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Abstract Wetlands comprise the single largest global source of atmospheric methane, but current flux
estimates disagree in both magnitude and distribution at the continental scale. This study uses atmospheric
methane observations over North America from 2007 to 2008 and a geostatistical inverse model to improve
understanding of Canadian methane fluxes and associated biogeochemical models. The results bridge an
existing gap between traditional top-down, inversion studies, which typically emphasize total emission
budgets, and biogeochemical models, which usually emphasize environmental processes. The conclusions
of this study are threefold. First, the most complete process-based methane models do not always describe
available atmospheric methane observations better than simple models. In this study, a relatively simple
model of wetland distribution, soil moisture, and soil temperature outperformed more complex model
formulations. Second, we find that wetland methane fluxes have a broader spatial distribution across
western Canada and into the northern U.S. than represented in existing flux models. Finally, we calculate
total methane budgets for Canada and for the Hudson Bay Lowlands, a large wetland region (50–60◦N,
75–96◦W). Over these lowlands, we find total methane fluxes of 1.8 ± 0.24 Tg C yr−1, a number in the
midrange of previous estimates. Our total Canadian methane budget of 16.0 ± 1.2 Tg C yr−1 is larger than
existing inventories, primarily due to high anthropogenic emissions in Alberta. However, methane
observations are sparse in western Canada, and additional measurements over Alberta will constrain
anthropogenic sources in that province with greater confidence.

1. Introduction

Atmospheric methane (CH4) is the second most important long-lived greenhouse gas, and since the prein-
dustrial era, its radiative forcing has increased to 0.507 W m−2, approximately one third that of CO2 [Butler,
2012]. Therefore, greenhouse gas reduction strategies and future climate predictions will require accurate
estimates of methane emissions. Total global emissions are constrained to approximately ±15% using obser-
vations of the global CH4 burden and rate of increase, combined with an estimate of the CH4 atmospheric
lifetime [e.g., Kirschke et al., 2013]. However, uncertainties in emissions from individual source types can be
greater than a factor of 2 [O’Connor et al., 2010; Dlugokencky et al., 2011; Melton et al., 2013]. For example,
wetlands likely constitute the largest single source of atmospheric methane, but estimates of global fluxes
vary from 60 to 213 Tg C yr−1 (80 to 284 Tg CH4 yr−1), meaning they comprise anywhere from 14 to 50% of
the total budget [e.g., O’Connor et al., 2010; Melton et al., 2013; Bridgham et al., 2013; Kirschke et al., 2013;
Ciais et al., 2013, and references therein]. Anthropogenic sources (e.g., fossil fuel extraction and process-
ing, ruminants, and landfills), by comparison, likely account for 50–65% of total global emissions [Ciais et al.,
2013; Kirschke et al., 2013]. Uncertainties in methane fluxes are larger at the regional scale; estimates of
methane from the Hudson Bay Lowlands (HBL), a large boreal wetland region in Canada, range from 0.28 to
8.5 Tg C yr−1 [Roulet et al., 1992; Worthy et al., 2000; Pickett-Heaps et al., 2011; Melton et al., 2013].
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The present study focuses on improving methane flux estimates from boreal wetlands. These regions are
a particular concern because of their large soil carbon stocks. Methane fluxes in wetlands occur primarily
in waterlogged, anaerobic soil conditions due to the decomposition of organic material by methanogenic
Archaea. Boreal and arctic regions are far less productive than many other ecosystems but nonetheless play
a vital role in the global carbon cycle. These northerly regions may contain half of all wetlands and soil car-
bon in the world (∼1700 Pg C), twice the amount of carbon currently held within the atmosphere [Tarnocai
et al., 2009].

Evidence suggests that high-latitude wetlands are already changing due to an evolving climate and that
ecosystem changes may accelerate [Tarnocai, 2009; Avis et al., 2011; Schuur et al., 2013]. For example, most
studies predict that climate change will increase methane fluxes from boreal and arctic regions; estimates
range from 6% to 35% increase in methane fluxes per ◦C of global temperature increase [e.g., Gedney et al.,
2004; Khvorostyanov et al., 2008; O’Connor et al., 2010; Koven et al., 2011; Zhu et al., 2011].

Three factors may explain the large differences among model estimates of boreal methane fluxes. First,
models differ in their underlying environmental variables. For example, existing models of global wetland
area range from 2.6 to 9 ×106 km2 [Petrescu et al., 2010] and have differing spatial distributions
(especially over boreal North America [Melton et al., 2013]). Second, models further differ in functional form
(see section 2.4), due in part to uncertainties and/or complexity in biophysical methane processes. For
example, many models relate maps of soil temperature to wetland methane fluxes using a coefficient known
as Q10. This coefficient describes the factor by which a reaction rate increases per 10◦C rise in temperature.
Estimates of this coefficient range from 1 to 35, largely due to microbial and soil heterogeneity [van Hulzen
et al., 1999; Whalen, 2005; O’Connor et al., 2010; Lupascu et al., 2012]. Finally, differences among existing flux
models also stem from difficulties extrapolating from plot level to regional scale. Most flux models calibrate
to individual wetland sites and extrapolate to regional or global scales [O’Connor et al., 2010; Zhang et al.,
2012]. However, small-scale study sites exhibit substantial heterogeneity, and fluxes can vary by an order of
magnitude over microtopography on the centimeter scale [Waddington and Roulet, 1996; Comas et al., 2005;
Hendriks et al., 2010].

Top-down approaches like inverse modeling provide one means of reducing the wide uncertainty in wet-
land methane fluxes. Top-down studies use atmospheric methane measurements and meteorological
models to improve existing flux estimates at regional [Zhao et al., 2009; Bergamaschi et al., 2010; Villani
et al., 2010; Kim et al., 2011] and global [Chen and Prinn, 2006; Bergamaschi et al., 2013; Fraser et al., 2013]
scales. Most existing methods emphasize total emissions budgets and provide relatively little information
on wetland processes, but two recent publications begin to bridge this gap. Spahni et al. [2011] conduct
a global-scale inversion that estimates fluxes by wetland type. Pickett-Heaps et al. [2011] use atmospheric
methane measurements from northern Ontario to assess the magnitude and seasonal structure of a wetland
flux model over the HBL. Results imply a premature seasonal onset of fluxes in this model, referred to as the
“Kaplan model.” The authors suggest removing fluxes from snow-covered regions as one possible solution.
In spite of these recent studies, existing top-down approaches provide limited assessment of the underlying
environmental variables or the functional form of existing wetland flux models.

The present study moves closer to integrating top-down flux estimates with process-based, bottom-up
modeling methods. First, we explore how atmospheric methane measurements can be used to construct
and assess biogeochemical process models at continental scale. Second, we use a broad network of mea-
surement sites in Canada and the U.S. to understand the spatial and seasonal distribution of North American
boreal wetland fluxes. To achieve these goals, we combine in situ methane measurements across Canada
and the United States from 2007 and 2008, a regional atmospheric transport model, and a geostatistical
inverse modeling framework.

2. Model and Measurements

The methods sections and subsequent discussion are organized as follows. First, we describe the atmo-
spheric model and measurements (sections 2.1, 2.2, and 2.3). Using this model, we compare two existing
wetland flux estimates, Kaplan and DLEM, against atmospheric methane observations. Both flux esti-
mates are described in detail below (sections 2.4). We subsequently use a geostatistical inverse modeling
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framework to estimate North American boreal methane fluxes (section 3.1). This flux estimate has two
components. The first component, termed the deterministic model, is a combination of environmental
predictors (e.g., soil moisture and temperature) that best represent the methane fluxes, as seen through
the atmospheric methane observations (section 3.2). The second component, termed the stochastic com-
ponent, estimates the spatial and/or temporal flux patterns that may be lacking in the environmental
predictors and therefore cannot be modeled using the deterministic model. The geostatistical inverse
model produces a final best estimate, termed the posterior fluxes, and it is the sum of the deterministic and
stochastic components.

2.1. The Regional Atmospheric Model
We simulate in situ methane mixing ratios using STILT, the Stochastic, Time-Inverted, Lagrangian Trans-
port model [Lin et al., 2003]. STILT is a particle model; an ensemble of air-following particles is released
from each methane observation site. In this study, a new 500-particle ensemble is initiated for each of the
hourly methane measurements. These particles travel backward in time along the wind fields of a mete-
orology model, in this case for 10 days. STILT further includes stochastic motions that simulate boundary
layer turbulence.

Wind fields from the Weather Research and Forecasting model (WRF version 2.1.2) are used to drive STILT
trajectories in this study. Nehrkorn et al. [2010], Hegarty et al. [2013], and the supporting information
describe this meteorology in greater detail. The WRF fields used here have a nested resolution, 10 km within
24–48 h of the observation sites and 40 km in more distant regions (see supporting information).

STILT subsequently uses the trajectories to calculate a footprint map. The footprints relate the surface fluxes
in North America to the concentration increment seen at the measurement location and have units of
mixing ratio per unit surface flux. This footprint is based on the number of particles in a region and their
altitudes relative to the planetary boundary layer.

The STILT setup here incorporates fluxes from existing inventories on a 1
4

◦
by 1

6

◦
longitude-latitude

grid (11 to 65◦N and 145 to 51◦W).

2.2. Model Boundary Condition
STILT only models emissions over the North American continent. The model therefore requires a bound-
ary condition to represent the concentration of methane in incoming air over the Pacific and Arctic oceans
before reaching North American sources. This study uses an empirical boundary curtain that interpo-
lates a variety of trace gas measurements from ground-based sites and aircraft in the NOAA Earth System
Research Laboratory Global Monitoring Division’s Cooperative Global Air Sampling Network. The resulting
boundary curtain varies latitudinally and vertically and has a daily temporal resolution (see the support-
ing information). The estimated boundary condition value associated with each STILT particle run depends
on the ending latitude, altitude, and day of each particle. This boundary value is then added to the mod-
eled methane signal from North American sources. The sum can be directly compared against measured
methane mixing ratios at tower sites across Canada and the northern U.S. (e.g., section 3.1).

2.3. Measurements
This study uses observed methane mixing ratios for 2007 to 2008 from five observation sites sensitive to
boreal wetland fluxes: hourly measurements from four Canadian observation towers and daily flask mea-
surements from one U.S. tall tower. Sites (from east to west) include Chibougamau, Quebec (CHM, 50◦N,
74◦W, 30 m above ground level (agl)); Fraserdale, Ontario (FSD, 50◦N, 83◦W, 40 m agl); Park Falls, Wisconsin
(LEF, 46◦N, 90◦W, 244 m agl); East Trout Lake, Saskatchewan (ETL, 54◦N, 104◦W, 105 m agl); and Candle Lake,
Saskatchewan (CDL, 54◦N, 105◦W, 30 m agl, 2007 only) (Figure 1).

Small-scale heterogeneities caused by turbulent eddies and incomplete mixing make it difficult to model
hourly-scale variability in the in situ data. STILT also has difficulty estimating the very shallow nighttime
boundary layer and therefore rarely captures variations in nighttime concentrations. Hence, this study
uses afternoon averages of the methane data and model output (1 P.M. to 7P.M. local time), a total of 2485
observations after averaging.
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Figure 1. Summer mean wetland fluxes from the Kaplan and DLEM wetland methane models (for July, August, and
September, averaged over 2007–2008). Both models estimate similar annual totals for the HBL, but DLEM has a more
pronounced summer peak.

2.4. Existing Flux Models
2.4.1. The Kaplan Model
The first inventory used in this study is the Kaplan model, described in Kaplan [2002] and Pickett-Heaps et al.
[2011] (Figure 1). The model has the following functional form:

E = 𝛿bWf (T)
2∑

i=1

Ci

𝜏i
(1)

f (T) = 1.0 × 103Fe
−309

T−227

where E is the wetland flux expressed here in units of μmol m−2 s−1. C1 and C2 represent the moles of carbon
per unit area in soil and litter, normalized by their respective lifetimes (𝜏1 and 𝜏2). This soil carbon estimate is
taken from the Lund-Potsdam-Jena (LPJ) dynamic global vegetation model [Sitch et al., 2003]. W is the max-
imum possible extent of wetlands in a given grid box (a fraction, from LPJ), and 𝛿 is a measure of whether
wetlands are actually present (𝛿 = 0 if soil moisture (M) < 10% and 𝛿 = 1 otherwise). An emissions factor
b represents the fraction of methane per mole of carbon respired (b = 3 × 10−2). f (T) represents an Arrhe-
nius equation of temperature (in Kelvin). In this equation, F adjusts the inventory based on soil temperature
to better match differences between boreal (B) and tropical (T) wetlands (refer to Pickett-Heaps et al. [2011]).
We build this inventory with soil moisture (for 𝛿) and soil temperature (T) from WRF (the same meteorology
used to drive STILT) at a soil depth of 25 cm. This soil depth provided the best match between the Kaplan
model and atmospheric methane observations. This setup differs from Pickett-Heaps et al. [2011], who used
surface skin temperature instead of soil temperature below the ground surface.

The LPJ model outputs used here for wetland coverage and soil carbon are updated from previous stud-
ies that also used the LPJ/Kaplan model [e.g., Bergamaschi et al., 2007; Pickett-Heaps et al., 2011]. Among
other updates, soil carbon is approximately a factor of 4 lower than in the previous studies listed above. This
adjustment matches the LPJ model against upland soil profiles, but the change appears inconsistent with
methane observations over boreal wetlands [e.g., Pickett-Heaps et al., 2011]. We readjust the LPJ soil carbon
estimate upward by a factor of 4.15 to match the LPJ/Kaplan model in Pickett-Heaps et al. [2011]. This pre-
vious study compares the Kaplan model against measurements from Fraserdale (FSD), Ontario, and likely
better represents high-latitude soil carbon than the new LPJ estimate.
2.4.2. The DLEM Model
DLEM, the Dynamic Land Ecosystem Model, includes more complexity than the Kaplan model described
above [Tian et al., 2010] (Figure 1). It models the production of methane in soil pore water (P, expressed here
in μmol m−2 s−1), and only a fraction of methane produced is released to the atmosphere (E). This fraction
depends on a multitude of factors that are discussed in depth by Tian et al. [2010]: plant-mediated transport,
diffusive flux, ebullition, oxidation by methanotrophy, and oxidation during plant-mediated transport.
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Methane production in soil pore water (P) is simpler to describe:

P = Pmax ×
[DOC]

[DOC] + k
× f (T) × f (pH) × f (M) (2)

where Pmax is the maximum possible rate of CH4 production in soils, a spatially variable parameter [see Tian
et al., 2010]. [DOC] is dissolved organic content, determined by gross primary productivity, litter fall, and soil
organic matter decomposition rates [Tian et al., 2012]. k is the half-saturation coefficient, f (T) is the effect of
soil temperature, f (pH) is the effect of soil pH, and f (M) is the effect of soil water content. The functions of
temperature, pH, and soil moisture have the following forms [Tian et al., 2010]:

f (T) =
⎡⎢⎢⎣

0 T < 268.15
2.5(T−303.15)∕10 303.15 > T ≥ 268.15

1 T ≥ 303.15

⎤⎥⎥⎦ (3)

f (pH) =
⎡⎢⎢⎢⎣

0 pH < 4.0 or pH ≥ 10.0
1.02

1+1e6×exp [−2.5pH]
4.0 < pH < 7.0

1.02
1+1e6×exp [−2.5(14.0−pH)]

7.0 < pH < 10.0

⎤⎥⎥⎥⎦
(4)

f (M) =
⎡⎢⎢⎢⎣

0 M ≤ Mfc

0.368
(

M−Mfc

Ms−Mfc

)2
exp

[
M−Mfc

Ms−Mfc

]
Mfc < M < Ms

1 M ≥ Ms

⎤⎥⎥⎥⎦
(5)

where Mfc is the field capacity, and Ms is the saturated water content of soil. Tian et al. [2010] provide a
graphical depiction of these functional dependences.

The environmental data for DLEM are derived from a number of sources: meteorological data from
North American Regional Reanalysis (NARR) [Mesinger et al., 2006] and land cover/vegetation data from a
combination of sources (see Tian et al. [2010] for more details).

3. Statistical Framework
3.1. Conceptual Overview
We implement a geostatistical inverse model to infer information about methane fluxes and to assess the
environmental drivers in existing wetland models. The statistical approach follows that of Kitanidis and
Vomvoris [1983], Michalak et al. [2004], and Gourdji et al. [2012]. The inversion estimates the spatial and tem-
poral distribution of emissions that is most likely given the atmospheric methane measurements and the
transport information provided by the atmospheric model.

The inversion first requires a linear expression for the model-measurement framework:

z = 𝐇s + 𝜺 (6)

where s (m × 1) are the true, unknown fluxes. Unlike the wetland-specific fluxes estimated by Kaplan and
DLEM (E), s encompasses fluxes from all source types. z is the n × 1 vector of observed mixing ratios minus
the estimated boundary condition value (see section 2.2). 𝐇 (n × m) are the footprints computed by STILT
(section 2.1). Finally, 𝜺 (n×1) describes model-data mismatch—all errors unrelated to an imperfect emissions
estimate (e.g., transport error and aggregation error). This vector is assumed to follow a multivariate normal
distribution with a mean of 0:

𝜺 ∼  (0,𝐑) (7)

where 𝐑 (n × n) is the covariance matrix of these errors.

Using the above framework, the inversion then models the unknown fluxes (s, equation (6)) using the
following structure:

s ∼ 𝐗𝜷 + (0,Q) (8)
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Table 1. Auxiliary Data or Predictors Tested for Use in the Deterministic Modela

Description Static/Variable Source Model

Liquid soil moisture (e.g., not frozen) (M) variable WRF, NARRb

Total soil moisture (liquid + frozen) (MTot) variable WRF, NARR
Soil temperature variable WRF, NARR
The maximum fraction of a region that could be covered by wetlands (W) static LPJ, GIEMS
Soil carbon content (C) static LPJ, NCSCD
The estimated distribution of anthropogenic emissions static EDGAR v4.2
Smooth tricubic functions over anthropogenic source regions static

aSee sections 2.4 and 3.2.1. The second column (Static/Variable) lists whether the auxiliary data in ques-
tion are seasonally constant or vary temporally.

bSoil moisture and temperature are available at multiple vertical soil levels in WRF and NARR: 5, 25, 70,
and 150 cm depth in WRF and 0, 10, 40, and 100 cm depth in NARR.

The first component of the statistical model (𝐗𝜷) is a weighted least squares regression and is termed the
“deterministic model” or “inversion prior” (section 3.2). Each column of 𝐗 (dimensions m × p) is a predictor
in the weighted regression [e.g., Gourdji et al., 2008, 2012]. In this study, 𝐗 includes data sets termed “auxil-
iary data” (e.g., soil temperature, moisture, and/or an anthropogenic emissions inventory) that help explain
the spatial and seasonal distribution of methane fluxes. Additionally, one column of this matrix is constant,
equivalent to the intercept of the regression. The regression coefficients (𝜷 , dimensions p × 1) are unknown
and are estimated in the inversion using the atmospheric methane data.

The second component the geostatistical inverse model,  (0,Q), is termed the “stochastic component” or
the “spatially correlated residual.” The stochastic component adjusts, at grid scale, the fluxes estimated by
the deterministic model. This component, for example, can correct the deterministic model if any environ-
mental data in 𝐗 have the incorrect distribution. The covariance matrix Q (dimensions m × m) describes
the variance and the spatiotemporal correlation of the stochastic component. It includes off-diagonal
elements that follow an exponential covariance model: any fluxes estimated by the stochastic compo-
nent will be spatially correlated with a given decorrelation length. This spatial correlation means that the
stochastic component can adjust the flux estimate on a fine grid scale relative to the density of atmospheric
observations [e.g., Michalak et al., 2004; Mueller et al., 2008; Villani et al., 2010; Bergamaschi et al., 2013;
Miller et al., 2013].

The best estimate of a geostatistical inversion is obtained by minimizing a cost function (L) with respect to
the methane fluxes (s) and the coefficients (𝜷) [e.g., Kitanidis and Vomvoris, 1983; Michalak et al., 2004]:

Ls,𝜷 = 1
2
(z −𝐇s)T𝐑−1(z −𝐇s) + 1

2
(s − 𝐗𝜷)T𝐐−1(s − 𝐗𝜷) (9)

The supporting information discusses further details of the statistical setup. In particular, we implement the
inversion with Lagrange multipliers to prevent negative fluxes (see supporting information) [Miller et al.,
2014]. Furthermore, we estimate the covariance matrices (𝐑 and 𝐐) using restricted maximum likelihood
estimation (REML) [Kitanidis, 1995; Michalak et al., 2004].

We use this statistical framework to estimate monthly methane fluxes (s) on a 1◦ by 1◦ longitude-latitude
grid over the years 2007 and 2008, yielding 41,328 total locations in space and time. The geographic domain
of the inversion spans from 35 to 65◦N latitude and 145 to 51◦W longitude.

3.2. The Deterministic Model of Fluxes
The following sections discuss the deterministic model in greater detail.
3.2.1. Auxiliary Environmental Data
We consider a number of auxiliary data sets or predictors for use in the deterministic model. Ultimately, only
a selection of these data sets is used in the inversion depending on how well each explains the atmospheric
methane data (see section 3.2.2). These data sets include both environmental drivers of wetland fluxes and
inventory data on anthropogenic emissions. The full array of possible data sets for 𝐗 are shown in Table 1.
These include meteorological data from WRF (used in this version of Kaplan model [Nehrkorn et al., 2010])
and NARR (used in DLEM [Mesinger et al., 2006]). We consider soil carbon estimates from the LPJ model (used
in Kaplan [Sitch et al., 2003; Pickett-Heaps et al., 2011]) and the Northern Circumpolar Soil Carbon Database
(NCSCD) [Tarnocai et al., 2009; Hugelius et al., 2013]. Wetland coverage estimates include model output from
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Figure 2

LPJ and surface water data from
the Global Inundation Extent from
Multi-Satellites (GIEMS) database [Prigent
et al., 2007; Papa et al., 2010]. Refer to
the supporting information for maps of
these auxiliary data sets.

In addition to wetland-related data
sets, we also consider multiple data
sets or predictors for the distribution of
anthropogenic emissions. Specifically,
we consider including the EDGAR v4.2
anthropogenic inventory in the deter-
ministic model as well as the individual
sector-by-sector emissions estimates
from EDGAR. A companion study found
that EDGAR v4.2 did not match the esti-
mated distribution of anthropogenic
emissions in the United States [Miller
et al., 2013]. Hence, we consider addi-
tional proxies other than EDGAR v4.2 for
the spatial distribution of anthropogenic
emissions. For example, we construct
smooth tricube functions centered over
known anthropogenic source regions
(e.g., Alberta, Oklahoma, California,
and the U.S. East Coast; refer to the
supporting information). The sub-
sequent section discusses how to
choose among this array of auxil-
iary data sets when constructing the
deterministic model.
3.2.2. Selection of Auxiliary Data
It would be ill advised to use all auxiliary
data sets from Table 1 in the determin-
istic model; the resulting model would
be an overfit with problematic colinear-
ity [e.g., Zucchini, 2000]. We instead use
a statistical selection method to choose
an optimal set of auxiliary data sets for
the deterministic model. These meth-
ods select as many data sets for 𝐗 as can
explain variability in the methane fluxes
but will prevent an overfit or unreliable
coefficient estimates. We implement
one of the most common methods, the
Bayesian information criterion (BIC) (as
in Gourdji et al. [2012]). The BIC numeri-
cally scores all possible combinations of
auxiliary data based on how well they
reduce the model-measurement residu-
als and applies an increasing penalty for
model complexity (refer to the support-
ing information). Specifically, this penalty
increases with the number of columns
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Table 2. BIC Scores for a Selection of Candidate Deterministic Modelsa

Candidate Model BIC

𝛽0 + 𝛽1[smooth functions over anthropogenic source regions] + 𝛽2[W][M]fKaplan(T) 16,725
𝛽0 + 𝛽1[smooth functions ...] + 𝛽2[W][MTot]fKaplan(T) 16,728
𝛽0 + 𝛽1[smooth functions ...] + 𝛽2[W][M]fKaplan(T)fKaplan(C) 16,729
𝛽0 + 𝛽1[smooth functions ...] + 𝛽2[full Kaplan model] 16,735
𝛽0 + 𝛽1[smooth functions ...] + 𝛽2[W][M]fKaplan(T) using NARR surface soil layer 16,744
𝛽0 + 𝛽1[smooth functions ...] + 𝛽2[W]fDLEM(M)fDLEM(T) 16,750
𝛽0 + 𝛽1[EDGAR v4.2] + 𝛽2[W][M]fKaplan(T) 16,885

aWe test all possible combinations and interactions of the auxiliary variables in Table 1 and dis-
play only a sample here. The table is intended to show the range of BIC scores for the best scor-
ing models and a few other notable models. The drift coefficients (𝜷) scale the magnitude of the
auxiliary data to match the methane observations. All models above use inputs from NARR (10 cm
depth) and LPJ, unless otherwise noted. fKaplan(· · ·) refers to the functional form used in the Kaplan
model and fDLEM(· · ·) the functional form in DLEM.

in 𝐗 and with the log of the number of observations. Unlike frequentist statistics, these scores do not
support p values or traditional hypothesis testing. The best model is simply the one with the lowest
score. Kass and Raftery [1995] provide a qualitative assessment of model strength based on the dif-
ference in BIC scores. A score difference greater than 2 is “worth mentioning” and greater than 10 is
“very strong.”

In many cases, one might expect that the product of two or more different environmental variables
may be a better predictor than an additive model, so we test multiplicative interactions among the
wetland-related auxiliary data sets. Additionally, several of the auxiliary data sets are colinear (e.g., total
soil moisture and unfrozen soil moisture), and we are careful not to include similar or colinear predictors
in the same candidate model for 𝐗. For consistency, we do not mix WRF and NARR data sets in the same
candidate model.

4. Results and Discussion
4.1. Model-Data Comparison Using Existing Flux Estimates
Methane concentrations modeled with existing flux estimates exhibit a variable fit against the atmospheric
data (see Figure 2). For example, both the Kaplan and DLEM models match the general shape of the seasonal
cycle at eastern tower sites (LEF, FSD, and CHM) but underestimate the magnitude of the measurements.
Among these sites, models match observations most closely at Fraserdale, Ontario (FSD), possibly because
Pickett-Heaps et al. [2011] validated the Kaplan model at Fraserdale. Existing methane flux estimates, how-
ever, perform far worse at the western sites (CDL and ETL). For example, the models underestimate both
observed summer and winter maxima at these sites. The observed summer maxima are likely caused by
peak summer wetland fluxes, while the winter maxima likely reflect a combination of advected anthro-
pogenic emissions and limited vertical mixing within the troposphere. This result implies that existing
inventories underestimate both wetland and anthropogenic fluxes in western Canada.

The model-data comparison in Figure 2 also reveals important conclusions about the interdependence of
wetland and anthropogenic emissions estimates. Gaps in anthropogenic emissions inventories can affect
the perceived amplitude or seasonality of the wetland flux model. Even in remote regions like the HBL,
the estimation of wetland fluxes hinges on a reliable anthropogenic emissions estimate. For example, the
Kaplan/EDGAR v4.2 modeled concentrations are consistently too low at the Fraserdale site, but the ampli-
tude of the summer maximum is similar to the amplitude of the data. This discrepancy could reflect one of
two problems: either the wetland inventory has the incorrect magnitude and seasonal structure or the

Figure 2. A comparison of modeled mixing ratios against measurements at the observation sites. The estimated bound-
ary condition values have been subtracted from the observations; the difference indicates the effect of North American
methane sources on the measurement sites. EDGAR v4.2 is an anthropogenic emissions inventory, while Kaplan and
DLEM model wetlands. The model and observations are smoothed using a third-order Savitzky-Golay filter with a
61-point window.
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Table 3. Canada Methane Budgets From the Deterministic
Model (South of 65◦N) and Several Inventory Estimates

Canada Budget
Flux Model (Tg C yr−1)

Deterministic model
𝛽0 5.4 ± 1.5
𝛽1[smooth functions] 7.9 ± 0.9
𝛽2[W][M]fKaplan(T) 3.2 ± 0.6

Existing wetland models
Kaplan model 4.4
DLEM model 5.6

Existing anthropogenic inventories
Environment Canada 3.3
EDGAR v4.2 3.9

anthropogenic inventory (EDGAR v4.2) is sim-
ply too low. The time series at Park Falls (LEF),
Wisconsin, further illustrates the importance
of the anthropogenic emissions estimate. It
appears that the wetland flux models begin
producing methane too early in the spring of
2008 at LEF. A closer examination of Figure 2,
however, reveals large (∼25 ppb) modeled con-
centrations from anthropogenic sources during
this period. This model-data discrepancy could
stem from misspecified anthropogenic emis-
sions, not problems in the seasonal structure of
the wetland model. These examples highlight

the difficulty of disentangling anthropogenic and wetland methane fluxes.

Subsequent sections discuss the deterministic model and geostatistical inversion results in greater detail.

4.2. Environmental Predictors
of Wetland Fluxes
This section explores the results of the deterministic model (𝐗𝜷 , sections 3.1 and 3.2). As discussed
in the methods sections, the deterministic model is analogous to a weighted multivariate regression.
Model selection methods (like the BIC, section 3.2.2) play a crucial role in constructing this deterministic
model; they select auxiliary data sets (Table 1) for the deterministic model that can best explain the atmo-
spheric methane data. In this way, model selection provides a means to objectively understand and assess
biogeochemical methane models at continental scale.

The BIC selection chooses the following deterministic model for methane fluxes in Canada (Table 2):

𝛽0 + 𝛽1[smooth functions] + 𝛽2[W][M]fKaplan(T) (10)

This selected model for methane fluxes is relatively simple. The first term (𝛽0) is a constant component,
equivalent to the intercept in a regression. It describes the average magnitude of all sources not explic-
itly included in other components of the deterministic model. For example, this component might include
agriculture, landfills, and wastewater treatment sources (among other possibilities).

The second term (𝛽1[smooth functions ...]) parameterizes anthropogenic sources (section 3.2.1). This term
places smooth geometric functions over known source regions, including Alberta, California, Oklahoma, and
the U.S. east coast. The BIC does not choose the EDGAR v4.2 anthropogenic inventory for the deterministic
model because it fits the atmospheric data less well than the smooth geometric functions (Table 2). Hence,
we do not utilize EDGAR within the atmospheric inversion.
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Figure 3. The 24 month (2 year) mean estimated methane flux from
(top) the deterministic model and (bottom) the final posterior estimate.

The final component of the deterministic
model (𝛽2[W][M]fKaplan(T)) parameterizes
wetland fluxes. This term in the deter-
ministic model includes three auxiliary
data sets: the distribution of wetlands
(W), a map of unfrozen soil moisture (M),
and an Arrhenius equation based upon
soil temperature (fKaplan(T)). The optimal
deterministic model uses the wetland
map from the LPJ model and soil vari-
ables from NARR (at 10 cm soil depth). All
other possible combinations and interac-
tions of the auxiliary variables in Table 1
produce higher BIC scores (Table 2).
For example, we test wetland models
that include soil carbon, environmental
variables at different depths in the
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soil profile, and different estimates
for wetland distribution. Furthermore,
we test a deterministic model that
uses the functional form of temper-
ature and/or soil moisture from the
DLEM model.

This selected wetland model is similar to
the Kaplan flux model but with soil car-
bon removed. Section 4.4 synthesizes
the wetland flux results from this study
and highlights what this parameterized
wetland model might indicate about
biogeochemical methane modeling.

Table 3 lists the Canadian methane bud-
get associated with each component of
the deterministic model and compares
these estimates against existing inven-
tories. It is important to remember that
the methane budgets from the deter-
ministic model are estimated using the
atmospheric data—via the unknown
coefficients, 𝜷 . The smooth functions
represent the largest component of the
deterministic model, followed by the
constant component, and finally the
wetland component. When interpreting
these budgets, however, it is important
to note that the constant component 𝛽0

could represent either anthropogenic
emissions or wetland fluxes.

Figures 3 and 4.2 visualize the determin-
istic model, both spatially and in relation
to the atmospheric methane data.
Figure 3 displays the annual average of
the deterministic model. The smooth
geometric functions to parameterize
anthropogenic emissions are evident
over the province of Alberta and over the
Dakotas. The wetland model is more dif-
ficult to distinguish in this annual mean
plot but is largest south of Hudson Bay
in eastern Canada and near Great Slave
Lake in the Northwest Territories. The
deterministic model is nonzero every-
where across Canada, and this reflects

Figure 4. A comparison of modeled mixing
ratios against measurements at the observa-
tion sites. This figure is similar to Figure 2 but
compares the deterministic model and pos-
terior emissions estimate instead of existing
flux models.
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Figure 5. The monthly average methane budget estimated
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the constant term 𝛽0 of the deterministic
model. This term has an estimated magnitude
of 2±0.5×10−3 μmol m−2 s−1 (5.4±1.5 Tg C yr−1

over Canada, Table 3).

Despite the simplicity of the deterministic
model, the mixing ratios estimated with model
match favorably against atmospheric measure-
ments (Figure 4.2). The deterministic model
fits the atmospheric methane observations
(R = 0.72, root mean squared error (RMSE)=
20.9 ppb) better than either the model setup
with Kaplan and EDGAR v4.2 (R = 0.12,
RMSE= 37.1 ppb) or DLEM and EDGAR
v4.2 (R = 0.08, RMSE= 37.2 ppb). The
formulation of anthropogenic emissions in
the deterministic model may account for
much of this improved fit against the atmo-
spheric data. Despite the improvement, the
deterministic model displays two notable
shortfalls. First, the deterministic model
does not reproduce the summer maxima
observed at western observation sites (CDL
and ETL). Second, the deterministic model
underestimates the summer maxima at the
Wisconsin (LEF) and Quebec (CHM) observa-
tion sites. These shortfalls suggest that the
spatial distribution of wetland fluxes in the
deterministic model may be too restrictive.
In other words, wetland fluxes likely extend

further west, east, and south than in the deterministic model, which places the largest wetland fluxes in
the HBL.

Subsequent sections discuss the final methane flux estimate from the geostatistical inversion (ŝ). This final,
best estimate (R = 0.89, RMSE= 12.0 ppb) is henceforth referred to as the “posterior” fluxes.

4.3. The Spatial and Temporal Distribution of Emissions
The posterior flux estimate identifies two major source regions in Canada (Figure 3): over Alberta in western
Canada and over the HBL in eastern Canada. This discussion analyzes each geographic region individually.

In western Canada, the inversion identifies a large, seasonally constant methane source region over Alberta.
In the deterministic model, this source is represented by a smooth function. But in the posterior estimate,
this source region becomes a more well-defined crescent shape over Alberta (Figure 3). These emissions
likely originate from anthropogenic activity, and a future study will give an in-depth analysis of anthro-
pogenic emissions in Canada. The posterior flux estimate also includes a large summer source in Alberta
and Saskatchewan. As discussed previously, these fluxes are not represented by the auxiliary environmental
data sets in the deterministic model. This omission in western Canada dominates the discrepancy in sum-
mertime Canadian methane between the deterministic model and posterior fluxes (Figure 5). The omission
implies that either the LPJ wetland or the NARR soil moisture map is an underestimate in westerly regions
of Canada. Unfortunately, the atmospheric data in this region have limited capability to pinpoint the exact
location of these western wetland fluxes; atmospheric observations are sparse in western Canada, and wet-
land fluxes are colocated with large anthropogenic sources. In sum, this study identifies Alberta as a region
with poorly known wetland fluxes and as a possible hot spot of anthropogenic emissions. We recommend
that future methane measurement efforts focus on Alberta because this province is a key uncertainty in
current understanding of Canadian methane sources.
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Figure 6. (top) The posterior flux estimate averaged over all sum-
mer months (July to September for 2007–2008). (Bottom) The
difference between the posterior estimate and the DLEM and
Kaplan methane models.

Eastern Canada, in contrast, is dominated by
seasonal methane fluxes that presumably
emanate from wetlands. Figure 5 com-
pares the seasonal cycle of DLEM, Kaplan,
the deterministic model, and the posterior
flux estimate over the HBL. The seasonal
cycle of the deterministic model and pos-
terior flux estimate compare similarly to
the Kaplan model but have a broader sea-
sonality than DLEM. The posterior flux
estimate matches the Kaplan model more
closely than the deterministic model over
the HBL (though the deterministic model
is a better match than Kaplan/EDGAR
v4.2 in other regions of Canada and the
northern U.S.).

Seasonal structure aside, the flux models
also diverge in spatial distribution. Figure 6
displays the mean summer (July, August,
and September) methane flux estimated by
the inversion for eastern Canada. It also dis-
plays the difference between this estimate
and the DLEM and Kaplan models. Our flux
estimate is more spatially dispersive than
DLEM across the Hudson Bay region. The
differences between the posterior estimate
and Kaplan are more subtle. The posterior
estimate indicates methane fluxes across a
broader region than Kaplan: into Minnesota,
Wisconsin, Manitoba, and further west.

Figure 7 summarizes the findings of this
study as an annual methane budget esti-
mate for the HBL and for all of Canada
(south of 65◦ latitude). Our methane esti-
mate for Canada is a factor of 1.5 to 2.2 times

existing estimates. Anthropogenic emissions in western Canada may explain much of this discrepancy. In
contrast, our annual HBL budget is consistent with that of DLEM and Pickett-Heaps et al. [2011] who use the
Kaplan wetland model, but our estimate diverges from a site-based study by Roulet et al. [1992] and a box
model study by Worthy et al. [2000] (see the supporting information). Furthermore, the HBL budget esti-
mated here is low compared to the array of biogeochemical models listed in Melton et al. [2013]. The HBL
budgets in those models range from 1.7 to 8.5 Tg C yr−1. This range in wetland methane estimates is likely
greater than the interannual variability in wetland fluxes. For example, Tian et al. [2010] estimate an 11%
standard deviation in annual North American methane fluxes.

4.4. A Synthesis Perspective on Biogeochemical Methane Models
This section explores the study’s implications for biogeochemical methane modeling. The inversion results
(e.g., section 4.2) raise the question of why a simple flux model fits the atmospheric methane data as well
as sophisticated process models. The deterministic model developed here excludes a number of factors
that can affect methane fluxes: soil carbon, plant-mediated transport, and heterogeneities in microbial
communities, among many other processes. This question could be answered in two ways.

First, simple parameterizations may be sufficient when regional-scale flux patterns are the primary goal.
For example, a synthesis study of existing chamber measurement sites found that methane fluxes across
all sites are influenced most strongly by only a few environmental variables: water table height, soil
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temperature, and vegetation type [Olefeldt
et al., 2013]. Furthermore, Bubier et al. [1993]
and Waddington and Roulet [1996] argue
that most centimeter-scale flux variabil-
ity ultimately depends on two primary
parameters: temperature and water table
position. These studies imply that a sim-
ple model may adequately parameterize
regional-scale flux variability. A second rea-
son may account for the simplicity of the
deterministic model. Complex methane flux
processes can be challenging to upscale,
meaning that the most complete methane
model is not always the most accurate at
regional scales. The spatial distribution
of many flux-related processes is highly
uncertain [e.g., Melton et al., 2013] due to a
paucity of both land surface and methane
flux data. This uncertainty means that mod-
els with many processes and parameters
could run the risk of overfitting limited,
available data (A paper by Zucchini [2000]
illustrates the hazards of overfitting.). For
example, a number of physical processes
like ebullition, plant-mediated transport,
and microbial community dynamics are all
thought to play a role in methane emissions

[Bridgham et al., 2013, and references therein], but how these processes or features vary on regional spatial
scales is often poorly understood.

To that end, model selection methods, like the BIC used here, provide a means to diagnose weak-
nesses in flux model upscaling from plot level to regional or continental scale [e.g., Olefeldt et al.,
2013]. Model selection methods choose the set of predictors that can best explain variability in
any available methane data. If model selection does not choose a given predictor, that outcome
implies one of several conclusions. Either the distribution of the predictor does not match against
the distribution implied by the methane data, or the available methane data are insufficient to
constrain the effect of that predictor. In either case, any conclusions based upon the predictor
would likely overfit the available data at the expense of describing the large-scale flux process
of interest.

5. Conclusions

This study uses atmospheric methane observations and geostatistical inverse modeling to understand
North American boreal methane fluxes and associated biogeochemical models. The conclusions of this
study fall under three general themes. First, we find that a simple wetland flux model, when combined with
WRF-STILT, provides as good agreement with atmospheric methane observations as more complex flux pro-
cess models. This result may have several possible causes: either simple models adequately parameterize
regional-scale flux patterns, or the spatiotemporal distribution of important but complex flux processes is
difficult to accurately model with available data at this geographic scale.

Second, we estimate both the spatial and seasonal distributions of methane fluxes over much of
boreal North America. We find wetland fluxes that are more broadly distributed than in existing
inventories, even extending into Minnesota, Wisconsin, Manitoba, and western Canada. This result
implies that existing maps may under-represent the extent of soil moisture and/or the distribution
of wetlands.
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Finally, we calculate regional and Canadian methane budgets. Our HBL budget is on the upper range
of observational studies but on the lower range of biogeochemical model estimates (Figure 7 and
Melton et al. [2013]). In addition, we estimate total Canadian emissions that exceed existing invento-
ries, largely due to sources in or near Alberta. Available atmospheric data are limited near Alberta during
the study period, and this work highlights a need for more intensive methane measurements over
that region.
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