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Abstract Recent in situ observations of the solar wind show that charge states (e.g., the O7+/O6+ and
C6+/C5+ abundance ratios) evolved through the extended, deep solar minimum between solar cycles 23
and 24 (i.e., from 2006 to 2009) reflecting cooler electron temperatures in the corona. We extend previous
analyses to study the evolution of the coronal electron temperature through the protracted solar minimum
and observe not only the reduction in coronal temperature in the cycles 23–24 solar minimum but also a
small increase in coronal temperature associated with increasing activity during the “mini maximum” in
cycle 24. We use a new model of the interplanetary magnetic flux since 1749 to estimate coronal electron
temperatures over more than two centuries. The reduction in coronal electron temperature in the cycles
23–24 protracted solar minimum is similar to reductions observed at the beginning of the Dalton Minimum
(∼1805–1840). If these trends continue to reflect the evolution of the Dalton Minimum, we will observe
further reductions in coronal temperature in the cycles 24–25 solar minimum. Preliminary indications in
2013 do suggest a further post cycle 23 decline in solar activity. Thus, we extend our understanding of
coronal electron temperature using the solar wind scaling law and compare recent reductions in coronal
electron temperature in the protracted solar minimum to conditions that prevailed in the Dalton Minimum.

1. Introduction

The deep solar minimum between cycles 23 and 24 and the activity in cycle 24 differed significantly from
those of the prior cycle [Schwadron et al., 2011; McComas et al., 2013]. In the solar minimum, the fast
wind was slightly slower, was significantly less dense and cooler, had lower mass and momentum fluxes
[McComas et al., 2008], and weaker heliospheric magnetic fields [Smith and Balogh, 2008]. In the rise of
activity in cycle 24, the mass flux of solar wind remained low [McComas et al., 2013] and the magnetic flux of
the heliosphere remained at significantly lower levels than observed at previous solar maxima in the space
age [Smith et al., 2013]. The current “mini” solar maximum of cycle 24 shows only a small recovery in particle
and magnetic fluxes [McComas et al., 2013]. Therefore, the cycle 24 mini solar maximum is far more like the
protracted solar minimum than previous maxima observed during the space age.

Ulysses observations showed that the charge state ratios O7+∕O6+ and C6+∕C5+ and the abundance ratio
Fe∕O significantly decreased during the cycles 23–24 minimum [Zhao and Fisk, 2010]. The charge state ratios
O7+∕O6+ and C6+∕C5+ are commonly used to infer electron freezing-in temperatures set low in the corona
(within ∼ 3Rs, where Rs is one solar radius) where the solar wind drags ions out more rapidly than ionization
and recombination can equilibrate them to the local electron temperature. Schwadron et al. [2011] found
that (for a given solar wind speed) the coronal electron temperature (as derived from O7+∕O6+ and C6+∕C5+

measurements from ACE) decreased during the cycles 23–24 solar minimum.

Kasper et al. [2012] showed that for relatively narrow bins of solar wind speeds (bin widths of 50 km/s), the
coronal electron temperature derived from solar wind charge states dropped through the deep cycles 23–24
minimum. The reductions in coronal temperature were associated with significant reductions in the solar
wind He abundance. McIntosh et al. [2011] found that the (supergranular) network emission length scale var-
ied with that of the helium abundance and the degree of iron fractionation in the solar wind. The decrease
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in the helium abundance and the degree of iron fractionation (approaching values of the photosphere) in
the fast wind indicated a significant change in the loading of material into the fast solar wind. Lepri et al.
[2013] also studied solar wind charge states during the deep protracted minimum and concluded that coro-
nal heating was significantly reduced compared to previous minima. The observation of [Kasper et al., 2012]
that coronal temperature dropped for a roughly fixed speed of solar wind was pivotal as it clearly showed
that some other factor in addition to coronal electron temperature must control the speed of solar wind.
According to the solar wind scaling law [Schwadron and McComas, 2003], the particle flux also plays a major
role in controlling the solar wind speed. The energy-per-particle lost through downward heat flux scales
as T 7∕2

m ∕(f0L) where Tm is the maximum coronal electron temperature at or below a scale height, f0 is the
particle flux near the base of the flux tube, and L is the length along a flux tube to the maximum electron
temperature Tm. Therefore, lower particle fluxes near the base of a flux tube cause more significant energy
losses from heat flux conduction.

Schwadron et al. [2011] used the solar wind scaling law [Schwadron and McComas, 2003] to show that cooler
coronal electron temperatures are naturally associated with lower particle fluxes during the protracted min-
imum [McComas et al., 2008; Schwadron and McComas, 2008] because downward heat conduction must be
reduced to keep the average energy loss per particle fixed. The results of the scaling law suggested that the
evolution of the solar wind is linked to the solar dynamo, which caused the coronal magnetic field strength
to decrease in the deep, extended minimum. Further, Schwadron et al. [2011] utilized the scaling law to
project coronal electron temperatures backward in time throughout the space age and found that these
temperatures have been decreasing in successive temperature maxima since 1987, but had been increasing
in successive temperature maxima from 1969 to 1987.

The solar wind scaling law [Schwadron and McComas, 2003] used by Schwadron et al. [2011] relates a solar
wind stream’s 1 AU speed to coronal electron temperature and the particle flux near its source. The energy
budget of any coronal heating model can be understood using the scaling law. Higher coronal electron
temperatures at the source of a flux tube may be the result of higher heating rates.

The physical principles on which the Schwadron and McComas [2003] scaling law is based are well known:
the strong dependence of the solar wind speed on coronal electron temperature is due to coronal heat con-
duction, which sets pressure in loops [Rosner et al., 1978] and the inner boundary conditions of solar wind
[e.g., Hammer, 1982; Leer et al., 1982]. In regions where conductive losses are small, the 1 AU wind speed
achieves its maximum steady state value umax of roughly 800 km s−1, mu2

max∕2 = mv̄2
a − GMsm∕Rs and the

coronal source electron temperature is cool, as observed in coronal holes.

This article extends the analysis of Schwadron et al. [2011] in several respects. We are able to explore obser-
vations made during the rise of cycle 24 to test whether the prediction holds that the increase of solar wind
flux and magnetic flux during increasing activity also cause increased coronal electron temperatures. We will
see that these natural predictions of the solar wind scaling law are confirmed by recent charge state obser-
vations from the Solar Wind Ion Composition Spectrometer on ACE. Further, we make use of new estimates
of magnetic flux since 1749 [Goelzer et al., 2013] to develop estimates of coronal electron temperatures over
centuries. This first-time historic reconstruction of coronal electron temperatures allows us to contextu-
alize of recent anomalies observed in coronal and solar wind properties over the protracted cycles 23–24
minimum and the “mini” cycle 24 maximum.

2. Observations and the Solar Wind Scaling Law

A key question in the cycle 24 maximum is how the Sun recovers from the protracted cycles 23–24
minimum. ACE data has been reanalyzed to glean any possible information about increasing coronal tem-
peratures from charge states in cycle 24. Figure 1 shows what is largely a reanalysis of Schwadron et al. [2011]
including all available charge state data (including data in 2010 and beyond) and a number of additional
improvements including removal of coronal mass ejections (CMEs) identified by Cane and Richardson [2003],
inclusion only of model results with fractional uncertainties less than 25% and observations of flux made for
10 or more consecutive 1 h intervals. In addition, we define tighter 0.75 year time-bins, which are essential
for resolving statistically significant increases in coronal temperature associated with activity in cycle 24. As
in Schwadron et al. [2011], we compare coronal temperatures from charge states (solid lines) to the results of
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Figure 1. Coronal freezing-in temperature deduced from
O7+/O6+ and C6+/C5+ charge state ratios (solid curves) in
the speed bins shown and in 0.75 year time-bins. The anal-
ysis used here is similar to Schwadron et al. [2011] with key
differences being (1) the addition of new data in 2010 and
beyond, (2) smaller time-bins to resolve increases in coronal
temperatures associated with cycle 24 activity, and (3) the
use of the Cane and Richardson [2003] CME list to identify
and remove anomalous behavior due to CMEs.

the solar wind scaling law (dashed lines). In
Schwadron et al. [2011], we found the reduction in
coronal temperature through to 2009, whereas the
current study resolves the increase in coronal tem-
perature in 2010 and 2011 due to increasing solar
activity in these years.

As done in Schwadron et al. [2011], we quantify
the relative root-mean-square (RMS) departures
between the model and observations,

Δ =

√√√√ 1
N

N∑
i=1

(Oi − Ei)2

O2
i

(1)

where Oi represents an observation, and Ei an
expectation value for the O7+/O6+ or C6+/C5+

charge state ratio produced by our model. We cal-
culate the relative RMS departures from the scaling
law model and from the mean of observations.
Table 1 shows these results. Departures from the
scaling law model are generally smaller than the
departures from the mean values in each speed
bin, particularly for the O7+/O6+ ratio. The excep-
tion is in the lowest speed bin (300–400 km/s) of
the C6+/C5+ ratio where the mean value fits the
data as well or better than the scaling law model.
This departure from the scaling law in the lowest
speed solar wind may reflect nonsteady processes
(such as opening loops, the injection of material
from the tips of the helmet streamer, or other pro-
cesses involving interchange reconnection to form
the slow solar wind).

The key observational result that stands out in
Figure 1 is that coronal temperatures do increase

in the cycle 24 maximum. However, coronal temperatures do not recover to their previous highs in cycle
23. Figure 2 shows extended analysis of the scaling law into cycle 24 using OMNI data. We find not only the
increase in coronal temperatures of cycle 24 but also a drop of coronal temperatures in the most recent data.
This result suggests not only that we may have already extended through the cycle 24 maximum in 2013,
but also that we have begun descent into the cycles 24–25 minimum for the 400–500 and 500–600 km/s
speed bins. Coronal temperatures continue to show remarkably low values indicative of the anomalous lack
of solar activity in the era that began approximately in 2005.

In recent work, insights into the evolution of the interplanetary magnetic flux [e.g., Schwadron et al., 2010]
were used to determine its time history based on sunspot number since 1749 [Goelzer et al., 2013]. The
Schwadron et al. [2010] theory treats two components of the interplanetary magnetic field: the magnetic

Table 1. RMS Relative Deviations (Δ) of Model (Δmodel) and Means of Charge State
Ratio (Δmean) for Each Velocity Bina

Type 300–400 (km/s) 400–500 (km/s) 500–600 (km/s)

Δmodel (O7/O6, %) 37 24 32
Δmean (O7/O6, %) 47 52 53
Δmean∕Δmodel (O7/O6) 1.3 2.2 1.6
Δmodel (C5/C5, %) 29 23 29
Δmean (C6/C5, %) 16 25 33
Δmean∕Δmodel (C6/C5) 0.6 1.1 1.2

aBold text emphasizes the significance of deviations with respect to the mean.
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Figure 2. (bottom) Results of the scaling law for O
freezing-in temperature derived from the scaling
law. The curves shown here are in the same speed
bins as Figure 1. In this case, we utilize OMNI data
(http://omniweb.gsfc.nasa.gov/) for the (middle) 1 AU
particle flux, bin by speed and form 1 year medians and
uncertainties. Also shown is the (top) unsigned radial
magnetic field strength, which serves as a proxy for the
magnetic flux in solar wind.

flux associated with ejecta and the magnetic flux
associated with the steady solar wind. Schwadron et
al. [2010] write the rate of CME-associated flux (Φej)
as follows:

dΦej

dt
= f (1 − D)𝜙CME − Φej

(
1
𝜏ic

+ 1
𝜏d

+ 1
𝜏o

)
(2)

where f is the rate of CME injection as a function of
time, D is the fraction of CME flux reconnected imme-
diately after release, 𝜙CME is the flux content of a
typical CME, 𝜏ic is the interchange time scale between
ejecta-associated flux and open flux, 𝜏d is the time
scale for disconnection and loss of ejecta-associated
and open magnetic flux, and 𝜏o is the time scale
for “opening”—the conversion of ejecta-associated
into open flux. Schwadron et al. [2010] details these
time scales further. One additional equation is intro-
duced to account for the rate of change of open
magnetic flux:

dΦo

dt
= −

Φo − Φflr

𝜏d
+

Φej

𝜏o
(3)

where Φflr allows for a minimum “floor” for the
open flux [Wang et al., 2000; Owens et al., 2008;
Zhao et al., 2009; Lockwood et al., 2009; Crooker and
Owens, 2010], which Goelzer et al. [2013] sets to zero.
Following Smith et al. [2013], Goelzer et al. [2013]

scales the frequency of CME ejection (f ) with sunspot number (from the NOAA Geophysical Data Center
(NGDC)) and specifies the constants D=1∕2, 𝜏 ic=20 days, 𝜏d= 6 years. The result is a model of the helio-
spheric magnetic field strength as a function of time with primary input being the solar sunspot number.
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Figure 3. The O freezing-in temperature (red, green, and
blue curves) from the solar wind scaling law plotted with
monthly sunspot number (black lines) (http://www.sidc.be).

Figure 3 compares estimated freezing-in tem-
peratures and sunspot numbers. Note that the
reductions in sunspot number do appear associ-
ated with lower freezing-in temperature in 2013.
While this again supports the concept that we
have begun descent in solar activity, we also see in
cycles such as 23 the presence of a double peak in
sunspot numbers. Time will tell if we have in fact
gone beyond solar maximum in 2013.

The Goelzer et al. [2013] time history of magnetic
flux is used to estimate solar wind particle flux
using the direct scaling between particle and
magnetic flux [Schwadron and McComas, 2008]:
Ṁsw∕ΦB=1.25 mg s−1 Wb−1 where Ṁsw solar wind
mass loss and ΦB is the solar wind magnetic
flux. With particle flux estimated in this way,
we solve for coronal electron temperature (the
equivalent of the oxygen freezing-in tempera-
ture) since 1749 using the solar wind scaling law
(Figure 4, left).
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Figure 4. The O freezing-in temperature since 1749 from the solar wind scaling law using solar wind particle
flux scaled from interplanetary magnetic field strength. We show both the results when using the magnetic field
reconstruction based on (left) sunspot number by Goelzer et al. [2013] and (right) reconstruction based on 10Be
measurements by McCracken and Beer [2007]. The model of the interplanetary magnetic field is derived from a
rate balance equation taking into account that the total flux of the interplanetary magnetic field evolves over
the solar cycle due to a combination of flux that extends well outside of 1 AU and is associated with the solar
wind, and additionally, transient flux associated with coronal mass ejections (CMEs). In addition to the CME erup-
tion rate, there are three fundamental processes involving conversion of magnetic flux (from transient to wind
associated), disconnection and interchange reconnection that control the levels of each form of magnetic flux in
the interplanetary medium [Schwadron et al., 2010; Smith et al., 2013]. The CME rate is based on the history of
sunspot numbers, which allows us to derive the time history of interplanetary magnetic flux over hundreds of years
[Goelzer et al., 2013].

There is a wide array of sunspot-based and geomagnetic reconstructions of the heliospheric magnetic
field [e.g., Solanki et al., 2000; Lockwood, 2013, and references therein]. In principle, the techniques
employed here to reconstruct coronal temperatures could be applied using any reconstruction of the
heliospheric magnetic field. Therefore, it is informative to consider a second example in which we esti-
mate historic coronal temperatures using a reconstruction of the heliospheric magnetic field based on
10Be, a radionuclide that is deposited into polar ice due to spallation reactions with galactic cosmic rays
in the atmosphere and subsequent precipitation. During lower solar activity, enhanced fluxes of galactic
cosmic rays produce larger numbers of radionuclides that become trapped in polar ice. Ice core sam-
ples are used to determine the level of solar activity down to an ∼1 year resolution. Through comparison
with sunspot data and recorded heliospheric magnetic field strength, it has been shown that sunspot
minima and the corresponding changes to the heliospheric magnetic field correlates with increases
in the 10Be levels [McCracken and Beer, 2007; McCracken et al., 2013]. These studies depend on the cal-
ibration of Caballero-Lopez et al. [2004] for 10Be versus heliospheric magnetic field strength. Figure 2
(right) shows the results using the 10Be reconstruction [McCracken and Beer, 2007] of the heliospheric
magnetic field.

The similarity between the evolution of sunspot numbers in cycles 23 and 24 has allowed Goelzer et al.
[2013] to estimate how cycle 24 will decline. Goelzer et al. [2013] predict the coming 10 years of sunspot
numbers by noting that early in 2013 marks the peak in the solar cycle. Prior to this the onset of the Dalton
Minimum closely resembles the last 15 years, and at this point the sunspot number is comparable to what
was seen during the first reduced maximum of the Dalton Minimum. The years following 1805 thereby serve
as a prediction for the coming 10 years of solar activity. With the 10 year predictions of sunspot number, the
theory of Schwadron et al. [2010] is applied to determine the levels of interplanetary magnetic flux [Goelzer
et al., 2013]. The conversion of magnetic flux to particle flux and application of the solar wind scaling law
to infer coronal temperature is performed in the same manner as indicated previously. Figure 5 shows the
results for coronal electron temperature (oxygen freezing-in temperature) in the years leading up to 2013
and then the resulting prediction for the coming solar minimum computed using the Dalton Minimum years
1805 onward. Specifically, the prediction using this projection of sunspot number is that coronal
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Figure 5. The estimated O freezing-in temperature from 1997 to
present and projected out to 2020 (shaded region) from the solar wind
scaling law using solar wind particle flux scaled from projections of the
interplanetary magnetic field strength [Goelzer et al., 2013]. The model
of the interplanetary magnetic field is derived from a rate balance
equation [Schwadron et al., 2010; Smith et al., 2013] with CME rate esti-
mated from sunspot numbers [Goelzer et al., 2013]. The projection of
sunspot numbers beyond 2013 is estimated from sunspot number evo-
lution during the Dalton Minimum, which showed remarkable similarity
to the evolution from cycles 23 to 24.

temperatures will fall to levels even lower
than observed in the protracted cycles
23–24 minimum. There are preliminary
indications of post cycle 24 decline in
solar activity in Figure 2.

3. Summary

We have extended the study of
Schwadron et al. [2011] by showing that
the solar wind scaling law agrees with
observations in the deep solar mini-
mum between cycles 23 and 24 and the
slight increase in solar activity in the mini
maximum of cycle 24. We observe fur-
ther preliminary indications in 2013 of
declining activity following the cycle
24 maximum.

The solar wind scaling law follows from
scaling injected Poynting flux and par-
ticle flux based on large-scale magnetic
flux in the heliosphere. The scaling law
takes into account energy losses in the
form of heat conduction and gravita-
tional potential. As a result, our model
predicts changes in the solar corona
based on the evolution of the helio-
spheric magnetic field. A significant
strength of the scaling law is that it

applies not only for the evolution of fast and slow wind in previous (normal) solar cycles, but also during
the abnormal mini maximum of solar cycle 24. The additional years of analysis extended from Schwadron
et al. [2011] through the mini maximum therefore provides significantly stronger support for the solar wind
scaling law.

The Goelzer et al. [2013] model of heliospheric magnetic flux is derived by scaling the rate of coronal mass
ejections in proportion to sunspot numbers. This provides the basis to estimate heliospheric magnetic flux
since 1749. The solar wind scaling law is applied here to estimate coronal temperatures over hundreds of
years. We observe a similar reduction in coronal temperatures during the cycles 23–24 minimum as we find
during the period near the beginning of the 1800s at the start of the Dalton Minimum. This suggests that
the next solar minimum may continue to show declining coronal temperatures and further reductions in
solar wind particle flux.

In summary, we have shown that the evolution of coronal freezing-in temperatures over the solar cycle
observed with the ACE spacecraft is consistent with the solar wind scaling law. Reduction in coronal tem-
peratures and particle flux over the cycles 23–24 minimum and their small increase in the mini maximum
of cycle 24 are related to the evolution of the heliospheric magnetic field. The projection of the scaling law
backward in time since 1749 suggests that the abnormally low coronal temperature and particle flux in the
mini maximum of cycle 24 may be similar to conditions that prevailed near the beginning of the Dalton
Minimum in the early 1800s.
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