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In this paper, we generalize retrospective cost adaptive NARMAX control (RCANC) to
a command-following problem for uncertain Hammerstein systems. In particular, RCANC
with ersatz nonlinearities is applied to linear systems cascaded with input nonlinearities.
We assume that one Markov parameter of the linear plant is known. RCANC also uses
knowledge of the monotonicity properties of the input nonlinearity to select the ersatz non-
linearity. The goal is to determine whether RCANC can improve the command-following
performance compared to the linear RCAC controller.

I. Introduction

While nonlinear control techniques have been extensively developed, the vast majority of modern
methods assume the availability of full-state measurements. This is largely due to the fact that optimal
control methods produce control laws that depend on full-state feedback as well as the fact that output-
feedback control laws consisting of nonlinear observers combined with full-state feedback control laws may
not be stabilizing. The lack of a widely applicable separation principle within a nonlinear setting thus
remains an impediment to nonlinear output-feedback control [1].

In the present paper we focus on Hammerstein systems, which comprise a class of nonlinear systems
consisting of an input nonlinearity cascaded with linear dynamics. These systems encompass plants that
involve linear dynamics with, for example, saturation [2], deadzone, or on-off input nonlinearities. Identifi-
cation of Hammerstein systems is widely studied [3-5], while control of Hammerstein systems includes the
entire literature on control of linear systems with saturation [6] and actuator nonlinearities [7, 8].

For command-following problems, performance is degraded by the input nonlinearity in various ways.
If the range of the input nonlinearity is insufficient for the plant output to follow the command, then the
performance error is unavoidable; this is the case with saturation, which can also cause instability due to
windup. On the other hand, if the range of the input nonlinearity is sufficiently large for the output to follow
the command, performance degradation may result from the distortion introduced by the shape of the input
nonlinearity. If the input nonlinearity is known, then this effect can be mitigated or removed by inversion;
if the input nonlinearity is uncertain, or has a critical point, then adaptive inversion may be feasible [9].

In the present paper we take an unconventional approach to nonlinear output feedback control of
Hammerstein systems by using adaptive control to directly update the gains of a NARMAX controller. A
NARMAX model is a discrete-time ARMAX system in which the past output and inputs appear as arguments
of basis functions. These functions are chosen by the user, and the controller coefficients appear linearly.
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The constraint that the controller coefficients appear linearly implies that the basis function functions are
fixed a priori and thus cannot be modified as part of the adaptation process. NARMAX models have been
applied to nonlinear system identification [10, 11].

For adaptive NARMAX control, we apply retrospective cost adaptive control (RCAC). RCAC has
been developed in [12-16] and applied to Hammerstein systems in [17,18] and NARMAX control in [19].
The present paper extends and improves the results of [17-19] by modifying the adaptation mechanism to
include a nonlinear adaptation mechanism. This modification ensures that the retrospective optimization
accounts for the presence of the input nonlinearity. To account for the case in which the input nonlinearity
is uncertain, we investigate the performance of RCNAC control in the case of uncertainty. In particular,
we determine the minimal modeling information about the input nonlinearity that RCANC requires; once
this information is known, an approximate input nonlinearity, called the ersatz nonlinearity, can be used by
RCANC for adaptation.

II. Hammerstein Command-Following Problem

Consider the MIMO discrete-time Hammerstein system

z(k+1) = Ax(k) + BN(u(k)) + Dyw(k), (1)
y(k) = Ca(k) + Daw(k), (2)
z(k) = Eyz(k) + Eqw(k), (3)

where x(k) € R”, y(k) € Rlv, z(k) € Rl=, w(k) € Rl u(k) € Rlv, N: Rlv — R and k > 0. The goal is to
develop an adaptive output feedback controller that minimizes the command-following error z with minimal
modeling information about the dynamics, and input nonlinearity N. We assume that measurements of z(k)
are available for feedback; however, measurements of v(k) = N(u(k)) are not available. A block diagram for
(1)-(3) is shown in Figure 1.

N(u) G

Feedback “E
I N . T Controller i

Ty Hammerstein plant

Figure 1. Adaptive command-following problem for a Hammerstein plant with input nonlinearity N. We assume that
measurements of z(k) are available for feedback; however, measurements of v(k) = N(u(k)) and w(k) are not available.

III. Retrospective-Cost Adaptive NARMAX Control

III.A. ARMAX Modeling

Consider the ARMAX representation of (1)—(3) given by

=Y —aiz(k—i)+ > _ BiSat(u(k —i)) + > _ viw(k — 1), (4)

i=1 i=d =0
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where ai,...,0n € R, Bi1,...,08n € REXbu 4 5, € RE=Xlw and d is the relative degree. Next, let
v(k) 2 Sat(u(k)), and define the transfer function

_ — a(a)
G.o(q) 2 Ey(al — A)"'B = =Y (5)
q q ;q Bl

where q is the forward shift operator and, for each positive integer ¢, the Markov parameter H; of G, is
defined by

H;, 2 B, A"1B e Rl=Xlu. (6)
Note that, if d = 1, then H; = 31, whereas, if d > 2, then
pr=-=PFa-1=Hi=--=Hq_1=0 (7)
and Hy = 4. The polynomials a(q) and 5(q) have the form

a(q) :qnil +O‘1qn71 + ot ap—1q+ ap, (8)
Bla) =" 4+ Ba1d" T+ + Buoia + Ba (9)

Next, define the extended performance Z(k) € RP!= and extended plant input V (k) € Ril« by

z(k) v(k —1) Sat(u(k — 1))
Z(k) : . VI(k) : = : ; (10)
z2(k—p+1) v(k — qc) Sat(u(k — g.))

where the data window size p is a positive integer, and g, Sn + p — 1. Therefore (10) can be expressed as

where
—ady, - —andy, Opx, o Oxa, Yo o Y Onxa, o Oxay,
w8 Onxi. - : 01, <1, . ;
01, %1, : : . - Oy,
Ollez R Ollez —Oélflz e —anIlz Ollew . Ollew Yo . o
€ RP!=Xlgels+H(@e D] (12)
B o B Oxi, o Onxi,
Bf é Olz.Xlu .. .. .. . c ]Rplzxqclu7 (13)
: . Olle“
0%, Ouxi, B e B
and
[ z(k—1)
G0 (k) & z2(k—p—n+1) € Rel=F(@etlw (14)
w(k)
| wk—p—n+1) |
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Note that W, includes modeling information about the poles of G, and the exogenous signals, while By

includes modeling information about the zeros of G, .

For the open-loop system (4), we make the following assumptions:

1. The relative degree d is known.

2. The first nonzero Markov parameter Hy is known.

There exists an integer n such that n < n and n is known.

If € C, |¢] > 1, and B(¢) = 0, then the spectral radius of A is less than 1.
5. The performance variable z(k) is measured and available for feedback.

6. The exogenous signal w(k) is generated by

Tw(k+1) = Apzy(k),
w(k) = Cypryw(k),

where z,, € R and all of the eigenvalues of A,, are on the unit circle and do not coincide with the

transmission zeros of G, .
7. There exists an integer n,, such that n,, < n, and 7n,, is known.
8. The exogenous signal w(k) is not measured.

9. a(z), 5(z),n, and z(0) are unknown.

III.B. NARMAX Controller Construction

In this section, we assume a NARMAX structure for the adaptive controller, which uses a nonlinear
difference equation to model the relation between the input z and output w of the controller. The nonlinear
controller may include nonlinearities on the input to the controller (NARMAX/T), the output of the controller
(NARMAX/O), or both (NARMAX/IO). The NARMAX controller structure is linear in the controller

parameters, and linear regression is used to update the controller coefficients.

The control u(k) is given by the strictly proper time-series controller of order n. written as

a(k) = 35 My () k- 1)+ 305 Nyak)gs (wl — ),

j=1i=1 j=1i=1

where, for all j = 1,...,s,i=1,...,nc, s € Z*, Mj;(k) € Rle*tu and for all j = 1,...,t, i =1,...

t € Z*, Nj;(k) € Rl«*lv. The control (17) can be expressed as
u(k) = 0(k)¢(k — 1),
where

9(/@) [ Mn(k) o Msnc (k) Nu(k) o Ntnc (k) c Rluxnc(slqutly)
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and

[ fl(u(k_l)) ]
Ca | Awlend) | ey
T ey [T .
L ge(y(k —ne)) |

To illustrate the NARMAX/O controller structure, let fi(u) = u, fo(u) = u?, and f3(u) = u®. Then
0(k) and ¢(k — 1) can be expressed as

(k) 2 [Mi(k) -+ Moo (k) Mg g1 (B) = Mang (k) Mane i1 () - Mapo (k) Ni(k) - Noo (k)] € RlwXne(lutly)
and
¢k —1) 2 [w(k=1) = ulk—ne) u2(k—1) - u?(k—ne) w(k—1) = u®(k—ne) y(k—1) - y(k—n)|T € RMeBluth),
To illustrate the NARMAX/I controller structure, let g;(y) = y and g2(y) = y*. Then (k) and ¢(k — 1) can
be expressed as
00) 2 [Ma(k) - My (k) Nu(k) - Na(k) Nooa(k) - Nog (k)] € REXne(ter2h)
and

QS(k—l)é[u(k—l) cou(k—ne)) ylk—1) - ylk—mne) yQ(k‘—l) yQ(k_nC)]TeRnc(lu-f—Qly)_

III.C. Retrospective Performance

Define the retrospective performance Z (k) € RPE= by
Z(k) 2 W (k) + ByN(U (k) + By [N(U (k) = N(U ()], (19)

where By € RPE=*Pelu is the retrospective input matrix, N : R — R is the ersatz nonlinearity, N(U(k)) means
componentwise evaluation, and U (k) € R« is the recomputed extended control vector, the components of
U(k) are the recomputed control @(k —1)...4(k — g.) ordered in the same way as the components in (10).
Subtracting (11) from (19) yields

Z(k) = Z(k) + ByIN(U (k) = N(U ())]. (20)

Note that the retrospective performance Z (k) does not depend on W.,, or the exogenous signal w. For the
disturbance rejection problem, we do not need to assume that the disturbance is known; for the command-
following problem, the command w can be unknown. Therefore, only limited model information is needed.
The model information matrix By is discussed in Section IV, and the construction of ersatz nonlinearity N
is discussed in Section V.

III.D. Retrospective Cost and Recursive Least Square (RLS) Update Law
III.D.1. Retrospective Cost

We define the retrospective cost function

é ~

J(N(U(K)), k) = ZT (k)R(K) Z(k), (21)
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where R(k) € RP!=XPl= is a positive-definite performance weighting. The goal is to determine retrospectively
optimized controls U(k) that would have provided better performance than the controls U(k) that were
applied to the system. The retrospectively optimized control values U(k) are subsequently used to update
the controller.

Next, to ensure that (21) has a global minimizer, we consider the regularized cost
TN (k). k) £ Z7 (k) R(k) Z (k) + n(k)NT (0 (k))N(O (K)), (22)
where (k) > 0. Substituting (11) into (22) yields
J(N(U(k)), k) = NT(U (k))AN(U (k) + B(k)N(U () + €(k),

where

>

A(k)
B(k)
e(k)

BfR(k)By +n(k)Ig,1,xq.l.
2BF R(k)[Z(k) — BfN(U(k))],
Z(k)R(k)Z(k) — 2Z" (k)R(k)ByN(U (k) + N (U (k)) B} R(k) ByN(U (k).

1>

1>

If either B; has full column rank or (k) > 0, then A(k) is positive definite. In this case, J(N(U(k)), k) has
the unique global minimizer
8 1

N(U (k) = —§A‘1(k)B(k). (23)

If N is not onto, then U(k) in (23) may not have a solution. Hence, we take

N ~ A 1
U(k) = argmin [ N(U(k)) + §A‘1(k)3(k:) (24)
2
An arbitrary choice is made if the argmin in (24) is not unique.
II1.D.2. Cumulative Cost and RLS Update
Define the cumulative cost function
A ;
Jeum(0,5) = Y N7H[@T (i — d = 1)0(i — 1) — (i — d)||?
i=d+1
+ XM [0(k) = 0(0)]" Py ' [(k) — 0(0)], (25)
where || - || is the Euclidean norm, Py € Rlu[nelut(netDiz]xnclut(net D] ig positive definite, and A € (0,1] is

the forgetting factor. The next result follows from standard recursive least-squares (RLS) theory [20, 21].

Lemma III.1. For each k > d, the unique global minimizer of the cumulative retrospective cost
function (25) is given by

Pk —1)é(k — d)e(k — 1)

6(k) = 0(k —1) + A+ ¢T(k—d)P(k— 1ok —d)’ (26)
where
1 Pk =1)p(k — d)¢™ (k — d)P(k — 1)
PR =X [P =) = T 0= PG - Dol —d) @)

P(0) =Py, and e(k —1) 2 ¢T(k —d — 1)0(k — 1) — a(k — d).
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IV. Model Information Bf

For SISO asymptotically stable linear plants, if the open-loop linear plant is minimum-phase, then
using the first nonzero Markov parameter in RCAC yields asymptotic convergence of z to zero. In this

case, let Bf = [ O1xq—1 Hg } [14,16]. Furthermore, if the open-loop linear plant is nonminimum-phase

and the absolute values of all nonminimum-phase zeros are less than the plant’s spectral radius, a sufficient
number of Markov parameters can be used to approximate the nonminimum-phase zeros [14]. Alternatively,
a phase-mismatching condition A(#) < 90 is given in [22, 23] to construct Bj.

For MIMO Lyapunov stable linear plants, an extension of the phase-matching-based method is dis-
cussed in [24].

For unstable and nonminimum-phase plants, knowledge of the locations of the nonminimum-phase
zeros is needed to construct By. For details, see [14, 25].

In this paper, we assume that the Hammerstein system is Lyapunov stable, and we choose Bf =

[ O1xq—1 Hg }, that is, the first nonzero Markov parameter of G.

V. Construction of Ersatz Nonlinearity N

In this section, we investigate the performance of various constructions for the ersatz nonlinearity N.
The objective is to determine the effect of model error in identifying N. We consider the asymptotically
stable, minimum-phase plant
(z—0.5)(2 —0.9)

Glz) = (2= 0.7)(z = 0.5 = 0.5)(z — 0.5 + 0.5) »

with the input nonlinearity
N(u) = (u—2)* - 3. (29)

We consider the sinusoidal command r(k) = sin(Q1k), where Q; = 7/5 rad/sample. Let the controller
structure be NARMAX/IO with s =t = 6 in (17). In particular, we choose fi(u) = u, fa(u) = exp(—(u +
0.2)), fs(u) = exp(—(u— 0.2)2), fal(u) = exp(—(u +0.4)2), fs(u) = exp(—(u — 0.4)2), fy(u) = exp(—u?),
and g1(y) = ¥, g2(y) = exp(—(y +0.2)%), ga(y) = exp(—(y — 0.2)*), ga(y) = exp(—(y + 0.4)%), g5(y) =
exp(—(y—0.4)?), gs(y) = exp(—y?) for the NARMAX/IO model. Furthermore, we let n. = 10, Py = 10112,,,

1m0 =0, and By = H; =1 as the required linear plant information.

We consider various choices of the ersatz nonlinearity N in order to elicit the required minimum
model information of the input nonlinearity N. First, we consider the ersatz nonlinearity N(u) = (u — 2)2.
The closed-loop response is shown in Figure 2. Note that the steady-state average performance zg avg =
5.7154 x 10~%. Note that RCANC compensates for the unknown bias in N.

B Next, we consider the ersatz nonlinearity N(u) = u2, and note that the intervals of monotonicity of
N and N are different. As shown in Figure 3, RCANC is not able to follow the command.

Furthermore, consider the ersatz nonlinearity f\f(u) = 5(u—2)2. As shown in Figure 4, the steady-state
average performance zgs avg = 9.0578 X 1074, and the performance degradation is 58.48%.

Last, consider the ersatz nonlinearity N(u) = |u — 2|, which matches the monotonicity but not the
shape of N. The closed-loop response is shown in Figure 5. Note that the steady-state average performance
Zss,avg = 0.0241, which represents two orders of magnitude degradation.
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Figure 2. Response of the reference signal r(k) = sin(w/5k) with input nonlinearity N(u) = (u — 2)? — 3. We consider
N(u) = (u — 2)? and the steady-state average performance Zss,avg = D.7154 X 10~%. Note that RCANC compensates for
the unknown bias in N.

6
x 10
1 10%
0.5 \
g o ‘ = 10°
-0.5
-1 107
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time Step (k) Time Step (k)
5
x 10
6 20
4 < 10
@
— Q
s 2 s O
5
0 hade o -10

-2 =20
-1000 -500 0 500 1000 0 1000 2000 3000 4000 5000
u(k) Time Step (k)

Figure 3. Response of the reference signal r(k) = sin(r/5k) with input nonlinearity N(u) = (u — 2)? — 3. We consider

N(u) = u? and note that the intervals of monotonicity of N and N are different. As shown in Fig 3, RCANC is not able
to follow the command.

These examples suggest that the monotonicity intervals of N are needed to construct 3~\f, and the more
accurately N approximates N, the better the performance is.

VI. Effect of Basis Functions

We now present numerical examples to illustrate the response of the RCANC with different basis
functions. We assume that first nonzero Markov parameter of G and the monotonicity of N are known. For
convenience, each example is constructed such that the first nonzero Markov parameter Hy; = 1, where d is
the relative degree of G. All examples assume y = z, with ¢(k) given by (18), where f and g are chosen
based on the choice of NARMAX structure. In all cases, we initialize the adaptive controller to be zero, that
is, 6(0) = 0. We let A =1 for all examples.
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Figure 4. Response of the reference signal r(k) = sin(w/5k) with input nonlinearity N(u) = (u — 2)? — 3. We consider

N(u) = 5(u—2)2 and the steady-state average performance zg avg = 9.0578 X 10~*. Note that the performance degradation
is 58.48%.
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Figure 5. Response of the reference signal r(k) = sin(r/5k) with input nonlinearity N(u) = (u—2)2—3. Using N(u) = |[u—2|,
the steady-state average performance zgs avg = 0.0241 and the performance degradation is of two orders of magnitude.
In this case, the ersatz nonlinearity N matches the monotonicity but not the shape of N.

We consider the asymptotically stable, minimum-phase plant

z—0.5
G(z) = (2’72), (30)
with the input nonlinearity
N(u) = (u—2)* - 3. (31)

We consider the sinusoidal command r(k) = sin(Q:k), where ; = 7/5 rad/sample. We choose the ersatz
nonlinearity N(u) = (u—2)?. Furthermore, we let ne = 10, Py = I(544)n., 70 = 0.011, and select By = Hy =1
as the required linear plant information.
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First, we consider a linear controller structure, that is, f(u) = w and f(y) = y. The closed-loop
response is shown in Figure 6. In this case, the steady-state average performance zg avg = 0.0110.

15 10°
1
—~ — 0
% 0.5 N 10
0
-0.5 10°
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time Step (k) Time Step (k)
2 0.6
\ -

1 .. 2 04

AN < (77—7/_—

= N 5 ‘
i;/ 0 s\ E 0.2f |

N, |5 %75\\

. AR ———
-2 -0.2

-0.5 0 0.5 1 0 1000 2000 3000 4000 5000
u(k) Time Step (k)
Figure 6. Response of reference signal r(k) = sin(r/5k) with input nonlinearity N(u) = (u — 2)?> — 3. We consider
N(u) = (u — 2)? with a linear controller structure and the steady-state average performance |zssavg| = 0.0110.

Next, we consider NARMAX controllers with four types of nonlinear functions, namely Fourier basis
function, radial basis function [26], logistic basis function [26], and triangular basis function. In all simula-
tions, we compute the closed-loop steady-state average performance |2ss avg| as we increase the number of
basis functions using NARMAX/O, NARMAX/I, and NARMAX/IO structures.

VI.A. Fourier basis function

Consider sine and cosine functions of increasing frequency

1 1 1 1
filu) = u,sin(=u), cos(~u), sin(=u), cos(iu), sinu, cosu, . ..,

4 4 2
1 1.1 1.
9i(y) = v, sm(zy), cos(zy)7 sm(§y)7 cos(iy), siny, cosy,...,

For NARMAX/O controller structure, we let g(y) = y, that is, ¢t = 1 in (17), and increase the number of
basis functions in f(u). Figure 7 shows the closed-loop steady-state average performance |zs avg| decreases
as we increase the number of basis functions in f(u) using the NARMAX/O structure. Following the same
procedure, the closed-loop steady-state average performance |zg avg| for NARMAX/I and NARMAX/IO
structures are shown in Figure 7. Note that overall NARMAX/O structure provides the best steady-state
average performance |Zss avg|-

VI.B. Radial Basis Function

Consider the radial basis functions

—u? —(— 2 _ 2 (. 2 _ 2
fi(u):u,e u e (u—0.2) e (u40.2) e (u—0.4) e (u+0.4) .

)

a2 (n_ 2 _ 2 (n_ 2 _ 2
gi(y) =y, ¥ e (¥=02)" o=(W+0.2)" o=(y=0.4)7 —=(y+04)"

*

Following the same procedures, the closed-loop steady-state average performance |z avg| for NARMAX/O,
NARMAX/I, and NARMAX/IO structures are shown in Figure 8. Note that overall NARMAXI/O structure
provides the best steady-state average performance |2zgs avgl-
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Figure 7. closed-loop steady-state average performance |zs avg| With Fourier basis function for NARMAX/O, NAR-
MAX/I and NARMAX/IO structure. |zs avg| decreases as we increase the number of basis functions for all three cases.
Note that NARMAX /O structure provides the best steady-state average performance |zss avgl-
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Figure 8. closed-loop steady-state average performance |z avg| with RBF for NARMAX/O, NARMAX/I and NAR-
MAX/IO structure. |zg avg| decreases as we increase the number of basis functions for all the cases. Note that overall
NARMAX/IO structure provides the best steady-state average performance |zgs,avg|-

VI.C. Logistic Basis Function

Consider the logistic basis functions

1 1 1 1 1
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Following the same procedures, the closed-loop steady-state average performance |zgs avg| for NARMAX/O,

NARMAX/I, and NARMAX/IO structures are shown in Figure 9. Note that overall NARMAX/O structure
provides the best steady-state average performance |zgs avgl-
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Figure 9. closed-loop steady-state average performance |z avg| With logistic basis function for NARMAX /O, NAR-
MAX/I and NARMAX/IO structure. |zs avg| decreases as we increase the number of basis functions for all three cases.
Note that NARMAX /O structure provides the best steady-state average performance |zss avgl-

VI.D. Triangular Basis Function

Consider the triangular basis functions

filu) = u,1 — max(1 — |ul,0),1 — max(1l — |u — 0.2],0),1 — max(1 — |u + 0.2],0), ...,
9;(y) =y,1 —max(1 —|y|,0),1 —max(1 — |y — 0.2],0),1 — max(1 — |y + 0.2],0), ...,
Following the same procedures, the closed-loop steady-state average performance |z avg| for NARMAX/O,

NARMAX/I, and NARMAX/IO structures are shown in Figure 10. Note that overall NARMAX/O structure
provides the best steady-state average performance |2zgs avgl-
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Figure 10. closed-loop steady-state average performance |zss avg| wWith triangular basis function for NARMAX/O,
NARMAX/I and NARMAX/IO structure. |z avg| decreases as we increase the number of basis functions for all the
cases. Note that overall NARMAX/O structure provides the best steady-state average performance |zss,avg|-
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VI.E. Numerical Example Summary

RCANC can improve the command-following performance for the Hammerstein systems over the
linear controller structure and the closed-loop steady-state average performance decreases as we increase
the number of basis functions for all three controller structures. Simulation also demonstrates that NAR-
MAX/O and MARMAX/IO provides better command-following performance compared with NARMAX/T.
However, for NARAMX/IO, the number of parameters in 6 is much larger than the number of parameters
for NARMAX/O, which is more computational expansive. Therefore, NARMAX/O controller structure is
recommended for Hammerstein systems.

VII. Conclusions

Retrospective cost adaptive NARMAX control (RCANC) was applied to command following for Ham-
merstein systems. RCANC was used with limited modeling information. In particular, RCANC uses knowl-
edge of the first nonzero Markov parameter of the linear system and the monotonicity intervals of the input
nonlinearity to construct the ersatz nonlinearity. To handle the effect of the input nonlinearity, we numer-
ically demonstrated that RCANC can improve the command-following performance for the Hammerstein
systems over the linear controller structure for compensating performance distortion caused by the input
nonlinearity. Future research will focus on choosing the ersatz nonlinearity and basis functions for RCANC
based on limited knowledge of Hammerstein nonlinearities.
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