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ABSTRACT

Harmonic Generation and Long-Range Optical Binding of Aerosols

by

Jeremy Moore

Co-chairs: Tal Carmon and Stephen Rand

This dissertation presents the results of two major optical experiments. The first is

the generation of continuous-wave ultraviolet light from an infrared pump laser by

fourth harmonic generation in a lithium niobate whispering gallery resonator. The

UV fourth harmonic (as well as the near-infrared second and visible third harmonics)

is observed at input powers as low as 200mW, and is detected on a spectrum analyzer

and photographed directly after outcoupling from a diamond prism. The emitted light

is tunable over a pump range of 1535 to 1545nm, due to quasi-phase matching with

a variable crystal poling period and high order modes in the resonator. This work

extends previously observed second harmonic generation in similar devices to wave-

lengths near 385nm, demonstrating a compact, coherent UV source, and providing a

first step toward high harmonic generation at CW operation.

The second experiment is the observation of long-range optical binding of aerosols

in a vertical Gaussian beam optical trap. We demonstrate optical binding of 7-25µm

diameter objects in a weakly focused Gaussian beam trap. In contrast to prior work

in viscous liquids, the observed optical interactions take place in air, and without the

use of interference techniques to create an optical potential landscape.

xv



CHAPTER I

Introduction

This work describes experimental observations related to the interaction of light

with matter and structure. Two major research topics are described in the following

chapters. The first is the experimental demonstration of cascaded harmonic gener-

ation in a whispering gallery resonator, producing continuous wave ultraviolet light

from a near infrared pump laser. The second discusses the observation of long-range

interaction of opticall trapped dielectric objects. This so-called optical binding is in-

vestigated, and the static and dynamic behavior of the trapped objects is examined.

The layout of the chapters is is as follows.

1.0.1 Chapter Overview

Chapter 2 provides an introduction to optical cavities, also known as resonators.

Important parameters of optical cavities are discussed. Whispering gallery resonators

are introduced, and important characteristics and applications are described.

Chapter 3 provides an introduction to nonlinear optics. Background is given on

the nonlinear electric polarization of materials, and relevant nonlinear interactions and

concepts are introduced. These include cascaded harmonic generation and stimulated

Raman scattering.

Chapter 4 describes the demonstration of continuous-wave fourth harmonic gen-

1



eration in a lithium niobate whispering gallery resonator. Ultraviolet light is shown to

be generated from a near infrared pump laser via cascaded χ(2) processes. Addition-

ally, multi-photon Raman scattering processes are investigated in the same resonator.

The design and fabrication of the device are described, and the experimental proce-

dure and results are discussed. The major findings in this chapter appear in (1) and

(2).

Chapter 5 gives an introduction to the second part of this dissertation, optical

binding of aeorsols. Background information on optical trapping and optical binding

are presented.

Chapter 6 discusses the demonstration of long-range, underdamped otpical bind-

ing of aerosols. The experimentally observed behavior and interaction of objects con-

fined to the same optical potential well trap are discussed. The initial work in this

chapter was presented in (3).

Chapter 7 concludes the thesis and summarizes the major results.
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CHAPTER II

Optical Resonators

This chapter provides an introduction to optical cavities, also known as resonators.

Important parameters and background on resonators in general are reviewed in the

first section. The second section introduces whispering gallery resonators and dis-

cusses their design, characteristics, and applications.

2.1 Optical Resonators

Optical resonators are devices or systems which allow light to circulate in a closed

path. One of the most important classes of optical components, resonators have an

enormous array of applications in many fields, including

• Laser feedback

• Optical filtering

• Interferometry

• Optical frequency standards

• Intensity enhancement

The simplest incarnation of an optical resonator is the Farbry-Perot cavity or

etalon, which consists of two parallel reflecting surfaces (Figure 2.1). Fabry-Perot

3



resonators can be as simple as a single piece of dieletric material with two polished

surfaces, or can be extremely complex and sophisticated systems composed of pre-

cisely aligned components.

Figure 2.1:
Schematic representation of a simple Fabry-Perot optical cavity. Two
parallel mirrors reflect light in a closed path

Inside a Fabry-Perot cavity, light reflects from the parallel surfaces and travels

back and forth between the mirrors. Constructive interference occurs for wavelengths

of light that satisfy the condition

m
λ

n
= 2L (2.1)

where L is the separation between the mirrors, m is an integer, n is the index of

refraction, and λ is the free-space wavelength of the light. For these wavelengths,

light making one round trip is in phase with light entering the cavity, and so incident

and reflected electric field will add constructively. This allows electromagnetic energy

to build up inside the resonator.

4



The quality factor, Q, quantifies the ability of a resonator to store energy. It is

defined is as the ratio of the energy stored in the resonator to the energy lost in one

optical cycle.

Q = 2π
Total Energy Stored

Energy Lost Per Optical Cycle
, (2.2)

Alternately, the quality factor can be defined in terms of the bandwidth of the

resonances. In this case, Q is defined as the ratio of the resonance frequency to the

full width and half-maximum of the resonance:

Q =
f0
δf
, (2.3)

The energy storage capacity of the a resonator with a lossless medium is deter-

mined by the mirror reflectivity. The resonators finesse F is determined by these

losses. For a symmetric Fabry-Perot, finesse is defined as

F = π
√
R/(1−R), (2.4)

where R is the power reflectance of the mirrors. The resonator finesse can be under-

stood as the number of round trips that a photon will make before being absorbed,

or, equivalently, the amplification of the input power inside the resonator. F and Q

are related by

F =
Qλ

2nL
(2.5)

5



For a given cavity of a fixed length, there will be an infinite number of longitudinal

modes which satisfy 2.1. The frequency separation between resonant modes, the free

spectral range (FSR) of the cavity, is given by

FSR =
c

2nL
, (2.6)

where c is the speed of light.

The last important parameter of optical cavities discussed in this section is mode

volume V , defined as

V =

∫
V
|E|2

max|E2|
(2.7)

which describes the ability of a cavity to spatially confine light. Smaller mode volume

in a resonator corresponds to greater intensity enhancement

In addition to Fabry-Perot cavities, there a large variety of configurations possible

for optical resonators. Additional examples of optical resonators include triangular or

bow-tie configurations using mirrors, distributed Bragg cavites, fiber based resonators,

and photonic crystal microcavities.

2.2 Whispering Gallery Resonators

2.2.1 History

Whispering gallery resonators are a special class of circular optical cavities, in

which light propagates azimuthally around the circumference of the resonator. Similar

to the case of the Fabry-Perot, resonant wavelengths are determined by the condition

that constructive inteference occurs after one round trip.
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Optical whispering gallery resonators take their name from their acoustic analog,

first described by Lord Rayleigh in 1910. He investigated the behavior of sound waves

in St. Paul’s Cathedral, London (Figure 2.2 (4)), where ”sonorous vibrations have a

tendency to cling to concave surfaces.” (5). A person can whisper against the domed

wall of the cathedral and hear the sound of their own voice that has propagated

around the room.

Figure 2.2:
St. Paul’s Cathedral, London, where Lord Rayleigh first described acous-
tic whispering gallery resonators

Around the same time, Debye formulated expressions for the resonant frequencies

of spherical objects made of metal and dielectrics (which include whispering gallery

modes) (6) and Mie investigated the scattering of electromagnetic radiation by spheres

(7). These studies represented the earliest work on electromagnetic whispering gallery

resonators.
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2.2.2 Whispering Gallery Resonator Properties and Applications

Practical whispering gallery resonators come in many forms, including

• Aerosols (8)

• On-chip silica toroids (9)

• Fiber tip silica microspheres (10)

• Nanoimprinted polymer rings (11; 12)

• Polished crystalline disks (1)

• Liquid droplets (13)

• Hollow glass structures (14; 15)

Light is confined inside the resonator via total internal reflection, and ultrasmooth

surfaces can be achieved either by surface tension (as in the case of melting and

reflowing a fused silica resonator) or by mechanical polishing. In both cases, very low

loss cavities have been achieved, which has allowed the demonstration of extremely

high quality factors. Resonators have been fabricated with Q values up to 1011, and

finesses as large as 107 in CaF2 (16).

In addition to high values of Q, small mode volumes have been demonstrated in

a variety of whispering gallery resonators. Whispering gallery cavities have also been

fabricated from a wide range of liquid and solid materials, enabling the demonstration

of many novel effects. Figure 2.3 shows several types of whispering gallery resonators

(17; 9; 14; 11; 13).

The large enhancement light intensity via multiple recirculations, and the large

light-matter interaction distances (18; 19; 20), have enabled the demonstration of a

wide variety of nonlinear phoenomena with low power, continuous-in-time excitation.

Some of these include optomechanical vibrations (17; 21; 22; 23; 24), parametric
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Figure 2.3:
Examples of whispering gallery resonators. (a) CaF2 (17) (b) on chip
fused silica microtoroid (9) (c) fiber tip slica microsphere (d) microfluidic
silica ”bottle” (14) (e) polymer microring (11) and (f) liquid microsphere
(13)
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oscillations (25; 16; 26; 27), Raman-lasers (28; 29; 30), Erbium-lasers (31), Brillouin-

lasers (17; 21; 22; 23), and continuous-wave second- and third-harmonic generation

(32; 33; 34; 35; 36; 37; 27). Nonlinear optics, including several of the processes

observed in whispering gallery resonators, is covered in following chapters.

2.2.3 Resonance Frequency Calculations

The condition for frequency resonance in whispering gallery geomteries is more

complex than in the case of Fabry-Perot cavites, and many geometries require nu-

merical simulation for calculating resonant modes, including finite element (FEM)

(1; 38) and finite-difference time-domain (FDTD) techniques. Finite element mode

calculations will be discussed in greater detail in following chapters.

For the simple case of a dielectric sphere, however, analytical solutions exist (39).

Transverse electric (TE) modes are defined as modes with no radial component of

the electric field (i.e. modes with polarization parallel to the axis of rotation of the

resonator). Transverse magnetic (TM) modes are defined as those with no radial

component of the magnetic field (i.e. modes with electric field polarization in parallel

to the raidal direction). For TE modes, the resonant wavelength is given by

Ψ′n(mx)

Ψn(mx)
−mζ ′n(x)

ζn(x)
= 0 (2.8)

where Ψn and ζn are Bessel and Hankel functions, respectively, m is the refractive

index, n is the azimuthal mode order, and (′) denotes derivation with respect to the

dimensionless size parameter

x =
2πa

λ
(2.9)
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where a is the radius of the sphere.

For TM modes, the corresponding expression is

m
Ψ′n(mx)

Ψn(mx)
− ζ ′n(x)

ζn(x)
= 0 (2.10)

In cases where the azimuthal mode order is large (i.e. a >> λ), these solutions

can be approximated by the expressions (19)

kn,q '
1

a
√
ε0

[
n+ αq

(n
2

)1/3
−
√

ε0
ε0 − 1

+
3α2

q

20

(
2

n

)1/3

+O(n−2/3)

]
(2.11)

where k is the wave vector, a is the sphere radius, n is the azimuthal mode order,

and αq is the qth root of the Airy function. The expression for TM modes is similar:

kn,q '
1

a
√
ε0

[
n+ αq

(n
2

)1/3
−

√
1

ε0(ε0 − 1)
+

3α2
q

20

(
2

n

)1/3

+O(n−2/3)

]
(2.12)

An example of mode calculation for a 100µm silica microsphere is given in the

appendix.

2.2.4 Coupling

Several methods exist for coupling light into whispering gallery resonators. Early

experiments with aerosols relied on the coupling of a free space beam to whispering

gallery modes of microscopic dielectric paricles (39). However, the efficiency of cou-

pling to high Q whispering gallery modes from a free-space beam becomes extremely

small as the resonator is increased in size above a few wavelengths (19).

Most methods of transfering energy to whispering gallery modes rely on the use of
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evanscent near field coupling. In order to couple efficiently, the modes in the coupler

must be spatially overlapped and phase matched. Common couplers for whispering

gallery resonators include

• Dielectric waveguides

• Prisms

• Angle polished optical fibers

• Tapered optical fibers

The most efficient coupling is typically achieved with tapered fiber coupling, shown

in Figure 2.4. A bare single mode fiber is heated (typically with a hydrogen flame

or ceramic heater) and mechanically stretched, reducing the diameter in the coupling

region. Greater than 99% coupling efficiency is possible, as has been shown in fused

silica whispering gallery resonators.

Although tapered fibers are efficient couplers, they are also mechanically fragile.

Typical diameters are on the order of 1µm, and so maintaining a fiber coupler intact

for long periods of time is challenging. Also, nano-scale positioning of the fiber is

required for critical coupling. Finally, it can be difficult to match the mode and

resonator indices in the case of high refractive index resonators.

Prism couplers, although less efficient than tapered fibers, address some of these

limitations. Coupling to whispering gallery mode is achieved in a prism or angle

polished fiber by means of frustrated total internal reflection. A laser is guided

through the prism and the angle of incidence is chosen such that the beam undergoes

total internal reflection from one face of the prism. The prism index and angle are

chosen to match the propagation constants of the beam in the prism and the resonator

mode. In the case of the angle polished fiber, and optical fiber is cleaved at an angle

and the cleaved surface is polished to create an effective prism. Prism coupling is

discussed in more detail in later chapters.
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Figure 2.4:
Tapered fiber coupler setup. An optical fiber is stretched over a heat
source, thinning it adiabatically. The evanescent tail of the fiber mode
couples to high Q whispering gallery modes, resulting in a decrease in
transmission at resonant frequencies
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2.3 Conclusion

Whispering gallery resonators are an important class of optical cavities with many

desirable parameters. The high quality factors, small mode volumes, and simple

structure of these devices has enabled the demonstration of a large number of non-

linear phenomena with low power, continuous-in-time excitation. The application of

whispering gallery resonators to nonlinear optics, in particular cascaded harmonic

generation, is described in the following chapters.
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CHAPTER III

Nonlinear Optics

This chapter provides an introduction to topics in nonlinear optics related to the

experimental work presented in later chapters. Background is given on harmonic

generation, sum-frequency generation, and Raman scattering.

3.1 Introduction

Nonlinear optics is a branch of optics concerning optical phenomena which occur

when intense light alters the properties of a material system. More specifically, this

field focuses on the behavior of light in situations where the nonlinear polarization

P of a medium depends nonlinearly on the electric field strength E of the light. For

example, in the second harmonic generation, the material response depends quadrat-

ically on the field strenght, and so the intensity of output (which will have twice the

input frequency) will depend quadratically on the intensity of the pump.

The intensities required to observe nonlinear effects are typically produced with

laser light. Because of this, the study of nonlinear optics began shortly after the

demonstration of the first laser in 1960 (40). The first experimental discovery in

nonlinear optics occurred at the University of Michigan in 1961, with second harmonic

generation of a ruby laser in quartz (41).

Nonlinear effects are often used to convert light produced by available sources to
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frequencies which are not as readily accessible. Harmonic generation, sum-frequency

and difference-frequency generation, four-wave mixing, optical parametric oscillation,

and stimulated Raman scattering are some of the most commonly encountered non-

linear processes.

3.2 Nonlinear Polarization

Light propagating in a dielectric medium induces a dipole moment, or electrical

polarization, in the material. This polarization propagates along with the optical

wave. The expression for the nonlinear polarization of a material is

P (t) = χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + χ(4)E4(t)... (3.1)

where χ(1) is the linear susceptibility, χ(2), χ(3), χ(4), etc. are the second order, third

order, fourth order, etc. nonlinear susceptibilities, and E is the time dependent

electric field amplitude. At low optical intensities, Eq. 3.1 reduces to the familiar

linear case

P (t) = χ(1)E(t) (3.2)

With high intensity, a nonlinear medium (i.e. a material posessing appreciable

nonlinear susceptibility) will allow a pump laser to generate a nonlinear polarization

wave, which will in turn radiate light at different frequencies, as described in the next

section.

16



3.3 Nonlinear Interactions

3.3.1 Harmonic Generation

For a lossless medium, a pump laser with electric field given by

E(t) = Ee−iωt + (complex conjugate (c.c.)) (3.3)

will generated (ignoring higher order terms) a second order nonlinear polarization

P (t)2 = χ(2)E(t)2 (3.4)

which can also be written as

P (2)(t) = 2χ(2)EE∗ + χ(2)E2e−i2ωt + c.c. (3.5)

The first term on the right side of Eq. 3.5 has no frequency dependence, and

represents the introduction of a static electric field created within the medium. This

process is known as optical rectification, and has been used to efficiently generated

terahertz radiation from near infrared lasers (42). The second term on the right hand

side of the equation has a frequency term at 2ω, which can lead to the generation

of an optical signal at twice the pump frequency. This process is known as second

harmonic generation or optical parametric amplification. An energy level description

of the second harmonic generation process is shown in Figure 3.1. In the figure, two

pump photons with frequency ω are destroyed, and a second harmonic photon with

frequency 2ω is created. The solid line represents the atomic ground state, while
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the dashed lines are virtual energy levels. These virtual states represent combined

energies of the atomic eigenstates and photons, rather than eigenstates of the free

atom.

Figure 3.1:
Second harmonic generation energy level description. Two photons of
pump frequency ω1 are absorbed, and a second harmonic photon of fre-
quency ω2 is emitted. The dashed lines represent virtual energy levels

An experimental configuration for second harmonic generation in a nonlinear crys-

tal is shown in Figure 3.2.

Figure 3.2:
Second harmonic generation in a nonlinear crystal. The second harmonic
frequency at 2ω1 is separated from the pump with a prism.
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Similarly, the third and fourth order nonlinear susceptibility leads to a polarization

term with e−i3ωt and e−i4ωt dependence, which produce third and fourth harmonic

generation, respectively.

The result of harmonic generation is the conversion of a pump laser to shorter

wavelengths λ/n, where n is an integer. This technique can be efficient, and is widely

used to create laser sources at unavailable wavelengths, including the ultraviolet region

of the electromagnetic spectrum. With extremely intense laser pulses, very high order

harmonics can be generated, reaching into the deep UV and x-rays (43).

3.3.2 Sum-Frequency Generation

In addition to permitting the generation of harmonics, the nonlinear response of

materials enables the mixing of optical frequencies, including sum- and difference-

frequency generation. For two pump waves given by

E(t) = E1e
−iω1t + E2e

−iω2t + (c.c.) (3.6)

is again

P (t)2 = χ(2)E(t)2 (3.7)

With two pump fequencies, Eq. 3.8, produces and optical rectification term

P (2)(t) = 2χ(2)(E1E
∗
1 + E2E

∗
2) + c.c. (3.8)

as well as two second harmonic terms (one for each pump)
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χ(2)E2
1e
−i2ω1t (3.9)

χ(2)E2
2e
−i2ω2t (3.10)

Additionally, there are now additional terms, including

2χ(2)E1E2e
−i(ω1+ω2)t (3.11)

2χ(2)E1E2e
−i(ω1−ω2)t (3.12)

The frequency terms at ω1 +ω2 and ω1−ω2 represent sum- and difference- frequency

generation, respectively. The radiated light from these polarization terms will produce

light with a frequency that is either the sum or the difference of the pump frequencies.

An energy diagram repesentation of the sum- and difference-frequency generation

processes is shown in Fig. 3.3.

Figure 3.3:
Energy level diagram for (a) sum and (b) difference frequency generation.
In sum-frequency generation, two photons ω1 and ω2 are added to produce
a third photon. In difference-frequency generation, ω2 is subtracted from
ω1
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Sum-frequency generation, like harmonic generation, can be used to convert the

pump photons to higher energies. In the case of closely spaced input frequenices,

difference-frequency generation can be used to produce far infrared and terahertz

radiation.

3.3.3 Cascaded Harmonic Generation

Cascaded harmonic generation is a nonlinear phenomena which can produce both

even and odd ordered harmonics λ/n by means of second order nonlinearity. Figure

3.4 shows an example of this process, which is a combination of harmonic generation

and sum-frequency generation. In this case, the generated second harmonic is added

to the pump, producing a third harmonic. This third harmonic is then added to

the pump again, producing a fourth harmonic. The experimental observation of this

process, producing continuous wave ultraviolet light from a 1.5µm pump laser, is

described in the next chapter.
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Figure 3.4:
Energy level diagram for cascaded harmonic generation. The second har-
monic (a) is added to the pump to produce a cascaded third harmonic
(b), which is then added to the pump again to produce the fourth har-
monic. This cascaded process is a combination of second harmonic and
sum-frequency generation, and is therefore the result of only χ(2) processes

3.3.4 χ(2) and Noncentrosymmetric Media

It should also be noted that, although second order effects are typically much

stronger than higher order effects, second order electric dipole processes can only

occur in media that do not posess inversion symmetry. This result can be understood

by considering the Lorentz model, which describes the interaction of electromagnetic

fileds with atomic structure in terms of a harmonic oscillator, with the addition of

nonlinearity in the restoring force (44).

The equation of motion for the electron position is

x′′ + 2γx′ + ω2
0x+ ax2 =

−eE(t)

m
(3.13)

where −e is the electron charge, m is the electron mass, E is the electric field, and
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the damping force is assumed to be

−2mγx′ (3.14)

then the restoring force on the electron is given by

F = −mω2
0x−max2 (3.15)

where a is proportional to the strength of the nonlinear response. Integrating this

expression over x yields the potential energy function

U = −
(

1

2
mω2

0x
2 − 1

3
max3

)
(3.16)

This expression represents a harmonic potential, with the second term on the right

corresponding to an anharmonic deviation, as shown in Fig. 3.5. Physically, this

anharmonic potential can be understood to describe a material in which the crystal

lattice does not possess inversion symmetry, and so the potential experienced by an

atomic electron is not exactly parabolic.

The major consequence of this requirement is that materials which do possess

inversion symmetry, including gasses, liquids, amorphous materials (e.g. fused silica)

and crystalline materials (e.g. silicon) will have no second order effects. In these

cases, the lowest order nonlinear susceptibility will be χ(3).
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Figure 3.5:
Representation of the potential energy function for a material without
inversion symmetry, from (44).

3.3.5 Raman Scattering

An optical wave propagating in a crystal can also shift its frequency due to in-

elestic scattering from lattice vibrations, or phonons. Scattering from optical fre-

quency phonons, known as Raman scattering, causes the optical wave to either gain

or lose energy. In the case of a photon losing energy to a phonon, known as Stokes

scattering, the crystal lattice is heated, and the optical signal is red-shifted. In the op-

posite process, anti-Stokes scattering, a photon gains energy from the lattice, cooling

the material and blue-shifting the optical signal. Because the likelyhood of Raman

scattering depends on the population of the initial phonon state, at thermodynamic

equilibrium Stokes scattering will dominate.

In an additional processes known as hyper Raman scattering (45; 46), the energy

from two pump photons is results in the creation of an optical phonon and a photon

at nearly twice the pump energy. Figure 3.6 shows the energy diagram representation

for Raman and hyper Raman scattering, which are χ(3) nonlinear effects.
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Figure 3.6:
Energy level diagram for (a) Stokes and (b) anti-Stokes Raman scattering.
In the Stokes process, energy from the photon is lost to an optical phonon,
red-shifting the light. In the anti-Stokes process, the photon gains energy
from a phonon, blue-shifting the light. In hyper Raman scattering (c)
two pump photons are destroyed, and a photon at twice the pump energy
minus the optical phonon energy is created
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3.4 Nonlinear Materials

A wide variety of materials have been shown to exhibit useful nonlinearity. Some

of these are useful as semiconductors or piezoelectrics, and many are commercially

available with in bulk and wafer form with high purity. Some of the most important

and commonly used second order nonlinear crystals are listed here:

• Lithium niobate (LiNbO3)

• Lithium tantalate (LiTaO3)

• Potassium niobate (KNbO3)

• Potassium titanyl phosphate (KTP )

• β-barium borate (BBO)

• Gallium arsenide (GaAs)

Figure 3.7 and 3.8 show examples of lithium tantalate (47) and lithium niobate

(48) in bulk and wafer form.
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Figure 3.7: Single crystal lithium tantalate boules (47).

Figure 3.8: Lithium niobate bulk sample and wafers (48)
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CHAPTER IV

Harmonic Generation in a Lithium Niobate

Whispering Gallery Resonator

4.1 Introduction

Scaling of laser sources to shorter wavelengths is a challenging task. The required

energy for a conventional laser scales as 1/λ5, where λ is the laser wavelength (43).

There are, however, a wide range of applications for short wavelength lasers, including

• Industrial - micromachining, surface cleaning of materials, thin film sputtering

• Medical - corneal surgery

• Semiconductor - small feature size lithography

• Optics - writing fiber Bragg gratings

Harmonic generation is not subject to the same laser scaling limits, and is there-

fore a natural choice for extending the emission wavelength of a pump laser to produce

coherent ultraviolet light, unrestricted by the 1/λ5 relation. However, to date such

short-wavelength sources have required very high pump power levels that could gen-

erally be achieved only by ultra-short pump pulses (49; 50; 51; 52; 53). Resonant
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enhancement is an alternative to ultra-short pump pulses for providing the high field

intensities required for efficient nonlinear effects.

Whispering gallery resonators are simple, momolithic devices which can be used

to greatly amplify the intensity of a continous-wave pump source. This is because

high quality factor whispering gallery resonators enhance the intensity of light contin-

uously in time via many recirculations, resulting in high finesse and large light-matter

interaction distances (18; 19; 20).

In this work, we experimentally demonstrate continuous-wave harmonic gener-

ation up to the fourth harmonic, enabled by multiple recirculation intensity en-

hancement in a lithium niobate whispering gallery resonator. This could poten-

tially transform high-harmonic studies from pulsed to continuous-wave. Specifi-

cally, we generate continuous-wave near infrared, visible, and ultraviolet light from a

telecommunication-compatible infrared pump through cascaded harmonic generation

in a whispering gallery resonator at a pump power of 200 mW (49; 50; 51; 52; 53).

Further, our millimeter scale emitter is simple, as the polished lithium niobate res-

onator comprises both the nonlinear medium and the mode confining resonator. A

nonuniform poling of lithium niobate (54) and existence of higher order transverse

modes (33) provides the required quasi-phase matching between the infrared pump

and the corresponding near infrared, visible, and ultraviolet harmonics.

Finally, multi-photon Raman scattering processes observed in the same system

are discussed.

4.2 Finite Element Modeling

Although exact solutions exist for spherical geometry (39), whispering gallery

modes of nonspherical systems require approximations or numerical simulation. Res-

onance calculation for the pump and corresponding harmonics of the lithium niobate

disk is done using finite element method simulation in COMSOL Multiphysics. Al-
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though a three dimensional analysis of whispering gallery modes is possible, the sys-

tem under consideration is symmetric about the vetical axis. A 2D axial symmetric

model is therefore used to reduce the computational intensity of the problem (38).

Lithium niobate was chosen for our whispering gallery resonator nonlinear medium

for its second order optical nonlinearity and its transparency from infrared to ultra-

violet wavelengths. Additionally, due to its ferroelectric properties, lithium niobate

crystal domains can be engineered by electrical poling to achieve quasi-phase match-

ing of diverse nonlinear optical processes. Phase matching is discussed in more detail

in following sections.

Figure 4.1:
Schematic diagram of lithium niobate resonator. The disk is 3mm in
diameter, 0.5mm thick, and has an approximately spherical curvature
(i.e. the radius of curvature is equal to the disk radius)

The lithium niobate disk modeled in this analysis is 3mm in diameter and 0.5mm

thick. The radius of curvature of the outside surface is nominally the same as the

radius of the disk, and so the resonator approximates a 0.5mm thick section cut

from the center of a sphere. A schematic diagram of the device is shown in Fig. A.1.

Transverse electric (TE) modes are defined as those polarized in the z-direction, while
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transverse magnetic (TM) modes are polarized in the xy plane. The optical axis of

the crystal and the disk are the same, and so TE modes considered in this analysis

”see” the extraordinary refractive index, while TM modes are subject to the ordinary

refractive index.

Resonator modes for were calculated as described in (38), in COMSOL v.3.5.

For a given azimuthal mode number m, electric field profiles and eigenfrequencies are

obtained for the geometry described above with ordinary and extraordinary refractive

indices according to (55). Table 4.1 shows the resulting calculated TE harmonic

frequencies and refractive index data for a 1550nm pump.

Table 4.1: Calculated Pump and Harmonic Modes

Harmonic Wavelength Ord. Ext. Azimuthal TE Frequency
(nm) index index mode number (Hz)

no ne m

pump 1550nm 2.216 2.136 13430 1.935× 1014

2nd 775nm 2.264 2.177 26479 3.877× 1014

3rd 516.7nm 2.334 2.238 40752 5.802× 1014

4th 387.5nm 2.517 2.359 57280 7.734× 1014

The calculated cross-sectional electric field profiles the pump and harmonic res-

onator modes are shown in Figure 4.2. The energy circulating in the infrared pump

and the corresponding second (nearinfrared), third (visible), and fourth (ultraviolet)

harmonic modes is located near the surface of the lithium niobate disk.

The electric field profiles of the modes along the resonator equator in the radial

direction are shown in Figure 4.3. In smaller whispering gallery resonators, such as

silica microspheres (10), a significant part of the mode volume can be found outside

the resonator. However, as show in Figure 4.3, the modes in this system are confined

almost completely inside the disk. This is due to the high refractive index of lithium
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Figure 4.2:
Electric field profiles for (a) pump (1550nm), (b) 2nd harmonic (775nm),
(c) 3rd harmonic (516.7nm), and (d) 4th harmonic (387.5nm)

niobate and the relatively large size of the resonator compared with the pump and

harmonic wavelengths.

To quantify the spatial overlap of the various modes, the parameter η is defined

as
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Figure 4.3:
Electric field values for pump and harmonics as a function of radius, along
the resonator center line z = 0

ηi,j =
|
∫
E∗iEjdA|2∫

|Ei|2dA
∫
|Ej|2dA

(4.1)

where i and j are indices representing the pump, second, third, and fourth har-

monics. For example ηpump,2, the overlap between the pump and second harmonic is

0.7134. ηi,j = 1 signifies that the two modes overlap exactly, while ηi,j = 0 indicates

complete spatial separation. Table 4.2 shows the value of ηi,j for all combinations of

pump and harmonic modes.
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Table 4.2: Overlap Integral ηi,j for Pump and Harmonics

@
@
@
@
@

i

j
pump 2 3 4

pump 1.0 0.7134 0.4202 0.2374

2 0.7134 1.0 0.8702 0.6425

3 0.4202 0.8702 1.0 0.9143

4 0.2374 0.6425 0.9143 1.0

4.3 Phase Matching

4.3.1 Dispersion and Phase Matching

The modes are expected to resonate at integer multiples of the pump frequency,

in order to conserve energy as required by coupled-mode theory (56). However, struc-

tural and material dispersion cause the propagation constants to be scaled differently

as a function of frequency. This implies that momentum is not a priori conserved for

the harmonic processes in the bare resonator.

As a result of the k-vector mismatch, the propagating optical wave does not main-

tain a fixed phase relation to the electric polarization wave, and so energy cannot be

efficiently extracted from the pump. Another way to view this situation is that the

signals generated in parts of the crystal where the waves are out of phase will simply

transfer energy back to the pump, preventing efficient conversion to the generated

frequency (44).

Phase matcing is the name for the group of techniques used to compensate for

dispersion effects. Typically, phase matching techniques in χ(2) nonlinear crystals

exploit the birefringence of nonlinear materials, and the crystal is rotated to find an
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orientation where the propagating pump and signal have the same refracitve index

(57). Additionally, the birefringence of a crystal may exhibit temperature dependence,

and so heating or cooling the material may achieve the same result.

Birefrigent phase matching may not always be practicle, however, due to device

geometry, material properties, or other requirements. For some materials, including

lithium niobate, quasi-phase matching can be used to compensate the negative effects

of dispersion on conversion efficiency.

4.3.2 Quasi-Phase Matching

Birefringent phase matching techniques exploit the anisotropy of the crystal to

create conditions where the pump and generated signal remain in phase. In some

situations, this is not possible at convenient temperatures. There are also geometric

concerns such as spatial walk-off, where the Poynting vector and the wavevector

have different directions, causing a loss of energy from the nonlinear pocess, which

limit the use of birefringenct phase matching. Quasi-phase matching compensates for

dispersion effects by the periodic modulation of the material structure, and can be

used to address some of these issues.

Unlike birefringent phase matching, quasi-phase matching does not lock the phase

the interacting modes. Instead, the sign of the nonlinear coefficient is periodically

reversed by modifying the material or structure, so that energy continues to transfer

from pump to signal.

Figure 4.4 summarizes the three cases of phase matching. For the case of perfect

phase matching, shown in Fig. 4.4(a), the waves are in phase and the generated

intensity grows monotonically with propagation distance z. In 4.4(c), the waves are

out of phase. The generated intensity grows over the first coherence length, but as the

waves move out of phase, energy begins tranfering back to the pump. This process

continues in a cycle, with energy flowing back and forth from pump to signal, and
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efficient conversion is not achieved. In 4.4(b), the sign of χ(2) has been reversed each

integer number of z/Lcoh, and so although the pump and signal do not propagate in

phase, energy is efficiently transfered to the generated wave.

The most common quasi-phase matching technique is known as periodic poling, in

which the spontaneous polarization of a ferroelectric crystal is periodically reversed

by the application of a large voltage across the crystal. Lithium niobate is one of the

most common materials which is periodically poled for quasi-phase matching.

The optimum poling period for each three-photon interaction harmonic generation

process is given by

Λ =

(
n1

λ1
+
n2

λ2
− n3

λ3

)−1
(4.2)

where λ1 and λ2 are the wavelengths of the input photons, λ3 is the wavelength of

the generated photon, n1 and n2 are the mode indices of the input photons and n3 is

the mode index of generated photon.

Domain reversal is achieved by the application of a large voltage across the sam-

ple, approximately 20kV/mm. Periodically poled lithium niobate (PPLN) wafers are

available commerically, and our resonator is fabricated from such a wafer (54; 38; 56;

58).

In contrast to the typical case of straight propagation through a bulk sample of

nonlinear media, the modes of a whispering gallery resonator propagate in a circle

with respect to the poling domains. A circularly symmetric resonator can be poled

in a variety of configurations (54), two of the simplest of which are shown in Fig. 4.5.

As shown in the figure, a propagating mode in a radially poled resonator (Fig. 4.5

(a)) will experience a uniform poling period, while a mode propagating in a stripe

poled resonator (Fig. 4.5 (b)) will experience a nonuniform poling period.
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Figure 4.4:
Conversion efficiency for (a) perfectly phase matched (b) quasi-phase
matched and (c) not phase matched processes(44)

Figure 4.5:
Propagation of a whispering gallery mode through (a) radial and (b)
striped poling configurations. The mode sees a uniform poling period in
the radial case, and a nonuniform poling period in the striped case.

A major challenge in quasi-phase matching cascaded interactions is that different

poling periods are required to compensate for the momentum mismatch of different
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nonlinear processes. This means that fixing the poling period to optimize a particular

nonlinear process will not, in general, allow for efficient quasi-phase matching of the

remaining processes. For example, the optimal poling periods for second, cascaded

third, and cascaded fourth harmonic generation for a 1550nm pump in lithium niobate

are 19µm, 7µm, and 2.13µm, respectively.

Plotting the envelope function of the Fourier coefficients for the poling pattern

seen by the azimuthally propagating mode provides information about the relative

efficiency of phase matching for different processes (58). The efficiency of a given

nonlinear process is directly proportional to amplitude of the Fourier coefficient at

the optimum poling period for that process.

Figure 4.6 shows the amplitude of the Fourier coefficients as a function of inverse

grating period for our 3mm diameter resonator with 79µm striped poling, confirm-

ing that the quasi-phase matching condition can be partially satisfied for all three

harmonic-generation processes simultaneously.

It should be noted that although the relative quasi-phase matching efficiency of

the three processes discussed here differ by less than an order of magnitude, poling

configurations with shorter periods will have a much better phase matching perfor-

mances for all processes than the PPLN wafer available for this experiment. While

these results effectively demonstrate a proof of concept, we anticipate that shortening

the grating period will greatly improve efficiency in future devices.

4.3.3 High Order Modes

In addition to periodic poling, the existence of high order modes facilitates phase

matching over a broad pump wavelength range (33; 59; 16). In the previous section,

only first order modes of the resonator were considered. However, because of the

large size and broad curvature of the resonator, a large number of high order modes

are supported by the structure. The effective refractive indices for these modes can
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Figure 4.6:
The amplitude of the Fourier coefficients for the poling pattern seen by
the azimuthally propagating mode, for our 3mm diameter resonator with
Λ0 = 79µm striped poling, confirming that the energy-momentum condi-
tion can be satisfied for all three harmonic-generation processes simulta-
neously

differ significantly from each other, and so coupling to these higher order modes can

relax the phase matching requirements (33; 59). As shown in later sections, coupling

to high order modes also allows tunability of the harmonic generation process.
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Figure 4.7:
COMSOL simulation showing high order transverse optical modes of the
lithium niobate disk. High order modes assists periodic poling with phase
matching

4.4 Fabrication

The resonator used in these experiments was fabricated from a commercial z-

cut, periodically poled lithium niobate wafer. The original two inch wafer (0.5mm

thick) was diced into 5 × 5mm squares. The squares were then mounted on an air

bearing spindle (Fig. 4.8), rough cut to 3mm diameter circular disks, and the edges

were mechanically hand polished with a graded series of alumina polishing grit. The

fabrication of the first devices was accomplished with assistance from Opticology, Inc.

(NY). A finished device, mounted on a brass support, is also shown in Fig. 4.8.
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Figure 4.8:
Air bearing spindle of the type used to hand polish lithium niobate whis-
pering gallery resonator.

4.5 Prism Coupling

Laser light is evanescently coupled to the cavity modes via a prism (60). Prism

coupling is one of several well establised technique for coupling energy to whispering

gallery modes, as well as for extracting signals from the resonator. Tapered fiber

coupling was deemed inappropriate in our case due to the high refractive index of the

resonator (nr ' 2.2).

The most important concern for coupling efficiently to the device is matching

the momentum of the resonator mode with the effective propagation constant in

the prism. Figure 4.9 describes the coupling geometry. The laser enters the prism

with wavevector ki and refracts from the first interface before being totally internally

reflected from the surface next to the resonator. In order to match the propagation

constant β for the reflected wave with the wavevector inside the resonator kr:
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β = kr = kpsinθp (4.3)

Figure 4.9:
Diagram of momentum matching requirements for prism coupling to
lithium niobate whispering gallery resonator.

For the geometry shown in Fig. 4.9 and a 60◦ angle prism, the required angle of

incidence for the incoming beam θi, relative to the normal of the first prism face, is

given by

θi = sin−1

(
nr

√
2

2
−
√

2

2
npcos

(
sin−1

nr
np

))
(4.4)

One important consequence of Eq. 4.3 is the requirement
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nr = npsinθp (4.5)

which implies that the prism refractive index must be higher than the resonator

index

np > nr (4.6)

Resonant modes of our 3mm lithium niobate resonator have a refractive index

around n = 2.2, depending on polarization and mode profile. This limits the possible

materials for the prism. A few possible high index prism materials for coupling

infrared light are

• Rutile (TiO2)

• Zince Selenide (ZnSe)

• Diamond

Diamond was chosen as the prism material due to its transparency over the ul-

traviolet to infrared range, its lack of birefringence, and its relatively low dispersion.

Diamond is not a common material for most optical components, and so a custom

prism was ordered. The dimensions of the prism, grown by chemical vapor deposition

and polished by Element Six (Cambridge, MA), are shown in Fig. 4.10.

Figure 4.11 shows a plot of the coupling angle θi, including material dispersion, for

a lithium niobate resonator, assuming the the effective mode index in the resonator

is simply given by the bulk extraordinary refractive index of lithium niobate. The

input angle for coupling light into the resonator is only a few degrees removed from
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Figure 4.10: Dimensions of CVD diamond prism coupler

normal incidence. It should be noted that Fig. 4.11 also describes the angles at

which light will couple out of the prism from the opposite face. As shown in the

figure, the harmonics will be spatially separated from each other and the pump at

the outcoupling facet.

While prism coupling is a widely applied technique, experimental realization is

not necessarily straightforward, and several practical difficulties were encountered in

the course of coupling to our device. The major difficulty was aligning the system to

produce correct spatial overlap of the pump laser with the resonator mode. Because

small deviations in the coupling angle, beam focus, and polarization can reduce the

coupling efficiency, resonances were not initially observed in the transmission spec-

trum through the prism (as described in following sections). Without observation of

resonance, it is difficult to ensure that the reflected pump beam spot on the coupling

surface is properly aligned with the point of contact with the resonator.

The solution to this problem was to use an imaging technique to observe the

point of contact between the resonator and prism, shown in Fig. 4.12. A microscope

44



Figure 4.11:
Coupling angle θi as a function of wavelength for diamond prism, as-
suming the resonator index is the bulk extraordinary index of lithium
niobate. The colored bands show the locations of the (a) fourth (b) third
and (c) second harmonics, as well as the infrared pump (d)

attached to an infrared CCD camera was used to image the facet of the prism in

contact with the resonator. When a curved object touches a flat surface, interference

patterns known as Newton’s rings are created. Moving the laser systematically across

the surface of the prism, several such ring patterns were observed, some of which were

interpreted as dust particles on the prism surface. However, the ring pattern created

by the contact point between the resonator and prism was observed to dissappear

when the resonator was moved back from the prism, and so this method established

the correct alignment of the beam with the resonator. Subsequent adjustment of
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focus, angular alignment, tilt, and polarization of the source were then carried out in

order to optimize coupling.

Figure 4.12:
Diagram of experimental setup used to establish prism coupling to whis-
pering gallery modes. A microscope focused on the coupling face is used
to observe Newton’s rings created by interference at the contact point.
This allows correct alignment of the coupling beam with the resonator

A photgraph of the diamond prism and the resonator, with the resonator slightly

backed away from the coupling position, is shown in Fig. 4.13.
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Figure 4.13:
Photograph of diamond prism and resonator with superimposed electric
field profile calculated in COMSOL.

4.6 Experimental Results and Discussion

The experimental setup for demonstrating cascaded harmonic generation in the

resonator is shown in Fig. 4.14. The pump beam, tunable from 1535 to 1545nm, is

evanescently coupled into the resonator, and emitted light is coupled out via the prism,

where it is observed on a CCD camera. Emitted light is also collected in a multimode

fiber from Rayleigh scattering from the surface of the disk, and anaylzed on a series of

spectrum analyzers spanning the ultraviolet to infrared (Ocean Optics Maya 2000Pro,

Ocean Optics USB4000, and HP 8565E). A photograph of the experimental setup is

shown in Fig. 4.15.

Third harmonic generation in the resonator is visible as bright green light emitted

from the disk surface. Although the second harmonic is more intense, the sensitivity

of the human eye and the CCD camera used in the experiment is much higher around
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Figure 4.14:
Experimental setup for demonstrating cascaded-harmonic generation in
the periodically poled lithium niobate resonator.

Figure 4.15: Photograph of experimental setup.
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515nm than at 773nm, which is in the near infrared. Consequently, the third harmonic

is more evident to photographic observation. Figure 4.16 shows a photograph of green

emission with an infrared pump via cascaded third harmonic generation.

Figure 4.16:
Photograph of green emission from the resonator via cascaded third har-
monic generation. The infrared pump and near infrared second harmonic
are not visible due to the greater sensitivity of the camera to visible
wavelengths.

4.6.1 Quality Factor

The quality factor of resonator modes was determined using the experimental

setup in Fig. 4.17. Scanning the pump laser wavelength reveals transmission dips at

resonant frequencies, as shown in Fig. 4.18. The measured free spectral range of the

resonator is 9.3GHz.

The quality factors of resonator modes can be found from the width of the trans-
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Figure 4.17:
Experimental setup for measuring resonator quality factor. The laser
wavelength is tuned, and the transmission through the prism is recorded
on an infrared photodetector. Resonator modes are observed as dips in
the transmission spectrum.

mission dips:

Q =
f0
δf
, (4.7)

Q values as high as 2×107 were measured for the pump wavelength in the lithium

niobate disk, as shown in Fig. 4.19.

Measuring the quality factor in the ultraviolet is challenging because of the lack

of narrow linewidth tunable lasers for the UV band, as well as the lack of spectrum

analyzers with resolution in the order of 10MHz. Compared to the IR pump, absorp-

tion losses for the UV fourth harmonic will be higher in lithium niobate. However,

loss via tunneling (10) decreases at shorter wavelengths. Additionally, quality factor
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Figure 4.18:
Transmission spectrum of the pump laser measured at the output of the
diamond prism. The free spectral range of the resonator is measured to
be 9.3GHz, with maximum coupling efficiency around 30%

Figure 4.19:
High-Q pump resonance measurement. The corresponding Q value is
2× 107
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is inversely proportional to wavelength, assuming other losses are held constant. We

therefore estimate that Q for the fourth harmonic is of the same order as for the IR

pump. Also, the power used in this experiment is not high enough to distort the

Lorentzian shape of the absorption line, indicating a lack of thermal bistability in

this experiment (61).

4.6.2 Harmonic Imaging

Experimental visualization of the cascaded harmonic generation process is achieved

by photographing spatially resolved spots on a color and infrared CCD camera, with

spot separations corresponding to the infrared pump and its second, third, and fourth

harmonics (Fig. 4.20). Spectral filters are employed to prevent saturation of the cam-

era by the second and third harmonics, and the fourth harmonic is observed by coating

the CCD with a fluorescent ink that is sensitive to ultraviolet. The noncircular shape

of the spots suggests that high order transverse modes are involved in this process.

This image describes a continuous-wave emission for all of the generated harmonics.
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Figure 4.20:
Visual verification of cascaded-harmonic generation: The pump beam is
recorded with an infrared CCD camera, and the harmonics are observed
on a color CCD coated with ultraviolet fluorescent ink. The photograph
is taken at a pump wavelength of 1538 nm and a pump power of 200mW.

4.6.3 Emission Spectrum

Measuring the harmonics wavelengths is done by three spectrum analyzers which

cover the infrared to ultraviolet band. The nth harmonic is expected to be at the

(pump wavelength)/n. The experimentally measured second, third, and fourth har-

monic lines for the pump wavelength of 1546nm are at 773nm, 515nm, and 387nm,

respectively (Fig. 4.21. These measured wavelengths lay within the 2nm error margin

of our spectrum analyzers.
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Figure 4.21:
Measured emission spectrum at 1546nm pump wavelength, indicating
generation of the second, third, and fourth harmonics at 773, 515.3,
and 386.5nm, respectively. Harmonics are measured using two different
spectrum analyzers, which together span the entire wavelength range,
and are plotted at different intensity scales.

4.6.4 Harmonic Tunability

Tuning the harmonics wavelengths is possible in our experimental setup by sweep-

ing the pump wavelength through the very dense infrared resonance modes of the

whispering gallery resonator to reveal a nearly continuous tuning capacity. We ex-

perimentally demonstrate continuous tuning of the second, third, and fourth harmonic

wavelengths while sweeping the pump wavelength between 1535nm and 1545nm (Fig.

4.22). All three harmonic wavelengths are observed to track the expected values as

the pump wave length is varied.
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Figure 4.22:
Measured spectrograms of the generated second (a) third (b) and fourth
(c) harmonics at a pump wavelength range of 1535-1545nm. All three
harmonics display wide tunability within this wavelength range
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4.6.5 Power Dependence

Measuring the harmonics power as a function of the input pump power is per-

formed to confirm the cascaded harmonic generation process. Inherently, the nth

harmonics power should scale as (pump power)n, which is verified via a logarithmic

fit of the second, third, and fourth harmonic power as a function of the pump power

level (Fig. 4.23). This measurement was done by scanning the pump wavelength

through several whispering gallery resonances to record an average output power for

each harmonic at a given pump power. As it is evident from the measured harmonic

powers, the cascaded harmonic process improves its efficiency as pump power in-

creases. This is expected from the (pump power)n scaling of the nth harmonic power.

This efficiency will, of course, stop increasing when limiting effects such as pump de-

pletion become evident, and can be limited by other considerations, including phase

matching.
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Figure 4.23:
Measured power of the generated (a) second (b) third and (c) fourth
harmonics at a pump wavelength of 1550nm, as a function of the pump
power. Approximately quadratic, cubic and power-of-4 dependency are
observed.
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4.6.6 Cascaded Processes

We suggest that the mechanism responsible for the observed harmonic generation

is cascaded harmonic generation via χ(2) processes. This is because the third harmonic

is only observed simultaneously with the second harmonic. Similarly, the fourth

harmonic is only observed simultaneously with both the second and third harmonics.

This suggests that the third and fourth harmonics arise from cascaded χ(2) processes,

as opposed to χ(3) and χ(4) effects. This observation is further supported by the

fact that third and fourth order nonlinear coefficients are many orders of magnitude

smaller than the second order coefficient for lithium niobate (44). In order to further

validate the effectiveness of the employed quasi-phase matching technique, a second

lithium niobate whispering-gallery resonator with no crystal poling was fabricated and

tested using the same experimental setups. Harmonic generation was not observed in

the similar experimental conditions, confirming the significant role of the employed

non-uniform poling in providing quasi-phase matching for second, third, and fourth

harmonic generation processes.

Additional evidence of cascaded χ(2) processes could be obtained by excitation

with circularly polarized light. In addition to linear photon momentum ~k, angular

momentum (±~) must also be conserved. For χ(3) third harmonic generation, the

circularly polarizd amplitudes of the generated signal are give by (62; 63)

E±3ω(r) ∼ E±ω (0)2E∓ω (0) (4.8)

where E+
ω (0) and E−ω (0) are the left and right circular polarized field amplitudes,

respectively, of the incident pump. Because both pump terms must be nonzero third

harmonic conversion, the third harmonic cannot be generated with circularly polar-

ized light. The observation of a third harmonic under circular polarized exitation
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would confirm the observation of χ(3) effects in the resonator, while its abscence

would support the conclusion that cascaded χ(2) effects are solely responsible for the

observed harmonic generation.

4.7 Multi-Photon Raman Lasing

The cascaded harmonic generation processes observed in the resonator are also ac-

companied by stimulated Raman, two-photon, three-photon, and four-photon Raman

scattering corresponding the molecular vibrational wavenumbers 632 and 255cm−1.

Cominations of the harmonic frequencies and Raman frequencies, either through sum

frequency generation or hyper-Raman scattering, yield many generated lines near the

observed harmonics.

Figure 4.24 shows a stimulated Raman line at 1599nm which corresponds to the

molecular vibrational wavenumber of 255cm−1 in z-cut lithium niobate crystal (60;

64; 65; 66). A second stimulated Raman line corresponds to the other molecular

vibrational wavenumber of z-cut lithium niobate crystal at 632cm−1 and is not directly

observed due to the limitation of the employed infrared spectrum analyzer. However,

the proof of excitation of this Raman line is evident through several multi-photon

Raman lines observed in the near-infrared, visible, and ultraviolet wavelength ranges.

More specifically, for a pump photon energy of ~ωP , the observed mid-infrared

spectral lines (Fig. 4.25) at 824 and 851nm match with the two-photon Raman lines

2ωP − ωR1 − ωR2

2ωP − 2ωR2

where ~ωR1 and ~ωR2 are the phonon energies of the 255 and 623cm−1 Raman lines,

respectively.
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Figure 4.24:
Measured emission spectrum of the whispering-gallery resonator at the
pump wavelength of 1536 nm and pump power of 200 mW at infrared.
The nearest Raman scattering line at 255cm−1 is recorded, along with
the pump signal. A second stimulated Raman line corresponds to the
other molecular vibrational wavenumber of z-cut lithium niobate crystal
at 632cm−1 and is not directly observed due to the limitation of the
employed infrared spectrum analyzer.
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Figure 4.25:
Measured emission spectrum of the whispering-gallery resonator at the
pump wavelength of 1536 nm and pump power of 200 mW at the near
infrared. The second harmonic is observed at 768nm with two additonal
generated wavelengths at 824 and 851nm.

Similarly, the observed visible spectral lines near the third harmonic (Fig. 4.26)

at 529, 536, 547, 567, and 588nm match with the three-photon Raman lines

3ωP − ωR2

3ωP − ωR1 − ωR2

3ωP − 3ωR2

3ωP − 4ωR2

Although hyper Raman scattering (45; 46) is not observed in Fig. 4.25, the mea-

sured frequency 3ωP − ωR2
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at 529nm, shown in Fig. 4.26, shows a simultaneous interaction of three pump pho-

tons with a single optical phonon.

Figure 4.26:
Measured emission spectrum of the whispering-gallery resonator at the
pump wavelength of 1536 nm and pump power of 200 mW at the near
infrared. The third harmonic is observed at 512nm with additonal gen-
erated lines at longer wavelengths.

The observed ultraviolet spectral lines are shown in Fig. 4.27 at 375, 393, 397,

404, 414, 419, 425, 430, 437, 449, 462, 468, and 476nm match with the four-photon

Raman lines
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4ωP + ωR2

4ωP − ωR2

4ωP − ωR1 − ωR2

4ωP − 2ωR2

4ωP − 3ωR2

4ωP − ωR1 − 3ωR2

4ωP − 4ωR2

4ωP − ωR1 − 4ωR2

4ωP − 5ωR2

4ωP − 6ωR2

4ωP − 7ωR2

4ωP − ωR1 − 7ωR2

4ωP − 8ωR2

We believe that both hyper-Raman (67) and cascaded Raman processes (28) are

involved in the observed multi-photon Raman scattering that extends the spectrum

of the pump and the second, third, and fourth harmonics to a train of lines that are

separated by ωR1 and ωR2.

4.8 Conclusion

In conclusion, we experimentally demonstrate continuous-wave cascaded harmonic

generation up to the fourth harmonic in a millimeter-scale whispering gallery res-
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Figure 4.27:
Measured emission spectrum of the whispering-gallery resonator at the
pump wavelength of 1536 nm and pump power of 200 mW at the near
infrared. The fourth harmonic is observed at 384nm with additonal
generated wavelengths.
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onator, allowing four spectral lines which are equally spaced in frequency and span

a 2-octave frequency band. Many challenges exist, but we believe this work can be

extended toward continuous-in-time extreme nonlinear optics where the electron is

repeatedly torn from and recombines with the atom. These challenges include phase

matching and concentration of light in the gaseous region near the evanescent tail of

the modes discussed here. Still, the first steps in this journey, demonstrated here, can

be followed toward the extreme by adding structures such as in (68) as suggested in

(69).
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CHAPTER V

Optical Trapping and Binding

This chapter provides an introduction to optical trapping. The methods of trap-

ping and manipulating microscopic objects using laser light are explained. Also dis-

cussed is optical binding, the light-mediated interactions that occur when multiple

objects are confined to the same optical trap.

5.1 Optical Trapping

5.1.1 History

The study of the mechanical forces exerted by light has had important implications

for a wide range of scientific fields. Topics ranging from optical the manipulation of

single cells in biology (70) to the creation of high frequency mechanical oscillators (10;

17) to laser cooling of solids (71) have been transformed by an improved understanding

of the mechanical influence of light.

One important manifestation of these mechanical forces is the physical manipu-

lation of dielectric objects by laser light, first shown by Ashkin at Bell Laboratories

in 1970 with the trapping of micron scale latex spheres in a liquid medium with an

argon laser beam (72). Optical trapping is possible in a variety of experimental con-

figurations, and has been used extensively in biology and chemistry as a means of

nondestructively manipulating microscopic objects (73). So-called optical tweezers
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have been used to study a range of properties of microscopic objects, including bac-

teria, DNA molecules, and cell membranes (73; 74). One of the most basic optical

trapping geometries is the single beam optical trap shown in Figure 5.1.

5.1.2 Optical Forces

There are two major forces which influence the optical manipulation of small

objects. The first of these, the gradient force, exists for objects with a higher refractive

index than the surrounding material. For nanoscale objects, the gradient force can

be understood as the creation of an induced electric dipole in the object, and the

action of the focused beam’s gradient force on this dipole. The object will be drawn

into the center of the beam, which represents a potential energy minimum for the

dipole. For objects larger than the wavelength, the gradient force can be examined

with geometric optics. As shown in Figure 5.1, the light rays refracting through a

dielectric sphere experience a change in momentum, which results in a force toward

the center of the beam.

Figure 5.1:
Gradient force optical trap. Lensing of tightly focused Gaussian beam
creates forces which pull the dielectric sphere into the beam’s intensity
maximum
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The other important force in optical trapping experiments is the scattering force.

This force results from the scattering of photons from the object, and so it points

in the direction of beam propagation. In single beam trapping experiments with a

tightly focused beam, the scattering force will cause the object to be displaced slightly

beyond the focus of the beam. For a weakly focused beam, shown in Figure 5.2, the

scattering force can be balanced by the force of gravity to trap an object vertically.

Horizontal confinement is still the result of the gradient force.

Figure 5.2:
Optical trap with a weakly focused optical beam. Confinement in the
vertical direction is primarily a result of balancing the optical scattering
force upward with the force of gravity downward. Confinement in the
lateral direction is product of the gradient force, just as in the tightly
focused beam trap

For a weakly focused trap, the scattering force can be calculated as

Fs = Q
nP

c
(5.1)

where P is the beam power, n is the refractive index of the surrounding medium, and

c is the speed of light. Q is a dimensionless parameter determined experimentally.
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In a vertical beam trap, this force must balance gravity. For a spherical dielectric

object, the gravitational force is given by

Fg = g
4

3
πr3ρ (5.2)

where g is acceleration due to gravity, r is the sphere radius, and ρ is the material

density. As an example, the trapping forces for for fused silica microspheres in air,

with 0.2 < Q < 1, trapping powers are in the range of a few tens of milliwatts. While

these powers are easily accessible with commerical lasers, trapping much larger objects

becomes challenging, due to the the r3 dependence of the trapping power.

5.2 Optical Binding

Trapping multiple objects can be achieved by creating multiple potential wells

with holographic techniques (75; 76) or by time sharing of a single laser (77). In

some cases, however, multiple objects are confined to a single trap, resulting in light

mediated interaction of trapped objects, known as optical binding (78; 79; 80).

Optically bound objects interact with each other through scattering of the light,

forming a variety of one, two, and three dimensional static and dynamic configura-

tions. The first observed cases of optical binding were 2D interactions of dielectric

spheres in liquids. Initially, an intensity pattern formed by interfering multiple beams

was used to assemble crystal structures with trapped polystyrene spheres, shown in

Figure 5.3. However, similar behavior was observed when the sample cell was illumn-

inated with a single Gaussian beam that was more than 10 times the diameter of the

spheres.

This self-assembly of trapped objects is attributed to the interaction of trapped

particles through the scattering of light and has been reported with a variety of media
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Figure 5.3:
Opticaly trapped polystyrene spheres. Interference of the trapping beams
produces a periodic trapping potential, resulting in 2D ”crystal” structure
against the top of the sample cell

and configurations. Figure 5.4 shows three examples of groups of optically trapped

objects in air.

Figure 5.4:
Configurations of optically trapped silica microspheres in a single Gaus-
sian beam trap. (a) Three trapped objects, both spherical and nonspher-
ical, formed from 7µm and 25µm diameter microspheres (b) 11 trapped
objects (c) four trapped 25µm silica spheres
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Since it’s discovery, optical binding has been investigated in a variety of media, size

regimes, and confiurations. The final chapter of this work describes the investigation

of optically bound fused silica objects in air.
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CHAPTER VI

Long-Range Optical Binding of Aerosols

This chapter describes the experimental demonstration of long-range, underdamped

otpical binding of aerosols. The experimentally observed behavior and interaction of

objects confined to the same optical potential well trap are discussed.

6.1 Introduction

Interaction of trapped particles with each other, mediated by light, is sometimes

observed in optical traps. These processes, referred to as optical binding (78), have

received significant attention in recent years (79; 80). Pioneering work in optical

clustering in air includes one dimenstional clustering of aerosols which cling weakly

to interference fringes in an optical trap (81; 82). It is natural to try and cluster matter

in light when the bare optical trap is smooth and has only one weak local minimum.

In this work we investigate an optical trap that is much larger than the aerosol. The

trap contains a single weak potential minimum, in which multiple aerosols cluster

while interacting with the electromagnetic field to produce additional minima.
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6.2 Experimental Results and Discussion

6.2.1 Methods

Our experimental setup (6.1) uses of a tunable 1.5µm laser coupled to a single-

mode optical fiber as suggested in (80) for shaping the beam to prevent transverse

irregularities in the trap. Outside the fiber, the beam is weakly focused through

a graded index lens to create a vertical single potential-well trap in air. The trap

contains no counter propagating beam, so that there are no interference fringes and

the trap is smooth along the propagation direction of the light. We suspend silica

particles in a size range from 7 to 25µm and monitor them using a microscope.

Figure 6.1:
Experimental configuration for single beam optical trap. Microspheres are
dispersed by compressed air in the vicinity of a weakly focused, single-
beam optical trap

Additionally, a low power red laser can be used to illuminate the trap for imaging

purposes. The red laser also aids in the recording of glare points at the microsphere
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azimuths, caused by excitation of confined whispering gallery modes, described pre-

viously (81). Four trapped silica microspheres, nominally 25µm diameter are shown

with glare points in Figure 6.2.

Figure 6.2:
Photograph of bright red spots at the azimuth of each trapped 25µm
silica sphere, corresponding to whispering gallery modes. The spheres
are levitated on a high power infrared laser, and a low power red laser is
used to observe so-called glare points

Trapping of 7µm silica microspheres can be accomplished at optical powers of

less than 10mW. In order to investigate the interaction of trapped objects with each

other, however, higher optical powers, up to 1W, were used. Spheres are dispersed

randomly in the vicinity of the optical trap, and complex configurations form with

objects falling into the trap one or severally at a time.
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Figure 6.3:
Experimental images of optical clustering cofigurations for 7µm silica
spheres in air. Number of discrete trapped particles at 500mW optical
power ranges from (a) one to (k) eleven

6.2.2 Harmonic Motion

Clustering of varying numbers of particles is observed in the trap at a power of

500mW, as shown in Figure 6.3. A variety of stable and dynamic configurations

are observed for all size ranges. Surprisingly, clustering is versatile as it occurs also

when non-spherical particles that are formed from physically attached spheres are

suspended and clustered in various configurations as shown above. Trapped objects

remain suspended for minutes, up to a several hours, even with large numbers or

highly dynamic behavior.

The dynamic arrangements created by the interaction of trapped particles range
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from simple, approximately harmonic motion, to complex and disordered behavior.

Figure 6.4 shows the time evolution of two trapped 7µm spheres which oscillate in a

quasi-harmonic pattern. Figure 6.4(a) shows photographs of the two objects over one

half period of oscillation. Under similar experimental conditions, we have observed

several instances of such periodic motion lasting from a few seconds up to several

minutes. The vertical (along the laser propagation direction) separation of the two

spheres is shown in Fig. 6.4(b) over a period of 4 seconds. As shown in (78), although

the two objects move diffusively together in the trap due to the weak optical gradient

forces, there are discrete separation distances at which the objects are more likely to

be found. This is demonstrated in Fig. 6.4(c), a histogram of the object separation

over a time of 100 seconds. The oscillation frequency is about 3Hz (Fig. 6.4(d)), and

so the histogram represents 300 oscillation periods. The distance between the two

preferred positions is 35µm, about 23 wavelengths. The quality factor f/δf of the

Fourier spectrum is approximately 70, and so the oscillations in our system are in

the underdamped regime, in contrast to the interaction of trapped particles in liquid

media described previously (83).

The observed harmonic motion under steady state excitation provides evidence

of nonlinearity in the coupling between trapped objects (84). As observed in other

systems of coupled oscillators, including lasers, circuits, and processes in living cells

(85), the interaction of nonlinear oscillators can produce quasi-harmonic oscillations.

Although a full investigation of this phenomenon is beyond the scope of this work,

the finite element modeling described below provides evidence of the modification of

the trapping potential by the trapped objects, which helps to explain this behavior.
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Figure 6.4:
Time evolution of harmonically oscillating microspheres in an optical trap.
Two 7µm silica microspheres (a) photographed over one half-period of
oscillation (b) partial time domain plot of the vertical separation of the
objects (c) histogram of particle positions over 100 seconds of oscillation,
showing two preferred spacings, and (d) Fourier transform of vertical sep-
aration data, oscillation is approximately 3Hz

6.2.3 Disordered Motion

For larger numbers of interacting objects, the behavior transitions from periodic

oscillation to disordered, random motion. Figure 6.5 shows the paths traced by five

trapped objects over the course of 45 seconds. Each colored line shows the path traced

by one object, up to the time indicated on the image. It can be seen that the trapped

particles initially move in small areas near their original positions. However, over

time the objects move far from these locations, interchanging locations many times

and forming new configurations. After less than one minute, an area of 40×450µm

has been covered almost completely by the trajectories of the five trapped objects.
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Figure 6.5:
Time evolution of the trajectories of five trapped objects. The particles
initially move in small, random orbits near their original positions, but
over time exchange places to form new configurations, eventually covering
almost completely and area of 40 450µm

6.2.4 Finite Element Modeling

The long range interaction of the trapped objects, as well as the three dimensional

configurations observed, have been investigated using finite element modeling (FEM).

Because the size of the trapped objects is in the Mie scattering range, between the

Rayleigh scattering regime and the regime of geometric optics, analytical modeling

is challenging. Lorenz-Mie theory (86; 7) offers solutions for the simple case of a

dielectric sphere, but solving for more than one trapped objects is still computation-

ally intense (87). For our case, where many of the objects of interest are formed

by nonspherical clumps of microspheres, the FEM approach was deemed the best
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solution.

When the trapped objects are spherical and much larger than the wavelength,

each object behaves similarly to a simple ball lens with back focal length

fB =
nD

4(n− 1)
− D

2
(6.1)

where n is the refractive index and D is the sphere diameter. For 25µm silica

microspheres, fB = 7.64µm. For 7µm diameter, fB = 2.14µm. The refocusing of

light through the trapped spheres creates new trapping potentials higher up. Figure

6.6 shows an experimental photograph of 4 microspheres, nominally 25µm diameter,

confined to the same optical trap at an optical power of 500mW, with a beam waist

of 20µm. Figure 6.6(b) shows the intensity distribution produced by the refocusing

of the light by the microspheres. Because the scattering force is expected to domi-

nate, trapped objects can be displaced from the intensity maxima in the direction of

propagation, as is the case in Fig. 6.6.

For objects closer in size to the optical wavelength trapped in a weakly focused

Gaussian beam, the situation is more complicated. Light that is refocused by the

trapped object interferes with light traveling around the object, creating more com-

plex potentials above the object. This interference is sensitive to changes in the

object size and position. Figure 6a shows the intensity pattern produced by the

same Gaussian beam by scattering from a (a) 6, (b) 7, and (c) 8µm diameter silica

microspheres.

Depending on size variations, a single trapped microsphere can refocus the beam

in the propagation direction, as in Fig. 6.6. Perhaps counterintuitively, this simple

situation can also produce off-axis intensity maxima, as shown in Fig. 6.7. This

qualitatively explains the experimentally observed behavior of larger number of 7µm
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Figure 6.6:
Finite element modeling of four silica microspheres, diameter 25µm, con-
fined to a weakly focused Gaussian beam trap. Adding objects creates
new intensity maxima, which act as potential wells for trapping additional
objects

spheres, which are often trapped in complex 3D configurations. An example of this

behavior is modeled in Fig. 6.8. The photograph in Fig. 6.8(a) shows three trapped

objects, composed of either one or two 7µm silica spheres. The trapping potential

created by the lowest sphere creates a new potential, which is in turn modified by the

second object, composed of two spheres. The intensity profile in Fig. 6.8 illustrates

how the single Gaussian potential well can be scattered to create a complex array of

potential wells capable of trapping additional objects.

6.3 Conclusion

We have demonstrated the long range optical binding of silica objects in air. Opti-

cally trapped objects refocus and scatter the weakly focused Gaussian trapping beam,

creating additional trapping potentials higher up. The trapped objects influence each

others positions, producing simple, approximately harmonic motion in the case of two

trapped microspheres, and complex disordered motion when more objects are added
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Figure 6.7:
Finite element modeling of a single silica microsphere, trapped at the
focus of a single Gaussian beam trap. Interference of refocused light and
light traveling around the sphere results in a complex intensity profile
which depends strongly on the size of the trapped object. In reality, the
trapped object will be displaced beyond the beam focus, due to the high
power and weak focus of the beam

to the trap.
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Figure 6.8:
Simulation of one spherical and two nonspherical objects confined to a
weakly focused Gaussian beam trap. The objects modify the trapping
potential, producing additional traps above
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CHAPTER VII

Conclusion

The work presented in this dissertation addresses two major topics: optical har-

monic generation in a whispering gallery resonator and long-range optical binding of

aerosols.

7.1 Harmonic Generation in a Lithium Niobate Whispering

Gallery Resonator

The experimental demonstration of harmonic generation extending to the ultra-

violet range in a lithium niobate whispering gallery resonator is a contribution to

nonlinear optics. The difficulties inherent in scaling lasers to shorter wavelengths,

together with the wide range of applications for coherent ultraviolet sources, has led

to the development of alternative methods. Harmonic generation is a phenomenon

which enables extending the emission wavelength of a pump laser to produce coherent

ultraviolet light, unrestricted by the 1/λ5 energy scaling relation which complicates

the development of UV lasers. To date, very short-wavelength sources have required

high pump power levels that could generally be achieved only by ultra-short pump

pulses (49; 50; 51; 52; 53). Resonant enhancement is an alternative to ultra-short

pump pulses for providing the high field intensities required for efficient nonlinear

effects.
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Toward this goal, a lithium niobate whispering gallery resonator was employed

to realize the generation of a continuous-wave ultraviolet emission from a telecom-

compatible near infrared pump laser. The major results of this project are summa-

rized as follows:

1. The experimental demonstration of fourth harmonic generation at ultraviolet

wavelengths from an infrared source, via cascaded second order effects in the

lithium niobate resonator

(a) Direct recording of emitted harmonics, decoupled via a diamond prism, on

a CCD camera

(b) Recording of harmonic wavelengths, collected via residual Rayleigh scat-

tering, on a series of spectrum analyzers

(c) Demonstration of harmonic tunability by scanning the pump laser over a

10nm range

(d) Confirmation of second, third, and fourth order dependence of harmonic

power on pump power

2. Experimental observation of multiphoton Raman scattering processes in the

same device

(a) Measurement of Raman scattering from the 1550nm pump laser

(b) Observation of additional generated wavelengths in the near infrared, vis-

ible, and ultraviolet, due to multiphoton processes involving the pump

laser, generated harmonics, and Raman lines.

This work provides a demonstration of some of the possibilities in nonlinear optics

provided by crystalline whispering gallery resonators, and contributes to the catalog of

effects demonstrated using such resonators for intensity enhancement. It also provides

a proof of concept for further wavelength conversion experiments in similar devices.
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There are several challenges which must be addressed in order to extend this

work into the high harmonic regime. In particular, the opacity of lithium niobate

at shorter wavelengths requires a change of approach. Still, the first steps in this

journey, demonstrated here, can be followed toward the extreme by adding structures

such as in (68) as suggested in (69).

7.2 Long-Range Optical Binding of Aerosols

The study of light mediated interactions between objects in a single-potential

well trap in air is an experimental contribution to the study of optical trapping, and

more specifically optical binding. The manipulation of microscopic objects with laser

light has been an area of interest since the early demonstrations in the 1970s (72).

More recently, optical binding, the study of interactions between trapped objects, has

become a scientific field in its own right (78; 73; 74; 79; 80).

The major results of our investigation of optical binding in air are:

1. The experimental observation of complex configurations of many objects, both

spherical and aspherical, confined to a single Gaussian beam trap

(a) Recording static and dynamic behavior of trapped objects in groups rang-

ing from two to twenty trapped objects

(b) Analysis of quasi-harmonic oscillation of trapped objects

(c) Observation of more complicated interactions with larger numbers of trapped

objects

2. Finite element modeling of the trapping potential created by dielectric objects

in a weakly focused Gaussian beam trap

(a) Analysis of the modified intensity profile for spherical objects which are

larger (25µm) and on the order of (7µm) the optical wavelength
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(b) Simulation of the complex intensity profile created by groups of nonspheri-

cal trapped objects, which can explain the complex configurations observed

experimentally

This work contributes to previous experimental and theoretical study of optical

binding. We provide examples of light mediated interactions between trapped objects

in air at distances of many wavelengths. We also provide the beginnings of a numerical

simulation framework for understanding the modification of the trapping beam by

trapped objects. It is hoped that these results will be of use in the larger field of

optical binding.
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APPENDIX A

Whispering Gallery Resonance Calculation for

Dielectric Sphere

The following code calculates the resonant whispering gallery modes of a dielectric

microsphere. The default values are refractive index n = 1.46, for fused silica, and

radius a = 100µm.

c = 3 108; (*speed of light*)c = 3 108; (*speed of light*)c = 3 108; (*speed of light*)

mi = 146/100; (*refrativeindexmi = 1.46*)mi = 146/100; (*refrativeindexmi = 1.46*)mi = 146/100; (*refrativeindexmi = 1.46*)

a = 50; (*radius of spherical whispering gallery resonator in microns*)a = 50; (*radius of spherical whispering gallery resonator in microns*)a = 50; (*radius of spherical whispering gallery resonator in microns*)

λ0 = 155/100; (*freespacewavelength = 1.55microns*)λ0 = 155/100; (*freespacewavelength = 1.55microns*)λ0 = 155/100; (*freespacewavelength = 1.55microns*)

m = Round[2π(a)mi/λ0]m = Round[2π(a)mi/λ0]m = Round[2π(a)mi/λ0]

(*approximate azimuthal mode number*)(*approximate azimuthal mode number*)(*approximate azimuthal mode number*)

n = m;n = m;n = m;

(*Define Bessel and Hankel functions*)(*Define Bessel and Hankel functions*)(*Define Bessel and Hankel functions*)
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J [n , x ] = SphericalBesselJ[n, x];J [n , x ] = SphericalBesselJ[n, x];J [n , x ] = SphericalBesselJ[n, x];

H2[n , x ] = SphericalBesselJ[n, x]− iSphericalBesselY[n, x];H2[n , x ] = SphericalBesselJ[n, x]− iSphericalBesselY[n, x];H2[n , x ] = SphericalBesselJ[n, x]− iSphericalBesselY[n, x];

ψ[n , x ] = xJ [n, x];ψ[n , x ] = xJ [n, x];ψ[n , x ] = xJ [n, x];

ψt[n , x ] = ∂xψ[n, x];ψt[n , x ] = ∂xψ[n, x];ψt[n , x ] = ∂xψ[n, x];

ξ[n , x ] = xH2[n, x];ξ[n , x ] = xH2[n, x];ξ[n , x ] = xH2[n, x];

ξt[n , x ] = ∂xξ[n, x];ξt[n , x ] = ∂xξ[n, x];ξt[n , x ] = ∂xξ[n, x];

(*solve for dimensionless size parameter x0*)(*solve for dimensionless size parameter x0*)(*solve for dimensionless size parameter x0*)

x0 = FindRoot
[
Abs

[
ψt[n,mix]
ψ[n,mix]

−mi ξt[n,x]
ξ[n,x]

]
== 0,x0 = FindRoot

[
Abs

[
ψt[n,mix]
ψ[n,mix]

−mi ξt[n,x]
ξ[n,x]

]
== 0,x0 = FindRoot

[
Abs

[
ψt[n,mix]
ψ[n,mix]

−mi ξt[n,x]
ξ[n,x]

]
== 0,

{x, 209},AccuracyGoal→ 50,{x, 209},AccuracyGoal→ 50,{x, 209},AccuracyGoal→ 50,

WorkingPrecision→ 120][[1]][[2]];WorkingPrecision→ 120][[1]][[2]];WorkingPrecision→ 120][[1]][[2]];

(*useful parameters*)(*useful parameters*)(*useful parameters*)

ν0 = x0c
2πa

;ν0 = x0c
2πa

;ν0 = x0c
2πa

;

k = x0
a

;k = x0
a

;k = x0
a

;

λ = 2π
k

;λ = 2π
k

;λ = 2π
k

;

(*CalculateE − fieldprofile*)(*CalculateE − fieldprofile*)(*CalculateE − fieldprofile*)

β[x ]:=ψt[n,mix]
ψ[n,mix]

−mi ξt[n,x]
ξ[n,x]

;β[x ]:=ψt[n,mix]
ψ[n,mix]

−mi ξt[n,x]
ξ[n,x]

;β[x ]:=ψt[n,mix]
ψ[n,mix]

−mi ξt[n,x]
ξ[n,x]

;

βE = J [n,mika]/H2[n, ka];βE = J [n,mika]/H2[n, ka];βE = J [n,mika]/H2[n, ka];

Fr[r ]:=J [n,mikr]UnitStep[a− r] + βEH2[n, kr]UnitStep[r − a];Fr[r ]:=J [n,mikr]UnitStep[a− r] + βEH2[n, kr]UnitStep[r − a];Fr[r ]:=J [n,mikr]UnitStep[a− r] + βEH2[n, kr]UnitStep[r − a];

Fθ[n ,m , θ ]:=
√

(2m+1)
4π

(m−m)!
(m+m)!

n
Sin[θ]

LegendreP[n,m,Cos[θ]];Fθ[n ,m , θ ]:=
√

(2m+1)
4π

(m−m)!
(m+m)!

n
Sin[θ]

LegendreP[n,m,Cos[θ]];Fθ[n ,m , θ ]:=
√

(2m+1)
4π

(m−m)!
(m+m)!

n
Sin[θ]

LegendreP[n,m,Cos[θ]];
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(*Plot Results*)(*Plot Results*)(*Plot Results*)

Clear[x, y];Clear[x, y];Clear[x, y];

r =
√
x2 + y2;r =

√
x2 + y2;r =

√
x2 + y2;

θ = π/2− ArcTan[x, y];θ = π/2− ArcTan[x, y];θ = π/2− ArcTan[x, y];

DensityPlot[Re[Fr[r]]Fθ[n, n, θ], {x, .5a, 2a}, {y,−a, a},DensityPlot[Re[Fr[r]]Fθ[n, n, θ], {x, .5a, 2a}, {y,−a, a},DensityPlot[Re[Fr[r]]Fθ[n, n, θ], {x, .5a, 2a}, {y,−a, a},

PlotPoints→ 40,ColorFunction→ “Rainbow”,PlotPoints→ 40,ColorFunction→ “Rainbow”,PlotPoints→ 40,ColorFunction→ “Rainbow”,

AspectRatio→ 1,PlotRange→ All]AspectRatio→ 1,PlotRange→ All]AspectRatio→ 1,PlotRange→ All]
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Figure A.1:
Intensity profile for 100µm diameter silica microsphere near 1.55µm wave-
length
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APPENDIX B

COMSOL Multiphysics with MATLAB Code for

Weak Gaussian Beam Trap

The following code defines a 2D numerical simulation of a dielectric object in a

weakly focused Gaussian beam. The code was generated from a COMSOL Multi-

physics model saved as a MATLAB file. The default geometry is a 7µm silica sphere

in air, at the focus of a Gaussian beam with waist 20µm, with free space wavelength

λ=1.55µm.

function out = model

%

% WeakGaussianOpticalTrap .m

% Model expor ted by COMSOL

import com . comsol . model .∗

import com . comsol . model . u t i l .∗

model = ModelUti l . c r e a t e ( ’ Model ’ ) ;
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model . modelPath ( ’C:\ Users\yourname\Desktop ’ ) ;

model . name( ’ 1 ob j e c t f i n emesh .mph ’ ) ;

model . param . set ( ’w0 ’ , ’ 20e−6 ’ , ’Minimum spot rad iu s o f l a s e r ’ ) ;

model . param . set ( ’ lambda0 ’ , ’ 1 .55 e−6 ’ , . . .

’ Wavelength o f input l a s e r beam ’ ) ;

model . param . set ( ’ c ’ , ’ 3 e8 ’ ) ;

model . param . set ( ’ z r ’ , ’ p i ∗w0ˆ2/ lambda0 ’ , ’ Rayle igh range ’ ) ;

model . param . set ( ’ kp ’ , ’ 2∗ pi /lambda0 ’ , ’ Propagation constant ’ ) ;

model . param . set ( ’ omega0 ’ , ’ kp∗3 e8 ’ , ’ Angular f requency ’ ) ;

model . param . set ( ’P0 ’ , ’ 0 . 8 ’ , ’ t o t a l beam power (W) ’ ) ;

model . param . set ( ’ eps0 ’ , ’ 8 .854 e−12 ’ , . . .

’ p e r m i t t i v i t y o f f r e e space ’ ) ;

model . param . set ( ’E0 ’ , ’ s q r t (4∗P0/( eps0∗c∗w0∗ pi ) ) ’ ) ;

model . param . set ( ’ spherexcente r ’ , . . .

’ 3 . 5 e−6 ’ , ’ Parametric sweep value ’ ) ;

model . modelNode . c r e a t e ( ’mod1 ’ ) ;

model . func . c r e a t e ( ’ an1 ’ , ’ Ana lyt i c ’ ) ;

model . func . c r e a t e ( ’ an2 ’ , ’ Ana lyt i c ’ ) ;

model . func ( ’ an1 ’ ) . set ( ’ funcname ’ , ’w ’ ) ;

model . func ( ’ an1 ’ ) . set ( ’ expr ’ , ’w0∗ s q r t (1+(y/ zr )ˆ2) ’ ) ;

model . func ( ’ an1 ’ ) . set ( ’ a rgs ’ , { ’ y ’ } ) ;

model . func ( ’ an1 ’ ) . set ( ’ p l o t a r g s ’ , { ’ y ’ ’ ’ ’ ’ } ) ;

model . func ( ’ an2 ’ ) . set ( ’ funcname ’ , ’R ’ ) ;
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model . func ( ’ an2 ’ ) . set ( ’ expr ’ , ’ y∗(1+( zr /y )ˆ2) ’ ) ;

model . func ( ’ an2 ’ ) . set ( ’ a rgs ’ , { ’ y ’ } ) ;

model . func ( ’ an2 ’ ) . set ( ’ p l o t a r g s ’ , { ’ y ’ ’ ’ ’ ’ } ) ;

model . geom . c r e a t e ( ’ geom1 ’ , 2 ) ;

model . geom( ’ geom1 ’ ) . angularUnit ( ’ rad ’ ) ;

model . geom( ’ geom1 ’ ) . f e a t u r e . c r e a t e ( ’ r1 ’ , ’ Rectangle ’ ) ;

model . geom( ’ geom1 ’ ) . f e a t u r e . c r e a t e ( ’ r2 ’ , ’ Rectangle ’ ) ;

model . geom( ’ geom1 ’ ) . f e a t u r e . c r e a t e ( ’ c1 ’ , ’ C i r c l e ’ ) ;

model . geom( ’ geom1 ’ ) . f e a t u r e ( ’ r1 ’ ) . set ( ’ pos ’ , . . .

{ ’−35e−6 ’ ’−25e−6 ’ } ) ;

model . geom( ’ geom1 ’ ) . f e a t u r e ( ’ r1 ’ ) . set ( ’ s i z e ’ , . . .

{ ’ 35e−6 ’ ’ 120e−6 ’ } ) ;

model . geom( ’ geom1 ’ ) . f e a t u r e ( ’ r2 ’ ) . set ( ’ pos ’ , . . .

{ ’ 0 ’ ’−25e−6 ’ } ) ;

model . geom( ’ geom1 ’ ) . f e a t u r e ( ’ r2 ’ ) . set ( ’ s i z e ’ , . . .

{ ’ 35e−6 ’ ’ 120e−6 ’ } ) ;

model . geom( ’ geom1 ’ ) . f e a t u r e ( ’ c1 ’ ) . set ( ’ pos ’ , . . .

{ ’ 0 ’ ’ 0 ’ } ) ;

model . geom( ’ geom1 ’ ) . f e a t u r e ( ’ c1 ’ ) . set ( ’ r ’ , . . .

’ sphe rexcente r ’ ) ;

model . geom( ’ geom1 ’ ) . run ;

model . view . c r e a t e ( ’ view2 ’ , 2 ) ;

model . mate r i a l . c r e a t e ( ’ mat1 ’ ) ;

model . mate r i a l ( ’ mat1 ’ ) . propertyGroup . c r e a t e . . .
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( ’ Re f rac t ive Index ’ , ’ R e f r a c t i v e index ’ ) ;

model . mate r i a l . c r e a t e ( ’ mat2 ’ ) ;

model . mate r i a l ( ’ mat2 ’ ) . propertyGroup . c r e a t e . . .

( ’ Re f rac t ive Index ’ , ’ R e f r a c t i v e index ’ ) ;

model . mate r i a l ( ’ mat2 ’ ) . s e l e c t i o n . set ( [ 3 4 ] ) ;

model . phys i c s . c r e a t e ( ’emw ’ , ’ ElectromagneticWaves ’ , ’ geom1 ’ ) ;

model . phys i c s ( ’emw ’ ) . f e a t u r e . c r e a t e ( ’ s c t r 1 ’ , ’ S c a t t e r i n g ’ , 1 ) ;

model . phys i c s ( ’emw ’ ) . f e a t u r e . . .

( ’ s c t r 1 ’ ) . s e l e c t i o n . set ( [ 1 2 3 4 6 7 8 9 ] ) ;

model . phys i c s ( ’emw ’ ) . f e a t u r e . c r e a t e . . .

( ’ s c t r 2 ’ , ’ S c a t t e r i n g ’ , 1 ) ;

model . phys i c s ( ’emw ’ ) . f e a t u r e . . .

( ’ s c t r 2 ’ ) . s e l e c t i o n . set ( [ 2 5 ] ) ;

model .mesh . c r e a t e ( ’ mesh1 ’ , ’ geom1 ’ ) ;

model .mesh( ’ mesh1 ’ ) . f e a t u r e . c r e a t e ( ’ f t r i 2 ’ , ’ FreeTri ’ ) ;

model .mesh( ’ mesh1 ’ ) . f e a t u r e ( ’ f t r i 2 ’ ) . s e l e c t i o n . geom( ’ geom1 ’ ) ;

model . r e s u l t . t ab l e . c r e a t e ( ’ ev l2 ’ , ’ Table ’ ) ;

model . r e s u l t . t ab l e . c r e a t e ( ’ tb l 1 ’ , ’ Table ’ ) ;

model . view ( ’ view1 ’ ) . axis . set ( ’ xmin ’ , ’ −7.218758400995284E−5 ’ ) ;

model . view ( ’ view1 ’ ) . axis . set ( ’xmax ’ , ’ 7 .218758400995284E−5 ’ ) ;

model . view ( ’ view1 ’ ) . axis . set ( ’ ymin ’ , ’ −3.3260283089475706E−5 ’ ) ;

model . view ( ’ view1 ’ ) . axis . set ( ’ymax ’ , ’ 1 .0326028859708458E−4 ’ ) ;

model . view ( ’ view2 ’ ) . axis . set ( ’ xmin ’ , ’ −2.0562915779009927E−6 ’ ) ;
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model . view ( ’ view2 ’ ) . axis . set ( ’xmax ’ , ’ 2 .205629243690055E−5 ’ ) ;

model . view ( ’ view2 ’ ) . axis . set ( ’ ymin ’ , ’ 1 .9499999325489625E−5 ’ ) ;

model . view ( ’ view2 ’ ) . axis . set ( ’ymax ’ , ’ 3 .0499999411404133E−5 ’ ) ;

model . view ( ’ view2 ’ ) . axis . set ( ’ p r e s e rv ea spe c t ’ , f a l s e ) ;

model . mate r i a l ( ’ mat1 ’ ) . name( ’ a i r ’ ) ;

model . mate r i a l ( ’ mat1 ’ ) . propertyGroup . . .

( ’ Re f rac t ive Index ’ ) . set ( ’n ’ , . . .

{ ’ 1 ’ ’ 0 ’ ’ 0 ’ ’ 0 ’ ’ 1 ’ ’ 0 ’ ’ 0 ’ ’ 0 ’ ’ 1 ’ } ) ;

model . mate r i a l ( ’ mat2 ’ ) . name( ’ s i l i c a ’ ) ;

model . mate r i a l ( ’ mat2 ’ ) . propertyGroup . . .

( ’ Re f rac t ive Index ’ ) . set ( ’n ’ , . . .

{ ’ 1 .46 ’ ’ 0 ’ ’ 0 ’ ’ 0 ’ ’ 1 .46 ’ ’ 0 ’ ’ 0 ’ ’ 0 ’ ’ 1 .46 ’ } ) ;

model . phys i c s ( ’emw ’ ) . f e a t u r e ( ’ wee1 ’ ) . set . . .

( ’ DisplacementFieldModel ’ , . . .

’ Re f rac t ive Index ’ ) ;

model . phys i c s ( ’emw ’ ) . f e a t u r e ( ’ s c t r 2 ’ ) . set ( ’ E0i ’ , . . .

{ ’ 0 ’ ; ’ 0 ’ ; . . .

’E0∗w0/w( y [1/m] ) ∗ exp(−(x [ 1/m] )ˆ2/w( y [1/m] ) ˆ 2 ) ’ . . .

’∗exp(− i ∗( kp∗y [1/m]−atan ( y [1/m] / zr )+ ’ . . .

’ kp∗(x [1/m] )ˆ2/ (2∗R( y [1/m] ) ) ) ) ’ } ) ;

model . phys i c s ( ’emw ’ ) . f e a t u r e ( ’ s c t r 2 ’ ) . set . . .

( ’ kd i r ’ , { ’−emw. nx ’ ; ’−emw. ny ’ ; ’ 0 ’ } ) ;

model .mesh( ’ mesh1 ’ ) . f e a t u r e ( ’ s i z e ’ ) . set ( ’hmax ’ , ’ 3E−7 ’ ) ;

model .mesh( ’ mesh1 ’ ) . f e a t u r e ( ’ s i z e ’ ) . set ( ’ hmin ’ , ’ 2 . 0E−8 ’ ) ;
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model .mesh( ’ mesh1 ’ ) . f e a t u r e ( ’ s i z e ’ ) . set ( ’ hcurve ’ , ’ 0 . 2 ’ ) ;

model .mesh( ’ mesh1 ’ ) . f e a t u r e ( ’ s i z e ’ ) . set ( ’ hgrad ’ , ’ 1 . 1 ’ ) ;

model .mesh( ’ mesh1 ’ ) . f e a t u r e ( ’ s i z e ’ ) . set ( ’ hauto ’ , ’ 1 ’ ) ;

model .mesh( ’ mesh1 ’ ) . f e a t u r e ( ’ s i z e ’ ) . set ( ’hmax ’ , ’ 3E−7 ’ ) ;

model .mesh( ’ mesh1 ’ ) . f e a t u r e ( ’ s i z e ’ ) . set ( ’ hmin ’ , ’ 2 . 0E−8 ’ ) ;

model .mesh( ’ mesh1 ’ ) . run ;

model . r e s u l t . t ab l e ( ’ ev l2 ’ ) . name( ’ Evaluat ion 2D’ ) ;

model . r e s u l t . t ab l e ( ’ ev l2 ’ ) . comments ( ’ I n t e r a c t i v e 2D va lue s ’ ) ;

model . r e s u l t . t ab l e ( ’ tb l 1 ’ ) . comments . . .

( ’ Sur face Maximum 1 (emw. normE) ’ ) ;

model . study . c r e a t e ( ’ std1 ’ ) ;

model . study ( ’ std1 ’ ) . f e a t u r e . c r e a t e ( ’ f r e q ’ , ’ Frequency ’ ) ;

model . s o l . c r e a t e ( ’ s o l 1 ’ ) ;

model . s o l ( ’ s o l 1 ’ ) . study ( ’ std1 ’ ) ;

model . s o l ( ’ s o l 1 ’ ) . attach ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 2 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 3 ’ ) ;

model . s o l ( ’ s o l 3 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 4 ’ ) ;

model . s o l ( ’ s o l 4 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 5 ’ ) ;

model . s o l ( ’ s o l 5 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 6 ’ ) ;
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model . s o l ( ’ s o l 6 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 7 ’ ) ;

model . s o l ( ’ s o l 7 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 8 ’ ) ;

model . s o l ( ’ s o l 8 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 9 ’ ) ;

model . s o l ( ’ s o l 9 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 10 ’ ) ;

model . s o l ( ’ s o l 10 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 11 ’ ) ;

model . s o l ( ’ s o l 11 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 12 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 13 ’ ) ;

model . s o l ( ’ s o l 13 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 14 ’ ) ;

model . s o l ( ’ s o l 14 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 15 ’ ) ;

model . s o l ( ’ s o l 15 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 16 ’ ) ;

model . s o l ( ’ s o l 16 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 17 ’ ) ;

model . s o l ( ’ s o l 17 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 18 ’ ) ;

model . s o l ( ’ s o l 18 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 19 ’ ) ;

model . s o l ( ’ s o l 19 ’ ) . study ( ’ std1 ’ ) ;
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model . s o l . c r e a t e ( ’ s o l 20 ’ ) ;

model . s o l ( ’ s o l 20 ’ ) . study ( ’ std1 ’ ) ;

model . s o l . c r e a t e ( ’ s o l 21 ’ ) ;

model . s o l ( ’ s o l 21 ’ ) . study ( ’ std1 ’ ) ;

model . s o l ( ’ s o l 1 ’ ) . f e a t u r e . c r e a t e ( ’ s t1 ’ , ’ StudyStep ’ ) ;

model . s o l ( ’ s o l 1 ’ ) . f e a t u r e . c r e a t e ( ’ v1 ’ , ’ Var i ab l e s ’ ) ;

model . s o l ( ’ s o l 1 ’ ) . f e a t u r e . c r e a t e ( ’ s1 ’ , ’ S ta t i onary ’ ) ;

model . s o l ( ’ s o l 1 ’ ) . f e a t u r e ( ’ s1 ’ ) . f e a t u r e . c r e a t e . . .

( ’ f c 1 ’ , ’ FullyCoupled ’ ) ;

model . s o l ( ’ s o l 1 ’ ) . f e a t u r e ( ’ s1 ’ ) . f e a t u r e . remove ( ’ f cDe f ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e . c r e a t e ( ’ su1 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e . c r e a t e ( ’ su2 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e . c r e a t e ( ’ su3 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e . c r e a t e ( ’ su4 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e . c r e a t e ( ’ su5 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e . c r e a t e ( ’ su6 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e . c r e a t e ( ’ su7 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e . c r e a t e ( ’ su8 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e . c r e a t e ( ’ su9 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e . c r e a t e ( ’ su1 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e . c r e a t e ( ’ su2 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e . c r e a t e ( ’ su3 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e . c r e a t e ( ’ su4 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e . c r e a t e ( ’ su5 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e . c r e a t e ( ’ su6 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e . c r e a t e ( ’ su7 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e . c r e a t e ( ’ su8 ’ , ’ S t o r eSo lu t i on ’ ) ;
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model . s o l ( ’ s o l 12 ’ ) . f e a t u r e . c r e a t e ( ’ su9 ’ , ’ S t o r eSo lu t i on ’ ) ;

model . r e s u l t . datase t ( ’ dset3 ’ ) . set ( ’ s o l u t i o n ’ , ’ s o l 12 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset4 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset5 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset6 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset7 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset8 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset9 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset10 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset11 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset12 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset13 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset14 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset15 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset16 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset17 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset18 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset19 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset20 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset21 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset22 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset23 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset24 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset25 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset26 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset27 ’ ) ;
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model . r e s u l t . datase t . remove ( ’ dset28 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset29 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset30 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset31 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset32 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset33 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset34 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset35 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset36 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset37 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset38 ’ ) ;

model . r e s u l t . datase t . remove ( ’ dset39 ’ ) ;

model . r e s u l t . numerica l . c r e a t e ( ’max1 ’ , ’ MaxSurface ’ ) ;

model . r e s u l t . numerica l ( ’max1 ’ ) . s e l e c t i o n . a l l ;

model . r e s u l t . numerica l ( ’max1 ’ ) . set ( ’ probetag ’ , ’ none ’ ) ;

model . r e s u l t . c r e a t e ( ’ pg1 ’ , ’ PlotGroup2D ’ ) ;

model . r e s u l t ( ’ pg1 ’ ) . f e a t u r e . c r e a t e ( ’ s u r f 1 ’ , ’ Sur face ’ ) ;

model . r e s u l t . c r e a t e ( ’ pg2 ’ , ’ PlotGroup1D ’ ) ;

model . r e s u l t ( ’ pg2 ’ ) . set ( ’ probetag ’ , ’ none ’ ) ;

model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e . c r e a t e ( ’ lng r1 ’ , ’ LineGraph ’ ) ;

model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e ( ’ lng r1 ’ ) . s e l e c t i o n . set ( [ 4 6 7 ] ) ;

model . r e s u l t . c r e a t e ( ’ pg3 ’ , ’ PlotGroup2D ’ ) ;

model . r e s u l t ( ’ pg3 ’ ) . f e a t u r e . c r e a t e ( ’ s u r f 1 ’ , ’ Sur face ’ ) ;

model . r e s u l t . export . c r e a t e ( ’ anim1 ’ , ’ Animation ’ ) ;

model . study ( ’ std1 ’ ) . f e a t u r e ( ’ f r e q ’ ) . set ( ’ p l i s t ’ , ’ 1 .93 e14 ’ ) ;
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model . s o l ( ’ s o l 1 ’ ) . f e a t u r e ( ’ s t1 ’ ) . name . . .

( ’ Compile Equations : Frequency Domain ’ ) ;

model . s o l ( ’ s o l 1 ’ ) . f e a t u r e ( ’ s t1 ’ ) . set ( ’ s tudystep ’ , ’ f r e q ’ ) ;

model . s o l ( ’ s o l 1 ’ ) . f e a t u r e ( ’ v1 ’ ) . set ( ’ c o n t r o l ’ , ’ f r e q ’ ) ;

model . s o l ( ’ s o l 1 ’ ) . f e a t u r e ( ’ s1 ’ ) . set ( ’ c o n t r o l ’ , ’ f r e q ’ ) ;

model . s o l ( ’ s o l 1 ’ ) . f e a t u r e ( ’ s1 ’ ) . f e a t u r e . . .

( ’ aDef ’ ) . set ( ’ complexfun ’ , t rue ) ;

model . s o l ( ’ s o l 1 ’ ) . runAl l ;

model . s o l ( ’ s o l 2 ’ ) . name( ’ Parametric 2 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su1 ’ ) . name( ’ Store So lu t i on 3 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su1 ’ ) . set ( ’ s o l ’ , ’ s o l 3 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su2 ’ ) . name( ’ Store So lu t i on 4 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su2 ’ ) . set ( ’ s o l ’ , ’ s o l 4 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su3 ’ ) . name( ’ Store So lu t i on 5 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su3 ’ ) . set ( ’ s o l ’ , ’ s o l 5 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su4 ’ ) . name( ’ Store So lu t i on 6 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su4 ’ ) . set ( ’ s o l ’ , ’ s o l 6 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su5 ’ ) . name( ’ Store So lu t i on 7 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su5 ’ ) . set ( ’ s o l ’ , ’ s o l 7 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su6 ’ ) . name( ’ Store So lu t i on 8 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su6 ’ ) . set ( ’ s o l ’ , ’ s o l 8 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su7 ’ ) . name( ’ Store So lu t i on 9 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su7 ’ ) . set ( ’ s o l ’ , ’ s o l 9 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su8 ’ ) . name( ’ Store So lu t i on 10 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su8 ’ ) . set ( ’ s o l ’ , ’ s o l 10 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su9 ’ ) . name( ’ Store So lu t i on 11 ’ ) ;

model . s o l ( ’ s o l 2 ’ ) . f e a t u r e ( ’ su9 ’ ) . set ( ’ s o l ’ , ’ s o l 11 ’ ) ;
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model . s o l ( ’ s o l 3 ’ ) . name( ’ Store So lu t i on 3 ’ ) ;

model . s o l ( ’ s o l 4 ’ ) . name( ’ Store So lu t i on 4 ’ ) ;

model . s o l ( ’ s o l 5 ’ ) . name( ’ Store So lu t i on 5 ’ ) ;

model . s o l ( ’ s o l 6 ’ ) . name( ’ Store So lu t i on 6 ’ ) ;

model . s o l ( ’ s o l 7 ’ ) . name( ’ Store So lu t i on 7 ’ ) ;

model . s o l ( ’ s o l 8 ’ ) . name( ’ Store So lu t i on 8 ’ ) ;

model . s o l ( ’ s o l 9 ’ ) . name( ’ Store So lu t i on 9 ’ ) ;

model . s o l ( ’ s o l 10 ’ ) . name( ’ Store So lu t i on 10 ’ ) ;

model . s o l ( ’ s o l 11 ’ ) . name( ’ Store So lu t i on 11 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . name( ’ Parametric 12 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su1 ’ ) . name( ’ Store So lu t i on 13 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su1 ’ ) . set ( ’ s o l ’ , ’ s o l 13 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su2 ’ ) . name( ’ Store So lu t i on 14 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su2 ’ ) . set ( ’ s o l ’ , ’ s o l 14 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su3 ’ ) . name( ’ Store So lu t i on 15 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su3 ’ ) . set ( ’ s o l ’ , ’ s o l 15 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su4 ’ ) . name( ’ Store So lu t i on 16 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su4 ’ ) . set ( ’ s o l ’ , ’ s o l 16 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su5 ’ ) . name( ’ Store So lu t i on 17 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su5 ’ ) . set ( ’ s o l ’ , ’ s o l 17 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su6 ’ ) . name( ’ Store So lu t i on 18 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su6 ’ ) . set ( ’ s o l ’ , ’ s o l 18 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su7 ’ ) . name( ’ Store So lu t i on 19 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su7 ’ ) . set ( ’ s o l ’ , ’ s o l 19 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su8 ’ ) . name( ’ Store So lu t i on 20 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su8 ’ ) . set ( ’ s o l ’ , ’ s o l 20 ’ ) ;

model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su9 ’ ) . name( ’ Store So lu t i on 21 ’ ) ;
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model . s o l ( ’ s o l 12 ’ ) . f e a t u r e ( ’ su9 ’ ) . set ( ’ s o l ’ , ’ s o l 21 ’ ) ;

model . s o l ( ’ s o l 13 ’ ) . name( ’ Store So lu t i on 13 ’ ) ;

model . s o l ( ’ s o l 14 ’ ) . name( ’ Store So lu t i on 14 ’ ) ;

model . s o l ( ’ s o l 15 ’ ) . name( ’ Store So lu t i on 15 ’ ) ;

model . s o l ( ’ s o l 16 ’ ) . name( ’ Store So lu t i on 16 ’ ) ;

model . s o l ( ’ s o l 17 ’ ) . name( ’ Store So lu t i on 17 ’ ) ;

model . s o l ( ’ s o l 18 ’ ) . name( ’ Store So lu t i on 18 ’ ) ;

model . s o l ( ’ s o l 19 ’ ) . name( ’ Store So lu t i on 19 ’ ) ;

model . s o l ( ’ s o l 20 ’ ) . name( ’ Store So lu t i on 20 ’ ) ;

model . s o l ( ’ s o l 21 ’ ) . name( ’ Store So lu t i on 21 ’ ) ;

model . r e s u l t . numerica l ( ’max1 ’ ) . set ( ’ t ab l e ’ , ’ t b l 1 ’ ) ;

model . r e s u l t . numerica l ( ’max1 ’ ) . s e l e c t i o n . a l l ;

model . r e s u l t . numerica l ( ’max1 ’ ) . s e tRe su l t ;

model . r e s u l t ( ’ pg1 ’ ) . name( ’ E l e c t r i c F i e ld (emw) ’ ) ;

model . r e s u l t ( ’ pg1 ’ ) . set ( ’ data ’ , ’ dset3 ’ ) ;

model . r e s u l t ( ’ pg1 ’ ) . f e a t u r e ( ’ s u r f 1 ’ ) . set . . .

( ’ r a n g e c o l o r a c t i v e ’ , ’ on ’ ) ;

model . r e s u l t ( ’ pg1 ’ ) . f e a t u r e ( ’ s u r f 1 ’ ) . set . . .

( ’ rangecolormax ’ , ’ 12000 ’ ) ;

model . r e s u l t ( ’ pg2 ’ ) . set ( ’ data ’ , ’ dset3 ’ ) ;

model . r e s u l t ( ’ pg2 ’ ) . set ( ’ x l a b e l ’ , ’ y−coo rd inate (m) ’ ) ;

model . r e s u l t ( ’ pg2 ’ ) . set ( ’ y l a b e l ’ , . . .

’ E l e c t r i c f i e l d norm (V/m) ’ ) ;

model . r e s u l t ( ’ pg2 ’ ) . set ( ’ x l a b e l a c t i v e ’ , f a l s e ) ;

model . r e s u l t ( ’ pg2 ’ ) . set ( ’ y l a b e l a c t i v e ’ , f a l s e ) ;

model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e ( ’ lng r1 ’ ) . set ( ’ data ’ , ’ dset3 ’ ) ;
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model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e ( ’ lng r1 ’ ) . set ( ’ xdata ’ , ’ expr ’ ) ;

model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e ( ’ lng r1 ’ ) . set ( ’ xdataexpr ’ , ’ y ’ ) ;

model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e ( ’ lng r1 ’ ) . set ( ’ xdataunit ’ , ’m’ ) ;

model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e ( ’ lng r1 ’ ) . set . . .

( ’ xdatadescr ’ , ’ y−coo rd inate ’ ) ;

model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e ( ’ lng r1 ’ ) . set ( ’ l egend ’ , t rue ) ;

model . r e s u l t ( ’ pg3 ’ ) . name( ’ E l e c t r i c F i e ld (emw) 1 ’ ) ;

model . s o l ( ’ s o l 1 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 2 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 3 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 4 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 5 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 6 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 7 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 8 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 9 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 10 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 11 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 12 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 13 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 14 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 15 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 16 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 17 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 18 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 19 ’ ) . c l e a r S o l u t i o n ;
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model . s o l ( ’ s o l 20 ’ ) . c l e a r S o l u t i o n ;

model . s o l ( ’ s o l 21 ’ ) . c l e a r S o l u t i o n ;

model .mesh . c l earMeshes ;

out = model ;
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