can satisfy demands of parallel scalability of Eulerian-Lagrangian method. 

The present study is organized as follow. First, we briefly introduce numerical algorithm of the 3-D adaptive 

Eulerian-Lagrangian method. The interactions between Eulerian and Lagrangian domain during computation are 

discussed to highlight the design consideration and then parallelisms are proposed. Parallel implementation for cell-

based unstructured adaptive mesh refinement is detailed. We analyze parallel performance by considering speedup 

of flow solver and AMR separately, and then perform a binary droplet collision to study overall performance of 

parallel, adaptive Eulerian-Lagrangian method. 

II. Eulerian-Lagrangian Methods 

In the marker-based 3-D adaptive Eulerian-Lagrangian method, the bulk flow variables are solved on the 

Eulerian grid, whereas the interfaces, separating different phases, are handled by Lagrangian surface meshes. Figure 

1 shows an illustration and the solution procedure of the current approach. The present Eulerian-Lagrangian method 

is summarized in the following sections, and the detailed numerical method can be found in literatures.
4, 5, 9
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(a) (b) (c) 

Figure 1. The Eulerian-Lagrangian method. (a) Interface representation and tracking using moving meshes 

(red) on the stationary Cartesian grid. (b) Solution procedures. (c) Illustration of the present numerical 

approach: liquid interface in a spherical container. Field equations are solved on Cartesian cells tagged in red 

color. Fluid interfaces are represented by moving Lagrangian mesh (green), and solid boundary (gray) is 

embedded.  Boundary condition is enforced by the ghost cell method. 

A. Governing Equations 

On Eulerian domain, we solve mass, momentum and energy conservation equations for incompressible 

Newtonian fluid. We account interfacial dynamics as source terms at the RHS of momentum and energy equation. 

They are momentum forcing term, fF , accounting the effect of surface tension of fluid interfaces, forcing function 

sF describing no-slip condition on the solid interfaces, and an energy source term, fQ , to account latent heat effects 

around fluid interface. Here, V is the velocity vector, and  ,  , and p  is the density, viscosity, and pressure, 

respectively. 

 ( ) 0
t





 


V   (1) 

 
T( ) 1 1 1

( ) ( ) f sp
t Re Fr We


  


         



V
VV V V g F F  (2)  

 
( ) 1

( ) ( ) f

CT
CT K T Q

t RePr





    


V  (3)  

Here, variables are non-dimensionalized by a characteristic velocity (
refV ) and reference length scale (

refL ), 

standard gravity (
0g ), and liquid material properties (density 

l , viscosity 
l , surface tension  , heat capacity C

l
, 

and thermal conductivity K
l
). The Reynolds, Froude, Weber, and Prandtl numbers in Eq. (2) and (3) are defined as, 

( ) /l ref ref lRe L  V , 
2

0/( )ref refFr L V g , 
2( ) /l ref refWe L  V , and ( ) /l l lPr C k .   

The governing Eqs. (1)-(3) are solved using finite-volume projection method on a staggered grid. The 

intermediate velocity field is computed first, and then, projected onto a divergence-free space to satisfy the mass 

conservation equation. The convection term is discretized using a 3
rd

 order ENO scheme in space and a 2
nd

 order 

Runge-Kutta integration in time. The central difference scheme and Crank-Nicholson method are implemented for 

the viscous term. 

At the vicinity of interfaces, we obtain indicator function (x)I , a discrete form of the Heaviside step function, 

by integrating the 1-D form of discrete Dirac delta function 
h  from liquid to gas phase as shown in Eq. (4). The 

approximate Dirac delta function is calculated over finite thickness of four cell widths. The indicator function has a 

value of 0.5 at the interface location, and varies from zero to one smoothly across the interface. This indicator 
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function map discontinuous material properties into a continuous form that we can use a single set of equations to 

describe all fluid phases in the domain with smooth-out material properties across the interface. This approach 

requires distance information from an Eulerian point to Lagrangian interface, and thus the information is transferred 

from Lagrangian to Eulerian domain. 

 

   I( ) H ( )
r

hr h dh


     x n x X  (4) 

The smoothed fluid properties are computed by indicator function in Eq. (5). Here,   can be any material property 

such as density, viscosity, and conductivity. 

  2 1 2 I       (5) 

B. Interface Representation and Tracking 

The interface is represented by markers and elements with connectivity information. The geometrical structure is 

established via line-segments in two-dimensional and triangles in three-dimensional domains. The marker locations, 

denoted by X  in Lagrangian frame, are updated from the velocities at its location, ( )V X , in Eq. (6). 

 ( )
t






X
V X  (6) 

Fluid interfaces use the computed flow solution field to obtain the marker velocities as shown in Eq. (7). In this 

equation, the discrete Dirac delta function, ( )h x X , is employed for converting the Eulerian velocity field, ( )V x , 

to Lagrangian marker velocities, ( )V X . The interface velocity is a function of fluid velocity and mass transfer rate 

fm  in case of phase change. The update of markers’ location involves Eulerian-to-Lagrangian data communication. 

 ( ) ( ) ( )h

fV

m
dV


  V X V x x X  (7) 

C. Interfacial Dynamics Modeling 

The fluid interfaces are modeled using the continuous interface method, which involves smoothing variations in 

material properties and the influence of surface tension, mass, and heat transfer. The surface force computation in 

Eq. (8), where σ is the surface tension and   is the curvature of interface, is applied as a source term in the 

momentum equation, Eq. (2). 

  
( )

f h

t

d


  F x X  (8) 

The latent heat contributing to phase change is computed by Eq. (9), and where fm  is mass transfer per unit area 

across interface due to phase change and L  is the latent heat. 

  
( )

f f h

t

Q m L d


   x X  (9) 

Both surface tension and the latent heat of the interface due to phase change are projected from a Lagrangian 

quantity ( X ) to an Eulerian quantity ( x ) via the approximate discrete Dirac delta function, ( )h x X . Details on 

numerical computation for surface tension, mass and heat transfer terms can be found in.
5, 6
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On the other hand, solid interfaces are modeled using the sharp interface method by reconstructing solution 

fields around an interface to enforce the given boundary condition in the Eulerian Cartesian grid. The velocity, 

pressure and temperature reconstruction in a ghost cell is extrapolated from fluid side along the local norm of 

interfaces (Figure 2). The accuracy of solid boundary condition is directly related to the accuracy of reconstruction 

of solution fields at ghost cells. 

Eulerian and Lagrangian domains have frequent data exchange through the delta function. The direction of data 

communication is either Eulerian-to-Lagrangian or Lagrangian-to-Eulerian depending on the task of computation. 

Strong spatial data dependency between Eulerian and Lagrangian domains implies data locality is a primary factor 

on the performance of parallel computation. 

III. Parallelization Aspects of Eulerian-Lagrangian Method 

The implementation of parallel Eulerian-Lagrangian method should provide substantial computational power 

with scalability, compact data structures and efficient communication methodologies. For the purpose of portability, 

this parallelization is designed for distributed memory multiprocessors architecture with MPI standard for 

communication. Third party libraries, PETSc
26

 and HYPRE
27

 had been implemented for solving linear system of 

equations on Cartesian grid in previous study.
7
 In present, we concentrate on parallel moving boundaries tracking 

with cell-based unstructured adaptive mesh refinement technique. 

By some testing runs of current Eulerian-Lagrangian solver in serial manner, we observe that solving field 

equations on Eulerian domain usually costs more than 60% of wall-clock time, and Lagrangian computation takes 

the rest. As a result, load balance on Eulerian computation is priority, but appropriate decompositions of Lagrangian 

computation is required to have favorable parallel efficiency. However, this is not easy to achieve because 

Lagrangian mesh does not uniformly dwell in Eulerian domain. Our goal here is to find a trade-off between load 

balance of Lagrangian computation and communication cost. 

A. Eulerian Domain Decomposition 

Among many approaches for spatial decomposition of a graph, the most popular methods are space filling curves 

method and heuristic method. A space-filling curve traverses N-dimensional graph and maps it bijectively to a one-

dimensional array. The ordered cell group is split into p parts, where p is the total number of processors to satisfy the 

load balance. However, minimizing the edge cuts, that is, the size of partition boundary requiring information 

exchange, is not an objective of the space-filling curve method. On the other hand, graph partitioning packages, such 

as ParMETIS which uses a k-way multilevel heuristic approach usually provide satisfactory load balance and fewer 

edges cut compared with the space-filling curves method
28

. In this study, the ParMETIS is implemented as the 

partitioning tool. 

Figure 3(a) shows an illustration of Eulerian domain decomposition. This experiment models sloshing behavior 

of cryogenic fuel in the liquid hydrogen tank on Saturn V/S-IVB rocket. We use dynamic material tags to 

distinguish gas, liquid, and solid phase as shown in Figure 3(b). Because ghost cells are not evenly distributed 

among partitions, the computational load of boundary condition is not balance. However, the computational time of 

this operation contributes very small share of total run-time, we do not perceive overhead due to it. Between 

adjacent partitions, we build overlapping layers of cells. The overlapping zone serves as a buffer region for 

synchronization of information. Suppose that an Eulerian domain   has already been decomposed into n  non-

overlapping partitions 
p , which p is the processor ID and n is number of total processors. 

 
Figure 2. Sharp interface method. Boundary conditions are enforce through reconstruction of solution in 

ghost cells using linear interpolation of image point (IP) to impose boundary condition 
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1

n

p
p

    (10) 

We defien a sub-domain 
pS which is the union of partition 

p and regions of finite width away from partition 

p overlapping with its adjacent partitions. 

 
,

1

( )
adj

p p p i
i

S I


   (11) 

Here the 
,p iI represent the overlapping of sub-domains 

pS and its neighbor partition i . The local grid 

connectivity is constructed on sub-domain
pS . Note that the overlapping region, 

,p iI , is purely served as ghost cells 

for storage of data from processor i through communication routines and does not involve in computation. 

 

   

(a) (b) (c) 

Figure 3. The Eulerian domain decomposition. (a) Partitions are represented in different color. (b) Grid cell 

material at gas phase (white), liquid phase (yellow), and solid phase (blue). (c) Decomposition of solid 

geometries according to Eulerian partitions. 

B. Lagrangian Domain Decomposition 

Three different approaches are considered to achieve Lagrangian decomposition for implementation in the 

current effort: task parallelism, atomic decomposition, and spatial decomposition. Figure 4 illustrates the application 

of approaches in the decomposition of a one-dimensional interface denoted by red dots superimposed on a 

background Eulerian Cartesian grid into four partitions. 

Task parallelism reserves specific processors to dealing with Lagrangian data exclusively and using the rest of 

processors for calculation of Eulerian data. However, according to the procedures of computation, we do not have 

  
  

(a) (b) (c) (d) 

Figure 4. Strategies of decomposition of Lagrangian interface. (a) A 1-D Lagrangian mesh on Eulerian 

domain. (b) Task parallelism. (c) Atomic decomposition. (d) Spatial decomposition. 
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much concurrency of Lagrangian tasks and Eulerian tasks. The improvement of computational speed will not be 

desirable. Other challenge is that the optimal arrangement of fair work load among Eulerian and Lagrangian tasks 

for general problems. The ratio of workload between Eulerian and Lagrangian domain is problem-dependent and 

varies with the evolution of the interface. Complex management is required to avoid processes idling due to racing 

among tasks.  

Data parallelism distributes the entirety of Lagrangian data over processors independent of their relationship to 

background grid to be processed concurrently. Under the data parallelism, one of the choices is to decompose 

Lagrangian interface using atomic decomposition
29

 (Figure 4(c)). Atomic decomposition evenly distributes 

Lagrangian markers to all processors regardless of their locality. It achieves load balance automatically. However, 

frequent communication for updating interface information between processors due to low locality is inevitable. 

Data exchange under atomic parallelism may intensely rely on all-to-all communication that leads to communication 

bottleneck. Thus deterioration of parallel efficiency is expected to arise from communication overhead. 

Unlike atomic decomposition, spatial decomposition spreads the entire Lagrangian interface into sub-domains on 

the basis of spatial inhabitation of markers. In Figure 4(d), Lagrangian markers encompassed by an Eulerian sub-

domain owned by a particular processor are assigned to this processor. This approach takes advantage of data 

locality because interface information is available in each processor thus mining both communication frequency and 

data size exchanged. The load balance of the Lagrangian computation may not be satisfied but reasonable scalability 

is expected in general cases since the cost of pure calculation of Lagrangian data is smaller than cost of flow solver. 

Besides, the methodology of spatial decomposition of the Lagrangian domain is similar to Eulerian domain, which 

renders a straightforward implementation. As a result, we select spatial decomposition as the partitioning strategy in 

current approach.  

The Lagrangian domain decomposition procedure is summarized as follows. A marker locality array is used to 

account for marker inhabitation in which Eulerian partition encompasses this marker. As shown in Figure 5(a), 

localities of the solid and dashed markers inside a particular Eulerian sub-domain are assigned with this primary 

processor ID. The collection of partition-own markers, represented by solid circle, is the sub-set of local Lagrangian 

sub-domains that operations are looping on, and dashed markers in overlapping zone are served as buffers whose 

information is updated by neighboring processors at the end of each time step. Note that the global connectivity of 

Lagrangian interface will preserved for repartitioning. Repartitioning is necessary when a marker moves out of its 

Eulerian sub-domain. In addition, coarsening and refining operations on the Lagrangian interface which change  

global connectivity requires repartitioning. 

 

 

 

(a) (b) 

Figure 5. Illustration of Lagrangian domain decomposition. (a) Lagrangian markers inhabiting in an 

Eulerian sub-domain constitutes a Lagrangian sub-domain. (b) Streamline of a single rising bubble driven by 

buoyancy force. Interface is colorized with respect to partitions.  

C. Communication Methodology 

Data on an overlapping zone of a sub-domain needs to be synchronized with neighboring sub-domains for data 

consistency. For point-to-point communication, i.e., a sub-domain synchronizing data in an overlapping zone with 

neighboring partitions, the non-blocking send and receive are used to avoid blocking delay. The sent-out data are 

concatenated into a data chunk on the sequence of add-up manner. Figure 6(a) illustrates how the data in 
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overlapping zone is grouped in a chunk of continuous memory. This problem is executed with 4 processors and the 

partitioned domain of processor 1 is adjacent to processor 0, 2 and 3 with 3, 4, and 5 entries in overlapping zone 

respectively. A temporary array is then created by concatenation of prepared data. The pointer of this array is passed 

to the subroutine, MPI_ISEND to initialize communication process. The procedure of receiving data from neighbor 

partitions utilize a similar approach by allocating one-dimensional space beforehand for arriving data. An 

MPI_WAIT is placed in the end of initialization of send and receive subroutines to check if procedures are 

completed correctly. The pseudo code of the communication procedure is shown in Figure 6(b). This design 

provides possibility of overlapping between communication and computation that decrease communication 

overhead. 

The performance of our methodology is evaluated with a one million cells problem. The problem is executed on 

the NYX machine in the Center of  Advance Computing at University of Michigan. The nodes we used on NYX are 

comprised with Intel Nehalem Xeon E5540 CPU with InfiniBand networking whose latency is about 10
-6

 second. 

Each Intel Xeon E5540 CPU has 4 cores with 8M Bytes L3 shared cache and total memory available per CPU is 

12G Bytes. The averaged data size of velocity exchanged in a process of communication is from 108K to 41 Bytes 

on 4 to 96 processors. The start-up time represents the preparation and calling of MPI_ISEND and MPI_IRECV 

procedures, and the time to finish synchronization stands for time staying on MPI_WAITALL. The cost of one 

velocity data synchronization is on the order of 2×10
-5

 second independent of the number of processors. Our 

communication strategy has been tested and trivial latency is observed. This communication design is applied to 

data exchange on the ghost zone of partitions for both Eulerian and Lagrangian data computation (not all-to-all.) 

 

Table 1. Communication cost for velocity filed in 1 million cells problem. 
 

# of processors 4  8  16  64  96  

Start-up time [sec] 3.0×10
-5

 2.4×10
-6

 2.0×10
-5

 2.1×10
-5

 2.1×10
-5

 

Time to finish synchronization [sec] 9.5×10
-6

 9.7×10
-6

 9.5×10
-6

 1.0×10
-5

 1.1×10
-5

 

Averaged data size (K Bytes) 108 105 84 50 40.5 

D. Scaling of Computation and Communication Cost 

Parallel performance of procedures are highly dominated by the computation-to-communication ratio. We 

summarize the computation and communication cost in Table 2 to illustrate how procedures scale with problem size. 

Here N is the total mesh size of a problem. Procedures types are divided into three categories. Eulerian tasks refer to 

the computation on the Eulerian frame, i.e., Cartesian grid solver. The leading cost of Eulerian computation is 

solving the linear sparse matrix of Pressure Poisson equation, which is at most proportional to O(N
3
). 

Communication required for Eulerian tasks are data at a partition’s boundaries, which is the size of “surface” and 

proportional to O(N
2/3

). For Lagrangian tasks, computation scales with surface area O(N
2/3

) and data size of 

communication between Eulerian and Lagrangian domain is in the order of O(N
2/3

). For adaptive mesh refinement 

 

Do : index0 = 1, total number of processors  

     IF NOT neighbor partition, CYCLE  

     recv  recv_data(index0); source = index0  

     tag1 = processor_id  

     CALL MPI_IRECV(recv, # of receive, type, source , tag1, comm., 
reqs)  

     send  send_data(index0)  

     tag2 = processor_id;  dest. = sent entry index  

     CALL MPI_ISEND(send, # of send    , type, dest.   , tag2, comm, reqs) 

Any computation work  

CALL MPI_WAITALL(reqs, stat, comm)  

(a) (b) 

Figure 6. Communication for the overlapping zone. (a) An example of concatenated array of data in 

overlapping zone of processor ID 0 on 4 processors computation. (b) Pseudo code of communication routines 

for exchange data on overlapping zones. 
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(AMR) using geometry-based refinement, the computation grows with O(N
2/3

), but the data need to exchange may 

as large as volume of a domain because of the process of constructing global grid connectivity. As a result, for a fix-

size problem, Eulerian tasks have higher computation-to-communication ratio than Lagrangian tasks, and AMR has 

the least computation-to-communication among all. According to this estimation, the parallel performance of sub-

procedures of Eulerian-Lagrangian method are highly related with the procedures types. 

 

Table 2. Scaling of computation and communication cost of adaptive Eulerian-Lagrangian method 
 

 
Computation  Communication 

Eulerian tasks O(N
2
~N

3
) O(N

2/3
) 

Lagrangian tasks O(N
2/3

) O(N
2/3

) 

AMR O(N
2/3

) (geometry-based) O(N) 

E. Solution Procedure 

The solution procedures of parallel Eulerian-Lagrangian method are summarized in Figure 7. Note that 

operations in italic involve both Eulerian and Lagrangian variables. First, the initialization of simulation creates a 

Cartesian grid to encompass solid interface and refine it adaptively to designated resolution with the identification of 

ghost cells. The Eulerian domain is then partitioned by ParMETIS, and the Lagrangian domain is spatially 

decomposed based on marker’s locality. In the time integration loop, a marker is updated to new position by a 

velocity field interpolated from the Eulerian domain and re-meshing may be applied to Lagrangian interface 

whenever needed. We re-decompose Lagrangian domain and then update fluid properties at overlapping zone of 

Eulerian sub-domains. The intermediate velocity field is updated by Runge-Kutta/Crank-Nicolson time integration 

method. If adaption is required, the program inquires AMR routines including parallel mesh generation, Eulerian 

domain re-decomposition, data migration and generation of new Eulerian and Lagrangian sub-domains. The detail 

of parallel adaptive mesh refinement is explained in the next section. PETSc and HYPRE are both implemented as 

the linear solver for the discretized Poisson equation. Once the divergence-free velocity filed is obtained on Eulerian 

domain, it is projected to Lagrangian markers by Dirac delta function. 

 

Initialization: 
Eulerian domain decomposition(ParMETIS) 

Lagrangian domain decomposition 

Time integration loop :  

Marker movement 

Interface Modification: Smooth, refine, coarsen 

Lagrangian domain decomposition 

Determine cell-centered material  and properties 

Source term: Surface tension and Mass transfer/ Heat flux at fluid interface 

Intermediate velocity U* by RK-CN integration 

IF :  Dynamic adaptive mesh refinement 

Parallel mesh generation 

Domain Re-decomposition(ParMETIS) 

Data migration 

Rebuild Eulerian sub-domain and Lagrangian sub-domain 

Pressure Poisson equation  HYPRE/PETSc  

Corrected velocity U
n+1

 

Energy equation by RK-CN integration 

Velocity interpolation to Lagrangian markers 

IF: reconstruction needed, do  Reconstruction of Lagrangian interface 

Figure 7. The solution procedure of parallel Eulerian-Lagrangian method. 
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IV. The cell-based unstructured parallel AMR 

The AMR implemented in cuurent study utilizes adaptive Cartesian grid with cell-by-cell isotropic adaption and 

unstructured data storage
6
. Figure 8 is a simple two-dimensional demonstration of the unstructured cell-based AMR. 

Cell 2 and 3 are taged as refiement required and each of them are splitted into 4 equal finer square cells. The 

originally index “2” and “3” are pointed to one of the four children cells, and other added cells are assigned with 

new indices. A coarsen operation is then requested to cell 3 resulting a deactivation of cell 5, 6, and 7  with the 

original cell index “3” pointing to the merged cell. Computation on  data of cell 5 to 7 are skipped, but their indices 

can be reserved with inactive tag. The split and collapse of  faces utilize the same mechanism to accommondate 

dynamic data allocation of our unstructured cell-based AMR method. Note that the unstructured cell-based AMR 

does not  have tree hirachy to pertain a cell’s parent-child releationship. It is pure unstructured grids.  

Due to the nature of the unstructured data format, the global connectivity of entire mesh is retained all the time. 

Such unavoidable memory requirement is challanging for the unstructured AMR method to compute very large 

problems on distributed memory architecture. Figure 9 gives an estimation of memory cost of our design. N is the 

size of a problem and p is the number of processors used in a computation. Storing global grid is the leading cost of 

on system memory. In the current approach, the connectivity arrays storing global grid are cell-face list and face’s 

side cell pair. The necessary global connectivity and variables occupy 9 percent of the memory requirement in a 

single processor computaiton, and the rest are dividable data. For example, a 2.0×10
7
 mesh size problem demands 

1750M bytes memory to accommondate global connectivity in each processor, and the rest of memory usuage are 

spent on local and dividable variable arrays. 

 

Figure 9. Memory cost of Eulerian-Lagrangian method with cell-based unstructured AMR method. 

A. Implementation of Parallel Cell-based Unstructured AMR 

The primary considerations of our parallel cell-based unstructured AMR are load balance throughout most of 

dynamic AMR processes and reduction of communication frequency and volume.  

As been discussed, parallel cell-based unstructured AMR(UAMR) features flexible refinement regions, better 

mesh efficiency and load balance regardless the number of processors and mesh size. Although the nature of 

unstructured AMR implies its remesh process may be more difficult than structured AMR, we are aiming to explore 

the overall performance of parallel unstructured AMR under the scope of hundreds of processors computation. 

The following five steps present the framework of our parallel AMR. 

1) Parallel adaptive grid generation on Eulerian sub-domains 

2) Rebuild global indices of cells/faces and connectivity 

3) Domain re-decomposition of new graph via partition libraries- ParMETIS 

4) Data migration across processors 

5) Create new Eulerian and Lagrangian sub-domains 

 
Figure 8. Demonstration of current cell-based unstructured AMR. Splitting one cell with added active cell 

index to 3 children cells for refinment and merging 4 cells by deactivateing cells index during coarsening. 
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The unstructured AMR starts with isotropic grid adapation based on the adaption flag. This process utilizes a 

paralleized unstructure grid generator which is upgraded from an existing sequential grid generation algorithm. The 

created sub-graphs in each processor are indpendent upto this step. In other words, a new grid in sub-domain A does 

not have knowledge of the new grid of sub-domain B. We then utilize two steps to remesh global grid: an add-up 

indexes to give global order of the created faces and cells in each sub-domain; and an algorithm to combine 

connectivity of adjecent sub-grid. Once the global grid is updated, the partitioning libray-ParMETIS, is introduced 

for domain decomposition. The forth step includes about data redistribution from a processors’s original sub-domain 

to new sub-domain. Once the old sub-domain-owned data set is backed-up, the new Eulerian sub-domains are 

created and filled in with data stored in data migration arrays. 

B. Parallel Grid Generation on Eulerian Sub-domains 

The adaptation criteria of cell-based AMR consider both interfacial geometry and flow solution features at local 

cells.  For interface geometry-based adaptation, all cells cut by the interface and five layers of cells around the 

interface-cut cells are flagged for refinement for smooth mesh size transition. The range of refinement around 

interface determines frequency of AMR required. With larger range of refinement, interface stays in the finest-level 

grid longer that ARM frequency may reduce. However, large refinement area may introduce inefficient mesh usage. 

Cells far away from the interface are adapted based on the solution of flow field. The decision to refine or coarsen a 

cells is determined by comparing its local value to standard deviations of vorticity or the temperature gradient in 

entire domain  . Cell-centered pressure and temperature and face-centered velocity of refined cells are constructed 

linearly using information from the surrounding cells. The variables in a coarsened cells are simply averaged using 

the corresponding cell-centered or face-centered values of the parent cells. 

The grid adaption is applied on a partition and its overlapping zones. However, only the mesh generated in a 

partition are adopted as new mesh. The reason that refinement has to be executed on the overlapping zone is due to 

recursive refinement procedure (Figure 10(c)). We do not refine a cell having a coarser neighboring cell. The coarser 

neighboring cell has to be refined first thus current cell can be refined. This constrain results in a scheduling 

sequence of cell-splitting. Extent the refinement to the overlapping region can guarantee consistent refinement 

results of two adjacent partitions. On the other hand, coarsening process is applied on a partition with restrictions. 

For example, a cell is not permitted to have neighbors with a lower and a higher refinement level. Moreover, on 

partition boundaries, cells dwelling in different partitions are not allowed to collapse into a single cell. In other 

word, coarsen operation is not executed across partition boundaries. 

 

`   

(a) (b) 

  

(c) (d) 
 

Figure 10. An example of pure geometry-based grid refinement with 2 processors. (a) Partition 1 and 

partition 2 with an airfoil-shape immersed boundary. (b) Eulerian sub-domain S1 and S2 are denoted in red 

and blue mesh with cells adjacent to partition boundary ∂Ω having grey coloration, which is treated as an 

overlapping. (c) Refinement is applied to Eulerian sub-domain. (d) A ‘stitching’ algorithm corrects and 

synchronizes the global face indices at partition boundary. The mesh generated in overlapping zone is 

discarded. 

At the beginning of grid refinement, a set of a local grid Z p  is prepared by grouping cells tagged with 

refinement /coarsen flag and their neighboring cells as shown in Figure 10(b-c). This local grid contains partial grid 
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connectivity of sub-domain
pS  in which the tentative modified connectivity due to refining and coarsening 

operation can be placed. The refinement routine recursively operates over local grid 
pZ

 
to generate new cell and 

faces and write out new graph to 
p . The coarsening operation merges cells and faces that composes finer levels of 

cell group by deactivating index pointers of original cell and then adjust grid connectivity. Till this step, load 

balance of grid generation is achieved in case of even distribution of refinement-tagged cells among all processors. 

In case of the Lagrangian interfaces encompassed solely at some particular Eulerian sub-domains, refinement 

operation is applied to those sub-domains alone which induces load imbalance. However, at this worst scenario it is 

not helpful to adopt other parallelisms such as task (procedural) decomposition because procedure dependency of 

AMR avoids possibilities of task overlapping. Although the load imbalance of grid generation is inevitable for 

extreme cases, moderate scalability could still be expected. 

C. Global Indices and Connectivity Construction  

The new sub-grid of a sub-domain after local mesh generation is independent and is not known by its neighbors, 

as shown in Figure 10(c). For example, a shared face on partition boundaries is broken due to cell refinement in sub-

domain 1S , but the corresponding face in 2S  does not have this index information of new face generated from 1S . 

However, the new local graph of sub-domain 1S and 2S are legislative individual, it is required to coordinate the 

modified information of this face upon the global graph for consistency. This process of connectivity 

synchronization is a typical challenge of parallel grid generation. Some strategies approach grid-up of partition 

boundaries by checking against border faces of partitions sequentially before or after the grid-up of interior sub-

domain,
30

 which increase serial operation portion for the entire AMR process. Besides, construction of global 

indexes for new graph and connectivity in parallel is challenging as well. It requires sophisticated algorithms and 

tedious data exchange at grid generation process. In order to simplify algorithm complexity and maintain efficiency, 

we separate the indices generation and connectivity process by facilitating two data class containing the modified 

cells and faces information to accomplish the construction of new global graph
'' . The sets of data class memorize 

all modified cells and new generated faces during the refining and coarsening processes. In the data structure of 

modified cells
pMc , a collection of broken or merged cells stores the original global index of cell kc and its sibling 

cells. 

 

 1 2

i 3k+1 3k+2 3k+3

i i2 i3 i4

, ,..., ,   k is the number of modified cell group in processor 

[g ,s ,s ,s ] ,  for spliting operation

[-g ,g ,g ,g ] ,        for merging operation

p k p

T

k

T

k

Mc c c c p

c

c







  (12) 

   

Because sibling cells’ global indexes are unknown beforehand, a temporal, sub-domain based indexes as denoted 

by ks
 
are assigned to them. In case of cell merge operation, negative signs are symbolically attached to the global 

index of parent cell ig , which will be the resulting index representation after merging. The other three or seven 

children (on 2D and 3D domain) cells are denoted in kc and will be deactivated. The other data structure called new 

face information 
pNf  accumulates all faces that are generated during refining process in partition

p . 

  1 2, ,..., ,   m is the number of new faces in processor p m p
Nf f f f p   (13) 

 

pNf  holds new faces orientation, face’s side cells indexes and its parent face index if generated through 

splitting a face. In case of faces generated on partition boundaries, a function synchronizing new faces indices on 

two adjacent partitions. This function goes through all boundary face 
i

p pf  and check the ‘broken’ status of 
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their corresponding face in adjacent partitions. For face pair are both marked in new face data array
pNf , only the 

primary processor (lower rank ID) possesses the right to create new global indexes that can avoid duplication of 

faces. 

All-to-all collective communication is used to broadcast 
pMc and 

pNf  among all processors and then each 

processor concatenate collected chunk of 
pMc  and 

pNf into contiguous modified global cell-face data structure as 

below.  

 1 2

1 2

( , ,.., )

( , ,.., )

n

n

Mc Mc Mc Mc

Nf Nf Nf Nf




 (14) 

Once each processor has a full knowledge of the number of added and merged cells, we assign the global 

indexes to new cells due to refinement operation in an add-up sequence by looping through Mc  array. For example, 

the number of added cells on a three processors computation is [10 11 9] and the original total size of cells is 50, the 

new global indexes of new cells are [51:60 61:71 72:80]. Thus, the assembled contiguous indices can be used to 

update the cell connectivity by renumbering the obtained local arrays.  In case of merged cells, inactive tags are 

assigned to them. Inactive cells and faces do not participate in the new partitioning graph and solution marching 

process. Face indexes are assigned by a similar add-up manner. A face’s front and back cells are updated by the 

determined global cell indexes. The final procedure to grid-up new global graph is collecting those faces composing 

a global cell to form a cell’s faces list.  

Note that after the creation of Mc  and Nf  by all-to-all collective communication, every processor operates on 

an identical set of data. As a result, the updating of connectivity of graph is pure serial computation. Moreover, it 

requires only two messages of communication to accomplish updating of global connectivity with present algorithm.  

Performance deterioration due to frequent communication during the adaptive refinement process is avoided by 

the current approach. It is a fully decoupled method requiring no communication during the remeshing of each sub-

domain.
31

 Besides, we do not need to grid up the boundary and interior of a partition separately; single time grid 

generation on each sub-domain is satisfactory.
30

 The follow-up correction to the connectivity of global grid is 

specific concentrated on adaptation-affected regime, which is effective in terms of computation.  

D. Domain Re-decomposition 

To maintain equal workload among processors after grid adaptation, the new global graph is subjected to re-

decomposition. We utilize heuristic partitioning libraries ParMETIS to accomplish this work not only because of the 

nature of unstructured grid, but also its ability to achieve multiple objectives optimization. Redistribution cost, load 

balance and the edge-cut can be considered in a partitioning process at the same time. The dynamic domain 

decomposition starts with a re-ordering process for all active cells that participate in solving the fluid field. Those 

that have been flagged as inactive global cells and faces due to the coarsening operation will not be grid entities in 

the distributed sub-domains but only an index pointer in the global graph level. The deactivation strategy is 

convenient for data structure operation at this stage. A memory adjustment operation will remove all non-active 

index pointers that are no longer used. 

The re-ordering process places a natural index system to active cells of the new graph, and is used to pass the 

CSR format required at the ParMETIS’ input. The weight of a cell is one but promoted to higher value if it is a solid 

ghost cell to account additional work of boundary condition enforcement. 

E. Data Migration and Construction of Eulerian and Lagrangian Sub-domains 

ParMETIS returns a partition vector which represents the new processor belonging. Between discard of the 

original sub-domain 
p  and construction of new sub-domain

"

p , information such as cells’ coordinate, level, 

cell-centered material, pressure and temperature are packed for data migration. Depending on the difference between 

the original partitions and new partitions, data migration may be communication-intensive. If the AMR are 

performed at adequate intervals, a good partition library should return partitioning with small change that reduces 

data redistribution cost. Diffusive scheme of re-partition routines ParMETIS_V3_AdaptiveRepart usually leads to 

moderate data migration cost based on our experience. 

Communication routines for data migration are carefully designed to avoid communication overhead. Cell-

centered and face-centered data are packed into two individual user-defined types. As a result, two messages (one 
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for cell-centered and one for face-centered data) are enough to accomplish data migration between two processors. 

Sub-domains’ data need to be transferred to other processors are concatenated into a 1D array and then exchanged 

by non-blocking send and receive mechanism. Once the redistribution of data is completed, the original Eulerian 

sub-domain is discarded and then the construction of new Eulerian sub-domain is followed. The Lagrangian sub-

domains are built based on new Eulerian sub-domains. 

 

IV. Numerical results 

In this section, we first investigate the independent parallel performance for the implanted Cartesian grid flow 

solver and cell-based unstructured AMR method separately. Then, the overall performance of the present approach 

will be demonstrated using binary droplet collision with six level of grid refinement. The total mesh size varies from 

2.2×10
6
 to 2.4×10

6
 cells. All numerical experiments exercised are conducted on NYX machine at the University of 

Michigan, and its specifications have been addressed in the previous section. 

A. Cartesian Grid Flow Solver Performance 

First, the performance of the Cartesian grid flow solver is evaluated by running the lid-driven cavity flow in 

three mesh sizes; 1.6×10
5
 cells, 1.0×10

6
 cells, and 4.0×10

6
 cells, without dynamic adaptive mesh refinement. The 

linear solvers used here is PETSc’ conjugate gradient method with Jacobi preconditioner. Since the graph of a linear 

system of the discretized Poisson equation changes with the number of partitions, the iteration number reaching a 

constant rounding-error varies with the number of processors used. In order to control the workload spent on solving 

a linear system on a varying number of processors, executing time of solving Poisson equation is under the basis of 

the fixed iteration number of the linear solver. 

Results show that up to 70 percentage of wall time in a time step is spent on solving the linear system of the 

discretized Poisson equation. As a result, overall parallel performance is dominant by the efficiency of linear solver, 

which is controlled by two factors: the Computation-to-communication ratio and shared cache size per CPU. For a 

fixed-size problem, increasing the number of processor decreases computation-to-communication ratio, and results 

in the slowdown of speedup. In case of shared cache effect, its impact on the parallel performance is related to the 

size of working data in solving a linear system. A typical parallel program assigns a fraction of the entire data to 

each processor. However, the entire data set does not fit into the cache on a single processor execution but a parallel 

computations executing on the same problem with multiple processors may have working data assigned to each 

processor that can fit in its local shared cache. In case of a computation having fully cached decomposed working 

data, a high hit rate and super-linear speedup are achieved.  

Figure 11(a)-(c) shows executing time and speedup of three cases of different mesh size. With smallest grid size 

of 1.6×10
5
, the speedup increases gradually with increasing number of processor but slows down on 16 processors 

due to decreasing computation-to-communication ratio. In the moderate grid size of 1.0×10
6
 cells, super-linear 

speedup due to higher cache hit rate is observed in between 64 to 108 processors and the slowdown of speedup due 

to decreasing computation-to-communication ratio is found on 140 processors. The last case has 4.0×10
6
 cells such 

that the working data is excessively large with respect to the 8M-Bytes L3 cache on a serial execution, and results in 

significantly low cache hit rate that overestimates the speedup of multiple-CPU computation. The parallel efficiency 

gradually ascends to 1.2 at 240 processors. Deterioration of the efficiency arising from the decreasing computation-

to-communication ratio is not observed in the scope of 240 processors.  

Figure 11(d) gives the parallel efficiency based on number of cells per processor. In general, the efficiency 

reaches peak roughly at 1.5×10
4
 cells per processor and deterioration due to decreasing computation-to-

communication ratio is around 10
4
 cells per processor. It suggests that parallel efficiency does not benefit from 

further decomposition of the data. On the other hand, relative low efficiency at larger number of cells per processor 

is observed because of lower cache hit rate. The highest efficiency happens when working data are fully cached. As 

a result, the 8M-Bytes shared cache affects the behavior of parallel efficiency with larger problems. Moreover, for 

working data that are able to be fully cached on a serial execution, the cache effect on parallel efficiency will not be 

seen as the case of 1.6×10
5
 cells. The overall performance of the Cartesian grid flow solver demonstrates favorable 

efficiency for problems in the scope of several million of cells on Intel Nehalem Xeon architecture. Based on the 

tests above, the Cartesian solver has best performance at 15,000 to 20,000 cells per processor. 

B. Performance of Cell-based Unstructured Adaptive Mesh Refinement 

We focus on parallel performance of AMR by conducting both strong and weak scaling studies for current AMR 

approach. The refinement (or coarsening) is applied on an initial uniform grid by random assignment of adaption 
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flag on every partition. Due to using randomly assignment of adaption flag, run time spent on repartition is small 

and consequently new partitions do not show significant data redistribution cost. Each partition obtains 2 

percentages of cells having refinement flags that produce 14 percentage of total cells increment, and the spatial 

distribution of applied refinement is arbitrary. In the strong scalability test, we start with original mesh size 8.19×10
6
 

and then reach about 9.3×10
6
 after AMR. Because the data packing of our approach is unstructured and cell-based, 

number of refinement level in the domain will not affect data-fetching rate and load balance theoretically. Hence, 

this experiment considered one level of refinement and characteristic of performance is applicable to cases having 

multiple levels of refinement.  

We categorize three primary procedures composing an AMR operation: adaption flagging, parallel remesh and 

construction of new sub-domain. Specifically, remeshing includes parallel remeshing of local grid and then updating 

the entire global grid (connectivity). Construction of new sub-domains includes re-ordering of cells and faces, 

calling ParMETIS for load balancing, defining the overlapping zone between partitions, data re-distribution, and 

defining new sub-domain data/variables. The strong scalability is investigated on these two primary procedures.  

 

  

(a) (b) 

  

(c) (d) 
 

Figure 11. Speedup and efficiency of Cartesian grid solver. (a)-(c) Speedup as a function of number of 

processors for mesh size 1.6×10
5
, 2×10

6
 ,and 4×10

6
. (d) Parallel efficiency with respect to number of cells per 

processor. The case marked with triangle is uniform flow past a circular cylinder with sharp interface 

method for solid interface. Since the cost of boundary condition is trivial compared with total cost of 

Cartesian grid solver, performance degradation due to imbalance of ghost cell distribution is not detected. 

Cartesian grid solver has best usage of computational power at 15,000 to 20,000 cells per processor. This 

range is determined by two factors: the computation to communication ratio and cache size of a machine. 

Figure 12 presents overall strong scalability of remesh and sub-domain construction. These two sub-processes of 

AMR contribute comparable wall-clock time in all cases. Speedup of the AMR slows down around 64 processors 

and then level off at 128 processors. The cause of slow down on remeshing is mainly due to serial operation on 

updating connectivity of global grid after completing grid-up of each partition. Since possession of global grid in 
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every processor is required for dynamically partitioning and determining communication pattern on unstructured 

grid, updating connectivity on global grid is unavoidable. Other overhead operation in AMR comes from all-to-all 

communication. All-to-all communication is used by the re-ordering cell in sub-domain construction. When it is 

utilized for scattering large data, it will cause significant deterioration to the performances.  

We study weak scalability of AMR operation by fixing mesh size per processor to 6.4×10
4
. Weak scalability can 

provide us useful understanding on the feature of current cell-based unstructured AMR. Especially, a program using 

intense far-end communication such as all-to-all communication should show unfavorable weak scalability. This 

type of communication is adopted in updating connectivity and reordering cell of entire domain. On the other hand, 

tasks involving nearest-neighbor communication are generally free from communication overhead thus good weak 

scalability is expected. 

 

 

Figure 12. Wall-clock time of an AMR operation on strong scaling basis. Original mesh size is 8.19×10
6
 and 

2% of grid points are refined. Both two primary procedures of AMR, remesh and sub-domain construction, 

scale up to 128 processors with efficiency 0.68. All-to-all communication is the major cause of speedup 

slowdown in the remeshing and reordering procedures.    

In this experiment, the number of processor involved spans from 8 to 128, which has total mesh size range from 

5.12×10
5
 to 8.192×10

6
. When doubling number of processor, the computational grid length is double in one spatial 

direction. We utilize ParMETIS to initialize grid decomposition that results in a nearly identical mesh size per 

partition. Every processor assigns adaption flag randomly on 2% of cells in its own partition. Each experimental test 

is repeated five times and averaged wall-clock time is recorded. We calculate the time required to complete 

following procedures: adaptation flag assignment; remesh of local grid and update of global grid, which are two 

major components of remeshing; reordering cell and faces after repartition, load balancing, data redistribution, and 

constructing sub-domain variables. Figure 13 shows efficiency and percentage contribution of each procedure. The 

efficiency is calculated against results from 8 processors. 

Overall efficiency of AMR are 0.99, 0.73, 0.48 and 0.26 at 16, 32, 64, 128 processor-count. However, when 

looking at the each procedure, adaptation flag and data re-distribution scales to 128 processors. These two 

procedures merely have communication between a partition and its neighbors. Efficiency of remeshing local gird 

and construction sub-domain variables reaches 0.5 at 128 processors. When number of processor increases, updating 

global grid and reorder cell and face are two most inefficiency procedures. Serial computation and communication 

overhead are primary sources of inefficiency in these two procedures. We use serial operations on some part of 

updating global grid, and all-to-all communication to updating global indices. Because of using all-to-all 

communication, we observed that the majority of communication overhead comes from the saturation of system 

send buffer. Due to the large amount of data and message counts, send calls waste time to wait for available system 

buffer. Even with the current non-blocking communication routines addressed, messages are delayed by system 

buffer. In some cases, we can alternatively circumvent the requirement of all-to-all communication by serial 

computation on global grid data in every processor, but this approach incurs serialization that hamper speedup.  

Using user-provided buffering MPI_Bsend may amortize this problem. 
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Figure 13. Efficiency and breakdown of an AMR operation on weak scaling basis. The mesh size per processor 

is 6.4×10
4
 and 2% of grid points are refined. The total wall-clock time of one AMR operation is 2.79, 2.83, 

3.85, 5.74, and 10.83 second for 8 to 128 processors. Procedures “Adaption flag”, “remeshing local grid”, 

“data redistribution”, and “sub-domain construction” using the near-end communication pattern scale better 

than those counterpart procedures using all-to-all communication such as “updating global grid” and 

“reordering cell and face”. Updating global grid become the major performance hurdle due to serialization 

and communication overhead. 

C. Strong Scaling of a Practical Problem: Binary Droplet Collision 

We describe a practical example, binary droplet collision to illustrate the overall performance of parallel 

adaptive Eulerian-Lagrangian method. This investigation concentrates on parallel performance of adaptive mesh 

refinement and field solver. Performance is highly dependable on the effectiveness of decomposition of Eulerian and 

Lagrangian domains and communication 

In this experiment, we record wall-clock time of computation across 62 time-steps, with AMR operation applied 

18 times. Such adaptation frequency is aggressive. AMR operation is activated by the requirement to refine 

Cartesian grid around moving Lagrangian interfaces every 4 time-steps, and solution-based adaption is considered in 

every 20 time-steps. For an ordinary problem, adaption can be less strict by enlarging the spatial range of refinement 

and decreasing AMR check frequency.  We evaluate strong scalability on initial grid with 2.2×10
6
 cells and six 

levels of refinement. The problem is run from 8 to 192 processors.  

 
 

 

 

 
(a) (b) 

Figure 14. Two droplets collide eccentrically to each other at We = 60.1 and Re = 302.8. It involves moving 

interface tracking, Lagrangian mesh modification (coarsen, smooth, and refine), interfaces reconstruction 

algorithm and adaptive mesh refinement techniques. This simulation takes about 4 days to complete a serial 

computation. With parallel implementation on 32 processors, it takes about 3.5 hours. (a) Morphological 

evolution during collision. (b) Snapshot of interface on adaptive Cartesian grid. This demonstration uses six 

level of refinement on initial mesh 2.2×10
6
 cells.  
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Figure 14(a) and (b) shows history of droplets’ morphological evolution and a snapshot of interfaces with sliced 

view of adaptive Cartesian grid. Weber number and Reynolds number are 60 and 302, and impact factor is 0.55. The 

definition of impact factor is the ratio of radial offset of two droplets center over the droplet diameter. The 

implemented adaptive mesh refinement algorithm effectively refines grid at the location of fluid interface and 

coarsen grid where grid resolution not demanded.  

Figure 15 describe the executing time of primary procedures. We categorize these procedures according to their 

computation frame: interface shape modification (Lagrangian); surface tension computation and material 

determination (Eulerian-Lagrangian); projection of Cartesian grid solver (Eulerian); and AMR. Adaptive mesh 

refinement procedure shows least speedup and level off after 32 processors. The reason of low AMR efficiency is a 

result of load imbalance due to localized adaptation around interface. Frequent request of AMR also increase ratio of 

serial computation in the simulation. Computation time of AMR is from 4 to 13 % percent of the total wall-clock 

time. Even with high frequent calling of AMR algorithm, computational resources are mainly consumed by the 

Eulerian-Lagrangian flow solver. Note that among all tests, we observe that every processor has partial of 

Lagrangian interface, but loading of Lagrangian computation is not ideally balanced. 

Pure Lagrangian procedures such as interface modification including smoothing, refining, and coarsening of 

Lagrangian interface occupies constant portion of total run time through all processors count, and its speedup levels 

off at 128 processors. The Eulerian-Lagrangian procedure shows lower parallel performace than Eulerian 

procedures, which is mainly due to the lower computation-to-communication ratio. Eulerian procedures scales well 

as we observed in stand-alone flow solver test. In summary, Parallel performance of each group are proportional to 

their computation-to-communication ratio, that is, in the descending rank as Eulerian, Eulerian-Lagrangian, 

Lagrangian and then AMR. 

 

  
Figure 15. Executing time of the Eulerian-Lagrangian method for binary droplet collision computation. 

Original mesh size is 2.2×10
6
. Time is recorded for 62 time-steps computation with AMR operation applied 18 

times. Overall efficiency is 0.65 and 0.48 at 64 and 128 processors respectively. Procedures are categorized in 

four groups;  Eulerian (E): operations of Cartesian grid solver; Eulerian-Lagrangian (E-L): cell material 

determination and surface tension computation; Lagrangian (L): interface shape modification; AMR: 

adaptive mesh refinement. Parallel performance of each group are proportional to their computation-to-

communication ratio, that is, Eulerian > Eulerian-Lagrangian > Lagrangian > AMR. The load imbalance of 

Lagrangian data also incurs slowdown of speedup. Contribution of the wall-clock time from each group are 

stacked on the bar chart. Eulerian-Lagrangian computation occupies 40% to 45% of wall-clock time. With 

more processors, the ratio of wall-clock time spent on Lagrangian increases due to work imbalance. 
 

We observed that surface tension computation costs 20 to 23 % run time. Besides, it is imbalance work among 

all processor that some of the processors fall behind to start the following procedure, Runge-Kutta/Crank-Nicolson 

solver (RK-CN). The consequence of “racing” of surface tension computation is a delay of communication in RK-

CN solver. As a result, performance of RK-CN solver degrades. We observed RK-CN solver’s trend on wall-clock 

time is similar to that of interface modification and surface tension computation, which is the impact of imbalance 

loading of Lagrangian computation.  
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Overall, Eulerian-Lagrangian computation uses 40 to 45 percentage of wall-clock time. In addition, with more 

processors involving in computation, we observed more overhead of Lagrangian works. This effect induces more 

time spending on Lagrangian computation at higher processor count. These observations support our design of using 

marker locality to decompose Lagrangian domain. First, Eulerian-Lagrangian procedures are significant in terms of 

computation, that atomic decomposition will suffer communication overhead due to the frequent message and data 

size of communication. On the other hand, with task parallelism for Lagrangian domain, the intense computation 

work is not easy to balance, and most important, Lagrangian data has dependence on Eulerian data that task 

parallelism is difficult. 

D. Binary Droplet Collision at High Weber Number 

We further apply the present parallel adaptive Eulerian-Lagrangian method to simulate computationally 

demanding head-on binary droplet collision at high Weber number. By increasing the inertial force, the colliding 

droplets experience more violent deformation and breakup. The material used for two phases are water and air in 

room temperature at We = 1520 and Re = 8750. The mesh size is 2.4 million grid point initially with 6-level of 

refinement and reaches 7.2 million at the end of simulation. The finest grid resolution is 1/128 of initial droplet 

diameter. Figure 16(a) shows collision results obtained from current approach. The impinging flow from both sides 

of two droplets extrudes a circular disk at the waist of the merged body, which expands radially with a growing 

circular rim attached by the end-pinching mechanism due to capillary effect. The rim separates from the disk and 

continues to expand in radial direction because of inertia of itself. As the rim expands, the wavy structures are 

observed along the circumference of the rim, which is so called Rayleigh instability induced by capillary force. The 

rim eventually breaks into multiple secondary droplets as single water jet from a faucet breaks into a row of 

droplets. Current result qualitatively matches with the experiment pictures taken from
32

. Figure 16(b) presents the 

snapshot of the droplet with adaptive Cartesian mesh at the moment of secondary droplets formation. We will 

investigate the collision behavior and interfacial physics in the future. 

 

(a) 
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(b) 
Figure 16. Head-on binary droplet collision at We = 1520 and Re = 8750. (a) Morphological evolution during 

collision. (b) Snapshot of interface on adaptive Cartesian grid. The size of secondary droplets is about 100 

times smaller than the original droplet size. Multiple-scale features of moving interface are successfully 

addressed with the present parallel adaptive Eulerian-Lagrangian method.  

 

V. Conclusion 

In this paper, we propose a parallel, adaptive Eulerian-Lagrangian method for large-scale moving boundary 

computation. The interactions between Eulerian and Lagrangian domain result in difficulties of decomposition and  

incur communication complexities between two individual domains. A spatial domain decomposition parallelism 

based on the locality of Lagrangian markers with respect to Eulerian partitions is adopted for reducing data size and 

frequency of communication. A parallel cell-based unstructured AMR algorithm is described with the analysis of 

details of AMR procedures including parallel grid generation of Eulerian sub-domains, global indices generation 

technique, domain re-decomposition and data redistribution. The highlights of parallel performance of the adaptive 

Eulerian-Lagrangian method on multiphase moving boundary problem are addressed as follow. 

1) In the Eulerian domain decomposition including sharp interface, the current Cartesian grid solver achieves 

the most efficient computation in the range of 15,000 to 20,000 cells per processor. This range is determined 

by computation-to-communication ratio and the shared cache size per CPU. 

2) Under strong scaling condition, the current cell-based unstructured AMR shows overall outstanding 

efficiency of 0.66 at 128 processors for a mesh size of 8.19×10
6
 although the complexity and interactions 

between Eulerian and Lagrangian domain usually degrades the efficiency. Under weak scaling condition, 

the proposed cell-based unstructured AMR shows good scalability on procedures having near-end 

communication. However, the updating of global grid connectivity degrades the efficiency due to the use of 

all-to-all communication and serial computation. 

3) Using parallel adaptive Eulerian-Lagrangian method, the simulation of binary droplet collision having 

satellite droplets shows scalable dynamic adaptive computation, and multi-scale features of interface are 

resolved. The overall efficiency is 0.65 at 64 processor for a 2.2-million mesh size problem. The overhead 

due to imbalanced Lagrangian work is the major factor of efficiency degradation at large number of 

processors. 
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