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This paper investigates the structural dynamic characteristics of laminate beams with 
various types of damage. More specifically, this work focuses on modeling delaminations of 
various sizes and locations within cantilevered laminate beams. Presented here is a Rayleigh-
Ritz model which accounts for transverse and axial beam deformation as well as first-order 
shear deformation. Axial and bending stiffness properties of the beam are modeled using 
classical lamination theory. It is shown that the proposed Rayleigh-Ritz method greatly 
simplifies derivation, implementation, and computational cost of existing methods while still 
providing accurate results. Results show the effects of delamination size and location on the 
natural frequencies, mode shapes, and buckling loads of cantilever beams. Results from the 
analytical model are compared to those found using commercial finite element modeling 
software. Further comparisons will be made between the proposed model, and existing 
analytical and finite element models. 

Nomenclature 
A   =  cross sectional area 
E   =  modulus of elasticity 
EI   =  bending rigidity 
h   =  height of beam or beam sublayer 
I   =  area moment of inertia 
Nx , Ny  =  normal force resultant in x and y direction respectively 
Nxy   =  shear force resultant in xy plane 
Mx, My  =  moment resultant about the y and x axis respectively 
Mxy   =  shearing moment resultant 
k   =  shear correction factor 
kS   =  distributed shear spring constant 
kN   =  distributed normal spring constant 
P   =  applied axial load 
T   =  kinetic energy 
u,v,w  =  displacement in the x, y, and z directions respectively 
W, Y ,U  =  shape functions for bending, shear, and axial deflections respectively 
   =  potential energy 
   =  Poisson’s ratio    
   =mass density 
   =  stress from distributed normal spring 
   =  stress from distributed shear spring 
   =  rotation of transverse normal 
   =  angular frequency 
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I. Introduction 
s composite structures are increasingly used in aerospace applications, understanding damage phenomena is 
correspondingly important. Delamination of composite lamina is one of the most common damage modes and 

can severely affect the performance capabilities of structures by reducing strength and stiffness. While quality 
control procedures have substantially decreased the presence of delamination flaws due to manufacturing processes, 
the introduction of damage in fielded systems remains a major concern. Dynamic analysis of composite structures 
can be used to both detect damage and characterize the effects of damage once it has been found. 

Numerous studies in literature have considered the effects of delamination on the dynamic behavior of bonded 
homogeneous beams and composite beams. Della and Shu1 presented a thorough review of these studies. The subset 
of studies most pertinent to this paper is categorized as the “region approach” in their review. They credit 
Ramkumar et al.2 with the first model for vibration in delaminated composite beams, in which the beam was 
separated into three spanwise sections with a through-width delamination in the middle region. This model is known 
as a “free mode” model since the transverse displacments of the delaminated layers are not constrained.  Mujumdar 
and Suryanarayan3 introduced a “constrained mode” model that related the transverse displacements of the 
delaminated layers to one another and corrected for physically inadmissible mode shapes. Shen and Grady4 later 
presented an analytical model using Timoshenko beam theory and performed experiements to validate their model.  
The parameters for these experiments have often been used as a baseline for comparison with other models1 and will 
be used in this paper as well. Della and Shu5 used a model combining seven Euler-Bernoulli beams to depict 
overlapping delaminations. Their work bounded the natural frequencies of the beam by using both a “free mode” 
model and a “constrained mode” model. Luo and Hanagud6 and Qiao and Chen7 developed models that use 
distributed springs between the delaminated regions, allowing models between the “free mode” and “constrained 
mode” case to be considered. These two models form the primary basis for this work and will be explained further in 
the paper. 

The proposed approach described in this paper demonstrates how results similar to those found from these 
rigorous analytical models can be attained using the Rayleigh-Ritz method. The primary advantages of employing a 
Rayleigh-Ritz method to solve this problem are ease of implementation and minimal computational effort. 
Beginning with the potential and kinetic energy expressions for a simplified delaminated beam, this paper will show 
how one can directly construct mass and stiffness matrices and solve the vibration eigenvalue problem for natural 
frequencies and mode shapes. Another advantage of the approach shown in this study is that after the vibration 
eigenvalue problem is setup, it is then straightforward to solve for the buckling eigenvalue problem.  The goal of this 
paper is to model delamination in symmetric composite beams using the proposed approach and then validate the 
method through comparison to other numerical and experimental data. The effect of delamination on natural 
frequencies, mode shapes, and buckling load is the primary area of interest. All results will be compared to those 
found with a pristine beam specimen to quantify the damage effects. 

In general, this paper will focus on the behavior of a clamped-free beam constructed using a symmetric 
composite laminate. The overal beam dimensions are shown in Fig. 1 and listed in Table 1. The laminate is of cross-
ply construction with a [0/90/0/90]S configuration as illustrated in Fig. 2. The material properties used throughout 
this paper correspond to a T300/934 graphite/epoxy lamina and are summarized in Table 1. As mentioned earlier, 
the dimensions and properties match those used in several previous studies in the literature1, allowing for direct 
comparison to published results.  
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Figure 1. Dimensions of beam specimen  Figure 2. Laminate beam cross-section detail 
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Table 1. T300/934 Lamina properties2 
Property Symbol Value Unit 
Beam Length L 127 mm 
Beam Width b 12.7 mm 
Beam Thickness h 1.016 mm 
Ply Thickness s 0.127 mm 
Density  1480  kg/m3 
Poisson’s Ratio 12=13 0.33 [ ] 
Young’s Modulus E11 134.4 GPa 
- E22=E33 10.3 GPa 
Shear Modulus G12=G13 5.0 GPa 
- G23 3.0 (nominal) GPa 

 

II. Governing Equations of Motion 
In the current study, first order shear deformation theory was used as the governing structural model. Rotation of 

the transverse normals for a general laminated plate will be defined with the coordinate , and the in-plane 
displacements of an arbitrary point on the plate can be represented as, 

 

 0 y= + xu u z  (1) 

 0 y= + yv v z  (2) 

 
where u0 and v0 are the mid-plane displacements of the plate. Upon adding the rotational degree of freedom, the 
equations of motion can be given as, 
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where N  and M  are the force and moment resultants, q  is an applied loading condition, r is the beam density, and 

Q  is the shear force. These equations can be derived using Newtonian mechanics or variational principles. For the 

problem at hand, Eqns. (3)-(7) can be reduced further. First, using constitutive relations derived from classical 
lamination theory, the force and moment resultants can be written in terms of displacements and rotations. For the 
symmetric cross-ply beams used in this study, these relations can be given as, 
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The expressions in Eq. (8) assume xy=0 to restrict motion to the x-z plane. Furthermore, the strain-displacement 
relations used here retain non-linear terms to allow for buckling analysis if desired. Next, rotations and 
displacements corresponding to the y direction can be ignored to create a two-dimensional problem. The three 
equations of motion governing the simplified problem are, 
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where A  is the cross-secitonal area, I  is the area moment of inertia, P  is the axial load, and k  is the shear 
correction factor. The stiffness properties of the composite beam in Eqns. (9) - (11) are found using classical 
lamination theory. Equations (12) - (14) below define the axial, bending, and shear stiffness terms respectively. 
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The variable h  is the total beam thickness, the subscript k  denotes the ply layer number, s  is the ply thickness, and 

n  is the number of plys. The constants 55C  and 11Q  for each ply depend on the ply stiffness properties and fiber 

orientation angle. Expressions for these constants can be given as, 
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where q  is the fiber orientation angle with respect to the x-axis, G  is the sear modulus, and Q  are elements of the 

inverted compliance matrix for a transversely isotropic material subject to a plain stress loading condition. 
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Figure 3. Schematic of simplified delaminated beam using four connected beam sections. 

 

Figure 4. Schematic of simplified delaminated beam using six connected beam sections. 
 

III. Model Development and Theory 
Several previous studies have developed methods for modeling delaminations in composite beams. In one such 

model, presented by Luo and Hanagud6, the composite beam is divided into four sections. First, the undamaged ends 
of the beam are modeled as complete beam sections. The middle section of the beam span is divided into two sub-
layers, which are separated at the delaminated interface, as shown in Fig 3. Each section of the beam is governed by 
its own set of equations of motion, yielding four sets of equations of the same form as Eqns. (9) - (11). 

Luo and Hanagud explain that partially intact matrix and fibers still exist between the two plies surrounding the 
delamination6. The effect of these materials can be modeled as two distributed soft springs between the delaminated 
plies. The first spring responds to motion transverse to the beam axis, and its effect can be represented as Eq. (16), 
where the superscripts (1) and (2) represent the upper and lower sub-layer, respectively, in the delaminated region. 
 

 (1) (2)( )s = -Nk w w  (16) 

 
The second distributed spring responds to relative axial displacements between the two sub-layers. This spring 
represents the friction between the two sub-layers and is often called the linear (or shear) bridging model. The 
friction stress is is defined in Eq. (17) below. 
 

 (1) (2)(1) (1) (2) (2)

2 2
t y y

æ ö÷ç ÷= - - -ç ÷ç ÷çè ø
S

h h
k u u  (17) 

 
The spring constants Nk  and Sk  in Eq. (16) and (17) can be adjusted to account for varying degrees of assumed 

friction between the delaminated surfaces during vibration. Formal definitions for Nk  and Sk  are provided in Eqns. 

(18) and (19). 
It has been noted since this and similar models were introduced that they contain a major flaw. By treating each 

intact region as one pristine beam, the rotations of the delaminated sub-layers are constrained to be identical at the 
ends of the delamination, which produces an artificially stiff model7. Qiao and Chen proposed an alternative model, 
where the composite beam is divided into two complete sub-layers separated at the interface containing the 
delamination4. Furthermore, the beam is divided into three regions along the span of the beam: a pristine region at 
each end of the beam and a middle section corresponding to the delaminated region. This configuration results in the 
beam being composed of six distinct sections, as shown in Fig. 4. The delaminate interface is modeled as a 
distributed spring. Division of the pristine sections into sublayers also requires that the two pristine sections be 
‘joined’ using an interface model. This is accomplished using the same model as in Eq. (16-17), but the spring 
constants in the pristine sections are dependent on the material properties of the lamina and do not change. The 
interface stiffness terms can be found using the following expressions. 
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With the beam divided into six sub-sections, 18 coupled differential equations of motion are used to describe the 

system. The resulting problem is treated as a boundary value problem. Where each of the beam’s three spanwise 
regions yields a sixth order polynomial characteristic equation in terms of a dummy variable where the six solutions 
of each characteristic equation are complex conjugates. Each of the twelve roots has a corresponding eigenvector of 
six terms. When all three spanwise regions are considered, there are a total of 36 roots and 36 six-term eigenvectors 
that must be solved. For a given displacement component, say u, in one of the regions, the total displacement field 
can be represented as the sum of the 12 eigenvectors. This boundary value problem results in 252 unknown terms, 
36 of which are independent. Thus, 36 boundary conditions and continuity conditions must be used to completely 
characterize the dynamic behavior of the beam. 

IV. Rayleigh-Ritz Approach 
Rather than solving the complex boundary value problem previously described, this work uses a Rayleigh-Ritz 

approach to determine the dynamic behavior of the subject beams. First, based on Timoshenko beam formulation, 
the potential and kinetic energy of the beam are defined in Eq. (20) and (21) respectively.  
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As before, the superscripts (1) and (2) denote upper and lower sub-layers of the beam respectively. Potential energy 
due to an applied axial load P  is included in Eq. (20). Terms associated with the axial load are used to setup and 
solve the buckling problem as will be seen later. The energy formulation in Eq. (20) and (21) preserves the 
distributed spring model used in the Qiao/Chen study7. Potential energy of the normal and shear spring terms is 
included in the last line of Eq. (20) 

In the proposed model, the beam is separated into two sub-layers that extend the entire beam length. The model 
therefore contains three degrees of freedom for both sub-layers: axial displacement, transverse displacement and 
rotation of the transverse normal. Previous works by Zhu8, Zhou and Cheung9, and Auciello and Ercolano10 contain 
thorough descriptions of the Rayleigh Ritz formulation methods for Timoshenko beams with multiple degrees of 
freedom. Following a similar procedure, the solution forms for deflections of both sublayers are represented in Eq. 
(22) as six finite, convergent, summation series functions. 
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Coefficients a  through f  in Eq. (22) are weighting terms associated with their shape functions W , Y , and U  

which correspond to bending, shear, and axial deformations respectively. Notice that there are six degrees of 
freedom and only three shape function forms. Here it has been assumed that the shape functions associated with 
each deflection type in sublayer #1 are equal to those in sublayer #2. 

After substituting Eq. (22) into Eq. (20) and (21), the mass and stiffness matrices are formed by taking the partial 
derivatives of the energy expressions with respect to the shape function coefficients ai, bi, ci, di, ei, and fi.  The 
resulting mass and stiffness matrices have the following partitioned form, 
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where the individual sub-matrices are calculated without difficulty using the formulas provided in the appendix.  
Once the mass and stiffness matrices are fully formed, they can be arranged into the typical structural dynamics 
eigenvalue problem as in Eq. (25). 
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 (25) 

 
Solving Eq. (25) yields natural frequencies w  from the eigenvalues, and mode shape weighting terms a  through f  

from the eigenvectors. It is then possible to calculate the Rayleigh-Ritz mode shapes using Eq. (22). 

A. Implementation and Choice of Shape Functions for Rayleigh-Ritz Approach 
Accuracy of the Rayleigh-Ritz model depends on both the quality of shape functions and the number of terms 

(N) used to provide the total mode shape expression for each of the six degrees of freedom. The basic requirements 
for all shape functions are that they must satisfy the geometric boundary conditions of their corresponding degree of 
freedom and they must be p-times differentiable. The variable p is the order of the highest derivative in the potential 
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energy expression on the degree of freedom corresponding to the shape function in question. In numeric 
formulations of structural dynamics problems where shear deformation and rotary inertia are considered, a well-
known numerical phenomenon called shear locking can occur. Shear locking can cause numeric errors that result in 
a lack of convergence on a solution and highly inaccurate predictions. In an attempt to avoid these numeric errors, a 
technique called the Gram-Schmidt iterative procedure presented by Bhat11 and used in a related study by Auciello 
and Ercolano10 was used in the proposed model procedure. 

The goal of the Gram-Schmidt procedure is to provide a series of polynomials that are both orthogonal and 
orthonormal to each other. These are attractive attributes for shape functions used in numerical methods because the 
likelihood of shear locking is minimal. The procedure begins by selecting an approximate first mode function for 
each degree of freedom that satisfies the previously stated requirements. The first, second, and kth polynomial of 
each degree of freedom can be expressed as, 
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where the shape functions associated with bending W , are an order higher than those for shear Y , and axial 
deformation U . The coefficient expressions from equations (26) are defined as, 
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 (27) 

 
Where all of the polynomials generated are forced to be orthonormal functions which satisfy the following 
condition. 
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 (28) 

 
Generating these polynomials can be accomplished with most readily available numeric programming software 
packages. In this work the authors used MATLAB™ to write a simple function capable of generating hundreds of 
these polynomials along with their derivatives where the computational effort was only a small fraction of the entire 
code. 

B. Damage Modeling with the Rayleigh-Ritz Method 
   Delamination was simulated by modifying the interfacial shear and normal stiffness terms defined in Eq. (18) 

and (19). In order to localize the damage, it is convenient to define the interface conditions as piecewise continuous 
functions of x. From the definition of the stiffness terms for Eq. (23) (shown in the appendix) it is clear that the 
effects of defining interface conditions as functions of x are accounted for by integrating over the entire beam length. 
Therefore, a local decrease in stiffness contributes to an overall decrease in the submatrix associated with the 
specified damage type. The interface stiffness functions can be defined as, 
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where Nk  and Sk  are pristine stiffness values from Eq. (18) and (19), Nd  and Sd  are normal and shear damage 

metrics respectively, 1x  and 2x  are x-coordinates corresponding to the damage boundaries as shown in Fig. 4, and 

H  is the Heaviside step function defined as, 
 

 
0 0
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1 0
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for x
H x

for x
 (30) 

 
For the case of total delamination in the region between 1x  and 2x  both damage metrics were set to zero. Partial 

delamination and the effect of friction in the delaminated region could be investigated simply by setting Nd  and Sd  

to some reduced percentage of their pristine value. 

C. Modification of Rayleigh-Ritz Procedure to Predict Buckling Behavior 
The axial load P in the equations of motion will cause an increase in natural frequency when the beam is in 

tension and will decrease the natural frequency when in compression. The lowest load that drives the natural 
frequency to zero will be the critical buckling load. The general structural eigenvalue problem first given in Eq. (25) 
can be expressed as, 

 

 [ ] [ ] [ ]( ){ }2 0w- - =v bPK K M q  (31) 

 
where bK  is a matrix that contains only stiffness terms that are coefficients of the axial load which are taken 

directly from the original stiffness matrix K . It is then straightforward to define vK  as a matrix containing all 

remaining stiffness elements i.e. all elements of the original stiffness matrix that do not contain axial load terms. A 
new eigenvalue problem is formed when w 0 , 
 

 [ ] [ ]( ){ } 0- =v bPK K q  (32) 

 
where the eigenvalues of this system are in fact ‘eigenloads’ iP  such that the lowest eigenvalue corresponds to the 

critical buckling load of the system crP . Solutions are found by setting the determinant of ( )-v bPK K  equal to 

zero and solving for P . 

V. Finite Element Modeling 
A finite element model was constructed using the PAM-CRASH software program from the ESI Group.  Each 

composite ply was modeled as a series of shell elements with material properties adjusted for the ply orientation.  A 
schematic of the model is shown in Fig. 5. 

 
 

 
 
   

 
Figure 5. Finite element model configuration 
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To allow for delaminated interfaces in the model, each ply was modeled as a distinct set of shell elements with its 
own set of nodes. Intact portions of each interface were then modeled using the LINK/TIED option within the 
software. For areas of each ply interface intended to represent a delamination, the adjacent elements were not linked 
in this manner. Calculation of the structural vibration behavior of the beam was done using the EIGEN control 
option within the PAM-CRASH software. 

VI. Results and Comparisons 
Preliminary numerical studies were performed with the Rayleigh-Ritz model to explore the effects of various 

delamination length and locations on fundamental frequency, buckling loads, and mode shapes. The following is a 
summary and brief discussion of initial results from the proposed analytical and FEM models. 

A. Effect of Delamination Length 
The results shown here are for the case where various delaminations occurred at interface #4 and were centered 

about the midspan. Figure 6 shows the finite element model mode shapes and Fig. 7 shows the Rayleigh-Ritz mode 
shapes attained using the proposed model. These mode shapes are calculated using 40%, 60%, and 80% 
delamination lengths and are compared to the mode shape of a pristine beam. All mode shapes were normalized to 
produce a tip deflection of one unit. As the figures show, the proposed model successfully captured the mode shape 
changes due to the midspan delaminations. 

It can be seen in Fig. 8 that at higher damage lengths the proposed Rayleigh-Ritz model is able to closely predict 
the correct natural frequency trend from experimental results presented in the recent study by Qiao and Chen7. As 
one would expect, Rayleigh-Ritz overestimates the fundamental frequency observed in experiments. 
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Figure 6. FEM results showing the effect of
delamination length on fundamental vibration mode
shape for interface #4. 

 
Figure 7. Rayleigh-Ritz model results showing the 
effect of delamination length on fundamental 
vibration mode shape for interface #4. 
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Figure 8. Effect of delamination length on fundamental vibration
frequency with comparisons to finite element model and results
from literature. 
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Figure 9. Effect of a given delamination at various
laminate interface levels on fundamental vibration
frequency 

 Figure 10. Effect of a given delamination at various 
laminate interface levels on critical buckling load 

 

B. Effect of Delamination Interface 
Figures 9 and 10 show trends in natural frequency and critical buckling load for a given damage length 

percentage as a function of the interface number at which the delamination occurs. Interface #1 corresponds to the 
interface between layers #1 and #2, i.e. the interface furthest from the neutral axis (see Fig. 2). The results in figures 
9 and 10 show that as a delamination occurs closer to the neutral axis both fundamental frequency and critical 
buckling load decrease significantly. 

VII. Conclusions 
Modeling delamination effects in beams with bending, first-order shear, and axial deformation using a six 

degree-of-freedom Rayleigh-Ritz approach proved to be extremely convenient compared to other popular 
approaches used in the literature. Material properties and interface conditions that varied along the beam length 
could easily be accounted for. Upon using the Rayleigh-Ritz approach, it is clear how one could expand the model 
presented in this work to account for more complex structures with various boundary conditions. Features such as 
distributed loads, point masses, and geometric properties that vary along beam length could all be implemented 
using techniques shown in this paper. 

From the results, one can see how various delaminations reduce natural frequencies, reduce critical buckling 
loads and modify mode shapes. An expected yet interesting result represented by the model was that as delamination 
length increased and ultimately created two separate beams, the first two natural frequencies and first two critical 
buckling loads approached exact analytical values one would find using properties of each sublayer. It was also 
observed that the natural frequency was most sensitive to a delamination located at the beam root between the two 
center plys (center thickness). 
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Appendix 

A. Equations for Rayleigh-Ritz Mass Sub-matrices used in Eq. 24 
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B. Equations for Rayleigh-Ritz Stiffness Sub-matrices used in Eq. 23 
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