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ABSTRACT 

 

I used multivariate statistical methods, including cluster analysis (CA), discriminant 

analysis (DA) and principal component analysis (PCA) to evaluate water quality in 

the Ying River Basin, the largest tributary of Huai River, China. A total of 12 water 

quality parameters were measured at each of 15 sites from 2008–2010 (540 

observations), allowing investigation of temporal and spatial variation and indication 

of potential pollution sources. Hierarchical CA classified the 15 monitoring sites into 

three groups, representing heavily, moderately and least polluted sites. Three 

parameters (temperature, pH and TP) distinguished temporal variation with close to 

67.4% correct assignment in the DA, separating summer from winter and spring-fall. 

In the spatial variation analysis, the DA used eight parameters (temperature, pH, DO, 

CODMn, CODCr, BOD5, NH4-N, and Hg) and correctly assigned about 85.7% of the 

sites to spatial clusters. PCA did not result in a significant data reduction in this study, 

but it did extract and identify significant factors/variables responsible for variation in 

river water quality at the three groups of sites identified by CA. Sites in Group 1 were 

mostly correlated with CODCr, NH4-N and volatile phenol, suggesting that they 

received pollutants mainly from industrial discharge. Group 2 sites correlated most 

strongly with temperature, pH and DO, which may indicate that these sites were 

mainly affected by natural processes. Group 3 sites were dominated by CODMn, As 

and Hg, perhaps indicating influence by both point and non-point pollution sources. 
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variation, Water Quality.  
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INTRODUCTION 

Rivers constitute the main inland water resource for domestic, industrial and irrigation 

uses in many areas, and play an important role in hydrologic and biogeochemical 

cycles. However, few rivers are maintained in their pristine condition due to intensive 

human activities, and surface water pollution is today of great environmental concern 

worldwide (Zhao et al., 2011). Rivers are highly vulnerable water bodies because of 

their role in carrying off and assimilating pollutants from both point sources (e.g., 

municipal wastewater and industrial discharge) and non-point sources (e.g., 

agricultural and urban runoff, atmospheric deposition) (Carpenter et al., 1998; 

Ouyang et al., 2006). Municipal and industrial wastewater discharge constitutes a 

constant polluting source, whereas surface runoff is a seasonal phenomenon, largely 

affected by climate within the basin (Singh et al., 2004). Seasonal variation in 

precipitation, surface runoff, interflow, groundwater flow and anthropogenic transfers 

have a strong effect on river discharge and, subsequently, on the concentration of 

pollutants in river water (Vega et al., 1998). Due to these complexities, water quality 

specialists and decision-makers often are confronted with significant challenges in 

their efforts to control water pollution (Elhatip et al., 2007). By identifying spatial and 

temporal patterns in river water quality, an improved understanding of the 

environmental conditions may help managers establish priorities for sustainable water 

management (Bhangu et al., 1997; Antonopoulos et al., 2001; Cooper et al., 2002). 

Watershed-scale analysis of water quality can illustrate the changing influence of 

various human activities in different sub-basins and as one proceeds from headwaters 
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to downstream reaches.  

 

Previous studies have demonstrated that China currently faces serious water problems; 

not only overexploitation and uneven spatial distribution of water resources, but also 

severe water pollution in China’s main rivers and lakes, which both contribute to the 

scarcity of water of adequate quantity and quality. Water quality at half of the 

regularly monitored stations in major rivers is below the Ministry of Environmental 

Protection standard of Grade III (suitable for the concentrated drinking water source, 

swimming and aquaculture), including sites along the Yangtze River, Yellow River, 

Pearl River, Hai River, Huai River, Liao River, and the Songhua River (Men, 2009). 

Annual discharge of industrial wastes and domestic sewage into the Yangtze River is 

over 20 billion tons, accounting for over 42% of the waste load for the entire country 

(Chen et al., 2009). Since1989, some 200 serious pollution events have been recorded 

in the Huai River basin (Zhang et al., 2010). Growing municipal and industrial 

wastewater discharges due to rapid urbanization and industrialization, harmful 

agricultural practices, along with limited wastewater treatment facility and capacity, 

are the principal drivers of water pollution events. About two-thirds of the total 

wastewater discharged by China into rivers, lakes and the sea derives from industry, 

and about 80% of that is untreated. Most of the untreated discharge comes from rural 

industries (Wang et al. 2008).   

 

The application of different multivariate statistical techniques, such as cluster analysis 
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(CA), principal component analysis (PCA), factor analysis (FA) and discriminant 

analysis (DA), helps in the interpretation of complex data matrices to better 

understand the water quality and ecological status of the studied system. Such tools 

facilitate the identification of possible factors that influence water quality and can aid 

in the reliable management of water resources as well as rapid solution to pollution 

problems (Lee et al., 2001; Adams et al., 2001; Reghunath et al., 2002). Multivariate 

statistical techniques have been applied to characterize and evaluate freshwater 

quality, and are useful in verifying temporal and spatial variations caused by natural 

and anthropogenic factors linked to seasonality (Helena et al., 2000; Singh et al., 2004, 

2005). Studies investigating the spatial and seasonal variability of water quality have 

reported that water quality issues, such as eutrophication, are highly dependent on 

land use patterns and the influences of watershed runoff (Yang et al., 2010; Zhang et 

al., 2011). Studies undertaken in Shanghai (China) and other major cities of the world 

have also demonstrated a significant relationship between urbanization and surface 

water quality (Wang et al., 2008; Duh et al., 2008). Additionally, numerous studies 

have identified the pollution sources and potential influences of natural processes and 

anthropogenic activities on spatial-temporal variation in water quality (Fan et al., 

2010; Huang et al., 2010; Wang et al., 2010). 

 

The Ying River basin, which is the largest tributary of Huai River, was selected for a 

water quality assessment using multivariate statistical techniques. In this study, water 

quality data sets obtained during 2008-2010 in the Ying River basin were analyzed 
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using Cluster Analysis (CA), Discriminant Analysis （DA）and Principal Component 

Analysis (PCA). The main objectives of this study were to: (1) examine temporal and 

spatial variation of selected water quality parameters; (2) identify significant 

parameters explaining the temporal and spatial variation of water quality; and (3) 

attempt to identify the main factors explaining the structure of datasets. 

 

METHODS 

The study area 

The Ying River basin (34°20′ - 34°34’ N, 112°45′ - 113°15’E; 30 - 1500m elevation) 

is located in the east-central China between the Yellow and Yangtze River basins 

(Figure 1), and is the largest tributary of Huai River. It originates from the Funiu 

Mountain area in Henan Province, flows southeast through a region of 34 cities and 

counties, and finally joins the main stream of Huai River in Mohekou, Anhui Province. 

The Ying River is approximately 557 km long and has a drainage area of 36,728 km
2
 

(Gao et al. 2010). Its largest tributary is the Sha River, so the basin is also known as 

the Shaying River basin. Other large tributaries include the Jialu, Beiru, Li, and Quan 

Rivers along a north to south direction. The basin is located in a transition zone 

between warm-temperate and sub-tropical climates and belongs to a warm-temperate, 

semi-moist continental climate with cold and arid winters and warm and humid 

summers. Its annual mean temperature ranges from 14°C to 16°C. Its average annual 

precipitation is about 769.5 mm, of which more than 65% falls during a wet season 

from June – September and therefore contributes to high discharge in summer (Figure 



 

5 
 

2). The average annual runoff is approximately 59.2 billion m
3
 and average annual 

runoff depth is about 145.4mm (Wang, 2000).  

 

The Ying River basin is highly developed in China, with a population of 24 million. It 

flows through several major cities, including Zhengzhou, Dengfeng, Xuchang, Luohe, 

Pingdingshan, Zhoukou and Jishou. The basin is one of the most densely populated 

regions in China, with an average population density approximately 5 times the 

nation’s average. The river serves as an important water source for agricultural 

irrigation, industrial use, drinking water, domestic use, and fisheries. The upper 

reaches of the basin have abundant resources of coal, and heavy mining activities 

have led to severe pollution; whereas the middle and lower reaches of the basin are 

important crop production areas with a total cultivated area of 12.9 million hectares. 

As the Sha River sub-basin is mountainous with high precipitation, floods have 

occurred frequently in history causing enormous losses of local residents. Within 

recent decades, three large reservoirs (Zhaopingtai, Baiguishan and Gushitan 

Reservoirs) have been constructed in the upper reaches of the Sha River to prevent 

floods. In addition, numerous water control gates have been constructed throughout 

the basin, controlling almost all of the tributaries. Historically, these dams and 

floodgates have benefited the region in managing water supply, irrigation, flood 

control, electricity generation, etc., and thus greatly promoted social and economic 

development. However, as a result of intensive human activity and the many dam and 

floodgate constructions, hydrological regimes in the basin have changed dramatically 
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and the pollution load discharged to rivers has risen year by year.  

 

The river and riparian environment of the Ying River basin is in poor condition 

because of intensive human activities (e.g. widespread flow regulation, barriers to fish 

movement and excessive pollutant discharge). Water quality of the Huai River basin is 

the worst among the nation’s seven main basins, based on reporting in the Chinese 

Environment Bulletin in 2005 (Zhang et al., 2010). Furthermore, the Ying River is the 

most polluted tributary of Huai River, contributing 43% of the total amount of 

discharge and pollutants to the Huai River basin. Pollution in the Ying River directly 

influences the water quality of the main stream of Huai River. In June 1994, a severe 

rainstorm caused most of the dams and floodgates in the Ying River basin to be 

opened simultaneously to discharge floodwaters. This flood with a high concentration 

of pollutants resulted in severe pollution downstream, destroying fish and shrimp and 

severely damaging the ecology and environment along the river (Zhang et al., 2007; 

Jiang et al., 2011). 

 

Data collection and analytical methods 

Water quality data collected from 15 monitoring sites along the Ying River over a 

three-year period (2008 – 2010) were obtained from Dr. Ruan (Nanjing University, 

China). Sites 1-3 were located in the upper reaches of Ying River (Figure 1) within a 

coal-mining area and close to the Yangcheng Industrial District in Dengfeng City. 

Sites 4, 10 and 11 were each located downstream of three large reservoirs. Sites 5-9 



 

7 
 

were located in middle reaches of Ying River, and Site 12-13 were located in middle 

reaches of Sha River. Site 14 was located at the confluence of the Ying and Sha Rivers 

and downstream of Zhoukou City. Site 15 was located downstream of Jishou City. 

Information on main human activities around each monitoring site was obtained from 

Wikipedia and other associated websites. 

 

Surface water samples were collected monthly from each of the sites and analyzed 

using standard methods (Table 1). Twelve water quality parameters (temperature, pH, 

dissolved oxygen, chemical oxygen demand detected by KMnO4, chemical oxygen 

demand detected by K2Cr2O7, 5-day biochemical oxygen demand, ammonia–nitrogen, 

total phosphorous, fluorides, arsenic, mercury, and volatile phenol) were selected for 

statistical analysis. The sampling, preservation, transportation and analysis of water 

samples were performed following the standard methods: Environmental Quality 

Standards of Surface Water (GB3838-2002), Ministry of Environmental Protection of 

People’s Republic of China. The specific analytical methods used are presented in 

Table 1. 

 

Temperature (T) is a measure of how much heat is present in water. It influences the 

dissolved oxygen level as the amount of oxygen dissolved in water at saturation is 

higher in colder water than in warm water. Temperature is also critical for freshwater 

organisms because it affects the rates of biochemical reactions (i.e. photosynthesis and 

respiration), and directly affects survival. pH measures the acidity or alkalinity level 
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of water. Each organism adapts to a specific range of pH, so an extreme change in pH 

may threaten organism survival. Chemical oxygen demand (COD) and 5-day 

biochemical oxygen demand (BOD5) are both measurements of the amount of organic 

matter in water. The difference between them is that COD also includes reductive 

inorganic matter and BOD5 mainly measures biodegradable organic matter. Excessive 

organic matter is decomposed by bacteria and can greatly decrease oxygen levels in 

water, thus threatening the survival of organisms. NH4-N measures nitrogen in the 

form of ammonia and ammonium in water. Total phosphorous is a measure of all 

forms of phosphorous, particulate and dissolved, in a water sample. Both NH4-N and 

TP are basic nutrients for plant growth and excess amounts can lead to eutrophication 

of a water body. Fluorides, arsenic (As), mercury (Hg) and volatile phenol are 

chemical parameters that represent pollutants from industrial discharge. High 

concentrations are toxic to freshwater organisms and a threat to human health. 

 

Data pretreatment and statistical analysis 

The original data set was pretreated before conducting multivariate statistical analysis. 

Temperature data for site 1-3 in March and May, 2010 were missing, and were 

estimated using average values from data in 2008 and 2009. Observations below the 

limit of detection were set to zero. In order to avoid the influence of occasional 

extreme pollution events during the period of study, outliers were screened by making 

box plots and 25 data points (mainly from CODMn and NH4-N recordings) 

subsequently were eliminated from the data set. Normality of the data was examined 
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using Shapiro-Wilk’s test and Q-Q plots, and natural logarithmic transformation was 

carried out for CODMn, CODCr, NH4-N, As, Hg, and volatile phenol. River water 

quality data sets were subjected to multivariate statistical techniques: cluster analysis 

(CA), discriminant analysis (DA), and principal component analysis (PCA). DA was 

applied to raw data, whereas CA and PCA were applied to data that was standardized 

through z-scale transformation to avoid misclassifications arising from the different 

orders of magnitude of both numerical values and variance of the parameters analyzed. 

Mean differences among seasonal and spatial groups were examined using one-way 

ANOVA at a significant level of 0.05. All mathematical and statistical computations 

were made using SPSS Statistics (version 21) and Microsoft Office Excel 2007. 

 

Cluster analysis (CA) is one of a large family of statistical techniques whose main 

purpose is to categorize entities (e.g., sampling sites) into distinct groups or clusters 

according to some criteria, such that the within-group similarity is maximized and 

among-group similarity is minimized. Hierarchical agglomerative clustering is the 

most common approach, which provides intuitive similarity relationships between any 

one sample and the entire data set (McKenna, 2003). The Euclidean distance is a 

commonly used distance coefficient, which usually gives the similarity between two 

samples and a “distance” that can be represented by the “difference” between 

analytical values from both the samples (Otto, 1998). The result of hierarchical 

clustering is typically illustrated by a dendrogram ( a tree-like plot), which provides a 

visual summary of the agglomeration processes, depicting a picture of the clusters and 
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their similarity, with a dramatic reduction in dimensionality of the original data set 

(Shrestha et al., 2007). In this study, hierarchical cluster analysis was used to classify 

the 15 sampling sites into groups based on characteristics of water quality, to examine 

the spatial pattern of water quality. The analysis was performed on normally 

standardized data set by means of Ward’s method using squared Euclidean distance as 

a measure of similarity. The Ward’s method uses an analysis of variance approach to 

evaluate the distances between clusters in an attempt to minimize the sum of squares 

of any two clusters that can be formed at each step. The spatial variability of water 

quality in the whole river basin was determined from CA, using the linkage distance, 

reported as Dlink/Dmax, which represents the quotient between the linkage distances 

for a particular case divided by the maximal linkage distance. The quotient is then 

multiplied by 100 as a way to standardize the linkage distance represented on the 

y-axis (Wunderlin et al., 2001; Simeonov et al., 2004; Singh et al., 2004). 

 

Discriminant analysis (DA) seeks to describe the relationships among two or more 

pre-specified groups of sampling entities based on a set of two or more discriminating 

variables. DA involves deriving the linear combinations (i.e., canonical functions) of 

the discriminating variables that will best discriminate among groups. The canonical 

functions are defined as weighted linear combinations of the original variables, where 

each variable is weighted according to its ability to discriminate among groups. The 

first canonical function defines the specific linear combination of variables that 

maximizes the ratio of among group to within group variance in any single dimension. 
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It constructs a discriminant function for each group, as follows:  

                f (Gi) = ki +     
 
        

where i is the number of groups (G), ki is a constant inherent to each group, n is the 

number of parameters used to classify a set of data into a given group, and wij is the 

weight coefficient, assigned by DA to a given parameters (pij) (Johnson and Wichern 

1992; Wunderlin et al. 2001; Lattin et al. 2003; Singh et al. 2004). 

 

PCA is designed to transform the original variables into new, uncorrelated variables 

(axes), called principal components, which are linear combinations of the original 

variables. The new axes lie along the directions of maximum variance. PCA provides 

an objective way of finding indices of this type so that the variation in the data can be 

accounted for as concisely as possible (Brumelis et al., 2000). PCA provides 

information on the most meaningful parameters that describe the majority of the data 

set, affording data reduction with minimum loss of original information (Helena et al., 

2000). The principal component (PC) can be expressed as: 

zij = ai1x1j + ai2x2j + ai3x3j + … + aimxmj 

where z is the component score, a is the component loading, x the measured value of 

variable, i is the component number, j the sample number and m the total number of 

variables. 

 

Factor analysis (FA) follows PCA. The main purpose of FA is to reduce the 

contribution of less significant variables to simplify even more of the data structure 
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coming from the PCA. This purpose can be achieved by rotating the axis defined by 

PCA according to well established rules to construct new variables, also called 

varifactors (VF). A Principal Component (PC) is a linear combination of observed 

water quality variables, whereas a VF can include unobservable, hypothetical, latent 

variables (Vega et al., 1998; Helena et al., 2000). PCA analysis used normalized 

variables to extract significant PCs to further reduce the contribution of variables with 

minor significance; these PCs were subjected to varimax rotation (raw) generating 

VFs (Simeonova et al., 2003; Bu et al., 2010; Zhang et al., 2009). As a result, a small 

number of variables would usually account for approximately the same amount of 

information as do the much larger set of original variables. The FA can be expressed 

as: 

zji = af1f1i + af2f2i + af3f3i + … + afmfmi + efi 

where z is the measured variable, a is the factor loading, f is the factor score, e the 

residual term accounting for errors or other source of variation, i the sample number 

and m the total number of factors.  

 

RESULTS  

Cluster analysis   

Cluster analysis (CA) was employed to identify groups of similar monitoring sites and 

explore spatial heterogeneity of water quality. It generated a dendrogram, grouping 

the 15 sites into three distinct clusters at (Dlink/Dmax) × 100 < 40 (Figure 3). Group 

1 included sites 1- 3, located along the Ying River’s upper reaches (Figure 1). Group 
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2 included sites 4-8 along the middle reaches of the Ying River, and sites 10-13 along 

the Sha River to its confluence with the Ying. Within Group 2, the three sites below 

reservoirs (Sites 4, 10 and 11) were clustered. Group 3 included the three lower-most 

sites along the Ying River, of which site 14 was just below the confluence of the Sha, 

Jialu and Ying Rivers. The classifications were statistically significant because the 

sites in these groups had similar features and human influences. 

 

Seasonal and spatial variations of water quality 

Seasonal averages computed for each of the 12 water quality variables showed 

distinct seasonal variation in some but not all of the measures (Figure 4).  There 

exists significant difference (p < 0.05) in average temperature and dissolved oxygen 

among the four seasons. Temperature tends to be highest in summer and lowest in 

winter, and a clear inverse relationship between temperature and dissolved oxygen is 

observed. The average pH value is slightly higher in spring and summer than in fall 

and winter. The average concentrations of BOD5, CODMn, and TP all showed peaks in 

summer and then a decrease in autumn, although these differences were not 

significant. However, the three site groups exhibited different seasonal variation in 

CODMn (Figure 5). NH4-N exhibited lower average concentrations in summer and fall, 

and higher average concentrations in winter and spring. In addition, strong seasonal 

variations were also observed in As and Hg. 

 

Group averages for each of the 12 water quality variables were also computed and 
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significant (p < 0.05) spatial variation was observed in many of the variables (Figure 

6). Average temperature of Group 1 sites is significantly lower than the other two 

groups, presumably because these sites are located in the headwater with high 

elevation and relatively low air temperature. These sites may also receive discharge of 

groundwater, which has lower temperature than surface water. BOD5, NH4-N and TP 

have similar trends of spatial variation such that Group 1 has the highest average 

values, followed by Group 3, and the lowest average values appear in Group 2. DO 

exhibits absolutely inverse trend that Group 1 has the lowest oxygen level, which 

indicates that high loads of organic pollution in Group 1 sites may be depleting 

oxygen level below saturation.  

 

Discriminant analysis 

Temporal DA 

Temporal variation in water quality was further evaluated through discriminant 

analysis (DA). Temporal DA was performed on the raw data after dividing the whole 

data set into seasonal groups (spring, summer, autumn and winter). Both standard and 

stepwise modes of DA were applied. In the stepwise mode, one variable that 

minimized the overall Wilk’s Lambda statistic was entered or removed at each step. 

Season was the dependent variable while all monitored water quality parameters were 

independent variables.  

As shown in Table 3, the values of Wilk’s lambda and chi-square statistic for each 

discriminant function (DF) varied from 0.232 to 0.992 and from 13.887 to 457.916 
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respectively, (p < 0.01), indicating that the temporal DA was credible and effective. 

For the standard DA, the first function explained almost all (R = 93.4%) of the total 

variance in dependent variables. A small Wilk’s Lambda and a large chi-square also 

support this interpretation, with a p-value less than 0.01. The stepwise DA had similar 

results, which indicated that 98.2% of the total group differences in the data set were 

explained by its first DF. Therefore, the first DF alone was sufficient to explain the 

difference of water quality among four seasons, separating summer and winter from 

spring and fall (Figure 7). The stepwise DA identified three variables (temperature, 

pH and TP) as the most important discriminating variables and its first function was 

mostly correlated with temperature (coefficient = 0.949) (Table 4). Classification 

functions (CFs) and the classification matrices (CMs) obtained from standard and 

stepwise modes of DA are shown in Tables 5 and 6. In the standard mode, all 

variables were included to construct CFs which correctly classified 68.4% of the 

original grouped cases using 12 variables. In stepwise mode, the DA correctly 

assigned 67.4% of the cases using only three discriminating variables.  

 

Spatial DA  

Spatial variation in water quality also was evaluated using DA with groups identified 

by CA. The main objectives were to test the significance of discriminant functions 

obtained and to determine the most significant variables associated with differences 

among the spatial groups. The groups were the dependent variables, while all the 

measured water quality parameters constituted the independent variables. Both 
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standard and stepwise modes of DA were applied. 

 

As shown in Table 7, the values of Wilk’s lambda and the chi-square for each 

discriminant function varied from 0.225 to 0.561 and from 148.138 to 379.892, with 

p-value less than 0.01, indicating that the spatial DA was credible and effective. In 

stepwise DA, eight variables (temperature, pH, DO, CODMn, CODCr, BOD5, NH4
+
-N, 

and Hg) were selected as the most important discriminating variables. The two DFs 

explained 62.1% and 37.9% of the group differences, respectively. The first DF 

separated Group 1 from Groups 2 and 3 (Figure 8), and was significantly 

(coefficients > 0.3) correlated with pH, DO and temperature (Table 8). The second DF 

established some separation between Group 2 and Group 3, and was significantly 

correlated with CODMn, BOD5, and NH4-N. The CFs and CMs obtained from two 

modes were shown in Tables 9 and 10. In the standard mode, when all 12 variables 

were included, the constructed CFs produced 88.5% accuracy in assigning cases. 

However, in stepwise mode, DA produced 85.7% correct assignment using only eight 

discriminating variables. 

 

Principle component analysis 

Principal component analysis (PCA) was performed on normalized data sets (12 

parameters × 15 monitoring sites) to reduce the dimensions of the original data sets 

and to identify latent factors affecting water quality. The number of significant 

principal components (PCs) was determined based on both scree plot and 
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eigenvalue–one criterion. The eigenvalue-one criterion indicates that PCs with 

eigenvalues greater than one are regarded as significant when the correlation matrix is 

used in the analysis. In this study, PCA extracted two significant PCs with 

eigenvalues > 1, explaining about 76% of the total variance in corresponding water 

quality data sets. Varimax rotation was performed on extracted PC axes to improve 

the interpretation of PCA, as it increased the absolute values of larger loadings and 

reduced the absolute values of smaller loadings within each component. Liu et al. 

(2003) classified the factor loadings as “strong,” “moderate,” and “weak,” 

corresponding to absolute loading values of >0.75, 0.75– 0.50, and 0.50–0.30, 

respectively. VF1, accounting for 46% of the total variance, had strong positive 

loadings on NH4-N, TP and volatile phenol, and strong negative loadings on 

temperature, pH and DO. VF2, accounting for 32% of the total variance, has strong 

positive loadings on CODMn, As and Hg (Table 11). 

 

Principal component loadings and scores for the first two PCs were both displayed in 

a scatter plot (Figure 9). The PCA demonstrated a similar clustering result for 

monitoring sites as CA. Three clusters of monitoring sites occupied different 

subspaces in the two dimensional ordination space composed by PC1 and PC2. Water 

quality of Sites 1, 2 and 3 (Group 1) was mostly correlated with CODCr, NH4-N and 

volatile phenol. Water quality of Sites 9, 14 and 15（Group 3）were dominated by 

CODMn, As and Hg. Lastly, Sites 4, 5, 6, 7, 8, 10, 11 and 12 (Group 2) are mostly 

correlated with temperature, pH, DO. 
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DISCUSSION 

Temporal variation of water quality 

Temporal trends were observed in some water quality parameters. Notably, 

temperature was highest in summer and dissolved oxygen was inversely related to 

temperature due to its saturation relationship. Averaged across all sites, the 

concentrations of BOD5 and CODMn also showed peaks in summer and then a 

decrease in autumn, and these variables may be primarily determined by temperature. 

Xia et al. (2002) noted that pollutants that have a high concentration during dry 

season and a low concentration during wet season tend to come from point sources 

whose supply is constant, whereas the inverse pattern can be attributed to non-point 

sources that are mobilized by high run-off during wet periods.  

 

Interestingly, the three site groups exhibited quite different seasonal variation in 

CODMn (Figure 5). In group 1, CODMn are lowest in summer when precipitation and 

runoff are greatest, indicating that point source pollution of organic matters dominates 

in these sites. Groups 2 and 3 exhibited the reverse pattern, suggesting that CODMn is 

influenced mainly by non-point sources at these sites.  

 

A pattern of low average concentrations of NH4-N in summer and fall, and higher 

average concentrations in winter and spring, strongly indicates point source pollution 

for this parameter, which is associated with municipal discharge and animal waste 

from livestock farms. During spring and winter, both decreased precipitation and 
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increased agricultural withdraws for irrigation contribute to lower flows and thus the 

higher concentrations of NH4-N. Gao et al. (2010) also observed a higher NH4-N 

concentration during spring and winter in the Ying River basin. 

 

Clustering of monitoring sites and pollution source identification 

Cluster analysis was successfully employed in identifying three groups of similar 

monitoring sites, and the results of principal component analysis additionally verified 

the reliability of the clustering result. Although the principle component analysis did 

not result in significant variable reduction in this study, it helped extract and identify 

significant variables responsible for variation in river water quality among the three 

different site groups.  

 

As indicated by PCA, Group 1 water quality correlated most strongly with CODCr, 

NH4-N and volatile phenol. Although the three sites that form Group 1 (Sites 1, 2, and 

3) are located in the upper reaches of Ying River with high forest coverage, 

nonetheless they represent the most heavily polluted area of the watershed. Site 1 

(Dajindian) located in the headwater of Ying River is an important mining area with 

abundant resources of coal and metals. Sites 2 (Gaocheng) is located within the 

Yangcheng Industry District of Dengfeng City, and Site 3 (Jiangzhuang) is just 

downstream of this district. Thus, high values for CODCr, NH4-N, and volatile phenol 

are presumably due to industrial discharges (point sources) from the Yangcheng 

Industry District in Dengfeng city, where heavy industries are concentrated. The main 
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industrial activities of this region include coal-fired power generation, aluminum 

fabrication, cement producing, and beneficiation (a variety of processes whereby 

extracted ore from mining is separated into mineral and gangue; the former is suitable 

for further processing or direct use). All of these generate quantities of pollutants into 

the environment. NH4
+
- N from industrial activities may enter water bodies through 

two pathways. The coal-fired power plants and cement factories emit great quantities 

of gases and dusts containing NH4-N into the atmosphere, which enter waterways by 

atmospheric deposition. On the other hand, wastewater from coking plants contains 

high concentrations of NH4-N and organic matters which are discharged directly into 

the river. Untreated domestic wastewater (non-point sources) also contains high loads 

of organic matter from human and kitchen wastes, adding to the high values for COD 

and NH4-N at these sites. Volatile phenols may come from coal gas cleaning and 

coking process. 

 

Group 2 includes nine sites (Figure 3) that are relatively less polluted as evidenced by 

the lowest mean concentration of pollutants. Sites 4, 10, and 11 in this group are 

located downstream of large reservoirs and exhibit the best water quality, illustrating 

the self-purification and assimilating function of these water bodies. The remaining 

Group 2 sites are located in the middle reaches of the Ying River (Sites 5-8) and Sha 

River (Sites 12-13), where agriculture dominates. Thus, these sites likely receive 

pollution mainly from non-point sources (i.e. agricultural and orchard plantation 

activities, and unsewered domestic wastewater). Group 2 sites are less influenced by 
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industrial discharge, and water quality variation cannot be clearly associated with 

specific human activities. These sites show variation mainly in temperature, pH, and 

DO. 

 

Group 3 (Sites 9, 14, and 15) corresponds to moderately polluted sites and water 

quality was dominated by high values for CODMn, As, and Hg. Sites 14 and 15 are 

situated downstream of Zhoukou and Jieshou Cities, respectively. Organic matter 

inputs from livestock farms, unsewered domestic wastewater, municipal sewage 

treatment plants, and industry discharges influence these sites to varying degrees. 

Animal waste and fodder from numerous livestock farms contribute organic pollutants 

at Sites 9 (Zhifang) and 15 (Jieshou). Sites 14 (Zhoukou) and 15 (Jieshou) have 

similar industrial activities and more diverse sources of organic matter, including 

pollutants from leather processing (mostly animal proteins and fats), food and liquor 

processing (starch, protein, oil, alcohol), fabrication (fats, cellulose), and printing and 

dyeing (lignin, cellulose and starch). The ratio of BOD5 and COD usually serves as a 

measure of biodegradation of organic matter in water. Although both Group 1 and 

Group 3 sites have high concentrations of organic matter, Group 3 sites have higher 

BOD5/COD values than Group 1, implying the sites in these two groups have 

different organic pollution sources. Wastewater from leather processing and dyeing 

industries contain high loads of arsenic (As). Plastic, pharmaceutical and chemical 

industries in these two cities can produce wastewater containing mercury (Hg). 
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Other factors influencing seasonal and spatial variations in water quality 

In addition to seasonal variation and point and non-point pollution from 

anthropogenic activities, the water quality in the Ying River basin is also affected by 

other factors. As the natural watercourse of the Ying River has been interrupted by 

numerous dams and floodgates，the control of floods by water gates is of great 

significance. During the dry season when floodgates are closed to reserve water, 

pollutants discharged into the river are concentrated in a reduced volume of water 

potentially leading to a considerable increase in pollutant concentrations at some 

sampling sites. In the wet season, floodgates are opened when heavy storms occur in 

the river’s upper reaches, and water with accumulated pollutants will flow 

downstream, causing severe pollution incidents in lower reaches. As pollutants are 

exported, water quality within the Ying River basin may subsequently improve. In 

recent years, three severe water pollution incidents (1989, 1994, and 2004, 

respectively)  in the Huai River basin were all caused by concentrated pollutants 

flowing down through the Ying River system (Zhang et al. 2007). As a result, 

researchers and managers are now developing strategies on how to operate multiple 

dams and floodgates in a coordinated manner within the entire Huai River basin.  

 

Jialu River is one of the most polluted tributaries of  the Ying River, although it was 

not included in this study. Gao et al. (2010) reported that the values for NH4-N, TN, 

TP, and CODMn in Jialu River are higher than in Sha River and upper Ying River. Site 

14 (Zhoukou) located downstream of the confluence where the Jialu River joins the 
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Ying River, and Ying River may have been strongly influenced by the pollutants from 

the Jialu River.  

 

CONCLUSION 

Multivariate statistical methods were successfully applied in this study to evaluate 

temporal and spatial variation in river water quality and to identify possible 

anthropogenic sources of water quality patterns at monitoring sites in the Ying River 

basin. The results are useful for river water quality management. Hierarchical CA 

grouped 15 monitoring sites into three groups based on their similarity of water 

quality characteristics, thus providing a useful classification of the surface 

watercourses that can be used for optimizing a future spatial monitoring network in 

the basin with lower costs. For example, the number of monitoring sites could be 

reduced by selecting only one site from each of the three groups. Furthermore, the 

pollution of Group 1 and Group 3 sites is relatively serious and should be controlled.  

 

Pollution in the Ying River basin likely derives from three sources: (1) excess 

industrial discharge of different types (paper making, food processing, cement 

producing, metallurgy, leather processing, fabrication, coking etc.); (2) increased 

pollution from large-scale livestock farms, and likely pesticides and chemical 

fertilizers used in farmlands; (3) municipal and domestic sewage from a dense 

population and limited wastewater treatment facilities in less developed areas.  
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TABLES 

Table 1. Units, analytical methods, and detection limit of water quality parameters 

monitored in the Ying River basin from 2008 – 2010. 

 

 

Parameter Abbreviation Unit Method 

Detection 

Limit 

(mg/L) 

Temperature T °C Thermometer   

pH pH 
 

Glass electrode method    

Dissolved 

oxygen 
DO mg/L Iodometric method 0.2 

Chemical 

oxygen demand 

detected by 

KMnO4 

CODMn 

 

mg/L 
Titration method 0.5 

Chemical 

oxygen demand 

detected by 

K2Cr2O7 

CODCr 

 

mg/L 
Dichromate method  10 

5-day 

biochemical 

oxygen demand 

BOD5 

 

mg/L Dilution and seeding test 2 

Ammonia - 

nitrogen 
NH4 - N 

mg/L 
Nessler's reagent spectrophotometry 0.05 

Total 

phosphorous 
TP 

mg/L 
Ammonium molybdate spectrophotometric method 0.01 

Fluorides Fluorides mg/L Fluorine reagent spectrophotometry 0.05 

Arsenic As mg/L Cold atomic fluorescent spectrophotometry 0.00006 

Mercury Hg mg/L Cold atomic absoption spectrophotometry 0.00005 

Volatile phenol Volatile phenol mg/L 4-AAP spectrophotometric method 0.002 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

25 
 

Table 2. The means and standard deviations for twelve water quality parameters 

measured monthly at 15 sites from 2008-2010. S.D= 1 standard deviation. See Table 1 

for parameter abbreviations. 

 

Parameters  Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 

T  

 

Mean 10.83 10.70 10.70 16.20 17.46 17.55 17.49 17.76 

S.D 7.23 6.96 7.14 9.15 8.73 8.83 8.52 8.88 

pH Mean 7.43 7.43 7.45 7.78 7.86 7.87 7.75 7.96 

S.D 0.35 0.35 0.36 0.31 0.24 0.23 0.22 0.30 

DO Mean 4.93 6.21 5.62 8.23 7.60 6.83 7.57 8.00 

S.D 2.92 1.41 1.72 1.84 1.31 1.57 1.65 1.97 

CODMn Mean 5.10 4.48 3.86 2.46 2.63 3.79 3.46 3.16 

S.D 2.05 1.06 1.53 0.58 0.63 0.92 0.56 0.94 

CODCr Mean 41.58 29.59 31.25 18.65 23.42 29.38 26.07 26.32 

S.D 27.43 21.05 25.08 4.33 4.09 12.59 6.87 10.42 

BOD5 Mean 11.57 11.56 7.83 2.61 2.97 3.12 2.65 2.87 

S.D 7.10 8.33 5.80 1.00 1.24 1.78 0.72 1.38 

NH4-N Mean 3.21 4.42 1.73 0.12 0.11 0.20 0.12 0.14 

S.D 3.43 4.43 2.06 0.060 0.052 0.068 0.067 0.054 

TP Mean 0.46 0.39 0.26 0.048 0.077 0.098 0.070 0.068 

S.D 0.40 0.48 0.24 0.024 0.085 0.052 0.033 0.059 

Fluorides Mean 0.75 0.89 0.89 0.84 0.56 0.60 0.62 0.56 

S.D 0.29 0.17 0.19 0.20 0.15 0.13 0.15 0.14 

As Mean 0.0021 0.0015 0.0015 0.00035 0.00037 0.0013 0.00047 0.0018 

S.D 0.0040 0.0014 0.00083 0.00070 0.00065 0.0037 0.00098 0.0034 

Hg Mean 0.00047 0.000058 0.000042 0.000024 0.000026 0.000030 0.000030 0.000027 

S.D 0.00010 0.00014 0.000084 0.0000015 0.0000045 0.000012 0,000022 0.000013 

Volatile 

Phenol 

Mean 0.0097 0.065 0.0098 0.00096 0.00098 0.00097 0.0010 0.00098 

S.D 0.0088 0.31 0.014 0.00017 0.00013 0.00014 0.00022 0.00013 

 

 

 

 

 

 

 

 

 

 

 

 



 

26 
 

(continued Table 2) 

 

Parameters  Site 9 Site 10 Site 11 Site 12 Site 13 Site 14 Site 15 

T  Mean 

S.D 

17.34 

8.97 

17.22 

9.08 

17.32 16.89 17.04 16.80 17.43 

8.90 8.74 8.81 9.04 9.08 

pH Mean 7.69 7.86 7.86 7.84 7.83 7.70 7.61 

S.D 2.27 0.35 0.32 0.23 0.17 0.23 0.28 

DO Mean 6.33 7.29 7.25 7.33 7.57 8.65 7.22 

S.D 2.83 0.90 0.82 1.85 2.02 1.88 0.96 

CODMn Mean 7.84 2.46 2.65 3.32 3.15 4.41 5.66 

S.D 3.29 0.76 0.78 0.84 0.81 1.78 1.38 

CODCr Mean 25.31 7.05 9.67 34.62 30.10 12.08 23.62 

S.D 13.57 3.61 4.98 23.41 17.03 7.04 7.66 

BOD5 Mean 12.91 2.44 2.16 2.57 2.81 6.03 1.13 

S.D 8.95 1.22 0.91 0.91 1.09 3.43 0.25 

NH4-N Mean 1.58 0.091 0.078 0.76 0.42 0.44 2.09 

S.D 1.58 0.037 0.051 0.67 0.39 0.37 1.81 

TP Mean 0.33 0.056 0.050 0.14 0.10 0.11 0.26 

S.D 0.26 0.042 0.028 0.13 0.057 0.13 0.11 

Fluorides Mean 0.91 0.59 0.54 0.61 0.58 0.72 0.82 

S.D 0.26 0.15 0.12 0.13 0.14 0.32 0.14 

As Mean 0.0039 0.00028 0.00030 0.00056 0.00051 0.0023 0.0033 

S.D 0.0043 0.00049 0.00056 0.0012 0.0013 0.0033 0.0032 

Hg Mean 0.00017 0.000028 0.000030 0.000035 0.000032 0.00016 0.000024 

S.D 0.00035 0.000011 0.000016 0.000023 0.000022 0.00038 0.0000043 

Volatile 

Phenol 

Mean 0.0046 0.00098 0.00098 0.00097 0.00098 0.0010 0.00096 

S.D 0.0079 0.00015 0.00012 0.00014 0.00010 0.00000 0.00025 
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Table 3. Wilk’s lamda and chi-square test for the discriminant analysis of temporal 

variation in water quality across four seasons. 

 

Mode Function R Eigenvalue Wilk’s 

lambda 

Chi-square p-level 

Standard mode 1 93.4 2.618 .232 457.916 0.000 

2 4.4 0.125 .838 55.442 0.000 

Stepwise mode 1 98.2 2.475 .275 409.351 0.000 

2 1.4 0.036 .957 13.887 0.00 
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Table 4. Structure matrix for the discriminant analysis of Table 3. 

  

Standard Mode Stepwise Mode 

Parameters Function 1 Parameters Function 1 

As .140 As .208 

BOD5 .053 BOD5 .061 

CODCr .005 CODCr .038 

CODMn .052 CODMn .127 

DO -.236 DO -.125 

Fluorides .012 Fluorides .051 

Hg .032 Hg -.011 

NH4-N -.088 NH4-N -.028 

pH -.041 pH -.043 

Temperature .923 Temperature .949 

TP .044 TP .045 

Volatile phenol -.065 Volatile phenol -.105 
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Table 5. Classification function coefficients for the discriminant analysis (DA) of 

Table 3. 

     

Parameters Standard mode DA Stepwise mode DA 

Spring Summer Fall Winter Spring Summer Fall Winter 

Temperature .228 .735 .371 -.200 -.035 .484 .129 -.438 

pH 82.387 80.521 80.910 82.388 71.274 69.078 69.328 71.112 

DO 1.045 .827 .964 1.170     

CODMn -.243 -.271 -.278 -.201     

CODCr .182 .191 .197 .193     

BOD5 .019 .036 .034 -.002     

NH4-N .161 -.150 -.123 .029     

TP 11.171 13.937 10.852 10.050 21.859 24.260 21.609 20.089 

Fluorides 30.805 31.860 31.422 33.055     

As -203.255 -269.951 -36.939 -144.733     

Hg -10161.995 -10674.717 -11977.221 -12683.404     

Volatile phenol 909.062 903.641 942.536 891.810     

(Constant) -339.734 -334.801 -330.678 -337.947 (Constant) -279.253 -273.090 -266.876 
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Table 6. Classification matrix for the discriminant analysis (DA) of Table 3. 

 

Monitoring 

seasons 

Percent correct Seasons assigned by DA  

 (%) Spring Summer Fall Winter 

Standard mode      

Spring 47.2 68 20 24 32 

Summer 88.2 3 127 14 0 

Fall 45.1 30 47 65 2 

Winter 93.1 5 0 5 134 

Total 68.4 106 194 108 168 

Stepwise mode      

Spring 46.5 68 20 24 32 

Summer 84.7 3 127 14 0 

Fall 46.5 30 47 65 2 

Winter 91.7 5 0 5 134 

Total 67.4 110 176 125 165 
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Table 7. Wilk’s lamda and chi-square test for a discriminant analysis of spatial 

variation in water quality across three groups of sites. 

 

Mode Function R Eigenvalue Wilk’s 

lambda 

Chi-square p-level 

Standard mode 1 60.3 1.353 .225 379.892 0.000 

2 39.7 0.890 .529 162.069 0.000 

Stepwise mode 1 62.1 1.281 .246 359.687 0.000 

2 37.9 0.782 .561 148.138 0.000 
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Table 8. Structure matrix for a discriminant analysis of Table 7. 

 

Standard Mode Stepwise Mode 

Parameters Function 1 Function 2 Parameters Function 1 Function 2 

As .097 .269 As -.006 .135 

BOD5 -.301 .469 BOD5 -.325 .484 

CODCr -.235 .064 CODCr -.243 .056 

CODMn .123 .694 CODMn .103 .747 

DO .360 -.062 DO .372 -.047 

Fluorides -.092 .332 Fluorides -.179 .132 

Hg .154 .211 Hg .151 .234 

NH4-N -.340 .390 NH4-N -.363 .398 

pH .397 -.280 pH .417 -.277 

Temperature .354 -.135 Temperature .368 -.125 

TP -.219 .443 TP -.202 .255 

Volatile phenol -.110 .042 Volatile phenol .071 .010 
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Table 9. Classification function coefficients for a discriminant analysis of Table 7. 

     

 Standard Mode Stepwise mode 

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3 

Temperature .872 1.047 1.089 .781 .958 .992 

pH 113.780 119.451 117.207 107.982 113.566 110.956 

DO 3.472 4.007 4.571 3.016 3.601 4.110 

CODMn -.341 -.278 .821 -.008 .009 1.147 

CODCr .463 .483 .400 .557 .576 .500 

BOD5 -.380 -.552 -.569 -.073 -.256 -.239 

NH4-N -.904 -1.209 -1.059 -.753 -1.137 -.929 

TP 23.084 20.628 23.242    

Fluorides 25.878 25.009 27.538    

As 297.451 302.659 455.172    

Hg -13394.829 -12488.898 -9698.953 -16641.976 -15603.749 -12315.586 

Volatile phenol -38.387 -42.422 -42.729    

(Constant) -454.190 -501.135 -494.665 -420.971 -468.414 -456.505 
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Table 10. Classification matrix for a discriminant analysis (DA) of Table 7. 

 

Monitoring sites Percent correct Regions assigned by DA 

 (%) Group 1 Group 2 Group 3 

Standard mode     

Group 1 78.7 85 11 12 

Group 2 95.1 9 308 7 

Group 3 78.7 9 14 85 

Total 88.5 103 333 104 

Stepwise mode     

Group 1 76.9 83 15 10 

Group 2 92.0 9 298 17 

Group 3 76.0 8 18 82 

Total 85.7 100 331 109 
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Table 11. Loadings of water quality variables on significant principal components. 

 

Water quality variables Rotated Components 

VF1 VF2 

Temperature -0.95 0.00 

pH -0.86 -0.34 

DO -0.81 -0.21 

CODMn 0.26 0.93 

CODCr 0.63 0.03 

BOD5 0.66 0.62 

NH4-N 0.89 0.33 

TP 0.82 0.53 

Fluorides 0.54 0.63 

As 0.15 0.91 

Hg -0.07 0.91 

Volatile phenol 0.76 0.05 

Eigenvalue 5.57 3.85 

% of Total variance 46% 32% 

Cumulative % variance 46% 78% 
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FIGURES 

Figure 1. Location of monitoring sites in the Ying River basin, China. 

 

 

Monitoring Sites: 

 

1.  Dajindian 9.   Zhifang 

2.  Gaocheng 10.  Zhaopingtai Reservoir 

3.  Jiangzhuang 11.  Baiguishan Reservoir 

4.  Baisha Reservoir 12.  Yancheng 

5.  Yuzhou 13.  Luohe 

6.  Yingyang 14.  Zhoukou 

7.  Huaxing 15.  Jieshou 

8.  Wuliu  
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Figure 2. Monthly mean runoff of Jieshou section (Site 15), 2008 – 2010. 
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Figure 3. Dendrogram showing spatial clustering of monitoring sites. 
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Figure 4. Bar plots with means and standard errors for all parameters, showing 

seasonal variation at a significant level of 0.05. 

 

a).                                   b). 

 

c).                                   d). 

 

e).                                    f). 
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g).                                    h). 

 

i).                                     j). 

 

k).                                    l). 
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Figure 5. Seasonal variation in water quality for the three sites groups. 
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Figure 6. Bar plots with mean values and standard errors for all parameters, showing 

spatial variation at a significant level of 0.05. 

 

a).                                     b). 

 

c).                                     d). 

 

e).                                     f). 
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g).                                     h). 

 

i).                                      j). 

 

k).                                     l). 
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Figure 7. Scatter plot for the discriminant analysis of temporal variation in water 

quality across four seasons (stepwise mode). In the plot: 1 – spring, 2 – summer, 3 – 

fall, 4 – winter. 
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Figure 8. Scatter plot for the discriminant analysis of spatial variation in water quality 

across 3 sites groups (stepwise mode). 
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Figure 9. Scatter plot of loadings and scores of PCA. In the plot, numbers 1 – 15 

correspond to monitoring Sites 1 – 15. 
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