Silencing of FGF-21 expression promotes hepatic gluconeogenesis and glycogenolysis by regulation of the STAT3–SOCS3 signal

Cong Wang1, Jihuan Dai1, Mengliu Yang1, Guangjiang Deng2, Shengnan Xu1, Yanjun Jia1, Guenther Boden3, Zhongmin A. Ma4, Gangyi Yang2 and Ling Li1

1 Key Laboratory of Diagnostic Medicine (Ministry of Education) and Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400016, China
2 Department of Endocrinology, the Second Affiliated Hospital, Chongqing Medical University, 400010, China
3 Division of Endocrinology/Diabetes/Metabolism and Clinical Research Center, Temple University School of Medicine, Philadelphia, PA 19140, USA
4 Technology Transfer Center, University of Michigan, Ann Arbor, MI, USA

Keywords
FGF-21 knockdown; insulin resistance; liver glucose fluxes; SOCS3; STAT3

Correspondence
L. Li, Department of Clinical Biochemistry, College of Laboratory Medicine, Chongqing Medical University, 400010 Chongqing, China
Fax: +86 23 68485005
Tel: +86 23 68485216
E-mail: lingli31@hotmail.com

(Received 30 September 2013, revised 29 January 2014, accepted 25 February 2014)
doi:10.1111/febs.12767

Insulin resistance is a metabolic disorder associated with type 2 diabetes. Recent reports have shown that fibroblast growth factor-21 (FGF-21) plays an important role in the progression of insulin resistance. However, the biochemical and molecular mechanisms by which changes in FGF-21 activation result in changes in the rates of hepatic gluconeogenesis and glycolysis remain to be elucidated. In this study, we developed adenovirus-mediated shRNA against FGF-21 to inhibit FGF-21 expression in ApoE knockout mice. Using this mouse model, we determined the effects of FGF-21 knockdown in vivo on hepatic glucose production, gluconeogenesis and glycogenolysis, and their relationship with the signal transducer and activator of transcription 3 (STAT3)/suppressor of cytokine signaling 3 (SOCS3) signal pathways. We show that liver-specific knockdown of FGF-21 in high-fat diet-fed ApoE knockout mice resulted in a 39% increase in glycogenolysis and a 75% increase in gluconeogenesis, accompanied by increased hepatic expression of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. Furthermore, FGF-21 knockdown decreased phosphorylation of STAT3 and SOCS3 expression in high-fat diet-fed mice. Our data suggest that hepatic FGF-21 knockdown increases gluconeogenesis and glycogenolysis by activation of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase via the STAT3/SOCS3 pathway, ultimately leading to exacerbation of hepatic insulin resistance.

Introduction

Fibroblast growth factor-21 (FGF-21) is a recently identified member of the FGF family, and is preferentially expressed in the liver [1]. We previously demonstrated that plasma FGF-21 levels are elevated in patients with type 2 diabetes and patients with diabetic ketoacidosis [1,2], and decreased in response to rosiglitazone treatment [3]. In fact, in both diet-induced obese mice [4] and genetically obese ob/ob mice, FGF-21 plasma levels and expression in white adipose tissue and liver are increased [5]. It is therefore believed that FGF-21 resistance occurs in obesity and diabetes [6]. In obese and diabetic rodents, treatment with pharmacological doses of FGF-21 reduced body fat and improved glucose tolerance, insulin sensitivity and lipid levels [7–11]. Nevertheless, the physiological roles of FGF-21 in the
development of insulin resistance remain to be established. In the present study, we have developed an adenovirus-mediated RNAi technique in which shRNA against FGF-21 were used to inhibit FGF-21 expression in vivo. The major advantages of shRNA silencing of gene expression in a normal adult animal are its efficiency and specificity, avoiding the confounding compensatory developmental effects often associated with gene knockout mouse models.

It has been recognized that lipid disorders are the earliest events in development of insulin resistance and type 2 diabetes [12]. ApoE knockout (KO) mice develop severe atherosclerosis and hypercholesterolemia on a standard chow diet (SCD), and are widely used as a model of insulin resistance when fed with high-fat diet (HFD) [13]. HFD-fed ApoE KO mice are also a useful model for studying the lipid disorders and insulin resistance associated with increased tissue expression and plasma levels of FGF-21 [14,15]. Type 2 diabetes and insulin resistance are believed to arise from a combination of genetic and environmental factors. Therefore, this mouse model, in which insulin resistance is developed by feeding an HFD (environmental factor) to ApoE KO mice (genetic factor), closely simulates human insulin resistance conditions, and was used to determine the effect of elevation of circulating FGF-21 on the onset of insulin resistance.

Recent studies have shown that the signal transducer and activator of transcription 3 (STAT3)/suppressor of cytokine signaling 3 (SOCS3) pathway regulates signal transduction of many factors related to insulin sensitivity and glucose metabolism [16,17]. As FGF-21 is a metabolic regulator, it is important to determine whether the STAT3/SOCS3 pathway is involved in the metabolic effects of FGF-21. In this study, we examined the effect of FGF-21 knockdown on the relative contribution of gluconeogenesis and glycogenolysis to the glucose-6-phosphatase (G6Pase) flux and the STAT3/SOCS3 pathway using adenovirus-mediated shRNA of FGF-21 in HFD-fed mice.

Results

RNAi-mediated FGF-21 knockdown decreased hepatic expression and plasma levels of FGF-21

A previously validated shRNA sequence against FGF-21[18] was introduced into an adenovirus vector (Ad-shFGF-21), and its relatively silencing efficiency was compared with that of a control sequence (Ad-shGFP). Treatment with Ad-shFGF-21 achieved 43% and 50% reductions in the levels of FGF-21 mRNA and protein in the liver (P < 0.01, Fig. 1A,C) but no reduction was observed in muscle (Fig. S1). When compared with HFD-fed ApoE KO mice (HF group) and HFD-fed plus Ad-shGFP-treated ApoE KO mice (GFP group), HFD-fed plus Ad-shFGF-21 treated mice (HFG group) showed a 30% reduction in the plasma FGF-21 levels (P < 0.01, Fig. 1B), demonstrating that Ad-shFGF-21 effectively reduces FGF-21 expression in vivo.

Effect of RNAi-mediated FGF-21 knockdown on metabolic parameters

We next assessed the effects of FGF-21 knockdown on metabolic parameters. Values for body weight and many plasma parameters, including fasting blood glucose, lipids, insulin and hepatic triglycerides (TG), were significantly higher in ApoE KO mice fed the HFD than in their littermates fed a standard chow diet (SCD) (NF group) (P < 0.05 or P < 0.01, Table 1). There were no significant differences in fasting blood glucose, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), free fatty acids (FFA), or insulin and hepatic TG between the HF and GFP groups. However, the plasma levels of fasting blood glucose, TC, LDL-C, FFA, insulin and hepatic TG in the HFG group were significantly higher than in the HF and GFP groups (P < 0.05 or P < 0.01, Table 1); the HDL-C level was significantly lower (P < 0.05).

Effect of RNAi-mediated FGF-21 knockdown on glucose homeostasis and insulin sensitivity

To assess the effects of FGF-21 knockdown on glucose homeostasis and insulin action in HFD-induced insulin resistance, we performed euglycemic/hyperinsulinemic clamp studies in the four experimental groups (Fig. 2A, B). Plasma glucose was clamped at ~ 6 mM in all groups (Fig. S2A), whereas plasma insulin levels were increased approximately four- to sixfold compared with basal values. Despite identical insulin infusion rates (5 mU·kg⁻¹·min⁻¹), plasma insulin levels during the clamps were higher in the HFG group than in the other groups (P < 0.01, Fig. 2C). TG, TC and FFA levels were suppressed by hyperinsulinemia in all animals (P < 0.01), but remained significantly higher in the HFG group (P < 0.05 or P < 0.01, Fig. 2D-F). Figure 3A shows the glucose infusion rates required to maintain euglycemia in the various groups. The glucose infusion rate was decreased by ~ 76% in mice fed the HFD (HF group) compared with mice fed the SCD (NF group, P < 0.01). However, the glucose infusion rate (GIR) was significantly decreased in the HFG group compared with the GFP group (P < 0.01), indicating...
increased whole-body insulin resistance. The rate of glucose disappearance in HFD-fed mice (HF group) was lower than that in SCD-fed mice (NF group, ~80%, \(P < 0.01 \)), and administration of HFD plus Ad-shFGF-21 in the HFG group resulted in a further 5% decrease in the rate of disappearance of glucose compared with that in the GFP group \((P < 0.05, \text{Fig. 3B}) \). As expected, suppression of hepatic glucose production (HGP) by hyperinsulinemia was almost 70% in the NF group \((14.2 \pm 0.3 \text{ versus } 4.3 \pm 2.3 \text{ mg kg}^{-1} \text{min}^{-1}, \text{Fig. 3C})\).
but only ~51% in the HF group (16.2 ± 0.3 versus 8.0 ± 5.5 mg kg⁻¹ min⁻¹). Importantly, in the HFG group, HGP was suppressed by only 20% (from 18.0 ± 1.1 to 14.4 ± 2.4 mg kg⁻¹ min⁻¹), indicating a marked increase in hepatic insulin resistance. The insulin action on glucose production was expressed as a percentage suppression of the basal levels (Fig. 3D). In addition, the GIR to insulin during the clamp was lowest in the HFG group, suggesting more serious insulin resistance in peripheral tissues of these animals (P < 0.05 or P < 0.01, Fig. 3E). The rate of glucose disappearance calculated on the basis of [3-H]-glucose radioactivity levels is shown in Fig. S2.

Mechanisms by which FGF-21 knockdown increases glucose production

To determine the mechanism by which FGF-21 knockdown modulates liver glucose homeostasis, we examined the in vivo glucose flux through G6Pase and the relative contribution of glucose cycling to G6Pase flux. As shown in Fig. 4A,B, compared to SCD feeding (NF group), HFD feeding in the HF group increased the flux through G6Pase by 36% (from 7.8 ± 1.1 to 10.6 ± 1.3 mg kg⁻¹ min⁻¹; P < 0.01) and glucose cycling by 45% (from 2.2 ± 0.3 to 3.2 ± 0.5 mg kg⁻¹ min⁻¹; P < 0.01). FGF-21 knockdown in the HFG group further increased the G6Pase flux by 32% (from 10.6 ± 1.3 to 13.8 ± 1.0 mg kg⁻¹ min⁻¹, P < 0.05) and glucose cycling by 28% (from 3.2 ± 0.5 to 4.1 ± 0.6 mg kg⁻¹ min⁻¹, P < 0.05, Fig. 4A,B), suggesting that FGF-21 knockdown increased the activity of G6Pase in the livers of HFD mice. We next examined the effect of FGF-21 knockdown on the relative contribution of glycogenolysis and gluconeogenesis to G6Pase flux. The effects of HFD feeding on glucose production and G6Pase flux in mice were accounted by a 25% increase in the rate of glycogenolysis (2.0 ± 0.5 mg kg⁻¹ min⁻¹ in the HF group versus 1.3 ± 0.4 mg kg⁻¹ min⁻¹ in the NF group, P < 0.05) and a 75% increase in the rate of gluconeogenesis (6.0 ± 1.6 mg kg⁻¹ min⁻¹ in the HF group versus
3.0 ± 0.6 mg·kg⁻¹·min⁻¹ in the NF group, *P < 0.01*). In the HFG group, the increase in HGP by FGF-21 knockdown was accounted for by a 39% increase in the rate of glycogenolysis (5.6 ± 1.1 mg·kg⁻¹·min⁻¹) and a 61% increase in the rate of gluconeogenesis (8.8 ± 1.2 mg·kg⁻¹·min⁻¹) (Fig. 4C,D). Furthermore, hepatic glycogen in the HFG group was significantly higher than that in the HF and GFP groups (*P < 0.05, Table 1*).

In agreement with changes in glucose metabolism, the FGF-21 knockdown in the HFG group significantly increased hepatic G6Pase mRNA and protein expression compared with in other three groups (Fig. 5A,C). Moreover, FGF-21 knockdown in the HFG group also resulted in a marked increase in phosphoenolpyruvate carboxykinase (PEPCK) mRNA and protein expression (Fig. 5B,D). Hepatic mRNA expression of pyruvate carboxylase was significantly lower in the NF group than in the HF and GFP groups. However, hepatic pyruvate carboxylase mRNA levels in the HFG group were similar to those in the HF and GFP groups (Fig. 5E).

Effects of FGF-21 knockdown on the STAT3/SOCS3 pathway

Recent in vivo studies have shown that STAT3 directly targets the regulatory regions of both G6Pase and PEPCK [17,19]. To determine whether the effect of FGF-21 knockdown on insulin sensitivity was associated with changes in STAT3 signaling, we examined the activation of STAT3 in the liver by western blot analysis. HFD feeding in the HF and GFP groups reduced phosphorylation of STAT3 in the liver compared with SCD feeding in the NF group, and FGF-21 knockdown in the HFG group further promoted this reduction, suggesting that FGF-21 may regulate STAT3 activation by directly phosphorylating its tyrosine residues (Fig. 6A). Because one of the transcriptional targets of STAT3 is SOCS3 [20], we examined the SOCS3 mRNA and protein levels in hepatic tissues of mice. As shown in Fig. 6B,C, SOCS3 mRNA and protein levels in the HFG group were decreased to ~22% and 43% respectively, compared to the HF and GFP groups (*P < 0.05*).
Discussion

Recent reports have shown that FGF-21 participates in the regulation of glucose homeostasis [21]. The lack of mitogenic action makes this molecule an attractive candidate to treat type 2 diabetes and related metabolic diseases. In a previous study, we showed that plasma FGF-21 concentrations were significantly increased in diabetic subjects [1]. Because diet-induced obese mice have increased endogenous levels of FGF-21 and respond poorly to exogenous FGF-21 [6], the elevation of circulating FGF-21 in the subjects with type 2 diabetes may be a compensatory response to the metabolic stress imposed by obesity or type 2 diabetes. This phenomenon is similar to hyperinsulinemia and hyperleptinemia, in which the increased insulin and leptin production is thought to compensate for the insulin and leptin resistance associated with obesity.

Although FGF-21 has been reported to affect glucose metabolism and insulin action, its effects on glucose kinetics and insulin signaling, particularly the STAT3/SOCS3 pathway, have not been systematically examined. In this study, we have developed a mouse model comprising adenovirus-mediated shRNA knockdown of hepatic FGF-21. We demonstrated that use of adenovirus-mediated shRNA against FGF-21 resulted in silencing of FGF-21 and some long-term effects (up to 2 weeks), which allowed us to study the metabolic impact of hepatic FGF-21 knockdown in an insulin-resistance model (HFD-fed ApoE KO mice).

ApoE KO mice that develop severe hypercholesterolemia and atherosclerosis on a SCD [22,23] are widely used as a model for HFD-induced insulin resistance [13,23,24]. In our study, the mice with FGF-21 knockdown showed significant increases in blood glucose, plasma insulin, FFA, lipid levels and hepatic TG compared to controls. In addition, their GIR, an index of glucose utilization, was decreased, whereas their HGP was increased. Therefore, selective inhibition of FGF-21 in the liver was sufficient to inhibit the effect of insulin on lipolysis and glucose production. Furthermore, FGF-21 knockdown in Ad-shFGF-21-treated mice led to a further decrease in the GIR, suggesting lower glucose uptake and more serious insulin resistance in the peripheral tissues of these animals.

We also examined the effect of FGF-21 knockdown on glucose flux through G6Pase, the most distal step in HGP. We found that, in HFD-fed mice, FGF-21 knockdown increased glucose flux through G6Pase and glucose cycling. More importantly, we demonstrated that the FGF-21 knockdown-mediated increase in glucose production and G6Pase flux was due to increases in glycolysis and gluconeogenesis. Consistent with these results, FGF-21 knockdown markedly increased hepatic G6Pase and PEPCK mRNA and protein levels. However, FGF-21 knockdown had little effect on the expression of pyruvate carboxylase, another gluconeogenic enzyme that catalyzes the carboxylation of pyruvate to oxaloacetate [25]. Pyruvate carboxylase is exclusively expressed in mitochondria.
and contributes to de novo fatty acid synthesis by providing oxaloacetate for conversion to citrate, which is exported from the mitochondria and cleaved in the cytosol to form oxaloacetate and acetyl CoA [26]. Thus, pyruvate carboxylase is apparently not essential for gluconeogenesis. Therefore, it appears that the effect of FGF-21 knockdown on gluconeogenesis is mainly due to increased activation of hepatic G6Pase and PEPCK.

It has previously been reported that STAT3 plays a role in suppressing expression of gluconeogenic genes [19,27]. To investigate the role of hepatic STAT3 signaling in mediating the effect of FGF-21 knockdown on HGP, we examined hepatic STAT3 phosphorylation in HFD-fed mice with FGF-21 knockdown. We found that FGF-21 knockdown decreased the hepatic phosphorylation of STAT3 in HFD-fed mice. This finding provides support for the notion that FGF-21 knockdown modulates hepatic glucose homeostasis via the STAT3 pathway, leading to hepatic activation of G6Pase and PEPCK, and increased gluconeogenesis and glycogenolysis. Our results are consistent with previous findings showing that STAT3 negatively regulates gluconeogenic gene expression in vivo [17].

Recent studies have shown that SOCS3 is regulated by the STAT pathway and various cytokines and hormones, such as tumor necrosis factor α, interleukin-6, resistin and adiponectin, all of which affect insulin sensitivity [28,29]. It has also been reported that SOCS3 plays a role in the pathogenesis of insulin resistance by integrating cytokine signaling with insulin signaling [20]. To determine whether the insulin-desensitizing effect of FGF-21 knockdown is related to SOCS3 signaling, we examined the effect of FGF-21 knockdown

![Fig. 5. mRNA and protein expression of PEPCK and G6Pase in the liver. Total protein and RNA were extracted from frozen liver for the various groups. Western blots and quantitative real-time PCR were performed using pooled protein and RNA extracts. (A) Relative G6Pase mRNA expression. (B) Relative PEPCK mRNA expression. (C) G6Pase protein abundance. (D) PEPCK protein abundance. (E) Relative pyruvate carboxylase (PC) mRNA expression. NF, SCD-fed ApoE KO mice; HF, HFD-fed ApoE KO mice; GFP, HFD-fed ApoE KO mice treated with Ad-shGFP; HFG, HFD-fed ApoE KO mice treated with Ad-shFGF-21. Values are means ± SE from five independent experiments, and are expressed as fold changes relative to the levels in the NF group.](image-url)
on SOCS3 expression in the liver. FGF-21 knockdown induced decreases in SOCS3 mRNA and protein levels in the liver of HFD-fed mice, associated with decreased STAT3 activation and increased insulin resistance. To date, the role of SOCS3 in insulin resistance has remained controversial. Some studies have reported a negative feedback relationship between SOCS3 and insulin signaling (e.g. over-expression of SOCS3 in liver caused insulin resistance, whereas suppression of SOCS3 expression ameliorated insulin resistance) [16,30], and others have shown a positive relationship between SOCS3 and insulin action [31]. In addition, over-expression of SOCS3 in adipose tissue has been shown to inhibit insulin action but to systematically improve glucose metabolism under HFD conditions [32]. In agreement with a previous study [31], our results showed that a decrease in STAT3 phosphorylation accompanied by a decrease in SOCS3 expression, induced by FGF-21 knockdown in the liver, further promoted insulin resistance.

In conclusion, our findings suggest that FGF-21 knockdown in the liver increases gluconeogenesis and glycogenolysis by activation of G6Pase and PEPCK via the STAT3/SOCS3 pathway. This leads to exacerbated hepatic insulin resistance in HFD-fed ApoE KO mice. These results provide in vivo evidence that the insulin-sensitizing role of FGF-21 with respect to changes in glucose flux is linked to the STAT3/SOCS3 pathway.

Experimental procedures

Construction and purification of adenoviruses expressing shRNA against FGF-21

The adenoviral vectors that express shRNA against FGF-21 were constructed as previously described [33,34]. The pAdxsi system (SinoGenoMax Co. Ltd, Beijing, China) was used for shRNA construction. Briefly, two oligonucleotides and complementary strands specific to mouse FGF-21 were synthesized. The sequences were as follows:
Hyperinsulinemic/euglycemic clamps
to assess the effect of euglycemia/hyperinsulinemia on glucose turnover, euglycemic/hyperinsulinemic clamps were performed for 2 h after 7 days of adenoviral administration as described previously [34,36]. Briefly, mice under chronically cannulated, conscious and unrestrained conditions were fasted for 12 h before the studies. A bolus of insulin (16 mU kg−1) and [3-3H]-glucose (5 μCi kg−1) was injected, and thereafter insulin (Novo R, Novo Nordisk, Bagsvaerd, Denmark, 5 mU kg−1 min−1) was infused at a constant rate throughout the clamp. [3-3H]-Glucose was concomitantly infused with insulin and 25% glucose via the carotid catheter at a rate of 0.1 μCi kg−1 min−1. Blood was sampled from the jugular venous catheter every 10 min to determine blood glucose concentration and to adjust the glucose infusion rate to maintain blood glucose at its initial basal level in each group. To determine the contribution of gluconeogenesis to the pool of hepatic glucose-6-phosphate, [U-14C]-lactate (New England Nuclear, Boston, MA, USA; 20 μCi bolus; 1.0 μCi min−1) was administered to mice 10 min before the end of the infusions. For determination of plasma [3-3H]-glucose concentrations, blood samples (20 μL) were collected at 80, 90, 100 and 120 min after starting the clamp experiments. For measurement of plasma glucose, insulin, TG, TC, LDL-C, HDL-C and FFA, additional blood samples (50 μL) were collected before the start and at the end of the clamps. The ratio of the glucose infusion rate to insulin was calculated as an insulin sensitivity index in peripheral tissues. After completion of the clamp experiments, mice were anesthetized with a sodium pentobarbital injection, the abdomen was quickly opened, and portal vein blood was collected. Within 3 min, hepatic tissues were harvested, frozen immediately using liquid nitrogen-cooled aluminum blocks, and stored at −80 °C for subsequent analysis.

Analytical procedures
For determination of plasma [3-3H]-glucose, plasma was deproteinized with ZnSO4 and Ba(OH)2, dried to remove H2O, resuspended in water, and counted in scintillation fluid (Ultima Gold; Packard Instrument Co., Meriden, CT, USA). After HPLC measurement of hepatic [14C]-phosphoenolpyruvate and [3H/14C]-UDP-glucose specific activities the rates of phosphoenolpyruvate gluconeogenesis were calculated. The ratio of liver [3H] -UDP-glucose and plasma [3-3H]-glucose-specific activities represents the percentage of the hepatic glucose-6-phosphate pool directly derived from plasma glucose (direct pathway). Gluconeogenesis was determined from the specific activities of 14C-labeled hepatic UDP-glucose (assumed to reflect the specific activity of hepatic glucose-6-phosphate) and hepatic phosphoenolpyruvate following infusion of [U-14C]-lactate and [3-3H]-glucose using the formula: gluconeogenesis = total glucose

Mouse models and administration of adenoviruses
To establish the insulin resistance model, male ApoE KO mice at 3 weeks of age were obtained from the Experimental Animal Center of Beijing University of Medical Sciences (Beijing, China), acclimatized for a week, and fed either SCD (18% kcal from fat) or HFD (54% kcal from fat; Research Diets Inc., New Brunswick, NJ, USA) for 16 weeks. Each mouse was separately housed in a temperature-controlled (24 °C) facility with a 12 h light/12 h dark cycle (lights on at 22:00 h). SCD-fed ApoE KO mice (NF group, n = 10) were used as diet controls. Twenty-six HFD-fed ApoE KO mice were further divided into three groups, and treated with 100 μL Ad-shFGF-21 (1 × 109 plaque-forming units g−1) (HFG group, n = 10), Ad-shGFP (GFP group, n = 6) or sterile saline (HF group, n = 10). The adenoviruses expressing shGFP or shFGF-21 were injected into mice through a tail vein at the end of both 14th and 15th weeks of HFD feeding (Fig. 3A). As previously described [36,37], 4 days before performing clamp experiments, the mice were catheterized through the right jugular vein and the left carotid artery under pentobarbital sedation (50 mg kg−1; Nembutal Abbott Laboratories, Abbott Park, IL, USA). Catheters were placed subcutaneously, attached at the back of the neck, and filled with heparinized saline. The jugular and carotid catheters were used for blood sampling and infusion, respectively. All studies were performed in accordance with the guidelines for the use and care of laboratory animals of the Chongqing Medical University Institutional Animal Care and Use Committee.
photometric procedure as described previously [39,40]. Hepatic TG and glycogen levels were measured by a spectro-ELISA kit (Phoenix Pharmaceuticals, Belmont, CA, USA). Plasma FGF-21 levels were determined using an enzymatic colorimetric method (Sigma, St Louis, MO, USA). Plasma FGF-21 levels were determined using an ELISA kit (Phoenix Pharmaceuticals, Belmont, CA, USA). Hepatic TG and glycogen levels were measured by a spectrophotometric procedure as described previously [39,40].

Quantitative real-time PCR
Quantitative real-time PCR was performed as described previously [33]. Briefly, muscle and hepatic tissue RNA was isolated from frozen tissue (100 mg) using Trizol reagent (Invitrogen, Carlsbad, CA, USA). Purified total RNAs were used for cDNA synthesis using a PrimerScript™ reverse transcription reagent kit (Takara Bio Inc., Otsu, Japan). Quantitative real-time PCR was performed using a SYBR Green PCR kit (Takara Bio Inc.) and a Corbett Rotor Gene 6000 real-time PCR system (Corbett Research, Sydney, Australia). Expression of genes was analyzed by the comparative C_t method, and normalized against that of β-actin. The primer pairs used for quantitative real-time PCR are listed in Table S1.

Western blot analysis
Western blot analysis was performed as described previously [35]. Briefly, muscle and hepatic tissue RNA was isolated from frozen tissue (100 mg) using Trizol reagent (Invitrogen, Carlsbad, CA, USA). Purified total RNAs were used for cDNA synthesis using a PrimerScript™ reverse transcription reagent kit (Takara Bio Inc., Otsu, Japan). Quantitative real-time PCR was performed using a SYBR Green PCR kit (Takara Bio Inc.) and a Corbett Rotor Gene 6000 real-time PCR system (Corbett Research, Sydney, Australia). Expression of genes was analyzed by the comparative C_t method, and normalized against that of β-actin. The primer pairs used for quantitative real-time PCR are listed in Table S1.

Three washes with Tris-buffered saline/Tween-20 (0.1%), the blots were incubated with horseradish peroxidase-conjugated secondary antibodies (Invitrogen) (1 : 500 dilution) for 1 h at room temperature. After two washes with Tris-buffered saline/Tween-20 and a final wash with Tris-buffered saline for 10 minutes at room temperature every time, the blots were scanned using the Odyssey infrared imaging system (LI-COR Biosciences), and the antigen–antibody complexes were quantified using QuantiTide analysis software (Bio-Rad) as described previously [33].

Statistical analysis
Data are expressed as means ± SE. Comparisons among groups were performed by ANOVA, followed by a post hoc least-squares difference test. Differences at P < 0.05 were considered statistically significant. All data were statistically analyzed using SPSS 13.0 (SPSS, Chicago, IL, USA).

Acknowledgements
This work was supported by research grants from the National Natural Science Foundation of China (81270913, 81070640, 81100567, 81300702, 81100567 and 81300670), the Doctoral Fund of the Ministry of Education of China (20105503110002 and 20125503110003), the Natural Science Foundation Key Project of CQ CSTC (cstc2012, jbj10022), and an American Diabetes Association grant (number 1-10-CT-06) to G.B.

References
obesity and are independently associated with the metabolic syndrome in humans. *Diabetes* **57**, 1246–1253.

Supporting information

Additional supporting information may be found in the online version of this article at the publisher’s website:

Fig. S1. Relative FGF-21 mRNA levels in the skeletal muscle of ApoE KO mice.

Fig. S2. Plasma glucose levels and glucose disposal rate during hyperinsulinemic/euglycemic clamping.

Table S1. Primers used for real-time PCR analysis.