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A Prior Specification in Genetic Applications

In this section, we summarize and discuss some of the existing results that can be utilized for

the prior specification in the SSMR model in various genetic applications.

A.1 Prior Decomposition by Genetic Variants

Guan and Stephens (2011) argue that regression coefficients of genetic effects reflect the “causal”

effects on the phenotype of interest and there is no obvious reason to suspect these causal

effects among different variants are correlated spatially. (Note, it is important to distinguish

the correlations among the observed genotypes and the independence of the underlying genetic
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effects.) The similar type of the independent prior has also been widely used in the polygenic

models. As a consequence of this reasoning, it is sensible to decompose the W g matrix into a

block diagonal structure, i.e., W g = Φ1⊕· · ·+ Φp, where each block matrix Φi corresponds to a

single SNP. Also, the prior distribution Pr
(
ξ(βg)

)
can be factored into the product of the prior

probability of each SNP.

The simple i.i.d priors on SNPs provide a useful starting point for many applications in genetics.

More recently, many authors (Veyrieras et al. (2008), Stingo et al. (2011)) have proposed to

integrate SNP-level genomic annotation information into prior specifications. In the simplest

case, a logit function is used to connect the genomic feature of a SNP and its marginal prior

inclusion probability, and a “feature coefficient” is parametrized to quantify the impact of the

genomic feature on the genetic association. The feature coefficient in this context is typically

unknown and often of great interest for inference. As a consequence, the priors on different

SNPs are no longer i.i.d. This approach not only is useful in integrating additional information

to identify the causal genetic variant, but also provides an elegant parametric framework to

perform feature enrichment analysis, i.e., the posterior inference results of the feature coefficients

summarize all necessary statistical evidence of the enrichment of association signals in the relevant

annotation categories.

A.2 Priors for Multiple Quantitative Traits Associations

The interplays between genetic variants and multiple phenotypes are complicated: not only ge-

netic variants can directly affect multiple phenotypes, but also there are interactions between

phenotypes through gene networks. As a result, genetic variants and phenotypes can be inter-

acted in an indirect way (through some intermediate phenotypes).

Most recently, Stephens (2010) proposes a directed acyclic graph (DAG) approach to address the

structured phenotype relationships. Their approach first classifies phenotypes into three groups
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of directly affected, indirectly affected and unaffected with respect to a target genetic variant.

Conditioning on the classification, an MVLR model is employed to model the genetic association

between the genetic variant and the directly affected phenotypes. Because the true classification

of the phenotypes is typically unknown, they use Bayesian model averaging technique to account

for this latent structure.

Other approaches (Scott-Boyer et al. (2012), Stingo et al. (2011)) avoid directly modeling the

relationship among multiple phenotypes, instead they utilize prior biological pathway and infor-

mation of gene networks to prioritize the potential associations of a target variant with respect

to a group of phenotypes.

A.3 Priors for Heterogeneous Genetic Effects in Subgroups

When considering the genetic effects between a genetic variant and a phenotype in various

subgroups (formed either by environmental conditions, e.g. in G×E interactions, or by sampling

structures, e.g. in meta-analysis), the key is to account for the heterogeneity of genetic effects.

Wen and Stephens (2011) have recently proposed a flexible Bayesian prior to model heterogeneous

genetic effects across multiple subgroups. For a genetic variant, this prior assumes that its genetic

effects with respect to a common phenotype in s subgroup, if non-zero, are described by

βi ∼ N(β̄, φ2), i = 1, . . . , s, (1)

and

β̄ ∼ N(0, ω2), (2)

where parameter ω2 quantifies the prior magnitude of the average effect and φ2 describes the

prior degree of heterogeneity. Equivalently, the joint prior distribution for vector (β1, . . . , βr)
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can be represented by a multivariate normal distribution with mean 0 and variance-covariance

matrix Wg, where

W g =


φ2 + ω2 · · · ω2

...
. . .

...

ω2 · · · φ2 + ω2

 . (3)

It is easy to see that ω2

ω2+φ2
is the prior correlation between a pair of genetic effects: when φ2 is

set to 0, it corresponds to the fixed effect model; whereas setting ω2 = 0 implies the effects are

a priori independent in all subgroups.

B Bayes Factor Derivation

In this section, we show the derivation of Bayes factors based on the SSMR model.

In the SSMR model, we have defined Y ,X ,E ,βc and βg in section 2 of the main text. In

addition, we denote the complete collection of regression coefficients and its vectorized version

by B := {B1, . . . ,Bs} and βsys :=
(

βc

βg

)
, respectively.

The likelihood function of the SSMR model is given by

p(Y |X ,B,E) = (2π)−
r
∑s

i=1 ni
2 ·

s∏
i=1

|Σi|−
ni
2 · etr

(
−1

2

s∑
i=1

Σ−1
i (Y i −X iBi)

′(Y i −X iBi)

)
(4)

where function etr(·) denotes the exponential of the trace. Given the least squares estimate B̂i

for each composing MVLR, it follows that

(Y i−X iBi)
′(Y i−X iBi) = (Y i−X iB̂i)

′(Y i−X iB̂i) + (Bi− B̂i)
′(X ′iX i)(Bi− B̂i). (5)
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Note this decomposition holds even if X i is rank-deficient (however, B̂i may not be unique, see

McCullagh and Nelder (1989), page 82 for discussions). We denote βi := vec(B′i) and β̂i :=

vec(B̂
′
i), and use βall and β̂all to denote the sequentially concatenated vectors of (β1, . . . ,βs)

and (β̂1, . . . , β̂s), respectively. The likelihood function (4) can be re-written as

p(Y |X ,B,E) =(2π)−
r
∑s

i=1 ni
2 ·

s∏
i=1

|Σi|−
ni
2 · etr

(
−1

2

s∑
i=1

Σ−1
i (Y i −X iB̂i)

′(Y i −X iB̂i)

)

· exp

(
−1

2

(
βall − β̂all

)′
Φ
(
βall − β̂all

))
,

(6)

where

Φ =
(
X ′1X1 ⊗Σ−1

s

)
⊕ · · · ⊕

(
X ′sXs ⊗Σ−1

s

)
.

Also, by the general case of Gauss-Markov theorem, we note that Var(β̂all) = Φ−1 (In case that

Φ is singular, the Moore–Penrose pseudoinverse is applied).

Although βsys and βall generally differ in the orders of the composing elements, they can be

reconciled by a permutation operation, i.e.,

Pβall = βsys, (7)

where P is a (rps+ r
∑s

i qi)× (rps+ r
∑s

i qi) permutation matrix. Furthermore, we denote

Ω = PΦP ,

and it can be shown that

Var(β̂sys) = Ω−1. (8)
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As a result,

p(Y |X ,βsys,E) =(2π)−
r
∑s

i ni
2 ·

s∏
i

|Σi|−
ni
2 · etr

(
−1

2

s∑
i

Σ−1
i (Y i −X iB̂i)

′(Y i −X iB̂i)

)

· exp

(
−1

2

(
βsys − β̂sys

)′
Ω
(
βsys − β̂sys

))
.

(9)

B.1 Bayes Factor for Known Σ

With E known, the marginal likelihood p(Y |X ,E) can be evaluated analytically, i.e.,

p(Y |X ,E) =

∫
p(Y |X ,E ,βsys)p(βsys) dβsys. (10)

Recall the prior distribution defined in section 2 of the main text,

βsys ∼ N(0,Ψc ⊕W g).

Assuming W g is full rank, the integration yields

p(Y |X ,E) =(2π)−
r
∑s

i ni
2 ·

s∏
i

|Σi|−
ni
2 · |W g|−

1
2 · |Ψc|−

1
2 · |Ω + Ψ−1

c ⊕W−1
g |−

1
2

· exp

(
−1

2
β̂
′
sysΩ

(
Ω−1 − (Ω + Ψ−1

c ⊕W−1
g )−1

)
Ωβ̂sys

)
· etr

(
−1

2

s∑
i

Σ−1
i (Y i −X iB̂i)

′(Y i −X iB̂i)

)
,

(11)

To further simplify (11), we decompose Ω into the following block matrix

Ω =

 Ωc Ωf

Ω′f Ωg

 ,
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where Ωc and Ωg match the the dimensions of the matrices Ψc and W g, respectively. By (8), it

follows that

V −1
g = Ωg −Ω′fΩ

−1
c Ωf . (12)

Let

U = Ωg −Ω′f (Ωc + Ψ−1
c )−1Ωf +W−1

g ,

and it follows that

|Ω + Ψ−1
c ⊕W−1

g | = |Ωc + Ψ−1
c | · |U |. (13)

Furthermore, the matrix product, Ω
(
Ω−1 − (Ω + Ψ−1

c ⊕W−1
g )−1

)
Ω, can be represented by the

block matrix

 A B

B′ D

, where

A = Ωc

[
I − (Ωc + Ψ−1

c )−1Ωc

]
−
[
I −Ωc(Ωc + Ψ−1

c )−1
]

Ωf U−1Ω′f
[
I − (Ωc + Ψ−1

c )−1Ωc

]
,

B =
[
I −Ωc(Ωc + Ψ−1

c )−1
]

Ωf U−1W−1
g

D = W−1
g −W−1

g U−1W−1
g = (U −W−1

g )− (U −W−1
g )U−1(U −W−1

g ).

Although the expressions are fairly complicated, when the limit Ψ−1
c → 0 is taken, A → 0 and

B → 0.

The exact same calculations can be carried out with respect to the null model. In the end, we
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obtain the following marginal likelihood under H0,

P (Y |X ,E , H0) = (2π)−
r
∑s

i ni
2 ·

s∏
i

|Σi|−
ni
2 · |Ψc|−

1
2 · |Ωc + Ψ−1

c |−
1
2

· exp

(
−1

2
β̃
′
cΩc

(
Ω−1
c − (Ωc + Ψ−1

c )−1
)

Ωcβ̃c

)
· etr

(
−1

2

s∑
i

Σ−1
i (Y i −Xc,iB̃i)

′(Y i −Xc,iB̃i)

)
,

(14)

where β̃c and B̃i are the MLEs of regression coefficients obtained under the null model (i.e.

restricting βg ≡ 0). Note the relationship of the least squares estimates between the target and

the null models:

B̃i = B̂c,i + (X ′c,iXc,i)
−1X ′c,iXg,iB̂g,i, (15)

and

(Y i −Xc,iB̃i)
′(Y i −Xc,iB̃i)− (Y i −X iB̂i)

′(Y i −X iB̂i)

= B̂
′
g,i

(
X ′g,iXg,i −X ′g,iXc,i(X

′
c,iXc,i)

−1X ′c,iXg,i

)
B̂g,i

(16)

It follows that

etr

(
1

2

s∑
i

Σ−1
i

[
(Y i −Xc,iB̃i)

′(Y i −Xc,iB̃i)− (Y i −X iB̂i)
′(Y i −X iB̂i)

])

= exp

(
1

2
β̂
′
gV
−1
g β̂g

)
.

(17)

This also gives the explicit expression for V −1
g , i.e.,

V −1
g = ⊕si=1V

−1
g,i = ⊕si=1

[(
X ′g,iXg,i −X ′g,iXc,i(X

′
c,iXc,i)

−1X ′c,iXg,i

)
⊗Σ−1

i

]
. (18)
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Because of the block-diagonal nature of the V −1
g matrix, the following expression also holds true

β̂
′
gV
−1
g β̂g =

s∑
i=1

β̂
′
g,iV

−1
g,i β̂g,i, (19)

which provides convenience for Laplace approximation later on.

Finally, by taking the limit Ψ−1
c → 0 and noting

lim
ψ−1
c →0

U = V −1
g +W−1

g , (20)

we obtain

BF(W g) = |I + V −1
g W g|−

1
2 · exp

(
1

2
β̂
′
gV
−1
g

[
W g(I + V −1

g W g)
−1
]
V −1

g β̂g

)
, (21)

which proves LEMMA 1.

B.2 Approximate Bayes Factors for Unknown Σ

When E is unknown, we assign independent inverse Wishart priors, IWr(νiH i,mi), to each Σi

and additional integrals are required for computing the marginal likelihood. More specifically,

the goal is to evaluate

p(Y |X ) =

∫
p(Y |X ,E)

∏
i

p(Σ−1
i ) dΣ−1

1 . . . dΣ−1
s , (22)

where

p(Σ−1
i ) ∝ |Σ−1

i |
mi−r−1

2 etr

(
−1

2
νiH iΣ

−1
i

)
. (23)
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The desired Bayes factor is therefore computed as

BF(W g) = lim
Ψ−1

c →0

∫
p(Y |X ,E)

∏
i p(Σ

−1
i ) dΣ−1

1 · · · dΣ−1
s∫

p(Y |X ,E , H0)
∏

i p(Σ
−1
i ) dΣ−1

1 · · · dΣ−1
s

. (24)

By plugging in (11) and (14) and noting the cancellation of |Ψc|−
1
2 terms along with the fact that

Ω−1 − (Ω + Ψ−1
c ⊕W−1

g )−1 is positive definite, it is easy to see that the remaining integrands,

both are functions of Ψ−1
c , are bounded. It is then justified by bounded convergence theorem

(BCT) to switch the limit and integration operations. As a result, we obtain

BF(W g) =

∫
KHa dΣ−1

1 · · · dΣ−1
s∫

KH0 dΣ−1
1 · · · dΣ−1

s

, (25)

where

KHa = |I + V −1
g W g|−

1
2 · exp

(
1

2
β̂
′
g

[
V −1

g W g(I + V −1
g W g)

−1V −1
g

]
β̂g

)
·

s∏
i=1

|Σ−1
i |

ni+mi−qi−r−1

2 · etr

(
−1

2

s∑
i=1

Σ−1
i

(
νiH i + (Y i −Xc,iB̃i)

′(Y i −Xc,iB̃i)
))

,

(26)

KH0 =
s∏
i=1

|Σ−1
i |

ni+mi−qi−r−1

2 ·etr

(
−1

2

s∑
i=1

Σ−1
i

(
νiH i + (Y i −Xc,iB̃i)

′(Y i −Xc,iB̃i)
))

, (27)

Because V −1
g and (potentially) W g are both functions of E , the analytic integration of KHa is

generally implausible. Here we approximate the integrals of both KHa and KH0 by Laplace’s

method. Note, although the analytic integration of KH0 is straightforward, it is been shown

(Wen and Stephens (2011)) that simultaneously applying Laplace’s methods to both KHa and

KH0 achieves better numerical accuracy for desired Bayes factor.

Laplace’s method approximates an integral with respect to a d × d symmetric matrix Z (or

equivalently the corresponding half-vectorized (d + 1)d/2 dimensional vector vech(Z)) in the
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following way,

∫
D

h(Z) exp ( g(Z) ) dZ ≈ (2π)d(d+1)/4|H Ẑ|−1/2h(Ẑ) exp
(
g(Ẑ)

)
, (28)

where

Ẑ = arg max
Z

g(Z),

and |H
Ẑ
| is the absolute value of the determinant of the Hessian matrix of the function g evaluated

at Ẑ. The technical requirements on the factorization are that h(·) is smooth and positively

valued and g(·) is smooth and obtains its unique maximum in the interior of D. Although

different factorization schemes generally achieve different approximation accuracies for finite

sample sizes, the asymptotic error bounds are typically the same. For a detailed discussion, see

Butler (2007) chapter 2.

To evaluate the desired Bayes factor, we sequentially apply the Laplace’s method with respect

to each Σ−1
i for both KHa and KH0 .

B.2.1 General Derivation

By (17) and (19), we note the exponential term

tr
[
Σ−1
j

(
νjHj + (Y j −Xc,jB̃j)

′(Y j −Xc,jB̃j)
)]
, (29)

11



is presented in both the alternative and the null models for each multivariate linear regression

model j, and it can be generally decomposed into

tr
[
Σ−1
j

(
νjHj + (1− αj)(Y j −Xc,jB̃j)

′(Y j −Xc,jB̃j) + αj (Y j −Xc,jB̂j)
′(Y j −Xc,jB̂j)

)]
+ αj β̂

′
g,iV

−1
g,i β̂g,i,

(30)

where αj ∈ [0, 1]. Thus, when applying Laplace’s method, we start by factoring KHa into

KHa = ha(Σ
−1
1 , . . . ,Σ−1

s ) exp
(
ga(Σ

−1
1 , . . . ,Σ−1

s )
)
, (31)

where

ha(Σ
−1
1 , . . . ,Σ−1

s ) = |I + V −1
g W g|−

1
2 · exp

(
1

2
β̂
′
g

[
V −1

g W g(I + V −1
g W g)

−1V −1
g

]
β̂g

)
· exp

(
−1

2

s∑
i=1

αiβ̂
′
g,iV

−1
g,i β̂g,i

) (32)

and

ga(Σ
−1
1 , . . . ,Σ−1

s ) =
s∑
i=1

ni + νi
2

log |Σ−1
i |

− 1

2

s∑
i=1

tr
[
Σ−1
i

(
νiH i + αi(Y i −X iB̂i)

′(Y i −X iB̂i) + (1− αi)(Y i −X iB̃i)
′(Y i −X iB̃i)

)]
.

(33)

It is straightforward to show that the unique maximum of g(Σ−1, . . . ,Σ−1
s ) can be obtained by

performing sequential analytic maximization with respect to each individual Σi. More specifi-
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cally, the maximum is attained at

Σ̌i =
νi

ni + νi
H i +

ni
ni + νi

[
αiΣ̂i + (1− αi)Σ̃i

]
, ∀i, (34)

where

Σ̂i =
1

ni
(Y i −X iB̂i)

′(Y i −X iB̂i), (35)

and

Σ̃i =
1

ni
(Y i −Xc,iB̃i)

′(Y i −Xc,iB̃i), (36)

are commonly used MLEs of Σi evaluated under the target and the null models respectively.

Following Minka (2000), it can be shown that the Hessian matrix Hga(Σ−1
i ) for each Σ−1

i is given

by

Hga(Σ−1
i ) =

d2ga

dvech(Σ−1
i )dvech(Σ−1

i )′

=− ni
2
D′s (Σi ⊗Σi)Ds,

(37)

where Ds denotes the duplication matrix for s × s symmetric matrices. As it is evaluated at

Σ̌
−1

i , its absolute determinant results in the following simple form,

|Hga(Σ̌
−1

i )| = 2−rn
r(r+1)/2
i |Σ̌i|r+1. (38)

Similarly, we factor KH0 in the same way, i.e.,

KH0 = h0(Σ−1
1 , . . . ,Σ−1

s ) exp( g0(Σ−1
1 ), . . . ,Σ−1

s ), (39)
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where

h0(Σ−1
1 , . . . ,Σ−1

s ) = exp

(
−1

2

s∑
i=1

αiβ̂
′
g,iV

−1
g,i β̂g,i

)
(40)

and

g0(Σ−1
1 , . . . ,Σ−1

s ) =
s∑
i=1

ni + νi
2

log |Σ−1
i |

− 1

2

s∑
i=1

tr
[
Σ−1
i

(
νiH i + αi(Y i −X iB̂i)

′(Y i −X iB̂i) + (1− αi)(Y i −X iB̃i)
′(Y i −X iB̃i)

)]
.

(41)

Note that g0(Σ−1
1 , . . . ,Σ−1

s ) and ga(Σ
−1
1 . . . ,Σ−1

s ) are identical, (Σ̌1, . . . , Σ̌s) also uniquely max-

imizes g0 function.

Following (28), the desired Bayes factor is computed as

BF(W g) =|I + V̌
−1

g W̌ g|−
1
2 · exp

(
1

2
β̂
′
gV̌
−1

g

[
W̌ g(I + V̌

−1

g W̌ g)
−1
]
V̌
−1

g β̂g

)
·

s∏
i=1

(
1 +O(

1

ni
)

)
(42)

where V̌
−1

g and W̌ g are the corresponding V −1
g andW g evaluated at (Σ̌1, . . . , Σ̌s). In particular,

V̌
−1

g = ⊕si=1

[(
X ′g,iXg,i −X ′g,iXc,i(X

′
c,iXc,i)

−1X ′c,iXg,i

)
⊗ Σ̌

−1

i

]
. (43)

This leads to the final expression of ABF

ABF(W g,α) = |I + V̌
−1

g W̌ g|−
1
2 · exp

(
1

2
β̂
′
gV̌
−1

g

[
W̌ g(I + V̌

−1

g W̌ g)
−1
]
V̌
−1

g β̂g

)
, (44)

which also completes the proof for PROPOSITION 1.
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C Computational Stability of Bayes Factor

In this section, we demonstrate the computational stability of the derived Bayes factors. In

particular, we show that the derived Bayes factor and its approximations can be stably evaluated

even if some design matrix X i ∈ X is rank deficient.

First, assuming X ′c,iXc,i can be inverted in the general sense ∀i = 1, . . . , s, we define

Gi =
(
I −Xc,i

(
X ′c,iXc,i

)−1
X ′c,i

)
Xg,i, (45)

and denote its p× ni Moore-Penrose pseudo inverse matrix by G+
i . By the general least squares

theory, it can be shown (regardless if Gi is full-rank) that

B̂g,i = G+
i Y i, (46)

β̂g,i = vec(B̂
′
g,i) = (G+

i ⊗ I)vec(Y ′i) (47)

(48)

and

V −1
g,i = (G′iGi)⊗Σ−1

i . (49)

It is then follows from the general property of Moore-Penrose pseudo inverse, such that

V −1
g,i β̂g,i =

[(
G′iGiG

+
i

)
⊗Σ−1

i

]
vec(Y ′i)

= (G′i ⊗Σ−1
i )vec(Y ′i)

= vec(Σ−1Y ′iGi).

(50)

Finally, V −1
g β̂g is computed by sequentially concatenating V −1

g,i β̂g,i for i = 1, ..., s. Note, in this
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computational procedure

1. there is no matrix inversion operation on X ′g,iXg,i (which we allow to be rank deficient).

2. there is no matrix inversion operation on W g.

3. matrix (I + V −1
g W g) is guaranteed positive definite.

In case that E is unknown and some Xg,i is rank deficient, it becomes inevitable to perform

Moore-Penrose pseudo-inverse of X ′iX i for evaluation of Σ̂i. This would cost the computational

efficiency but unlikely affect the computational stability of the ABF.

D Computing Bayes Factors with Singular W g

We first give the proof for PROPOSITION 2 in below.

Proof. In case that E is known, the proof is trivial by noting that there is no matrix inversion

of W g in the Bayes factor formula of LEMMA 1.

If E is unknown, the desired Bayes factor is computed by

BF(W g) =
limλ→0

∫
KHa(W †

g(λ)) dΣ−1
1 ... dΣ−1

s∫
KH0 dΣ

−1... dΣ−1
s

, (51)

where the integrands KHa and KH0 are defined in (26) and (27) respectively. It should be clear

that

KHa(W †
g(λ)) ≤

s∏
i=1

[
|Σ−1

i |
ni+mi−qi−r−1

2 · etr

(
−1

2
Σ−1
i

(
H i + (Y i −X iB̂i)

′(Y i −X iB̂i)
))]

.

(52)
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Because the RHS is clearly integrable with respect to Σ−1
1 , . . . ,Σ−1

s , by bounded convergence

theorem, it follows that

BF(W g) =

∫
limλ→0KHa(W †

g(λ)) dΣ−1
1 ... dΣ−1

s∫
KH0 dΣ

−1
1 ... dΣ−1

s

. (53)

Because the computation of KHa does not require inversion of W g and the matrix sum (I +

V −1
g W g) is guaranteed to be full rank, we conclude that

lim
λ→0

KHa(W †
g(λ)) = KHa(W g), (54)

and

lim
λ→0

BF(W †
g(λ)) = BF(W g) =

∫
KHa(W g) dΣ

−1
1 ... dΣ−1

s∫
KH0 dΣ

−1
1 ... dΣ−1

s

, (55)

provided that W g is positive semidefinite.

In case W g is singular, to evaluate the approximate Bayes factor using Laplace’s method, we

modify the factorization in (31) to account for the imposed linear restrictions. More specifically,

we factor KHa into

ha(Σ
−1
1 , . . . ,Σ−1

s ) = |I + V −1
g W g|−

1
2 · exp

(
1

2
β̂
′
g

[
V −1

g W g(I + V −1
g W g)

−1V −1
g

]
β̂g

)
· exp

(
−1

2

s∑
i=1

αiβ̂
r′

g,iV
−1
g,i β̂

r

g,i

)
,

(56)

and

ga(Σ
−1
1 , . . . ,Σ−1

s ) =
s∑
i=1

ni + νi
2

log |Σ−1
i |

− 1

2

s∑
i=1

tr
[
Σ−1
i

(
νiH i + αi(Y i −X iB̂

r

i )
′(Y i −X iB̂

r

i ) + (1− αi)(Y i −X iB̃i)
′(Y i −X iB̃i)

)]
,
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(57)

where B̂
r

i is the least squares estimate of Bi subject to the linear constraints imposed by W g

and β̂
r

g,i is the corresponding vectorized estimates. The remaining steps for Laplace’s method

are the same as we have shown in appendix B.2.1, however Σ̂i is now taking the following form:

Σ̂i =
1

ni

(
H i + (Y i −X iB̂

r

i )
′(Y i −X iB̂

r

i )
)
. (58)

E Numerical Evaluation of Approximate Bayes Factors

We perform numerical experiments to assess the finite-sample accuracies of the derived approx-

imate Bayes factors.

We simulate data under the SSLR model (mainly because its Bayes factors can be numerically

evaluated using the adaptive Gaussian quadrature method as the number of groups (s) is small).

Except for the very last case, our simulated data sets always have sample size n = 75 and

subgroup number s = 3. We also vary the number of covariates for p = 2, 4, 8 and 16 in different

simulations.

For each (n, p) combination, we simulate 500 data sets using the SSLR model. We intentionally

choose small to modest effect sizes, for which accuracies of the Bayes factors matter most. For

every simulated data set, we evaluate its “true value” using the adaptive Gaussian quadrature

procedure implemented in the GNU Scientific Library (GSL) and compare it with the ABFs

computed under α = 0, 0.5 and 1. These results are summarized in Figure 1 and Table 1. As

values ofα are set to 0.5 for all subgroups, the resulting ABFs yield most accurate approximations

in all cases with small sample sizes. In comparison, setting α = 1 tends to yield anti-conservative

approximations whereas setting α = 0 leads to conservative approximations.
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Figure 1: Accuracy of the approximate Bayes factors with small sample sizes. Each data point
on the plots represents a single comparison of the ABF of certain α value with the true value
using a data set simulated from the SSLR model (n = 75 and s = 3). The four different panels
represent the different numbers of covariates (p) allowed in the model.

Finally, to demonstrate a situation that is close to the preferred asymptotic settings, we simulate

data for n = 1000 and p = 16. The result is shown in Figure 2. It suggests as the sample size

increases, all approximations become quite accurate.
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RMSE of log10(ABF)
α = 0 α = 0.5 α = 1.0

n = 75, p = 2 0.032 0.009 0.016
n = 75, p = 4 0.052 0.011 0.041
n = 75, p = 8 0.074 0.008 0.096
n = 75, p = 16 0.102 0.035 0.268
n = 1000, p = 16 0.044 0.006 0.032

Table 1: Root Mean Square Errors (RMSE) of log10(ABF) for different α values under different
model settings. The approximate Bayes factors are computed based on the SSLR model with
three subgroups (s = 3) and different (n, p) settings. Under each setting, we compute log10(ABF)
for α = 0, 0.5, 1.0 and report the RMSE by comparing the approximations with the true values.

Figure 2: Accuracy of the approximate Bayes factors when the sample size is relatively large.
In this plot, the data simulated from the SSLR model with n = 1000, s = 3 and p = 16.
Approximate Bayes factors computed using different α values all show good agreement with the
true values.

F Bayes Factor, Multivariate Test Statistics and the BIC

In this section, we show that the derived Bayes factor and its approximations are connected to

various frequentist multivariate test statistics and the BIC.
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F.1 Connection to Multivariate Test Statistics

Under the following prior specification for W g:

1. W g = cV g, where c is a positive scalar constant.

2. V g is full-rank

3. Σi ∼ IW(νiH i,mi) under the limiting conditions, νi → 0,∀i = 1, . . . , s

It can be shown that

ABF(W g,α = 1) =

(√
1

1 + c

)rps

· exp

(
1

2
· c

1 + c
· Twald

)
, (59)

and

ABF(W g,α = 0) =

(√
1

1 + c

)rps

· exp

(
1

2
· c

1 + c
· Tscore

)
, (60)

where Twald and Tscore represent the multivariate Wald statistic and the Rao’s score statistic,

respectively. Both statistics can be used for testing H0 : βg = 0 based on the SSMR model.

Obtaining (59) is straightforward. To establish (60), we compute the score statistic following

Chen (1983). This yields

Tscore =
s∑
i=1

vec[(Y i −Xc,iB̃i)
′]′
(
X ′g,iXg,i ⊗ Σ̃

−1

i

)
vec[(Y i −Xc,iB̃i)

′]

= β̃
′
c

[
⊕si=1

(
X ′g,iXg,i ⊗ Σ̃

−1

i

)]
β̃c,

(61)
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where B̃i and β̃c are MLEs of Bi and βc estimated from the null model, respectively. Under

the specified conditions,

β̂
′
gṼ
−1

g

[
W̃ g(I + Ṽ

−1

g W̃ g)
−1
]
Ṽ
−1

g β̂g

=
c

1 + c
· β̂′gṼ

−1

g β̂g

=
c

1 + c
· β̃′c

[
⊕si=1

(
X ′g,iXg,i ⊗ Σ̃

−1

i

)]
β̃c.

As a consequence, the approximate Bayes factors and the corresponding frequentist test statistics

yield the same ranking for a set of candidate models.

Albeit the connections, we do not advocate the use of these test statistics as model comparison

devices in practice. Especially, caution should be taken when interpreting this prior in specific

contexts: for example, Wakefield (2009) and Wen and Stephens (2011) have shown some counter-

intuitive implications of this prior in genetic applications (e.g., |W g| is inversely proportional to

sample sizes).

F.2 Connections to the BIC

Under the conditions that

1. V g and W g are full-rank.

2. limni→0
log |W g |

ni
= 0, ∀i.

3. ni � p, r, s, ∀i,.

We show that the BIC can be derived as a rough approximation to the Bayes factor and its

approximations under the SSMR model.
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First, we assume that

lim
ni→∞

1

ni

(
X ′g,iXg,i −X ′g,iXc,i(X

′
c,iXc,i)

−1X ′c,iXg,i

)
= Qi, (62)

and Qi is also full-rank. Hence,

lim
ni→∞

V g = ⊕si=1

[
1

ni

(
Q−1
i ⊗Σi

)]
. (63)

When E is known, as ni →∞ for each i, based on (63)

lim
ni→∞,∀i

(
I + V −1

g W g

)
= V −1

g W g, (64)

and

lim
ni→∞,∀i

BF(W g) = |V g|1/2 · |W g|−1/2 · exp

(
1

2
β̂
′
gV
−1
g β̂g

)
. (65)

Note that

lim
ni→∞

|V g| =
s∏
i=1

(
n−pri · |Qi|−r · |Σi|p

)
, (66)

and the likelihood ratio

L1/L0 =
p(Y |X , B̂,E)

p(Y |X , B̃,E , H0)
= exp

(
1

2
β̂
′
gV
−1
g β̂g

)
(67)
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It follows that

log BF(W g) ≈ (logL1 − logL0)− pr

2

s∑
i=1

log ni +

(
r

2

s∑
i=1

log |Qi| −
p

2

s∑
i=1

log |Σi| −
1

2
log |W g|

)

= (logL1 − logL0)− pr

2

s∑
i=1

log ni +O(1),

= BIC +O(1).

(68)

The BIC is asymptotically consistent, meaning that as sample size increases to infinity and under

other suitable conditions, the BIC selects the fixed true model among a finite set of candidates

with probability 1 (Haughton (1988), Schwarz (1978)). Consequently, our Bayes factor and its

approximations also enjoy this asymptotic consistency property.

It is worth pointing out that the BIC is not a universal approximation of Bayes factors. In

our case, BIC fails to approximate desired Bayes factors with the advocated error bound if the

pre-specified conditions are violated. In particular,

1. W g or V g is singular. Intuitively, in this case, linear constraints on parameter space would

change the way that “free” parameters are counted. Nonetheless, it is usually possible to

resolve the linear constraints by transformation and re-parametrization.

2. W g is some function of sample sizes, e.g., this may lead that limni→0
log |W g |

ni
6= 0, for some

i. An example of this sort is the prior specification, W g = cV g. It is easy to see that BIC

fails to approximate the resulting Bayes factor with the advocated error bound.

3. Parameters p, r and s are not small comparing with sample sizes. In particular, under

the high-dimensional settings, the BIC becomes a very poor approximation of the desired

Bayes factor.
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When the E is unknown, it can be shown that

log ABF(W g,α) ≈ 1

2
β̂
′
gV̌
−1

g β̂g−
pr

2

s∑
i=1

log ni+

(
r

2

s∑
i=1

log |Qi| −
p

2

s∑
i=1

log |Σ̌i| −
1

2
log |W̌ g|

)
.

(69)

In particular,

log ABF(W g,α = 1) ≈ 1

2
β̂
′
gV̂
−1

g β̂g−
pr

2

s∑
i=1

log ni+

(
r

2

s∑
i=1

log |Qi| −
p

2

s∑
i=1

log |Σ̂i| −
1

2
log |Ŵ g|

)
,

(70)

Asymptotically, under the conditions stated

lim
ni→∞,∀i

β̂
′
gV̂
−1

g β̂g → β̂gV
−1
g β̂g. (71)

Furthermore, it can be shown that

lim
ni→∞

Σ̃i = Σ̂i + B̂
′
g,iQiB̂g,i. (72)

In general, this ensures that

β̂
′
gV̌
−1

g β̂g = β̂
′
gV
−1
g β̂g +O(1). (73)

This yields our final results: under the conditions stated

log ABF(W g,α) = (logL1 − logL0)− pr

2

s∑
i=1

log ni +O(1). (74)
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G Extension to Non-normal Data

Without loss of generality, we consider a system of generalized linear models which resembles

the SSLR. The MLE of the system can be numerically computed for the vectorized regression

coefficients βsys. Following the standard asymptotic maximum likelihood theory, the likelihood

of the system can be approximated by a quadratic expansion around its maximum likelihood

estimate. This can be equivalently expressed by the following asymptotic approximation,

β̂sys |βsys ∼ N
(
βsys , Var(β̂sys)

)
, (75)

where Var(β̂sys) is typically approximated using observed Fisher information. Combining with

the prior distribution

βsys ∼ N(0 , Ψc ⊕W g), (76)

it is then straightforward to show that the resulting Bayes factor under this setting maintains

the same functional form as in LEMMA 1.

H MCMC Algorithm for Model Selection in MVLR

We implement an Markov Chain Monte Carlo (MCMC) algorithm to generate samples for pos-

terior analysis of ξ(βg). Here we detail the algorithm for the MVLR model, and point out that

generalizing this algorithm for the general SSMR model is trivial.
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H.1 Description of Algorithm

In the SSMR model, the posterior distribution of ξ(βg) is given by

Pr(ξ(βg) | Y ,X) ∝ Pr(ξ(βg)) · p(Y | ξ(βg),X)

∝ Pr(ξ(βg)) · BF(ξ(βg)).

(77)

In the main text, we have discussed the computation of BF(ξ(βg)). Assuming the prior distri-

bution Pr(ξ(βg)) is provided and easy to compute, it is straightforward to apply the Metropolis-

Hastings algorithm. The practical difficulty in applying this algorithm in high-dimensional set-

tings is to find an efficient proposal distribution to ensure the fast mixing of the Markov chain.

In solving Bayesian variable selection problem in the multiple linear regression context, Guan

and Stephens (2011) proposed a novel proposal distribution that prioritizes updates on variables

showing strong marginal associations, an idea related to the sure-independence screening (Fan and

Lv (2008)). We generalize their idea in the context of the SSMR model. In our implementation,

we utilize two types of simple “local” proposal updates:

1. changing the configuration of a candidate covariate.

2. swapping the configurations of two different covariates.

More specifically, each covariate i is proposed according to a weight wi computed by

wi =
n−1∑
j=1

pjBF
[j]
i + pn. (78)

The quantity BF
[j]
i represents the single-variate Bayes factor of covariate i obtained by averaging

(equally) over its all non-zero configuration Bayes factors and controlling for previously identified

(j − 1) top association signals. We construct the weights by starting with an empty set of

controlling covariates and compute the single covariate Bayes factors; we then select the covariate
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with the highest marginal Bayes factor into the set of covariates to be controlled for in the

next round; we repeat this procedure (n − 1) times and in the n-th round, we simply assign

each covariate uniform weight. Finally, we combine these weights into wi by a sequence of non-

increasing probabilities p1 > p2 > ... > pn. The general idea of this proposal distribution is largely

due to Matthew Stephens (personal communication). In the simulation and data application

examples of this paper, we set n = 4 and p1 = 0.624, p2 = 0.250, p3 = 0.125, p4 = 0.010. In

practice, once a SNP is proposed, we randomly assign 85% of the proposals to move type 1 and

the 15% of the proposals to move type 2.

In addition, when processing the posterior samples to compute posterior inclusion probabilities

of covariates, we utilize Rao-Blackwellization techniques to reduce Monte Carlo variance of the

estimates.

H.2 Convergence Diagnostics

We describe two convergence diagnostics of the proposed MCMC algorithm in this section. The

first method is a direct adaption of Brooks et al. (2003), which is a formal convergence testing

procedure and requires running multiple chains. The other informal diagnostic we found useful is

to utilize (77), which essentially is the posterior model probability up to a unknown normalizing

constant. For each MCMC run, we compute the rank correlation between the posterior sampling

frequencies and corresponding posterior scores for the sampled models. When the MCMC algo-

rithm reaches convergence, we expect this correlation is high for the top ranked posterior models.

Our observation is that the rank correlation is indeed high, the formal testing of convergence

usually becomes redundant and can be avoided. As a result, it reduces the computational burden

to run multiple Markov chains.
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H.3 Computational Benchmark

We benchmark the computational performance of the MCMC algorithm (implemented in C++)

analyzing the imputed SNP data set of Gene C21orf57. The data set contains 4797 SNPs, 75

individuals and expression levels from three cell types. The program is running on a computer

with 8-core Intel Xeon 2.13GHz processors and uses 25 Megabtypes of memory space. For 25000

burning steps and 50000 MCMC repeats, the full computation takes 14 minutes 22 seconds real

time.

I Additional Simulation Results

We perform additional simulation studies to fully investigate the difference in performance of

BMS and LASSO. In the end, we identify two primary factors that may explain the observed

performance patterns:

1. the correlation structure of the random errors in the MVLR model.

2. the prior correlation information of non-zero regression coefficients.

Notably, vanilla version of the LASSO algorithm takes account of neither. To evaluate their

individual effects on model selection, we simulate additional data for n = 100, p = 250 and r = 3

under the MVLR model, for which all candidate covariates are independently generated.

I.1 Impact of Error Variance Matrix

We first investigate the impact of the error variance on model selection. To do so, we simulate

independent regression coefficients across subgroups for each selected covariate, but alter the
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error variance matrix Σ for the MVLR model. In particular, we use the following three different

settings for the Σ matrix:

1. Σ = σ2I

2. Σ is diagonal, but the diagonal elements are unequal (i.e., unequal error variances in

different subgroups).

3. Σ has non-zero correlations between subgroups and unequal diagonal elements.

In all three settings, we run both LASSO and BMS on the simulated data sets. For BMS, we

assume the prior effect sizes are independent within each covariate in all cases; and in specifying

the Wishart prior for Σ, we set H → 0 and ν → 0 (i.e. Σ are directly estimated from the data

with essentially no prior influence).

We plot the trade-off between the true positives and false positives from both methods in Figure

3. Our result indicates that when Σ = σ2I, the two methods perform very similarly. However, as

the true Σ departs further away from the diagonal and equal variance structure, the performance

of LASSO becomes worse. In comparison, the performance of BMS is stable in all three settings.

Rothman et al. (2010) also discovered the structure of Σ matrix has significant impacts on the

performance of regularized model selection method. As a remedy, they propose to regularize Σ

matrix jointly with β in the L1 penalty term. However in our context, Σ is considered to be low

dimensional (r = 3) and the motivation to regularize Σ is unclear to us.

I.2 Importance of Prior Information

We also examine the importance of utilizing prior correlation information of non-zero coefficients

on the performance of model selection. Again, we limited our comparisons to BMS and LASSO
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Figure 3: Evaluation of impact of error variance on model selection methods. In setting 1, the
true Σ = σ2I; in setting 2, the true Σ is diagonal but with unequal diagonal elements; in setting
3, the true Σ has the most general form, with non-zero positive correlations and unequal diagonal
elements. BMS has similar performance across the three settings, LASSO seems performing worse
when the true Σ departs further away from σ2I.

using only simulated independent covariate data. Furthermore, we use Σ = σ2I to generate

random errors for the MVLR model in this part of the simulation study.

We create two different schemes in generating regression coefficients. The first scheme is the

same as we described in the main text (i.e., conditioning on a non-zero configuration, γ = (111)

is with probability 0.50 and others are equally likely). In the second scheme, we assign the

activity configuration γ = (111) with probability 1 to the selected covariate. For the ith selected

covariate, the effect sizes in the three subgroups are subsequently simulated from N(β̄i,
β̄2
i

100
),

where β̄i is drawn from a N(0, 1) distribution. The resulting correlation structure of regression

coefficients is most similar to what have been observed in a meta-analysis.

We run both BMS and LASSO on 200 data sets simulated in each scheme. To specify the

distribution of non-zero activity configurations for BMS, we use both the default “objective”

prior (which assigns equal probability mass to each non-zero activity configuration) and the

“perfect” prior (which is the true generative distribution of the simulation data sets).
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We show the simulation results in Figure 4 by plotting the trade-off between the true positives and

the false positives for each method. The results show that BMS with perfect prior information

always achieves the best performance. (We again emphasize that in many genomic applications,

it is possible to accurately estimate this “perfect” prior from data, see examples from Flutre

et al. (2013)). Although the “objective” prior is clearly not optimal, because it captures the

correlations between non-zero effects within a covariate, it still outperforms LASSO in both

cases. Finally, we expect a prior assuming independence of effects of regression coefficients (i.e.

a diagonal Γg matrix) will behave similarly to LASSO, based on our observation in setting 1 of

Figure 3. Therefore, we conclude that the performance of model selection methods are likely to

have significant improvement if the a priori information in data can be accurately utilized.

Figure 4: Evaluation of impact of prior information on model selection methods. Scheme 1 and
2 correspond to two distinct generating distributions used for simulating data. BMS(best) is our
Bayesian model selection method using the true generative distribution as the prior, whereas
BMS(default) uses an “objective” prior. In scheme 1, the objective prior is “closer” to the truth
than in scheme 2. LASSO does not utilize the prior correlation information and essentially
assumes that the regression coefficients are a priori independent.
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J Single SNP Analysis Result for Gene C21orf57

In this section, we show the single SNP analysis results of the eQTL mapping for gene C21orf57

using Dimas data. More specifically, the aim is to examine the results of the tissue specificity

inference from our BMS approach.

As a visual diagnostic, we first fit a simple linear regression model for each SNP in each cell

type, we then examine the resulting regression coefficients across all three cell types for each

SNP using a forest plot. We show the results for the three distinct signals identified by the BMS

approach in Figure 5. By this simple diagnostic, the tissue specificity inference seems intuitively

sensible.
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