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The paper describes a control system for hypersonic vehicles that consists of an outer-
loop guidance layer and an inner-loop flight control layer. For the outer-loop, a Model
Predictive Control approach is pursued to prescribe the desired bank angle and flight
path angle commands so that the vehicle can follow the way points and avoid exclusion
zones during its flight. For the inner-loop, a combination of a Linear Quadratic state
feedback control and an Extended Command Governor to handle pointwise-in-time state
and control constraints is proposed. Simulation results are presented for an implementation
of the proposed approach that includes the outer-loop MPC bank angle/flight path angle
control and the inner-loop controller that tracks the desired angle-of-attack and enforces
the constraints.

I. Introduction

Hypersonic flight is an area of great interest, with several experimental vehicles having been built and
launched in recent years. Two test vehicles were flown under DARPA’s Falcon Project, but both flights
ended unsuccessfully during the glide phase. The Falcon program concluded that there were two major
problems; the first being that the assumptions of known flight regimes were inadequate for flight, and the
second being that the advanced thermal modeling and ground testing were not successful at predicting reality
[1]. Hence it was found that conventional control techniques appropriate for subsonic and supersonic flight
are not necessarily applicable for hypersonic flight.

Therefore, a control method for hypersonic vehicles that can handle model uncertainties and perturbations
while adhering to strict flight constraints is necessary. One such solution is by utilizing predictive control.
Two predictive controllers were made in [2]; the first was designed to track the velocity setpoint of the vehicle
and the second, based on multi-model switching, was implemented to extend the approach to a larger flight
envelope. In [3], an acceptable closed-loop performance for hypersonics was attained while satisfying hard
control and fuel constraints. This was completed by using a generalized predictive controller with a quadratic
cost function and a receding, finite prediction horizon. A more specific predictive approach to hypersonic
control utilizes Model Predictive Control (MPC), where a robust controller is designed given constraints
on the inputs and outputs of the system. A linear parameter-varying model with an MPC controller that
considers actuator saturation was detailed in [4]. The topic of MPC for the robust control of a hypersonic
fly vehicle has also been explored in [5].

In order to guarantee constraint enforcement during flight, reference governors for hypersonic gliders have
also been developed. In particular, a reference governor augmented to an existing adaptive controller to track
reference signals was implemented in [6] to avoid the occurrence of actuator saturation and prevent windup.
A reference governor was also used in [7] to enforce constraints on elevator deflection for conventional UAV
gliders.

In this work, a two-layered guidance and control system for hypersonic vehicles is considered, as shown
in Fig. 1. In this framework, the outer-loop determines a reference flight path angle γdes and a reference
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bank angle command σdes. The reference flight path angle is then transformed to a reference angle-of-attack
αdes. Finally, the inner-loop system controls the vehicle to the commanded angle-of-attack and bank angle
using the available longitudinal and lateral actuation.

Figure 1. Framework including both the inner and outer-loop control schemes.

The outer-loop guidance layer implements a control approach based on a minimum-time Model Predictive
Control formulation [8]. Such a controller provides the capability to guide the hypersonic vehicle through
way points without violating the exclusion zone constraints that may or may not be known in advance.
In addition, the MPC controller provides a robustness to the unmodelled dynamics [8], [9]. The inner-
loop control layer implements a control scheme for the longitudinal dynamics of a hypersonic glider with
constraint enforcement capability [10]. In this loop, angle-of-attack command tracking is achieved using a
Linear Quadratic Proportional plus Integral (LQ-PI) controller. An Extended Command Governor (ECG)
is augmented to the nominal closed-loop system to handle the constraints.

In this paper, an integrated treatment of the outer and inner loop controllers are presented. Several
extensions to the design of these controllers in [9] and [10] are also included. The outer-loop control design is
discussed in Section II, where the MPC problem is formulated. In Section III, the inner-loop is considered.
Its design includes a nominal LQ-PI controller augmented with the Extended Command Governor (ECG)
to handle the pointwise-in-time state and control constraints. Section IV presents simulation results for the
MPC outer-loop, the LQ-PI/ECG inner-loop, and a combination of both outer and inner loops. The paper
is ended with concluding remarks.

II. Outer-loop guidance using MPC

For the outer-loop guidance layer, a simplified model for glider flight is used. Given this model, a
minimum-time MPC scheme is developed to determine a reference flight path angle, γdes, and a reference
bank angle, σdes, which the vehicle controls to while flying through a sequence of way points and avoiding
exclusion zones. In some cases, the way points and exclusion zones may be known in advance. In other
cases, they may only become known or may be modified in real-time during the flight.

II.A. Model

A simplified three dimensional model similar to the one in [11] for glider flight is used for MPC development.
The starting point for this model, which depends on less parameters, are the three dimensional equations
given in [12],

dx

dt
= V cos(β), (1)

dy

dt
= V sin(β),

dh

dt
= V γ,

dV

dt
= −KDV

2e−h/h0 − g0γ +
V 2γ

r0 + h
,

V
dγ

dt
= KLV

2e−h/h0 cos(σ)− g0 +
V 2

r0 + h
,

V
dβ

dt
= KLV

2e−h/h0 sin(σ),
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where x and y are the coordinates of the glider, h is the glider altitude, γ is the glider flight path angle
(assumed to be small), h0 is the atmospheric scale height, σ is the bank angle, and

KL =
CLAρ0

2m
,KD =

CDAρ0

2m
,

with ρ0 being atmospheric density at sea level, CL being the lift coefficient, CD being the drag coefficient,
and A being the glider cross-sectional area.

The equations in (1) can be simplified based on several assumptions. First, it is assumed that the desired
flight path angle, γ = γdes, is maintained by the inner-loop control of lift, resulting in dγ/dt = 0. By the
fifth equation of (1), it then follows that KL may be solved for, yielding

KL =
g0 − V 2/(r0 + h)

V 2 cosσe−h/h0
. (2)

Under the assumption that (2) is maintained, the following set of equations are obtained,

dx

dt
= V cos(β), (3)

dy

dt
= V sin(β),

dh

dt
= V γdes,

dV

dt
= −KDV

2e−h/h0 − γdes
(
g0 −

V 2

r0 + h

)
,

dβ

dt
=

c(V, h)

V
tan(σ),

where
c(V, h) = g0 − V 2/(r0 + h). (4)

Next, KL and KD are linked by a single parameter based on the assumption that

KD = E ·KL. (5)

From (2), (3), and (5),

dx

dt
= V cos(β), (6)

dy

dt
= V sin(β),

dh

dt
= V γdes,

dV

dt
= −c(V, h)

(
E

cos(σ)
+ γdes

)
,

dβ

dt
=

c(V, h)

V
tan(σ).

These equations are convenient for the development of the inner-loop controller as they depend only on the
single drag-to-lift parameter,

E =
KD

KL
=
CD
CL

,

which may be time-varying during the flight. It should be noted that hypersonic gliders are designed
as high lift-to-drag bodies, and as such, E will be relatively small. As a final step, the equations are
nondimensionalized by employing a scaling transformation [11],

xs =
xu
r0
, ys =

yu
r0
, hs =

hu
r0
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βs = βu, Vs =
Vu√
g0r0

,

as =
au
g0
, ts =

tu√
r0
g0

,

where (·)s stands for the transformed (scaled) variable and (·)u stands for the untransformed variable in the
original physical units. This leads to the following set of equations for the scaled variables (where we drop
the subscript ‘s’),

dx

dt
= V cos(β), (7)

dy

dt
= V sin(β),

dh

dt
= V γdes,

dV

dt
= −

(
1− V 2

1 + h

)(
E

cos(σ)
+ γdes

)
,

dβ

dt
=

(
1

V
− V

1 + h

)
tan(σ).

Since equations (7) hold under the assumption (2), a maximum lift constraint is enforced by the MPC
controller,

KL =
1− V 2/(1 + h)

V 2r0 cos(σ)e−r0h/h0
≤ KL,max. (8)

In addition, a nondimensional stagnation heating rate constraint from [11] is considered in the following
form,

kdime
−r0h/h0V 3

√
rnoseq̇s,max

− 1 ≤ 0, (9)

where kdim is a heating rate constant, rnose is the vehicle nose radius, and q̇s,max is the dimensional maximum
heat flux.

II.B. MPC Design for Three Dimensional Model to Control Bank Angle

In this section, the MPC design for the bank angle control is described, assuming that γdes is prescribed by
a non-MPC controller as a constant value. This design provides a conceptually and computationally simpler
starting point for MPC development as has advantages from a practical implementation standpoint. In later
sections of this paper, the design will be extended to prescribing both desired bank angle, σdes, and desired
flight path angle, γdes.

In reference to the three-dimensional model (7), the way points are defined by their positions along the
x and y axes. The x and y coordinates of the way point the glider is flying to at current time t are denoted,
respectively, by xf (t) and yf (t). For the hypersonic vehicle outer-loop, a minimum-time formulation of
Model Predictive Control with two phases is used. The first is known as the ‘fly to’ the way point phase
while the second is called the ‘fly through’ the way point phase. When the distance between the glider and
the way point is above a specified threshold, the ‘fly to’ mode is active. Once this distance falls below the
specified threshold, the ‘fly through’ mode is activated.

In both phases, the cost function

J = Tf + ρ
(
(x(t+ Tf |t)− xf )2 + (y(t+ Tf )− yf )2

)
+ µ(φ(t+ Tf/N |t), ρ, µ ≥ 0. (10)

is minimized subject to the constraints

τ = 0,
Tf
N
,

2Tf
N

, . . . Tf , (11)

tan(σ) = tan(60π/180)u, − 1 ≤ u(t+ τ |t) ≤ 1, (12)
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|u (t+ τi|t)− u (t+ τi+1|t)| ≤ 0.2, i = 1, . . . , N − 1, (13)

x(t+ τ |t) 6∈ Ei, 0 ≤ τ ≤ Tf , i = 1, . . . , nE , (14)

where t denotes the current time, t + Tf is the final time, Tf is the prediction horizon (not fixed), φ is
the absolute difference between the angle to the way point and the heading angle β, ρ and µ are constant
weights, ξ(τ |t) denotes the predicted value of a variable ξ at time τ while the prediction is made at time t,
N is the number of steps in the time horizon, and Ei denotes the ith exclusion zone, i = 1, . . . , nE . The
exclusion zones are defined as ellipsoidal sets,

Ei = {(x, y) :
1

2
[x− xE,i y − yE,i]Pi[x− xE,i y − yE,i]T ≤ 1}, (15)

where Pi = PT
i > 0. In [11], the exclusion zones are disks and Pi = αI2, α > 0, where I2 is the 2×2 Identity

matrix. Note that the constraints (14)-(15) are non-convex.
The differences between the ‘fly to’ phase and ‘fly through’ phases lie within the slack variable ρ. In the

‘fly to’ phase, ρ is used to softly enforce the constraint for the predicted trajectory to terminate at the way
point. Once the ‘fly through’ phase is activated at a time ta, the optimization problem (10)-(14) is solved
once, with the terminal way point constraint,

x(t+ Tf |t) = xf (t), y(t+ Tf |t) = yf (t), (16)

imposed and the optimal trajectory u∗(ta + τ |ta) executed open-loop. As the glider is close to the way point
at a point of activation of the ‘fly through’ phase, following the open-loop trajectory does not significantly
degrade the robustness. Once the open-loop trajectory is completed, the controller switches to the ‘fly to’
mode and flies to the next way point. In order to realize this approach, ellipsoidal switching or ’fly through
zones’ are introduced around the way points. The use of a two phase system is a simpler strategy than used
in previous works [9]. Future work will be done to determine the impact on performance and robustness
versus the strategies considered in [9].

To treat the MPC problem (10)-(14) numerically, the time is scaled as s = τ/Tf , so that 0 ≤ s ≤ 1, and
the model, represented compactly as ẋ = dx/dτ = f(x, u), is re-written as

x′ =
dx

ds
=
dx

dτ

dτ

ds
= Tff(x, u). (17)

For the model in (17), the optimal control problem has to be solved over a fixed time horizon of 1. Therefore,
Tf becomes a parameter that needs to be optimized along with the control, u(·). The scaled time interval of
control, [0, 1], is partitioned into N equal intervals of length ∆s = 1

N . The control values u(si), at si = ∆si,
i = 0, · · · , N − 1, are optimized along with Tf , under the Zero Order Hold assumption that u(s) = u(si) for
si ≤ s < si+1.

III. Inner-loop control using LQ-PI/ECG

The inner-loop controller of the hypersonic glider realizes the commanded bank angle and flight path
angle by commanding an angle-of-attack. In this Section, the constrained inner-loop control of the angle-of-
attack is exemplified. For this, a nominal LQ controller for pitch is used to track the reference angle-of-attack
while an Extended Command Governor is utilized to modify the command to ensure that the constraints are
not violated, especially the elastic defection constraints, which are of particular interest. The design of ECG
is based on [13]. As compared to reference governor designs such as the one proposed in [6], ECG can provide
increased constrained domains of attraction, faster responses, and increased tolerances to uncertainties, even
without explicit disturbance and uncertainty in the model. From the standpoint of control design, ECG is
attractive, as it augments but does not replace the nominal controller. The model used for the design on the
LQ controller is from [14].
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III.A. Longitudinal equations of motion for a flexible hypersonic glider

The longitudinal equations of motion, based on [14], are,

V̇t =
T cosα−D
m− g sin γ

, (18)

α̇ = −T sinα+ L

mVt
+ (

g

Vt
− Vt

r
) cos γ +Q, (19)

Q̇ =
M
Iyy

, (20)

Θ̇ = Q, (21)

ḣ = Vt sin γ, (22)

η̈i = −2ξωiη̇i − ω2
i ηi +Ni, i = 1, 2, . . . , n, (23)

where Vt is the true airspeed, T is the thrust, D is the drag, L is the lift, α is the angle-of-attack, γ is the
flight path angle, M is the pitching moment, Q is the pitch rate, h is the altitude, and r is the radius of
the vehicle. The flexible dynamics of the vehicle are modeled in (23), where ηi is the ith modal coordinate
of the flexible dynamics, ξ is the damping ratio, ωi is the natural frequency, and Ni is the ith generalized
force. The modal method and its derivation is more completely described in [14].

III.B. Constraints

Given the model in the previous section, constraints were added to reflect requirements relevant to maintain-
ing vehicle flight. These constraints include the angle-of-attack, pitch rate, elevator deflection, and elevator
deflection rate, represented by

αmin ≤ α(t) ≤ αmax, (24)

Qmin ≤ Q(t) ≤ Qmax, (25)

δemin
≤ δe(t) ≤ δemax

, (26)

∆δemin
≤ ∆δe(t) ≤ ∆δemax

. (27)

The angle-of-attack is constrained so that the lift forces acting on vehicle do not allow it to transition to
uncontrollable flight, which may occur at large angles-of-attack. The elevator deflection is constrained due
to its limited range of travel; in practice, tighter constraints to maintain the glider within a controllable
flight range may be imposed. The rate of elevator deflection is constrained to reflect the actuator’s physical
limits and also to ensure safe control by preventing maneuvers that can lead to unstable flight.

Due to the glider’s high speeds in the hypersonic flight regime, structural dynamics, including aeroelastic
effects, play a significant role. Constraints must be imposed in order to ensure acceptable elastic deflections.
Specifically, at specified distances back from the nose of the vehicle, the contributions of the three modal
frequencies are constrained to be less than a specific value

EDmin ≤
3∑
i=1

Φi(xloc,i)ηi(t) ≤ EDmax, (28)

where ED is the total elastic deflection of the vehicle and Φi is the ith mode shape at the specified location
on the vehicle, xloc,i. This constraint enables the designed controller to keep the vehicle’s structure safe
during the gliding portion of flight. The selected locations for this paper are at 1/10, 3/10, 5/10, 7/10 and
9/10 of vehicle length from the nose.

III.C. LQ-PI Controller with Extended Command Governor

Given the model proposed above, a nominal LQ-PI controller is augmented with an Extended Command
Governor such that the previously mentioned constraints can be met. The equations of motion given are
linearized about a trim point assuming zero thrust for the vehicle. This yields an 11 dimensional system with
the first five states given above (velocity V , angle-of-attack α, pitch rate Q, altitude h and pitch altitude
θ) and the last six are the modal coordinates and their time derivatives (η1,η̇1, η2, η̇2, η3, η̇3). The control
input for the system is the elevator deflection, δe.
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III.C.1. LQ-PI controller

The LQ-PI controller is designed using the short period subsystem extracted from the continuous-time
linearized system model. This subsystem includes the angle-of-attack, pitch rate, the modal coordinates,
and their derivatives in the state vector xss ∈ R8, and has the following representation

ẋss = Assxss + Bssu, (29)

where u denotes the elevator position and xss is the state deviation from the trim conditions. The controller,
designed for set-point tracking of angle-of-attack commands, has a tracking error

e = α− αdes. (30)

The control law for u has the following form

u = −K1

∫ t

0

e(τ)dτ −K2xss, (31)

where K1 is the integral gain and K2 is the proportional gain.
The augmented system used to design the LQ-PI controller has the form

ẋaug = Aaugxaug + Baugu̇, (32)

where

xaug =

[
e

ẋ

]
,Aaug =


0 Cα

0
...

0

Ass

 ,Baug =

[
0

Bss

]
, (33)

and α = Cαxss is the angle-of-attack output. It is assumed that when deriving (33), the set-point is constant,
i.e., α̇des = 0.

The LQR design was based on the matrix Q set to

Q =


1 0 · · · 0

0
...

0

0

 , (34)

where 0 is an 8× 8 zero matrix and R is set to 0.00005. The controller tracks asymptotically the angle-of-
attack command with fast response and small overshoot. To treat the case when the elastic states are not
measured or estimated, the second LQ-PI controller was designed based on the second order subsystem (32)
with states being the angle-of-attack and pitch rate. In this case, the LQ-PI controller uses feedback on the
integral of the angle-of-attack, angle-of-attack tracking error, and pitch rate.

III.C.2. Extended Command Governor Design

An ECG is implemented to enforce state and control constraints by modifying the set-point commands to
the closed-loop system, as shown in Fig. 2. In this system, x̂ is the state estimate, y is the system output
constrained by the set inclusion conditions y(t) ∈ Y for all t, w is the disturbance/uncertainty, v is the ECG
output, and r is the reference command. In this paper, w(t) = 0 as the characterization and treatment of
uncertainty is left to future publications.

The ECG uses the set, Ǒ∞, of states and parameterized inputs such that the constraints are satisfied for
all time. The ECG output is defined by

v(t) = ρ(t) + C̄x̄(t), (35)

where ρ(t) and x̄(t) are solutions to the following optimization problem

minimize ||ρ(t)− r(t)||2Q + ||x̄(t)||2S ,
subject to (ρ(t), x̄(t), x(t)) ∈ Ǒ∞.

(36)
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Figure 2. Extended command governor applied to a closed-loop system.

The x̄ ∈ Rn̄, n̄ ≥ 0, and ρ are states of a stable auxiliary dynamic system which evolve over the semi-infinite
prediction horizon according to

x̄(t+ k + 1) = Āx̄(t+ k), k ≥ 0

ρ(t+ k) = ρ(t).
(37)

Compared to reference governors and conventional command governors (where n̄ = 0), the ECG yields a
larger domain of recoverable initial states and faster response.

The set Ǒ∞ is a finitely determined inner approximation to the set of all (ρ(t), x̄(t), x(t)) that do not
induce subsequent constraint violation when the input sequence v(t+ k) is determined by the fictitious dy-
namics per (35) and (37). In the case when Y is polyhedral, computational procedures exist that lead to
polyhedral Ǒ∞ [15]. Without the fictitious states, i.e., when n̄ = 0, the ECG becomes the simple command
governor [16]. The optimization problem can be solved online using conventional quadratic programming
techniques. The iterative procedures can be avoided by using explicit multi-parametric quadratic program-
ming [17], leading to ρ and x̄ being given as a piecewise-affine function of the state x(t) and reference
r.

Various choices of Ā and C̄ can be made. The shift sequences used in [16] are generated by the fictitious
dynamics with,

Ā =


0 Im 0 0 · · ·
0 0 Im 0 · · ·
0 0 0 Im · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 (38)

C̄ =
[
Im 0 0 0 · · ·

]
,

where Im is an m ×m identity matrix. Another approach uses Laguerre sequences [18]. These sequences
possess orthogonality properties and are generated by the fictitious dynamics with

Ā =


εIm ζIm −εζIm ε2ζIm · · ·
0 εIm ζIm −εζIm · · ·
0 0 εIm ζIm · · ·
0 0 0 εIm · · ·
...

...
...

...
. . .

 (39)

C̄ =
√
ζ
[
Im −εIm ε2Im −ε3Im · · · (−ε)N−1Im

]
,

where ζ = 1 − ε2 and 0 ≤ ε ≤ 1 is a selectable parameter that corresponds to the time-constant of the
fictitious dynamics. Note that with the choice of ε = 0, (39) coincides with the shift register considered in
[16]. The implementation of the ECG is feasible using partial state information and reduced order models
(e.g., without the elastic dynamics) following the approach in [19].
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For this work, the constraints are on angle-of-attack, pitch rate, elevator deflection, elevator deflection
rate, and elastic deflection. The discrete-time model of the closed-loop system necessary to implement ECG
is based on the LQ-PI controller (one of two designs depending on whether elastic modes are used for
feedback), the short period subsystem (with elastic modes), and a sampling period of 0.01 sec. This model
has the following form

x(t+ 1) = Ax(t) +Bv(t),

y(t) = Cx(t) +Dv(t) ∈ Y.
(40)

IV. Simulations

The following section presents multiple simulation cases. In Subsection IV.A, the outer-loop results for
MPC control of bank angle is presented. Subsection IV.B presents results of the LQ-PI/ECG inner-loop
control of angle-of-attack. The outer-loop and inner-loop are then combined, with simulations shown in
Subsection IV.C. Finally, the MPC controller is modified to control both bank angle and flight path angle
in Subsection IV.D. Including the flight path angle to the MPC controller adds computational complexity,
but enables 3D travel to way points and 3D exclusion zone avoidance.

IV.A. MPC Simulation Results

The simulation results for γdes = − π
180 (−1 degree) are shown in Figs. 3-6. The discretization of this control

trajectory is based on N = 8 and the cost (10) uses ρ = 1 and µ = 1. The trajectory of the glider in the
x-y plane is shown in Fig. 3, with exclusion zones shown as large red disks, ‘fly-through’ regions identified
as medium size empty circles, and small circles illustrating the ‘fly through’ portion of the trajectory. The
simulation scenario assumes that the glider initially flies straight along y-axis while exclusion zones, centered
at (−0.2,−0.05), (−0.7,−0.45), and (0.3, 0.45), appear on the glider path along to way point 1 at (−0.3, 0.3).
Due to the constraint in (15), the glider is banked to steer away from the exclusion zone on its path. Based on
the assumed parameters of the problem in the numerical simulation, the glider’s velocity and altitude rapidly
decrease. Hence, it is assumed that once h decreases to 0.01, the flight path angle is changed to γdes = 0,
and once V decreases to 0.1, powered flight is initiated with V̇ = 0 and γdes = 0. On hypersonic vehicles,
this powered flight is provided by boosters or scramjet propulsion. The change from a steady decreasing
altitude to a flat constant altitude reflects the change from a γdes of − π

180 to that of 0. The powered phase
of the flight, near the end of the flight, is identified in Fig. 3 by a superimposed yellow line. It corresponds
to phases where the trajectories of V and h become flat.

In addition, the lift and stagnation heating rates are shown in Fig. 6. The lift parameter KL has a max
value at KL,max = 2.94 × 10−4 per meter while the maximum nondimenisonal heating rate is 0 (see (9)).
The glider’s KL in this simulation reaches its maximum when altitude and velocity are at their minimum
values, but it is shown that this value does not exceed KL,max. The stagnation heating rate rapidly increases
as the glider descends, and reaches its maximum when the altitude is at its lower limit. After the altitude
limit is met, the heating rate decreases and becomes constant.

IV.B. ECG Simulation results

To demonstrate the effect of the ECG, an example scenario is constructed with the limits as follows: −αmin =
αmax = 0.3 rad for the angle of attack; −Qmin = Qmax = 0.2 rad/sec for the pitch rate, −δe,min = δe,max =
0.349 rad for the elevator deflection (20 deg), −∆δe,min = ∆δe,max = 0.349 rad/sec for the elevator deflection
rate, and −EDmin = EDmax = 1.0 for the elastic deflections. Fig. 7 shows the effect of implementing the
ECG to handle constraints on angle-of-attack. The elevator deflection of the system for the system with and
without the ECG is shown in Fig. 8, and the elastic deflection is shown in Fig. 9.

IV.C. MPC and ECG Control of Bank Angle and Angle-of-Attack

The outer-loop MPC and inner-loop LQ-PI/ECG are combined by transforming the outer-loop flight path
angle command to a reference angle-of-attack command for the inner-loop. This transformation is computed
by utilizing pitch and flight path angle tracking to obtain a commanded angle-of-attack.

The simulation in this Subsection is similar to the flight simulation in Subsection IV.A. The glider must
fly to a single way point centered at (−0.3, 0.3) while avoiding several large exclusion zones centered at
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(a) (b)

Figure 3. Left: Glider trajectory in the x-y plane. Right: The time histories of x and y. Dashed lines show the target
positions as implied by the specified way points.

(a) (b)

Figure 4. Left: Time history of normalized bank angle control signal. Note: bank angle sampled values are shown at
the end of each control interval. Right: Time history of glider altitude.

(a) (b)

Figure 5. Left: Time history of glider velocity. Right: Time history of glider heading angle.
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(a) (b)

Figure 6. Left: Time history of glider lift coefficient KL. Right: Time history of undimensional glider heating rate.
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Figure 7. Left: The response with and without the ECG for angle-of-attack. Right: The response with the ECG
formulated for n̄ = 5, ε = 0.
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Figure 8. Left: The response with and without the ECG for elevator deflection. Right: The response with the ECG
formulated for n̄ = 5, ε = 0.
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Figure 9. Left: The response with and without the ECG for elastic deflection. Right: The response with the ECG
formulated for n̄ = 5, ε = 0.

(−0.2,−0.05), (−0.7,−0.45), and (0.3, 0.45). The difference in the MPC outer-loop is that γdes = − 2π
180 (−2

degrees) as long as h ≥ 0.007 and γdes = 0 afterwards in order to excite angle-of-attack control. The ECG
has the same constraints as used previously.

From the results presented in Figs. 10-14, it can be seen that all control and structural constraints have
been satisfied in order to ensure safe hypersonic flight. The lift and stagnation heating constraints do not
reach their limits, and the patterns of heating and lift are the same as the previous simulation with just
MPC. The excitation in the longitudinal dynamics occurs during the initial stage of flight, when the ECG is
commanding various angles-of-attack in order to achieve a desired flight path angle. Once the glider reaches
its desired flight path angle, the longitudinal dynamics have constant values. Due to the small angle-of-
attack, the values for elevator deflection, elevator deflection rate, and elastic deflection are all small, well
within the predefined limits.

(a) (b)

Figure 10. Left: MPC and ECG glider trajectory in the x-y plane. Right: Time history of normalized bank angle
control signal using MPC and ECG. Note: bank angle sampled values are shown at the end of each control interval.

IV.D. MPC and ECG Control of Bank Angle and Angle-of-Attack

In earlier sections of this paper, the flight path angle was kept constant while the bank angle was optimized.
In order to add flight path angle control to the MPC framework, an altitude factor had to be added to the
cost function, the fly through zones, and the exclusion zones. Control of both bank angle and flight angle
is more computationally exhaustive then just bank angle control, but it allows for 3D way point travel and
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(a) (b)

Figure 11. Left: Time history of glider altitude with MPC and ECG. Right: Time history of glider velocity with MPC
and ECG.

(a) (b)

Figure 12. Left: Time history of glider lift coefficient KL using MPC and ECG. Right: Time history of undimensional
glider heating rate using MPC and ECG.

(a) (b)

Figure 13. Left: The response of angle-of-attack (solid) with constraints. Right: The response of elastic deflection and
constraints.

13 of 20

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IC
H

IG
A

N
 o

n 
A

pr
il 

2,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
50

28
 



(a) (b)

Figure 14. Left: The response of elevator deflection with constraints. Right: The response of elevator deflection rate
with constraints.

exclusion zone avoidance. The cost function with altitude included is

J = Tf+ρ
(
(x(t+ Tf |t)− xf )2 + (y(t+ Tf )− yf )2 + (h(t+ Tf |t)− hf )2

)
+µ(φ(t+Tf/N |t), ρ, µ ≥ 0. (41)

The switching zones between the fly to and the fly through modes around the way points are defined as
ellipsoids given by

WPi = {(x, y, h) : [x− xWP,i y − yWP,i h− hWP,i]Mi[x− xWP,i y − yWP,i h− hWP,i]
T ≤ 1}, (42)

where Mi is the shape matrix of a way point WPi centered at xWP,i, yWP,i, and hWP,i. Likewise, the
exclusion zones are defined as,

Ei = {(x, y, h) :
1

2
[x− xE,i y − yE,i h− hE,i]Pi[x− xE,i y − yE,i h− hE,i]T ≤ 1}, (43)

where Pi = αI3, α > 0 and I3 is the 3× 3 Identity matrix.
This first simulation of this section adds an altitude requirement to the simulations above. It has a single

way point centered at (−0.3, 0.3, .01) shaped as an ellipsoid with minor axes lengths of 0.1, 0.1, and 0.01 in
the x, y, and z, directions. In addition, there are three large exclusion spheres with radii 0.01 centered at
(−0.2,−0.05, .01), (−0.7,−0.45, .01), and (0.3, 0.45, .01). The glider itself starts at a scaled altitude of 0.2
and restrictions are placed on the flight path angle such that it does not exceed −0.0349 rad and 0.0349 rad.
The results are shown in Figs. 15-21.

It can be seen from Figs. 15-21 that the glider evades all of the exclusion zones while reaching the
correct position and altitude of the way point. The vehicle at first ascends in order to reduce its velocity
then easily travels to its destination. The trajectories of bank angle and flight path angle generated by the
MPC controller are shown Fig. 16, and it can be seen that both angles obey the constraints. Note that
the powered flight phases is initiated once V reaches a value of 0.1. The ECG also controls the longitudinal
dynamics of the glider such that the vehicle reaches its desired flight path angle quickly. It is shown in Figs.
19-21 that the ECG control is done well within the flight constraints, as the lift, heating, angle-of-attack,
elevator deflection, elevator deflection rate, and elastic deflection never exceed their limits.

The second simulation in this section involves multiple way points, with the first destination centered at
(−0.112, 0.87, .03) and the second at (0, 2, .01), both shaped as ellipsoids with minor axes lengths of 0.1, 0.1,
and 0.01 in the x, y, and z, directions. The exclusion spheres have radii 0.1 and are centered at (0.17, 1.3, .01)
and (−0.355, 2.35, .01). The results are shown in Figs 22-28.

Once again, the glider is able to fly through each way point while avoiding the exclusion zones. The
vehicle does not fly through the direct center of the first way point due to a number of factors. The first way
point is placed fairly close to the glider’s initial position, and its velocity is large enough that the control
does not allow for such a maneuver. It appears that the glider flies as close to the center of the first way
point as possible within control constraints. As in the previous simulation, the bank angle and flight path
angle were optimized properly in order to reach the way points, with all control and structure constraints
met.
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(a) (b)

Figure 15. Left: Glider trajectory in the x-y plane. Right: The time histories of x, y, and z. Dashed lines show the
target positions as implied by the specified way points.

(a) (b)

Figure 16. Left: Time history of normalized bank angle control signal. Note: bank angle sampled values are shown at
the end of each control interval. Right: Time history of flight path angle control (blue) and actual flight path angle
(green).

(a) (b)

Figure 17. Left: Time history of glider velocity. Right: Time history of glider altitude.
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(a) (b)

Figure 18. Left: Time history of glider lift coefficient KL. Right: Time history of undimensional glider heating rate.

(a) (b)

Figure 19. Left: The response of angle-of-attack (solid) with constraints. Right: The response of elastic deflection with
constraints.

(a) (b)

Figure 20. Left: The response of elevator deflection with constraints. Right: The response of elevator deflection with
constraints.
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Figure 21. Glider trajectory in the x-y-z frame.

(a) (b)

Figure 22. Left: Glider trajectory in the x-y plane. Right: The time histories of x, y, and z. Dashed lines show the
target positions as implied by the specified way points.

(a) (b)

Figure 23. Left: Time history of normalized bank angle control signal. Note: bank angle sampled values are shown at
the end of each control interval. Right: Time history of flight path angle control (blue) and actual flight path angle
(green).
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(a) (b)

Figure 24. Left: Time history of glider velocity. Right: Time history of glider altitude.

(a) (b)

Figure 25. Left: Time history of glider lift coefficient KL. Right: Time history of undimensional glider heating rate.

(a) (b)

Figure 26. Left: The response of angle-of-attack (solid) with constraints. Right: The response of elastic deflection with
constraints.
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(a) (b)

Figure 27. Left: The response of elevator deflection with constraints. Right: The response of elevator deflection rate
with constraints.

Figure 28. Glider trajectory in the x-y-z frame.
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V. Conclusion

Hypersonic glider guidance and control involves numerous challenges, including, but not limited to,
multiple control and structure constraints, disturbances/uncertainties, and changing environments. This
paper proposes a combined Model Predictive Control outer-loop and a LQ-PI/ECG inner-loop for hypersonic
vehicle control. Using MPC as the outer-loop provides a capability for real-time adjusting of the flight
trajectory in response to the appearance/disappearance of exclusion zones, disturbances, and failure models.
The LQ-PI/ECG inner-loop ensures tracking of the outer-loop generated set-points subject to satisfying
the inner-loop constraints. Future research will include implementing this control architecture with special
on-board, real-time optimization algorithms while inducing disturbances and time varying exclusion zones
to demonstrate robustness.
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