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Abstract Geomagnetic activity is strongly controlled by solar wind and interplanetary magnetic
field (IMF) conditions, especially the southward component of IMF (IMF Bs). We analyze the statistical
properties of IMF Bs at 1 AU using in situ observations for more than a solar cycle (1995–2010). IMF Bs
events are defined as continuous IMF Bs intervals with varying thresholds of Bs magnitude and duration
and categorized by different solar wind structures, such as magnetic cloud (MC), interplanetary small-scale
magnetic flux rope, interplanetary coronal mass ejection without MC signature (ejecta), stream interacting
region, and Shock, as well as events unrelated with well-defined solar wind structures. The statistical
properties of IMF Bs events and their geoeffectiveness are investigated in detail based on satellite and
ground measurements. We find that the integrated duration and number of Bs events follow the sunspot
number when Bz < −5 nT. We also find that in extreme Bs events (t > 6 h, Bz < −10 nT), a majority (53%) are
related to MC and 10% are related with ejecta, but nearly a quarter are not associated with any well-defined
solar wind structure. We find different geomagnetic responses for Bs events with comparable duration and
magnitude depending on what type of solar wind structures they are associated with. We also find that
great Bs events (t > 3 h, Bz < −10 nT) do not always trigger magnetic storms.

1. Introduction

The relationship between interplanetary magnetic field (IMF) z component (Bz) and geomagnetic activity
has been extensively studied since the introduction of the concept of magnetic reconnection as the driver
of magnetospheric dynamics [e.g., Dungey, 1961] and the first systematic observations of the upstream solar
wind conditions. Fairfield and Cahill [1966] found that the southward component of IMF is associated with
ground magnetic disturbances on Earth while the northward component corresponds to quiet geomag-
netic conditions. Arnoldy [1971] showed that the solar wind/IMF parameter best correlated with auroral
electrojet index (AE) is the preceding time integral of IMF southward component (Bs); thus, he suggested
that IMF Bs represents a continuing dynamic mechanism for the production of substorms rather than just
being a trigger. Later, Akasofu [1979] found that the most important parameters in the solar wind controlling
the development of the main phase of geomagnetic storms and substorms are a combination of solar wind
speed, magnetic field magnitude (Bt), and its polar angle.

Strong IMF Bs is often observed in solar wind structures such as high-speed streams (HSS) from coronal
holes (CHs) [Sheeley et al., 1976], coronal mass ejections (CMEs) [Klein and Burlaga, 1982; Lindsay et al., 1995],
interplanetary small-scale magnetic flux ropes (ISMFRs) [Moldwin et al., 2000; Feng et al., 2010; Zhang et al.,
2012], and corotating interaction regions (CIRs) [Rosenberg and Coleman, 1980]. Based on the classic theory
of the generation and evolution of IMF, large-amplitude southward component intervals should be mostly
found in these structures [Dessler, 1967]. Thus, the properties and geoeffectiveness of these solar wind struc-
tures have been widely studied. Webb [1991] and Yashiro et al. [2004] have found that the occurrence rate
of CMEs peaks strongly during solar maximum, while CIR peaks during the late declining phase of the solar
cycle [Mursula and Zieger, 1996]. The interaction regions produced by nonrecurrent HSS occur throughout
the solar cycle [Bobrov, 1983; Jian et al., 2011]. Jian et al. [2006b] defined Interplanetary CME (ICME) mainly
based on perpendicular pressure and suggested that at 1 AU, a Magnetic Cloud (MC) is observed during
spacecraft crossings for only one third of ICMEs. Gosling [1993], Xu et al. [2009], and Richardson and Cane
[2012] showed that CIRs were more important for inducing moderate and small storms while MCs trig-
gered intense storms more frequently. Echer et al. [2008] found that Dst has the highest dependence on the
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integrated Bs or Ey (product of Bs and Vx) than other interplanetary components. Besides the well-defined
solar wind structures, there are discontinuities (tangential and rotational discontinuities and slow shocks)
related with Bs events. Burlaga [1968] showed that directional discontinuities in the interplanetary medium
are always accompanied with a change of the direction normal to the ecliptic plane, which is IMF z
component most of the time.

Geomagnetic storms with minimum Dst less than −100 nT are found to be almost always caused by strong
negative Bz with durations longer than 3 h [Gonzalez et al., 1994]. Many studies have also shown that
the magnitude of geomagnetic storms increases with either more intense or longer southward IMF
[e.g., Hirshberg and Colburn, 1969; Arnoldy, 1971].

Geomagnetic substorms were initially considered to be a simultaneous phenomenon with storms but
weaker in effect, and Akasofu [1968] showed that a chain of substorms could induce storm-time ring cur-
rent. However, Tsurutani and Gonzalez [1987] confirmed that ongoing substorm activity does not necessarily
lead to storms, and more recent studies demonstrated that substorms can be triggered by internal sources
[Horwitz, 1985; Henderson et al., 1996] or external driving factors such as certain configurations of IMF
[e.g., Heppner, 1955; Lyons, 1995; Zhou and Tsurutani, 2001]. Burch [1972], Samson and Yeung [1986], and
Lyons [1996] have found that the northward turning of the IMF can trigger substorm onset.

Since it is highly correlated with solar wind/IMF conditions, the current prediction of geomagnetic activity,
especially large-scale storms, is based on the forecast of occurrence of geoeffective solar activity and the
ensuing solar wind and IMF conditions. The maximum magnitude of IMF Bs observed in situ at 1 AU was
found to be directly related with the propagation velocity of CMEs observed in coronagraph observations
[Lindsay et al., 1999]. This velocity is needed for forecasting the arrival time of ICME to the Earth [Hochedez
et al., 2005]. Further, though the occurrence frequency and time delay of CH outflows or CIR are easily esti-
mated, the determination of the Sun-Earth magnetic connectivity is unfortunately not straightforward
[Schwadron and McComas, 2004] and requires the knowledge of the instantaneous Parker spiral geometry
and a comprehensive understanding of IMF Bz evolution. Despite the progress in space weather modeling,
predicting IMF Bs at 1 AU is still poorly done [Hochedez et al., 2005].

In this study, we analyze the 1 min magnetic field data at 1 AU from 1995 to 2010 to obtain the character-
istics of IMF Bs events (defined as continuous periods of southward IMF with different criteria of duration
and magnitude). We also investigate the properties of IMF Bs events and their geoeffectiveness in differ-
ent types of solar wind structures, such as MC, ICME without MC signature, ISMFR, stream interacting region
(SIR, which includes CIR), and Shock, as well as intervals not associated with well-defined solar wind struc-
tures. The knowledge of the statistical properties of IMF Bs at 1 AU is important in examining their source
and propagation to improve the prediction capability of the interplanetary magnetic field in the near-Earth
region from remote sensing measurements, which will then provide more realistic input of solar wind/IMF
conditions to magnetosphere-ionosphere models.

2. Methodology

In order to study the statistical properties and geoeffectiveness of IMF southward component,
we examine the 1 min WIND/OMNI magnetic field data at 1 AU from 1995 to 2010 (data source:
http://cdaweb.gsfc.nasa.gov/istp_public/ ). We define and select Bs events as follows:

1. Setting the maximum values of IMF Bz in GSE coordinates from 0 nT to −10 nT decreasing by 1 nT each
step and automatically identifying the intervals with at least three satisfactory points (3 min duration),
ignoring single points between two intervals that meet the requirement;

2. Setting the minimum values of the duration from 3 min to 6 h increasing by 10 min each step and select-
ing the Bs events from step (1). Figure 1 shows a schematic example about how we accept and reject an
interval as a Bs event. The intervals from time point 5 to point 12 and from time point 15 to time point 18
are considered as Bs events with thresholds as −5 nT and 3 mins.

Based on the yearly distribution of the number and total duration of the Bs events selected out by different
thresholds of Bz magnitude and duration, we found that yearly sunspot number shows similar trend as Bs
events when the maximum value of Bz magnitude is smaller than −3 nT and minimum value of duration is
larger than 1 h.
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Figure 1. A schematic example about how we accept and reject an interval as a Bs event. The intervals from time point 5 to points 12
and from time point 15 to time point 18 are considered as Bs events with thresholds as −5 nT and 3 mins.

Compared with previous studies of different solar wind structures (SIR, ISMFR, ejecta [Jian et al., 2006a;
Feng et al., 2008; Jian et al., 2011; Richardson and Cane, 2012], and published lists of Interplanetary Shock
Database from Center for Astrophysics and Lepping Magnetic Cloud), we categorize the Bs events from the
WIND IMF data (if WIND satellite was crossing the Earth’s magnetosphere, we averaged ACE/IMP 8 magnetic
field data into 1 min resolution instead of WIND data) into MC, ISMFR, ICME without MC signature (here-
after referred to as ejecta, [Burlaga et al., 2001]), SIR, and Shock if there is an overlap between a Bs event
and a solar wind structure. If there is no overlap, we define the Bs event as unrelated with well-defined solar
wind structures.

For the MC list, the start and end times were estimated by a magnetic field model [Lepping et al., 1990],
assuming that the field within the magnetic cloud is force free using Magnetic Fields Investigation (MFI) data
from WIND. For SIR list, the authors calculated the total perpendicular pressure (the sum of the magnetic
pressure and plasma thermal pressure perpendicular to the magnetic field) for the WIND and ACE data set
and defined the boundary from a combination of signatures described in their paper [Jian et al., 2006a]. The
main requirement is that the interval covers where the pressure structure emerges from then decays back
to the background. The interplanetary shocks were analyzed using plasma data from Solar Wind Experiment
and MFI onboard WIND spacecraft based on the criteria that increases of at least 3%, 20%, and 30% sharply
occur in bulk speed, IMF magnitude, and density of downstream compared to the upstream values. The
immediate 20 min of data on either side of the shock is used to characterize the upstream and downstream
plasma parameters [Jurac et al., 2002]. For the ejecta list, the authors set up the boundaries of the events
mainly based on a consensus of the solar wind plasma and magnetic field signatures [Cane and Richardson,
2003; Richardson and Cane, 2012]. The ISMFRs were preselected out from the rotation and enhancement of
the magnetic field by eye using WIND plasma and field data and then verified by the geometric parameter
fit to the cylindrical constant-alpha force-free field [Feng et al., 2008]. Limited by the date range of the lists
available, the distribution of Bs events in these groups is examined from 1995 to 2004.

In order to understand if there is any relationship between Bs events not overlapping with well-defined solar
wind structures and well-defined solar wind structures, we examined the temporal separation of Bs events
(longer than 1 h and stronger than −5 nT) to solar wind structures. We found that the shortest separation of
a Bs event unrelated with well-defined solar wind structure is 20 min from a flux-rope-type Bs event, 15 min
from an ejecta Bs event, 10 min from a Shock-type Bs event, and 1 h from a SIR-type Bs event. There are 36
out of 89 MC-type Bs events, seven out of 11 ISMFR-type Bs events, 46 out of 241 ejecta-type Bs events, 48
out of 206 SIR-type Bs events, and eight out of 12 Shock-type Bs events that occur within 3 days of a struc-
ture. For the Bs events with separation less than 3 days, the average of the time separation is about 14 h for
MC-type Bs events, 27.5 h for ejecta type, and about 36 h for SIR type. We investigated the Bs events that
occurred within an hour of a solar wind structures and found that they are distinct intervals rather than part
of a complex structure.

The correlation between upstream Bs and geomagnetic activity due to distinct solar wind structures are
analyzed using the magnetic field data at 1 AU and geomagnetic indices from CDAWeb. The time shift
between WIND and OMNI data is calculated according to Weimer et al. [2002]. We define the Bs event
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Figure 2. (a) All the data points from 1995 to 2010 (OMNI magnetic field data), (b) interplanetary magnetic flux rope (IMFR, including MC and ISMFR) intervals from 1995 to
2005, (c) ejecta intervals from 1995 to 2004, (d) SIR intervals from 1995 to 2004. The distribution of IMF Bz amplitude in GSE coordinates from 1 min WIND magnetometer data
(except Figure 2a) is shown as the solid line in each panel, and the dashed lines are the one-peak Gaussian fit.

geoeffective if the SYM-H/AL index decreases below −50/−1000 nT during 1 h following the end of the
time-shifted IMF Bs intervals.

For intervals not associated with distinct solar wind structures lasting longer than 6 h, we investigate in
detail the plasma and magnetic field properties. We then compare these intervals with the conditions of
MHD discontinuities and jump conditions for shocks to preliminarily identify them as slow shock, tangential
discontinuity, rotational discontinuity, or unperturbed solar wind.

3. Results
3.1. Statistical Distribution of IMF Bz
3.1.1. Distribution of Duration and Amplitude of IMF Bz
Figure 2 illustrates the distribution of IMF Bz amplitude in GSE coordinates from 1 min WIND magnetome-
ter data (except (a) using OMNI 1 min magnetic field data) (solid line in each panel) and the Gaussian fit
(dashed line). Figures 2a includes all the data points from 1995 to 2010, 2b interplanetary magnetic flux rope
(IMFR, including MC and ISMFR) intervals from 1995 to 2005, 2c ejecta intervals from 1995 to 2004, and 2d
SIR intervals from 1995 to 2004. The results for years in Figures 2a, 2c, and 2d all show one peak at 0 nT with
a symmetric distribution of positive and negative values, which fit the Gaussian function well within about
± 10 nT. We examined the data points that have IMF Bz less than −10 nT and found that nearly 90% of them
occurred in continuous southward IMF intervals with durations longer than 1 h. The distribution of IMFRs in
Figure 2(b) has other significant peaks besides 1 nT at more positive and negative Bz values than the other
categories. The half width of the Gaussian fit function is 20 nT for IMFR, 8 nT for ejecta, 10 nT for SIR, and

ZHANG AND MOLDWIN ©2014. American Geophysical Union. All Rights Reserved. 661

http://dx.doi.org/10.1002/2013JA018937


Journal of Geophysical Research: Space Physics 10.1002/2013JA018937

Figure 3. The yearly distribution (divided by the maximum of each parameter) of the number and total duration of Bs events from 1995 to 2010, compared with the sunspot number.
The period of the events lasts at least (a) 3 min, (b) 1 h, and (c) 6 h. The upper threshold of the Bz value is −10 nT, −54 nT, and 0 nT from the top to the bottom panels in each plot.

6 nT for the whole duration 1995–2010. This indicates that MCs are the dominant source of extreme IMF
Bz values.
3.1.2. Statistical Properties of IMF Bs Compared to Sunspot Number
Figure 3 presents the normalized yearly distribution (divided by the maximum of each parameter) of the
number and total duration of Bs events from 1995 to 2010 (1 min averaged definitive multispacecraft inter-
planetary magnetic field data from OMNI), compared with the sunspot number. Table 1 shows the minimum
and maximum values for variables illustrated in Figure 3. The period of the events lasts at least 3 mins,
1 h, and 6 h in Figures 3a, 3b, and 3c, respectively. The upper threshold of the Bz value is −10 nT, −5 nT,
and 0 from the top to the bottom panels in each plot. There is a positive correlation shown between the
variation of sunspot number and the distribution of IMF Bs properties for the −5 nT and −10 nT cases but
no clear correlation for 0 nT. However, the correlation is good for all the events longer than 6 h regardless
of the magnitude (shown in Figure 3c). It is also interesting that the maximum of sunspot number does
not always match the Bs event maximum from Figure 3. For the Bs events with Bs thresholds less than
−10 nT, shown in the first column in Figure 3, the peak of total duration is 1 year ahead of the sunspot
number peak. There is a dual-/triple-peak signature in the yearly variation of IMF Bs event number and
duration of Bs events. The low occurrence of IMF Bs events from 2007 to 2009 indicates that the most
recent solar minimum was prolonged, consistent with sunspot number, which has been shown in previous
work [Russell et al., 2010].

Table 1. Minimum and Maximum Values of Variables Illustrated in Figure 3a

Variables Min Count Max Count Min Duration (hour) Max Duration (hour)

Sunspot number 3 120

(−10 nT, 3 min) 16 307 9 132

(−5 nT, 3 min) 409 2893 87 698

( 0 nT, 3 min) 7401 10839 2919 4304

(−10 nT, 1 h) 2 36 1 87

(−5 nT, 1 h) 12 147 17 327

( 0 nT, 1 h) 859 1160 1362 2359

(−10 nT, 6 h) 0 5 0 47

(−5 nT, 6 h) 0 10 0 101

( 0 nT, 6 h) 8 47 59 441

aThe numbers in bracket in the first column are the thresholds for intensity and total dura-
tion (hours) of Bs events.
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Figure 4. The distribution of total duration of Bs events in MC, ISMFR, ejecta, SIR, Shock, and other cases.The minimum value of IMF Bs magnitude and the event duration is shown at
the top of each subfigure. The marker type is shown at the right side of each plot.

3.2. Association of Bs Events With Well-Defined Solar Wind Structures
Figure 4 illustrates the distribution of total duration of Bs events in MC, ISMFR, ejecta, SIR, Shock, and those
unrelated with well-defined solar wind structure. The minimum value of IMF Bs magnitude and the event
duration are shown at the top of each subfigure. The structure type is shown at the right side in each plot.
We find that for the Bs events that last more than 1 h with maximum Bz value as zero, the cases unrelated
with well-defined solar wind structure are dominant (nearly 70%). As the threshold of the duration and mag-
nitude of Bs increase, the proportion of MC-type Bs events increases. The contribution of ejecta-type Bs
events is also smaller as the duration is longer when the maximum Bz is −10 nT. The Bs events in the ISMFR
group only occur in the category of events with duration less than 1 h and Bs intensity less than 5 nT. The
Shock-type Bs events also never exceed 3% of any of the distributions. It is noteworthy that for the Bs events
that are longer than 6 h and have minimum Bs value of −10 nT, the MC-type Bs events become the majority
(53%); however, nearly one quarter of the intervals are not associated with well-defined structures such as
flux ropes, ejecta, SIR, or Shock, and 10% are related to ejecta.

Figure 5 shows scatterplots of minimum SYM-H (nT) in terms of minimum Bz and duration for Bs events
in different categories: (a) MC, (b) ejecta, (c) SIR, and (d) unrelated with well-defined solar wind structures.
The threshold of the duration and Bs magnitude are 1 h and −10 nT. Since there are only five Shock-related
events, we do not show it for statistical characteristics. The color bar represent the minimum SYM-H values
in the corresponding intervals (with the solar wind time shifted). The duration of MC-type Bs events
(shown in Figure 5a) has the largest range from 1 h up to about 13 h, but the minimum Bz values are mostly
distributed between −10 nT and −30 nT. The minimum SYM-H during the strongest magnetic storm is less
than −450 nT while the duration and maximum magnitude of Bs is around 8.5 h and 50 nT, respectively. Over
70%/50% of the MC Bs events triggered a moderate/strong storm (SYM-H < −50/−100 nT). From Figure 5b,
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Figure 5. Scatterplots of minimum SYM-H (nT) in terms of minimum Bz and duration for Bs events in different categories: (a) MC, (b)
ejecta, (c) SIR, and (d) unrelated with well-defined solar wind structures. The threshold of the duration and Bs magnitude are 1 h and 10
nT (There is no ISMFR Bs event for the threshold). The color codes show the minimum SYM-H values in the corresponding intervals (the
time shift method is mentioned in section 2.

the minimum Bz of ejecta-type Bs events extends to −76 nT, and the duration ranges up to 7 h. The great-
est storm identified by the minimum SYM-H (−435 nT) is triggered by an ejecta with duration of 2.3 h and
minimum Bz of −48.5 nT. Figure 5c shows that 86% of the SIR-type Bs events are distributed in the region
−30 nT < min(Bz) < −10 nT, 1 h < duration < 4 h, while the most intense storm (SYM-H < −200 nT) was
related to a Bs event with maximum Bs intensity as −32 nT for about 6.5 h. For the Bs events that are not
related with well-defined solar wind structures shown in Figure 5d, the most intense storm with a minimum
SYM-H less than −200 nT was triggered by an event with minimum Bz around −30 nT and duration of 6.5 h.
In the group unrelated with well-defined solar wind structure, intense magnetic storms occurred if either
the duration of the Bs event was prolonged or the minimum Bz was more negative.

To check the correlation of duration and magnitude with SYM-H index for these Bs events in detail, Figure 6
shows the distribution of minimum SYM-H versus duration (Figures 6a, 6c, and 6e) and minimum Bz
(Figures 6b, 6d, and 60f) for the same set of MC/SIR/ejecta Bs events in Figure 5. Comparing Figures 6a and
6b, note that for MC Bs events the increase of the magnitude of Bs is more geoeffective than increasing the
duration for triggering an intense storm. It is shown from Figures 6c and 6d that for ejecta-type Bs events,
there is no significant linear correlation either between minimum Bz and minimum SYM-H or between
duration and minimum SYM-H. Furthermore, from Figures 6e and 6f, we find that the SIR Bs events are dif-
ferent from the MC-type Bs events: if the duration is longer, even if the minimum Bz does not change much,
stronger storms can be driven.

3.3. IMF Bs Events Unrelated With Well-Defined Solar Wind Structure
Figure 7 presents the plasma and magnetic field observations at L1 time shifted to the bow shock for Bs
events unrelated with well-defined solar wind structures. There is a discontinuity identified at one end of
them, marked by the dashed vertical lines and named in the title of each plot. The change of magnitude
and direction of magnetic field and velocity, solar wind pressure, and proton number density, as well as the
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Figure 6. The distribution of (a, c, and e) minimum SYM-H versus minimum Bz and (b, d, and f) duration for the same set of
MC/SIR/ejecta Bs events in Figure 5.

plasma beta, are the main parameters for identifying the discontinuity types. The first row shows that at
about 19:50 UT on 10 November 2001, there was a discontinuity characterized by a slow shock occurring
at the beginning of a Bs event not related with a well-defined solar wind structure. The increase of proton
number density, dynamic pressure, and plasma beta, combined with the decrease of magnetic field magni-
tude and solar wind speed, show the features of a slow shock. It is illustrated in the middle plot that on
27 August 1998, a tangential discontinuity occurred at about 05:55 UT, which is indicated by the decrease of
proton number density, dynamics pressure, solar wind speed, and plasma beta as well as the increase of the
magnetic field intensity. On 6 December 2004, a Bs event is accompanied with a rotational discontinuity at
the end (15:20 UT) of the interval that showed no change in magnitude of the magnetic field or velocity, but
their direction changed significantly.

In order to study the solar or interplanetary origins of the long-duration, large-amplitude Bs events unre-
lated with well-defined solar wind structures, we investigated the Bs events that are longer than 6 h case
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Figure 7. The plasma and magnetic field observations at the bow shock for Bs events with discontinuities identified at one end. The discontinuity is marked by the dashed vertical
line and named in the title in each plot.

by case and found that for about 71% (127 out of 179) of these intervals, either or both of the ends are
characterized by discontinuity, i.e., tangential discontinuity, rotational discontinuity, or slow shock.

4. Discussion
4.1. Comparison of Yearly Trends of Solar Activity, IMF Bs, and Geomagnetic Activity Indices
Prestes et al. [2006] performed spectral analysis of sunspot number and geomagnetic indices and found that
the annual average of antipodal activity (aa) shows a dual-peak structure, one near sunspot cycle maximum
and the other in the descending phase. They proposed that the first peak is caused by CMEs while the sec-
ond one resulted from coronal hole fast streams. The dual-peak phenomenon is also present in our study for
IMF Bs and is more significant if the duration of Bs event is longer. Analyzing the yearly distribution of IMF Bs
intervals for different categories, we find that the contribution to the second peak is mainly from the SIR and
Bs event unrelated with well-defined solar wind structure. The cross-correlation analysis of sunspot number
(Rz) and aa in Prestes et al. [2006] implies that the maximum value of aa lags that of Rz by a year; however,
IMF Bs event occurrence is peaked 1 year ahead of Rz in our results for the main peak. This difference will be
investigated in detail in future work.

4.2. Origins of Long-Duration IMF Bs Events Unrelated With Well-Defined Solar Wind Structure
We show that the dominant contribution to the Bs events is not from well-defined solar wind structures
(MC, ISMFR, ejecta, SIR, and Shock). We also find that most of the long-duration, large-amplitude inter-
vals unrelated with well-defined solar wind structures began or ended with a discontinuity or slow shock.
Burlaga [1970] suggested that most discontinuities originate within 0.8 AU and do not evolve appreciably
between 0.8 AU and 1.0 AU, other than those generated from the interaction of fast and slow streams near
1 AU. Whang et al. [1998] and Gosling et al. [2006] also proposed that local, quasi-stationary reconnection
occurs relatively frequently in the solar wind and produces Petschck-type exhausts, which could in turn
form slow shocks. Vasquez et al. [2007] surveyed the small magnetic field discontinuities of Bartels rotation
2286 and found that most discontinuities come from Alfvénic turbulence. If these trends are confirmed, our
results show that most long-duration Bs intervals unrelated to ICMEs could be formed in the solar wind or
evolved in the interplanetary medium with a solar source for the Alfvénic turbulence. A future study will
examine the occurrence frequency of Bs events from satellites inside 1 AU.

4.3. Geoeffectiveness of IMF Bs Events
In order to comprehensively study the geoeffectiveness of the Bs events, we also investigated the maximum
AE in terms of Bs duration and magnitude (not shown here). The results are that the strongest storm and
substorm are not associated with the same event except the ejecta-type Bs events. This may be due to the
large expansion of the auroral oval to low latitudes and hence away from the higher-latitude AE stations.
For large storms, we also note that great Bs events (t > 3 h, Bz < −10 nT) do not always induce large storms.
This might be explained by Kane [2010a, 2010b] who showed that the multivariate analysis of Bz and Dst,
with AU, AL, and auroral particle precipitation index POES as additional indices, has higher correlation than
Bz and only Dst, suggesting that the solar wind input energy is distributed to various channels of the Earth’s
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magnetosphere in addition to the ring current. Another possible mechanism to support the observational
result is that the preconditioning of the plasma sheet plays an important role in the response of the inner
magnetosphere to solar wind forcing [Kozyra et al., 2002] and also that the frequency of the polarity change
of IMF Bz significantly alters the state of the inner magnetosphere via buildup of different time scales of the
process [Liemohn et al., 2001]. The distribution of solar wind energy into the Earth’s magnetosphere will be
examined by data-model comparison for the unusual Bs events in future work.

The result showing that MC, ejecta, and SIR drive storms in different ways is consistent with Borovsky and
Denton [2006] who showed that CME-driven storms are brief with strong Dst while SIR-driven storms are
of longer duration. In order to examine the other potential parameters in the solar wind that differentiate
the geoeffects of MC, ejecta, and SIR, we obtained the average solar wind speed during the Bs events and
found that MC Bs events have the largest mean flow speed (512 ± 195 km/s), ejecta Bs events average
436 ± 183 km/s, and 379 ± 89 km/s for SIR. It implies that the co-occurrence of high-speed solar wind in
different types of Bs events account for the different behaviors of the Earth’s magnetosphere.

5. Summary and Conclusions

We examine the Interplanetary Magnetic Field (IMF) at 1 AU using 1 min magnetic field data from 1995 to
2010. Bs events are defined as continuous periods of southward IMF that satisfy the criteria for magnitude
and duration. We also present the statistical properties of IMF Bs events in different groups of solar wind
structures and their geoeffectiveness. The results of our study are summarized as follows:

1. The yearly distribution of Bs events shows no correlation with the sunspot number if the threshold mag-
nitude is 0 nT and duration is shorter than 1 h. As the intensity of Bs increases to 5 nT and larger, or the
duration is increased to 1 h and longer, the variation of Bs event occurrence is highly correlated with
sunspot number.

2. Most Bs events are not associated with well-defined solar wind structures. MC-type Bs events are domi-
nant if the minimum magnitude and duration of Bs is set to be 10 nT and 3 h or 5 nT and 6 h. The Bs events
unrelated with well-defined solar wind structure make up a quarter of the long-duration, large-amplitude
Bs events (t > 6 h, Bz < −10 nT), and ejecta-type Bs events constitute 10%.

3. The Bs events with the longest duration and most negative values do not trigger the most intense mag-
netic storm or substorm, and the strongest storms do not correspond to the strongest substorms except
for the MC-type and ejecta-type Bs events. The great Bs events, which are longer than 3 h and greater than
−10 nT, are not always related with large storms (minimum SYM-H < −100 nT), indicating that solar wind
velocity is also important.

Based on the results and discussion from our study, we conclude that one quarter of extreme IMF Bs events
are not related to solar events but related to discontinuities or slow shocks formed in the solar wind by
Alfvénic turbulence. Thus, one quarter of geoeffective solar wind conditions currently cannot be predicted
from solar observations. Also, MC, ejecta, and SIR can have similar IMF Bz properties but due to their solar
wind speeds give rise to different geomagnetic responses.
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