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Abstract 

 
Molecular Mechanisms for Inhibition of Regulators of G-protein Signaling 

by Small Molecules 

by  

Andrew J. Storaska 

 

Co-Chair: Richard R. Neubig 
Co-Chair: John J.G. Tesmer 
 
 
 Regulator of G-protein signaling (RGS) proteins potently suppress G-

protein coupled receptor (GPCR) signal transduction by accelerating GTP 

hydrolysis on activated heterotrimeric Gα proteins. RGS proteins have become 

attractive targets for the purpose of manipulating GPCR-mediated cellular 

responses. The RGS family comprises thirty-seven proteins with differential 

expression patterns throughout the body. RGS4 is enriched in the CNS and has 

been proposed as a therapeutic target for treatment of neurological disorders 

including epilepsy and Parkinson's disease. Therefore, our lab has focused on 

the identification of small molecule inhibitors of RGS4. To date, all small 

molecule inhibitors of RGS proteins function through covalent modification of 

cysteine residues, yet substantial specificity has been observed for RGS4 over 

other closely related homologs. The work in this thesis 



 
 

xx 

details the molecular mechanism of inhibition by a potent RGS4 inhibitor (CCG-

50014; IC50 = 30 nM), and reveals the importance of RGS4 dynamics in the 

exposure of key cysteine residues that upon binding the inhibitor prevent the 

protein from reaching native conformations. Elucidating this mechanism has 

allowed us to propose a novel cryptic site (C-site) that is formed around the 

buried cysteine residues, and may be more druggable than previously proposed 

sites on RGS4. In addition, new chemical scaffolds have been identified using a 

cell-based high-throughput screen that also inhibit RGS4 through a cysteine-

dependent mechanism, but are significantly reversible in contrast to the first cell-

active RGS4 inhibitors. Furthermore, I employed IP6 as a derivative of an 

endogenous negative regulator, PIP3, to map the binding site on RGS4 and the 

corresponding effects on protein stability and function. This study shows the 

direct interactions of a non-covalent small molecule with an allosteric site on the 

RGS4 structure, and provides insight into the mechanism of endogenous 

regulation of RGS4. In conclusion, the studies described within this thesis 

provide new pharmacological tools for the study of RGS function in a cellular 

context, and describe in detail the molecular interactions of both endogenous and 

pharmacological modulators of RGS4. These results provide the theoretical 

framework to pursue drug discovery strategies that are expected to significantly 

advance the field of RGS drug discovery. 
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Chapter I 
 

Introduction 
 

 
The identification and design of small molecule modulators of protein-

protein interactions (PPIs) represents a significant challenge for drug discovery 

projects based on the physical characteristics generally associated with non-

enzyme and non-receptor targets. The potential to expanding the number of 

therapeutic targets and treat a wider range of disease has resulted in substantial 

interest in pursuing modulators of multi-protein complexes as therapy. The work 

described in this thesis elucidates a novel model of allosteric inhibition by a PPI 

inhibitor, and identifies new inhibitors for one therapeutically intriguing PPI 

involving RGS proteins. As a result of our expanding knowledge of PPI networks, 

the number of potential therapeutic targets continues to grow. These studies are 

expected to contribute a significant advancement toward the understanding 

needed to meet the new physical and biological challenges associated with 

modulating PPIs. 

 

Therapeutic Relevance of Protein-protein Interactions 

 Therapeutic development of small molecules has traditionally focused on 

a narrow subset of molecular targets, with class I GPCRs, voltage and ligand-

gated ion channels, and nuclear receptors representing a substantial portion of 
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drug-targeted biomolecules [1]. In addition to these historical targets, a growing 

number of protein kinases are now successfully being targeted [2]. Current drug 

data from the Therapeutic Target Database lists 364 successful therapeutic 

targets of approved drugs in its most recent update [3]. The number of proteins 

targeted by approved drugs is at odds with the estimated 3,000 human proteins 

associated with disease through inherited mutations [4], and the total number of 

disease causing proteins suggested to range between 3,000-10,000 human 

proteins [5]. It is clear that pursuing traditional targets falls short of ameliorating a 

large portion of aberrant protein function. This should not be a surprise as cellular 

responses initiated from a receptor are usually propagated downstream through 

a complex network of PPIs.  

The networks of PPIs that mediate cellular signal transduction can be 

quite large, which provides an extensive range of possible therapeutic targets. 

TGFβ-mediated signal transduction pathways are one prominent example of this, 

where huge networks are linked to a number of important cellular functions 

including cellular growth, differentiation, and morphogenesis [6]. Disruptions of 

these pathways are associated with inflammatory diseases, fibrosis, and cancer 

[6]. TGFβ signaling responses are mediated in part through SMAD protein 

interaction networks involved in localization of SMAD proteins to various 

subcellular compartments, including membrane, receptor, and eventually nuclear 

localization for transcriptional activity [7]. A large-scale yeast two-hybrid PPI 

mapping study of the SMAD protein signal transduction network resulted in the 

identification of 755 PPIs involving 591 different proteins [8]. Focusing on PPIs as 
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therapeutic targets creates the daunting task of cataloguing interactions through 

a signaling pathway and determining which are most relevant as therapeutic 

targets. The scopes of the networks are often large making it difficult to identify 

the optimal molecular target within the context of an aberrant signaling pathway, 

but the application of advanced proteomics and the use of comprehensive PPI 

databases have made achieving this more feasible [4, 8, 9]. The advantages 

gained by a PPI targeting strategy include the ability to increase the number of 

disease treatments by expanding the range of therapeutic targets, and improving 

therapeutic specificity by targeting proteins that may be more heterogeneously 

expressed relative to receptors.  

 

Regulators of G-protein Signaling as Therapeutic Targets 

Signaling through G-protein coupled receptors (GPCRs) controls many 

vital physiological functions. As a result, therapeutics that target GPCRs 

constitute a major portion of the prescription drug market [10]. Despite this 

success, achieving selectivity among closely related GPCR subtypes has limited 

therapeutic development in many areas, particularly for Alzheimer’s disease [11, 

12]. One strategy to attain greater selectivity is to modulate receptor activation by 

engaging less conserved allosteric surfaces on the receptors, either 

independently [13], or with the use of bitopic molecules that simultaneously bind 

the orthosteric and allosteric sites [14]. Another approach is to target the 

downstream PPIs that regulate GPCR signal transduction [15]. Targeting 

downstream regulatory PPIs provides an ability to more subtly modulate  
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Figure 1.1 GPCR signaling pathway following receptor activation. Ligand binding to the receptors 
catalyzes nucleotide exchange on the heterotrimeric Gα subunit, which exposes effector 
interaction surfaces on Gα and Gβγ allowing them to mediate signal transduction. RGS protein 
GAP activity on the Gα subunits enhances nucleotide hydrolysis over 1000-fold [17-20], thereby 
decreasing the duration of the signaling cycle (dashed line). 
 

endogenous signaling, similar to the actions of positive or negative allosteric 

modulators of GPCRs, although one unique advantage is that therapeutic action 

can also be compartmentalized in distinct tissues where both the receptor and 

target protein are co-expressed [16]. 

Regulators of G-protein Signaling (RGS) suppress GPCR signal 

transduction by selectively interacting with GTP-bound (activated) heterotrimeric 

Gα subunits to enhance their intrinsic rate of nucleotide hydrolysis [17-20], 

Figure 1.1. The expression profiles among the more than 20 human RGS 

proteins are relatively diverse, with some homologs being highly expressed in 

specific tissues such as RGS4 in the CNS [21, 22]. Within these tissues, RGS 
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proteins can co-localize with specific receptors [23-26], which may in part drive 

the receptor-specific regulation by certain RGS homologs [24, 27]. Pathway-

specific regulation also results from the preference of certain RGS homologs for 

Gαi/o or Gαq family members [28-31]. As a result of the expression patterns and 

pathway-specific effects, modulating GPCR signaling up or down in a particular 

tissue could be achieved by inhibiting or activating a specific RGS homologs. 

Therefore, RGS proteins have been proposed as intriguing drug targets [32-34]. 

RGS4 is highly expressed in cortex, thalamus, and other brain regions 

[21], and potentially affects numerous centrally-acting GPCR signaling pathways. 

Within the dorsolateral striatum, RGS4 serves as a bridge between D2-dopamine 

and A2-adenosine receptors and endocannabinoid mobilization driving striatal 

plasticity associated with normal motor behavior. As a result, RGS4 knockout 

mice are less sensitive than WT animals to motor behavior deficits occurring from 

6-OHDA depletion of dopamine [35]. This suggests that RGS4 may be a new 

target for treating Parkinson’s disease. Additionally, formation of an RGS4-A1-

adenosine receptor complex via the neurabin scaffolding protein negatively 

regulates the neuroprotective effects of adenosine signaling in a kainate-induced 

seizure model. Genetic knockout of neurabin or small molecule antagonism of 

RGS4 reduces seizure severity in this model [36]. In either case, inhibition of 

RGS4 provides a beneficial enhancement of a particular GPCR signaling 

pathway in the context of these models. Such studies support the use of RGS 

inhibitors in therapy. As a result there is a critical need for continued 

development of selective small molecule RGS modulators.   
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Challenges Associated with Modulating Protein-protein Interactions 

The formation of protein complexes is a ubiquitous mechanism driving 

cellular signaling events. For this reason small molecule modulators of PPIs are 

needed both as a therapeutic agents and as probes to identify the function of 

signal transduction proteins. The significant challenges associated with 

developing successful small molecules targeting PPIs have limited progress in 

both areas. Part of this challenge is a result of the overall structural topology 

generally found in many PPI interfaces. These interfaces typically span large 

surface areas greater than 1000 Å2 [37]. As a result, small molecules with 

sufficient affinity to block PPIs competitively at the interface generally require a 

large molecular weight. Using a cross section of well-characterized PPI inhibitors, 

Wells and McClendon found a relatively uniform ligand efficiency of 0.24 kcal ! 

mol-1 ! non-hydrogen atom-1 among the group of inhibitors analyzed, which 

suggests that PPI inhibitors that reach clinical potency (~10 nM) would have a 

molecular weight larger than 600 Da [38]. Increases in hydrophobicity and 

molecular weight occuring as a result of potency optimization can impair solubility 

and permeability [39], leading to downstream attrition as compounds move 

towards clinical candidacy [40].  

One potential reason PPI inhibitors tend to require larger mass to attain 

clinical potency may be the relatively shallow pockets formed along a PPI 
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interface. An analysis by Fuller and colleagues found the average pocket 

volumes for protein-ligand interactions of currently marketed drugs (260 Å3) is  

 

Figure 1.2 The RGS4-Gαi1 binding interface. (PDB code: 1agr). A) The association of RGS4 
(red) with Gαi1 (green) forms a majority of the contacts across three switch regions of the G-
protein Ras-like domain [40]. B) The G-protein binding interface of RGS4 (highlighted in green) 
consists primarily of hydrogen-bonding and electrostatic contacts with Gα, with the exception of 
two hydrophobic residues (Tyr84 and Leu159) in the outer perimeter of the buried interface [40]. 

 

approximately five-fold larger than what has been measured across the 

interfaces of PPIs (54 Å3) [41]. In addition, protein-drug interactions primarily 

occur through one or two  pockets producing an average occupied volume of 524 

Å3, which is in contrast to a typical PPI interface that has 261 Å3 of occupied 

pocket volume across multiple surface pockets [41]. Indeed, a systematic 

analysis of drug pocket characteristics revealed an overall pocket volume of 



 8 

greater than 593 Å3 is required to cover 95% of known drug targets [42]. The 

physical challenges associated with developing compounds that can bind to PPI 

interfaces with high potency has likely limited the number of PPI-direct 

therapeutics [43].  

 The structural features of RGS proteins are consistent with the challenging 

characteristics found in most non-traditional drug targets. The interface between 

the RGS4-Gαi1 complex (figure 1.2A) is relatively flat, burying 1100 Å2 of solvent 

accessible surface area [44]. In contrast to many PPI interfaces, the interaction is 

formed primarily through hydrogen-bonding and electrostatic contacts [44]. The 

majority of the buried hydrophobic surface area results from two resides on the 

outter perimeter of the G-protein binding interface of RGS4, Tyr84 and Leu159 

[44] (Figure 1.2B). Sandwiched between Tyr84 and Leu159 is a shallow cavity in 

the middle of the G-protein binding surface of RGS4 termed the “A-site” [45]. This 

cavity forms one of two potentially “druggable” sites on RGS4 that have been 

described previously [33]. The A-site pocket is the smaller of the two, comprising 

a total volume of 129 Å3. While the second pocket termed the “B-site” is 151 Å3, 

and sits within a cleft located on the opposite face of the RGS protein with 

respect to the G-protein binding interface (Figure 1.3). Similar to other PPI 

targets, these shallow surface pockets found on RGS4 are a major challenge to 

current drug discovery strategies.  
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Strategies for Modulating PPIs 

Interface Hotspots and Allosteric Pockets 

 Despite the challenges associated with targeting the relative featureless 

surface area found in protein-protein interfaces, there are several strategies that 

can increase success using small molecules. It has been found that protein-

protein interfaces contain specific sites that contribute a major portion of the 

binding energy for the complex. These sites known as “hot spots” are points 

along the interface that bury large hydrophobic side chains, such as arginine, 

tyrosine, and tryptophan [46, 47]. As a result, blocking PPIs by targeting these 

specific sites can make the development of PPI inhibitors more feasible since the 

molecule needs to cover less overall surface area in order to surmount the 

interaction. The most widely used method for experimentally determining hot 

spots across a PPI interface is alanine-scanning mutagenesis [48-50], although 

computational methods for identifying these specific sites have become more 

useful [51, 52]. Computational analysis of the RGS4-Gα interaction indicates 

several sites directly adjacent to the A-site pocket contribute significant binding 

energy to the formation of the complex [16], which supports targeting the A-site 

with small molecules as one potential strategy for modulating the interaction. 

An approach that may be more promising than directly targeting PPI 

interfaces may be through the development of small molecule modulators that 

act at sites that are distant from to the protein-protein interface. Targeting 

allosteric sites that are functionally coupled [53-55] to the active site provides a  
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Figure 1.3 Analysis of surface pockets on RGS4, (residues 51-178, PDB code: 1agr). Two 
potential drug-binding pockets have been previously reported on RGS4 using ICM Pro (Molsoft, 
San Diego, CA). One pocket in the G-protein binding interface (A-site) comprises a volume of 129 
Å3, while a second pocket located on the opposite face of the RGS domain (B-site) is larger with 
a 151 Å3 volume [33], and may represent a location for allosteric regulation of RGS activity. 
 

mechanism to modulate function without the need to compete with the 

endogenous binding partner [56, 57].  Additionally, allosteric sites on a protein 

are typically less conserved since they are not directly involved in protein or 

ligand interactions. This feature has been particularly useful in the GPCR drug 

discovery field where selectivity among different receptor subtypes at the 

orthosteric site has been challenging. The development of allosteric modulators 

has improved specificity between closely related subtypes [13, 58, 59]. In 

addition, targeting these sites also provides the ability to modulate activity either  
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Figure 1.4 Sequence analysis of the residues comprising the RGS B-site pocket across three 
homologs. The residues on RGS4 (PDB code: 1agr) that form the B-site pocket are highlighted in 
blue. All three sequences were taken from the human peptide sequence.   
 

 

up or down, which has led to the development of both positive and negative 

allosteric modulators of GPCRs [60, 61]. This has also been accomplished 

recently using disulfide tethering on AGC kinases [62], providing proof-of-concept 

that differential modulation can be applied to non-receptor targets as well.  

An allosteric surface of RGS4 contains a potentially druggable pocket (B-  

site) with larger volume and more suitable overall geometry than the A-site [33] 

(Figure 1.3). As a result, targeting this site may be advantageous for identifying 

small molecule interactions. The RGS4 B-site has been identified as a 

functionally active site on the RGS4 structure. It interacts with phospholipid 

micelles containing phosphatidylinositol (3,4,5)-triphosphate (PIP3) that inhibit the 

RGS4 GAP activity [63-65]. In contrast, micelles containing either 

phosphatidylinositol (4,5)-bisphosphate (PIP2) or L-α-phosphatidyl-choline (PC) 
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and L-α- phosphatidylethanolamine (PE) alone were unable to inhibit GAP 

activity [63, 65, 66], suggesting a specific interaction with PIP3. This interaction is 

dependent on the presence of positively charged residues (Lys 99 & 100, and to 

a lesser extent Lys 112 &113), as shown by mutagenesis studies of these 

potentially important lysine residues [63, 67]. The allosteric surface also appears 

to form an overlapping binding region with Ca2+/calmodulin, which has been 

shown to reverse PIP3-mediated antagonism of GAP activity [63, 64, 66, 67].  

The interplay between PIP3 inhibition of GAP activity and its reversal by 

Ca2+/calmodulin is suggested to play a role in calcium signaling regulation in cells 

[67, 68]. Although evidence of the RGS4-PIP3/Ca2+/calmodulin regulatory 

mechanism has been demonstrated in cellular systems [64, 69], there is currently 

no in vivo data to support the overall model. Nevertheless, the interactions at this 

site support the strategy of targeting this surface with small molecules. Since the 

molecular details of the allosteric mechanism of inhibition by PIP3 are unknown, it 

is unclear whether inhibition occurs through a structural change communicated 

from the allosteric site to the G-protein binding interface, or if the mechanism 

operates by sequestering the RGS protein in manner that abrogates its 

interaction with G-proteins. As a result, small molecules that interact in the same 

manner as PIP3 could either inhibit the RGS protein through allostery, or 

alternatively antagonize PIP3 binding, producing an activation of RGS activity. 

Identification of small molecules acting at the PIP3/Ca2+/calmodulin binding site 

could not only provide starting points for lead molecules, but could also provide 

improved tools to dissect the relevance of these interactions in vivo. 



 13 

An analysis of RGS family peptide sequences surrounding the proposed 

PIP3/ Ca2+/calmodulin binding site shows strong conservation along the α-helix 4 

in the vicinity of the Lys 99 & 100, with more divergence occurring on the N-

terminal portion of α-helix 5 and lysine residues 112 & 113 [63]. The strong 

conservation of residues surrounding the 99/100 positions is indicative of a 

functional region on the RGS domain. This further supports the advantage of 

targeting this site to modulate RGS function. Interestingly, an analysis of 

discontinuous residues that form the B-site pocket shows that side chains 

comprising the pocket are relatively conserved among three RGS homologs 

(Figure 1.4). A review of additional RGS family members: RSG7, RGS10, and 

RGS19, similarly shows strong conservation of these pocket residues. As a 

result, the B-site pocket may represent an interesting site for the development of 

RGS modulators for a variety of RGS family members. One challenge suggested 

by the sequence analysis of this site will be acquiring selectivity. 

 

Fragment-based Drug Discovery Methods for Targeting PPIs 

 Fragment-based drug discovery (FBDD) approaches have emerged as an 

important strategy for developing small molecule modulators of PPIs. This 

approach uses fragment-sized compounds (< 300 Da) to identify chemical 

starting points that interact with small or shallow structural pockets on a protein. 

The basis of this approach is a focus on efficiency at several levels, rather than a 

sheer mass of compounds screened on a target in high-throughput. This is 

achieved in part by the fact that a significantly larger fraction of the relevant 
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chemical space can be probed using relatively small libraries between 1,000-

3,000 compounds. It is estimated that larger (> 450 Da) and more complex drug-

like compounds used in HTS can approach 1060 possible variations in their 

chemical space, whereas low molecular weight fragment molecules may only be 

as diverse as 107 different variations [70]. Even though fragment libraries may be 

one or two orders of magnitude smaller than a commercial or institutional HTS 

library, the portion of available chemical space applied to a target is fractionally 

much greater. The biggest advantage FBDD provides for targeting PPIs is the 

enhanced ligand efficiency that results from screening molecules that form more 

contacts per unit of atomic mass [71-73]. This rationale has led to the 

development of a new set of physiochemical parameters for small molecules in 

fragment screening, described as the “rule of three”, including molecules that 

have < 300 Da, ≤ three hydrogen bond donors/acceptors, ClogP ≤ 3 [74]. 

 Despite the higher ligand efficiency that is a characteristic of fragment 

starting points, the smaller size compounds still produce relatively weak 

interactions, typically in micromolar to millimolar affinities in the initial screening 

process. As a result, direct binding experiments that provide high sensitivity are 

typically used to screen fragment libraries. Protein-based NMR experiments (e.g. 

Heteronuclear Single Quantum Coherence, HSQC) are one of the most 

informative methods, since binding site information is provided as a part of the hit 

identification process [75, 76]. This formed the basis of “SAR by NMR”, where 

lead compounds are built in a modular fashion by linking fragment molecules that 

bind in close proximity to one another [76]. More recently, a number of 
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biophysical techniques have been optimized for FBDD, including surface 

plasmon resonance (SPR), Thermofluor, and X-ray crystallographic screening 

[77-79]. Utilization of these techniques has led to therapeutic development of 

compounds targeting biomolecules previously deemed intractable to drug 

discovery. One of the earliest examples of success against an intractable target 

is the development of a Merck inhibitor (MK-8931) against protease β-secretase 

1 (BACE1), an enzyme involved in conversion of amyloid precursor protein (APP) 

into beta-amyloid (Aβ) [80]. The inhibitor was identified in an NMR–based screen 

of 10,000 fragment molecules, which identified the primary screen hit with a Kd of 

550 µM [81]. Lead optimization through crystallographic trials resulted in a 

compound currently working through PhaseII/III clinical trials. Subsequently, 

there have been a number of FBDD-derived compounds entering clinical trials 

[82-84]. 

 As a result of the successes with difficult targets, fragment-based 

approaches have been suggested as a mechanism to evaluate the druggability of 

a biomolecule [85]. This assessment is based on the observation that hit rates 

resulting from fragment screening occur in the 1% range, in contrast to typical 

HTS screens that return ~0.01% of the library as validated hits. An analysis by 

Edfeldt and colleagues analyzed a cross section of 36 drug discovery projects 

that employed fragment screens, allowing them to produce a “ligandability” score 

based on number of hits, diversity, and affinities [86]. In targets with a low score 

(hit rate < 0.1%, affinities > 1mM, low diversity), 100% (12/12) projects failed to 

identify hits using a traditional HTS screen [86]. This would suggest that any 
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molecular target that fails in a fragment screening campaign might be considered 

undruggable by conventional methods. However, examples exist where results 

from fragment screening alone were not sufficient to preclude certain targets. A 

study by Dias et al, found that fragment substituents of a known PPI inhibitor 

were not detected in an NMR-based fragment screen [87]. Using several 

biophysical techniques (including three separate ligand-guided NMR 

experiments) and successive sensitivity optimizations, the authors were able to 

confidently detect the weakly binding chemical substituents and correlate the 

biophysical observations with functional PPI displacement [87]. As a result a 

multifaceted approach may be required to successfully approach difficult targets 

like RGS proteins, which creates the challenge of utilizing several different 

techniques to measure binding with a reasonably sized fragment library.  

Current RGS Inhibitors  

 Despite the significant challenge associated with modulating RGS protein 

activity, several different classes of inhibitors have been reported to date (Table 

1.1). The first RGS inhibitors were rationally designed based on the peptide 

sequence of the Gαi switch I region, exemplified by YJ34 [88, 89]. This region of 

Gαi forms three critical contacts with RGS4, including a Gly183 residue on Gαi 

[44], that is known to abrogate binding if mutated to serine [90]. Based on the 

RGS-Gα crystal structural, it is expected the switch 1-mimetics physically occlude 

the PPI by binding around the RGS4 A-site. This is supported by the loss of 

activity with a modified peptide that contains a serine residue at the glycine 

position in YJ34 [89]. A second group identified an RGS4 peptide inhibitor using 
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a yeast two-hybrid screen, Peptide17 [91]. Although the physical mode of 

inhibition is unclear, the authors were able to show loss of activity towards RGS4 

with a scrambled version of the peptide [91]. The disadvantage of the peptide 

inhibitors is a lack of potency, solubility, and cellular permeability, which 

precluded further development of these compounds. 

The evolution of RGS inhibitors improved significantly with the 

identification of novel small molecule scaffolds. The first small molecule RGS 

inhibitor (CCG-4986) was identified using a flow cytometry protein interaction 

assay (FCPIA), with a potency of 4 µM [96]. Although potency was significantly 

improved over the peptide inhibitors, the inhibition of CCG-4986 cannot be 

reversed in the absence of a strong reducing agent (e.g. dithiothreitol, DTT), and 

has no activity against an RGS mutant lacking cysteine residues (RGS4 (–Cys)) 

[92]. Subsequently, a medium-scale (ca. 43K compounds) high-throughput 

screen using a time-resolved FRET assay identified the first example of an 

intrinsically reversible (reversible without reducing agent) RGS4 inhibitor with an 

8 µM potency (CCG-63802) [94]. The reactivity results from a Michael addition 

reaction through the vinyl cyanide group, which is less stable [97].  

The first sub-micromolar RGS inhibitor shifted the focus to a new family of 

compounds centered around a thiadiazolidine-3,5-dione ring, represented by 

CCG-50014, which has an IC50 equal to 30 nM to inhibit RGS4-Gαo equilibrium 

binding [95]. The CCG-50014 compound provided a significant enhancement in 

specificity (300-fold) for RGS4 over RGS8, and most importantly this compound  
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Compound  
ID 

RGS Inhibitor 
 Class 

Potency  
(µM)  Structure Ref. 

YJ34 Cyclic Peptide  
Inhibitors (S-S) 30 

 
Ac-VKCTGICE-NH2 

 

[88, 89] 

Peptide17 Peptide  
Inhibitors 55 

 

VRHVAVEVGGVVVVVG [91] 

CCG-4986 Covalent,  
irreversible 4 

 

[92, 93] 

CCG-
63802 

Covalent,  
reversible 8 

 

[94] 

CCG-
50014 

Covalent, 
Irreversible, 
Cell-active  

0.03 

 

[95] 

 
Table 1.1 Current classes of RGS inhibitors 
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showed the first cellular activity towards RGS function [95]. Like all previously 

reported small molecule inhibitors, CCG-50014 forms a covalent adduct with 

cysteine residues on RGS proteins through a reactive sulfur moiety on the 

thiadiazolidine-3,5-dione ring [98]. CCG-50014 irreversibly inhibits WT RGS4 in 

the absence of reducing agent [95]. Despite the thiol-reactive mechanism, the 

compound is able to evade the reducing environment of the cell and inhibit RGS 

activity. Furthermore, derivatives with improved solubility are now being used in 

animal models (data in preparation), allowing an opportunity to acutely probe 

RGS function in vivo. 

 The structural characteristics of RGS proteins have thus far only shown 

sensitivity towards thiol-reactive small molecules. As a result, the structural 

pockets available on RGS family members do not appear to provide an easy 

mechanism to modulate activity with non-covalent small molecules, consistent 

with the challenges associated with PPI-directed small molecules in general. 

Considering CCG-50014 is > 300-fold selective for RGS4 over RGS8 and 3000-

fold selective for RGS4 over a cysteine protease (papain), excellent progress has 

been made in obtaining ample potency and selectivity with the thiol-directed RGS 

inhibitors. The inhibitors are able to effectively block RGS function without 

modulating G-protein activity. The selectivity of the inhibitors among different 

RGS homologs is likely a result of the number of cysteine residues present and 

their structural locations. The degree to which some of the cysteine residues are 

buried in certain RGS homologs also suggests that dynamical motions may play 

a role in differential sensitivity to current inhibitors. As a result, elucidating the 
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conformational changes that play a role in the mechanism of inhibition may be a 

significant step forward in the design of new small molecule inhibitors with 

greater specificity.  

 

Time-scales of Protein Motions Relevant for Drug Discovery 

Protein motions occur in two general modes involving either high 

frequency and low amplitude motions or large collective motions. The former 

involves local structural flexibilities that include bond vibrations, side chain 

rotamerizations, and loop movements that range in time-scale from 10-15 – 10-9 

seconds [99] (Figure 1.5). These structural fluctuations result in conformationally 

similar substates that are present in a single energy well within the free energy 

landscape of the protein. These motions are easily accessible to experimental 

methods such as solution-state NMR since the time-scales are much shorter than 

the overall molecular tumbling rate of the protein in solution [100]. Since the 

interconversion between these sub-states describes the entropy of the system, 

changes to these local fluctuations upon ligand binding will affect the overall free 

energy of the interaction [101-103]. This is an important aspect of a single 

isoenergetic state of a protein, but does not describe the range of conformational 

populations within a system.  

The local structural fluctuations that occur on very fast time-scales 

coordinate into collective motions of secondary and tertiary structural elements 

involved in protein function and ligand binding [99, 104-106]. The height of the 

energy barriers separating these distinct conformational states result in the  
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Figure 1.5 Representative free energy landscape as a function of conformational coordinate. 
Local fluctuations (side chain rotamerization, methyl rotation, and loop movements) occur on the 
picosecond to nanosecond time-scales. Structural rearrangements of a protein  (P) that can 
reveal cryptic pockets occur on time-scales of microseconds and longer. These may only be 
present in transient high-energy states (minor population). Ligand (L) selection of these transient 
states via binding a cryptic pocket can shift the population (dotted line). 
 

interconversion rates of microseconds and slower [99]. Therefore, proteins exist 

in dynamic equilibrium between kinetically isolated conformations that are 

populated based on the Boltzmann distribution from the relative free energy level 

of each state [107, 108]. The presence of different protein conformers during 

ligand binding has been shown experimentally by monitoring the dynamics of 

lactate dehydrogenase with NADH, which reveals several kinetically separated 

bound-conformations occurring over tens of microseconds during the interaction 
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[109]. This particular experiment suggests that pocket formation may continue to 

progress even after the first bound-state conformation is formed, further 

supporting the notion that static ground state structures do not accurately 

represent all of the possible ligand recognition states. As a result, the longer 

time-scale motions are most interesting for the discovery of distinct druggable 

conformations within a single protein (Figure 1.5). 

 

Methods for Elucidating The Conformational Landscape of A Protein 

 Characterizing the conformational landscape of a target can be 

challenging, although numerous experimental techniques can provide insight into 

motions leading to alternate conformations. Identifying slowly exchanging and 

highly populated protein conformers has been particularly effective using 

hydrogen-deuterium exchange experiments [110, 111], or single molecule FRET 

techniques [112, 113]. Although, in cases where the difference in free energy 

between two states is more than approximately 1 kcal!mol-1 the excited state 

may represent only a small fraction of the overall population. Identifying these 

transient excited-state conformations has been achieved in many cases using 

solution-state NMR [114-116]. These techniques are useful to validate the 

presence of low population states of a protein, but for the purpose of structure-

based design the limited structural information hampers utility. The structural 

details can be generated with molecular dynamics (MD) simulations either alone 

or in combination with experimental data. In one successful example, combining 

small angle X-ray scattering (SAXS) and course-grained MD simulations revealed 
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the distribution of several highly populated conformers in dynamic equilibrium 

during subunit assembly of the Hck tyrosine kinase [107].  Hence, combining 

experimental and computational techniques can provide atomistic details of 

protein motions that are validated with physical evidence. 

 Traditional MD simulations can provide structural details of protein motions 

at the level of local structural fluctuations, including small loop movements that 

can reach tens of nanoseconds, but this falls short of reaching biologically 

relevant time-scales of microseconds and beyond [117]. Instead, accelerated 

molecular dynamics can resolve the atomistic details of conformational motions 

several orders of magnitude longer than traditional MD [118]. Enhanced sampling 

of conformations that would ordinarily require microseconds to milliseconds to 

overcome large free energy barriers can been achieved by augmenting the 

energy landscape in order to speed transitions between states [119-122]. 

Therefore, combining accelerated molecular dynamics with experimental 

techniques can resolve structural details of biomolecules that experimental 

techniques alone cannot capture. In doing so a more thorough understanding of 

both biological and pharmacological mechanism can be understood.  

  

 

Thesis Overview 

The work presented here contributes to our understanding of the 

molecular mechanisms for inhibition of RGS proteins with small molecules. 

These studies have focused on RGS4 as a prototypical RGS protein.  
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Chapter II elucidates the allosteric mechanism of inhibition by a highly 

potent RGS inhibitor (CCG-50014). Here we employ an RGS4 mutant that 

contains a single native cysteine in the buried allosteric site at position 95. The 

cysteine 95 residue is the closest cysteine to the modeled docking site of CCG-

50014 [95], and this mutant is less prone to aggregation in the presence of CCG-

50014 compared to WT RGS4. Like WT RGS4, the Cys95 mutant is completely 

inhibited by CCG-50014 and shows a significant reduction in thermal stability in 

the presence of the compound. We aimed to test the hypothesis that CCG-50014 

interacting with Cys95 alters the packing arrangement of alpha helices 4-7 

causing disruption of the G-protein binding interface. Consistent with the 

hypothesis, HSQC-NMR experiments monitoring structural changes associated 

with CCG-50014 binding to Cys95 show perturbations clustering in alpha helices 

4-7 and downstream in the G-protein binding site. Using temperature-accelerated 

molecular dynamics (TAMD) we show how dynamic motions of the alpha 5-6 

helical pair on RGS4 span an open like conformation allowing binding of CCG-

50014 to the buried site. Binding of CCG-50014 appears to stabilize this open 

confirmation resulting in disruption of the G-protein binding interface. This model 

represents a novel mechanism for allosteric PPI inhibitors, and reveals a cryptic 

site (C-site) with potentially better properties for the design of small molecule 

inhibitors. 

Chapter III describes the identification of several new cell-active RGS4 

inhibitors using a cell-based calcium signaling assay. Most of the RGS inhibitors 

identified to date lack cellular activity, which may be a result of the challenge for 
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cysteine-directed small molecules to target the RGS protein in the reducing 

environment of the cell. In order to identify cell-active chemical modulators of 

RGS4 we utilized a cell-based calcium signaling assay using an HEK cell line 

stably expressing the M3-muscarinic receptor with conditional RGS4 expression. 

This cell–line was screened against MLSMR NIH collection of >300,000 small 

molecules. Primary screen hits were identified based on their ability to enhance 

the Gq-mediated calcium response in cells expressing RGS4. Ultimately, fifty-

eight compounds were selected and subsequently characterized to test the 

hypothesis that the enhanced calcium response in the cells was mediated 

specifically through inhibition of RGS4. Using two biochemical assays of RGS4 

activity, thirteen compounds were identified that consistently inhibit RGS4 with 

IC50 values less than 100 µM in both assays. Subsequent biophysical and 

biochemical characterization of the compounds identified four molecules that 

could inhibit RGS4 reversibly. The reversible compounds showed relatively 

superior selectivity towards RGS4, over a panel of other RGS homologs tested. 

These cell-active RGS4 inhibitors identified using this system provide critical new 

tools to dissect the role of RSG4 in biology and disease. 

In Chapter IV, biophysical and biochemical experiments are used to study 

the interaction of inositol hexakisphosphate (IP6) with RGS4. The IP6 compound 

is a close analog to the soluble head group of phosphatidylinositol (3,4,5)-

trisphosphate (PIP3), which can inhibit RGS4 GAP activity.  Previous biochemical 

studies suggest that PIP3 binds to an allosteric site on RGS4 that would overlap 

the B-site pocket (Figure 1.3). I tested the hypothesis that IP6 would bind to the 
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B-site on RGS4 in order to understand how B-site interactions might regulate 

RGS4 activity. Using HSQC-NMR experiments to map the interaction of IP6 with 

RGS4, structural perturbations were identified on the C-terminal portion of α-helix 

4 and parts of the loop connecting α-helix 6 and 7. Additionally, CSPs were 

observed within a site centered on Lys 110 of α-helix 5. The NMR binding 

experiments are supported by changes to RGS4 thermal stability in the presence 

of IP6. Biochemical experiments show that IP6 is unable to antagonize the RGS4 

GAP activity under steady-state conditions. The results of the GAP data suggest 

that PIP3 may sequester RGS4 away from receptor-G-protein complexes. These 

data show that small molecules targeting the B-site on RGS4 would provide a 

mechanism to upregulate RGS4 activity, which is potentially beneficial based on 

several preclinical animal models. Importantly, these data provide direct evidence 

of non-covalent small molecule interactions on an allosteric site of RGS4, and 

reveals a pocket that could be targeted in future structure-based drug discovery 

efforts.  
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Chapter II 
 

Conformational Dynamics of RGS4 Reveals A Mechanism  
of Allosteric Inhibition 

 

Introduction 

Protein−protein interactions (PPIs) similar to that between RGS and Gα 

represent critical therapeutic targets for their direct role in abnormal signaling 

mechanisms [1-3], although targeting PPIs is a significant challenge [4, 5]. The 

many challenges associated with inhibiting PPIs are outlined in Chapter I. 

Despite these challenges, several compound families of RGS inhibitors have 

been identified and characterized (Table 1.1). Relative to the first reported 

peptide inhibitors, the advantages of small molecule inhibitors include greater 

potency and, most recently, the ability to inhibit RGS4 inside a cell [6]. As a 

result, small molecule modulators of RGS proteins have been a primary focus 

towards developing new biological probes of RGS function, as well as being 

chemical starting points for RGS-directed therapeutics. 

All of the small molecule inhibitors thus far identified require the presence 

of a reactive cysteine residue on the RGS protein for functional activity [6-8]. For 

many RGS homologs, cysteine residues are located in functionally sensitive 

areas, as indicated by the ability of thiol-reactive compounds to inhibit G-protein 

binding [7]. Part of the successful inhibition achieved by the cysteine-reactive 
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compounds may result from the presence of cysteine residues located in 

allosteric sites that are distal to the G-protein binding interface. Targeting 

allosteric sites would avoid competition with the G-protein and may provide 

greater potency. Furthermore, the RGS4 allosteric site (also known as the “B-

site”) [9], located away from the Gα binding site (termed as the “A-site”), is a 

promising site since physiological regulators of RGS4 directly interact with the B-

site [10, 11].  

The structural details by which cysteine-directed inhibitors modulate RGS 

function at sites distal to the G-protein binding interface are unknown. This has 

made it difficult to pursue structure-based approaches directed towards the RGS 

B-site. A recently identified RGS inhibitor (CCG-50014) is a potent (IC50 = 30 

nM) and selective inhibitor of RGS4 that was discovered in a high-throughput 

biochemical screen [12]. As with all previously reported RGS inhibitors, it acts by 

forming a covalent adduct to cysteine residues in RGS proteins [6-8, 13]. A 

previous docked model of CCG-50014 binding to RGS8 (a homolog of RGS4) [6] 

has been proposed, which suggested that the inhibitor molecule docks near the 

Cys107 residue of RGS8 (Cys95 in RGS4; see Figure 2.1). In this model, the 

reactive group of CCG-50014 is located ∼8−13 Å away from two cysteine 

residues in RGS8, where formation of a covalent adduct is unlikely. Therefore, it 

is hypothesized that a conformational change in the helix bundle must occur to 

allow binding of the inhibitor molecule to the buried side-chain of Cys95/Cys107 

in RGS4/RGS8. In this work, the existence of a previously uncharacterized open-

like conformation of RGS4 is exposed using atomistic simulations and NMR 



 37 

experiments. In characterizing the molecular mechanism of CCG-50014, it is 

revealed that the compound acts as a chemical probe of this novel 

conformational state, which may provide an invaluable model for structure-based 

design of novel inhibitors. 

In this chapter, I performed all of the protein expression and purification, 

and all of the biochemical and biophysical experiments. Based on my 

experimental data we were able to formulate a hypothesis on the mechanism of 

inhibition by CCG-50014. This hypothesis was tested using computational 

modeling of the interaction, which was performed by Harish Vashitsh (post-

doctoral fellow in Professor Charles Brooks’ Lab, Dept. of Biophysics, UM). This 

modeling includes MD, TAMD, principle component analysis, normal mode 

analysis, and theoretical chemical shift perturbation calculations. Parts of this 

chapter have been compiled into a publication in ACS Chemical Biology [14].  

 

Materials and Methods 

Molecular Dynamics (MD) Simulations 

All MD trajectories were generated using NAMDv2.8 [15] and the 

CHARMM force-field with CMAP correction [16, 17]. VMDv1.9 [17] was used for 

system creation and protein rendering. Initial coordinates from two different 

structures of RGS4 with Protein Data Bank (PDB) codes 1AGR (crystal structure) 

and 1EZT (NMR structure) were used. All systems were solvated using explicit 

(TIP3P) water and all hydrogen atoms were included. Charge neutrality was 
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maintained by adding counterions. Similar protocols were followed for all 

equilibration simulations: 500-1000 cycles of energy-minimization via conjugate-

gradient optimization and a constant temperature (310K) via the Langevin 

thermostat with damping coefficient of 5 ps-1. The equilibration phases were 

carried out initially in the NPT ensemble to adjust the box volume, and thereafter 

continued in the NVT ensemble using a time-step of 2-fs with rigid bonds in all 

simulations. Periodic boundary conditions were used throughout. Non-bonded 

interactions were cut-off beyond 10 Å with smooth switching taking effect at 8.0 

Å. Long-range electrostatic interactions were handled using the particle mesh 

Ewald (PME) method. The equilibration runs for wild-type RGS4 were used to 

sample initial conditions for all temperature accelerated molecular dynamics 

(TAMD) trajectories. Details of TAMD simulations are described in the following. 

The inhibitor molecule (CCG-50014; see Figure 2.1) was parameterized using 

MATCH [18]. 

 

Temperature Accelerated Molecular Dynamics 

Temperature-accelerated molecular dynamics (TAMD) is an enhanced 

sampling approach to explore the physical free-energy landscape in a pre-

defined set of collective variables (CVs) [19-21]. In this work, we have used a 

conformational sampling algorithm for proteins based upon TAMD [22], which 

has been successfully applied to several systems recently [23-26]. The coupled 

system of equations describing TAMD are as follows: 
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𝑚!𝑥! =   −
𝛿𝑉 𝑥
𝛿𝑥!

−   𝜅   𝜃!∗ 𝑥 −   𝜃!

!

!!!

𝛿𝜃!∗ 𝑥
𝛿𝑥!

−   𝛾𝑚!𝑥! +   𝜂!    𝑡;𝛽   

𝛾𝑚!𝜃! = 𝜅 𝜃!∗ 𝑥 −   𝜃! +   𝜉!(𝑡;𝛽) 

where θ∗(x) = (θ∗1(x),θ∗2(x),......,θ∗m(x)) are collective variables that are functions 

of atom Cartesian coordinates, 𝑚! and 𝑚! are the masses of 𝑥! and  𝜃!, V(x) is the 

interatomic MD potential, κ is the “coupling spring-constant”, γ is the Langevin 

friction coefficient, η is the white noise satisfying fluctuation-dissipation theorem 

at physical temperature   𝛽-1, 𝛾 and ξ respectively are fictitious friction and thermal 

noise at artificial temperature  𝛽-1.    

The aforementioned set of equations describe the motion of x(t) and θ(t) 

over the extended potential: 

𝑈! 𝑥,𝜃 =   𝑉 𝑥 +   
𝜅
2    [𝜃!∗ 𝑥 −   𝜃!]!

!

!!!

 

As shown earlier by Maragliano and Vanden-Eijnden [19], by choosing κ 

such that θ∗(x(t)) ≈ θ(t) and fictitious friction coefficient 𝛾 such that θ moves 

slower than x, one can generate a trajectory at artificial temperature 𝛽!! subject 

to the free energy computed at the physical temperature β-1. To ensure these 

conditions, we have chosen a TAMD friction 𝛾 of 500 ps
-1 and a spring constant κ 

of 100 kcal/mol·Å2. In this work, we choose the Cartesian coordinates of centers-

of-mass of spatially contiguous groups of residues as CVs. The entire RGS4 

structure (residues 51-178) was divided into 6 subdomains (18 CVs). Residue 
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memberships for mutually exclusive and collectively exhaustive subdomains of 

RGS4 are listed in Appendix II and the location of each subdomain is shown. A 

total of four independent TAMD trajectories were carried out (Table 2.1). 

Theoretical Chemical Shift Perturbation (CSP) Analysis 

We used software packages SHIFTX2 [27] and SPARTA+ [28] for 

theoretical prediction of chemical shifts for 15N and 1H atoms based upon our MD 

simulations. Specifically, starting with two different initial structures (PDB codes 

1AGR and 1EZT), we carried out at least three independent simulations of 

mutant RGS4 with and without inhibitor CCG-50014 (runs #2, 7, 11 and 13 in 

Table 2.1). The predicted values of chemical shifts were further time-averaged 

over each trajectory and ensemble-averaged over independent trajectories. We 

used following equation to calculate chemical shift perturbation (CSP) for each 

residue. 

𝐶𝑆𝑃 =   
∆𝛿 𝑁!"

5

!

+    ∆𝛿 𝐻! !   

The predicted CSPs for each residue (in ppm) are also calculated using 

this equation, while key residues are summarized in below.  

 

Protein Expression and Purification 

RGS4 was expressed and purified for NMR studies as previously 

described [29]. Briefly, N-terminally truncated (∆51) RGS4 was expressed with 

an N-terminal maltose binding protein (MBP) fusion containing a 10x histidine tag 
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and tobacco etch virus protease (TEV) site using a pMalC2H10 vector. Two 

RGS4 mutants were prepared with either all native cysteines mutated to alanine 

(cysless RGS4), or all native cysteines except cysteine 95 mutated to alanine 

(Cys95 RGS4), using methods employed previously [8]. Purified 15N-labeled ∆51 

RGS4 (cysless and Cys95) was prepared by removing the MBP tag via addition 

of TEV protease and purified by ion exchange chromatography. The samples 

were buffer exchanged into 50 mM sodium phosphate buffer with 50 mM NaCl at 

pH 6.0 by dialyzing overnight at 4◦C. The concentration was determined using a 

NanoDrop spectrophotometer. 

 

Intrinsic Fluorescence Experiment 

Fluorescence experiments were performed on a Photon Technology 

International AlphaScan Spectrofluorometer (Photon Technology International, 

Lawrenceville, NJ) with 2.5-nm slits using wavelengths of 285 and 340 nm for 

excitation and emission, respectively. (∆51) RGS4 Cys95 or Cysless mutants at 

1 µM in 500 µl of buffer containing 20 mM HEPES, 100 mM NaCl, pH 7.4 was 

added to a 5-mm cylindrical quartz cell with micro stir bar. The baseline reading 

was allowed to stabilize for 1 min followed by injections of CCG-50014 or 

equivalent volume of DMSO up to a final concentration of 30 µM. The 

fluorescence was recorded for 30 seconds at each concentration of CCG-50014. 
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Flow Cytometry Protein Interaction Assay (FCPIA) 

Biotinylated (∆51) RGS4 Cys95 or Cysless (N-terminally tagged with 

maltose binding protein) was immobilized on avidin-coated microspheres from 

Luminex, and incubated with compound or DMSO for 15 minutes at room 

temperature on a 96-well plate. AlexaFluor 532-tagged Gαo (30 nM final) 

activated with GDP, magnesium, and AlF-
4 is then added to each well and 

incubated at room temperature for 30 minutes. Compound activity is determined 

using a Luminex 200 flow cytometer to detect changes microsphere-associated 

fluorescence. CCG-50014 was tested in a concentration-response format ranging 

from 100 µM to 30 nM. Concentration-response curves for each compound, 

performed in duplicate, were fit to IC50 curves (constrained to 100% inhibition) 

using Graphpad software v5.04. 

 

Thermal Stability Assay 

Δ51 RGS4 Cys95 (10 µM) was incubated in the presence of CCG-50014 

(100 µM) or DMSO for 15 minutes black 384-well PCR microtiter plate 

(ThermoFisher catalog no. TF-0384/K). 1-anilinonaphthalene-8-sulfonic acid 

(ANS) was added to each well and all wells were overlaid with 5µl silicon oil. 

Fluorescence was measured at 25˚C in up/down mode with increasing 

temperature increments of 1˚C from 30°-90°C using ThermoFluor Instrument 

(Johnson & Johnson, Langhorne, PA). Melting curves were fit to a Boltzmann 

equation using Graphpad software v5.04 to determine the melting temperature 

(Tm).  
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NMR Spectroscopy 

NMR samples were prepared with 0.1 mM 15N-labeled RGS4 in the same 

buffer with the addition of 7% (v/v) D2O and either DMSO (2% v/v) or 0.1 mM 

CCG-50014. The heteronuclear single-quantum coherence (HSQC) NMR data 

were collected at 25◦C with a 600 MHz Bruker Avance III magnet with 

cryogenically cooled sample probe. Data were processed with Bruker TopSpin 

1.3 software and analyzed with computer aided resonance assignment (CARA) 

software. The 15N chemical shifts were referenced from the previous solution 

structure data of RGS4 [30]. 1H-15N HSQC spectra of cysless RGS4 and Cys95 

RGS4 are shown as normalized intensity ratios of the HSQC peaks after and 

before addition of inhibitor CCG-50014. We note that chemical shift changes for 

each residue in the HSQC spectra have not been identified since the irreversible 

nature of the compound (CCG-50014) prevents titrating peak shift trajectories as 

a function of molar ratio of compound to protein. Instead, peak perturbations are 

analyzed via a loss in intensity resulting from the peaks becoming split between 

two (or possibly more) chemical states. We also note that the HSQC spectra of 

cysless RGS4 and Cys95 RGS4 show similar signal dispersion compared to 

wild-type RGS4 indicating that the overall fold is preserved. Furthermore, peak 

coordinates in the HSQC spectra are similar to wild-type RGS4 for more than 

80% of the residues in both mutant proteins. Peak intensities in each spectrum 

were normalized to residue 201 in order to compare the intensity change before 

and after addition of CCG-50014. Peak intensities were compared either as a 
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ratio, or as % peak attenuation (100-((I50014/I0)*100)). A number of peaks were 

removed from the peak intensity analysis due to ambiguity resulting from overlap 

in the HSQC spectrum: 58, 73, 78, 79, 95, 96, 97, 107, 114, 117, 119, 132, 133, 

135, 136, 152, 156, 161, 163, 183, 186, 188, 189, 192, 203, 204. Nearly all of 

these peaks are found to be overlapped in the WT RGS4 spectrum, published 

previously.  

Principal Component Analysis Of The NMR Ensemble (PDB code 1EZY) 

We carried out principal component analysis (PCA) of the NMR ensemble 

(PDB code 1EZY) to better understand correspondence of principal modes with 

elastic network model based normal modes. Such analysis has been quite useful 

in other proteins as well [31, 32]. These data are presented in Appendix III. By 

matching a single principal component (PC) with a single low-frequency mode via 

computation of overlaps, we find that PC 1 is significantly correlated to low-

frequency Mode 2 in the normal mode analysis (Figure 2.5). This suggests that 

principal motions present in RGS4 can be explained by a single low-frequency 

mode of RGS4. This also provides a structure-based explanation of underlying 

dynamics. 

 

Results 

RGS4 Motions Allowing Inhibitor Access To Cysteine 95 

A single-cysteine mutant of RGS4 was created to specifically understand 

the effect of CCG-50014 binding to Cys95 (Figure 2.1). CCG-50014 is able to 

perturb the intrinsic fluorescent properties of RGS4 (Figure 2.2 A), and 
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completely block RGS4-Gα binding (Figure 2.2 B) through covalent modification 

of the Cys95 residue. Both effects are lost when an RGS4 mutant lacking 

cysteine residues is employed. Additionally, CCG-50014 produces a significant 

decrease in thermal stability of RGS4 Cys95 compared to DMSO treated protein 

(Figure 2.2 C). The decrease in melting temperature is comparable to what has 

been reported for WT RGS4 in the presence of CCG-50014 [6]. Such a 

significant decrease in melting temperature suggests a significant change to the 

overall tertiary structure in the presence of the compound. 

Using two independent starting structures of RGS4 (PDB codes 1AGR 

and 1EZT) [33, 34], we first conducted molecular dynamics (MD) simulations 

(Table 2.1) of apo wild-type RGS4, and a mutant form of RGS4, where all 

cysteine residues except Cys95 were mutated to Ala (Figure 2.1). Conventional 

MD simulations reveal no significant change in the overall structure of RGS4 over 

the 20 nanosecond simulation (Figure 2.3 A). This is indicated by the relatively 

low root- mean-squared deviation (RMSD; Cα) comparing the starting and ending 

structures (red and green traces in Figure 2.3 C). To probe the solvent-

accessibility of the residue Cys95, we measured the buried surface area (BSA)  
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Figure 2.1 Cartoon representations of the box domain of RGS4 and the RGS4-Giα1 complex (A 
& B). Each of the nine helices of RGS4 is distinctly colored and labeled. The Cα atoms of four 
cysteine residues in RGS4 are shown as yellow spheres, while the buried residue Cys95 (C95) is 
labeled and highlighted in a dotted circle. In panel B, three switch regions of Gαi1 are shown as 
magenta cartoons and labeled, and the GDP molecule is rendered as green space-filling spheres. 
C) Unconjugated CCG-50014 molecule. 
 
 
between the α5-α6 helix pair and the rest of RGS4 (red and green traces in 

Figure 2.3 D) along with the solvent-accessible-surface-area (SASA) of residue 

Cys95 (Figure 2.4). Throughout each 20-ns MD simulation, we observe no 

change in the aforementioned BSA, and the SASA of residue Cys95 remains 

negligible(∼2−3 Å2). Therefore, the underlying dynamics of RGS4 that facilitate 

access to Cys95 are not yet clear. However, this is not surprising because long 

time-scale conformational flexibility in proteins is seldom revealed using short 

unbiased MD simulations due to the underlying free-energy barriers. Therefore,  
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Table 2.1 Details of all MD and TAMD simulations. 

aall cysteines but Cys95 were mutated to Ala in all mutant simulations 
bβ ̅^(-1) = 2 kcal/mol; all other TAMD runs were carried out β ̅^(-1)= 3 kcal/mol  
cthree independent simulations were carried out in each case except for run#13 where four 
independent simulations were carried out 
 dinitial coordinates of RGS4 were taken from TAMD (run#4), and of Gα were taken from the PDB 
coordinate file 1AGR; restraints on all 
Cα-atoms were enforced for the first 20 ns to maintain RGS4-Gα interaction which was followed 
by a 25-ns long unrestrained MD equilibration 
 

we used an enhanced sampling algorithm for proteins [22] based upon 

temperature-accelerated molecular dynamics (TAMD) [19, 20] to carry out 

conformational sampling of RGS4 (see supporting methods for details). In this 

algorithm, enhanced conformational sampling of proteins is achieved by 

exploring the dynamics of relatively rigid subdomains (spatially contiguous 

groups of residues) by accelerating, via high fictitious temperature, the Cartesian 

coordinates of the centers-of-mass (COM) of subdomains as collective variables  

Run No. 
System 

Initial 
Coordinates 

Run 
Type 

Run 
Length 

(ns) 

Ligand 
CCG-
50014 

Construct 
Type 

System 
Size 

(atoms) 
1 RGS4 1AGR MD 20 X WT 28076 
2 RGS4 1AGR MD 20 X M 28073 
3 RGS4 1AGR TAMD 35 X WT 28076 
4 RGS4 1AGR TAMD 35 X WT 28076 
5 RGS4 1AGR TAMD 25 X WT 28076 
���6 RGS4 TAMD 

(Run#4) 
MD 40 X M 31585 

���7 RGS4 TAMD 
(Run#4) 

MD 40 YES M 31529 

8 RGS4-Gα 1AGR MD 20 X WT 67368 
9 RGS4-Gα 1AGRd MD 45 YES WT 69259 
��� 10 RGS4 1EZT MD 20 X WT 29269 
11 RGS4 1EZT MD 20 X M 29269 
12 RGS4 1EZT TAMD 50 X WT 29269 
13 RGS4 TAMD MD 40 YES M 39436 
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Figure 2.2 The biophysical and functional effects of CCG-50014 targeting Cys95 on RGS4. A) 
CCG-50014 produces strong intrinsic fluorescence changes (>20% reduction) indicating 
significant structural perturbations resulting specifically from modifying Cys95 B) The RGS4-Gα 
interaction is inhibited by CCG-50014 with 4 µM potency at the Cys95 site. C) CCG-50014 
decreases the melting temperature of RGS4 Cys95 by 11˚C (Tm=62˚C for apo vs 51˚C in the 
presence of 50014). In the presence of 50014, the reduction in melting temperature is very close 
to the 10˚C decrease observed for WT RGS4, compared to no change in Gαo melting. 
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(CVs) [23-26, 35]. We conducted four independent TAMD simulations (Table 2.1) 

of RGS4 at fictitious thermal energies of 𝛽!!= 2 and 3 kcal/mol, where 𝛽= 1/kBT̅, 

kB is Boltzmann’s constant, and T̅ is the fictitious temperature. The RMSD and 

BSA data (magenta traces in Figure 2.3 C and D) from a typical TAMD run at 

𝛽!! = 3 kcal/mol reveal the existence of relatively large-scale conformational 

flexibility in the α5−α6 helix pair, where these helices span open-like 

conformational states away from the rest of RGS4 (Figure 2.3 B). However, 

similar data from a TAMD run at a lower 𝛽!! = 2 kcal/mol (blue traces in Figure 

2.3 C and D) suggest that the conformational change in the α5−α6 helix pair 

cannot be observed on similar time-scale with thermal energies lower or 

comparable to 2 kcal/mol, which also explains why this conformational change 

was not observed in conventional MD simulations (vide supra). We note that this 

conformational change is reproducibly observed in multiple independent TAMD 

simulations of RGS4. 

 

Collective Motions Drive Exposure Of Cysteine 95 To CCG-50014 

It is well established that large-amplitude collective motions in proteins are 

governed by their intrinsically accessible low- frequency normal modes [31, 36-

39], and conformational sampling via TAMD in Cartesian CVs is also governed 

by these modes [24]. Therefore, we carried out a Cα-based elastic network 

normal-mode analysis (NMA) of RGS4 with both initial structures (PDB codes 

1AGR and 1EZT), and computed the individual and cumulative projections or  
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Figure 2.3 MD and TAMD simulation data for RGS4 runs with initial coordinates from PDB code 
1AGR. (A and B) Overlay of cartoon representations of apo-RGS4 (red, beginning; blue, end of 
simulations). All helices of RGS4, except the α5−α6 pair, are shown in white cartoons. C) The 
Cα-RMSD traces with reference to starting conformations. D) Buried surface area (BSA) between 
the α5−α6 helix pair and the rest of RGS4. 
 

 

overlaps (θm) for 20 low- frequency (nonzero) normal modes of apo RGS4 onto 

the functional displacement vector (𝑑) between initial and final conformations 

generated by a typical TAMD simulation of each structure (Figure 2.5). These 

data suggest that low-frequency modes 1, 3, and 5 consistently contribute to this 

conformational change (see overlaps, θm, for these modes in Figure 3), while 

either mode 7 (Figure 2.5 B) or modes 8, 9, and 10 (Figure 2.5 A) can 

contribute significantly to this conformational change. Also, the first 10 low- 
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Figure 2.4 Solvent Accessible surface area (SASA) for residue Cys95 from MD equilibration 
trajectories of wild-type and mutant-RGS4 (runs#1, 2, 10 and 11 in Table S1). Data for MD 
simulations starting with two different initial coordinates (PDB codes 1AGR and 1EZT) are shown. 
The SASA traces for mutant-RGS4 runs are averages over three independent MD runs. 
 

 

frequency modes can describe the majority of the conformational change in the 

α5−α6 helix pair, as indicated by the cumulative overlap traces (red dotted lines in 

Figure 2.5). These results reinforce the point that the conformational flexibility 

observed in the TAMD simulations is intrinsic to the structure of RGS4 due to the 

presence of such low-frequency (high-amplitude) modes. This also means that 

our NMA analysis supports the definition of subdomain COM as our collective 

variables in TAMD since both calculations show significant overlap in 

conformational changes. 

A key implication of the conformational change in the α5−α6 helix bundle is 

that the side-chain of residue Cys95 is now accessible, and the inhibitor molecule 

could be successfully accommodated in the TAMD-generated conformations of 

RGS4. To understand specifically the effect of CCG-50014 binding to Cys95, we  
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Figure 2.5 Individual (bars) and cumulative (red dotted line) projections of 20 low-frequency 
normal modes of RGS4 onto TAMD generated conformations; projection of the nth mode θmn is 
the normalized scalar product between the eigen vector (𝐼!) of the corresponding mode and 
functional displacement d⃗ , that is, θ = 𝐼! ·d⃗/(|𝐼!| × |d⃗|), while the cumulative overlap is (𝜃!!! + 

𝜃!!!
 + ···+𝜃!"!

 )1/2. The functional displacement vector d⃗ is defined as the vector difference 
between starting and ending conformations from a typical TAMD simulation. 
 

carried out seven independent 40-ns long MD equilibration trajectories (Table 

2.1) of the single-cysteine mutant of RGS4 with a covalently linked inhibitor. In 6 

out of 7 simulations, we observe that intercalation of CCG-50014 into the helix 

bundle restricts closure of the α5−α6 helix pair (Figure 2.6 A), as indicated by a 

nearly constant BSA between these two helices and the rest of RGS4 (magenta 

traces in Figure 2.6 D). This is primarily because the covalently linked (to Cys95) 

inhibitor molecule experiences only small conformational rearrangements due to 

minor rotations of aromatic groups (Appendix IV A). However, in one simulation, 

we observe that CCG-50014 rotates (around the disulfide bond) by ∼90° with 

respect to its initially docked conformation (Appendix IV B), which also allows  
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Figure 2.6 Data from MD equilibrations of TAMD-generated conformations of RGS4 (PDB code 
1AGR) with A) and without B) CCG-50014 (red, beginning; blue, end of simulations). C) RMSD 
with reference to the crystallographic conformation of RGS4 (PDB code 1AGR). D) Same BSA as 
in Figure 2.3 are shown. 
 

partial closing of the α5−α6 helix pair (see snapshots, and the BSA trace in 

Appendix V). To further understand the role of the inhibitor in keeping the α5−α6 

helix pair in a relatively open conformation, we also carried out a 40-ns long MD 

equilibration of the TAMD-generated open-conformation of RGS4 in the absence 

of CCG-50014. The data from this simulation showed a spontaneous recovery of 

the α5−α6 helix pair to a near crystallographic conformation (snapshot in Figure 

2.6 B, and green traces for RMSD and BSA in Figure 2.6 C & D) unlike the 

inhibitor-bound simulation (magenta traces for RMSD and BSA in Figure 2.6 C & 

D). This suggests that apo-RGS4 likely exists predominantly in a closed-
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conformation, but the open-conformation that exposes Cys95 is favored when 

RGS4 is bound to CCG-50014. 

To further dissect the effect of inhibitor binding on the structure of RGS4, 

we computed the root-mean-squared- fluctuation (RMSF) per residue from three 

independent MD simulations of mutant-RGS4 with and without CCG-50014 

(Figure 2.7). Based upon these data, we show a change in RMSF per residue on 

binding of the inhibitor (Figure 2.7). On inhibitor binding, simulations from both 

RGS4 structures (PDB codes 1AGR and 1EZT) reveal a consistent and 

significant increase in the fluctuations of residues located in the α1-helix (51−60), 

and residues (∼110 to 135) in the helices α5, α6, and the loop region connecting 

these two helices (see Figure 2.1 for designation of helices). Additionally, 

simulations of the NMR structure (PDB code 1EZT) suggest increased flexibility 

in the C-terminus of the α3-helix, and helices α7 and α8 (bottom panel in Figure 

2.7) on binding of CCG-50014. These results are consistent with the observed 

inhibition of binding between the inhibitor-bound RGS4 and the activated Gα-

subunit because the residues in the helices α3, α7, α8 of RGS4 directly contact 

switch-I and switch-II regions on Gα, while residues in the loop region connecting 

helices α5 and α6 directly contact the switch- III region on Gα (see Figure 2.1 B 

for RGS4-Gα complex). The increase in the fluctuations of residues located away 

from the inhibitor binding site suggests an allosteric effect of CCG- 50014 

binding, which may contribute to an unstable RGS4-Gα interface. 
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Figure 2.7 Change in RMSF per residue (ΔRMSF) on binding of CCG-50014 to RGS4. Data 
represent difference in RMSF from at least three independent MD simulations, each for apo and 
inhibitor-bound structures, of RGS4. 
 

Structural Perturbations Induced By CCG-50014 

Using NMR methods for RGS4 [29, 33] structural analysis of the effects of 

CCG-50014 on RGS4 were carried out. Specifically, we recorded 1H−15N HSQC 
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spectra (Figure 2.8) for two different constructs of RGS4 (cysteine-less RGS4, 

cysless-RGS4; and single-cysteine RGS4, Cys95-RGS4) in the presence of 

CCG-50014 at a 1:1 molar ratio. The absence of peak shifts, new peaks, or 

significant change in signal intensity in the HSQC spectrum of cysless-RGS4 in 

the presence of CCG-50014 (top panel in Figure 2.8) suggest that the compound 

is not interacting with the protein. This is consistent with the mechanism of 

(cysteine) thiol modification necessary for activity of CCG-50014 [6, 13]. 

However, CCG-50014 modification of Cys95-RGS4 produces significant 

perturbations in the HSQC spectrum in the form of attenuation of existing peaks 

and the appearance of new peaks, as observed in the spectral overlay of CCG-

50014-treated protein with the DMSO-treated reference sample (bottom panel in 

Figure 2.8). The appearance of new peaks with lower dispersion in the presence 

of CCG-50014 demonstrates that the perturbed regions of the structure undergo 

greater conformational averaging than in apo-RGS4. Consistent with extensive 

conformational changes in the presence of CCG-50014, the normalized intensity 

ratios of the HSQC peaks before and after the CCG-50014 modification (Figure 

2.9) indicate that signal intensity decreased for most of the peaks between 

residues 61 and 182 (Figure 2.9 B) with the exception of those in the 

unstructured portion of the C-terminus of RGS4 starting with Gly184. 
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Figure 2.8 1H-15N HSQC spectra of Cysteine-less (Cysless) and single Cysteine (Cys95) RGS4 
are shown in the top and bottom panels. Spectra were recorded before (red) and after (blue) 
CCG-50014 exposure. 
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In the presence of the covalent inhibitor, where koff ≪ the chemical shift 

time scale, structural perturbations or inhibitor interactions result in partial or full 

attenuation of peaks as they are split between two (or possibly more) chemical 

states [40, 41]. Therefore, we computed % attenuation in peak intensity per 

residue on CCG-50014 binding (Figure 2.9 C), and mapped residues 

experiencing above-average structural perturbations on the RGS4 structure 

(Figure 2.10 A). These data suggest significant perturbations in many residues 

(91, 101, 110, 142, and 153) in the vicinity of Cys95, which is likely a result of 

direct interaction with the aromatic rings of the inhibitor, as seen in MD 

simulations (Appendix IV & V). It is worth noting that the most perturbed peak in 

the HSQC spectrum comes from Phe91 (Figure 2.9 C), a residue located exactly 

below Cys95, and in direct contact with one of the phenyl rings of CCG-50014 in 

our simulations (Appendix IV). Consistent with RMSF results (Figure 2.7), 

additional significant perturbations are also seen in residues (61, 63, 64, 66, 77, 

167, and 178) in the N- and C-terminal helices of RGS4, as well as residues (124 

and 126) in the loop region connecting helices α5 and α6. Based upon our MD 

trajectories, we also carried out a theoretical chemical shift perturbation (CSP) 

analysis using software packages SHIFTX2 [27] and SPARTA+ [28] (Appendix 

VI). Overall, we find that ∼66% of perturbed residues seen in NMR experiments 

are also consistently observed in MD simulations (Figure 2.10 A and B). The 

correlations between strong perturbations observed experimentally and predicted 

from the simulations are plotted together in Figure 2.10 C. Many of the strongly 

perturbed residues in theoretical CSP analysis that do not directly  
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Figure 2.9 Effect of CCG-50014 on the 1H−15N HSQC spectra of RGS4. (A and B) Normalized 
intensity ratios of the HSQC peaks after and before CCG-50014 modification as a function of 
residue number for the cysteine-less (cysless) and single cysteine (Cys95) RGS4. C) Percentage 
attenuation in peak intensity for each residue after treatment with CCG-50014. Solid and dotted 
horizontal lines indicate values at mean and 1 standard deviation (SD). 
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Figure 2.10 Comparison of perturbed residues on the RGS4 structure (PDB code 1AGR). A) 
Measured (from NMR experiments) and B) computed (from MD simulations). Red labeled 
spheres indicates residues with % peak attenuation larger than 1 SD, while small blue spheres 
are residues with % peak attenuation between mean and 1 SD in NMR experiments. Residue 
Cys95, which is covalently modified by CCG-50014, is shown as a labeled yellow sphere. The 
protein backbone is rendered as a transparent white cartoon. C) Plot comparing the predicted 
chemical shift perturbations measure in ppm with the attenuated HSQC cross peaks in the 
presence of CCG-50014. 
 
 
correlate with strongly perturbed residues in the HSQC experiment show 

increased flexibility in the RMSF data as a result of the interaction with CCG-

50014 (Figure 2.7). Some disagreement between the experimental observations 

and predictions from simulations may be due to a variety of factors such as 

difficulty in unambiguously resolving overlapping peak positions in the NMR 
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spectra, and the absence of certain rotameric conformational states of residues 

that occur on long time-scale [42]. Consistent with a loss of G-protein binding and 

GAP activity [6], residues in the G-protein binding interface, such as Thr124 and 

Glu126, are perturbed both in experiments and simulations in the presence of 

CCG-50014. 

CCG-50014 Prevents Key Contacts Between RGS4 And Gα 

Finally, we carried out MD simulations of the RGS4-Gα complex with and 

without inhibitor to better understand the role of CCG-50014 in inhibiting this 

protein−protein interaction. For each simulation, we assess the stability of 

interaction between RGS4 and Gα by measuring (a) BSA between the entire 

RGS4 and Gα structures in the complex and (b) total nonbonded interaction 

energy and its components between key residues (see Figure 2.11 A) in the 

RGS4- Gα interface. These metrics, computed from a 20-ns MD equilibration of 

the apo crystal structure of RGS4-Gα complex (PDB code 1AGR), indicate that 

the interface between RGS4 and Gα remains preserved (Figure 2.11 B, red 

trace for BSA in Figure 2.11 D, and the interaction energy traces in Figure 2.11 

E). The interaction energy traces (Figure 2.11 E) suggest that electrostatic 

interactions significantly contribute to the total non-bonded energy. Because the 

conformation of RGS4 used in the inhibitor-bound complex simulation was 

generated via TAMD, we enforced restraints (on all Cα atoms) for the first 20 ns 

of MD simulation to maintain the integrity of RGS4-Gα interface, and thereafter 

continued a 25-ns long free (unrestrained) MD equilibration. We observe that 

although RGS4-Gα interface remains largely intact during the 20-ns long 
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restrained simulation (green trace in the gray background in (Figure 2.11 D), it  

 

Figure 2.11 Snapshots of RGS4-Gα complex in A) crystallographic conformation (PDB code 
1AGR); and conformations at the end of MD equilibrations without (B) and with (C) inhibitor. The 
Cα-atoms of key interacting residues in the RGS4-Gα interface are labeled (panel A), and 
rendered as space-filling spheres in each snapshot. D) Traces of BSA between RGS4 and Gα in 
the complex (green, with inhibitor; and red, without inhibitor). E−F) Traces for nonbonded 
interaction energy and its components computed between residues of RGS4 and Gα (see panel 
A) from MD simulations without (panel E) and with (panel F) inhibitor. (Gray background in panels 
D and F) The first 20 ns of restrained MD simulation with inhibitor. The red trace in panel D is 
deliberately shifted by 20 ns to highlight the fact that simulation was not restrained. 
 
 
gradually becomes unstable on removing the restraints (green trace in the white 

background in Figure 2.11 D and C) due likely to a loss of dominant electrostatic 

interactions in this interface (Figure 2.11 F). These data further suggest that 

binding of CCG-50014 to Cys95 on RGS4 results in allosteric perturbations to 

residues in the RGS4-Gα interface thereby inhibiting this protein−protein 

interaction. 
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Conclusions 

In summary, this study has determined the effect of CCG-50014 (a 

covalent inhibitor) binding to RGS4 as well as on the interaction of RGS4 with the 

Gα-subunit. Enhanced conformational sampling of RGS4 using TAMD 

consistently reveals the existence of open-like conformations of the α5−α6 helix 

pair, which facilitates binding of CCG-50014 to the buried side-chain of Cys95. 

These methods consistently identify a large number of key perturbed residues 

from NMR experiments and MD simulations, especially in the vicinity of the 

inhibitor binding site and in the RGS4-Gα interface. The steric effects of CCG-

50014 interacting with specific residues in α4−α7, particularly with Phe91, 

contribute to the stabilization of the RGS4 open-conformation by restricting the 

closure of the α5−α6 helix pair. This allosteric effect translates into structural 

perturbations downstream in the Gα binding interface of RGS4. Finally, results 

from a simulation of the RGS4-Gα complex in the presence of CCG-50014 

suggest a relatively unstable interface between RGS4 and Gα, unlike the 

simulation of the apo complex where a stable interface is observed. 
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Chapter III 
 

Identification and Biochemical Evaluation of Reversible RGS  
Inhibitors with Cellular Activity 

 

Introduction 

 In order for small molecules to have utility as biological probes or chemical 

starting points from which to develop therapeutics, the compounds must have 

cellular activity. Although moderate potency has been reached with early small 

molecule RGS inhibitors, the lack of cellular activity observed from these 

compounds limited their utility for further development [1-4]. A major component 

of the challenge for cysteine-reactive compounds to be effective in a cellular 

environment is the ability to function in the presence of endogenous reducing 

agents (e.g. glutathione) that can reach cytoplasmic concentrations of several 

millimolar [5]. As a result, the cellular reducing environment can quickly inactivate 

many cysteine-modifying compounds. Despite this challenge, the irreversible 

inhibitor CCG-50014 was identified as the first example of a small molecule 

capable of inhibiting RGS function inside a cell [6].  

In an effort to identify new RGS inhibitors with cellular activity we employed a 

novel cell-based calcium assay with regulated RGS4 expression. This system 

mitigates a major challenge to screening in cellular systems, which is the multiple 

potential sites of action of the compound in the pathway. By screening 

compounds in an inducible RGS4 cell line (Doxycycline treated cells), followed by 



 68 

a counter-screen of the hits in the absence of RGS4 (untreated cells) we could 

enrich for those that are actual RGS4 inhibitors. Using this approach to identify 

new RGS4 inhibitors, we screened >300,000 compounds from NIH small 

molecule repository (MLSMR). This chapter describes the identification process 

and biochemical characterization of several new RGS4 inhibitors with cellular 

activity. Like all previously reported RGS4 inhibitors, these compounds are 

dependent on covalent modification of cysteine residues for activity.  

The findings in this chapter show that identified RGS inhibitors operate 

through a mechanism similar to what has been reported for previous RGS 

inhibitors [1, 3, 6]. Importantly, several of the covalent RGS inhibitors identified 

are reversible and have selectivity for RGS4 over other RGS homologs tested. 

Covalent drugs can provide advantages over nonreactive compounds including 

greater potency and prolonged therapeutic effect [7], though risk of toxicity 

associated with reactive compounds [8] has deterred widespread use. Reversible 

covalent molecules may provide the benefits associated with the covalent 

interaction, but with reduced physiological and toxicological problems resulting 

from a permanent association [9-11]. As a result, the identification of compounds 

with cellular activity that are also significantly reversible provides a step forward 

for the development of RGS inhibitors. Such compounds should provide 

important new tools to dissect the role of RGS4 in biology and as a therapeutic 

target. 

The work described in the chapter is the result of a multi-institutional effort 

involving University of Michigan, Johns Hopkins Ion Channel Screening Center 
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(JHICC), and the Vanderbilt Specialized Chemistry Center. The high-throughput 

screen implementation and analysis was performed at JHICC and chemical 

triage of the hits was assessed at Vanderbilt. I performed the biochemical 

validation and analysis of RGS inhibitors in this chapter with the following 

exceptions: 1) FCPIA validation of the primary screening hits was performed by 

Jian Mie and Levi Blazer. 2) Jian Mei performed the thermal stability 

measurements of RGS4 under my supervision. The contents of this chapter have 

been compiled into a publication in Cellular Signaling [12]. 

 

Materials and methods 

Materials 

Chemicals were purchased from Fisher Scientific (Hampton, NH) or 

Sigma-Aldrich (St. Louis, MO). All materials are at least reagent grade. Avidin-

coated Luminex beads were purchased from Luminex (Austin, TX). Ni-NTA resin 

was purchased from Qiagen (Valencia, CA). Amylose resin was obtained from 

New England Biolabs (Ipswich, MA). Antisera were from Santa Cruz 

Biotechnology (Santa Cruz, CA). 

 

M3-R4 Cell-Line Development And Characterization 

The Invitrogen Flp-In T-Rex HEK 293 cells stably expressing the Tet 

repressor (pcDNA6/TR) and lacZ-Zeocin fusion gene (pFRT/lac-Zeo), containing 

the Flp Recombination Target (FRT) site, were used as host cells. HA-tagged 

RGS4 (C2S) was ligated into a pCDNA5/FRT/TO vector. Flp-In cells were plated 



 70 

in 6-well plates at 400,000 cells/well and co-transfected with 0.4 µg of RGS4-

pCDNA5/FRT/TO and 3.6 µg of pOG44 (expressing Flp recombinase) using 10 

µL Lipofectamine 2000 reagent. Stable integration of the RGS4-containing vector 

occurs between the FRT sites orienting the SV40 promoter and initiation codons 

in frame with the Hygromycin resistance gene, while inactivating the lacZ-Zeocin 

fusion gene, making the stably transfected cells Hygromycin resistant and Zeocin 

sensitive. Two days after transfection, 200 µg/mL Hygromycin was added to the 

wells to select for stably transfected cells. Cell pools were tested for Zeocin 

sensitivity and Doxycycline induced RGS4 expression was verified via Western 

blot. RGS4 expressing cells were then transfected with human M3-muscarinic 

receptor cloned into pCDNA3.1(+) using 4 µg of plasmid and 10 µL of 

Lipofectamine 2000, followed by selection of neomycin resistant clones using 

G418. Single M3-R4 cells were then flow sorted into two 96-well plates. Isolated 

single clones were expanded and tested for carbachol response and an RGS 

effect using the Fluo4 NW calcium signaling assay according to the 

manufacturer’s instructions.  

 

Western Blot For RGS4 Expression 

 Cell transfections and preparation of lysates were performed as described 

previously [13]. In brief, HEK 293T cells maintained in DMEM plus 10% FBS 

were grown to confluence in 6-well plates and transiently transfected with 2.5 µg 

of HA-RGS4 or empty vector (mock) with 4 µL of Lipofectamine 2000 per 

microgram of DNA, followed by incubation for 48 hours. The HEK293-FlpIn-
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TREx/M3R/RGS4 cells were similarly plated in the presence or absence of 1 

µg/mL Doxycycline for 45 hours to induce RGS4 expression. Cell lysates were 

prepared by removing DMEM/FBS medium and rinsing wells with PBS at room 

temperature followed by the addition of 350 µL of lysis buffer plus protease 

inhibitors at 4ºC. Cells were scraped and transferred to a microcentrifuge tube 

and allowed to tumble at 4ºC for 1 hour. Lysates were pelleted at 13,000 rpm for 

15 minutes and the supernatant protein was quantified using Bradford reagent. 

Cell lysates were then run on a 12% SDS-PAGE gel and transferred to 

Immobilon-P transfer membrane (Millipore, Billerica, MA) and probed with either 

rabbit anti-HA at 1:400 and rabbit anti-Actin at 1:500, followed by probing both 

with anti-rabbit HRP secondary at 1:8,000. 

 

High-Throughput Cellular Screen 

High-throughput screening was performed at Johns Hopkins Ion Channel 

Center, Johns Hopkins University, School of Medicine. The Molecular Libraries 

Small Molecule Repository (MLSMR) collection of > 300,000 compounds was 

used to screen for inhibitors of RGS4 using the HEK293-FlpIn-TREx/M3R/RGS4 

cell line described above. Cell plating was achieved using high density cell 

freezes that were diluted to 200,000 cells/mL in DMEM (high glucose with 

glutamine) 10% FBS, 1% Pen/Strep, 15 µg/mL Blasticidin, 400 µg/mL G418, and 

200 µg/mL Hygromycin. RGS4 expression was induced with the addition of 10 

ng/mL Doxycycline. The day before the assay, 50 µl/well of the diluted cells was 

plated in black, clear bottom, poly-D-lysine coated 384-well plates and incubated 
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overnight at 37°C with 5% CO2. On the day of the experiment the cell medium 

was removed and 20 µl/well of Fluo4-AM dye solution was added, followed by a 

30 minute incubation at 37°C. The dye solution was removed followed by 

addition of 20 µL of assay buffer (Hank’s Balanced Salt Solution in HEPES, pH 

7.4) with a second 30 minute incubation at room temperature. The cells were 

then treated with 4 µL of 6x compound in assay buffer (10 µM final) for 20 

minutes at room temperature. Plates were imaged using a Hamamatsu FDSS 

6000 kinetic plate reader and a baseline was recorded for 10s at 1Hz. This was 

followed by injection of 4µl of 7x carbachol (7 nM) and calcium-mediated 

fluorescence was recorded for 100 seconds. The fluorescence ratio (maximum 

minus the minimum intensity divided by the baseline over the 100 seconds) was 

integrated for each well, followed by B-score normalization [14]. Hit selection was 

based on two criteria, that a compound’s initial-fluorescence B-score is within five 

standard deviations of the mean initial fluorescence ratio B-score of the library, 

and the B-score of the compound following carbachol injection is greater than 

three standard deviations above the mean. Compounds that lacked activity in the 

absence of Doxycycline were confirmed in concentration-response format using 

concentrations 1 nM – 30 µM in a 1:3 serial dilution in duplicate.   

 

Protein Expression And Purification 

N-terminally truncated Δ51 RGS4 (residues 52-205) was expressed as a 

single open reading frame with maltose binding protein (MBP) fusion protein N-

terminally fused via a linker region containing a 10x histidine sequence and a 
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tobacco etch virus (TEV) cleavage site. Cysless Δ51 RGS4 RGS4 (cys(-) RGS4), 

described previously [3], was prepared via mutation of the seven cysteines within 

the RGS-box to alanine: Cys 71, 95, 132, 148, 183, 197, 204. RGS19 C-

terminally truncated (ΔC11) and full length RGS16 were both expressed as MBP 

fusions. All MBP fusion proteins were prepared as previously described using the 

pMALC2H10 vector [3]. RGS8 (residues 61-198) was expressed with an N-

terminal 6x his-tag in a pQE80 vector, as described previously [15]. Gαi1 protein 

was expressed with an internal 6x his-tag and Gαo using an N-terminal 6x his-

tag, both using a pQE80 vector, as described previously [16].  

 

Chemical Labeling Of Purified RGS And Gαo Proteins  

RGS proteins were biotinylated on free amines and Gαo was labeled with 

AlexaFluor-532 on free thiols exactly as described before [17]. 

 

Flow Cytometry Protein Interaction Assay (FCPIA) 

FCPIA was performed as previously described with the use of AlexaFluor 

532-tagged Gαo and biotinylated RGS proteins [17]. To assay the compounds in 

concentration-response format, RGS protein was immobilized on streptavidin-

coated Luminex beads in assay buffer containing 50 mM HEPES buffer pH 7.4 

with 100 mM NaCl, 0.1% lubrol and 1% BSA, and treated with compound or 

DMSO for 15 minutes at room temperature in 96-well plates (Genemate T-3082-

1). Gαo-tagged AlexFluor 532 (30 nM final)  was mixed with GDP·AlF4
- and 1 mM 

MgCl, then added to the RGS beads and allowed to incubate at room 
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temperature for 30 minutes before measuring binding. Compounds were tested 

in concentration-response from 100 nM-100 µM. To determine reversibility, RGS-

coated beads were incubated with 100 µM compound or DMSO for 30 minutes at 

room temperature. The beads were then washed three times with assay buffer. 

The beads solution was then split into two groups in which one group was 

retreated with 100 µM compound (to determine maximum inhibition) and the 

other DMSO, then each added to a separate Gαo mixture as before. Binding 

between RGS and G-protein was observed using a Luminex 200 flow cytometer. 

GraphPad Prism software v5.01 was used for the non-linear regression analysis 

of inhibition curves. 

 

Receptor-independent, Steady-state GTPase Accelerating Protein Assay 

In order to measure changes to RGS4 stimulation of G-protein steady-

state GTP hydrolysis, independent of a receptor, an R178M/A326S mutant of 

Gαi1 was utilized [18]. GTP hydrolysis was monitored colorimetrically using a 

malachite green dye that increases absorbance at 630 nm in complex with free 

inorganic phosphate. Malachite green was prepared using the method described 

previously [19]. Compounds were serially diluted in 50 mM HEPES at pH 7.4, 

including 100 mM NaCl, 0.01% Lubrol, 5 mM MgCl, and 10 µg/mL BSA using 

half-log steps between 100 nM-100 µM in 384-well plates (Corning 3680 clear 

flat-bottom plates, Corning, NY). To each well, 200 nM Δ51 RGS4-MBP and 6 

µM Gαi1 (R178M/A326S) was added before initiating the reaction with 300 µM 

GTP in 8 µL final volume. The reaction was incubated at room temperature for 
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120 minutes followed by quench with 10 µL of HCl/Malachite green dye, then 

immediately followed by 2uL of a 32% w/v stock solution of sodium citrate as a 

colorimetric stabilizer. Each plate was incubated at room temperature for 20 

minutes before reading Malachite green absorbance at 630 nm using a Victor II 

plate reader (Perkin Elmer). GraphPad Prism software v5.01 was used for the 

non-linear regression analysis of inhibition curves. 

 

Thermal Stability Measurements 

Thermal stability changes of Gαi1 or Δ51 RGS4 (cleaved from MBP) in the 

presence of compound were determined using a Thermofluor instrument 

(Johnson & Johnson, Langhorne, PA). Each protein (10 µM final) was mixed with 

compound (100 µM final) or DMSO, 1-anilinonaphthalene-8-sulfonic acid (1,8 

ANS) at a final concentration of 200 µM, and overlaid with 5 µL of silicon oil 

before incubating for 15 minutes at room temperature in a black 384-well PCR 

plate (Fisher Scientific, Cat# TF-0384K). Thermal stability was measured 

between 30-90 ˚C increasing the temperature by 1 ˚C with intervening 

fluorescence measurements at 25 ˚C for each point. The melting temperature 

(Tm) was determined by applying a sigmoidal fitting procedure to determine the 

midpoint transition from the folded to unfolded state, using GraphPad Prism 

v5.01. 
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Results  

High-Throughput Cellular Screen For RGS4 Inhibitors 

An M3-R4 cell-line was developed to efficiently identify compounds 

capable of inhibiting RGS4 in a cellular environment. These cells stably express 

human M3-muscarinic receptor with Doxycycline (Dox)-regulated RGS4 

expression. The full length RGS4 expressed in these cells contains a cysteine to 

serine point mutation at position two in the peptide sequence (C2S), which 

abrogates proteosomal degradation to enhance cellular levels of RGS4 [13]. 

Stimulation of the cells with carbachol produces a Gαq-mediated calcium 

transient that is monitored using the calcium-sensitive Fluo4 fluorescent dye. 

Overnight Dox treatment induces RGS4 expression leading to a marked 

suppression of calcium release through GAP activity on Gαq (Figure 3.1 A & B).  

In the screen cells were plated in 384-well plates and stimulated with an 

approximate EC20 concentration of carbachol (1 nM) in order to obtain an optimal 

RGS4-effect. This produced an observed Z-factor of 0.5-0.6 across three 

separate plates (approximately 80 –Dox and 80 +Dox wells on each plate).  

In the primary screen (PubChem AID: 463165), 305,721 compounds were 

tested for their ability to increase carbachol-stimulated calcium transient in 

RGS4-expressing cells. Compounds that produce high background fluorescence 

during the 10 second baseline recording were removed from further analysis. Hit 

identification followed with selection of compounds producing a B-score [14] 

greater than three standard deviations above the mean for the library. This  
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 Compounds 

Tested 
Active/ 

Confirmed 
Percent of 

Tested 
Primary Screen 305,721 1,365 0.45 

Counter Screen: (-)Dox, (+)Carb. 1,365 1,078 79 
Counter Screen: (-)Dox, (-)Carb. 1,078 467 43 

CRC a Confirmation 467 58 12 
Biochemical Confirmation 58 13 22 

Table 3.1 Screening and Biochemical Confirmation Summary 

aConcentration-response curves. 
 

 

resulted in 1,365 compounds capable of enhancing carbachol-stimulated 

fluorescence above the threshold B-score value (Table 3.1). Results from 

representative hits are illustrated in Figure 3.1 C.  

To exclude compounds that increase calcium flux through a mechanism 

unrelated to RGS4 (e.g. positive allosteric modulator of the receptor or through 

interactions with downstream targets in the calcium signaling pathway), the 

primary hits were tested in a counter-screen in the absence of Dox induction. 

Compounds that enhanced the carbachol-stimulated fluorescence more than five 

standard deviations above the mean for the negative controls were discarded at 

this stage (Table 3.1). Furthermore, in order to remove muscarinic receptor 

agonists, the cells were left untreated with Dox and compound alone was 

injected before recording data. Compounds were discarded based on the same 

activity criteria as before. Finally, the remaining hits were confirmed in a 

concentration-response format to evaluate the EC50 concentrations. As a result of 

the primary screen validation steps, a total of 58 compounds were selected on 

the basis of their ability to enhance carbachol-stimulated calcium signaling  
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Figure 3.1 Inhibitors targeting RGS4 enhance carbachol-stimulated calcium signaling in cells 
treated with Doxycycline. A) HEK-FlpIn cells stably transfected with M3-muscarinic receptor 
produce a calcium transient in response to carbachol. Overnight treatment with Doxycycline (Dox) 
markedly suppresses the Gαq-mediated calcium response through induction of RGS4 protein. B) 
HA-tagged RGS4 is minimally detectable in HEK-FlpIn cells prior to treatment with Dox. Probing 
with an anti-HA antibody after a 45 hour treatment with Dox shows a marked increase in RGS4 
protein, producing levels similar to transiently transfected cells (HEK Trans). C) Representative 
primary screening hits that increase the carbachol-stimulated calcium transient towards the –Dox 
control (open squares) by antagonizing RGS4-mediated suppression of Gαq signaling. The 
primary screening hits were tested in duplicate wells at 10 µM (final). Carb, carbachol; Dox, 
Doxycycline; HEK Trans, transiently transfected cells; HEK Mock, mock transfection with empty 
pCDNA vector. 
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specifically in Dox treated cells and in a concentration-dependent manner (Table 

3.1). 

 

Inhibition Of The RGS-Gα Interaction 

Two assays were employed to determine whether the primary screen hits 

directly block the RGS-Gα interaction. The first, a multiplexed Flow Cytometry 

Protein Interaction Assay (FCPIA) monitors the equilibrium association between 

RGS-coupled Luminex beads and GDP-AlF4
--activated Gαo [17]. Each of the 58 

compounds were reordered and dissolved in DMSO prior to testing in multiplexed 

FCPIA, which initially tested activity against MBP-tagged RGS4, RGS4 lacking 

cysteines (-Cys), and RGS8.  The multiplexing is achieved by coupling each 

protein to individually identifiable bead sets and then adding the bead sets to the 

same well with fluorescently-labeled Gαo. Thirteen compounds inhibited RGS4-

Gαo binding with IC50 values less than 100 µM, though most were less than 15 

µM (Figure 3.2 A). Inhibition of Gαo binding to RGS4 (-Cys) or RGS8 occurred 

with only two of the 58 compounds tested (CID: 11957531 and 10069059, Table 

3.2), which are structurally similar trihydroxy apomorphine derivatives (Appendix 

VII). The results of the multiplexed FCPIA suggest that, with the exception of the 

apomorphine compounds, all of the active inhibitors covalently modify cysteine 

residues on RGS4. This has been the common mechanism for all small molecule 

RGS4 inhibitors to date [1, 3, 6]. 
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Figure 3.2 Activity summary of the compounds tested on RGS4 in FCPIA and SS-GAP. All 58 
primary screen hits were assayed for an ability to block RGS4-Gαo equilibrium binding in FCPIA 
and inhibit RGS4-stimulation of Gαi1 nucleotide hydrolysis in SS-GAP. Compounds with an IC50 
value less than 100 µM were selected for further analysis, resulting in 27 compounds meeting this 
criterion in SS-GAP and 13 in FCPIA. All 13 compounds active in (A) FCPIA were also active in 
(B) SS-GAP. The IC50 values range from approximately 2-55 µM in both assays. CID 1472216 is 
the most potent RGS4 inhibitor tested, IC50= 1.6±0.4 µM in SS-GAP and 1.7±0.5 µM in FCPIA. 
The data are the mean ± S.E.M. of three independent experiments in duplicate wells. SS-GAP, 
steady-state GTPase acceleration protein assay; FCPIA, flow cytometry protein interaction assay; 
pIC50, log IC50.   
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CID RGS4 RGS4 

(-Cys) 
RGS7 RGS8 RGS16 RGS19 

1911669 9.9 ± 3.4 NAb  27.1 ± 7.2 NA  86.1 ± 3.1 17.1 ± 0.5 
5428579 8.2 ± 4.4 NA  10.8 ± 4.1 NA  20.1 ± 6.0 5.5 ± 0.7 
1905297 27.9 ± 13.9 NA  NA  NA  NA  NA  
6010977 39.5 ± 13.6 NA  NA  NA  NA  NA  
6018993 11.3 ± 4.5 NA  NA  NA  NA  23.5 ± 5.8 
6383479 8.0 ± 5.3 NA  NA  NA  NA  NA  
1389577 18.3 ± 8.4 NA  29.6 ± 2.1 NA  NA  19.4 ± 2.1 
6866727 3.4 ± 2.2 NA  NA  NA  NA  NA  

52210 21.8 ± 10.6 NA  NA  NA  NA  NA  
1472216 1.7 ± 0.5 NA  12.7 ± 4.2 NA  NA  6.7 ± 1.6 

11957531 6.9 ± 1.1 27.6 ± 8.4 7.1 ± 1.1 22.4 ± 4.2 7.3 ± 1.1 8.1 ± 1.4 
10069059 7.5 ± 4.0 81.4 ± 22.5 23.1 ± 1.4 24.8 ± 13.2 16.5 ± 5.1 19.6 ± 4.6 
1777233 15.3 ± 0.6 NA  NA  NA  76.0 ± 13.1 29.9 ± 2.9 

Table 3.2 RGS Specificity (FCPIA)a 
aFlow cytometry protein interaction assay IC50 in micromolar; bNA, not active: compounds with 
IC50 greater than 100 µM, or with inhibition less than 50% at 100 µM. Reversible inhibitors are 
bolded. 
 

 

In order to test the compounds in a system that more closely resembles 

the function of RGS4 inside the cell, all 58 compounds were tested in an assay 

that monitors RGS4 stimulation of steady-state GTP hydrolysis by Gα (SS-GAP). 

The reaction was performed in the absence of a receptor using a Gαi1 mutant 

(R178M, A326S) capable of spontaneous nucleotide exchange [18]. Using this 

simplified system it is possible to rapidly evaluate large compound sets in 384-

well concentration-response format using malachite green dye to quantify GTP 

hydrolysis [19]. In contrast to FCPIA, 27 of the 58 compounds produced IC50  

 

 

 



 82 

  

Table 3.3 PubChem Bioactivity Analysis for RGS4 Inhibitors 

aBioactivity is the percent active of both active and inactive biological test results in PubChem. 
bNone reported. Reversible inhibitors bolded 
 

 

values less than 100 µM. All 13 compounds active in FCPIA were also active in 

SS-GAP (Figure 3.2 B and Appendix VIII).  

Although there are more compounds active in SS-GAP, the majority are 

weak inhibitors with IC50 values greater than 30 µM. The more transient 

association of RGS4 with Gα during nucleotide turnover in SS-GAP may be more 

sensitive to inhibitors compared to the equilibrium association of RGS4 with a 

permanently activated Gαo protein in FCPIA. A second possibility is that the 

greater amount of bovine serum albumin required for FCPIA (1% w/v in FCPIA 

vs. 0.01% w/v in SS-GAP) may bind some of the compounds and reduce their 

effective concentrations. The 13 compounds that are active in both assays were 

relatively consistent in potency between the two assays. One compound in 

 
 Total Number of Targets  

CID Active Inactive Inconclusive Unspecified Bioactivitya 
1911669 69 526 31 1 13.1% 
5428579 30 560 27 2 5.4% 
1905297 30 542 28 4 5.5% 
6010977 46 537 34 1 8.6% 
6018993 87 429 28 3 20.3% 
6383479 18 426 14 1 4.2% 
1389577 35 542 30 1 6.5% 
6866727 68 500 33 2 13.6% 

52210 15 502 17 1 3.0% 
1472216 185 547 26 9 33.8% 

11957531 47 357 10 8 13.2% 
10069059 2 11 NRb NR 18.2% 
1777233 25 396 22 1 6.3% 
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particular stood out with high potency in both assays (CID: 1472216). This higher 

potency could result from being significantly more reactive than most of the 

compounds tested, which is consistent with the level of promiscuity reported for 

this compound in PubChem (active in 187 bioassays, Table 3.3). Further 

characterization focused on the thirteen compounds active in both assays. 

 

Reversibility Of RGS Inhibitors 

 Since eleven out of thirteen compounds show a loss of activity against 

RGS4 (-Cys), it is likely the compounds work through a covalent mechanism. 

Reversibility of the compounds was tested using FCPIA since the compounds 

can be easily removed from the bead-coupled protein by pelleting and re-

suspending the beads three times in fresh buffer. Less than half of the 

compounds showed significant reversibility, although four compounds produced 

greater than 85% inhibition at 100 µM, yet were more than 50% reversible within 

the ten minute washing period (CID: 5428579, 1905297, 1389577, & 1777233 in 

Figure 3.3). Interestingly, the two apomorphine compounds that showed activity 

on RGS4 (-Cys) were not reversible in this assay. The products formed through 

autoxidation of hydroxy apomorphine derivatives are highly reactive [20], thus 

inhibition of both RGS and Gα by these two compounds would explain this 

observation, but that has not been tested.    
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Figure 3.3 Determination of RGS4 inhibitor reversibility using FCPIA. RGS4-labeled Luminex 
beads were treated with 100 µM compound or DMSO for 30 minutes at room temperature before 
washing the beads three times. The beads were then split in two sets with DMSO or 100 µM 
compound added back to the no wash set (open bar). Both treated and washed RGS4-coupled 
beads were tested for inhibition of Gαo binding using FCPIA. Statistics: One-Way ANOVA with 
Bonferroni’s multiple comparisons *, P < 0.05; **, P < 0.01; ***, P < 0.001. Data are the result of 
three independent experiments ± S.E.M. 
 

Selectivity Of Reversible RGS Inhibitors 

Although the four reversible compounds do not appear to functionally 

modulate the G-protein since there is no effect on RGS8 or RGS4 (-Cys) binding 

in FCPIA, their binding to both RGS4 and Gα was assessed using a thermal 

stability shift assay. This assay provides a measure of direct protein-ligand 
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interactions by monitoring changes in thermal stability in the presence of 

compound. The melting temperature of each protein was determined with and 

without 100 µM compound using DMSO as control. Consistent with a mechanism 

of covalent modification [21], all four compounds significantly destabilize RGS4 

by as much as 13 ˚C. In contrast, none of the compounds tested significantly 

alter Gα thermal melting temperature (Figure 3.4).  

Selectivity was also determined using multiplexed FCPIA with a panel of 

RGS proteins (RGS7, RGS16, & RGS19). The four reversible RGS inhibitors 

showed variable activity, with 1905297 being relatively selective for RGS4 

(Figure 3.5). RGS19 appears to be highly sensitive to cysteine modification as it 

is consistently inhibited by most of the compounds tested (Table 3.2). Even 

though RGS4 and RGS19 show nearly comparable sensitivity to most of the 

inhibitors, other closely related RGS4 homologs (i.e. RGS8 and RGS16) remain 

relatively insensitive at these concentrations. It is also notable that several 

compounds (including 5428579 and 1389577) showed activity towards RGS7, 

which lacks cysteine residues. It is unclear from these data whether the 

compounds acting on RGS7 bind to a defined pocket, or are reactive towards 

other groups besides thiols.  

 

Inhibition Of RGS4 Activity In M3-R4 Cells 

 The challenge facing thiol-reactive compounds to permeate the cell 

membrane and overcome the reductive cytoplasmic environment has limited the 
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number of cell-active RGS inhibitors. As a result, this system monitoring RGS4 

activity within intact cells was employed to identify novel RGS inhibitors. The  

 

 

Figure 3.4 The reversible RGS4 inhibitors alter the thermal melting temperature of RGS4, but not 
Gα. RGS4 and Gαi1 were treated with 100µM compound or DMSO for 30 minutes prior to 
measuring thermal stability changes of each protein across a temperature gradient of 30-90˚C. 
Melting was monitored as an increase in 1,8 ANS fluorescence using a Thermofluor instrument. 
Data are plotted as temperature change relative to the DMSO control for each protein. None of 
the compounds significantly changed the thermal stability of Gαi1 compared to DMSO control. 
Statistics: One-Way ANOVA with Bonferroni’s multiple comparisons *, P < 0.05; **, P < 0.01; ***, 
P < 0.001. Data are the result of three independent experiments ± S.E.M. 
 

thirteen RGS inhibitors identified in this screen antagonize RGS4 cellular activity 

at multiple concentrations, and this is illustrated specifically for the four reversible 

RGS inhibitors (Figure 3.6). The cellular EC50 concentrations (Table 3.4) are 

very close to the values observed using FCPIA and SS-GAP, which suggests the 

mechanism of disrupting the RGS-Gα interaction is the same inside the cells.  
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Figure 3.5 Compounds 1905297 and 1777233 show selectivity for RGS4 over four other RGS 
homologs tested in FCPIA. (A) Compound 1905297 is at least 3.6-fold selective for RGS4 over all 
other RGS proteins tested. (B) Compound 1777233 is slightly more potent towards RGS4, 
although there is only a 2-fold potency difference from RGS19 and 5-fold from RGS16. (C) & (D) 
Both 5428579 and 1389577 have approximately equal potency towards RGS4 and RGS19. In 
addition, activity was observed against RGS7 and RGS16 for 5428579 and RGS7 for 1389577. 
Compounds were tested from 100 nM to 100 µM and data are the mean of three independent 
experiments. 
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Table 3.4 Activity Summary of Reversible Compounds  
aSteady-state GTPase Activating Protein Assay; bFlow cytometry protein interaction assay. 
 

 

 

 

 

 

CID 
 

FCPIA 
IC50 (µM) 

SS-GAPa 
IC50 (µM) 

Cellular 
Activity 
IC50 (µM) 

Specificity (FCPIA)b 

 
5428579 

 

8.2 55.8 35.5 R19 ≈ R4 > R7 > R16 
> R8 

1905297 

 

27.9 35.6 23.8 R4 > (R7, R8, R16, 
R19) 

1389577 

 

18.3 10.9 15.0 R4 ≈ R19 > R7 > (R8, 
R16) 

 
1777233 

 

15.3 9.4 20.0 R4 > R19 > R16 > 
(R7, R8) 
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Figure 3.6 Cellular activity of the four reversible RGS4 inhibitors. (A) 1905297 increased the 
calcium response over Dox-treated control cells at 30 and 10 µM, although effects at lower 
concentrations may be mitigated as a result of lower overall carbachol response. (B)–(D) The 
carbachol response is increased over Dox-treated control cells at 1 µM compound and above. 
Data shown are representative responses performed in duplicate wells. 
 

Discussion  

 Although therapeutics targeting GPCRs have been remarkably successful, 

there remains a critical need for improved therapeutic options to selectively 

modulate GPCR signaling. A promising new approach towards this goal is to 

selectively modulate mechanisms that regulate these receptors. Among these, 

RGS proteins are recognized as important targets for their role in negatively 
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regulating the amplitude and duration of GPCR output. The varying tissue 

expression profiles and receptor coupling efficiencies suggest RGS modulation 

may provide therapeutic specificity towards individual receptors, or receptor 

populations. This effect has been shown using genetic models of RGS 

“insensitivity” with knock-in mice that carry a Gαi2 (G184S) mutant allele in place 

of the WT gene. This mutation renders Gαi2 incapable of binding to any RGS 

protein [22]. Animals carrying this knock-in mutation show potentiated responses 

that are specific to 5-HT1A-mediated anti-depressant behavior [23], with no 

significant increase in the hypothermic response that is also known to be 

mediated through these receptors [24]. 

Targeting PPIs, like the RGS-Gα interaction, is a significant challenge due 

to the structural topology generally associated with signal transduction proteins. 

In particular, the RGS-Gα interface covers a surface area of 1100 Å2 [25] without 

well-defined pockets into which small molecules can be targeted to block the 

interaction. The absence of any non-covalent small molecules capable of acting 

on RGS proteins is one potential consequence of the relatively featureless 

structural surface. In addition, some RGS homologs show relatively high 

sensitivity to thiol-reactive compounds, in particular RGS4 and RGS19. As a 

result, thiol-reactive compounds have predominated as RGS inhibitors. The 

challenge of blocking RGS function within the reducing cellular environment has 

likely limited the number of RGS inhibitors thus far identified.  

A cell-based high-throughput screen was implemented to directly identify 

cell-active RGS inhibitors. This assay takes advantage of the strong inhibitory 
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effects of RGS4 on Gαq signaling, which substantially suppresses the calcium 

fluorescence readout show in Figure 3.1. A critical component of the assay is the 

Dox-inducible RGS4 expression, which provides an efficient means of eliminating 

compounds targeting other parts of the calcium signaling pathway. Additional 

steps were taken to rule out muscarinic receptor agonists, positive allosteric 

modulators, or partial agonists in order to ensure calcium signaling effects were 

mediated through antagonism of RGS4. As a result of these triage steps, 

approximately half of the 58 compounds evaluated here were able to directly 

block the RGS-Gα interaction in a biochemical assay (SS-GAP). For reasons 

outlined above, there were fewer active compounds in FCPIA, but there was 

direct overlap between the two assays.  

It remains possible the compounds found inactive in FCPIA and SS-GAP 

could still inhibit RGS4 effects in the cell by modulating localization to receptor or 

G-protein pools at the membrane. The N-terminal 33 residues of RGS4 contain 

an amphipathic helical domain that plays an important role in trafficking [26] and 

localization to both the membrane and specific receptors [27, 28]. A compound 

that binds to this critical region could inhibit RGS4 localization to receptor 

complexes at the membrane, thereby preventing or reducing association of 

RGS4 with Gαq. In FCPIA and SS-GAP the proteins are freely diffusible, so 

compounds that only affect localization would not have activity. Furthermore, the 

Δ51 RGS4 protein used in these assays lacks the N-terminal localization domain. 

In this report we have characterized the compounds that specifically block the 
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RGS-Gα interaction, which provide the advantage of not being limited to a 

specific receptor or receptor-scaffolding complex. 

 Like all previously reported small molecule RGS inhibitors, most 

compounds in this study lack activity towards RGS4 (-Cys). This suggests that 

the mechanism of inhibition is, at least in part, due to a covalent interaction with 

cysteine sidechains on the RGS proteins. The thermal destabilization of RGS4 in 

the presence of the four reversible inhibitors (Figure 3.4) is also consistent with a 

covalent mechanism of action, and has been observed with all previous RGS4 

inhibitors [1, 3, 6]. Despite the reactive mechanism, the compounds are specific 

for RGS4 in the thermofluor assay as they do not significantly change the Gα 

melting temperature. A reaction with Gα cannot be completely ruled out as an 

interaction with a solvent exposed and functionally isolated cysteine sidechain is 

still possible without significantly altering melting temperature. The lack of an 

effect on the folding"unfolding transition energy of Gα strongly suggests there is 

no functional influence. Furthermore, the specificity for RGS is also corroborated 

by the selectivity for certain RGS homologs. If the compounds were able to 

modulate Gα function, it is unlikely specificity would be observed (Table 3.2 and 

Table 3.4).  

 The biggest hurdle associated with the use of covalent inhibitors as 

therapeutics or even biological probes is the concern over the specificity and 

toxicity. As a therapeutic, irreversible compounds or metabolites sometimes form 

the basis of immune-related adverse drug reactions [8]. In a research setting 

toxicity can also obscure interpretation of biological data. These problems can 
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often be mitigated if the covalent compounds are reversible over a biologically 

relevant time scale [9, 11]. Reversibility of the RGS inhibitors was determined 

using FCPIA, which identified four compounds with both strong inhibition and 

significant reversibility over a 10 minute washing period. Additionally, these four 

compounds were some of the least promiscuous [29] based on biological activity 

reported in the PubChem project (pubchem.ncbi.nlm.nih.gov), which is compiled 

in Table 3.3. 

 

Conclusions 

This report details the identification and mechanistic evaluation of several 

new reversible, cell active RGS inhibitors. Thirteen compounds were identified 

that consistently inhibit the RGS-Gα interaction, although most lost activity 

towards an RGS4 mutant lacking cysteine residues. This is a common 

characteristic among all RGS4 small molecule inhibitors, and most cysteine-

reactive compounds in general. Despite the apparent reactivity, many of the 

inhibitors show specificity for RGS4 over other RGS homologs tested. We further 

determined that four compounds are significantly reversible, which is an 

important characteristic both as a therapeutic or pharmacological tool. The 

significance of this study is that now a greater number of pharmacological tools 

are available to disseminate the roles of RGS4 in biology and disease. Recent 

publications have already begun using RGS inhibitors previously described, but 

the lack of activity in intact cells has no doubt limited the use of most RGS 

inhibitors currently available. Finally, as a part of the identification process we 
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have also described a novel cellular signaling assay that provides an efficient 

mechanism to rapidly evaluate large numbers of compounds for activity against 

RGS4 (or possibly other RGS proteins) within the context of the calcium signaling 

cascade. 
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Chapter IV  
 

Mapping The Interaction of Inositol Hexakisphosphate  
on RGS4  

 
 

 
Introduction 

 The previous chapters contribute a greater understanding of the molecular 

mechanism of cysteine-directed inhibitors of RGS proteins. In this chapter I 

explore a non-covalent interaction on RGS4 based on a physiologic allosteric 

mechanism. Targeting allosteric sites on RGS4 may provide several advantages 

towards the goal of identifying non-covalent small molecule RGS modulators. In 

particular, the largest surface pocket exists on a surface that is proposed to be 

involved in allosteric regulation of RGS4, termed the B-site (see Figure 1.3) [1]. 

The size of the pocket is important for accommodating a compound with a 

sufficient number of specific contacts to provide high affinity. As discussed in 

Chapter I, the B-site is the putative binding site for physiological regulators of 

RGS4, including Ca2+/Calmodulin and PIP3 [2, 3]. Inhibition of RGS4 GAP activity 

occurs in the presence of PIP3 in vitro [3-5]. In light of this, mapping the 

molecular details of acidic phospholipid interactions with RGS4 will elucidate the 

exact allosteric sites of interaction. This would provide novel insight into the most 

appropriate physical areas for structure-based design strategies for new 

compounds. Additionally, uncovering these molecular details may also 
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provide a better understanding of how non-covalent compounds inhibit GAP 

activity.  

 In order to understand the interactions of RGS4 with acidic phospholipids, 

I employed a highly soluble inositol phosphate derivative (inositol 

hexakisphosphate, IP6) (see Figure 4.1). This compound contains similar poly-

phosphate charge density as PIP3 across one side of the myo-inositol ring, and 

has been used in biophysical studies of acidic phospholipid interactions for other 

proteins [6, 7]. IP6 itself is present in animal cells at concentrations up to 0.1 

millimolar [8], and has been shown to be a regulator of cell cycle progression and 

neurotransmitter release in vitro [8, 9].  

 The work in this chapter presents direct evidence of inositol phosphate 

binding to RGS4 using solution NMR. The binding interaction of IP6 on RGS4 is 

mapped through the chemical shift perturbations produced in the NMR-HSQC 

titration. The structural effects of IP6 on RGS4 are also assessed using 

Thermofluor experiments. This study identifies residues involved in the 

interaction. Characterization at this resolution using PIP3 has not been possible 

due to the difficulty of using micelles in biophysical measurements. As a result, 

this study provides novel insight into the sites on RGS4 interacting with 

endogenous regulators, which defines sites for future structure-based studies to 

identify novel small molecule modulators.  

 I performed all of the work described in this chapter, and this chapter is 

currently in preparation to be submitted for publication.  
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Materials and Methods 

 All reagents are obtained through Fisher Scientific (Pittsburgh, PA) or 

Sigma (St. Louis, MO), unless otherwise specified. γ[32P]GTP (10 mCi/mL) was 

obtained from Perkin Elmer Life and Analytical Sciences, (Boston, MA) and was 

isotopically diluted before use. Amylose resin was purchased from New England 

Biolabs (Ipswich, MA). Phytic acid (IP6) sodium salt hydrate was purchased from 

Sigma-Aldrich. [15N]-(NH4)2SO4 was purchased from Cambridge Isotope 

Laboratories (Andover, MA). 

 

Protein Expression And Purification 

Δ51 RGS4 and 15N-Δ51 RGS4 were expressed in E. coli as a fusion 

construct with an N-terminal maltose-binding protein (MBP) containing a Tabacco 

Etch Virus (TEV) protease cleavage site and a 10x poly-Histidine tag, using a 

pMalC2H10 vector. The details of expression and purification were followed 

exactly as described previously [10, 11]. The resulting RGS4 protein is nearly 

identical in sequence to the construct previously used for NMR spectral 

assignment and solution structure determination [12, 13]. 

 

NMR Spectroscopy 

 1H-15N-HSQC experiments were used to monitor IP6-induced chemical 

shift perturbations (CSP) of 15N-RGS4 (Δ51) peaks in 50 mM MES (2-(N-

morpholino)ethanesulfonic acid) buffer at pH 6.0 and 50 mM NaCl. Experiments 

were conducted at 25°C using a Bruker Avance III 600 MHz spectrometer with a 
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cryogenically cooled 3 mm sample probe. IP6 was prepared as a 10X stock in the 

NMR buffer and adjusted to pH 6.0. NMR samples were prepared with 0.1 mM 

15N-labeled RGS4 in the above buffer plus 7% (v/v) D2O and increasing 

concentrations of IP6. All RGS4-IP6 HSQC spectra were compared to a reference 

spectrum of a sample containing RGS4 alone. Chemical shift perturbations were 

calculated using the following equation:  

 

𝐶𝑆𝑃 =   
∆𝛿 𝑁!"

5

!

+    ∆𝛿 𝐻! !   

 

Thermal Stability Shift Assay  

RGS4 (Δ51) at a concentration of 10 µM final was mixed in a buffer 

containing 50 mM HEPES, pH 7.4 and 100 mM NaCl. RGS4 was incubated in a 

black 384-well PCR microtiter plate (ThermoFisher catalog no. TF-0384/K) and in 

the presence of increasing concentration of IP6  (0.1 mM to 10 mM) for 20 

minutes at room temperature, or buffer as control. 1-anilinonaphthalene-8-

sulfonic acid (ANS) was added to each well at a final concentration of 100 µM, 

and all wells were overlaid with 5 µl silicon oil before measuring changes in 

thermostability. Fluorescence image collection was taken at 25°C for each point 

between denaturation steps, which ramped up 1° between 30°-90°C using a 

ThermoFluor Instrument (Johnson & Johnson, Langhorne, PA). Melting 

temperature was calculated using the Thermofluor+ software and plotted using 

Graphpad Prism 4.0.  
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32P Steady-State GTPase Activating Protein Assay (SS-GAP)  

Hydrolysis of [γ-32P]-GTP (Perkin Elmer) was measured under receptor-

independent steady-state conditions by employing a mutant Gαi1 (R178M, 

A326S) [1]. The mutations produce spontaneous release of GDP, making GTP 

hydrolysis the rate-limiting step [1]. The steady-state GAP assay was performed 

in 96-well PCR plates in reaction buffer comprising 50 mM Hepes, 100 mM NaCl, 

0.01% Lubrol, 5 mM MgCl2 at pH 7.4. IP6 was added to RGS4 at concentrations 

ranging from 0.5 mM to 10 mM (final). The reaction was initiated for each row of 

the plate at one minute intervals with a 4x solution of reaction buffer containing 

32 µM GTP and 4 nM [γ- 32P]-GTP to act as a tracer, resulting in a final volume 

of 40 µl. The reaction was stopped after 100 minutes by quenching 30 µl of the 

reaction (one minute /row) into 300 µl of ice-cold 20 mM sodium phosphate, pH 

2.0 containing a 5% w/v slurry of activated charcoal in a 96-deepwell 1000 µl 

plate (Eppendorff). The plate was then centrifuged for 15 minutes at 1100 x g at 

a temperature of 4 °C, so 50 µl of the charcoal-free supernatant (containing only 

free inorganic phosphate) could be transferred to a Perkin Elmer 96-well 

OptiPlate. To each well, 200 µl of Microscint 40 fluid was added and allowed to 

thoroughly mix overnight at room temperature.  The radiolabel activity (counts 

per minute) from [32P]-inorganic phosphate was recorded using a Packard 

TopCount NXT plate reader. RGS4 GAP activity was determined by as the 

number of picomoles of GTP hydrolyzed in 100 minutes. The data were analyzed 

using Graphpad Prism v5.01. 
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In Silico Docking Of IP6 Onto The RGS4 Structure 

 
The PDB file of RGS4 (code: 1agr) was prepared for docking using the 

Chimera.33 DockPrep tool (UCSF) [14]. This tool was used to add hydrogen 

atoms and remove water molecules from the structure. Partial charges on the 

structure were assigned using AMBER99 force field. The three-dimensional 

structure of IP6 was extracted as a .mol file from PDB 2xam. Automated flexible 

ligand docking was performed using a web-based docking server: SwissDock 

(http://www.swissdock.ch/), which is based on EADock DSS.34 [15]. The 

coordinate files of RGS4 and IP6 were docked under the “Accurate” setting, 

which provides the most exhaustive sampling of binding modes. The docking 

was unbiased in the sense that IP6 was allowed to explore the entire surface of 

RGS4 in the simulation. The output clusters were ranked according to binding 

free energy. 

 
Results 

 RGS4 functions as a regulator of calcium signaling through GAP-mediated 

inhibition of Gαq activity [16]. In vitro experiments show that an increased fraction 

of PIP3 in PC:PIP3 micelles is able to antagonize GAP activity towards Gαi [3], 

and is expected to also inhibit RGS4 activity towards Gαq. This action of PIP3 is 

proposed to limit the activity of RGS4 in a low-calcium basal state. Activation of 

intracellular calcium release is suggested to reverse PIP3 inhibition of RGS4 by 

activating calmodulin, leading to negative feedback inhibition of calcium signaling 

[17]. Interestingly, lipid co-sedimentation assays show that RGS4 binding is  



 103 

 

Figure 4.1 Structural comparison of IP6 and PIP3. A) IP6 is a close structural analog to the 
hydrophilic groups found on acid phospholipids (e.g. PIP3). B) The hydrophilic portion of PIP3 
contains phosphate groups situated at positions 3, 4, and 5 on the six membered ring, which 
results in one side of the molecule containing similar anionic charge density as IP6. 
 
 

specific to PIP3 and not other phospholipid derivatives(e.g. PI(3,4)P2 and 

PI(4,5)P2) [2]. This suggests that the charge density resulting from phosphates at 

positions 3, 4, and 5, as in PIP3, is critical for the interaction. As a result, IP6 

should be able to interact with RGS4 in a manner similar to that of PIP3, given 

the similarity in structure and charge density (Figure 4.1).  

 

IP6 Binding Increases RGS4 Thermal Stability at High Concentrations 

 Since small molecules can influence the thermal stability of a protein 

through direct binding interactions [18, 19], a Thermofluor assay was used to 

determine whether IP6 binds to RGS4. Previous studies show that PIP3 is 

capable of interacting with a truncated version of RGS4 containing the RGS 

homology domain plus the C-terminus (residues 52-205) [2, 3]. This construct  
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Figure 4.2. Thermal stability changes of RGS4 as a function of IP6 concentration. A) Changes to 
RGS4 thermal stability in response to IP6. Low IP6 concentrations down to 0.5 mM show a 
downward trend in RGS4 thermal stability by as much as -1.7 °C, while RGS4 is stabilized at 
concentrations of 2.5 mM and above, to a maximum of 3.4 °C at 10 mM. B) Representative 
thermal melting curves from a single experiment showing changes in the melting temperature 
(Tm) of RGS4 in control buffer (Red) compared to IP6-treated RGS4. Statistics: One-Way ANOVA 
with Bonferroni’s multiple comparisons **, P < 0.01. Data are the result of three independent 
experiments ± S.E.M. 
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was used for all of the biophysical studies due to better expression and solubility 

[11]. At the lowest concentrations of IP6 tested (1 mM and below) there is a trend 

towards a decrease in thermal stability of RGS4 by as much as -1.7 °C, although 

these points are not statistically significant compared to the buffer control in the 

ANOVA analysis. In contrast, higher concentrations of IP6 increase the thermal 

stability of RGS4 by as much as 3.4 °C at 10 mM (p < 0.01; Figure 4.2). The 

possibility of IP6 affecting the fluorescence of the 1,8 ANS dye was ruled out by 

concurrently running the experiment with ANS and IP6 alone. The significant 

increase in thermal stability observed at 10 mM shows that IP6 is interacting with 

RGS4.  

 

Mapping IP6-induced Chemical Shift Perturbations  

 1H-15N-HSQC NMR experiments were used to assess changes to the 

chemical environment of backbone amide cross peaks of RGS4 that result from 

interactions with IP6. Every residue in RGS4, with the exception of proline, 

provides a cross-peak in the HSQC spectrum. The specific binding sites of 

ligands on a protein can be determined from the changes in the chemical shift of 

the HSQC cross peaks when spectra in the presence and absence of the ligand 

binding partner are compared in an overlay [24]. The chemical shift perturbations 

(CSPs) of RGS4 in the presence (red) and absence (black) of IP6 are shown for 

saturating concentrations of IP6  (Figure 4.3). In this experiment, side chain 

interactions with IP6 are not directly detectable, so only resonances from  
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Figure 4.3. 1H-15N HSQC overlay of 15N-labeled RGS4 (0.1 mM) in the presence and absence of 
IP6. A) Spectra of 15N-RGS4 (residues 52-205) were collected at pH 6.0 at 25°C, in the presence 
(Red) and absence (Black) of IP6 at a concentration of 10 mM. The solution containing IP6 was 
buffer matched to the reference sample. B) Zoomed view of the boxed region in panel A. 
 

backbone amides are being detected and analyzed in this plot. The presence of 

peak shifts across the spectrum validates that IP6 is binding to RGS4. 
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In order to determine the residues involved in the interaction, RGS4 was 

titrated with IP6 using concentrations from 0.25 mM to 10 mM. Changes in 

chemical shift for each cross peak were followed as a function of IP6 

concentration, which allowed accurate determination of the final position of each 

cross peak at saturation. A plot of CSPs as a function of RGS4 residue number 

shows that residues that undergo large CSPs upon IP6 binding cluster to four 

areas (Figure 4.4 A). These large CSPs, denoted as greater than one standard 

deviation above the average CSP of all residues (solid line, Figure 4.4 A), occur 

along the C-terminal portion of α-helix 4 and the N-terminal portion of α-helix 5. 

Two other clusters of perturbations are observed along the loop connecting α-

helix 6 & 7, and one C-terminal residue in the unstructured portion of RGS4.  

The CSPs are mapped onto the backbone structure of RGS4 (red > 

average + 1σ, solid line; average + 1σ > orange > average, dotted line) (Figure 

4.4 B). One cluster of highly perturbed residues occurs along parts of α-helices 4 

& 5, with the most perturbed residues centered around Lys110. This creates a 

hot spot of CSPs ranging from Ser103 to Lys113. Perturbations also appear on 

the portion of α-helix 4 that faces helix 5, including residues Ser94 and Glu97. A 

second cluster of CSPs occurs on the C-terminus of α-helix 4, particularly 

residues Tyr98 and Lys 99/100. Part of this cluster is formed through adjacent 

residues in the flexible loop connecting α-helix 6 & 7, involving residues Thr145 

and Ile146. It is unclear why perturbations are observed in the C-terminal 

unstructured portion of RGS4, but only one residue (Gly190) shows a strong 

perturbation suggesting this is not a binding site for IP6. 
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Figure 4.4 Chemical shift perturbations of 15N-RGS4 HSQC spectra in the presence of IP6. A) 
Chemical shift perturbations (CSPs) are plotted as a function of RGS4 residue number (SC1 and 
SC2 refer to indole N-H resonances from the two tryptophan side chains). CSP calculation was 
determined based upon the equation provided in materials and methods. CSPs strongly cluster to 
two sites on the RGS4 backbone, including a cluster at the C-terminal portion of α-helix 4 and N-
term of α-helix 7, and a cluster on α-helix 5. B) CSPs are highlighted on the RGS4 backbone (red 
> average + 1σ, solid line; average + 1σ > orange > average, dotted line; grey are overlapping 
residues, magenta indicates proline residues). Structures are from PDB: 1agr. 
 

Quantification Of IP6 Binding Affinity 

 Binding of IP6 to RGS4 appears to be in fast exchange relative to the NMR 

time-scale based on the linear trajectory of CSPs as a function of IP6 
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concentration. All of the CSPs observed in the presence of IP6 are fully saturated 

at 10 mM. The broad range of CSPs across α-helices 4, 5, and parts of α-helix 7 

suggest the possibility of two binding sites for IP6 on RGS4. The N-terminal 

portion of α-helices 5 and parts of α-helix 4 that face α-helix 5 (e.g. residues 

Ser94 and Glu97), appear to form one binding site since large CSPs are 

clustered broadly from Ser103 to Lys113 (vide supra). The second binding site 

might involve an adjacent structural region based on a set of CSPs that are 

clustered around Lys99/100, as well as a loop region connecting α-helices 6 and 

7.  

To determine whether IP6 binds to two distinct regions of RGS4, saturation 

curves were fit using residues from the two putative binding sites. Disassociation 

constants were determined by fitting IP6 concentration-dependent CSPs from 

residues at α-helix 5 as one independent site (Figure 4.5 A) and α-helix 4 and 7 

for the second putative site (Figure 4.5 B). The result from fitting the binding 

isotherms shows similar affinities of IP6 for the two sites, Kd = 0.35 ± 0.27 mM for 

α-helix 5 CSPs and 0.59 ± 0.34 mM for α-helix 4 and 7. The overlapping affinities 

that are observed from fitting saturation curves for each cluster of CSPs are 

consistent with a single binding site that produces this broad range of 

perturbations. Using a global fitting procedure for all ten residues, based upon a 

1:1 binding interaction, results in an affinity of 0.56 ± 0.06 mM. Thus, the simplest  
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Figure 4.5 Saturation binding curves of residues from each cluster of CSPs. A) CSPs of residues 
clustered in the α-helix 5 IP6 binding site are plotted as a function of IP6 concentration showing a 
Kd = 0.35 ± 0.27 mM, compared to B) α-helix 4/7 cluster Kd = 0.59 ± 0.34 mM. C) Representative 
CSPs for residues in each cluster, which show a saturatable chemical shift change from buffer 
control (red) to 10 mM IP6 (black). Binding isotherms were each fit to a one site specific binding 
curve with global fitting. 
 
 

model is one in which binding of IP6 produces allosteric structural changes 

through one binding site. It seems most likely that binding occurs along α-helix 5 

where the largest cluster of CSPs is observed (Ser103 to Lys113), although this 

cannot be definitively concluded based upon the NMR analysis alone. 
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Figure 4.6 Docking statistics for the various IP6 poses as a function of cluster number. The 
lowest energy docking poses of IP6 are comprised of three clusters that dock consistently to the 
α-helix 5 binding site (circled). Clusters 4, 27, and 29 correspond to poses that dock to an area of 
RGS4 centered around Lys99/100, although these poses are not predicted to be as energetically 
favorable as 12, 18, and 23. 
 
 

Blind Docking Of IP6 On RGS4  

In silico docking was performed using the SwissDock automated 

webserver [25] in order to predict the most energetically favorable binding site of 

IP6 on RGS4. Binding modes were generated using a blind docking procedure 

that allowed IP6 to explore the entire surface of RGS4. The binding energies of 

the poses are estimated using the CHARMM algorithm, and then each pose is 

evaluated using a generalized Born implicit solvent model (FACTS) [26] before 

clustering. The docking run resulted in 34 total clusters (Figure 4.6), where a 

cluster is defined by a group of IP6 molecules that bind to a single site on RGS4 

and differ only by rotational changes around the bonds. Clusters are limited to  
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Figure 4.7 Docking model of IP6 across α-helix 5 on RGS4. A) Representative pose from cluster 
12. This site overlaps a previously reported docking site for the CCG-50014 RGS4 inhibitor, 
resulting in the first experimental evidence of the allosteric surface pocket. Blind docking of the 
IP6 molecule on RGS4 was performed using the Swiss dock web server. B) CSPs are highlighted 
on the RGS4 backbone (red > average + 1σ; average + 1σ > orange > average; grey are 
overlapping residues, magenta indicates proline residues). The most robust CSPs (red) directly 
overlap with the modeled IP6 binding site. 
 

series of eight rotamers by the server, resulting in several clusters docking to a 

single site.  

The three clusters (clusters: 12, 18, and 23) with the lowest predicted 

binding free energy (ΔG) all docked to the α-helix 5 site (Figure 4.7 A) that 
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directly overlaps with the largest cluster of chemical shift perturbations that are 

mapped on the RGS4 structure (Figure 4.7 B). The representative pose 

illustrated in Figure 4.7 A corresponds to cluster 12 in Figure 4.6. As observed 

in the docking model, and consistent with the NMR data, IP6 docks in a small 

crevice formed between Lys110 and Lys 112/113 on α-helix 5. This model would 

also explain the perturbations observed on α-helix 4 that directly face helix 5, as 

the IP6 molecule extends over the structural density formed by both helices. 

Structural perturbations that result from an interaction at this site could translate 

indirect structural changes on the C-terminal portion of α-helix 4, surrounding 

residues Lys99/100. Structural changes occurring around the Lys99/100 side 

chains might also drive changes to the chemical environment of residues Thr145 

and Ile146, where perturbations are observed within the loop connecting α-helix 

6 and 7. Interestingly, this pocket formed by Lys110 and Lys 112/113 in the 

protein overlaps with a site on RGS8 that has been proposed as the initial 

docking site for CCG-50014 [22], which is adjacent to Cys95.  

The IP6 molecule also docked to a site involving α-helix 4 and 7 (Figure 

4.8 A), which corresponds to clusters 4, 27, and 29. The docked model similarly 

shows overlap with CSPs observed in the HSQC experiments, (Figure 4.8 B) 

with primary sites of contact on Lys99/100, Thr145 and Ile146 across α-helices 4 

and 7. However, these poses represented by cluster four (Figure 4.8 A) are not 

as favorable as those docking to the α-helix 5 site, and only cluster four has a 

predicted binding free energy that is below the dotted line representing one 

standard deviation beyond the mean docking energies (Figure 4.6). Therefore,  
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Figure 4.8 Docking model of IP6 at α-helices 4 and 7 on RGS4. A) Representative pose from 
cluster four of the same blind docking run as in figure 4.7. This site overlaps with the putative 
PIP3/calmodulin binding sites from past reports. B) Consistently, the docking model binding site 
overlaps with CSPs observed in the NMR titration of RGS4 with IP6. 

 

based upon the predicted docking energies and the extent of CSPs, it is not 

possible to establish the existence of more than one binding site from these data. 
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Figure 4.9 Steady-state GAP activity of RGS4 in the presence of IP6. Although CSPs are 
observed in the vicinity of the G-protein binding interface on RGS4 (Val121 and Gln122), no 
effect on RGS4 GAP activity is observed in the presence of IP6. 
 

GAP Activity Of RGS4 Is Unaffected By IP6 

 In order to determine whether IP6 binding to RGS4 affects GAP activity 

towards Gαi1, a steady-state GAP assay was employed to measure changes in 

RGS-accelerated GTP hydrolysis. A mutant form of Gαi1 (R178M, A326S) that is  

capable of spontaneous (receptor-independent) guanine nucleotide exchange 

was incubated with a saturating concentration of GTP for 100 minutes in order to 

measure RGS4 stimulation with and without IP6. The basal GTP hydrolysis of the 

Gαi1 mutant is unaffected by 10 mM IP6 (Figure 4.9). The IP6 effect on RGS4 

GAP activity showed a trend upward at lower concentrations, although this is not 
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observed above 1 mM, and none of the effects were significant compared to the 

buffer controls (Figure 4.9). 

 

Discussion 

 In order to elucidate the binding site of lipids that are proposed to act as 

endogenous regulators of RGS4 [2, 3], I employed IP6 as a soluble derivative of 

PIP3 to map the interactions sites and the corresponding effects on protein 

stability and function. Using solution NMR, the direct interactions of a non-

covalent small molecule with an allosteric site are observed on the RGS4 

structure at single residue resolution. Based on the combination of NMR studies 

and docking models the binding site of IP6 on RGS4 occurs on α-helix 5 within a 

small pocket formed by three lysine residues (Lys110 &112/113). The largest 

perturbations in this cluster are Ser108 and Lys110, which are directly in the 

middle of the pocket (Figure 4.6 B). Based on the docking model, IP6 also 

appears to directly overlap Pro109, although this residue in not visible in the 

amide spectrum.  

Interestingly, the pocket characterized in this study along α-helix 5 forms 

the site where CCG-50014 is predicted to dock to RGS8 [22]. This groove may 

be an important first contact site for CCG-50014 before intercalating into the helix 

bundle to react with Cys95, as discussed in Chapter II. Despite the overlapping 

binding site between IP6 and CCG-50014, there was no inhibition of RGS4 GAP 

activity observed in the presence of IP6. Based on the NMR data, the IP6 

interaction produces more localized structural perturbations around α-helix 4 and 
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5, which comprise the binding site. In contrast, binding of CCG-50014 shows 

extensive structural perturbations throughout all four α-helices in the bundle 

regions (α4-7). The steric effects of CCG-50014 when bound to Cys95 within the 

four-helix bundle of RGS4 stabilize an open-like state that results in inhibition of 

GAP activity. Such a drastic structural change is not indicated by the IP6 binding 

data in the HSQC experiments. However, the IP6 binding site may represent an 

important new allosteric surface for structure-based ligand identification. 

Identifying non-covalent ligand interactions on RGS4 would provide an important 

first step toward inhibitor/activator development, which could then be followed by 

potency and efficacy optimization in further studies. 

 The data in Chapter II provide a model where a small molecule binding at 

the IP6 pocket could inhibit RGS4 GAP activity through an insertion of a large 

hydrophobic functional group that would stabilize a more open conformation of 

RGS4 with respect to the four-helix bundle. Alternatively, if PIP3 and IP6 bind to 

overlapping areas of RGS4 then IP6 would be expected to reverse the inhibition 

of PIP3 micelles based on the results shown in Figure 4.9. As a result, a small 

molecule interaction at the IP6 binding site could act as an “activator” of RGS4 by 

blocking the actions of endogenous phospholipids. IP6 could be used as a proof 

of concept for this effect in GAP assays using either membrane preparations or 

pure proteins with PC/PIP3 micelles. Decreases in RGS4 mRNA levels have 

been found in the post-mortem brains of patients with Alzheimer’s disease [27, 

28]. This correlation suggests that RGS4 upregulation could be beneficial in the 

treatment of Alzheimer’s disease. Additionally, in genetic mouse models RGS4 
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appears to be a positive modulator of the anti-depressant and anti-allodynic 

actions of monoamine-targeted drugs, suggesting that upregulation could be 

beneficial for depression or neuropathic pain [29]. However, the opposite 

appears to be the case for SNC80 and ketamine in this same model, 

complicating the therapeutic modality of RGS4 in pain management [29]. 

 The data described in this chapter also provides important insight towards 

the mechanism of RGS4 inhibition by endogenous phospholipids. The inhibition 

of RGS4 activity by PIP3 could potentially operate through two mechanisms, in 

which RGS4 is inhibited through an allosteric structural change or by 

sequestering RGS4 away from the G-protein-receptor complex. The lack of 

activity of IP6 towards RGS4 GAP function suggests the latter mechanism. The 

localization of RGS4 to receptor complexes has been shown to be a critical 

component of RGS4 activity. As a result, small molecules that compete with PIP3 

may provide a beneficial upregulation of RGS4 activity, which could be useful 

based on evidence from preclinical animal models outlined above. 
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Chapter V 

 
Conclusions 

 

Modulating protein complexes with small molecules is a major challenge that 

has limited the number of potential drug targets being pursued in industry and 

academia. RGS proteins are representative of the many challenges associated 

with targeting PPIs outlined in Chapter I. As a result, very few RGS inhibitors 

have been described (see table 1.1), and previous to this work only one chemical 

scaffold had been identified with cellular activity. The primary goal of the RGS 

studies in our lab is to identify RGS modulators for use as pharmacological tools 

to dissect the role of RGS proteins in biology and disease, and also as chemical 

starting points to develop RGS-directed therapeutics. The main objective of my 

research has been to pursue innovative drug discovery strategies that will 

advance the development of novel RGS modulators. I have focused on RGS4 as 

a prototypical RGS protein that has been well studied in many systems. RGS4 is 

highly enriched in the CNS and appears to be an intriguing target for neurological 

disorders based on recent evidence from animal models [1, 2] that have been 

highlighted in previous chapters.  

Through the work in these chapters we now understand the molecular 

mechanism of covalent thiol-directed RGS inhibitors, which has revealed a new 

druggable site on RGS4 and provided the theoretical framework to begin 
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studying RGS dynamics as a mechanism of inhibitor selectivity. The identification 

and characterization of the first cell active and reversible small molecule 

inhibitors of RGS4 have contributed new pharmacological tools that can 

contribute to the study of RGS function in whole cells.  Finally, I have provided 

the first direct evidence of non-covalent small molecule interactions at two 

allosteric sites on the RGS4 structure.  

 

Summary of Results 

In chapter II, the allosteric mechanism of inhibition by a highly potent RGS 

inhibitor (CCG-50014) was elucidated. The mechanism of inhibition occurs 

through a conformational change that exposes cysteine 95 to the CCG-50014 

molecule. Binding of the compound to RGS4 stabilizes an open structure that 

translates into downstream structural perturbations in the G-protein binding 

interface. This study reveals the importance of RGS4 dynamics in the exposure 

of key cysteine residues to the inhibitor, which results in this stabilization of non-

native conformations. These studies reveal the potential for a novel cryptic site 

(C-site) that is formed around the buried cysteine residues, and may be more 

druggable than previously identified sites (Appendix I).  

The third chapter focuses on identifying new cell-active RGS4 inhibitors using 

a cell-based calcium signaling assay. Several new cell-active RGS inhibitors 

were identified that rely on the presence of cysteine residues in RGS4 for activity. 

The mechanism of the identified inhibitors further illustrates the highly sensitive 

nature of RGS4 towards cysteine-directed compounds, even in the context of the 
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reducing environment of the cell. In this study, RGS19 was also particularly 

sensitive to the inhibitors compared to other RGS homologs. It is possible that 

RGS19 is also a very dynamic protein, and this could be a mechanism that 

differentiates RGS family members in their sensitivity to cysteine-directed 

compounds. Furthermore, these compounds are also substantially reversible, in 

contrast to CCG-50014, which is irreversible. These compounds provide 

important new tools to probe RGS biology in cells, and potentially in vivo in future 

studies.  

In chapter IV I used solution NMR to show direct evidence of a non-covalent 

small molecule interaction on an allosteric site of RGS4. A soluble analog of PIP3 

was employed to map the interaction interfaces of RGS4 with polyanionic lipids. 

This study identified the site on RGS4 to which IP6 binds. The lack of a functional 

effect on RGS4 GAP activity by IP6 suggests that the mechanism of PIP3 

inhibition of RGS4 depends on sequestration, rather than producing a structural 

change affecting function. Alternatively, it could be that structural changes 

leading to inhibition of RGS4 GAP activity need to occur within the context of the 

membrane. Interestingly, the IP6 binding site directly overlaps the proposed 

docking site of CCG-50014. This may be a potentially new surface on RGS4 that 

could be utilized for structure-based screening for novel RGS modulators.  
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Future Research Directions 

Probing Conformational Dynamics As a Way to Target Cryptic Pockets 

Proteins exist as a collection of ensembles that can have various 

representative (low energy) states across a free energy pathway. The 

conformational forms and accessibility of these states play a large role in 

molecular recognition for protein and ligand binding [3]. The structural dynamics 

of RGS4 appear to play a significant role in exposing cysteine residues buried in 

an allosteric site to cysteine-reactive RGS inhibitor molecules. This represents an 

important model for allosterically acting PPI modulators, where small molecules 

targeting allosteric pockets present in transient excited-state conformations can 

modulate protein function by transmitting structural changes to an active site or 

interaction interface. Understanding the various conformational populations of 

RGS4 has revealed a discrete pocket with potentially more advantageous drug-

binding properties than those found in the X-ray or NMR structures. These 

excited-state “cryptic” pockets can be used for structure-based drug design 

strategies [4]. The existence of cryptic pockets should be identifiable using 

biophysical screens, but access to enough resources to cover the chemical 

space needed to identify such pockets can limit success. Therefore, probing 

structural dynamics as a part of a structure-based strategy provides a 

mechanism to identify the most druggable pockets within the conformational 

space of a protein. Virtual compound databases that are orders of magnitude 

larger that what would be possible using physical methods alone can be applied 

towards these unique conformations sites on the protein. 
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The TAMD simulations performed in Chapter II provide a plethora of poses 

across the conformational trajectories defined for the RGS4 crystal and NMR 

starting structures. These can be used to provide unique conformations for small 

molecule docking studies. The simplest mechanism for selecting poses would be 

to run docking studies on poses at a specific time interval, for example every 50-

100 picoseconds across the total simulation length, but a major drawback is that 

certain poses may not closely represent real conformations in solution. 

Alternatively, poses can be selected by clustering similar conformations within 

the MD trajectory in order to generate a series of predicted metastable states. 

Clustering is based on several methods, including geometric clustering that 

expresses each conformation as a set of points from which a distance metric 

(e.g. Cα RMSD) can be applied to minimize distances within a conformational 

subset relative to others [5]. Although there is an implication for kinetic similarity 

based on geometric matching, actual kinetic clustering is achieved by calculating 

transition probabilities between different states [6]. Markov state models [7] of the 

transition rates across the free energy space can be used to partition the MD 

dataset into kinetically meaningful clusters, such that the probability of exchange 

between two states within a cluster is significantly higher than exchange with a 

conformational state in an adjacent cluster [8-10]. A range of clustering 

methodology can applied to MD datasets [10-12], but the principle strategy is to 

generate a set of unique poses that represent relevant conformations (energy 

minimums across the sampling space) with more advantageous small molecule 
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binding properties than what is apparent from the NMR or x-ray crystal structures 

alone.  

 

Experimental Molecular Dynamics of RGS Proteins 

 Based on the results from TAMD on RGS4, it is apparent that RGS4 may 

be very dynamic. An important question that arises from the results shown in 

Chapter II is whether differences in the dynamic motions of RGS proteins play a 

role in the differential sensitivity to thiol-reactive compounds. This is a particularly 

intriguing question in view of the large difference in sensitivity to CCG-50014 

between RGS4 and RGS8. The thermal stability of RGS4 and RGS8 is 

approximately 55 °C for both proteins. However, other biophysical indications 

such as the ease with which RGS8 undergoes crystal lattice formation, whereas 

RGS4 does not, suggest RGS8 may be much more rigid.  

 Molecular dynamics simulations would be an excellent starting point to 

begin examining this question, but ultimately experimental dynamics are needed 

to validate the physical differences between RGS4 and other RGS family 

members. This question can be answered from several experiments, one of 

which would be through hydrogen-deuterium exchange followed by mass 

spectrometry [13, 14]. It would be expected that amide protons that are buried in 

the RGS helix bundle comprising helices 4-7 would show greater deuterium 

exchange on RGS4 compared RGS8, or possibly other RGS homolgs. These 

results could be compared to positive and negative controls, either cross linking 

the helix in a closed conformation, or incubating the protein with CCG-50014 to 
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produce the opposite effect. Thus, hydrogen-deuterium exchange experiments 

may provide a relatively straightforward approach to validating differences 

between RGS4 and other RGS family members. Complications could arise from 

the resolution obtained from this method, which is typically on the order of 

several residues. Thus only large differences in the dynamics of the RGS 

structure may be observed.  

 A higher resolution method for exploring the molecular dynamics is to 

employ solution NMR studies that can quantify protein motions out to the 

microsecond time-scale. Carr Purcell Meiboom Gill (CPMG)-NMR relaxation 

dispersion experiments can quantify relaxation rate constants at a single residue 

resolution out to these time-scales [15, 16]. Preliminary relaxation data has 

already been obtained for RGS4 in collarboration with Dr. Erik Zuiderweg at 

University of Michigan. The T2 relaxation data were collected by running the 

HSQC-based experiments on RGS4 with and without the CPMG spin-echo pulse 

sequence. This experiment employed only three delay points in order to increase 

acquisition time and reduce data analysis time. As a result, we can get a 

qualitative picture of residues on RGS4 that are slowly exchanging between two 

distinct chemical states. It is expected that peaks in the NMR spectrum that show 

broadening should correspond to areas of the RGS4 structure involved in 

relatively large conformational shifts. This experiment was employed to 

determine whether areas of the RGS4 structure involved in the motions predicted 

in the TAMD simulations would show broadening in the CPGM experiment. 

Interestingly, broadened peaks clustered around the C-terminus of helix 4 and 
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residues within the loop connecting helix 4 and 5 on RGS4. A second small 

cluster was observed from residues on the N and C-terminus that fold in close 

proximity to one another (Appendix IX). This data is consistent with the alpha 

helix 5 and 6 motions predicted in the TAMD simulations in Chapter II that 

resulted in an open conformation. It is unclear how the N- and C-terminal 

residues relate to the dynamic motions observed in the TAMD trajectories, 

although large fluctuations are seen in these residues in several of the 

simulations outlined in Chapter II. Future studies will seek to repeat this 

experiment on RGS4 with increased pulse-delays in order to fit relaxation rates of 

each backbone amide in the RGS4 structure. Importantly, these preliminary 

results support using CPMG-relaxation dispersion NMR experiments to 

quantifiably compare dynamical differences in RGS homologs in future studies.  

 

Fragment Screening for RGS4 Ligands 

Two successive NMR-based fragment-screening studies were performed 

on RGS4 by our lab in order to identify new chemical scaffolds on which to build 

RGS modulators using SAR by NMR. Approximately 3600 fragments in total 

failed to identify any ligands for the protein after successive validation steps were 

applied to preliminary hits. Previous high-throughput biochemical screens against 

RGS4 have only identified covalent inhibitors [17-19]. On the basis of 

ligandability assessment via fragment screening results [20], this would suggest 

that RGS proteins are conventionally undruggable. However, based on literature 

examples indicating the difficulty in identifying suitable ligands from a single 
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approach [21], it appears that a multifaceted strategy that employs different 

detection methods may be required. This creates the challenge of utilizing 

several different techniques to measure binding with a reasonably sized fragment 

library. 

 

Concluding Perspective on RGS-directed Therapeutic Strategies  

G-protein coupled receptors (GPCRs) are medically significant since 

~30% of prescription drugs target these receptors [22]. Signal transduction 

through GPCRs is tightly regulated through a number of intracellular PPIs that 

affect both localization and downstream signaling [23-25]. RGS proteins are less 

broadly expressed than the GPCRs they regulate [26-28], and there is specificity 

for both the G-alpha subtypes and receptors to which they couple [29, 30]. This 

suggests small molecules targeting RGS proteins could provide a novel way to 

selectively augment signaling through a specific GPCR [31-33].  

Therapeutic strategies for modulating activity or cellular levels of certain 

RGS homologs are becoming clearer with genetic and pharmacological 

approaches delineating their individual roles. Humans with low RGS2 levels [34] 

and RGS2 knockout mice are hypertensive as a result of enhanced Gαq-

mediated vasoconstriction signaling in peripheral vascular smooth muscle cells 

[35]. Increasing RGS2 levels would be particularly useful as an anti-hypertensive 

therapy, and recent data showing elevation of RGS2 protein in response to 

cardiotonic steroids bolsters the use of small molecules for this approach [36]. 

Additionally, reduced RGS4 levels linked to schizophrenia [37] suggest that 
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upregulation is a potentially beneficial therapeutic strategy. In contrast, RGS4 

mRNA is upregulated in animal models of neuropathic pain [38], and may 

contribute to opioid insensitivity observed in these conditions. As a result, the 

preclinical data currently available suggest a potential benefit from both RGS 

activators and inhibitors depending on the RGS homolog and the context of 

disease. 

In order to advance RGS proteins as a viable therapeutic target, there is a 

critical need to pursue innovative strategies to develop non-covalent RGS-

specific modulators. Although there are effective covalent drugs currently on the 

market (for example, clopidogrel, Plavix; Sanofi-Aventis, Bristol-Myers Squibb), 

concerns over off-target reactivity make the transition to commercial drug-

candidate stages difficult. Covalent, reversible compounds can provide some 

additional advantage over irreversible compounds, as they may be less cytotoxic 

as a pharmacological tool, or less prone to idiopathic drug-induced toxicity as a 

therapeutic [39-41]. Compounds with these characteristics will provide a step 

forward for RGS modulation. Both the identification and validation of new 

druggable pockets on RGS4 through the course of these studies provide 

important information for future work. In conclusion, these studies provide the 

critical information needed to pursue new and innovative approaches to 

selectively and non-covalently target RGS proteins. 
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Appendix I 
 
 

 
 

Figure AI Open conformation of RGS4 selected from a single TAMD simulation frame reveals a 
newly predicted C-site, which results from of the outward displacement of α-helices 5 & 6. A) The 
selected MD frame was used to calculate pocket size using PocketAnnotate and PocketDepth 
finder, resulting in a pocket volume of 1131 Å3, which is more than 5-fold larger than previously 
identified pockets on RGS4. B) Alignment of the TAMD-generated open conformation of RGS4 
(Red) with the Gαi-RGS4 complex (Green & Yellow, respectively; Pdb:1agr). A small molecule 
that could stabilize this conformational would likely inhibit the PPI via a 3.5 Å displacement of α 
helix 5 and 6.5 Å change in α helix 6, both rotating causing a disruption in the interface.	
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Appendix II 

 

 

Figure AII Subdomain partitions of RGS4 are shown for TAMD simulations. Each subdomain is 
colored and labeled with a total of 6 subdomains (18 CVs). 
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Appendix III 

 

 

Figure AIII Overlaps between the first three principal components (PCs) and the first three low-
frequency normal modes. 
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Appendix IV 

 

Figure AIV Residues interacting with the inhibitor molecule (CCG-50014). A) At two different 
time-points during MD equilibration, highlighted are the positions of the side-chains of residues 
directly in contact with CCG-50014. Covalently linked (to Cys95) CCG-50014 is shown in small 
spheres, and the labeled side-chains of RGS4 residues are rendered as transparent green sticks. 
The surface corresponding to each RGS4 residue is also rendered as a gray mesh. The 
snapshots are based upon three independent 40-ns long MD simulations. B) Same data are 
shown for four independent 40-ns long MD simulations. The bottom-most panels are ∼90° rotated 
in comparison to all top panels for a better view of CCG-50014 and surrounding residues. 
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Appendix V 
 

 
Figure AV Snap shots from the beginning (red) and end (blue) of four independent 40-nslong 
CCG-50014 bound MD simulations  
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Appendix VI 

 

 
Figure AVI Chemical shift perturbation (CSP; ppm) per residue computed using software 
package SHIFTX2 and SPARTA+. Computed CSPs are based upon MD simulations of mutant 
(Cys95) RGS4 with and without CCG-50014. Top and bottom panels, respectively, correspond to 
CSP predictions based upon MD trajectories starting with PDB structures 1AGR and 1EZT. Solid 
and dotted horizontal lines indicate values at mean and 1 standard deviation (SD). 
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Appendix VII 

 

 
Figure AVII Chemical structures of the thirteen inhibitors directly targeting the RGS-G-protein 
interaction. The IC50’s in FCPIA for each compound are indicated next to the compound ID (CID) 
in micromolar.
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Appendix VIII 
 

 
Figure AVIII The log IC50 values of each compound are compared between two biochemical 
assays: SS-GAP (open bars) and FCPIA (close bars). 
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Appendix IX 
 

 
Figure AIX Spin-spin 1H-15N relaxation (T2) CPMG spin echo experiment was used with three 
pulse delays to qualitatively determine areas of the RGS4 backbone undergoing microsecond or 
greater dynamics. Areas of the NMR spectrum with broadening correspond to sites on the RGS4 
backbone highlighted in Red. Areas in green show no broadening and thus are not likely 
undergoing long-timescale exchange. The areas highlighted in grey were overlapped in the NMR 
spectrum and could not be reliably identified. 
 
 

 


