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Diabetic retinopathy (DR) impairs vision of patients with type 1 and type 2 diabetes, associated with vascular
dysfunction and occlusion, retinal edema, hemorrhage, and inappropriate growth of new blood vessels. The recent
success of biologic treatments targeting vascular endothelial growth factor (VEGF) demonstrates that treating the
vascular aspects in the later stages of the disease can preserve vision in many patients. It would also be highly desirable
to prevent the onset of the disease or arrest its progression at a stage preceding the appearance of overt microvascular
pathologies. The progression of DR is not necessarily linear but may follow a series of steps that evolve over the
course of multiple years. Abundant data suggest that diabetes affects the entire neurovascular unit of the retina,
with an early loss of neurovascular coupling, gradual neurodegeneration, gliosis, and neuroinflammation occurring
before observable vascular pathologies. In this article, we consider the pathology of DR from the point of view that
diabetes causes measurable dysfunctions in the complex integral network of cell types that produce and maintain

human vision.
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Clinical features of diabetic retinopathy

Diabetic retinopathy (DR) afflicts approximately
93 million people worldwide, and 28 million of
these have vision-threatening DR.!~> These num-
bers are expected to increase as the prevalence of
type 2 diabetes continues to climb.* The diagno-
sis and treatment of DR are primarily focused on
vascular abnormalities that appear at later stages
of the disease. DR is staged into several levels of
severity, including mild, moderate, and severe non-
proliferative DR (NPDR), followed by proliferative
DR (PDR), depending on the extent of vascular le-
sions. As DR severity increases, vascular abnormal-
ities, including plasma leakage, dilation, microa-
neurysms, and hemorrhages, occur at increasing
frequency, with the growth of abnormal capillar-
ies (angiogenesis) defining PDR. This vascular fo-
cus is largely due to the fact that retinal vasculature
abnormalities are unambiguously identified by vi-
sual inspection, and advanced vascular abnormali-
ties correlate with a disruption of vision. Diabetic

macular edema (DME) results when fluid accumu-
lation increases retinal thickness and causes light-
distorting fluid-filled cysts within retinal tissue, as
well as serous detachments separating the neural
retina from the underlying pigmented epithelium.
Retinal edema is examined noninvasively by optical
coherence tomography (OCT) imaging of the retina.
OCT can precisely measure retinal layer thickness
while detecting intraretinal cysts and serous retinal
detachments. Fluorescein angiography clearly de-
fines microaneurysms as hyperfluorescent dots, of-
ten associated with additional diffuse fluorescence
within the retinal tissue, indicating dye leaking from
the vasculature. If unchecked, this focal vascular
leakage leads to precipitation of vision-obstructing
opaque deposits of plasma lipoproteins (hard ex-
udates). Vitreous cavity hemorrhages, caused by
penetration of abnormal and bleeding capillaries
into the vitreous gel, occur with the progression
to PDR. These vessels fail to form a tight blood—
retinal barrier (BRB) and thus leak and contribute
to edema. Untreated PDR leads to fibrovascular
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tissue formation, and the resulting epiretinal mem-
branes require surgical removal by vitrectomy, as
they adhere to the vitreous and cause traction retinal
detachment.

The ability of vascular endothelial growth fac-
tor (VEGF) to promote both vascular permeability
and angiogenesis made it a likely contributor to the
vascular dysfunctions observed in severe DR. Fluid
balance within retinal tissue is controlled by the
balance of transport across the inner vascular BRB
and fluid resorption across the retinal pigmented
epithelium.’ Like the blood-brain barrier, the BRB
is composed of tight junctions between endothelial
cells that stringently control the flux of molecules
between plasma and neural tissue. Breakdown of
this normally tight barrier is thought to be a ma-
jor factor in the pathogenesis of DME,® although
compromise of normal water removal mechanisms
via aquaporin proteins could also contribute to the
intraretinal accumulation of fluid.”” VEGF causes
disassembly of endothelial cell junctions and acts
as a potent endothelial cell mitogen, so inappropri-
ate accumulation of VEGF in the diabetic retinas
was hypothesized to promote both edema and an-
giogenesis. In 1994, Aiello et al.'® found markedly
increased VEGF protein levels in the vitreous fluid
of patients with DR. Their initial report and nu-
merous subsequent studies demonstrated that the
concentration of VEGF in vitreous fluid of DME
and PDR patients can be increased to 10 times that
of normal levels.'%%° Furthermore, VEGF levels are
significantly higher in vitreous fluid from patients
with active PDR compared to the vitreous fluid from
those with inactive or quiescent PDR.!7!821:22 Thege
discoveries led to the concept that blocking VEGF
action in the retina would improve DME and stall
the progression of PDR. This hypothesis was clini-
cally tested by an off-label application of humanized
antibody against VEGF165 (bevacizumab, Genen-
tech) that had been developed for cancer therapy,
and several small trials have suggested efficacy to-
ward edema and improved vision in approximately
25% of patients.”> In these studies, patients re-
ceived a limited number of bevacizumab injections
(from one to nine), often on an as-needed basis.
Ranibizumab (Genentech) is an Fc antibody frag-
ment designed specifically for intraocular use, and it
is now FDA approved for DME treatment on the ba-
sis of randomized trials.>#* A VEGF receptor fusion
protein (aflibercept; Regeneron) also improved vi-
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sual acuity greater than 15 letters in up to 46% of pa-
tients after 1 year of treatment every 4 weeks.”® Also,
ranibizumab reduced the risk of NPDR severity pro-
gression in eyes treated for DME by approximately
67% over a 2-year period of monthly injections.?’
This last finding, if confirmed, suggests that VEGF
overexpression may be directly related to the pro-
gression of established DR in a significant portion
of patients.

Although success has not been total, these anti-
VEGF treatments represent a major advance in
DR therapy. Intravitreal injections are invasive but
well tolerated by patients, and the risks associ-
ated with repeated intravitreal injections are sur-
prisingly low. For example, endophthalmitis rates
are less than 1/2000, and to date, no major long-
term ocular or systemic risks of anti-VEGF treat-
ments have been identified.”® The success of anti-
VEGF treatments and indications that additional
factors may be involved in the control of retinal vas-
cular permeability and angiogenesis in DME and
PDR have encouraged research on alternative ther-
apeutic targets (reviewed in Ref. 29). Additional
proangiogenic factors are increased in vitreous
fluid from PDR patients, including angiopoietin-2
(Ang-2),'7183% cysteine-rich 61 (CYR61),°"*? ery-
thropoietin (EPO),'®!%3% osteopontin (OPN),**3
platelet-derived growth factor (PDGF),*** and
stromal cell-derived factor (SDF-1, CXCL12).4041
Concentrations of several antiangiogenic factors are
also decreased in the vitreous fluid of PDR patients
and/or increased following laser photocoagulation
therapy. These include angiostatin (AS),*” endo-
statin (ES),* pigment epithelium—derived growth
factor (PEDF),!63%34 and tissue kallikrein (TK).** In
addition, after treatment of PDR with laser surgery
or intravitreal bevacizumab, a transition from an-
giogenesis to fibrosis can occur when vitreous levels
of VEGF decrease and levels of connective tissue
growth factor (CTGF, CCN2) increase.*’

The hope is that targeting these alternative
permeability-inducing or proangiogenic factors will
help patients for whom anti-VEGF treatments are
not effective. However, the greater goal is to address
the early pathophysiologic changes that lead to vi-
sion loss so that patients with diabetes can maintain
good vision without the need for invasive or de-
structive procedures.*® This objective requires find-
ing means to halt the progression of DR pathol-
ogy before the accumulation of appreciable vascular
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Figure 1. DR changes to the neural retina. Over time, neurons in the inner retinal layers lose adaptation to systemic metabolic
alterations caused by diabetes and succumb to cell stress, as evidenced by reduced axonal and dendritic process branching, axonal
beading, apoptotic cell death, accumulative cell loss, and retinal layer thinning.

defects, thus avoiding the detrimental effects of
edema, microaneurysms, hemorrhages, and inap-
propriate angiogenesis.

Insufficient vascular coupling of retinal
metabolic demand suggests that retinal
neurovascular unit dysfunction is an early
sign of DR

The challenge of maintaining good vision in an ex-
panding population of patients with diabetes re-
quires a new understanding of the pathophysiology
of DR. It is not entirely clear why some organs (e.g.,
retina, peripheral nerves, and kidney) are relatively
susceptible to diabetic complications. DR and dia-
betic nephropathy have been considered microvas-
cular complications of diabetes, thus suggesting that
the commonality is their dependence on microvas-
cular functions. However, this apparent link does
not explain the susceptibility of peripheral nerves
or the recently appreciated cerebral complications
of diabetes.*”*8 In addition, while retinal and kid-
ney microvessels share some parallels, they are fun-
damentally different; for example, kidney vessels do
not possess a tight blood-tissue barrier. Thus, an
important question to consider is what may link
retina, brain, and peripheral nerves to make these
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tissues relatively susceptible to diabetic complica-
tions. Lesions within the neurosensory retina are
now understood to play an important role in DR.
There are clear indications that retinal function is
disturbed shortly after the onset of diabetes, and
that neurodegeneration is an ongoing component
of DR pathology.

We propose that the retinal response to dia-
betes involves a successful adaptation to altered sys-
temic conditions, followed by eventual loss of neu-
rovascular unit function in response to progressive
metabolic disruption, resulting in subtle preclini-
cal findings, followed by eventual advanced vision-
threatening retinopathy (Fig. 1 and Table 1). Reti-
nal function depends on the synergy of multiple
neuronal subtypes, including photoreceptors, hori-
zontal and bipolar cells, and amacrine and ganglion
cells, along with their supporting glia (astrocytes
and Miiller cells), as well as inner vascular (endothe-
lial cells and pericytes) and outer blood-retinal
(choroidal vessels and pigmented epithelium) barri-
ers that mediate the supply of nutrients and control
the transfer of water and ions into and out of the
tissue.* This complex integral network of cell types
and structures allow humans to see across a wide
range of light intensity (10 orders of magnitude),
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Table 1. Evolution of diabetic retinopathy and failures of adaptive mechanisms

Clinical signs

Preclinical retinopathy NPDR PDR
Symptoms References Symptoms Symptoms References
None None, blurred vision, or None, floaters, or 153-160

Normal-appearing retina

glare

Retinal vasodilation,
microaneurysms,
hemorrhages,
cotton-wool spots,
venous beading

decreased vision
Partial vitreous gel
separation from retina;
retinal and/or iris
neovascularization;
epiretinal membranes

Functional Decreased ERG 7678 Normal or decreased Visual acuity usually
events oscillatory amplitudes visual acuity decreased
and increased latency
Decreased visual field 161 Visual field defects 153,161,162 Progressive visual field
sensitivity defects
Decreased flicker 63-65,67 Increased blood flow 163 Reduced dark adaptation
responses
Decreased blue—yellow 164,165 Fluorescein angiography: 166 Fluorescein leakage from
color sensation vascular leakage and neovascularization
occlusion
Reduced
vasoconstriction in
response to oxygen
Cellular Synaptic loss 167
alterations
Neuronal apoptosis 80,95,100,168,  Cytoid bodies and nerve  82,105-107,170,  Retinal and/or iris
169 fiber layer swelling 171 neovascularization
Nerve fiber loss and 172-174 Neuronal loss and 107,175 Progressive neuronal and
retinal thinning degeneration; lipid- axonal degeneration
and fluid-containing
cysts
Glial cell dysfunction 81,176,177 Gliosis of Miiller cells 176
and reduced astrocytes
Reduced endothelial cell 178 Early fibrotic reactions 179,180 Epiretinal membranes
tight junctions with increased TGF-£
Vascular occlusion and 181
intraretinal shunt
vessels
Microglial cell 182
proliferation
Increased cytokine and Immune cells in
proangiogenic epiretinal membranes
proteins
Metabolic Reduced insulin 89,90
alterations receptor/Akt activity
Reduced retinal protein 183
synthesis
Altered retinal lipid 151,184,185
composition
Defective crystallin 113,186
expression
Reduced retinal 119,187,188
glutamate/glutamine
metabolism
ER stress 93
Oxidative stress 91,92

Impaired K(arp) current  69,72,73
and purinergic toxicity

Reduced synaptic protein 167
expression

Altered retinal amino 189
acid profiles
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and to discern nearly infinite degrees of colors. This
functional network appears to adapt fairly well to
the systemic metabolic alterations caused by dia-
betes, for patients can maintain vision and exhibit
no apparent clinical pathology for 5-10 years after
the onset of diabetes. However, the complexity and
functional demands of the retina may make it sus-
ceptible to eventual loss of tissue homeostasis in the
presence of diabetes.

An important aspect of neuronal tissue equi-
librium is balancing local blood supply and
metabolic demand. It has been known for many
years that cerebral blood flow responds to brain
metabolism, and in the 1980s and 1990s it was
realized that vascular tone is mechanistically
coupled to neuronal metabolism; it was then
hypothesized that this neurovascular coupling may
involve signaling through astrocytes.’>>> Such a
link was demonstrated in 2003 by Zonta et al>*
using brain slices. Subsequently, Iadecola® was
the first to popularize the term neurovascular unit
to describe the concept that neurons, astrocytes,
smooth muscle cells (or pericytes), and endothelial
cells form a functional unit that controls cerebral
blood flow in response to metabolic demand. The
term has proved useful in understanding the links
between neural degeneration and vascular dysfunc-
tions that occur from stroke, Parkinson disease, and
other neurodegenerations.’® Matea and Newman®’
applied the neurovascular unit concept to describe
the functional and structural interactions between
neurons, glial cells, and vascular cells in the
inner retina. The outer retina photoreceptors and
Miiller cells receive nutrients and dispose of waste
products via the choroidal blood supply through
the pigmented epithelium. Thus, ironically, the
oxygen-rich outer retina is devoid of vessels,
whereas the oxygen-poor inner retina has a well-
defined, though relatively sparse, vascular supply.
In both the inner retina and brain, neurovascular
coupling regulates blood flow to meet the oxygen
and nutrient demands created by metabolic
and electrical activities, while the blood—tissue
barriers control the flux of water and ions, protect
against the influx of plasma proteins, and regulate
inflammation.

Thus, the neurovascular unit allows integration
of metabolic needs and vascular tone by integrating
multiple molecular signals in context to maintain
normal visual function throughout a range of phys-
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iologic conditions. The functions of the neurovas-
cular unit in the brain and retina are demonstrated
by a normal adaptive response of retinal blood ves-
sels to match metabolic demand and to minimize
excessive or insufficient blood and nutrient deliv-
ery, termed autoregulation.58 In humans, retinal
vascular diameter and blood flow respond dynami-
cally to changing physiologic conditions, including
blood pressure, blood gas concentration, and vi-
sual stimulation. For example, retinal function is
protected from wide variations in systemic arterial
pressures; retinal blood flow remains constant over
a range of perfusion pressures up to an increase of
36% over baseline.” Other features of autoregula-
tion are revealed by vasoconstriction in response
to breathing 100% oxygen (hyperoxia) and vasodi-
lation resulting from exposure to hypercapnia (in-
creased pCO,).®° Hyperoxia reduces the volume of
blood flow needed to provide the retina with appro-
priate oxygen influx, whereas hypercapnia increases
the requirement for blood flow. These physiologic
responses occur within seconds to minutes and di-
minish rapidly when the stimulus is removed.

The cellular coupling that links the neurovas-
cular unit includes light-induced vasodilation and
vasoconstriction of retinal arterioles. Flickering
light stimulation of the retina increases metabolic
demand in the inner retina, which is accompa-
nied by vasodilation of arterioles.®**> Metea and
Newman®’ found that these responses result from
direct glial-vascular signaling without neuronal in-
volvement, and are mediated by integrated re-
sponses to arachidonic acid intermediates, nitric
oxide, and K*. Specifically, stimulating or in-
hibiting nitric oxide synthase determines if sig-
nals initiated by 5-6-epoxyeicosatrienoic acid (5—
6-EET) and 20-hydroxy-5,8,11,14-eicosatetraenoic
acid (20-HETE) lead to vasodilation or vasocon-
striction in response to light. These same arachi-
donicacid derivatives also mediate light-induced va-
somotor responses and are associated with increased
glial cell [Ca’>"]. Metea and Newman®” concluded
that glial-evoked vasomotor responses are due to
direct glial-to-vessel signaling without neuronal in-
termediates. Also, light- and glial-evoked vasomo-
tor responses are mediated by the same arachidonic
acid metabolites, with only light-evoked vasodila-
tion and vasoconstriction depending on neuron-
to-glia signaling. Thus, retinal vascular responses
depend on multiple local and systemic factors.
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Deficient neurovascular coupling, as evidenced
by altered vasoconstriction and flicker light re-
sponses, is an early sign of retinal disequilibrium
caused by diabetes. Multiple studies have examined
the effects of diabetes on the reactivity of retinal
vessels. Before the appearance of clinically evident
retinal vascular lesions or edema, patients with pre-
diabetes or overt type 2 diabetes exhibit greater than
50% reductions of vasoconstriction in response to
hyperoxia and vasodilation in reaction to flicker
stimulus compared to healthy controls.*** Similar
changes occur in type 1 diabetes.®> The impairment
does not appear to result from a defective response
to nitric oxide release, as vasodilation stimulated
by oral nitroglycerin is normal in the diabetic
subjects.®® Pemp et al. conclude that, “neither the
reduced vasodilator response to flicker stimulation
nor abnormal retinal autoregulation, as observed
previously, is the consequence of a generally
reduced vascular reactivity of retinal vessels in this
disease.”® Additional work by the Schmetterer
laboratory shows that patients with well-controlled
type 1 diabetes (mean HBA;. < 7.5%) for less
than 10 years with clinically normal retinas and
normal pattern electroretinographic responses
exhibit increased basal diameters of retinal arterial
and reduced flicker-induced vasodilation in both
retinal arteries and veins compared to nondiabetic
controls.®” This result suggests the mechanisms that
regulate flicker responses may be distinct from those
that mediate electrical responses of the neurosen-
sory retina. The increased vascular diameter is an
early manifestation of disturbed autoregulation that
begins shortly after the onset of diabetes.® These
early events suggest the possibility that the retina
changes its adaptive reflexes in response to mild
hyperglycemia or another metabolic perturbation
of diabetes. Dorner et al. found that short-term
hyperglycemia reduces the vasodilation response to
flicker by 55% in healthy subjects.®® Thus, diabetes
appears to alter the ability of the retina to autoregu-
late, but the specific mechanism remains uncertain.

The mechanism by which diabetes affects the
neurovascular coupling response to flickering light
is not clear. Vasoreactivity also depends on focal
electrical responses along the course of retinal arte-
riole/capillary segments.®” Diabetes accelerates the
axial decay of voltage along microvessels by fivefold
compared to normal.’® This defect results from
spermine-induced inhibition of voltage-gated cal-
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cium channels in arterioles’! and of K(rp) channels
in capillaries, thus eliminating the normal topo-
graphical heterogeneity of functional K(arp) chan-
nels required for normal vasoresponses.”> Impeded
axial voltage transmission would be expected to hin-
der the control of blood flow by impeding upstream
responses to downstream signals. Vessels from
diabetic rat retinas are also susceptible to death due
to purinergic toxicity via pore formation following
activation of P2X(7) purinoceptors by extracellular
NAD™.” Together, these changes limit the ability of
retinal vessels to autoregulate and increase neuronal
vulnerability to death from metabolic insults. They
reveal important regional responses of retinal vessels
to ionic and small molecule signals that regulate the
neurovascular unit under physiologic conditions.

Defects detected by electroretinography
suggest that deficiencies in neuroglial
function are early features of DR

Neuroglial function of the retina is assessed by elec-
troretinography (ERG), the ocular equivalent of
electroencephalography. The ERG has been used to
investigate the ocular effects of diabetes for at least
five decades, with the first studies finding delays in
the response rate (increased implicit time) in pa-
tients with severe nonproliferative and proliferative
retinopathy.”* The studies were interpreted to in-
dicate that Miiller cells are damaged in advanced
DR. More recent studies revealed defects in the ERG
responses of patients with newly diagnosed type 1
and type 2 diabetes who have no clinically evident
retinopathy.”>””” Multifocal ERG revealed focal ar-
eas of electrical depression and increased latency
(implicit time) in the peripheral retina that pre-
dicted the development of retinal vascular lesions in
specific retinal zones.”® Lecleire-Collet et al” ob-
served that alterations in the amplitude and implicit
time pattern of ERGs in patients with diabetes cor-
relate with deficits in flicker light-induced vasodi-
lation. These changes were interpreted to indicate
altered function of Miiller, ganglion, amacrine, and
bipolar cells, all of which are adversely affected by
experimental diabetes.®*33 The ERG is a highly sen-
sitive index of retinal function but is difficult to ap-
ply in routine clinical practice because of the length
of testing (>1 h for dark-adapted testing) and need
for corneal contact lenses.

Together, these findings of depressed vascular
coupling and altered neuroglial electrical responses
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that occur before the onset of clinically evident vas-
cular lesions suggest that diabetes causes consider-
able alterations to retinal function before the onset
of typical clinical signs of DR. These neurosensory
retina alterations might be early adaptations to di-
abetes or may simply be negative consequences of
adaptive mechanisms necessary to maintain func-
tion of the retina in the diabetic state. These find-
ings do not necessarily indicate the blood vessels
are normal during this period. Indeed, mice with
deficient PDGF receptor 3 expression in brain per-
icytes exhibit blood-brain barrier breakdown at 1
month of age, while behavioral function and brain
cellular structure remain intact until 6 months of
age and neuroinflammation occurs at 16 months
of age.®* Therefore, primary blood-brain barrier
defects do not cause immediate brain damage in
animals that are otherwise healthy, implying that
the central nervous system has intrinsic cytopro-
tective mechanisms, as suggested by Iadecola.®> De-
generative brain diseases exhibit concomitant de-
fects in neuroglial and vascular function (reviewed
in Ref. 86), but the sequence of neurovascular unit
disintegration in DR remains uncertain at this time.
Thus, normal-appearing retinal blood vessels in di-
abetic patients may not reveal subtle defects that
could indicate early retinopathy.

Maladaptive changes observed in animal
models of diabetes and human specimens

The transition from physiologic adaptation to dis-
ease occurs slowly over the course of years, and in-
dications of maladaptive changes may lie below the
resolution of clinical evaluation; therefore, studies
in animal models are particularly important. Func-
tional changes, such as impaired ERG and flicker
responses, similar to those in humans occur in
rats and mice within several months of diabetes
onset.”#® Concurrent biochemical alterations char-
acteristic of diabetes (e.g., reduced insulin recep-
tor/Akt activity,¥" oxidative stress,”*? and en-
doplasmic reticulum stress”) occur within 1-6
months after the onset of diabetes and in the context
of histologically normal retinas. These alterations
may have direct effects on retinal neurovascular unit
function by causing cellular dysfunction, perturba-
tions in neurotransmitter production, astrogliosis,
and neuroinflammation. In diabetic rats, retinal cell
death and astrogliosis were reversed both by re-
duction of hyperglycemia via treatment with the
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Figure 2. Axonalswellings of Thy1-YFP* retinal ganglion cells
in a mouse model of diabetic retinopathy. An example of axonal
swellings on retinal ganglion cells of Thy1-YFP transgenic mice
crossed with Ins2*K diabetic mice after 3 months of diabetes.

(A) An entire dendritic arbor of a retinal ganglion cell in a
diabetic retina; (B) an enlarged image of the boxed region in A,
with axon swelling (arrowhead) at approximately 60 wm from
the soma and preceded by a prominent thinning of the axon
(arrow). Scale bars: 50 pm in A and 20 pmin B. Taken from
Gastinger et al.,1% with permission.

sodium-linked glucose transporter inhibitor phlo-
ridzin (without added insulin) and by injecting very
small doses of insulin in the subconjunctival space
to restore retinal insulin receptor signaling (without
affecting systemic glycemia).”* Both manipulations
restored retinal Akt activity. Akt, also known as pro-
tein kinase B (PKB), is a key positive regulator of cell
metabolism, growth, and survival.”> Akt is highly
responsive to insulin receptor binding leading to
PI3K activation, which occurs in nervous tissues as
well as classically insulin-responsive tissues (liver,
muscle, and adipose).”® Thus, the corrective effects
of local insulin delivery were expected, while the
effects of glycemic normalization were somewhat
surprising. We interpret these results to indicate
that both central features of type 1 diabetes, insulin
deficiency and associated hyperglycemia, can con-
tribute directly or indirectly to cellular dysregulation
in the rodent retina. The findings do not exclude
contributions from dyslipidemia or altered amino
acid metabolism, which are also part of the diabetic
milieu.

If the retina appears normal and has normal vi-
sual function as assessed by standard methods (vi-
sual acuity and fields), clinicians generally deem that
retinopathy is not present. Nevertheless, studies in
animal models reveal multiple cellular alterations,
suggesting that diabetes causes subtle but progres-
sive dysfunction and degeneration of the neural
retina. Notably, multiple studies have shown that
uncontrolled insulin-deficient diabetes increases the
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basal rate of neuronal cell death by several fold,
beginning within 1-3 months after the onset of
hyperglycemia and in postmortem retinas of hu-
mans with less than 5 years of diabetes.?>?-102 Di-
abetic rodent models do not generally exhibit the
advanced stages of DR pathologies observed in hu-
mans, such as DME and PDR, but they eventu-
ally exhibit breakdown of the BRB and vascular cell
death.'® The rapid onset of neuronal apoptosis was
not initially expected because the earliest vascular
cell death in diabetic rats requires at least 6 months
to appear.'® It should be noted that several groups
have failed to detect increased neuronal apoptosis
in diabetic rats or mice when they examined retinal
cross sections.’$19°-197 Indeed, Barber et al.®0 also
found no quantitative increase in TUNEL-positive
cells when using cross sections, even though occa-
sional sections revealed TUNEL-positive cells. How-
ever, when retinal flat mounts are examined and
sufficient animals are studied to provide appropriate
statistical power, the sampling error of sections s cir-
cumvented and the infrequent but increased rate of
cell death is apparent.®® Fort et al.” also reported the
ability of a nucleosome ELISA to consistently detect
modest increases in retinal cell death and responses
to treatments in diabetic rodents. Therefore, we sub-
mit that the accelerated retinal cell death in diabetes
is a conserved event in all species; however, appro-
priate group numbers and methods must be used if
its occurrence is to be accurately detected.

Moreover, diabetes affects both neurites (axons
and dendrites) and cell bodies of retinal neurons,
as evidenced by neuritic swellings'®'% (Figs. 2—4),
TUNEL-positive nuclei, and caspase-3 activation®
within a few months of diabetes onset. These
changes in well-defined animal models reveal gan-
glion cell body swelling and axonal fragmentation,
and closely mimic features observed in postmortem
human retinas from patients with diabetes.!!’ Both
retrograde and anterograde axonal transport are
impeded in the optic nerve of diabetic rats.!!1:!12
Retinal ganglion cell axonopathy, including reactive
gliosis of axonal astrocytes, occurs within weeks of
diabetes, before loss of retinal ganglion cells.''* This
effect on retinal ganglion cells differs from that in
glaucoma, in which axonal degeneration is thought
to be the primary defect.!!>!114

The presence of ongoing retinal cell death in
animals and humans under moderate metabolic
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Figure 3. Early evidence of degenerating ganglion cells in hu-
man diabetic retinopathy. Ganglion cell bodies and neurites are
fragmented and the dendrites are swollen. Hortega neuroglia

stain of frozen sections. Reprinted from Wolter,!1?

sion.

with permis-

control®® suggests several potential explanations.
One possibility is that hyperglycemia or insulin
resistance is sufficient to injure neurons. Indeed,
mild DR occurs in approximately 8% of people
with prediabetes,''> much as diabetic peripheral
neuropathy occurs in up to 25% of people with
prediabetes,'!® and multiple cases of DR have been
reported in patients with normal or minimally al-
tered glucose tolerance (reviewed in Ref. 117). These
established clinical observations suggest that hyper-
glycemia alone may not be a necessary or sufficient
cause of DR.

Another explanation for early and ongoing cell
death is that intrinsic adaptive mechanisms fail
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Figure 4. Enlarged axonal beading of parasol cells in human diabetic retinopathy. (A) Axons within a control retina exhibiting
low-caliber beading consistent with transportation beads (arrows). (B) Axons within a diabetic retina showing abnormally large

and irregular beads along the axons (arrows). Taken from Meyer-Riisenberg et a

to serve their function, as illustrated with two
examples. First, a-crystallins belong to the small
heat shock protein family of molecular chaperones
and regulate apoptosis by inhibiting the proapop-
totic Bcl-2 family member Bax. In diabetic rats,
the expression of these chaperones increases while
their solubility decreases, leading to disruption of
their interaction with Bax.!'® Second, autophagy, a
lysosome-based process to recycle organelles and
long-lived proteins, normally protects neurons from
death, but we have found that the expression and
cleavage of retinal autophagy proteins are altered
in clinical and experimental diabetes (unpublished
data). Tadecola and Anrather® have summarized a
host of intracranial and systemic endogenous pro-
tections against stroke, including enhanced growth
factor production, bone marrow—derived progen-
itor cells, and blood pressure control. At present,
protective mechanisms in the retina are less well
understood, but the potential for therapeutic ben-
efits of endogenous neuroprotection could be sub-
stantial. Additional work is needed to determine
how diabetes causes cellular stress, how stress re-
sponse mechanisms are altered in retinal neurons,
and when neurovascular coupling is lost beyond the
ability to prevent vision loss.

Proposed mechanisms of DR related to
impaired Akt/mTOR signaling

Clearly, the diabetes epidemic mandates new strate-
gies to prevent retinal cell death and preserve

vision,!!*120 and understanding the mechanisms of

1,157 with permission.

neural cell death in DR is essential because neuronal
integrity is central to vision.'”! The mechanisms of
retinal neurodegeneration are complex and likely
multifactorial. At a systemic level, insulin-deficient
diabetes is fundamentally a consequence of deficient
insulin receptor action in sensitive tissues, notably
liver, skeletal muscle, and adipose tissue, with at-
tendant unopposed excess action of glucagon, lead-
ing to a catabolic state with breakdown of energy
stores, impaired substrate oxidation, and accumu-
lation of lipids, glucose, and some amino acids
within the blood. In contrast to the acutely insulin-
sensitive tissues (liver, skeletal muscle, and adipose),
the retina differs in that insulin receptor kinase ac-
tivity does not fluctuate with feeding and fasting.'*?
In addition, even though insulin at high nanomo-
lar concentrations can stimulate retinal insulin re-
ceptors, insulin-like growth factors 1 and 2, rather
than insulin, are probably the primary endogenous
ligands for retinal insulin receptors (unpublished
data). Nonetheless, the retina uses largely conserved
insulin receptor signaling pathways, notably PI 3-
kinase (PI3K), Akt isoforms 1 and 3, and p70 S6
kinase, but not p42/44 MAP kinase, to mediate
cell survival.374123:124 Analysis of enzyme activi-
ties by immunoprecipitation and quantification of
substrate phosphorylation reveals that the activity
of the retinal insulin receptor-PI3K-Akt pathway
is approximately double that of the gastrocnemius
muscle in normal rats.!>® This relatively high en-
zyme activity also parallels a higher specific rate of
protein synthesis in the retina compared to muscle
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Figure 5. Summary of known Akt and mTOR regulation pathways. The mTOR kinase within rictor-containing mTORC2 complex
located at ribosomes catalyzes the co-translational phosphorylation of Akt Thr450, thus stabilizing the newly formed Akt protein.
Neurotrophins (NT) (e.g., NGE IGFs, BDNF) bind their respective receptors (NTR), thus activating phosphoinositide 3-kinase
(PI3K), resulting in formation of phosphoinositide(3,4,5)-trisphosphate (PIP3). PIP3 recruits phosphoinositide-dependent kinase
1 (PDK1), Akt, and mTORC2 complex to the membrane by association with pleckstrin homology (PH) domains. PDK1 phospho-
rylates Thr308 of Akt and mTOR within mTORC2 phosphorylates Akt Ser473, thus fully activating Akt. TSC2 inhibits mTORC1
through GTPase activation of the small G protein Rheb (not shown). Akt-induced phosphorylation of TSC2 at several sites relieves
inhibition of mTORCI. In addition, Akt increases the phosphorylation of PRAS40 in mTORC1 and Sinl in mTORC2. mTORC1
primarily stimulates protein synthesis via its effects on mRNA translation and regulates autophagy, whereas mTORC2 controls
dendritic morphology and actin polymerization (see text). Phosphorylations are shown in red and nitrations and nitrosylations
are shown in green. Protein nitration occurs when peroxynitrite (ONOO™), formed from nitric oxide (NO) and superoxide (0,7),
reacts with tyrosine residues (Tyr) forming nitrotyrosine. Nitration has been implicated in inhibition of PI3K and Akt activities.
Protein nitrosylation occurs when NO reacts with the thiol group of cysteine residues. Nitrosylation of Cys298 and Cys224 have
been implicated in the inhibition of Akt activity.

(unpublished data). This may be due to the
extremely high metabolic and synthetic rates of pho-
toreceptors. Rajala et al. have detailed how pho-
tons activate the insulin receptor of photorecep-
tors to mediate cell survival via hexokinase!**!?
and phototransduction by activating photoreceptor
cyclic nucleotide gated channels.'**!'?° Accordingly,
deletion of the insulin receptor or Akt2 re-
moves neuroprotective inputs to photoreceptors,
making them highly susceptible to light-induced
stress.!30:151

The mechanism of diminished Akt activity ob-
served in retinas of diabetic rats does not coincide

Ann. N.Y. Acad. Sci. 1311 (2014) 174-190 © 2014 New York Academy of Sciences.

with loss of phosphorylation associated with growth
factor signaling.®” We recently completed an exhaus-
tive mass spectrometric analysis of all Aktl pro-
tein phosphorylation changes occurring in diabetic
rat retinas in which Aktl-specific activity is signifi-
cantly downregulated. Although approximately 4%
of Aktl protein from the diabetic retinas exhibited a
novel dual phosphorylation of S124 and S129 in the
hinge region, no changes in activating phosphoryla-
tions were identified (unpublished data). Thus, loss
of activating phosphorylation does not seem to be
the mechanism of decreased Akt1 activity in the dia-
betic retina. It is also probable that diabetes-induced
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protein oxidative and nitrosive alterations impair
Akt in the neural retina. Such modifications would
explain diminished Akt activity without loss of ac-
tivating phosphorylations. Increased protein nitra-
tion in the neural retina of diabetic humans and rats
has been documented. For example, nitrotyrosine
immunoreactivity was found throughout the inner
neural retina, including the nerve fiber, ganglion
cell, inner plexiform, and inner nuclear layers of
retinas from diabetic humans and rats.!*>13% Work
by El-Remessy et al. demonstrated how nitration of
the antiapoptotic TrkA receptor plays a key role in
the loss of NGF signaling and neurodegeneration in
the diabetic retina!** and how nitration of PI3K p85
subunit inhibits VEGF survival signaling in retinal
endothelial cells.!*® High-fat diet-induced nitration
of insulin signaling proteins and insulin resistance
were reversed by catalytic removal of peroxynitrite,
the reaction product of superoxide and nitric oxide,
which causes nitration of tyrosine residues.**137 Al-
though nitration of tyrosines in Akt is likely in DR,
two cysteines, Cys296'%® and Cys224,'* have also
been identified as nitrosylation sites of Aktl (Fig.
5). This Akt nitrosylation mechanism accounts for
loss of Akt activity in aging muscle and brain is-
chemia, where activating phosphorylations of Akt
were not decreased, but nitrosylation of Akt was
increased.!*®14! Akt nitrosylation is thought to con-
tribute to insulin resistance in diabetic muscle.'*?
In high-fat diet—induced prediabetes and diabetes,
muscle insulin resistance coincided with nitrosyla-
tion of the insulin receptor B, insulin receptor sub-
strate 1 (IRS-1), and Akt.'*?

We hypothesize that defects in mTOR signaling
may also underlie the neurodegenerative aspects of
DR, as it does brain degenerations,!**!*> because
it coordinates protein synthesis and autophagy in
response to growth factors and amino acids.'*!4’
mTOR is associated with two relatively independent
complexes, nTORC1 and mTORC?2, which contain
regulatory-associated protein of mTOR (raptor)
and rapamycin-insensitive companion of mTOR
(rictor) proteins, respectively (Fig. 5). Raptor-
associated mTORC1 promotes protein synthesis in
muscle and liver by phosphorylating initiating factor
4E-binding protein (4E-BP1) and S6 kinase (S6K1),
and is inhibited by both torin and rapamycin.'*
In contrast, rictor-associated mTORC2 promotes
cellular viability and cytoskeleton organization by
phosphorylating Akt Ser473 and protein kinase Ca,

Abcouwer and Gardner

and is inhibited by torin but not rapamycin.!*

Conditional deletion of Rictor in postnatal mice
and flies impairs synaptic efficacy via reduced actin
polymerization'*>'** and causes cerebellar Purkinje
neurons to be severely stunted.'>! Both raptor and
rictor regulate dendrite arborization in hippocam-
pal neurons in response to insulin and IGF-1.'>2
Therefore, it is reasonable to postulate that disrup-
tion of neuronal mTOR function may contribute
to defects in axons and dendrites that are essen-
tial for vision. mTOR also suppresses autophagy.'>
Depending on the context, autophagy can protect
neurons or promote neuronal cell death,!>*!% but
increasing evidence suggests that autophagy dys-
function can contribute to neurodegeneration by
allowing the accumulation of mutant or defective
proteins.'*> We recently showed that hyperglycemia
decreases mTOR activity in diabetic rat retinas and
R28 cells by lowering phosphatidic acid content, and
replenishment of phosphatidic acid inhibits retinal
cell death induced by IL-1B.1°® These findings rein-
force the importance of further understanding how
diabetes impairs Akt and alters mTOR signaling in
the retina.

Conclusion

Numerous studies over the past five decades conclu-
sively show that neurosensory retinal defects evolve
with or before the onset of the earliest vascular le-
sions that define DR pathology. This information
may allow early detection of DR using sensitive
techniques that measure retinal sensory neuropa-
thy. However, several questions remain, such as (1)
the nature of the insults that lead to retinal dam-
age; (2) how and when the retina loses adaptation
to ongoing diabetes resulting in vision loss; (3) how
clinical tests can be optimized to detect early reti-
nal neuropathic changes in clinical practice; and (4)
how such a diagnosis can be employed to prevent
appreciable vision loss in persons with diabetes.
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