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ABSTRACT

The long composite blades on large wind turbines experience tremendous stresses while in operation. There is an interest in
implementing structural health monitoring (SHM) systems inside wind turbine blades to alert maintenance teams of damage
before serious component failure occurs. This paper proposes using an energy harvesting device inside the blade of a
horizontal axis wind turbine to power a SHM system. The harvester is a linear induction energy harvester placed radially
along the length of the blade. The rotation of the blade causes a magnet to slide along a tube as the blade axis changes
relative to the direction of gravity. The magnet induces a voltage in a coil around the tube, and this voltage powers the
SHM system. This paper begins by discussing motivation for this project. Next, a harvester model is developed, which
encompasses the mechanics of the magnet, the interaction between the magnet and the coil, and the current in the electrical
circuit. A free fall test verifies the electromechanical coupling model, and a rotating test examines the power output of a
prototype harvester. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND LITERATURE REVIEW

Large-scale wind turbines are designed with long blades to increase the achievable power output of the turbine. These
blades undergo years of fatigue, which can lead to crack formation.' Destruction of a wind turbine blade can be disastrous
and results in costly downtime.> Therefore, there is a desire to utilize structural health monitoring (SHM) equipment to
examine the blades for damage while the wind turbine is in operation.” Batteries inside the blade could supply power to
the equipment, but batteries would require regular replacement. An alternative power source would be an energy harvesting
device inside the wind turbine blade. The harvester would convert the rotation of the rotor into electrical power useful for
the SHM equipment. This approach allows one to design a self-powering SHM and energy harvester system for easier
installation inside the blade.

Wind turbines with power outputs between 1 and 5 MW turn at speeds up to 20rpm.*> Any useful energy harvester
would have to function under these extremely low driving frequencies. Several researchers have examined harvesters for
rotating environments. In 2009, a research group from Los Alamos National Laboratory examined several energy
harvesting techniques to power a SHM device inside a wind turbine blade.® Although electromagnetic energy harvesting
was not studied, piezoelectric harvesters were used to capture energy from the spinning rotor. An L-shaped harvester
had a first natural frequency of 2.7 Hz (162 rpm), far above the driving frequencies expected in a large-scale wind turbine.
Conrad ’ developed an electromagnetic energy harvester based on a slider-augment pendulum. With the device placed 1 m
from the center of rotation, the harvester produced about 80 mW to a 48 Q load resistor at 150 rpm. Gu and Livermore ® and
Manla, et al. ° have examined placing energy harvesters inside automobile tires. However, these harvesters produced only a
few tens of microwatts at operating speeds below 200 rpm.
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This paper examines using a linear electromagnetic energy harvester to power the SHM equipment. The rotation of the
wind turbine causes a magnet to slide along the length of a tube. The motion of the magnet induces a voltage in coil around
the tube. This voltage energizes an electrical circuit and powers the SHM system. This energy harvesting device is capable
of operating at the extremely low rotation speeds of large-scale wind turbines.

2. MODEL DEVELOPMENT

2.1. Harvester layout and mechanics

Figure 1(a) shows a schematic of the energy harvester assembly, and Figure 1(b) shows the harvester inside a wind turbine
blade. The design consists of a magnet inside a tube that is mounted radially along the length of the turbine blade. As the
rotor spins, the changing orientation of the blade causes the magnet to slide along the tube. Figure 1(c) shows a free body
diagram of the magnet. Four forces act on the magnet: the force of gravity (M g), an electromagnetic drag force (Fe,), a
Coulomb friction force (Fy), and a normal force () from the tube walls. The electromagnetic drag force is produced by

the induced magnetic field of the coil interacting with the magnetic field of the magnet.
From Newton’s second law of motion in a rotating coordinate frame, the equation of motion governing the magnet is

M —MQ*r + Fy + Fe = —M gcos(0), (1
where r is the radial position of the magnet, 0 is the clockwise angle of the harvester with respect to the vertical position, M
is the mass of the magnet, € is rotation speed of the wind turbine in radians per second, g is the acceleration due to gravity,

and an overdot denotes differentiation with respect to time. Applying Newton’s second law in the #-direction leads to an
expression for the normal force N,

N =M (gsin(0) — 27Q — rQ). )

This normal force appears in the expression for the Coulomb friction force. We define F), as the applied force on the
magnet, which attempts to counter the force of friction, namely

Fy = MQ*r — Fey — Mgcos(0). 3)
Let u be the static coefficient of friction between the magnet and the tube wall and gy be the kinetic coefficient of

friction. If the magnet is at rest (i.e., 7 = 0) and |Fl < u M, then the magnet will remain at the same radial position and
will not slide along the tube. If these conditions are not met, the magnet will move, and the friction force becomes

Fy = [Nl sgn(7). O]
The electromagnetic drag force is related to the current (/) in the coil by
Fem = o(r)I, )
where o(r) is the electromechanical coupling factor. This coupling factor is a function of the radial position of the magnet.
This factor will be derived in the next section.

Because the magnet cannot pass through the ends of the tube, the motion of the magnet must account for the imposed
boundaries from the tube. Let r; be the radial position of the bottom of the tube and r, be the radial position of the top of the
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Figure 1. (a) Energy harvester assembly. (b) Energy harvester inside a wind turbine blade. (c) Free body diagram of the magnet.
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tube. If r equals ry, then the radial velocity of the magnet cannot be negative (#=0). Likewise, if r equals r,, then the radial
velocity cannot be positive (7<0).

2.2. Electromechanical coupling factor

Next, the coupling coefficient between the magnet and the coil is derived. The induced voltage (¢) relates to radial velocity
of the magnet (i) through the following equation:

e=oa(r) r. (6)

Often, the coupling factor is approximated as a constant to simplify analysis.'®!" However, this is not acceptable for this
energy harvester because of the large amplitude of motion for the magnet. By approximating the magnet as a magnetic
dipole moment, Faraday’s law of induction gives the coupling factor as '>'?

_ lygml, a

a(r) = 510 9

a=ay’

2 c
)2-1n( a’>+(r—c) +a) |2,

at+(r—c

where p is the permeability of free space, m is the magnetic dipole moment of the permanent magnet, [, is the length of
wire comprising the coil, V; is the volume of the coil, ¢; is the radial position of the bottom of the coil, ¢, is the radial
position of the top of the coil, a; is the inner radius of the coil, and a, is the outer radius of the coil.

2.3. Circuit design

The coil of the harvester is connected to an electronic circuit. Figure 2 shows a simple load resistor circuit. The coil is
treated as a voltage source (¢) in series with an inductor (L..;;) and a resistor (R..;;). The energy produced from the motion
of the magnet is dissipated across a load resistor (Ry..q). This dissipated energy indicates the potential energy production of
the harvester to a SHM system. The simplicity of this circuit is useful for validating the model of the harvester and for
studying the harvester’s behavior. The simple load resistor circuit is governed by

Lcoilj + (Rcoil + Rload)l =&= O‘(r) F. (8)
The power (Pjo,q) dissipated through the load resistor is

2
Vload

2
Proad = I"Rioad = )
Rload

©)

where V),,q is the voltage across the load resistor. The total energy dissipated by the load resistor is the integral of the load
power over time.

2.4. Numerical simulation

The equations of the harvester model are incorporated into a MATLAB code based on Euler’s method for solving differential
equations. Figure 3 shows the path of the magnet predicted by the numerical solver for one rotation of an example harvester.
The harvester rotates clockwise, and the acceleration due to gravity points down the page. The curves denote the path of the
magnet for various rotation speeds, a black dot indicates the magnet’s initial location, and the inner and outer rings indicate
the tube boundaries. Starting with the tube pointing downward, the magnet sits at the outer tube end. As the harvester rotates,

Lcoil Rcoil
NN—AMWNV

£ 1} % Rigaa

Figure 2. Load resistor circuit.
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Figure 3. Magnet's path inside the energy harvester for various rotation speeds.

the magnet remains at the outer end until the tube rotates far enough for gravity to overcome the static friction and the
centrifugal effects. Then the magnet slides from the outer tube end to the inner end. During this slide, voltages will be
induced across any coils along the tube. The magnet will remain at the inner tube end until the tube rotates far enough
for gravity to move the magnet again. The magnet slides along the coil twice per rotation for the 20 and 40 rpm cases.
For higher speeds, the centrifugal effects on the magnet hinder its motion. The magnet does not fall completely to the
bottom of the tube for the 50 rpm case in Figure 3. At 60 rpm, the magnet only slightly moves away from the outer tube
end. The harvester’s power output diminishes in both of these high rotation speed cases.

3. EXPERIMENTAL VALIDATION
3.1. Free fall test

Before testing the full harvester model, it is necessary to validate the expression for the electromechanical coupling factor.
Figure 4(a) shows a free fall test assembly. A cylindrical magnet is dropped vertically through a coil resting on a PVC pipe
assembly. The terminals of the coil are connected to a load resistor. This test examines the magnet without the complications of
the rotating harvester or friction from the tube wall. Table I lists the parameters for this test. Figure 4(b) shows the total energy
dissipated over the entire fall of the magnet using several load resistances. Five trials were performed for each resistance
value, and the total energies over the five trials were averaged.

The value of the magnetic dipole moment m was estimated using two methods. First, the dipole moment was approxi-
mated through the formula
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Figure 4. (a) Free fall test assembly and a neodymium magnet. (b) Data and model predictions for the energy dissipated across
varying resistances.
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Table I. Parameters for the free fall test. The bottom of the tube is taken to be r=0in.

Parameter Symbol Value
Magnet Height — 0.75in (19.1 mm)
Diameter — 0.5in (12.7 mm)
Mass M 189
Coll Inner radius ER 0.509in (12.9mm)
Outer radius N 1.02in (28.1 mm)
Coil height h 1.171in (29.7 mm)
Wire diameter D, 0.0080in (0.203 mm)
Coil resistance Reoil 426 Q
Coil inductance Leoil 0.998 H
Distance from coil to tube bottom C1 2.50in (63.5mm)
Tube Tube length / 6.00in (152 mm)
Other DAQ sampling rate — 1000 Hz
m— BV, 7 (10)
Ho

where B, is the residual magnetic flux of the permanent magnet and Vi, is the volume of the magnet."* Using the informa-
tion in Table I and taking residual flux density for the neodymium magnet to be 1.15 T.'* the magnetic dipole moment was
estimated to be 2.21 A-m>. Because the magnet’s strength may differ from the manufacturer’s specification, a second
estimation of the dipole moment was obtained by varying the value of m in the model until the energy curve predicted from
the model matched the energy curve from the data. Using this approach, the dipole moment was found to be 2.1 A-m>. The
average error in the energy dissipated between the data and the model was about 8% for a dipole moment of 2.21 A-m” and
about 2% for a dipole moment of 2.1 A-m>. Unless otherwise specified, 2.1 A-m* will be used for the magnetic dipole
moment. The accuracy of the model over the range of load resistances in Figure 4(b) indicates the electromechanical
coupling factor expression is sufficiently accurate for describing the interaction between the magnet and the coil.

3.2. Rotating test

Having found the value of the dipole moment and verified the voltage induction model, the full model of the harvester can
be examined. Figure 5 shows the rotating test, and Table II lists the parameters for the rotating test. The same coil and
magnet are used in this test as in the free fall test. The system consists of a prototype energy harvester placed radially inside
a bicycle wheel. An electric motor spins the wheel, and a laser tachometer measures the rotation rate. A wireless data
acquisition (DAQ) system measures the output voltage across a 176 Q load resistor. This voltage is used to calculate the
average power dissipated at a given rotation speed over a 60's test.

Magnet Coil Tube

Counterweight
Block with
Reflective Patch

Batteries for
Wireless DAQ

Wireless DAQ

Battery < Electric Motor
for Motor
Figure 5. Rotating test apparatus.
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Table Il. Parameters for the rotating test.

Parameter Symbol Value
Magnet Height — 0.75in (19.1 mm)
Diameter — 0.5in (12.7 mm)
Mass M 189
Coll Inner radius a 0.509in (12.9mm)
Outer radius a» 1.02in (28.1 mm)
Coil height h 1.171in (29.7 mm)
Wire diameter D, 0.0080in (0.203 mm)
Coil resistance Reoil 426 Q
Coil inductance Leoil 0.998 H
Distance from coil to center of rotation C 4.63in (118 mm)
Tube Radial position of the bottom of the tube n 1.88in (47.6 mm)
Radial position of the top of the tube ) 9.26 in (235 mm)
Tube length / 7.38in (187 mm)
Other Load resistance Rioad 176 Q
DAQ sampling rate — 5000 Hz

Figure 6 shows the average load power to the load resistor versus rotation rate. The figure shows that increasing the
rotation rate increases the power output until the average power reaches a maximum. Further increasing rotation speed
causes the centrifugal effect on the magnet to become significant compared with the pull of gravity. The result is the magnet
does not travel as far down the tube, less instantaneous velocity is achieved, and consequently, less power is produced. At
sufficiently high speeds, gravity cannot overcome the centrifugal effects and the static friction from the tube. The magnet
will cease to move, and no power will be produced.

A model without friction was first used to estimate the average load power, but this model underestimated the power
output of the harvester at low speeds and failed to accurately predict the peak speed. Including Coulomb friction to the
model allowed the model to more closely match the overall behavior of the data. By tilting the tube until the magnet began
to move and then measuring the inclination angle, the static coefficient was estimated to be about 0.35. Using this and
setting the kinetic coefficient of friction to be 0.25, the model predicts a maximum average power output of 3.5 mW at
45 rpm. The data shows a maximum power output of 3.3 mW at 44 rpm. The error between the model with friction and
the data is about 3% over rotation rates below 45 rpm.

4. APPLICATION IN FULL SCALE WIND TURBINES

The power curve in Figure 6 will change once the harvester is placed inside a large scale wind turbine. Figure 7 shows
simulation results for the average power output versus rotation rate for varying tube lengths and positions. The tube
length is /, and the radial position of the bottom of the tube is ;. The model uses the same parameters as the coil
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Figure 6. Average power versus rotation rate of the wheel.
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Figure 7. Average power versus rotation rate for various tube geometries.

and load resistor circuit from the experimental setup. The coil is placed in the middle of the tube for each simulation.
Figure 7 shows that allowing the magnet to travel farther from the center of rotation (increasing either r; or /) decreases
the range of rotation speeds for which the harvester produces power. For a given r; and rotation speed, increasing the
tube length increases the power output until the tube length becomes long enough that the centrifugal effect on the
magnet hinders its motion. The longer tube results in a longer travel distance for the magnet, which allows the magnet
to reach higher velocities and generate more power. To maximize the power output of the harvester, the results in
Figure 7 show that the device should be placed close to the root of the blade and the tube length should be as long
as possible while still allowing the magnet to move over the range of operating speeds of the turbine. It should be
noted that higher power outputs can be achieved by optimizing the coil geometry, optimizing the electrical properties
of the circuit, using multiple coils per harvester, and using multiple harvesters per blade.'?

A wireless SHM system can require between 100 and 500 mW of power to operate continuously.'>"'® To help achieve
the required power, a duty cycle system and an energy storage circuit could be employed to power the SHM equipment.
Such a system would allow the harvester to store energy on a set of capacitors until the capacitors are sufficiently charged.
Then the capacitors would power the SHM system for a few minutes per day.'” This approach reduces the instantaneous
power demand on the harvester system and allows the harvester to power the SHM equipment.

5. CONCLUSION

This paper has outlined the development of an electromechanical energy harvester for use inside wind turbine blades. A
model of the harvester was developed that incorporated the slider magnet’s dynamics, the electrical circuit, and the cou-
pling between the mechanics and the electrical circuit. A free fall test validated the electromechanical coupling model with
the magnet having a magnetic dipole moment of 2.1 A-m?. Next, a rotating test was used to examine the full system model.
The prototype harvester was able to produce up to 3.3 mW at 44 rpm. The model with a static coefficient of friction of 0.35
and a kinetic coefficient of friction of 0.25 was able to match the data to within an error of about 3%. Additional coils per
harvester, additional harvesters per blade, and implementing a duty cycle system and an energy storage circuit would allow
this harvester to power a SHM system inside a large scale wind turbine.
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