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Summary. As women approach menopause, the patterns of their menstrual cycle lengths
change. To study these changes, we need to model jointly both the mean and the variability
of cycle length. Our proposed model incorporates separate mean and variance change points
for each woman and a hierarchical model to link them together, along with regression compo-
nents to include predictors of menopausal onset such as age at menarche and parity. Additional
complexity arises from the fact that the calendar data have substantial missingness due to hor-
mone use, surgery and failure to report. We integrate multiple imputation and time-to-event
modelling in a Bayesian estimation framework to deal with different forms of the missingness.
Posterior predictive model checks are applied to evaluate the model fit. Our method successfully
models patterns of women’s menstrual cycle trajectories throughout their late reproductive life
and identifies change points for mean and variability of segment length, providing insight into
the menopausal process. More generally, our model points the way towards increasing use of
joint mean–variance models to predict health outcomes and to understand disease processes
better.

Keywords: Change point model; Final menstrual period; Multiple imputation; Treloar
Minnesota data

1. Introduction

Menstrual cycles are the most easily observed markers of ovarian function throughout female
reproductive life. The menopausal transition is increasingly recognized to be a critical period in
women’s lives, as physiologic changes and health practices that are adopted during this period
frequently define women’s long-term chronic disease risk (Avis et al., 2004; Sowers et al., 2006).
Given women’s increasing longevity and recognition of the critical interface between ovar-
ian and chronological aging, several proposals for staging reproductive aging have emerged.
The Stages of Reproductive Aging Workshop recommendations (Soules et al., 2001), its mod-
ifications (Harlow et al., 2007) and several other proposals (Mitchell et al., 2000; Taffe and
Dennerstein, 2002a; Mansfield et al., 2004) define criteria primarily by menstrual bleeding char-
acteristics to determine the onset of the transition, as well as the stages within the transition
period.

Although many studies have obtained data on menstrual cycle length (Matsumoto et al., 1962;
Miolo et al., 1993; Marcus et al., 2000; Colombo et al., 2006), only two menstrual calendar stud-
ies have attempted to collect data over a woman’s adult reproductive life (Treloar et al., 1967;
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Vollman, 1977). Treloar (1981) was the first to define the menopausal transition, estimating age
at entry into the transition by visual inspection of menstrual cycle lengths for the 12-year period
before the final menstrual period (FMP). He observed that during the menopausal transition
longer intervals become mixed with shorter-than-usual intervals, increasing the variability in
cycle length. He defined onset of the menopausal transition as the age at which variability in
cycle length visually increased, and he estimated the median age of entry into the transition at
45.5 years with a median duration of transition of 4.8 years. Brambilla et al. (1994) introduced
the term ‘late perimenopause’ and defined women as being in the late stage of the transition
by self-report of 3–9 months of amenorrhoea (lack of menstrual cycles) or menstrual irregular-
ity. Subsequently, investigators from several longitudinal studies (e.g. the Melbourne Women’s
Midlife Health Project (Dennerstein et al., 1993), the Seattle Midlife Women’s Health Study
(Mitchell et al., 2000) and Treloar Minnesota (TREMIN) study (Treloar et al., 1967)) proposed
various bleeding criteria to define the transition period (Taffe and Dennerstein 2002a; Mitchell
et al., 2000; Mansfield et al., 2004; Lisabeth et al., 2004b).

The Stages of Reproductive Aging Workshop divided reproductive life before menopause into
the reproductive years (three stages) and the transition years (two stages: early and late transi-
tion). Entry to the early transition is characterized by increased variability in menstrual cycle
length whereas entry into the late transition is characterized by the occurrence of skipped cy-
cles or amenorrhoea. The multistudy ReSTAGE Collaboration subsequently evaluated bleeding
criteria that served as the basis of the Stages of Reproductive Aging Workshop recommenda-
tions and documented the extent to which the various proposed criteria identified a similar
moment in women’s reproductive life and were predictive of the FMP (Harlow et al., 2006,
2007, 2008). All of these proposals attempt to define bleeding criteria that identify a change
point in women’s menstrual cycle histories. Notably, however, none of the references attempted
to model these change points longitudinally. Modelling menstrual cycle data has been an active
research area lately. One of the first attempts was Harlow and Zeger (1991), which considered the
marginal distribution of the menstrual cycle lengths as consisting of a normally distributed ‘stan-
dard’ cycle and ‘non-standard’ cycles from an undefined distribution, where non-standard was
defined as more than 43 days; Guo et al. (2006) extended this to a latent mixture of normal and
shifted Weibull distributions. Harlow et al. (2000) longitudinally modelled the change in mean
cycle length, as well as in between-woman and within-woman variance across the reproductive
lifespan and found that within-woman heterogeneity in cycle length was an important source
of variation in menstrual patterns, especially after age 40 years. Lisabeth et al. (2004b) used
generalized estimating equations to model changes in mean cycle length and variance indepen-
dently of the mean referenced to age at FMP and demonstrated that variance in menstrual cycle
lengths increases on average 2–6 years before increases in the mean, depending on age at FMP.
Bortot et al. (2010) developed a hierarchical state space model that captured skewness in the
cycle lengths via an auto-regressive moving average ARMA(1,1) model.

Prior descriptive analyses suggest that there is heterogeneity in women’s menstrual trajectories.
A prior analysis of the TREMIN data by Wallace et al. (1979) reported that women with later
menopause had longer mean cycle length and greater variability 2 years before menopause than
women with earlier menopause. Lisabeth et al. (2004a) in a longitudinal analysis of the same
data also reported that longer cycles were associated with a later age of menopause. Another
study (Den Tonkelaar et al., 1998) reported that women with a late age at menopause (55–59
years) had a longer mean cycle length in the 9 years before menopause than women with an
earlier menopause. Weinstein et al. (2003) found that low serial irregularity, which is a measure
of the variability of the changes in cycle length, was associated with younger age at FMP, after
adjusting for age at menarche, number of births and hormone use.
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Our goal is to model how menstrual cycle length and its variability change when women
approach menopause. In particular, we wish to estimate specific change points in the mean
and variance growth curves that can serve as better well-defined, model-based indicators of the
start of early and late menopausal transition than the summary statistics that were previously
proposed by the ReSTAGE Collaboration. We assume that there are underlying unknown mean
and variance change points for each individual woman and build a hierarchical change point
model to estimate distributions of these change points. Furthermore, we impute cycle lengths
(bleeding segments) that are missing because of hormone use, gaps in the menstrual calendar
and gynaecological surgery, allowing more subjects and information to be included. Most prior
reports have censored menstrual calendars when women began to use hormonal contraceptives
or hormone therapy (Weinstein et al., 2003; Guo et al., 2006; Harlow et al., 2006, 2008), or
limited study participants to natural family planning users (Colombo et al., 2006; Bortot et al.,
2010).

Statistically, the objective is to model both the mean and the variance of a set of curves.
Several approaches have been proposed for correlated functional data of this type, including
the bipartite spline model that was proposed by Harlow et al. (2000), which modelled the mean
and between-subject variance by a linear random-effect model and used a two-stage log-linear
regression to study within-subject variance versus age. Crainiceanu et al. (2007) proposed pe-
nalized splines to model both the mean and the variance by using a set of fixed knots for the
splines with structural covariance matrix and random effects to depict the heterogeneity of
variance. To model student test achievement, Thum and Bhattacharya (2001) proposed a hier-
archical regression model which included a two-phase composite of yi ∼ N.β01 + β11xi, σ2

1/,
i=1, 2, : : : , k, and yi ∼N.β02 +β12xi, σ2

2/, i=k+1, k+2, : : : , n, where k was the unknown change
point. Hall et al. (2003) used unknown change points for the splines to capture individual cog-
nitive function over time. These approaches estimated unknown change points for the mean
but did not model the variance function over time. Davidian and Carroll (1987) proposed an-
other approach for variance function estimation, which models the variance as proportional
to a power of the mean response. This approach builds a separate function to model variance
but did not include change points. Here we consider a hierarchical model that estimates indi-
vidual mean and variance profiles with unknown change points. These change points represent
measures of menopausal transition, and, together with intercepts and pre- and post-change
point slopes, provide detailed summaries of the menstrual cycle data that can be related to in-
dividual level covariates such as age at menarche, parity and secular cohort membership. Our
approach contrasts with that of Bortot et al. (2010), who did not estimate full individual level
parameters for the women, given their more limited follow-up time in their data set (Miolo
et al., 1993), and for similar reasons did not develop parameters to focus on the menopausal
transition.

Our paper is organized as follows. In Section 2 we describe the TREMIN study data. In
section 3 we describe a hierarchical model to study the trajectories of women’s menstrual cycle
length that estimates unknown change points for both means and variances and allows these
change points to be functions of subject level covariates. In addition, we identify different
forms of missingness in the data set and incorporate imputation in the Markov chain Monte
Carlo (MCMC) sampling that is used to estimate model parameters. In Section 4 we present
results from the model fitted to menstrual data, along with Bayesian posterior predictive model
checks; we also examine how our model results predict age at FMP, and we discuss what insight
this information provides about underlying physiological mechanisms involved in menopausal
transition. In Section 5 we discuss how our results compare with and extend previous menstrual
cycle staging research, along with possible extensions of our model.



448 X. Huang, M. R. Elliott and S. D. Harlow

2. The Treloar Minnesota data set

Our models use TREMIN data, one of only two available data sets providing individual women’s
menstrual calendar data across nearly all of their adult reproductive life span. The study, which
was initiated by Dr Alan Treloar (Treloar et al., 1967), recruited the first cohort of TREMIN,
2350 college-aged women attending the University of Minnesota, between 1934 and 1939.

Definitions recommended by the World Health Organization (Belsey and Farley, 1987) were
used to summarize the calendar data. A bleeding segment, which is analogous to the term men-
strual cycle, is a period of consecutive bleeding days and the subsequent bleeding-free days.
Bleed-free intervals had to consist of at least 3 days; 1–2 bleed-free days between 2 bleeding
days were considered part of the bleeding episode. The bleeding segment length is the depen-
dent variable in our study. Age at menopause is determined by the date of the FMP, which is
attributed retrospectively after 12 months of amenorrhoea on the calendar cards (World Health
Organization, 1996).

We used data from 617 women in the 1935–1939 cohort restricted to those who

(a) were aged 25 years or less at enrolment,
(b) used hormones for less than 4 years continuously,
(c) had at least one observed segment before age 40 years and
(d) were not censored before age 40 years.

We consider segment lengths beginning at age 35 years. After this left truncation, the data set
has a total of 95246 observed menstrual segment records. Each record consists of woman’s age,
bleeding segment length and status indicators for pregnancy, hormone use and surgery. Related
subject level information including age at menarche and parity are also available.

Pregnancy intervals as well as the first two segments after a birth and the first segment after a
spontaneous abortion are coded as non-menstrual intervals. Many women used exogenous hor-
mones at some point during their reproductive lives, mainly as hormonal replacement therapy.
When hormones are used, ovarian function is masked during the bleeding segment. Thus, the
segment data are considered to be missing when women use hormones. A one-segment washout
period after hormone use had ended was also treated as missing. Many studies of menstrual
characteristics censor women when they begin hormone use or ignore the time period during
which women are using hormones. However, Wegienka and Baird (2003) suggested that these
strategies may introduce bias since hormone users are not a random sample of menstruating
women. Omitting these women or portions of their data will provide an incomplete description
of experiences in the overall population. In our analysis, we consider these data as missing and
impute their values for hormone use gaps of up to 4 years. Studies have not found that hormonal
use influences menstrual segment length after stopping use and allowing for a washout period
(Treloar and Behn, 1971; Nassaralla et al., 2011).

The 617 women who were included in our analysis contributed between 15 and 321 non-
missing segments to the analysis. The observed segment lengths vary from 4 to 366 days with
a median of 27 days. Final menstruation periods were observed for 313 subjects (50.7%). Only
105 (17.0%) have complete data.

3. Modelling menstrual cycle data

We construct a hierarchical change point model for the mean and variance of the segment
length. Guided by both data and substantive or biological considerations, we create a single
change point linear spline for each mean and variance model. Biologically, we understand
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(a) (b)

(c) (d)

Fig. 1. Change point model applied to the data for four women ( , posterior mean of the mean
segment length; , associated 95% credible interval; , posterior means for the upper and lower
2.5-percentiles for the segment; , associated 95% credible intervals; �, logarithm of observed segment
lengths): subject (a) has complete data with a single pregnancy gap; subject (b) has missing data because
of hormone use from age 36.07 to age 37.24 years; subject (c) was truncated because of a hysterectomy at
age 45.78 years and thus has no observed FMP; subject (d) has intermittent missing data at age 39.59 years
and from age 41.56 to 43.64 years, with hormone therapy after age 50.21 years and thus no observed FMP

the change in menstrual cycle length to be approximately continuous, rather than subject to
dramatic step functions; substantively, our goal is to determine alternative measures of the start
of early and late menopausal transition, corresponding to the change points in variance and
mean respectively. On the basis of a visual inspection of the data (Fig. 1), such a choice seems
reasonable; more formal model fit considerations are employed in Section 4.3.

Let yit denote the tth menstrual segment length of subject i. Let ait denote the age at the begin-
ning of the tth menstrual segment of subject i, where i=1, : : : , N, t =1, : : : , Ti and N =617. To
accommodate skewness and changing variance in the cycle length, we consider a heteroscedastic
log-normal model with a subject level linear change point for both the mean and the variance:

log.yit/|μit , σ2
it ∼N.μit , σ2

it/, .1/

μit =α0i +α1i.ait −35/+α2i.ait −α3i/+

log.σ2
it/=β0i +β1i.ait −35/+β2i.ait −β3i/+

The function .x/+ =x if x�0 and .x/+ =0 if x< 0; α3i and β3i are the unknown change points
of the mean and variance for subject i. The intercept for the mean of log-segment-lengths at
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age 35 years for subject i is given by α0i, whereas β0i is the intercept for the log-variance of
log-segment-lengths at age 35 years for subject i. The annual change rate in mean log-segment-
lengths of subject i before the change point is denoted by α1i, whereas β1i denotes the annual
change rate in the log-variance of log-segment-lengths of subject i before the change point. The
additional annual change rate in mean log-segment-lengths of subject i after the mean change
point is given by α2i, whereas β2i gives the additional annual change rate in log-variance of
log-segment-lengths of subject i after the variance change point. We denote these eight subject
level parameters for each woman as Φi = .α0i, α1i, α2i, α3i, β0i, β1i, β2i, β3i/

′.
To link the subject level models, we postulate a multivariate normal prior for the subject level

parameters:

Φi
ind∼ N.x′

iΛ, Ω/

where xi are covariates that are associated with subject i. Thus Λ and Ω can also be considered as
population level parameters, with Λ as the regression coefficients and Ω⊗ IN as the covariance
matrix for the regression of Φi on xi.

Finally, we utilize a Bayesian estimation framework for ease of estimation and interpretation.
Thus we complete the model specification by postulating a flat hyperprior for Λ p.Λ/∝1 and a
weakly informative inverse Wishart hyperprior with 1 degree of freedom and an identity scale
matrix for Ω: p.Ω/∝|Ω|−.k+2/=2 exp−{ 1

2 tr.Ω−1/}, where k is the dimension of Ω.

3.1. Posterior inference
Let zit = log.yit/. The goal of our analysis is to obtain inference on the joint posterior distribution
of Φ, Λ and Ω conditionally on the observed data zobs. The posterior based on the complete
data z is given by

p.Φ, Λ, Ω|z/∝
N∏

i=1

{
Ti∏

t=1
p.zit|Φi/p.Φi|Λ, Ω/

}
p.Λ, Ω/

∝
(

N∏
i=1

[
Ti∏

t=1

1
σit

exp
{

− .zit −μit/
2

2σ2
it

}]
|Ω|−1=2 exp

{
− 1

2
.Φi −x′

iΛ/′Ω−1.Φi −x′
iΛ/

})

×|Ω|−.k+2/=2 exp
{

−1
2

tr.Ω−1/

}

=
(

N∏
i=1

Ti∏
t=1

σ−1
it

)
|Ω|−.N+k+2/=2 exp

[
N∑

i=1

{
Ti∑

t=1

.zit −μit/
2

σ2
it

+.Φi −x′
iΛ/′Ω−1.Φi −x′

iΛ/

}

+ tr.Ω−1/

]

where μit =α0i +α1i.ait − 35/ +α2i.ait −α3i/+, σ2
it = exp{β0i +β1i.ait − 35/ +β2i.ait −β3i/+}

and k =dim.Ω/=8. We sample the parameters via an MCMC algorithm that uses Metropolis-
within-Gibbs sampling. Details of the procedure are in Appendix A. Missing data are imputed
under a missingness at random assumption that assumes that missingness is random conditional
on the observed cycle values (Little and Rubin, 2002) by using a standard selection model.
(Although hormone users and women with other forms of missingness might not be a random
sample of women, it is more reasonable to assume that, for a given woman, the missing cycles
are a random subset of all her cycles.) Imputation is embedded within the MCMC algorithm.
Details are provided in the next section.
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3.2. Imputation of missing data
The majority (512 of the 617 women) have some form of missing data. For 302 women, their
segment lengths are censored because of dropout while still menstruating, surgical termination
of menstruation due to hysterectomy or bilateral oophorectomy or hormone use that began
before the FMP and continued through to the end of the woman’s calendar record. For the
remaining 207 women, missingness was only intermittent. Intermittent missingness occurred
due to sporadic non-reporting (women failing to report an individual segment or series of
segments), or to periodic hormone use that stopped before one of the censoring events.

There is concern that missingness, particularly missingness due to hormone use, is not miss-
ingness completely at random. To deal with the different types of missingness, we impute the
missing data under an assumption of missingness at random. To ensure that the imputation is
proper (i.e. fully conditions on the observed data), we need to ensure that the imputed segment
lengths sum to the length of the gap between observed segments. In addition, when censoring
is present, we need to estimate the age at FMP to terminate the imputation process.

When missingness is intermittent, we ensure that the imputed missing segment lengths sum
to the length of the gap by using an importance sampling algorithm. For notational sim-
plicity, we assume that we have a single missing gap of length Li for subject i, starting af-
ter segment yik. Conditional on Φi, the unobserved segment lengths .yi,k+1, : : : , yi,k+S/′ = ỹi

in the gap are independent, subject to the constraint that ΣS
s=1 yi,k+s = T . We obtain a draw

log.y
rep
i,k+1/ ∼ N.μi,k+1, σ2

i,k+1/ where μi,k+1 = α0i + α1i.ai,k+1 − 35/+ + α2i.ai,k+1 − α3i/+ and
σ2

i,k+1 = exp{β0i +β1i.ai,k+1 − 35/+ +β2i.ai,k+1 −β3i/+} and ai,k+1 =aik +yik is the age of the
start of segment y

rep
i,k+1. A draw of y

rep
i,k+2 is then obtained as for y

rep
i,k+1, where now ai,k+2 =

ai,k+1 + y
rep
i,k+1. This process is repeated until we obtain y

rep
i,k+S such that ΣS

s=1 y
rep
i,k+s > Li. We

then replace y
rep
i,k+S with ỹ

rep
i,k+S = Li −ΣS−1

s=1 y
rep
i,k+s. Let .y

.t/
i,k+1, : : : , y

.t/
i,k+S−1, ỹ

.t/
i,k+S/ = ỹ

.t/
i be the

tth vector of imputations, t = 1, : : : , 50. Finally, we draw one of the 50 sets with probability
pt =f.ỹ

.t/
i |Φi/=Σtf.ỹ

.t/
i |Φi/, where

f.ỹ
.t/
i |Φi/=

S−1∏
s=1

φ

{
log.yi,k+s/−μi,k+s

σi,k+s

}
φ

{
log.ỹi,k+S/−μi,k+S

σi,k+S

}
,

where φ.·/ is the probability density function of the standard normal distribution. On rare
occasions where y

rep
i,k+s < 4, the imputed values were truncated to be 4; similarly y

rep
i,k+s > 365

was truncated to 365. These truncation values are set according to the definitions of ‘bleeding
segment’ and ‘FMP’ recommended by World Health Organization (1996).

When subjects’ segment lengths are censored, we need to impute an FMP since it is unob-
served. As the FMP is analogous to ‘event time’ in survival analysis, we model the age at FMP
Qi as a piecewise exponential distribution with hazard hi.t/ = ηk for Ak−1 � t < Ak for knots
k = 1, : : : , K. On the basis of the distribution of observed FMP values, knots are set at every
0.5–3 years between age 40 and 60 years, depending on the density of the observed FMPs; details
are provided in Appendix B. Assuming a prior of the form ηk ∼gamma.a, b/, we obtain a draw
from

p.ηk|Q/∼gamma
{∑

i

I.Ak−1 �Qi �Ak/+a,
∑
i

I.Qi �Ak−1/+b
}

for k = 1, : : : , K, where Q includes both the observed FMP and those imputed at the previous
iteration of the Gibbs sampler (see Appendix B). As in the intermittent missing data setting, we
then obtain a draw of log.y

rep
i,T rep

i +1
/∼N.μi,T rep

i
, σ2

i,T rep
i

/ where

μi,T rep
i

=α0i +α1i.ai,T rep
i

−35/+ +α2i.ai,T rep
i

−α3i/+,
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σ2
i,T rep

i

= exp{β0i +β1i.ai,T rep
i

−35/+ +β2i.ai,T rep
i

−β3i/+},

ai,T rep
i

= aiT
rep
i −1 + yiT

rep
i

is the age of the start of segment y
rep
i,T rep

i

and T
rep
i is the number of

observed segments plus the number of imputed segments in any intermittent missing gaps. Let
Wi,1 be an indicator for whether this first imputed segment is the FMP; we then obtain a draw
Wi,1 from a Bernoulli distribution with probability (see Appendix B)

P{ai,T rep
i

�Qi �ai,T rep
i +1|Qi > max.ai,T rep

i
, α3i, β3i/}

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1− exp{−ηk.ai,T rep
i +1 −ai,T rep

i
/} if Ak−1 �ai,T rep

i
<ai,T rep

i +1 �Ak,
1− exp{ηk−1.ai,T rep

i
−Ak−1/−ηk.ai,T rep

i +1 −Ak−1/}
if Ak−2 �ai,T rep

i
�Ak−1 �ai,T rep

i +1 �Ak,
1− exp{ηk−1.ai,T rep

i
−Ak−1/−ηk.Ak −Ak−1/−ηk+1.ai,T rep

i +1 −Ak/}
if Ak−2 �ai,T rep

i
�Ak−1 <Ak �ai,T rep

i +1 �Ak+1:

Note that the FMP must occur after both the last observed segment and the latent mean and
variance change points; also, since none of our knots are less than 6 months apart, a segment
can cover a maximum of three intervals. If Wi,1 = 1, y

rep
i,T rep

i +1
is the length of the final FMP.

If Wi,1 = 0, we draw log.y
rep
i,T rep

i +2
/ ∼ N.μi,T rep

i +1, σ2
i,T rep

i +1
/ and repeat the process s times until

one of the following occurs: Wi,s = 1, y
rep
i,T rep

i +1
> 365 or a

rep
i,T rep

i +s
� 60. For the vast majority of

imputations, the imputed FMP indicator triggered the end of the segment imputation.

4. Results

We use the methodology that was described in Section 3 to analyse the TREMIN data by using
MATLAB software. To assess convergence, we ran two MCMC chains for 10000 iterations
each after discarding the first 10000 draws as ‘burn-in’. We assessed convergence by using the
Gelman and Rubin statistic (Gelman and Rubin, 1992), with a thinning interval of five segments.
All of the population and 98% of the individual level parameters had a value of less than 1.2,
indicating reasonable convergence.

4.1. Individual level parameters
To assess model fit at the individual level visually, Fig. 1 plots the logarithm of the observed
segment lengths, the predicted means and the upper and lower 2.5-percentiles of the segment
distribution for four typical women in the TREMIN data set. The model appears to capture the
trajectories well, with approximately 5% of segment lengths excluded from the 95% predictive
intervals. The uncertainty in the position of the variance change point is highlighted for subjects
B and C.

Fig. 2 plots the posterior means and 90% credible intervals (CIs) of the mean and variance
change points for 25 randomly selected women. As noted by Treloar (1981) and Lisabeth et al.
(2004a), variability generally begins to increase before mean length. Subjects with earlier change
points averaged 4–5 years between mean and variance change points, whereas subjects with later
change points averaged only 1–2 years between mean and variance change points, which are
consistent with the findings of Harlow et al. (2008). Uncertainty in the variance change points
was on average greater than in the mean change points, although this was not uniformly true
across women.
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Fig. 2. Posterior means and 90% posterior predictive intervals for mean change points and variance change
points (25 randomly selected women)

4.2. Population level parameters
Table 1 summarizes the posterior means and associated 95% CIs for the population level seg-
ment length mean and variance regression parameters. The population mean age at the change
point for segment length means is 46.23 years (95% CI 45.91–46.55 years), older than the pop-
ulation mean age at change points for segment length variability, which is 42.84 years (95% CI
42.49–43.17 years); thus variability in segment length is predicted to begin increasing 3.39 years
earlier (95% CI 3.07–3.74 years) in the population than the mean segment length itself. Mean
segment length declined about 1% per year before the change point and increased about 15%
per year afterwards. The variability of log-segment-length was stable before the change point
and increased by 81% per year after the change point.

Table 2 presents the posterior mean and associated 95% posterior predictive interval for the
correlation matrix corresponding to the covariance matrix Ω. The 95% CIs of correlations that
exclude 0s are denoted in italics. We note the following results.

(a) Later change points for the variance are highly associated with later change points for
the mean.

(b) Later change points for both the mean and the variance are also correlated with longer and
more variable segment lengths, and more rapid increases in mean and variance after the
change point; consequently mean and variance slopes after change points are positively
correlated.

(c) Greater mean length at age 35 years is associated with greater declines in variability before
the variance change point and greater increases in variability after.

(d) Larger segment variability is associated with longer mean segment length.
(e) Larger segment variability is highly associated with more rapid declines in variability
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before but larger increases in variability after the variance change point: thus the change
in variability before and after the variance change point is negatively correlated.

We also fitted a two-covariate model, including parity and age at menarche. As these covari-
ates showed no significant relationships with the eight parameters describing the menopausal
transition, we do not show the results here.

4.3. Posterior predictive model check
We used posterior predictive distribution (PPD) checks (Gelman et al., 1996) to assess model fit.
The PPD ‘p-value’ represents the probability that an observed statistic (which can be a function
of both the data y and the parameter θ) is more extreme than the replicated statistic, conditional
on the observed data: P{T.y, θ/�T.yrep, θ/|y}, where yrep is drawn from the PPD

f.yrep|y/=
∫

f.yrep|θ, y/p.θ|y/dθ:

In contrast with frequentist p-values under the null hypothesis, PPD p-values do not have a
uniform distribution when the model is correct; rather, they represent the degree to which
data generated from the posterior distribution conflict with the observed data (Gelman, 2003,
2007). Thus values close to 0.5 are preferred. To assess the model fit for the segment length, we
considered a χ2 discrepancy statistic for observed segment lengths of each individual woman
given by T1.yi, μi, σ2

i / = Σt .eÅ
it /

2, where eÅ
it = {log.yit/−μit}=σit is the standardized residual.

T1.y
rep
i , μi, σ2

i /|y has a χ2
T obs

i

distribution where T obs
i is the total number of observed segments

for the ith woman, so to obtain the PPD p-value we need to compute only L−1 ΣL
l=1I[T{yi, μ

.l/
i ,

.σ2/
.l/
i }� .X2/.l/], where μ

.l/
i and .σ2/

.l/
i are drawn from the posterior distribution and .X2/.l/

is drawn from a χ2
T obs

i

-distribution. On the basis of the L= 500 replications, no subjects had a
posterior predictive p-value greater than 0.90 and only seven subjects had a posterior predictive
p-value smaller than 0.10 (Fig. 3(a)). A review of subjects with low posterior predictive p-values
showed that they contain one or two sporadic very short or very long segments well before
the onset of the increase in variability, suggesting that these subjects contain outlying segment
lengths rather than indicating more general model failure. Subjects with high posterior predictive
p-values generally had relatively few observations with little variability—the variance estimates
were smoothed back towards larger values, yielding small χ2 discrepancy statistics.

To assess whether the proposed hierarchical model is sufficient to remove temporal correla-
tion, we compute

T2.y, μ, σ2/=

∑
i

Ti−1∑
t=1

Ti∑
s=t+1

eÅ
ite

Å
is

√{∑
i

(
Ti−1∑
t=1

Ti∑
s=t+1

eÅ
ite

Å
is

)2} ,

corresponding to the Wooldridge statistic for testing general residual serial correlation in panel
data (Wooldridge, 2002). Here the PPD p-value for overall fit based on 500 replications is 0.28.
Looking at the PPD p-values of individual level statistics T2.yi, μi, σ2

i /, we find that no subjects
had a posterior predictive p-value greater than 0.90 and only one subject has a PPD p-value
smaller than 0.10. Examination of the posterior distribution of semivariograms (Diggle, 1990)
for the subjects with the most extreme PPD p-values shows no strong or consistent evidence of
auto-correlation at any particular lagged value (the plots are not shown).

Finally, to consider the appropriateness of the final menstrual period modelling, we plot
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Fig. 3. Subject level PPD p-values for the χ2 discrepancy statistic (note that values close to 0.5 are
preferred): (a) log-normal model; (b) gamma model

the median and 95% posterior predictive interval for 50 women with censored cycle calendars
against their censoring age for 50 randomly selected women with censored FMPs in Fig. 4. The
method for estimating FMP when not observed appears to have worked reasonably well. The
median of the predicted FMPs corresponds closely to the observed FMPs (observed median
FMP age, 50.3 years; interquartile range IQR=3:7) with wide intervals when the censoring age
is relatively early and little information is usually available to predict the FMP, whereas subjects
with older censoring ages have later predicted medians and narrower intervals.

4.4. Prediction of final menstrual period
In this model, we used eight parameters to describe eight characteristics of an individual woman’s
menstrual pattern. As an example of how this model might be applied to further understanding
of the menopausal transition, we consider the degree to which all eight of the menstrual pattern
parameters predict age at FMP by regressing the individual level posterior means against the
age at FMP in a two-stage approach. (As noted in Section 5, a two-stage approach is inferior
to a fully joint model; however, the primary purpose of this section is to provide an example
of how our model output can be used to inform understanding of the menopausal transition
further.) To accommodate subjects with censored FMPs, we use a semiparametric accelerated
failure time model (Jin et al., 2006) which assumes that failure times are linearly related to the
covariates while leaving the error distribution unspecified. All individual level posterior means
of the eight characteristic parameters are standardized before analysis to facilitate comparisons
of their influences of age at FMP.

Table 3 shows the associations between each characteristic and age at FMP, both bivariately
and in a single multivariate model. Bivariately, age at the mean and variance change points have
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Fig. 4. Posterior medians (�) and 95% posterior predictive intervals for unobserved FMPs, by age at FMP
censoring (50 randomly selected women with censored FMP values)

the largest influence on FMP, with a 1-standard-deviation increase in the mean change point
associated with a 2.43-year (95% CI 2.24–2.62 years) increase in age at FMP and a 1-standard-
deviation increase in the variance change point associated with a 1.88-year (95% CI 1.64–2.11
years) increase in age at FMP. Weaker but significant positive associations are associated with
the mean and variance of segment length at age 35 years, whereas modest negative associations
are observed with more rapid increases in mean after the mean change point, and less rapid
decreases in variance before the variance change point. In the joint model, mean and variance
change points’ influence on FMPs decreases somewhat, whereas the influence of variance slope
before and after change points substantially increases: women with a 1-standard-deviation less
rapid decrease in variance before change points have a 1.93- (95% CI from −2.81 to −1.05) year
decrease in age at FMP, whereas women with a 1-standard-deviation more rapid increase in
variance after change points have a 1.91- (95% CI from −2.54 to −1.28) year decrease in age at
FMP. The influence of mean segment lengths at age 35 years is no longer significant, whereas
the effect of baseline variance is reversed, with a 1-standard-deviation increase in variance at
age 35 years associated with a decreased age at FMP of 0.52 (95% CI from −0.86 to −0.19)
years. The model is highly predictive of FMP, explaining 83.6% of the variance in the observed
FMP ages.

These results indicate that age at FMP is largely explained by the timing and characteristics
of the menopausal transition, confirming that accurate and precise identification of the age at
transition would provide important information to women and clinicians which is relevant to
contraceptive and surgical decision making and initiation of preventative care. These results
also highlight the importance of population differences in cycle length variability in explaining
differences in the duration of the menopausal transition and in women’s transition experience.
To date, most studies of the menopausal transition have described the population-average ex-
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Table 3. Influence of each menstruation pattern characteristic on age of FMPs†

Parameter Estimated effects (95% confidence interval)

Bivariate Multivariate

Mean intercept 1.12 (0.83,1.41) 0.08 (−0.09,0.24)
Mean slope before change point −0.46 (−1.07,0.16) 0.02 (−0.27,0.31)
Mean slope after change point −1.09 (−1.41,−0.76) −0.61 (−0.82,−0.40)
Log-variance intercept 0.33 (0.00,0.65) −0.52 (−0.86,−0.19)
Log-variance slope before change point −0.61 (−0.97,−0.24) −1.93 (−2.81,−1.05)
Log-variance slope after change point 0.20 (−0.19,0.58) −1.91 (−2.54,−1.28)
Segment length mean change point 2.43 (2.24,2.62) 1.70 (1.11,2.30)
Segment length variance change point 1.88 (1.64,2.11) 1.24 (0.55,1.93)

†Influences are assessed bivariately and in a single multivariate model. The results are from a
semiparametric accelerated failure time model which included censored FMPs. 95% confidence
intervals are provided. Numbers in italics represent significant associations.

perience with little attention on how this experience might differ between subgroups of women.
Factors that are associated with age at FMP, although predictive on average, generally ex-
hibit considerable dispersion, making them less useful in predicting age at FMP for individual
women (Santoro et al., 2007; Taffe and Dennerstein, 2002b). This analysis suggests that fu-
ture research should focus on factors that influence menstrual cycle variance and timing of the
transition.

4.5. Sensitivity to departures from assumptions
We consider the effect on our results of deviations from two of the assumptions that were out-
lined in Section 3: menstrual length distributional assumptions, and the missingness at random
assumption for menstrual cycle length data.

A natural alternative to the log-normal distribution for the highly skewed menstrual length
data is the gamma distribution:

yit|μit , σ2
it ∼gamma.μit , σ2

it/: .2/

We use the mean–scale parameterization of the gamma distribution, so that

f.yit ; muit , σ2
it/= exp

[
1

σ2
it

log
(

yit

σ2
itμit

)
− yit

σ2
itμit

−yit − log
{

Γ
(

1

σ2
it

)}]
,

and use a log-link for both the mean and the scale so that the mean and scale parameters have
similar interpretations in both the log-normal and the gamma model

log.μit/=α0i +α1i.ait −35/+α2i.ait −α3i/+,

log.σ2
it/=β0i +β1i.ait −35/+β2i.ait −β3i/+:

Similar hyperpriors were used; the MCMC algorithm that was used for the log-normal model
was altered to accommodate the first-stage gamma distribution. Computation was considerably
slower than for the log-normal model, since all subject level parameters required a Metropolis-
within-Gibbs step, and convergence was considerably slower, with two MCMC chains requiring
100000 iterations each after 40000 draws as burn-in. All of the population and 95% of the
individual level parameters had a Gelman–Rubin statistic value of less than 1.2.
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The population level parameters governing the mean and scale under the gamma model are
given in Table 1. Qualitatively, there is no strong evidence for either increases or decreases in
population means and scales before change points; after change points, both increase. The in-
crease in mean after the change point is about twice the rate (31%) under the gamma model
than under the log-normal model. The population-average variability change point is approxi-
mately 0.6 years earlier in the gamma model (42.21 years) than in the log-normal model (42.84
years), whereas the population-average mean change point is approximately 1.4 years earlier
in the gamma model (44.88 years) than in the log-normal model (46.23 years). The differ-
ences between the change points under the gamma model and under the log-normal model
are clinically significant; however, the model fit for the gamma model is not as good as for
the log-normal model. To see this, we compare the histogram of the PPD p-values for the χ2

discrepancy statistic T.yi, μi, σ2
i / under the normal model with the PPD p-values for the χ2

discrepancy statistic under the gamma model in Fig. 3. (Because the χ2 discrepancy statistic is
no longer exactly χ2

T obs
i

under the correct model, we compute the PPD p-value empirically
as L−1 ΣL

l=1 I[T{yobs
i , μ.l/

i , .σ2/
.l/
i }�T{y

.l/
i , μ.l/

i , .σ2/
.l/
i }], where y

.l/
i is generated under its PPD.)

Although the model fit for the gamma model is reasonably adequate, the considerably heavier
tails of the gamma model indicate the tendency of some subjects to be either underfited (means
not as well specified or variances underestimated) or, less commonly, overfitted (variances over-
estimated). A substantive reason for the poorer fit of the gamma model may be that differing

(a) (b)

(c) (d)

Fig. 5. Change point model applied to the data for four women in Fig. 2 ( , posterior mean of the mean
segment length; , associated 95% CIs; , posterior means for the upper and lower 2.5-percentiles
for the segment distribution; , associated 95% CIs; �, logarithm of observed segment lengths): gamma
distributional instead of log-normal distributional assumption for segment length
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biological mechanisms are believed to underlie the mean and variance change points; the log-
linear model breaks the correlation between mean and variance after the log-transformation,
whereas the gamma model assumes that the mean is in part a function of the variance. In ad-
dition, the gamma model appears to be more sensitive to early, possibly spurious, long cycles;
Fig. 5 gives some evidence of this, particularly if we compare subject (b) with the results in
Fig. 1.

Finally, we explore the effect of a missingness not at random mechanism via a sensitivity
analysis, focusing on women whose FMPs are censored because of dropout or hormone use.
Specifically, we allow for the possibility that women with censored FMPs have a different risk
profile from women with observed FMPs via a sensitivity parameter ci, so that the age at FMP is
assumed piecewise exponential with hazard hi.t/= ciηk for Ak−1 � t<Ak for knots k as defined
above. When the FMP is observed ci =1; when censored, ci =c �=1, where c is assumed fixed and
known. We consider c = 0:9 (a longer average time to FMP for women with censored FMPs)
and c=1:1 (a shorter average time to FMP for women with censored FMPs). Table 1 shows the
effect of these changes in missingness assumption on the population level parameters under the
log-normal modelling assumption. There appears to be very little effect on the posterior means
and predictive intervals of the population level parameters resulting from moderate departures
from the assumption of missingness at random for women whose FMPs are censored. Similarly,
there is little effect on the correlation structure of the regression coefficients (the data are not
shown).

5. Discussion

In this paper we have provided a hierarchical change point model for describing the patterns of
means and variances of women’s menstrual segment lengths as they approach menopause. Our
model detects individual change points of the mean and variance of segment lengths for each
individual woman. The model is applied to the TREMIN data. Instead of setting splines at a
certain fixed point for all women and using traditional random-effect models to study menstrual
patterns (Harlow et al., 2000), our model allows the change points to be unknown parameters
that vary for different subjects. The hierarchical setting provides a flexible way of capturing both
the mean and the variability of each individual’s segment length trajectory, as well as imputation
of missing data.

Our work develops a data-driven definition of early and late transition defined by subject
level variance and mean change points respectively. We observed a 3.2-year difference in age
between mean and variance change points at the population level, which is somewhat shorter
than that of Lisabeth et al. (2004a), who reported a 3.9-year difference between cycle lengths
with standard deviations of 6 days and the first cycle of 60 days or more. In addition, our
results were consistent with those of Wallace et al. (1979), Den Tonkelaar et al. (1998) and
Lisabeth et al. (2004a), who found that longer mean segment lengths were associated with
later FMPs. Our results were also consistent with those of Weinstein et al. (2003), who found
that lower variability was associated with early FMPs. We further found relationships between
rates of change in length and variability before and after change points themselves, in par-
ticular that greater baseline variability was associated with more rapid declines in variability
before variance change points and greater increases thereafter; and later mean change points
were associated with greater increases in mean length and more mean variability after mean
change points. These data contribute to efforts to define a staging system for reproductive
aging and to describe better the heterogeneity in women’s experience by menopausal transition
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indicators about which standard Bayesian statistical inference (posterior means and CIs) can
be made, in contrast with summary statistics of menstrual length that have previously been
proposed.

In addition to providing a framework to understand the timing and duration of the menopausal
transition better, we show that we can use the results of our model to predict the age at FMP
accurately. Of particular interest is the fact that heterogenity in cycle length variability is an
even stronger predictor of FMP than the more visually apparent age of change points in mean
and variance. Women with greater variability at baseline, with less rapid decreases in variability
before the variance change point and with more rapid increases in variability after the variance
change point had earlier ages at FMP. These findings emphasize the importance of variance
in menstrual cycle length as a key marker of ovarian function and suggest that considera-
tion of menstrual variance may lead to improved precision in clinical predictions of time to
FMP. Information that the FMP is more likely 2 versus 5 years off has important ramifica-
tions for clinical decision making. Furthermore, these results suggest that research on ovarian
aging is likely to be enhanced by studies investigating factors that influence cycle variance at
the time of the transition. Of particular interest is how the transition experience of women
with polycystic ovarian syndrome, who exhibit infrequent cycles and high variability, might
best be characterized and how body size is related to cycle variance at the time of transi-
tion.

Several extensions and additional applications of the model are possible. To have easily in-
terpreted early and late menopausal transition ages, we have assumed a continuous but non-
differentiable mean and variance function. In reality, a smooth transition may be more bio-
logically plausible, suggesting use of differentiable transition models such as the hyperbolic
tangent functions of Bacon and Watts (1971), the bent cable regression models of Chiu et al.
(2006) or the transition polynomial models of Van den Hout et al. (2011)—although, as our
change points are latent, the actual posteriors of the predictive means and variances at both
the individual and the population level trace a smooth curve over age, as evidenced in Figs 1
and 2. Second, the FMP prediction of Section 4.4 could be replaced with a joint model that
incorporates the latent subject level mean and variance parameters directly into the modelling
of the FMP. We did not pursue this here because of our intention to provide an example of how
our model output can be used to inform understanding of the menopausal transition further,
as well as the practical limitations of obtaining model fit in a reasonable period of time for
such a model; the latter limitation may be overcome with future increases in processing speed
or improved MCMC algorithmic construction. A third key extension of this model will add
the second TREMIN cohort data to assess changes in women’s menstrual patterns in different
generations by adding secular cohort (1935–1970 versus 1960–1995) as a population level co-
variate to the model. Fourthly, although developing typologies of the menopausal transition
have been considered in the literature (Gorrindo et al., 2007), they have approached the problem
from an ad hoc direction, based on visual inspection of the cycle length trace plots. Use of a
two-stage clustering or joint latent class model may provide a more principled method for devel-
oping such typologies and lead to better understanding of the stages of menopausal transition:
Huang et al. (2012) used the output from the eight-parameter mean–variance change point
model together with a k-means clustering algorithm to identify six subgroups of women whose
transition experience can be distinguished by age at onset, variability of the menstrual cycle
and duration of the early transition. Finally, extension of the model to estimate menopausal
transition in the presence of left censoring is also of interest as many recent and on-going
studies enrolled prevalent cohorts including women who had already begun the menopausal
transition.
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Appendix A

Gibbs sampling is used to draw from the posterior distribution p.Φ, Λ, Ω|z/, where Φi = .αμ
i , βμ

i , γμ
i , θμ

i ,
ασ

i , βσ
i , γσ

i , θσ
i /′. An outline of the algorithm is as follows.

Step 1: initialize Φ, Λ and Ω. Perform an initial imputation of missing data.
Step 2: for i=1, : : : , n and zi consisting of both observed and imputed data,

(a)

.αμ
i , βμ

i , γμ
i |rest/∼N.U, V/,

U = .A
μ′
i W−1

i A
μ
i +Ω−1

μ /−1.A
μ′
i W−1

i zi +Ω−1
μ x′

iΛμ/,

V = .A
μ′
i W−1

i A
μ
i +Ω−1

μ /−1

where

Wi =diag.σ2
it /,

A
μ
i =

⎛
⎝1 .ai1 −35/ .ai1 −θμ

i /+
:::

:::
:::

1 .aiTi
−35/ .aiTi

−θμ
i /+

⎞
⎠,

and Λμ and Ωμ are the corresponding part of the prior multivariate normal mean Λ and covari-
ance matrix Ω conditional on other parameters.

(b)

p.ασ
i |rest/∝ exp

(
−1

2

[
Ti∑

t=1

zit −{αμ
i +βμ

i .ait −35/+γμ
i .ait −θμ

i /+}2

exp{ασ
i +βσ

i .ait −35/+γσ
i .ait −θσ

i /+} + .ασ
i −μασ /2

Ωασ

])

× exp
(

−ασ
i Ti

2

)

where μασ =x′
iΛασ and Ωασ are the corresponding part of the prior multivariate normal mean and

variance conditional on other parameters. The inverse cumulative distribution function (CDF)
method is used to obtain the conditional draws.

(c)

p.βσ
i |rest/∝ exp

(
−1

2

[
Ti∑

t=1

zit −{αμ
i +βμ

i .ait −35/+γμ
i .ait −θμ

i /+}2

exp{ασ
i +βσ

i .ait −35/+γσ
i .ait −θσ

i /+} + .βσ
i −μβσ /2

Ωβσ

])

× exp
{

−1
2
βσ

i

Ti∑
t=1

.ait −35/

}

where μβσ = x′
iΛβσ and Ωβσ are the corresponding part of the prior multivariate normal mean

and variance conditional on other parameters. The inverse CDF method is used to obtain the
conditional draws.



464 X. Huang, M. R. Elliott and S. D. Harlow

(d)

p.γσ
i |rest/∝ exp

(
−1

2

[
Ti∑

t=1

zit −{αμ
i +βμ

i .ait −35/+γμ
i .ait −θμ

i /+}2

exp{ασ
i +βσ

i .ait −35/+γσ
i .ait −θσ

i /+} + .γσ
i −μγσ /2

Ωγσ

])

×exp
{

−1
2

γσ
i

Ti∑
t=1

.ait −θσ
i /+

}

where μγσ = x′
iΛγσ and Ωγσ are the corresponding part of the prior multivariate normal mean

and variance conditional on other parameters. The inverse CDF method is used to obtain the
conditional draws.

(e)

p.θμ
i |rest/∝ exp

(
−1

2

[
Ti∑

t=1

zit −{αμ
i +βμ

i .ait −35/+γμ
i .ait −θμ

i /+}2

exp{ασ
i +βσ

i .ait −35/+γσ
i .ait −θσ

i /+} + .θμ
i −μθμ/2

Ωθμ

])

where μθμ = x′
iΛθμ and Ωθμ are the corresponding part of the prior multivariate normal mean

and variance conditional on other parameters. The inverse CDF method is used to obtain the
conditional draws.

(f)

p.θσ
i |rest/∝ exp

(
−1

2

[
Ti∑

t=1

zit −{αμ
i +βμ

i .ait −35/+γμ
i .ait −θμ

i /+}2

exp{ασ
i +βσ

i .ait −35/+γσ
i .ait −θσ

i /+} + .θσ
i −μθσ /2

Ωθσ

])

× exp
{

−1
2
γσ

i

Ti∑
t=1

.ait −θσ
i /+

}

where μθσ = x′
iΛθσ and Ωθσ are the corresponding part of the prior multivariate normal mean

and variance conditional on other parameters. The inverse CDF method is used to obtain the
conditional draws.

Step 3:

Λ|rest∼N[{X′.Ω⊗ IN/−1X}−1X′.Ω⊗ IN/−1Φ, {X′.Ω⊗ IN/−1X}−1]

where X is the covariate matrix of all subjects, which consists of stacked rows of x′
i, and Φ consists of

the stacked rows of Φ′
i.

Step 4:

Ω|rest∼ Inv-Wishart[Ω|{
N∑

i=1
.Φi −x′

iΛ/.Φi −x′
iΛ/′ + I}]:

Step 5: use the updated parameters to create a new imputation data set as discussed in Section 3.2. Then
go to step 2. Repeat until convergence is obtained.

Appendix B: Piecewise exponential distribution

Assume that Qi, the age at FMP, follows a piecewise exponential distribution. The baseline hazard is
constant within each interval, so

λ0.t/=ηk, t ∈ [Ak−1, Ak],

f.Qi = t : t ∈ [Ak−1, Ak]/=ηk exp.−ηkt/:

Here, A0, : : : , Ak are a set of age knots, which are set at age 40, 42, 43, 44, 45, 46, 46.5, 47 47.5, 48, 48.5,
49, 49.5, 50, 51.5, 52, 52.5, 53, 53.5, 54, 55, 56 and 57 years; we define A−1 =0 and AK+1 =∞ and assume
that η0 =0 (no risk of FMP before age 40 years).

We postulate a very weakly informative prior for ηk :ηk ∼gamma.0:001, 0:001/. The posterior distribu-
tion for ηk is

p.ηk|q̃/∝p.q̃|ηk/p.ηk/∝gamma.mk +0:001, rk +0:001/
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where mk =ΣiI.Ak −1�Qi �Ak/ is the number of women with FMPs that occur between time Ak−1 and
Ak and rk =ΣiI.Qi �Ak−1/ is the number of women without an FMP at time Ak−1.

The hazard function for each interval is

λ.t/=ηk I.Ak−1 � t �Ak/:

The cumulative hazard and survival functions are then given by

Λ.t/=
∫ t

0
λ.t/dt =

k−1∑
j=1

ηj.Aj −Aj−1/+ηk.t −Ak−1/, t ∈ [Ak−1, Ak],

S.t/= exp{−Λ.t/}:

The probability that the event occurs in the interval [t1, t2] given that the event has not occurred by t1 is

P.Qi ∈ [t1, t2]|Qi >t1/= S.t1/−S.t2/

S.t1/
=1− S.t2/

S.t1/

=
{

1− exp{−ηk.t2 − t1/} if Ak−1 � t1<t2 �Ak,
1− exp[−{ηk.t2 −Ak−1/−ηk−1.t1 −Ak−1/}] if Ak−2 � t1<Ak−1 � t2 �Ak,
1− exp[−{ηk+1.t2 −Ak/+ηk.Ak −Ak−1/−ηk−1.t1 −Ak−1/}] if Ak−2 � t1<Ak−1<Ak � t2:
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