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SUMMARY

A new approach is proposed for constructing a fully explicit third-order mass-conservative semi-Lagrangian
scheme for simulating the shallow-water equations on an equiangular cubed-sphere grid. State variables are
staggered with velocity components stored pointwise at nodal points and mass variables stored as element
averages. In order to advance the state variables in time, we first apply an explicit multi-step time-stepping
scheme to update the velocity components and then use a semi-Lagrangian advection scheme to update the
height field and tracer variables. This procedure is chosen to ensure consistency between dry air mass and
tracers, which is particularly important in many atmospheric chemistry applications. The resulting scheme
is shown to be competitive with many existing numerical methods on a suite of standard test cases and
demonstrates slightly improved performance over other high-order finite-volume models. Copyright © 2014
John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the past decade, the speed of individual computer processors has flatlined, leading to new
hardware architecture based around large-scale multi-processor supercomputing systems. This
development has led to the need for new software that performs well on these systems. In particular,
it has become increasingly important to design atmospheric models that are capable of scaling on
systems with tens to hundreds of thousands of processors. Many projects that tackle this problem
are currently underway, including the Community Atmosphere Model spectral element dynamical
core [1, 2] based on the work of Taylor et al. [3] and the Geophysical Fluid Dynamics Laboratory
cubed-sphere finite-volume model [4, 5] based on the work of Putman and Lin [6], among others.
In this paper, we present one such effort in designing a novel numerical method that tackles this
problem, here utilizing the conservative semi-Lagrangian multi-tracer scheme (CSLAM) of [7, 8] to
solve the shallow-water equations on a cubed-sphere grid. Building a model atop the infrastructure
of CSLAM immediately leads to an intrinsic consistency of the total mass and tracer mass fields,
among other desirable properties (e.g., [9]).
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Modeling the shallow-water equations is an important first step in understanding how a discretiza-
tion of the atmospheric primitive equations would behave in practice. The shallow-water equations
are the simplest equation set to maintain the defining features of atmospheric motions, such as
Rossby waves and inertia–gravity waves, without the added complexity of the vertical dimension.
Many numerical schemes have previously been developed that model these equations on the sphere.
Other models include the spectral transform method [10], finite-difference approaches [11–13],
high-order finite-volume methods [14], hybrid finite-difference/finite-volume methods [15, 16], and
finite-element models [3, 17–20]. Closely related to the current effort is the work in [21], which
describes a semi-implicit shallow-water model in Cartesian geometry based on CSLAM.

In contrast with other semi-Lagrangian shallow-water models, the method described in this paper
uses an inherently conservative flux-form formulation to guarantee conservation of mass. The veloc-
ity field is updated using a third-order multi-step time-stepping procedure (third-order extrapolated
backward differentiation formulas (eBDF)) along with a flow-dependent fourth-order hyperdiffu-
sion operator to maintain stability. In conjunction with the quasi-uniform cubed-sphere grid, this
combination maintains locality of the update operation, at the cost of a strict CFL condition imposed
by the fully explicit update. Time-stepping procedures that allow for a more lenient time-step con-
straint, such as semi-implicit methods [22] or Laplace transforms [23], were not explored in this
work because they do not preserve strict locality.

The explicit time-stepping procedure described in this paper is applicable to any conserva-
tive semi-Lagrangian transport scheme, including the family of semi-Lagrangian integrated-mass
schemes [24], the Semi-Lagrangian Inherently Conserving and Efficient scheme [25–27], and cer-
tain dimension-split semi-Lagrangian formulations [28, 29]. However, the flux-form implementation
of CSLAM is particularly well suited for implementation as a dynamical core on the cubed-sphere
grid because it does not use dimension splitting (which is potentially problematic near cubed-sphere
corner points) and can be modified to guarantee formal third-order accuracy [30]. In particular, the
use of quadratic upstream edges [30] is important for avoiding errors in the numerically computed
divergence, which can pollute the solution.

Quasi-uniform meshes are of particular interest, as their quasi-uniformity significantly reduces
the complexity of developing numerical methods capable of scaling to a large number of proces-
sors. The regular latitude–longitude (RLL) grid, for instance, does not share the quasi-uniformity
property because it suffers from convergence of grid lines at the poles. Consequently, gridpoint-
based numerical methods using the RLL grid require filtering to maintain numerical stability. The
cubed-sphere grid, which is harnessed by the model in this paper, has been the basis for models
that scale well on massively parallel computing platforms [5, 31]. Parallel scalability for models
using the cubed-sphere grid is ensured as long as communication is sufficiently localized: that is,
as long as the discretization only requires communication with a small number of processing units,
independent of the total number of processors used for computing the simulation.

The paper is organized as follows. In Section 2, we introduce the cubed-sphere grid under the
equiangular projection, followed by a discussion of the shallow-water equations in cubed-sphere
geometry in section 3. Evolution of the velocity field is described in Section 4. The discretization of
the advected components of the flow, which includes the continuity equation and any tracer fields,
is discussed in Section 5. Numerical results from this method are presented in Section 6, followed
by our conclusions in Section 7.

2. THE CUBED SPHERE

The cubed-sphere grid [12, 32] consists of a cube with six Cartesian patches arranged along
each face, which is then ‘inflated’ to fill a spherical shell. On the equiangular cubed-sphere grid,
coordinates are given as .˛; ˇ; np/, with central angles ˛; ˇ 2 Œ��=4; �=4� and panel index
np 2 ¹1; 2; 3; 4; 5; 6º. By convention, we choose panels 1–4 to be along the equator and panels 5
and 6 to be centered on the northern and southern poles, respectively. Gnomonic coordinates are
related to equiangular coordinates via the transform

X D tan˛; Y D tanˇ: (1)
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Table I. Properties of the cubed-sphere grid for different resolutions.

Resolution �x (km) Aavg (km2) Amin=Amax RLLequiv (ı) Tequiv

c20 500:0 2:125 � 105 km2 0:7359 5:2ı T 21

c40 250:0 5:313 � 104 km2 0:7213 2:6ı T 42

c80 125:0 1:328 � 104 km2 0:7141 1:3ı T 85

c160 62:5 3:321 � 103 km2 0:7106 0:65ı T170

Here,�x is the grid spacing at the equator, Aavg is the average area of all cubed-sphere
grid elements, Amin is the minimum element area, and Amax is the maximum element
area. RLLequiv denotes the equivalent grid spacing (in degrees) on the regular latitude–
longitude grid with the same number of elements, and Tequiv denotes the approximate
triangular truncation of a spectral transform method.

Gnomonic coordinates are particularly useful because any straight line in gnomonic coordinates
is also a great circle arc, which is not the case for general line segments in equiangular coordi-
nates. Further, integration over regions in gnomonic coordinates is typically much simpler than in
equiangular coordinates. Throughout this paper, we will be making use of the metric term

ı D
�
1C tan2 ˛ C tan2 ˇ

�1=2
; (2)

which appears frequently in geometric calculations on the cubed-sphere grid.
The discrete resolution of the cubed sphere is typically written in the form chNci, where each

coordinate direction consists of Nc grid elements. Hence, the total number of grid elements on the
cubed sphere is Nc � Nc � 6. Grid elements on a particular panel are denoted by Zi;j with indices
.i; j / 2 Œ0; : : : ; Nc � 1�

2, which refers to the region bounded by

˛ 2
h
i�˛ �

�

4
; .i C 1/�˛ �

�

4

i
; ˇ 2

h
j�ˇ �

�

4
; .j C 1/�ˇ �

�

4

i
; (3)

where on an equiangular grid, the grid spacing is

�˛ D �ˇ D �=.2Nc/: (4)

Equiangular element center points are defined for each element as the point ˛i;j D .˛i ; ˇj / with

˛i D

�
i C

1

2

�
�˛ �

�

4
; ˇj D

�
j C

1

2

�
�ˇ �

�

4
: (5)

Some properties of the cubed-sphere grid for a variety of resolutions are given in Table I. For a
comprehensive mathematical description of the equiangular cubed-sphere grid, see [20, Appendices
A–C] or [33, Appendices A and B].

3. THE SHALLOW-WATER EQUATIONS ON THE CUBED SPHERE

The shallow-water equations on the sphere can be concisely formulated using two equations. The
first, known as the continuity equation, effectively describes the principle of conservation of mass
as it moves under some background flow field. In a Eulerian or fixed frame, the conservative form
of this equation takes the form

@h

@t
Cr � .hu/ D 0; (6)
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where h denotes the fluid depth and u denotes the underlying horizontal velocity vector. Global
conservation of h is immediately evident upon integrating this equation over the surface of the
sphere and applying Gauss’ divergence theorem, leading to

d

dt

Z
hdA D 0; (7)

where dA is an appropriately chosen area element. The second shallow-water equation describes
the evolution of the velocity field and can be expressed as

@u
@t
C u � ru D SC C SP ; (8)

where SC and SP respectively denote forcing terms due to the Coriolis force and variations in the
fluid pressure (due to the height field and underlying topography). Using the standard unit-length
radial coordinate vector gr ; SC can be written as

SC D �f gr � u; (9)

where f D 2� sin' is the Coriolis parameter in terms of the rotation rate � D 7:292 � 10�5 s�1

and latitude '. Similarly, SP can be written as

SP D �grH; (10)

where g D 9:80616 m s�2 represents the mean constant of gravity at the Earth’s surface and H D
h C ´ denotes the free-surface height, which is the sum of the fluid depth h and the height of the
bottom topography ´.

Under equiangular coordinates, the velocity field is written as

u D u˛g˛ C uˇgˇ ; (11)

where g˛ D .@x=@˛/ˇ and gˇ D .@x=@ˇ/˛ have units of length and denote the natu-
ral basis vectors of the underlying coordinate system (under Cartesian coordinates x.˛; ˇ/ D
.x.˛; ˇ/; y.˛; ˇ/; ´.˛; ˇ//). The coefficients u˛ and uˇ are known as the contravariant components
of the velocity vector and have units of radian per second in the natural basis. This choice allows us
to write the velocity evolution equation (8) in component form

@u˛

@t
C u � ru˛ D S˛C C S

˛
P ; (12)

@uˇ

@t
C u � ruˇ D SˇC C S

ˇ
P : (13)

By writing the covariant derivative as riuj D .@uj =@xi /C �
j

ik
uk (where �j

ik
are the Christoffel

symbols of the second kind in cubed-sphere coordinates and summation is implied over the repeated
index k), we can express the advective term as

u � ru˛ D u˛
@u˛

@˛
C uˇ

@u˛

@ˇ
C
2XY 2

ı2
.u˛/

2
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u � ruˇ D u˛
@uˇ
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In component form, the Coriolis term takes the form

SC D

 
S˛C

S
ˇ
C

!
D
f

ı

 
�XYu˛ C

�
1C Y 2

�
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�
�
1CX2

�
u˛ CXYuˇ

!
; (16)

where the Coriolis parameter f can be written as

f D

´
2�Y
ı

on equatorial panels .np < 4/;

2��
ı

on polar panels:
(17)

Here, � is a panel indicator variable,

� D sign .'/ D

´
1 on the northern panel

�
np D 5

�
;
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�
np D 6

�
:

(18)

Finally, the forcing term due to fluid pressure is written in component form as

SP D

 
S˛P

S
ˇ
P

!
D �

gı2

a2 .1CX2/ .1C Y 2/

0
@
�
1C Y 2

�
@H
@˛
CXY @H
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XY @H
@˛
C
�
1CX2

�
@H
@ˇ

1
A ; (19)

where a is the radius of the Earth .a D 6:37122 � 106 m/. Additional details about the derivation
of the equations of motion in cubed-sphere coordinates can be found in [20].

4. EVOLUTION OF THE VELOCITY FIELD

The semi-Lagrangian shallow-water model makes use of the Arakawa B-grid [34], so that prognos-
tic velocity points are located at the corners of each finite-volume element (nodes) and conserved
variables (including air mass and tracer mass) are stored as element-averaged densities (Figure 1).
Note that we store the element-averaged free-surface height H instead of the fluid depth h, as H
is generally a smooth function, whereas rapid variations in the underlying topography may lead to
rapid variations in h. This choice of grid also allows us to maximize the accuracy of the trajectory
calculation over small time steps, which are unlikely to deviate far from element nodes. Although
it is known that finite-difference methods suffer from poor dispersion properties on the B-grid as
a consequence of its treatment of the divergent modes [35], the semi-Lagrangian approach handles
divergence via area deformation and so is not subject to the same analysis. Further, the largest wave
numbers are damped as a consequence of the incremental-remapping procedure and so should not
be responsible for added noise.

Figure 1. A depiction of the Arakawa B-grid used in the semi-Lagrangian shallow-water model. The
free-surface height field and tracer mass are stored as element averages within each element, whereas the

velocity field is stored pointwise at element nodes.
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Evolution of the velocity field is performed via time splitting, wherein the space and time com-
ponents of the update equation (8) are discretized separately. Only the mass variables are exactly
conserved under this approach; no explicit effort is made to conserve other invariant quantities, such
as energy or potential vorticity.

4.1. Spatial discretization

To proceed, we first define a spatial operator S D .S˛;Sˇ /, which allows us to write (12) and
(13) as

@u˛

@t
D S˛

�
H;u˛; uˇ

	
;

@uˇ

@t
D Sˇ

�
H;u˛; uˇ

	
: (20)

That is, S incorporates advective terms, Coriolis forces, topographical forces, height (pressure)
gradient forces, and artificial diffusion into a single operator that is applied to the height and
velocity fields at a fixed point in time. We expand the spatial operator in terms of its individual
contributions as

S D SA C SC C SP C SD; (21)

where the subscriptsA; C; P , andD denote discretizations of advection (14–15), the Coriolis force
(16), forcing due to fluid pressure (19), and artificial diffusion, respectively. Fourth-order central
discretizations are used when derivatives are required within each of these expressions. In particular,
the advection term (14 and 15) relies on derivatives of the velocity field along lines of constant ˛
and ˇ, which are computed as

�
@uc

@˛

�
iC1=2;jC1=2

�
�uc

iC5=2;jC1=2
C 8uc

iC3=2;jC1=2
� 8uc

i�1=2;jC1=2
C uc

i�3=2;jC1=2

12�˛
; (22)

�
@uc

@ˇ
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C 8uc
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� 8uc

iC1=2;j�1=2
C uc

iC1=2;j�3=2

12�ˇ
; (23)

where the superscript c represents either ˛ or ˇ. The fluid pressure term (19) requires fourth-order
approximations to derivatives of the total height field at element nodes (denoted with half indices).
These derivatives are computed via the 12-point stencil�

@H

@˛

�
iC1=2;jC1=2

�
1

24�˛

®�
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�
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�
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�¯
;

(24)
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iC1=2;jC1=2

�
1

24�ˇ

®�
�H iC1;jC2 CH iC1;j�1 �H i;jC2 CH i;j�1
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�
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�
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�
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�¯
:

(25)

Because the expression for the Coriolis force (16) contains no derivatives, it is simply evaluated
pointwise at the element node.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 75:103–133
DOI: 10.1002/fld



A HIGH-ORDER FLUX-FORM SEMI-LAGRANGIAN SHALLOW-WATER MODEL 109

4.2. Artificial diffusion

The artificial diffusion term SD is required in our numerical discretization to preserve stability and
prevent the formation of 2�˛ noise in the velocity field that may lead to a failure in the trajectory
algorithm. The choice of artificial diffusion is not necessarily grounded in the physics of the problem
but should instead depend on the properties of the numerical scheme and should target regions where
errors in the advection and velocity evolution algorithms are most prominent. Motivated by these
restrictions, we have settled on a choice of the artificial diffusion that takes the form

SD D
CDı

4

a4

 
D4
˛u
˛ CD4

ˇ
u˛

D4
˛u
ˇ CD4

ˇ
uˇ

!
; (26)

where CD is the hyperdiffusion coefficient (with units m4/s) and the operators D4
˛ and D4

ˇ
are

approximations to the fourth ˛ and ˇ derivatives, respectively. This choice of diffusion operator is
constructed to loosely approximate the fourth-order Laplacian for the velocity field on the cubed-
sphere grid and is third-order accurate as long as CD is at least proportional to �˛3.

Analogous to the differences of the velocity field used in the advection term, the fourth-order
derivative operators are approximated as

�
D4
˛u
c
�
iC1=2;jC1=2

�
uc
iC5=2;jC1=2

�4uc
iC3=2;jC1=2

C6uc
iC1=2;jC1=2

�4uc
i�1=2;jC1=2

Cuc
i�3=2;jC1=2

�˛4
;

(27)

�
D4
ˇu

c
	
iC1=2;jC1=2

�
uc
iC1=2;jC5=2

�4uc
iC1=2;jC3=2

C6uc
iC1=2;jC1=2

�4uc
iC1=2;j�1=2

Cuc
iC1=2;j�3=2

�ˇ4
:

(28)

The flow-dependent diffusion coefficient CD is chosen to approximate numerical diffusion from the
Rusanov flux function [36], leading to

CD D �CR

�
ajujiC1=2;jC1=2 C

q
ghiC1=2;jC1=2

�
; (29)

where CR has units of cubic meter and depends purely on the resolution of the grid, juj denotes the
magnitude of the velocity (in rad=s), and hiC1=2;jC1=2 is a fourth-order approximation to the height
field at this element node, given by

hiC1=2;jC1=2 D
1

24

®
8
�
H iC1;jC1 CH i;jC1 CH iC1;j CH i;j

�
�
�
H iC1;jC2 CH i;jC2 CH iC2;jC1 CH i�1;jC1

C H iC2;j CH i�1;j CH iC1;j�1 CH i;j�1

�¯
� ´iC1=2;jC1=2:

(30)

Observe that the term within the brackets in (29) is simply the maximum shallow-water wave
speed, which corresponds to the maximum eigenvalue of the exact spatial operator. The values of
CR used in this paper are given in Table II for several cubed-sphere grid resolutions. These val-
ues are determined empirically by selecting the smallest diffusion coefficient that leads to a stable
numerical scheme. For a field with h.˛; ˇ/ D 8000 m, these coefficients are approximately five
times smaller than the default values used in the Community Atmosphere Model spectral element
dynamical core.
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Table II. Value of the coefficient CR
used at several possible cubed-sphere

grid resolutions.

Resolution CR (m3)

c20 2:0 � 1014

c40 1:3 � 1013

c80 1:1 � 1012

c160 1:3 � 1011

4.3. Temporal discretization

Time evolution of the velocity field is performed using a high-order multi-step method in order to
preserve locality of the update operation. A multi-step method is needed for the velocity update, as
multi-stage methods such as the Runge–Kutta family of schemes require information on the h field
over fractional time steps, which is not available until the velocity update has completed. The time
update makes use of the spatial operator S evaluated at time level tn, which we denote

Sn D S
�
Hn; .u˛/n; .uˇ /n

	
: (31)

The eBDF [37] are preferred in our case, as they provide a good balance between stability and
accuracy. The third-order eBDF scheme takes the form

unC1 D
18

11
un �

9

11
un�1 C

2

11
un�2 C

18

11
�tSn � 18

11
�tSn�1 C 6

11
�tSn�2: (32)

Because multi-step methods require an initial start-up, we make use of the forward Euler method
initially,

unC1 D un C�tSn; (33)

and at the second time step use the second-order Adams Bashforth scheme (AB2),

unC1 D un C
3

2
�tSn � 1

2
�tSn�1: (34)

For reasons of efficiency, the velocity field u and the spatial operator Sn are stored at time levels
tn�1 and tn�2 and then reused in subsequent update operations.

5. CONSERVATIVE SEMI-LAGRANGIAN ADVECTION

Once the velocity field has been updated, all conserved mass fields are then advanced via passive
advection. Using the updated velocity field, we compute trajectories backwards in time so as to
obtain a flux volume associated with each edge. Integrating the total tracer mass within each flux
volume then yields the total mass that has passed through that edge over the duration of the time
step. These mass fluxes are then used to update the element averages.

5.1. Treatment of advection

The advection scheme we use for this work is the Gaussian quadrature variant of the simplified flux-
form CSLAM scheme [30]. The advection component is used for updating the height field plus any
tracer fields that are transported by the velocity field.

The conservative semi-Lagrangian method we use in this paper is based on the simplified
flux-form semi-Lagrangian formulation [38], which has been recently implemented on the cubed
sphere [39]. Under this approach, we begin by considering the conservation law
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@ 

@t
Cr � . u/ D 0; (35)

where  D h for the shallow-water height equation (6) or  D h� for an arbitrary tracer with
mixing ratio �. We integrate the conservation law over an arbitrary grid cell Zi;j and apply Gauss’
divergence theorem to obtain

d i;j

dt
D �

1

jZi;j j

I
@Zi;j

F � dS; (36)

where @Zi;j denotes the boundary of Zi;j , jZi;j j is the area of Zi;j , and F �dS denotes the pointwise
outward flux through the boundary. The overbar denotes an area average of the form

 D
1

jZi;j j

Z
Zi;j

 dV; (37)

where dV D Jd˛dˇ is the volume element in equiangular coordinates, with

J D
.1C tan2 ˛/.1C tan2 ˇ/

ı3
: (38)

Integrating (36) in time from tn to tnC1 gives

 
nC1

i;j D  
n

i;j �
1

jZi;j j

Z tnC1

tn

I
@Zi;j

F � dSdt: (39)

Because Zi;j is a rectangular region in computational .˛; ˇ/ space, we can denote its four edges by
the compass directions east (E), north (N), west (W), and south (S). Hence, (39) can be written in
the form

 
nC1

i;j D  
n

i;j C
1

jZi;j j
ŒFE C FN C FW C FS � ; (40)

where FE is the total mass flux into the element through the east edge from time tn to tnC1, and sim-
ilarly for the north, west, and south edges. Note that the fluxes can be positive or negative, depending
on the direction of advection. Under the flux-form semi-Lagrangian formulation (Figure 2), these
fluxes are computed by integrating over the flux volume for each edge. This flux volume consists of
a region of the simulation domain bounded on one side by the corresponding fixed edge of Zi;j at
time tnC1 and on the other by the numerically computed upstream projection of that edge at time tn.
The four regions associated with the east, north, west, and south edges are depicted in Figure 2c–f,
respectively, and denoted by a�D1i;j through a�D4i;j . For example, for the east edge, we have

FE D �E

Z
a�D1
k

 n.X/dV; (41)

where �E indicates the direction of the flux (positive or negative depending on whether flow is into
or out of the element), a�D1

k
is the upstream flux volume defined by Figure 2c, and dV is a volume

element. Summation over sub-volumes is implied if the flux volume consists of both inward and
outward components.

The accuracy of the semi-Lagrangian advection scheme partially relies on obtaining an accurate
approximation of the flux volume. The use of remapping-based methods for transport is known to
introduce spurious divergence into an otherwise divergence-free flow [40]. These errors are espe-
cially evident for divergence-free sheared flows on the cubed sphere, which pass near panel corner
points. In this region, small defects in the divergence can easily drive wavenumber 4 imprinting from
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Figure 2. An illustration of the semi-Lagrangian approach. The nodes of element Zi;j (a) are tracked
upstream to element ai;j (b). Under the flux-form formulation, we integrate over flux areas for the (c) east
a�D1
i;j

, (d) north a�D2
i;j

, (e) west a�D3
i;j

, and (f) south a�D4
i;j

face. The original element (a) plus the sum of all
flux area masses (c–f), weighted by the direction of the flow, are equal to the mass in the upstream element

ai;j regardless of the detailed shape of the trajectory.

Figure 3. An illustration of a third-order approximation to an upstream flux volume, which has been obtained
by tracking the edge (p1;p2;p3) upstream to points (p0

1
;p0
2
;p0
3

). A quadratic curve is fit through (p0
1
;p0
2
;p0
3

)
so as to approximate the upstream projection of the edge. The dashed arrows denote backwards trajectories,

in this case corresponding to a westward flow.

the underlying grid and reduce the formal accuracy of the transport scheme to the second order [30].
In order to avoid these issues, we follow [30] and instead approximate the upstream source region
with a quadratic curve, which dramatically reduces the appearance of spurious divergence and

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 75:103–133
DOI: 10.1002/fld



A HIGH-ORDER FLUX-FORM SEMI-LAGRANGIAN SHALLOW-WATER MODEL 113

further guarantees third-order convergence. These curves can be reconstructed by interpolating a
quadratic through three nodal points, which include the upstream projection of the two endpoints of
each edge plus the upstream projection of the edge centerpoint (Figure 3). Each of the nodal points
depicted in this Figure 3 can be written in terms of gnomonic coordinates as pi D .Xi ; Yi / for nodes
along the flux edge and p0i D .X

0
i ; Y
0
i / for nodes along the upstream edge.

Further, the flux volume is not necessarily convex and, in fact, can be quite deformed depending
on the trajectory of each edge. All possibilities that are allowed by our model have been enumerated
in Figure 4 for an edge that bounds the eastern side of an element. In this figure, regions that lead
to an outward mass flux (�E D �1) are lightly shaded, whereas regions that lead to an inward mass
flux (�E D 1) are heavily shaded.

Figure 4. Depiction of each of the cases that must be treated by the flux integration algorithm, here
with an east edge as example. The edge .p1;p2;p3/ denotes the edge for which the advective flux is
desired. The points .p0

1
;p0
2
;p0
3
/ are determined by the upstream trajectory computation algorithm from

points .p1;p2;p3/. All edges are straight-line segments except for .p0
1
;p0
2
;p0
3
/, which is a quadratic curve.

Regions that lead to a positive flux across the edge are lightly shaded, whereas regions that lead to a
negative flux across the edge are heavily shaded. The dotted lines denote the north/south edges of the

left element.
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5.2. Integration of the flux volume

In this section, we discuss the numerical procedure for evaluating the integral of the flux
volume (41). We assume that a gnomonic sub-grid-scale reconstruction of the form

 i;j .X; Y / D
X
p;q

c.p;q/X
pY q (42)

is known within each element Zi;j , such as the one described in Appendix A. Here, c.p;q/ are the
reconstruction coefficients associated with the sub-grid-scale reconstruction, and the range of the
indices .p; q/ is determined by the choice of reconstruction. Following the simplified flux-form
approach [30, 38, 39], integration of the flux volume is only performed over the sub-grid-scale
reconstruction of neighboring elements. For example, if a given edge separates elements Zi;j and
ZiC1;j , then in accordance with Figure 4, the sub-grid-scale reconstruction  i;j .X; Y / is used for
computing the mass in the lightly shaded regions, and  iC1;j .X; Y / is used for computing the mass
in the heavily shaded regions. This approach greatly simplifies the integration procedure because
there is no need to identify where overlaps between the fixed grid and flux volume occur. Note that
if the given edge is also a cubed-sphere panel edge, the integration must be applied on the correct
panel to ensure consistency.

Several options exist for computing the integrals over the flux volume. Under the quadrature-
based formulation [30], these integrals are computed via an appropriately chosen quadrature rule.
For fourth-order accuracy, a four-point quadrature rule, such as the one described later, can be used.
In cases 3 and 4 of Figure 4, the convex property of the generalized quadrilaterals has been lost,
and so a single quadrature rule for each flux volume is insufficient. Instead, for cases 3b and 4b,
we break the flux volume into two sub-volumes and, treating these as generalized quadrilaterals,
simply apply the quadrature rule to each sub-volume. For cases 3a, 3c, 4a, and 4c, the integral is
instead over a wedge-shaped region. To integrate over the wedge, we extend the integration region
outward to form a generalized triangular region (dashed lines) so that the wedge can be viewed as
the difference between the generalized triangle and a convex quadrilateral region. A quadrature rule
is then applied to both regions and the difference taken to obtain the integral over the wedge. In
using this approach for dividing the flux region, two corner points of our integration domain will
always lie along a line of constant X . A four-point quadrature rule is used in this work to ensure
fourth-order integration of the upstream flux area, which is described in Appendix B.

5.3. Computing trajectories

To track the nodal points backwards in time (Figure 3), we have made use of the definition of the
velocity field in Lagrangian form. That is,

dx
dt
D u.x; t /; (43)

where x D .˛; ˇ/ is a coordinate vector and u D .u˛; uˇ / is the vector of contravariant wind
vector components. Because this equation is simply a coupled system of two ordinary differential
equations, we can easily discretize it using, for instance, the fourth-order Runge–Kutta scheme

x.1/ D x0 �
�t

2
u
�
x0; tnC1

�
; (44)

x.2/ D x0 �
�t

2
u
�

x.1/; tnC1 �
�t

2

�
; (45)

x.3/ D x0 ��tu
�

x.2/; tnC1 �
�t

2

�
; (46)

x.4/ D �
1

3
x0 C

1

3
x.1/ C

2

3
x.2/ C

1

3
x.3/ �

�t

6
u
�

x.3/; tn
	
: (47)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 75:103–133
DOI: 10.1002/fld



A HIGH-ORDER FLUX-FORM SEMI-LAGRANGIAN SHALLOW-WATER MODEL 115

The coordinates of x.4/ are then adopted as the ‘origin’ of the point x0. In particular, x.4/ is a fourth-
order accurate approximation to the point at time tn that, on undergoing Lagrangian advection,
would have ended up at x0 at time tnC1. Notably, this approach only requires knowledge of the
velocity field at time tnC1, tnC1 ��t=2 and tn D tnC1 ��t . Because the velocity field is already
known at time tnC1 and tn from the velocity evolution procedure, it only remains for us to obtain
an approximation to the velocity field at the half time step tnC1 ��t=2. Many possible polynomial
interpolants may be defined through all stored velocity fields, but we have found that a simple
average of the velocity field at tn and tnC1 is sufficient for accuracy and stability of this method.
That is, we make the approximation

u
�

x; tnC1 �
�t

2

�
D

u.x; tnC1/C u.x; tn/
2

: (48)

5.4. Monotonicity and positivity

For the advective scheme, positivity-preserving and monotonicity-preserving limiters have been
implemented and are described in Appendix A.2. The limiting algorithm is identical to that used
by [7] and [41]. These limiters are relatively inexpensive and do not require additional parallel
communications. However, for a flux-form semi-Lagrangian method, this approach only guarantees
positivity or monotonicity up to a Courant number of 0.5. An alternative approach that is compatible
with the flux-form formulation of this scheme would use flux-corrected transport (FCT) [8, 42]. The
use of FCT guarantees unconditional monotonicity or positivity but typically requires one additional
parallel communication per time step.

5.5. Stability considerations

The stability of the scheme described in this paper has been verified empirically using energy esti-
mates and long-duration simulations. For the shallow-water variables .h;u/, the maximum stable
time-step size is limited by the critical wave speed uc D juj C

p
gh. Instability generally manifests

via the appearance of 2�x noise in the velocity field, which can lead to crossed trajectories and
subsequent breakdown of the simulation. Repeated tests suggest a maximum CFL limit of approx-
imately 0.35, which is competitive with the maximum per-stage CFL limit for a typical high-order
finite-volume scheme with a third-order three-stage Runge–Kutta time discretization. The CFL con-
dition for pure flux-form semi-Lagrangian advection (with prescribed velocities) is approximately
0.75 [39].

6. NUMERICAL RESULTS

In this section, we present numerical results that demonstrate accuracy, stability, and consistency
of the numerical method for several standard shallow-water test problems. These problems are pri-
marily from the well-known test suite in [43], although the barotropic instability test presented in
Section 6.6 is from [44].

When required, standard error measures are calculated via

L1.h/ D
I Œjh � hT j�

I ŒjhT j�
; (49)

L2.h/ D

s
I Œ.h � hT /2�

I Œh2T �
; (50)

L1.h/ D
max jh � hT j

max jhT j
; (51)
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where hT is the height field at the initial time (which is the analytical solution for steady-state test
cases) and I denotes an approximation to the global integral, given by

I Œx� D
X

all cellsk

xkAk ; (52)

with Ak denoting the area of element k. For advection of a cosine bell (Section 6.1), we also make
use of the relative minimum and maximum,

hRelative minimumi D
min h �min hT

max jhT j
; (53)

hRelative maximumi D
max h �max hT

max jhT j
: (54)

6.1. Advection of a cosine bell

The first test case [43] simulates the advection of a cosine bell through one rotation around the sphere
over a 12-day period. This test is primarily used to verify positivity and monotonicity and further
allows the accuracy of the advective component of the numerical method to be evaluated using
standard error norms. The prescribed wind field is non-divergent, and so the continuity equation
represents an advection equation for the tracer distribution. The velocity field is prescribed initially
and left unmodified by the numerical method.

The initial height field is given by

h D

´ �
h0
2

	 �
1C cos �r

R

�
if r < R;

0 otherwise;
(55)

where r is the great circle distance from the center of the height profile, which is initially located
at .	; '/ D .3�=2; 0/. The height of the profile is chosen to be h0 D 1000 m, and its radius is
R D a=3 (recall that a denotes the radius of the Earth). The non-divergent velocity field is specified
in latitude–longitude .'; 	/ coordinates as

u� D u0.cos' cos Q̨ C cos	 sin' sin Q̨ /; (56)

u' D �u0 sin	 sin Q̨ ; (57)

where u0 D �a=6 day�1. Here, the parameter Q̨ denotes the rotation angle transcribed between the
physical north pole and the center of the northern panel on the cubed-sphere grid (and should not be
confused with the equiangular coordinate ˛).

The simulation is run for 12 days using �t D 45min (Courant number D 0:5) with the unlim-
ited scheme, positivity-preserving limiter, and monotonicity-preserving limiter. We use grid rotation
angles Q̨ D 0ı and Q̨ D 45ı at a fixed grid resolution of c40. Relative errors are then calculated after
12 days and presented in Table III. For both the positivity-preserving scheme and monotonicity-
preserving scheme, the error norms suggest no evidence of undershoots or overshoots after one
rotation. Both the unlimited scheme and monotonicity-preserving scheme show reduced accuracy
when compared against the positivity-preserving scheme, in the first case because the unlimited
scheme experiences increased errors due to numerical oscillations and in the second case because
the monotonicity-preserving scheme crops off the maximum of the cosine bell. These errors are
apparent when examining contour plots of the absolute error for each method, which are depicted
in Figure 5. As with other Eulerian methods on the cubed-sphere grid (such as [14]), we observe
that the rotated test (with Q̨ D 45ı) tends to lead to improved error norms over the unrotated test
(with Q̨ D 0ı). This result is likely because the velocity field is parallel to coordinate lines for
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Table III. Relative errors in the height field h for advection of a cosine bell at a resolution of c40
and after t D 12 days.

Limiting Direction L1 error L2 error L1 error Minimum Maximum

None Q̨ D 0ı 5:01 .�2/ 3:09 .�2/ 2:46 .�2/ �1:50 .�2/ �1:02 .�2/
Q̨ D 45ı 4:38 .�2/ 2:53 .�2/ 1:95 .�2/ �1:18 .�2/ �8:44 .�3/

Positive Q̨ D 0ı 2:84 .�2/ 1:75 .�2/ 1:56 .�2/ 0 �1:01 .�2/
Q̨ D 45ı 2:61 .�2/ 1:52 .�2/ 1:31 .�2/ 0 �1:03 .�2/

Monotone Q̨ D 0ı 4:55 .�2/ 4:87 .�2/ 1:07 .�1/ 0 �1:07 .�1/
Q̨ D 45ı 4:43 .�2/ 4:96 .�2/ 1:14 .�1/ 0 �1:13 .�1/

The value here is represented as ‘m (�b)’ for the sake of readability, which should be read asm�10�b .

(a) (b) (c)

Figure 5. Difference between the numerically computed solution and analytical solution (a) without limiting,
(b) with positivity-preserving limiter, and (c) with monotone limiter after one rotation (12 days) on a c40
grid. The direction of rotation is Q̨ D 45ı, which corresponds to motion to the top right. Contours are in
intervals of 5m with solid lines denoting positive contours and dashed lines denoting negative contours. The

zero line is enhanced.

Figure 6. Time series of the normalized height errors for the cosine bell advection with positivity-preserving
limiter and direction of rotation ˛ D 45ı after one rotation (12 days) on a c40 grid.

approximately half of the total simulation time (as the cosine bell passes over the panel edges). Tests
run with alternative choices of time-step size �t have been performed but do not suggest a strong
sensitivity of the method to choice of �t . The temporal evolution of error norms for this scheme is
presented in Figure 6 for Q̨ D 45ı with the positivity-preserving limiter. No significant sensitivity
to the underlying grid is observed in the evolution of these error norms.

To verify convergence of this method with grid refinement, a sequence of tests have been run
with Q̨ D 45ı and grid resolutions c20, c40, c80, and c160. Both the unfiltered and positivity-
preserving schemes have been investigated. The time step �t for each resolution is 90, 45, 22:5,
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Table IV. Relative errors in the height field h for advection of a cosine bell at t D 12 days for
c20, c40, c80, and c160 resolutions.

Resolution L1 error L2 error L1 error Minimum Maximum

Unfiltered, rotated test case . Q̨ D 45ı/
c20 2:70 .�1/ 1:56 .�1/ 1:53 .�1/ �3:46 .�2/ �1:34 .�1/
c40 4:38 .�2/ 2:53 .�2/ 1:95 .�2/ �1:18 .�2/ �8:44 .�3/
c80 7:32 .�3/ 5:31 .�3/ 4:90 .�3/ �3:83 .�3/ �1:09 .�3/
c160 1:33 .�3/ 1:28 .�3/ 1:42 .�3/ �1:31 .�3/ �1:29 .�4/
Order 2:56 2:31 2:22 1:58 3:30

Positivity-preserving, rotated test case . Q̨ D 45ı/
c20 1:74 .�1/ 1:29 .�1/ 1:45 .�1/ 0 �1:29 .�1/
c40 2:61 .�2/ 1:52 .�2/ 1:31 .�2/ 0 �1:03 .�2/
c80 6:18 .�3/ 4:69 .�3/ 5:37 .�3/ 0 �1:09 .�3/
c160 1:56 .�3/ 1:64 .�3/ 2:60 .�3/ 0 �1:29 .�4/
Order 2:24 2:06 1:87 � 3:31

The computed order of accuracy is obtained from a least-squares fit through the data. The value here
is represented as ‘m (�b)’ for the sake of readability, which should be read as m � 10�b .

and 11:25min, respectively. Error norms for this study are presented in Table IV. Although the
scheme is formally third-order accurate, the cosine bell field is only C 1 and so will lead to at most
second-order convergence. Consequently, at low resolutions, the scheme exhibits near-third-order
convergence, which flattens to second order at higher resolution. The extremum of the cosine bell,
which is infinitely smooth, exhibits third-order convergence as expected.

The results from this test compare favorably with other methods, in particular against [14]
and [45], keeping in mind that the semi-Lagrangian approach in this paper is formally third-order
accurate. Further tests of the advective component of this method can be found in [46], which
presents tests from a new standard test case suite for tracer transport [47], including novel mixing
diagnostics [48].

6.2. Steady-state geostrophically balanced flow

Test case 2 of [43] simulates a zonally symmetric geostrophically balanced flow. This test utilizes
an unstable equilibrium solution to the shallow-water equations, which is generally not preserved
in atmospheric models that do not use the latitude–longitude grid. However, this test is nonetheless
useful to study the convergence properties of numerical methods. The analytical height field is
given by

h D h0 �
1

g

�
�u0aC

u20
2

�
.� cos	 cos' sin Q̨ C sin' cos Q̨ /2 ; (58)

with background height h0 and velocity amplitude u0 chosen to be

h0 D
2:94 � 104 m2 s�2

g
and u0 D

�a

6
day�1: (59)

This height field also serves as the reference solution. Again, the parameter Q̨ denotes the angle
transcribed between the physical north pole and the center of the northern panel. The velocity field
is the same as in (56) and (57) and so is not repeated here.

We sample the velocity field pointwise at element nodes and apply high-order Gaussian quadra-
ture to initialize the element-averaged height field. The model is then run for 5 days with a time
step of �t D 3:75min at c40 resolution (Courant number D 0.27). The results of the convergence
study are given in Table V for the unrotated ( Q̨ D 0ı) and rotated ( Q̨ D 45ı) grids. As expected,
we observe near-third-order convergence for the semi-Lagrangian scheme in both the rotated and
unrotated tests, with a slightly better performance from the unrotated test. Plots of the absolute error
after 5 days are shown in Figure 7 for the rotated test. As expected, the largest errors associated with
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Table V. Relative errors in the height field h for the steady-state
geostrophically balanced flow test at t D 5 days.

Resolution L1 error L2 error L1 error

Unrotated test case . Q̨ D 0ı/
c20 3:78 .�5/ 4:81 .�5/ 1:27 .�4/
c40 2:75 .�6/ 3:55 .�6/ 9:57 .�6/
c80 2:72 .�7/ 3:59 .�7/ 9:61 .�7/
c160 3:38 .�8/ 4:44 .�8/ 1:19 .�7/
Order 3:37 3:36 3:35

Rotated test case . Q̨ D 45ı/
c20 3:24 .�5/ 5:39 .�5/ 2:08 .�4/
c40 4:44 .�6/ 6:56 .�6/ 2:36 .�5/
c80 5:11 .�7/ 7:67 .�7/ 2:78 .�6/
c160 6:48 .�8/ 9:57 .�8/ 3:45 .�7/
Order 3:00 3:05 3:08

The computed order of accuracy is obtained from a least-squares fit
through the data. The value here is represented as ‘m (�b)’ for the
sake of readability, which should be read as m � 10�b .

Figure 7. Height field (left, in m) and absolute errors associated with the semi-Lagrangian scheme on a c40
grid for the steady-state geostrophically balanced flow test with Q̨ D 45ı (right). Contour lines are in units
of 0:01 m, with solid lines corresponding to positive values and long dashed lines corresponding to negative
values. The thick line corresponds to zero error. The short dashed lines show the location of the underlying

cubed-sphere grid.

this test seem to occur in regions where both the gradient of the height field is steepest and the flow
field is misaligned with the underlying grid. The error norms for this test compare favorably with
other third-order schemes in the literature; in particular, the error norms for the semi-Lagrangian
approach appear to be roughly a factor of 5 smaller than those of [14].

6.3. Steady-state geostrophically balanced flow with compact support

Test case 3 of [43] considers another geostrophically balanced flow, but in this case, the velocity field
is chosen to be a nonlinearly sheared zonal jet with compact support. This test is particularly diffi-
cult for semi-Lagrangian methods because the nonlinear shearing leads to significant deformation
of the flux volume. The analytical velocity field is given in rotated latitude–longitude coordinates
.'0; 	0/ by

u0� D u0b.x/b.xe � x/ exp.4=xe/ and u0' D 0; (60)

where

b.x/ D

´
0 if x 6 0
exp.�1=x/ if 0 < x

(61)
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and

x D xe
.'0 � 'b/

.'e � 'b/
: (62)

The grid rotation angle Q̨ is imposed using the rotated coordinate system described in [43]. The
initial and reference height field is given by

h D h0 �
a

g

Z '0

��=2

�
2� sin 
 C

u0
�
.
/ tan 


a

�
u0�.
/d
; (63)

which must be integrated numerically at each point where h is required. The background height and
velocity amplitude are again chosen to be

h0 D
2:94 � 104 m2 s�2

g
and u0 D

�a

6
day�1: (64)

Further, the compact velocity field has additional free parameters chosen as

'b D �
�

6
; 'e D

�

2
; and xe D 0:3: (65)

As with the geostrophically balanced flow test described in Section 6.2, this test case represents an
unstable equilibrium solution to the shallow-water equations and so is generally not preserved in
shallow-water models on non-latitude–longitude grids.

As before, we sample the velocity field pointwise and use high-order Gaussian quadrature to
initialize the element-averaged height fields in the numerical model. The test is then run for 5 days,
and the final solution is compared against the initial state. The grid rotation angle is chosen as either
Q̨ D 0ı or Q̨ D 60ı. The time step at c40 resolution for this test is �t D 3:75min (Courant number
D 0.2). The error norms at day 5 obtained for this test for various choices of resolution are given in
Table VI. As anticipated, we observe better-than-third-order convergence of this test as resolution
is refined for both the rotated and unrotated versions of the test, as errors in the calculation of
the upstream velocity field improve with fourth-order accuracy. At coarser resolutions, the rotated
version attains slightly smaller errors, likely because for Q̨ D 60ı, the velocity field is more closely
aligned with the grid. The reference field and absolute errors for Q̨ D 60ı are depicted in Figure 8.

Table VI. Relative errors in the height field h for the geostrophically
balanced flow with compact support test at t D 5 days.

Resolution L1 error L2 error L1 error

Unrotated test case . Q̨ D 0ı/
c20 4:74 .�4/ 7:50 .�4/ 2:53 .�3/
c40 3:24 .�5/ 5:39 .�5/ 2:08 .�4/
c80 2:02 .�6/ 3:44 .�6/ 1:37 .�5/
c160 1:68 .�7/ 2:90 .�7/ 1:16 .�6/
Order 3:84 3:80 3:72

Rotated test case . Q̨ D 60ı/
c20 2:76 .�4/ 4:90 .�4/ 2:19 .�3/
c40 1:88 .�5/ 3:41 .�5/ 1:61 .�4/
c80 1:56 .�6/ 2:83 .�6/ 1:38 .�5/
c160 1:93 .�7/ 3:49 .�7/ 1:71 .�6/
Order 3:50 3:50 3:45

The computed order of accuracy is obtained from a least-squares fit through
the data. The value here is represented as ‘m (�b)’ for the sake of
readability, which should be read as m � 10�b .

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2014; 75:103–133
DOI: 10.1002/fld



A HIGH-ORDER FLUX-FORM SEMI-LAGRANGIAN SHALLOW-WATER MODEL 121

Figure 8. Height field (left, in m) and absolute errors on a c40 grid for the geostrophically balanced flow with
compact support test with Q̨ D 60ı (right). Contour lines are in units of 0:1m, with solid lines corresponding
to positive values and dashed lines corresponding to negative values. The thick line corresponds to zero error.

Again, we see that maximal errors occur in regions where the gradient of the height field is maximal
and the flow field is most significantly misaligned with the cubed-sphere grid. At lower resolutions,
error norms for this test are roughly comparable with or slightly worse than those reported in [14],
because the semi-Lagrangian scheme struggles with strong nonlinearly shearing in the velocity field.
However, at higher resolutions, this discrepancy has disappeared, and the semi-Lagrangian scheme
again produces better overall results.

6.4. Zonal flow over an isolated mountain

Test case 5 in [43] considers zonal flow with a topographically driven source term. The wind and
height fields are defined as in Section 6.2, except with Q̨ D 0ı, h0 D 5960 m and u0 D 20 m s�1.
A conical mountain is used for the topographic forcing, given by

´ D ´0.1 � r=R/; (66)

with ´0 D 2000m, R D �=9, and r2 D minŒR2; .	 � 	c/2 C .' � 'c/
2�. The center of the

mountain is at 	c D 3�=2 and 'c D �=6. The reference solution for this test is [10], which
is run on the spectral transform shallow-water model (STSWM) at a T426 resolution. This high-
resolution reference solution was computed by the German Weather Service. The T426 simulation
utilizes a Gaussian grid with 640�1280 grid points in latitudinal and longitudinal directions, which
corresponds to a grid spacing of about 31 km at the equator. The STSWM results are sampled on a
cubed-sphere grid of c40 resolution using high-order Gaussian quadrature for comparison with our
simulated element averages.

We simulate this test case on a c40 grid with a time step of 4:25minutes for 50 days in order to
verify the long-term stability of the scheme (initial Courant number D 0.27). The results at days
5, 10, and 15 are plotted in Figure 9. These results agree visually with the numerically computed
reference solution of this test. Total energy E, defined by

E D
1

2
hv � vC

1

2
g
�
H 2 � ´2

�
; (67)

is an invariant quantity in the shallow-water equations. Although some numerical diffusivity is gen-
erally required to ensure stability of a numerical scheme, this diffusivity will also lead to loss of
energy over time, which is particularly important for long-term climate simulations. In Figure 10,
we plot the normalized total energy difference, given by

�E.t/ D
E.t/ �E.t D 0/

E.t D 0/
; (68)

for the first 15 days of this test along with the numerically sampled reference solution. The total
energy loss is roughly comparable with the more diffusive third-order scheme of [14] but is generally
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Figure 9. Surface height field H for the flow over an isolated mountain test case at days 5, 10, and 15 on a
c40 resolution grid. Contour levels are from 4950 to 5950 m in intervals of 50 m, with the highest elevation
being near the equator (the enclosed contours). The dashed circle represents the location of the conical

mountain.

still fairly small. We expect that energy conservation will improve with third-order accuracy if the
model is run at higher resolutions. For practical applications, where nearly exact conservation of
energy is required (such as in 3D simulations), one could augment hyperdiffusion (Section 4.2)
with a corresponding source term for internal energy. However, such a modification would still
not completely conserve total energy because the semi-Lagrangian advection operator implicitly
includes a diffusive averaging mechanism. Hence, for long-term simulations, a global energy fixer
would likely be necessary.

6.5. Rossby–Haurwitz wave

Test case 6 in [43] consists of a Rossby-Haurwitz wave with wavenumber 4. This test is an analytical
solution of the nonlinear barotropic vorticity equation on the sphere but is not an exact solution of
the shallow-water equations. For this test, the height and velocity fields are known analytically at the
initial time, but at later times, the solution is only known from a comparison with a high-resolution
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Figure 10. Normalized total energy difference for the flow over an isolated mountain test case at c40 resolu-
tion for the semi-Lagrangian scheme and spectral transform shallow-water model reference scheme. Note
that the total energy difference has been scaled by a factor of 10�6, so the total energy loss over 15 days

represents roughly 0:0036% of total energy.

Figure 11. Height field of the wavenumber 4 Rossby–Haurwitz wave. The solution is computed at c80
resolution on days 0, 7, and 14 (left column, from top to bottom) and days 30, 60, and 90 (right column, from
top to bottom). The contour levels are from 8100 to 10,500 m in increments of 100 m, with the innermost

contours being the highest.
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Figure 12. Normalized total energy difference for the Rossby–Haurwitz wave test case simulated on a c40
grid for the semi-Lagrangian scheme and STSWM reference scheme. Note that the total energy difference
has been scaled by a factor of 10�5, so the total energy loss over 14 days represents roughly 0:011% of

total energy.

numerically computed reference solution. We choose initial fields identical to those specified in [43],
which are not repeated here for brevity. Initialization of the height field is via high-order Gaussian
quadrature.

It is well known that the wavenumber 4 Rossby–Haurwitz wave is susceptible to instability, which
can be driven by truncation errors in the initial conditions (e.g., [49]), and hence, the simulation will
generally lose symmetry at some point. The exact time of breakdown is highly dependent on the
numerical scheme and does not necessarily depend on the resolution or formal order of accuracy.

We plot the height field for our scheme in Figure 11 at days 0, 7, 14, 30, 60, and 90 at a grid
resolution of c80 and using a time step of �t D 100 s. The higher resolution required by this test is
due to small-scale features in the wave profile that are only captured at this resolution. Observable
breakdown of symmetry occurs at roughly 65 days. As in Section 6.4, we calculate the total energy
at each time step and plot the normalized total energy difference in Figure 12 for a grid resolution
of c40 and time-step size �t D 200 s (initial Courant number D 0.32) and compare it against
the STSWM reference solution (computed at T511 resolution, corresponding to an approximately
26-km resolution). The total loss of energy is again roughly comparable with the results reported
in [14].

6.6. Barotropic instability

The barotropic instability test case of [44] consists of a zonal jet with compact support at a latitude
of 45ı, with a latitudinal profile roughly analogous to a much stronger version of test case 3 of
[43]. A small height perturbation is added atop the jet, which leads to the controlled formation
of an instability in the flow. The relative vorticity of the flow field at day 6 can then be visually
compared against a high-resolution numerically computed solution [44, 50]. For comparison, we
use the simulation without additional explicit diffusion, because the additional diffusion suggested
in [44] leads to a significantly different flow field. Relative vorticity at day 6 obtained from the semi-
Lagrangian scheme is plotted for the c40, c80, c120, and c160 resolution grids in Figure 13. These
simulations use a time step of �t D 160 s at c40 resolution (initial Courant numberD 0.25), which
is scaled downward at higher resolutions to maintain a constant Courant number.

This test case is particularly difficult for models using the cubed sphere to handle [50]. Because
the jet is significantly stronger than test case 3 of [43], is aligned in such a way that it passes
over cubed-sphere panel edges eight times, and is driven by a relatively mild perturbation, it turns
out that wavenumber 4 grid forcing is significant in disturbing the collapse for resolutions less
than approximately c100. For higher resolutions, however, we observe rough convergence to the
reference solution given by [50] and similarity to the solution calculated by [14].
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Figure 13. Relative vorticity field associated with the barotropic instability test at day 6 at c40 (top), c80,
c120, and c160 resolution (bottom). Contour lines are in increments of 2:0 � 10�5 s�1 from �1:1 � 10�4

to �0:1� 10�4 s�1 (dashed) and from 0:1� 10�4 to 1:5� 10�4 s�1 (solid). The zero line is omitted. Only
the northern hemisphere is depicted in this plot.

6.7. Efficiency considerations

A wall-clock comparison has been run for the semi-Lagrangian method (c40 grid with �t D
300 s) and the high-order finite-volume method of [14] (c40 grid with �t D 900 s, three-stage
Runge–Kutta operator) on the geostrophically balanced flow test (as in Section 6.2). The total run-
time for the serial semi-Lagrangian method was observed to be 30:8 s, compared with the serial
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Table VII. Wall-clock time required for the major components of the
semi-Lagrangian method as observed for the geostrophically balanced

flow test over a 5-day total integration period (�t D 300 s).

Process Runtime (percent of total)

Update velocities 10.9
Advection 80.6
Compute trajectories 44.4
Compute area-integrated weights 22.1
Reconstruction (one tracer) 4.0
Monotone limiter (one tracer) 1.4
Other overhead (one tracer) 10.1
Other 8.5

Each added tracer would theoretically only need to apply operations
indicated by (one tracer).

high-order finite-volume method with 34:5 s. Both codes were run with identical command-line
options and optimization flags, although there is inevitably a sensitivity to software implementation
which was not accounted for in this test.

A breakdown of the simulation time for the semi-Lagrangian scheme is given in Table VII. The
clear majority (80:6%) of computation time is occupied by the advection operator, although only
15:5% of run-time (4:7 s) is needed per tracer. Of the per-tracer requirement, the monotonicity filter
adds approximately 0:4 s to the total run-time.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a semi-Lagrangian shallow-water model based on the CSLAM
scheme [7, 8, 30] using explicit time-stepping and local flux operators. This model is built on the
quasi-uniform cubed-sphere grid so as to maximize parallel performance of the underlying scheme.
This scheme has been subjected to a suite of standard test cases, including the test suite of [43] and
the barotropic instability [44], to verify accuracy, stability, and convergence. We have confirmed
third-order convergence of the scheme with spatial refinement and have generally observed excellent
performance as compared with other shallow-water models. Although the strict time-step restric-
tions for our semi-Lagrangian scheme do not lead to a significant improvement in performance over
other models, this approach nonetheless maintains an implicit consistency between the dry air mass
and tracer mass fields, which is desirable for applications in atmospheric chemistry.

The work in this paper lays the foundation for a full atmospheric dynamical core using the semi-
Lagrangian discretization. In extending this model to a full 3D atmospheric model, we have the
option of either using a fully 3D implementation of the CSLAM scheme or using some form of
dimension splitting [33]. Work is ongoing to determine which of these approaches may be more
desirable for a fully 3D implementation.

APPENDIX A: THE SUB-GRID-SCALE RECONSTRUCTION

In this appendix, we provide our sub-grid-scale reconstruction strategy for each of the mass
fields. Our approach leads to a third-order accurate reconstruction, which correctly accounts for
the underlying geometry. Monotonicity and positivity are enforced by appropriately limiting the
reconstruction prior to the advection step.

A.1. Computing the reconstruction coefficients

The reconstruction strategy proceeds as follows. The stencil we use in the reconstruction step is
depicted in Figure A.1. First and second derivatives are calculated using standard finite-difference
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Figure A.1. A depiction of the stencil used for computing the third-order sub-grid-scale reconstruction on
the cubed sphere.

formulae, which leads to approximations that are O.�˛2/ accurate.

D˛ i;j D
� iC2;j C 8 iC1;j � 8 i�1;j C  i�2;j

12�˛
; (A.1)

Dˇ i;j D
� i;jC2 C 8 i;jC1 � 8 i;j�1 C  i;j�2

12�ˇ
; (A.2)

D˛˛ i;j D
� iC2;j C 16 iC1;j � 30 i;j C 16 i�1;j �  i�2;j

24�˛2
; (A.3)

D˛ˇ i;j D
 iC1;jC1 �  i�1;jC1 �  iC1;j�1 C  i�1;j�1

4�˛�ˇ
; (A.4)

Dˇˇ i;j D
� i;jC2 C 16 i;jC1 � 30 i;j C 16 i;j�1 �  i;j�2

24�ˇ2
: (A.5)

A third-order reconstruction relies on obtaining aO.�˛3/ approximation to the centerpoint value
of  , which additionally correctly accounts for the underlying cubed-sphere geometry. Here, we
follow the deconvolution procedure of [33], which leads to the following fourth-order approximation
in terms of the approximate derivatives of the underlying field and pre-computed derivatives of the
cubed-sphere Jacobian:

 .0/i;j D  i;j �
�˛4

12jZji;j
@J

@˛
D˛ �

�ˇ4

12jZji;j
@J

@ˇ
Dˇ �

�˛2

24
D˛˛ �

�ˇ2

24
Dˇˇ : (A.6)

Integration over flux volumes is performed in gnomonic coordinates. Hence, the derivatives in
equiangular .˛; ˇ/ coordinates must be converted to the gnomonic basis. We initially convert first
derivatives to gnomonic coordinates via

DX i;j D
1

1CX2
D˛ i;j and (A.7)

DY i;j D
1

1C Y 2
Dˇ i;j (A.8)
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and then second derivatives using

DXX i;j D
1

1CX2

�
�XDX i;j C

1

1CX2
D˛˛ i;j

�
; (A.9)

DXY i;j D
1

.1CX2/.1C Y 2/
D˛ˇ i;j ; and (A.10)

DY Y i;j D
1

1C Y 2

�
�YDY i;j C

1

1C Y 2
Dˇˇ i;j

�
: (A.11)

Upon computing all gnomonic derivatives, the third-order reconstruction within element Zi;j takes
the form

 i;j .X/ D  .0/i;j C .X �Xi /DX i;j C .Y � Yj /DY i;j

C .X �Xi /
2DXX i;j

2
C .X �Xi /.Y � Yj /DXY i;j C .Y � Yj /

2DY Y i;j

2
;

(A.12)

where X D .X; Y / is the vector form of the gnomonic coordinate.
The reconstruction coefficients c.p;q/, which are then required in the expansion (42), are com-

puted by expanding (A.12) and collecting like terms. This procedure leads to the following set of
reconstruction coefficients:

c.0;0/ D  .0/i;j �XiDX i;j � YjDY i;j

CX2i
DXX i;j

2
CXiYjDXY i;j C Y

2
j

DY Y i;j

2
;

(A.13)

c.1;0/ D DX i;j �XiDXX i;j � YjDXY i;j ; (A.14)

c.0;1/ D DY i;j � YjDY Y i;j �XiDXY i;j ; (A.15)

c.2;0/ D
DXX i;j

2
; (A.16)

c.1;1/ D DXY i;j ; (A.17)

c.0;2/ D
DY Y i;j

2
: (A.18)

A.2. Limiter procedure

The advection algorithm currently supports two limiters. A positivity-preserving limiter is available
to avoid spurious negative values due to undershoots in the reconstruction, and a stricter monotonic
limiter is available for removing all unphysical oscillations. The limiters follow the approach of [51],
wherein extreme values of the sub-grid-scale reconstruction are detected and the reconstruction is
scaled so that these extreme values fit within some predefined range. For the positivity-preserving
limiter, the range is simply chosen to be Œ0;C1�, implying maximum values of the reconstruction
are left untouched while minimum values are cropped to zero if they are anywhere negative. For the
monotonicity-preserving limiter, the range is chosen to be Œ�min; �max�, where
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�min D min
Nk

�k;

�max D max
Nk

�k;

and Nk is the set of all neighboring elements to element k, including element k itself. On a reg-
ular Cartesian grid, even diagonal neighbors are considered when determining the minimum and
maximum values of the scalar field, so in total nine elements are used.

A.3. Treatment of panel edges

Panel edges in cubed-sphere geometry require some additional consideration because they represent
discontinuities in the equiangular coordinate system. To compute central derivatives, as required for
both the sub-grid-scale reconstruction of the height field and derivatives in the velocity evolution,
we must extend each panel outward into a ‘halo region’, which overlaps neighboring panels. A
remapping scheme is then required to remap the height field and velocity field into the halo region
using only known information on neighboring panels.

The remapping scheme we use for the semi-Lagrangian dynamical core is identical to the method
discussed in [14] for element-averaged scalar fields. This approach first builds the sub-grid-scale
reconstruction in neighboring elements using one-sided derivatives and then samples the resulting
reconstruction at Gaussian quadrature points in order to assemble a fourth-order approximation to
the element average of each scalar field in the halo region. For the velocity field, we instead use
a fourth-order one-sided sampling scheme to sample the velocity field at nodal points in the halo
region, as we only require knowledge of pointwise values. This approach has been shown to be
effective at suppressing low-order errors due to the coordinate discontinuity.

APPENDIX B: UPSTREAM INTEGRATION OF THE MASS FLUX

The mass flux is computed in gnomonic coordinates, with volume element dV D JXY .X/dXdY .
Consequently, (41) can be written for an arbitrary edge as

F D �

Z
a�
k

 .X/JXY .X/dXdY; (B.1)

where � 2 ¹�1; 1º is again a sign indicator depending on the direction of the flux and a�
k

denotes an
arbitrary flux region. Summation over distinct flux regions is implied, as in cases 3 and 4 of Figure 4.
The Jacobian in gnomonic coordinates is given by JXY , which takes the form

JXY .X/ D
1

.1CX2 C Y 2/3=2
: (B.2)

With an appropriate sub-grid-scale reconstruction of the form (42), we can write (B.1) as

F D �
X
p;q

c.p;q/

Z
a�
k

XpY qJXY .X/dXdY (B.3)

and so reduce the problem to a linear combination of the reconstruction coefficients c.p;q/ and
the integrated Jacobian-weighted polynomial basis functions. This formulation is particularly effi-
cient when transporting multiple tracers, as the integrals must only be computed once for each
pair .p; q/.
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To compute the geometric integrals (B.3), we must first introduce a coordinate transform that
maps the flux region to the unit square. Here, we describe the procedure for an edge of constant
X , noting that the equations for an edge of constant Y are analogous. The coordinates s D .s; t/ 2
Œ0; 1�2 are defined implicitly via

X.s/ D X.s; t/ D X1C s
�
a2t C bt C c

�
and Y.s/ D Y.s; t/ D Y1Cf sC .s.g�f /C�X/t;

(B.4)
where f D Y 01 � Y1, g D Y 03 � Y3 and �X D Y3 � Y1. The quadratic coefficients .a; b; c/ are
defined by fitting a quadratic through points

.t; X/ D
®
.0; X 01 �X1/; .t�; X

0
2 �X1/; .1; X

0
3 �X1/

¯
; with t� D

Y 02 � Y
0
1

Y 03 � Y
0
1

: (B.5)

This choice leads to

a D
X 03t� �X

0
2 CX

0
1.1 � t�/

t�.1 � t�/
; (B.6)

b D
X 02 �X

0
1 C t

2
�

�
X 01 �X

0
3

�
t�.1 � t�/

; (B.7)

c D X 01 �X1: (B.8)

This construction requires that Y 01 ¤ Y 03, Y 03 ¤ Y 02, and Y 01 ¤ Y 02, which should not occur for
sufficiently laminar flows and small enough Courant number. These coordinate axes are depicted
for a certain generalized quadrilateral in Figure B.1.

Integration of (B.3) by substitution then leads to an additional Jacobian term that takes the form

ˆ.s/ D

ˇ̌̌
ˇdet

�
@.X; Y /

@.s; t/

�ˇ̌̌
ˇ D

ˇ̌̌
ˇ.�a.g � f /t2 � 2af t � bf C c.g � f //s C .X.s/ �X1/�X

s

ˇ̌̌
ˇ :

(B.9)

Consequently, the geometric integrals can be written as

Z
a�
k

Xp Y q JXY .X/ dXdY D
Z 1

sD0

Z 1

tD0

Xp Y qJXY .X.s//ˆ.s/dtds: (B.10)

Figure B.1. The location of quadrature points (empty circles) for an arbitrary generalized quadrilateral and
associated coordinate axes .s; t/.
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Given an arbitrary quadrature rule with quadrature points sk D .sk; tk/ and associated weights
wk , the numerical integral is then computed viaZ

a�
k

XpY qJXY .X/dXdY D
X
k

X.sk/
p Y.sk/

q JXY .X.sk//ˆ.sk/ wk : (B.11)

For quadrilateral integration, we use a four-point fourth-order quadrature rule (Figure B.1) given by

s1 D
�
�
1
p
3
;�

1
p
3

�
; s2 D

�
1
p
3
;�

1
p
3

�
; s3 D

�
�
1
p
3
;
1
p
3

�
; s4 D

�
1
p
3
;
1
p
3

�
;

(B.12)

and wi D 1=4 for each i 2 ¹1; 2; 3; 4º.
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