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ABSTRACT 

Energy Harvesting with Piezoelectric Grass for Autonomous Self-Sustaining Sensor Networks 

by 

Jared Dale Hobeck 

 

Chair: Daniel J. Inman 

The primary objective of this research is to develop a deploy-and-forget energy harvesting 

device for use in low velocity, highly turbulent, and unpredictable fluid flow environments. The 

work presented in this dissertation focuses on a novel, lightweight, highly robust, energy 

harvester design referred to as piezoelectric grass. This biologically inspired design consists of 

an array of cantilevers, each constructed with piezoelectric material. When exposed to a wide 

range of flow conditions, these cantilevers experience vigorous persistent vibration.  

Included in this work is an experimentally validated theoretical analysis of the piezoelectric 

grass harvester generalized for the case of a single cantilever in turbulent cross-flow. Using this 

distributed parameter model, a brief parameter optimization study is presented. This study 

demonstrates how the unimorph harvester design could be modified to achieve maximum power 

output in a given turbulent fluid flow condition. 

Two high-sensitivity pressure probes were needed to perform spatiotemporal measurements 

within various turbulent flows. Measurements with these probes are used to develop a 

statistically derived turbulent fluid forcing function. This function is then combined with an 



 

xxx 

analytical structural dynamics model such that not only the modal RMS displacements, but also 

the modal displacement power spectral density trends are predicted for a given structure. 

Pressure probe design, turbulence measurement techniques, and both statistical and analytical 

models are validated with experimental results. These results are produced from several case 

studies performed with a single cantilever exposed to turbulent cross-flow. 

 An experimental investigation on the energy harvesting potential of large harvester arrays 

containing up to 112 flexible piezoelectric structures is presented. Results of several case studies 

reveal trends in power output as functions of flow velocity and array configuration. These 

experimental results show that a given array will experience large amplitude, waving, resonant-

type vibration over a large range of velocities, and is unaffected by large-scale turbulence 

upstream of the array. These dynamic characteristics make large arrays of flexible piezoelectric 

structures ideal for many energy harvesting applications. This work presents the first study found 

in literature to take advantage of this excitation mechanism for energy harvesting. 

 Lastly, this dissertation presents the first documented investigation of a flow-induced 

vibration phenomenon referred to as dual cantilever flutter (DCF). DCF occurs when two similar 

beams are placed side-by-side in a cross-flow. At a particular combination of flow velocity and 

distance between the beams, aeroelastic coupling causes the beams to become unstable and 

undergo limit cycle oscillations. If unaccounted for, DCF vibration has the potential to cause 

catastrophic structural damage or unwanted acoustic excitation. Experimental results show that 

DCF can be used as an effective energy harvesting method. An attractive feature of DCF for 

energy harvesting is that it provides a robust type of flow-induced excitation over a large range 

of flow velocities similar to the large arrays of piezoelectric grass. An experimentally validated 

lumped parameter model for DCF is presented along with results of an experimental study on 

energy harvesting from DCF. Results also include CFD simulations that were setup and executed 

using ANSYS-CFX. 
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CHAPTER I 

1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Research on the topic of energy harvesting has developed into a large, interdisciplinary field over 

the past two decades. An energy harvester may be defined as a device which can be used to 

extract ambient or otherwise wasted energy from a natural or man-made source, or from any 

combination of a vast variety of sources. The most common types of energy sources for existing 

energy harvesting applications are mechanical vibrations, thermal gradients, flowing fluids, and 

solar energy. The work presented in the remaining chapters of this dissertation will focus on 

energy harvesting from a flowing fluid. 

Initially, all interest was directed toward applications in water. Due to the convenience of 

experimenting in air and considering a wind tunnel facility was readily available, proof of 

concept tests were performed in air rather than in water. Results of these early experiments 

(presented in Chapter 2) motivated the decision to focus the proposed research on air flow 

applications. Therefore, the majority of the experimental work and analysis presented in this 

dissertation is for low velocity (< ~15 m/s), highly turbulent air flow. 
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1.1.1 Motivation 

Existing sensor systems used for environmental monitoring in remote rivers for example, are 

powered by large, heavy batteries that eventually need recharged or replaced. When considering 

the one-time cost of a simple flow sensor and data transmission system, compared to the cost of 

transporting and paying a technician to replace batteries, it is apparent that maintenance costs 

alone can easily exceed the cost of the entire sensor network. These maintenance costs could be 

reduced or potentially eliminated if a sustainable energy harvesting system could be designed 

and implemented as a primary power source. This type of energy harvesting technology would 

provide clean sustainable energy for any low-power application in or near flowing fluids. 

1.1.2 Objectives of the Dissertation 

While many fluid flow harvesters in the literature work well in steady and predictable fluid 

flows, their performance suffers in the presence of turbulence and/or is highly dependent on fluid 

flow velocity. The primary objective of the research presented in this dissertation is to develop 

an energy harvesting device where the primary source of ambient energy is low velocity, highly 

unsteady, turbulent fluid flow. 

 The harvester should be a self-sustained, lightweight, robust, deploy-and-forget device. It 

should be capable of withstanding remote, uninhabited, natural or industrial environments for 

many months or even years without requiring any form of human contact. The power produced 

should be stored temporarily in small batteries or capacitors which would be charging as long as 

there is fluid flow. Energy from the device could be available for either constant low-power 

applications, or even for higher power applications with which a duty cycle type operation would 

be implemented. 
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1.1.3 Proposed Harvester Design 

There are two major differences between most existing fluid flow energy harvesting methods and 

the methods presented in this dissertation. First, neither steady conditions nor discrete vortex 

shedding is assumed to be available in the flow. Secondly, rather than having one harvesting 

device, the proposed design consists of an array of generating elements in the turbulent wake of a 

bluff body, or in an entirely turbulent fluid flow environment. Robustness and survivability are 

major concerns when considering the potential intended environment for the harvester. An 

attractive feature of this design which directly addresses these concerns is its inherent 

redundancy. For example: if one element in the array becomes damaged, the device will still 

produce power. Depending on the size of the array, one damaged element will only contribute to 

a minor reduction in total power output. 

1.1.4 Biological Inspiration 

Piezoelectric energy harvesters with biologically inspired designs have been explored by several 

authors. An artificial kelp design was proposed by Pankonien and Ounaies (2010) for wave or 

tidal flow [1]. Hobbs and Hu (2011) presented a tree-inspired design for vortex-induced vibration 

harvesting [2]. A biologically-inspired flapping-leaf design was presented by Li et al (2009) 

where a flexible, passive material (the so-called leaf) was connected to the tip of a PVDF 

cantilever [3]. As the leaf fluttered in the wind, it caused the cantilever to vibrate and thus 

produce power. While [1–3] have an operation concept similar to the harvester presented in this 

dissertation, the form of excitation used to estimate power output is appropriate for either bulk 

fluid motion, vortex-induced vibration (VIV), or flutter rather than for turbulence-induced 

vibration (TIV). Also, the harvesters in [1–3] and in related literature are lacking experimental 
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and analytical investigations performed on large array dynamics rather than for a single harvester 

or array of only a few elements. 

As the name suggests, the piezoelectric grass harvester design concept was inspired by grass 

and other similar vegetation that can be observed in nature. When exposed to wind or flowing 

water, natural vegetation can appear to be in constant and sometimes periodic motion. The 

piezoelectric grass harvester is able to convert that motion directly into useful amounts of clean 

energy from a simple, solid-state device. 

1.1.5 Potential Harvester Application Areas 

Implementation and field testing of the harvesting devices discussed in this work were not 

considered as main objectives of this dissertation; however, robustness and ability to harvest 

energy in variable and unpredictable flow conditions were key harvester design objectives. 

Potential application areas which have these variable and/or turbulent flow characteristics 

include small rivers, streams, tidal flows, harbors, waterways, ducts, ventilation systems and 

pipelines. The primary function of the energy harvester is to eliminate the need for batteries and 

to provide a wireless power source which can be used for autonomous self-sustaining sensor 

networks. Specific application areas for the piezoelectric grass harvester include powering 

surveillance and security systems, and sensor networks for structural, environmental, and 

industrial monitoring. Conceptual application areas of the piezoelectric grass harvester are 

illustrated in Figure 1.1. 

 

 

 

 



 

5 

 

 

 

 

 

Figure 1.1: Conceptual application areas of the proposed piezoelectric grass harvester array shown in (a) 
ventilation systems and in (b) natural riverine environments. 

 

  

 

 

(a) 

(b) 
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1.2 Existing Technologies for Fluid Flow Energy Harvesting 

Harnessing the energy of flowing fluid to accomplish useful work is one of the oldest power 

generation technologies in history. Among the earliest recorded mechanisms for hydropower 

were used by ancient Greek and Roman civilizations. Some of the earliest known water-mills 

date back to A.D. 700 [4]. The first documented experimental work on hydroelectricity was 

performed and published by Armstrong in 1840 [5]. For centuries hydropower has been used for 

large-scale electric power generation and is currently supplying nearly 19% of the global demand 

for electricity [6]. In 1887 Professor James Blyth was performing experiments with possibly the 

world’s first electricity generating wind-powered machine [7]. Today, approximately 2.5% of the 

world’s electricity is produced by wind power [8]. 

 Technology for electrical power production from flowing fluids has been developing for 

centuries; however, these efforts have almost exclusively focused on large-scale power systems 

producing on the order of thousands to millions of watts. As electronic devices become 

progressively smaller and more efficient, the power they require to operate decreases. Advances 

in miniaturizing electronics now make it possible to power entire sensor networks and even small 

computers using only milliwatts. It was not until recently that powering these miniaturized 

systems via small-scale energy extraction from fluid flow was investigated. 

 Among the earliest piezoelectric energy harvesting research found in literature is fluid flow 

energy harvesting which was presented by Klakken et al in 1983 [9] and also by Schmidt et al in 

1983 [10]. Later, Schmidt (1985) presented a patented flow-induced vibration piezoelectric 

energy harvesting device [11]. Schmidt then published a more detailed theoretical analysis and 

experimental results for the harvesters from [9–11] several years later in 1992 [12]. 
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 Energy harvesting from fluid flow is a topic that has gained much popularity since the early 

efforts of Klakken and Schmidt. There now exists an extensive variety of flow energy harvesting 

methods discussed in the literature. Many authors have explored simple yet effective harvester 

designs such as miniature windmills and turbines, while others have developed more creative or 

complex designs. The following sections will introduce several traditional and nontraditional 

fluid flow harvester types found in the literature. Operating characteristics will be summarized, 

while various advantages and disadvantages of the harvester design and performance will be 

highlighted. 

 Table 1.1 provides a performance summary of various types of selected fluid flow energy 

harvesting devices from the literature along with results of devices presented in Chapters 2,3,5 

and 6. Table 1.1 includes nontraditional harvester types such as TIV, VIV, flutter, and 

piezoelectric turbines along with traditional electromagnetic (EM) turbine types. Area power 

density was calculated by dividing the total power output by the harvester area normal to the 

flow. Volume power density was calculated by dividing the total power output by the harvester 

volume. Efficiency was calculated by dividing the total power output by the total power 

available in the flowing fluid. Because electrical and mechanical losses were not considered, all 

efficiency values in Table 1.1 should be considered as conservative estimates used for 

comparison only. 
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 Table 1.1: Summary of various types of selected fluid flow energy harvesting devices. 

Harvester 
Type 

Power 
(mW) 

Velocity 
(m/s) 

Area Den. 
(W/m2) 

Vol. Den. 
(W/m3) 

Efficiency 
(%) Reference 

TIV 4.00 11.5 1.95 13.0 0.214 Chapter 2 
TIV 0.122 8.10 2.65×10-2 0.174 8.31×10-3 Chapter 3 
TIV 304 14.3 10.4 12.2 0.598 Chapter 5 
TIV 6.00×10-5 11.0 9.38×10-5 6.40×10-4 1.17×10-5 Akaydin et al  [13] 
VIV 4.00×10-3 7.23 8.33×10-3 4.80×10-4 3.67×10-3 Akaydin et al  [13] 
VIV 3.00×10-2 5.00 1.54×10-2 1.95×10-3 2.05×10-2 Gao et al  [14] 
Flutter 0.296 8.00 13.2 165 4.30 Li et al  [3] 
Flutter 3.00 25.0 0.417 - 4.44×10-3 Schmidt  [12] 
Flutter 0.615 8.00 13.4 167 4.36 Li et al  [15] 
Flutter 2.10 8.00 2.14 6.83 0.698 Bryant et al  [16] 
Flutter 2.50 27.0 0.375 0.770 3.18×10-3 Dunnmon et al  [17] 
Flutter 1.59 13.0 0.123 486 9.37×10-3 Chapter 6 
Turbine (PZT) 4.00 10.0 0.286 3.57 4.76×10-2 Karami et al  [18] 
Turbine (PZT) 1.20 5.36 0.134 2.64 0.145 Chen et al  [19] 
Turbine (PZT) 7.50 4.47 0.521 26.0 0.972 Priya  [20] 
Turbine (EM) 4.32 10.0 5.37 83.9 0.895 Howey et al  [21]  
Turbine (EM) 60.0 9.00 11.9 199 2.73 Flammini et al  [22]  
Turbine (EM) 130 11.8 93.8 1117 9.45 Rancourt et al  [23]  
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1.2.1 Traditional Harvesting Methods 

Traditional harvester designs include those with turbines or propellers, and their motion typically 

involves directional rotation of a shaft. The simplest designs produce electric energy via 

electromagnetism with a classic generator design consisting of permanent magnets, coil 

windings, a rotor, and a stator [21–30]. Many small-scale windmill designs generate power using 

piezoelectricity. Most of these energy harvesting windmills typically have piezoelectric 

cantilevers (i.e., unimorph or bimorph cantilevers) that are excited from a rotating shaft which is 

being driven by the windmill/turbine blades. Coupling between the rotating shaft and the 

cantilevers is achieved either by direct contact between the cantilever and a cam [19,20,31–33], 

or through a non-contact forcing method using magnets [18,34].  

Several companies market windmills and water turbines. ABS Alaskan markets so-called 

micro-hydropower turbines and small windmills that have a maximum rated output ranging from 

50 W to 5 kW depending on the model [35]. Custom Manufacturing & Engineering Inc. has 

performed water turbine prototype tests in low velocity (1 m/s) water flow where a venturi 

housing was used to accelerate the flow as it approached the turbine [36]. 

All of these traditional designs may perform well in steady fluid flows; however, their 

performance diminishes significantly when exposed to unsteady flow or high-intensity 

turbulence. This decrease in performance is primarily caused by a poorly correlated distribution 

of force across the blades or propellers. Continuously varying flow velocity causes turbines to 

accelerate rather than operate at a steady speed which results in a further decrease of efficiency. 

An unattractive characteristic of propellers and turbines is that they have a minimum flow 

velocity (sometimes referred to as cut-in velocity) that is required to overcome forces opposing 

rotational motion such as friction and cogging torque [37]. If the flow falls below this minimum 
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velocity, the device will not produce power even though the fluid may still be flowing. Another 

disadvantage of traditional harvester designs with regard to long-term survival in natural or 

uncontrolled environments is there susceptibility to damage and fouling. For example, debris 

may come into contact with the blades or get entangled around a rotating shaft which can 

damage or jam the device, rendering it useless. 

1.2.2 Nontraditional Harvesting Methods 

Although less popular than those propeller or turbine type designs discussed in the previous 

section, many other harvester designs, have certain characteristics that make them a more 

attractive energy harvesting option depending on the specific application. The following sections 

discuss numerous energy harvesting techniques that operate on the dynamics of vortex-induced 

vibration, flutter, or turbulence-induced vibration. Other methods discussed will include 

microbial fuel cells, electro-magneto-hydrodynamics, and underwater gliders. 

1.2.2.1 Vortex-induced Vibration 

Flow-induced vibration has proven to be an excellent excitation mechanism for vibration based 

energy harvesting. One of the most popular techniques used to create these vibrations is from 

vortex shedding and is called vortex-induced vibration (VIV). Vortex shedding is a fluid 

dynamic instability that is typically caused when a fluid flows around a bluff body at a Reynolds 

number (Re) near or above Re = 49 [38]. As vortices shed off of a bluff body, a component of 

the fluid force acts on the bluff body in a direction perpendicular to the flow. Because vortices 

shed periodically off each side of the bluff body and rotate in opposite directions, the force 

acting on the bluff body is also periodically changing direction causing a forced excitation that is 

approximately sinusoidal. If the bluff body is elastic and its structural dynamics become properly 
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coupled with the fluid dynamics VIV occurs. For an extensive review of fundamental research 

focused on VIV, see the work of Williamson and Govardhan (2004) [39]. 

 Many VIV energy harvester designs and modeling techniques have been investigated by 

numerous authors over the recent years. A device for large scale power generation using VIV 

was discussed by Bernitsas et al in 2008 [40] and later patented in 2009 [41]. Bernitsas et al 

showed that a rigid cylinder supported by springs on both ends while subject to low velocity 

(0.25 m/s) cross-flow would oscillate perpendicular to the flow at large amplitudes [40]. This 

motion was converted into electrical energy by connecting the cylinder to electromagnetic 

generators via a gear-belt system. A smaller, solid-state design developed from 2009 through 

2011 by Pobering et al consisted of a PZT cantilever mounted to the downstream side of a bluff-

body [42–45]. As vortices shed off the bluff body and traveled down the length of the cantilever 

they produced periodic and opposing pressure fields on the faces of the cantilever causing it to 

vibrate, thus producing a voltage. Closely related work was also explored by Akaydin et al in 

2010 [13]. A design introduced by Taylor et al (2001) took advantage of an excitation method 

similar to that of Pobering; however, a flapping sheet of soft PVDF piezoelectric polymer rather 

than a stiff vibrating cantilever was used to generate power [46]. Another design discussed by 

Akaydin et al (2010) consists of a PZT cantilever held parallel to fluid flow with a cylindrical 

bluff body attached to its tip [47]. Vortex-induced vibrating motion of the cylinder was then 

transmitted directly to the cantilever. Similar designs driven by VIV were presented by Hobbs et 

al (2012) [2] and most recently by Gao et al (2013) [14]. Vortex shedding methods are quite 

effective in fairly steady free-stream flow; however, their performance suffers greatly when the 

upstream flow is spoiled with high levels of turbulence. 
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1.2.2.2 Flutter 

Similar to VIV, flutter or flapping mechanisms operate on the principal of fluidelastic instability. 

As mentioned near the beginning of section 1.2, Schmidt (1985) was among the first to develop a 

piezoelectric energy harvesting device from a flow-induced flapping or fluttering type motion 

[11]. The device proposed by Schmidt generated power via piezoelectricity. Nearly a decade 

earlier, airfoil-type flutter harvester designs were being investigated by Bade (1975) [48] 

followed by McKinney et al (1981) [49]. Instead of piezoelectricity, these early flutter harvester 

designs generated power using an electromagnetic generator and gearing system. 

Numerous types of energy harvester designs driven by flutter dynamics have been presented 

in the literature; however, most can be placed in one of only a few categories. Several authors 

have investigated flutter-type harvester designs that have a piezoelectric cantilever subject to 

cross-flow [3,15,50,51]. Another popular design type consists of a cantilevered harvester 

positioned such that fluid flows along the lengthwise (axial) direction of the structure from root 

to tip [3,15,17,46,52–54]. Most of these axial flow flutter harvesters are made with a 

piezoelectric material; however, a design proposed by Tang et al (2009) converted the fluttering 

motion into energy via electromagnetism by imbedding conductive coils in an aluminum 

cantilever and placing it in a magnetic field [54]. Energy harvesting from airfoil flutter dynamics 

has been investigated by many authors for nearly four decades and is perhaps the oldest flutter-

type energy harvester design [16,48,49,55–59]. 

Bryant and Garcia (2009) were among the first to propose the concept of energy harvesting 

from vibrations caused by aerodynamic flutter of an airfoil [16,57]. A feasibility study was 

performed on the concept of energy harvesting from elastic bluff body wake galloping by Jung et 

al (2009) [56]. Pitch and plunge airfoil flutter dynamics were discussed and numerically 
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simulated by Shimizu et al (2008) [55] while an experimentally validated analytical model with 

application to piezoaeroelastic energy harvesting was presented by De Marqui et al (2010) [51]. 

When introduced to highly turbulent flow, periodic separation and reattachment of flow on 

the structure becomes sporadic and less coupled to the dynamics of the structure. These 

conditions may cause intermittent flutter or none at all, thus decreasing or eliminating power 

output. Another disadvantage of flutter or flapping type energy harvesting mechanisms is that if 

the flow velocity is less than the flutter speed, the device will not produce power. This minimum 

operational flow velocity is a concept similar to the cut-in velocity for turbine or propeller 

harvester designs mentioned in Section 1.2.1. Flutter speed is also typically higher than cut-in 

velocity which means more energy is lost or unable to be harvested if the flow falls below flutter 

speed. Some flutter devices have both minimum and maximum operating flow velocity which 

further restricts the harvesting potential in flows having a large range of velocity. 

1.2.2.3 Turbulence-induced Vibration 

Turbulence-induced vibration (TIV) is generally considered undesirable, and is a phenomenon 

that if not properly anticipated can lead to catastrophic structural failure. From an energy 

harvesting perspective however, these types of vibrations have been found to be quite valuable 

[60]. Unlike vortex-induced vibration, flutter, or acoustic resonance, where vibrations can be 

minimized or essentially eliminated by design, TIV is inevitable whenever a turbulent flow is in 

contact with an elastic structure [61]. Analytical investigations of TIV have been performed for 

decades; however, it was not until very recently that there has been interest shown in developing 

devices that can generate useful power from these vibrations. 

A recent experimental study was performed by Akaydin et al (2010) in which a PVDF 

cantilever beam with dimensions 30mm x 16mm x 0.2mm was placed in fluid flow such that its 
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length was parallel to turbulent boundary layer flow [13]. Rather than using pure vortex 

shedding, flutter, or related fluidelastic phenomena; this turbulent boundary layer experiment 

was the first documented energy harvesting study conducted where turbulent flow was the 

primary excitation mechanism. The maximum power output was nearly 0.06 W  in a free-

stream velocity of approximately 11.0 m/s. This is an extremely low output considering the same 

harvester was shown to produce more than 4 W  when placed in the vortex street of a cylinder 

in air with a velocity of only 7.23 m/s [13]. These first TIV energy harvesting experiments 

showed that the same harvester produced nearly an order of magnitude less power with TIV 

compared to VIV. This drastic reduction in power output is to be expected given the 

experimental parameters chosen; however, the power output potential of TIV energy harvesting 

should not be regarded as insignificant. 

1.2.2.4 Other Fluid Flow Energy Harvesting Techniques 

Several nontraditional energy harvesting methods found in the literature extract fluid flow energy 

from physical or chemical phenomena other than VIV, flutter, or TIV. In Section 1.2.1 several 

turbine and propeller type harvesting devices were discussed. A major disadvantage of these 

traditional harvesters is that they will not produce any power unless the flow velocity is greater 

than the cut-in speed. A novel device designed to overcome this challenge of low velocity or 

“low energy” water flow is referred to as Deep Green Technology which was invented by 

Magnus Landberg and is marketed by Minesto AB [62]. Deep Green Technology consists of a 

turbine mounted to a winged glider that is attached to an anchored tether and the entire assembly 

is submerged. The underwater glider maintains a large sweeping figure-eight pattern and travels 

perpendicular to the flow at a velocity several times greater than the flow itself – the motion is 
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similar to that of a kite. The turbine is then driven by this amplified flow velocity. A similar 

method used for air applications is being developed by a company called EnerKite [63]. 

 When a conductive fluid – such as seawater – flows through a magnetic field, an electric 

field is induced. A novel energy harvesting device which operates on this principle was 

investigated by Snarski et al in 2004, and was called electro-magneto-hydrodynamic (EMHD) 

energy harvesting [64]. Snarski showed that the induced EMHD electric field formed in a 

flowing conductive fluid could be mapped to a DC voltage across a pair of electrodes placed near 

a permanent magnet. Very recently Pfenniger et al (2013) investigated the possibility of using 

EMHD energy harvesting from arterial blood flow [65]. Unfortunately this EMHD energy 

harvesting method only works with conducting fluids and yields a very low output compared 

other previously discussed harvesting methods. 

 Another unique approach for energy harvesting is with the use of microbial fuel cells as 

explored by Habermann et al (1991) [66] and more recently by Reimers et al (2001) [67]. It was 

not until 2007 that Zhen et al proposed that a rotating cathode driven by natural water current 

could increase power output by 69% [68]. The primary disadvantages of microbial fuel cells 

include low power output, and they require marine sediments that are rich in organic matter with 

a proper amount of oxygen. 

 St. Clair et al (2009, 2010) proposed a novel flow-induced vibration energy harvester that 

featured self-excited and self-sustained limit cycle oscillations of a piezoelectric cantilever 

[69,70]. The self-excited dynamic system that inspired St. Clair’s design is similar to that which 

causes a harmonica reed to vibrate. A more through analytical and experimental analysis was 

performed on St. Clair’s harvester by Bibo et al (2011) where the proposed equation of motion 

was based on Van der Pol oscillator dynamics [71]. 
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 A few authors have explored fluid flow energy harvesters driven by oscillatory flows such as 

shallow waves or tidal currents. Two biologically inspired designs for these oscillatory flow 

environments were artificial sea grass presented by Zurkinden et al (2007) [72] and artificial kelp 

presented by Pankonien et al (2010) [1]. 

1.3 Outline of the Dissertation 

This dissertation is divided into seven chapters. Chapters 1 through 6 are intended to be a 

complete and independent work; however, all chapters are related and occasionally reference 

other chapters within the dissertation to avoid unnecessary repetition. Not including the 

introduction, background, and literature review discussed in the first and current chapter, the 

following is a brief summary of the remaining six chapters. 

 The work shown in this dissertation began as an open-ended design problem; therefore, 

Chapter 2 will present several harvester design concepts considered before a final design was 

chosen. Advantages and disadvantages of these designs will be discussed along with the 

decisions that led to the piezoelectric grass design concept. Also included in Chapter 2 will be 

the results of several proof-of-concept wind tunnel experiments performed with various 

piezoelectric grass harvester prototypes. 

 Chapter 3 will present a fully coupled electromechanical distributed parameter model for a 

cantilevered unimorph harvester in highly turbulent cross-flow. Rather than attempting to model 

an entire array of harvesters, this model was first developed for a single cantilever. This model 

consists of both analytical and statistical components. The analytical portion of the model 

predicts structural dynamics and electromechanical coupling, while the turbulence-induced fluid 

forcing function is derived from the statistical portion. 

 The statistical model presented in Chapter 3 required the use of two custom pressure probes 

for measuring highly turbulent air flow. Chapter 4 discusses the design and fabrication details of 
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these probes along with static and dynamic calibration techniques. Chapter 4 also discusses an 

analytical model used to successfully predict the acoustic attenuation within the probes. Finally, 

an experimental validation case study is presented in order to demonstrate how the pressure 

probes were used for predicting TIV of cantilever beams. 

 Chapter 5 focuses on large array dynamics of the piezoelectric grass harvester. These large 

arrays are shown to achieve a resonance condition where aeroelastic coupling between the array 

elements causes them to experience large amplitude persistent vibrations. The results of many 

wind tunnel experiments are presented and discussed. 

 During the experimental work of Chapter 5, a phenomenon referred to here as dual cantilever 

flutter (DCF) was discovered. Chapter 6 introduces the first known documented study of DCF 

and also presents a novel DCF energy harvesting device. Analytical and CFD modeling will be 

discussed, along with experimental model validation case study results. 

 Lastly, Chapter 7 provides an executive summary of Chapters 2-5 and highlights all major 

contributions of the work presented in this dissertation. Chapter 7 will also provide a brief 

discussion on continuing and future work related to topics discussed in the dissertation. 
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CHAPTER II 

2. EARLY DESIGN CONCEPTS AND INITIAL EXPERIMENTAL 

ANALYSIS OF THE PIEZOELECTRIC GRASS HARVESTER 

Several design concepts were considered before deciding to investigate the piezoelectric grass 

harvester. The first portion of this chapter will discuss overall design and operational details of 

these early concepts. The first step taken toward developing the piezoelectric grass harvester was 

to perform an initial proof-of-concept experimental analysis on several prototypes. The second 

half of this chapter will focus on the details of these early experiments and present a summary of 

their results. These results will include plots showing the power output as a function of flow 

velocity for six different piezoelectric grass array configurations. 

2.1 Early Harvester Concepts 

This research began as an open-ended design project with few limitations. Five final concept 

designs were produced and proposed to the project sponsors. These concepts included fluttering 

mechanisms, miniature turbines with folding blades, and finally a biologically-inspired design 

named piezoelectric grass. The intended operation and dynamics of each concept will be 

discussed in this section along with all major design advantages and disadvantages. 
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2.1.1 Magnetic Flutter 

As shown in Figure 2.1 the proposed design will consist of two fins each attached to a main spar. 

The spar is free to rotate about the A-axis and the fins are free to rotate about the B-axis. To be 

clear, two rotations are being discussed here: The primary rotation which harvests energy is a 

sweeping, cyclical, rotation of the fins about the A-axis. The secondary rotation is a “flip-

flopping”, 90-degree constrained rotation of the fins about the B-axis causing an oscillating 

moment about the A-axis. Each fin has a fixed 90-degree angular orientation relative to each 

other such that when one is oriented perpendicular to the flow (broad side facing) the other will 

be parallel. This will create a moment about axis A causing the spar to rotate toward the 

perpendicular fin (clockwise in the figure). 

 A subtle feature that is required for the device to operate well is the placement of each fin’s 

center of pressure axis (C1 and C2 axes) relative to their axis of rotation (B-axis). The main spar 

will only be allowed to rotate the fins 90 degrees relative to the flow about axis B. The dotted 

lines on each fin show their 90 degree range of motion. The C-axis of each fin will be offset from 

the B-axis which will cause the following response: First, when one fin is perpendicular to the 

flow (Fin 1), moment about axis B created by the C1-axis offset will hold that fin in a stable 

position against the 90-degree rotation constraint of the spar about axis B. Secondly, as the spar 

rotates about the A-axis, one of the fin magnets will be forced into the field of an opposing 

magnet fixed to the support structure. This magnetic interaction will force the fins to rotate about 

the B-axis out of the current stable position. While parallel, the fin’s C and B axes (C2 and B in 

the figure) are aligned with the flow direction; thus, there is no net moment about axis B. 
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Figure 2.1: A detailed illustration showing the magnetic flutter harvester (concept #1) 

 
 
As the parallel fin (Fin 2) begins to rotate about axis B due to the force of the opposing magnets 

toward its perpendicular orientation, the C-axis will be forced above or below (C2 will be forced 

below in the figure) the B-axis becoming unstable. This instability is created by an unrestrained 

net moment about axis-B causing immediate rotation of the fins about the B-axis until they reach 

their other 90-degree rotational constraint of the spar. After the fins change orientation, moment 

about the A-axis changes direction and this “flip-flopping” process repeats itself. Placement of 

the device in continuous flow will cause oscillating rotation of the hub about the A-axis. Energy 

will be harvested from this motion primarily via a network of piezoelectric cantilevers and 

possibly an added electromagnetic component (not shown). 

 Many design considerations for concept #1 have been made that address the issue of 

durability and robustness. The main spar at the base of each fin will be made with a spring shaft 

stress relief. This spring will be designed such that it will not deflect in rotation or bending under 
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normal operating conditions. In the event that an obstruction comes in contact with a fin and 

causes stress to exceed design limits, the spring will elastically deflect until the obstruction is no 

longer in contact with the device. Essentially, the spring shaft portion of the spar will be 

designed to allow each fin to bend 180 degrees at their base while still allowing for a full elastic 

recovery to their zero position as shown in Figure 2.1. Only a cut-away portion of the support 

structure is shown; however, the complete structure will be reinforced and streamlined to guard 

against fouling and to protect the shaft and hub. 

 To further address the issue of durability, all electrical elements i.e. piezoelectric structures 

and electromagnetic devices will be coupled to the motion of the main shaft (A-axis) via a 

magnetic hub. This allows for both zero contact force transmission to eliminate the possibility of 

exceeding max stresses for the piezoelectric elements, and also for placement of these electronic 

devices within a sealed, water-tight compartment to eliminate the possibility of short-circuiting 

electronic components. Figure 2.1 illustrates how the piezoelectric harvesting system will be 

implemented using piezoelectric bimorph cantilevers with tip magnets. The cantilever magnets 

periodically align with opposing and attracting magnets fixed on the rotating hub causing the 

cantilevers to deflect up and down. 

 A second magnetic flutter design (concept #2) was inspired by concept #1 and was intended 

to be a significantly smaller device. The overall motion of the fins along with the 90-degree ‘flip-

flopping’ action about axis-B caused by magnets is the same as that previously described for 

concept #1. The major difference is that rather than a magnetic hub exciting an array of 

piezoelectric cantilevers, concept #2 only has one piezoelectric beam. This beam is connected 

directly to the main shaft such that as the fins rotate about axis-A the beam deflects as shown in 

Figure 2.2. 
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Figure 2.2: A detailed illustration showing the magnetic flutter harvester (concept #2) 

 

The beam will act as a torsional spring by causing a moment about the A-axis that opposes the 

moment imposed by the force of fluid on the perpendicular fin (Fin 1). Concept #2 also has a 

streamlined shaft guard. This guard is intended to deflect large debris and to prevent debris from 

snagging on the device and possibly hindering the motion.  

2.1.2 Folding Fin Turbines 

Concepts #3 and #4 have a more traditional turbine or propeller type of design. The basic motion 

of these two designs can be described as follows. Each fin is free to rotate only 90 degrees at its 

base. This 90 degree range of motion allows each fin to go from completely horizontal (parallel 

with the flow) to vertical (perpendicular to the flow). 
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Figure 2.3: A detailed illustration showing the folding side fin harvester (concept #3) 

 

Each fin is flexible enough to completely collapse under excessive loads, yet stiff enough to 

withstand fluid forces under normal flow conditions. The fins are curved in such a way as to 

allow the fluid to push them up from a parallel to a perpendicular orientation based on their 

position relative to the flow. This curvature is not shown for concept #3 in Figure 2.3; however, 

it is shown for concept #4 in Figure 2.4. In continuous flow conditions the fins and magnet 

assembly will rotate in one direction. Magnets placed on the rotating part of the assembly will be 

made to interact with piezoelectric, electromagnetic, or coupled piezo-electromagnetic 

generating elements fixed on the stationary portion of the assembly. 

 Concepts #3 and #4 offer several advantages. First, the folding fin design could greatly 

increase harvesting efficiency compared to traditional propellers or devices with oscillating, non-

directional motion such as concepts #1, #2, and #5. 
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Figure 2.4: A detailed illustration showing the folding top fin harvester (concept #4) 

 

Additionally, all circuits and generating elements would be contained within a dry, sealed 

chamber and would never come into direct contact with the environment. Another advantage of 

concepts #3 and #4 is that flow can approach from any direction (provided that it is 

perpendicular to the axis of rotation) and the harvesters will still operate as expected. The 

primary disadvantage of concepts #3 and #4 is that continuous rotation of the fins causes these 

designs to be more susceptible to motion-hindering debris. For example: vegetation could 

become entangled in the device rendering it useless. Another disadvantage is that there are 

several moving parts, joints, bearings, etc. that may reduce the life span of the harvester. 
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Figure 2.5: A detailed illustration showing the piezoelectric grass harvester (concept #5) 

 

2.1.3 Piezoelectric Grass 

The final harvester concept (concept #5) was a biologically-inspired design called piezoelectric 

grass. Compared to the previous concepts, the piezoelectric grass concept was very simple. 

Concept #5 consisted of an array of elastic cantilevers that had piezoelectric material bonded to 

them in either a unimorph or bimorph configuration. Each cantilever could also be embedded 

within a soft polymer for added durability as shown in Figure 2.5. Each blade of grass could be 

fabricated either straight or with a specified amount of pre-strain. In normal flow conditions the 

soft, passive portion deflects along with the imbedded piezoelectric element. If a design-

specified maximum moment is ever exceeded (due to contact with debris for example), the base 

of each member could be designed to safely allow the member to bend 90 degrees without 

damaging the piezoelectric element. Under continuous flow, the forces experienced by each 

member are chaotic due to the nature of the flow around them. Motions caused from this highly 
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turbulent flow within the harvester array are converted directly into electricity via the 

piezoelectric effect. 

 A major disadvantage of concept #5 is that based on initial observations and literature 

studies, the analysis and potential design optimization would be limited strictly to extensive 

experimental work. Any other type of analysis or energy harvesting predictions would require 

computationally expensive CFD simulations able to model complex fluid structure interactions 

in a highly turbulent fluid. Another issue may arise from trying to collect the AC voltages 

generated from hundreds or possibly thousands of chaotic sources. Simply combining all sources 

could lead to a large amount of voltage cancellation while rectifying each voltage individually 

may add an impractical amount of design complexity, weight, and expense. 

 Advantages of the piezoelectric grass concept design are numerous. First, the extremely 

simple design would allow for a very quick experimental feasibility study. Also, depending on 

the efficiency, concept #5 could boast the largest potential energy density (per area) compared to 

the other concepts. This high energy density is possible because there are no passive fins or 

propellers preventing the generating elements from being placed very close to each other. 

Perhaps the most attractive advantage of the piezoelectric grass concept is that it is a solid-state 

device with a highly redundant design. If one element of the harvester array is damaged, the 

array will still be able to harvest energy from the other elements. These features made the 

piezoelectric grass concept the most desirable design option. 

2.1.4 Summary of the Proposed Concept Designs 

Two major differences exist among the proposed concepts. Concepts #1 through #4 convert the 

motion of a flowing fluid into a more useful rotational motion for harvesting the energy. Concept 

#5 converts turbulence-induced vibration caused by ambient fluid motion directly into electricity. 
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Progressing with the development of concepts #1 through #4 would take a more traditional 

design approach which would include analytical modeling along with intermediate experimental 

portions used for model validation. After initial analytical and experimental design optimization, 

a final prototype could be built and tested. A majority of the time and effort spent on concepts #1 

through #4 would be focused on the generating system within the harvester. 

 Development of the piezoelectric grass concept would include a highly experimental 

feasibility study that could be accomplished quickly and with little cost. The following section 

discusses the earliest experimental work performed on a piezoelectric grass harvester prototype. 

2.2 Experimental Analysis of the Piezoelectric Grass Harvester Concept 

The majority of the work remaining in this chapter focuses on the experimental analysis of 

several piezoelectric grass harvester prototypes. 

2.2.1 Wind Tunnel Facility 

A two-stage, open-loop, experimental wind tunnel with continuously variable airspeed control 

was used to perform all flow experiments. Figure 2.6 shows a snapshot of the wind tunnel with 

key components of the experimental setup labeled. Design and performance details of the wind 

tunnel are provided by Bilgen (2010) [73]. Existing wind tunnel instrumentation included static 

pressure ports for free-stream velocity measurements, and an adjustable pitot tube for local 

steady velocity measurements. A hotwire anemometer, two custom pressure probes, and a Siglab 

data acquisition system were added to the wind tunnel for the experiments discussed in Chapters 

3 and 4. A virtual control panel implemented with LabVIEW software was used to display, 

control, and record real-time data for the wind tunnel. 
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Figure 2.6: Photo of the wind tunnel testing facility. 

 

2.2.2 Harvester Design 

Two types of piezoelectric grass harvesters (type-1 and type-2) were designed and built for the 

initial proof-of-concept experimental study presented in this chapter. The type-1 harvester 

consisted of six generating elements or blades of grass. Each type-1 array element was a PVDF 

cantilever from Measurement Specialties Inc. (model LDT2-028K/L). The type-2 harvester 

design consisted of four generating elements. Each was constructed by mounting a PZT wafer 

QuickPack from Mide Technology Corp. (model QP16n) at the root of a spring steel cantilever. 

Snapshots of both harvester types are shown in Figure 2.8 and a summary of design parameters 

for each harvester is given in Table 2.1. Note that there are several more layers than those listed 

in Table 2.1 for both the PVDF and PZT QuickPack products used in this study. The model 

presented in Chapter 3 includes more details of the design and construction of the type-2 array 

elements. 
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Table 2.1: Summary of design parameters for harvester array elements. 

Harvester Layer Material Length 
(mm) 

Width 
(mm) 

Thickness 
(μm) 

Type-1 Substrate Mylar 72.60 16.20 178.00 

 
Piezo Piezo Film 62.00 12.00 30.00 

Type-2 Substrate Steel 101.60 25.40 101.60 

 
Piezo PZT Wafer 45.97 20.57 152.40 
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Figure 2.7: Schematic showing a top view of a typical array configuration and bluff body placement for 
the (a) staggered array type and the (b) inline array type. 

 

(a) 

(b) 
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Figure 2.8: Snapshots of the (a) staggered and (b) inline PVDF harvester array configurations, each 
positioned on a steel grid plate downstream of a rectancular bluff body in the wind tunnel test section. 

 

 Individual load resistors were connected across the electrodes of each harvester element such 

that each element was an independent circuit. The load resistance LR  used for each type-1 and 

type-2 harvester element was 4.70 M  and 49.2 k  respectively. These resistor values were 

chosen using the following relationship for optimum resistance, 

 opt
1 p

1
R

C
=  (2.1) 

where 1  is the measured, open circuit, first bending mode frequency, and pC  is the measured 

capacitance of the piezoelectric layer [74]. The measured first bending mode frequency for the 

type-1 and type-2 harvesters was 12.7 Hz and 30 Hz respectively. Note that this method of 

determining optimum resistance should only be used when backwards coupling effects are small. 

See Erturk (2009) for methods of determining optimum harvester load resistance when 

piezoelectric coupling effects are considered [75]. The voltage across each resister was sampled 

at 2.00 kHz on separate channels with National Instruments data acquisition hardware. In order 

to allow for convenient rearranging of the individual array elements, magnets were used to 

secure the cantilevers on a steel grid plate as shown in Figure 2.8. 

(a) (b) 
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2.2.3 Harvester Array Experiments 

A preliminary experimental study showed that many factors had a significant impact on the 

harvester array power output. In order to reduce the number of design parameters, it was decided 

to choose the general design that provided maximum power output as observed in the 

preliminary study. Figure 2.7 shows the general design which was chosen to be an inline array 

configuration where the array elements are evenly spaced, aligned in the x-direction, and offset 

from the bluff body in the y-direction. Each test consisted of placing a bluff body upstream of the 

harvester array such that its reference point with respect to the array reference point was known. 

Free-stream air velocity was then incrementally increased over a range of approximately 1 to 12 

m/s where 30 seconds of data was recorded at a rate of 2.00 kHz at each velocity increment. Both 

the data acquisition and velocity control were automated with LabVIEW. This procedure was 

repeated while keeping the y offset fixed and varying x offset. 

2.2.4 Results 

The results from six sets of tests performed on prototypes of the piezoelectric grass harvester 

concept are summarized in this section. Plots shown in Figures 2.9 through 2.14 show the 

average power output per element (per cantilever) as a function of both flow velocity and the 

streamwise (x-axis) distance between the reference point of the array and the bluff body. Recall 

Figure 2.7 for detailed schematics showing the inline and staggered array arrangements. 
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Figure 2.9: The power profile for an inline PVDF array positioned in the turbulent wake of a rectangular 
bluff body. 

 

 

Figure 2.10: The power profile for a staggered PVDF array positioned in the turbulent wake of a 
rectangular bluff body. 
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Figure 2.11: The power profile for a staggered PVDF array positioned in the turbulent wake of a small 
cylindrical bluff body. 

 

  

Figure 2.12: The power profile for a staggered PVDF array positioned in the turbulent wake of a large 
cylindrical bluff body. 
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Figure 2.13: The power profile for a staggered PVDF array positioned in the turbulent wake of a square 
bluff body. 

 

  

Figure 2.14: The power profile for an inline PZT array positioned in the turbulent wake of a square bluff 
body. 
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 A solid horizontal line plotted on the secondary y-axis (y2) of Figures 2.9 through 2.14 

corresponds to the first natural frequency of the harvester (fs). These natural frequencies were 

measured to be approximately 14.3 Hz and 31.1 Hz for the PVDF and PZT type elements 

respectively. Also plotted on the secondary y-axis (y2) is a diagonal dashed line that corresponds 

to the vortex shedding frequency of the bluff body (fv). This vortex shedding frequency can be 

approximated with the Strouhal vortex shedding equation given as, 

 v
c

StU
f

L
=  (2.2) 

where vf  is the shedding frequency, St  is the empirically defined Strouhal number, U  is the 

free-stream flow velocity, and cL  is the characteristic length of the bluff body. The characteristic 

length used in this study is called the hydraulic diameter which can be given as, 

 
4

c
A

L
P

=  (2.3) 

where A  and P  are the cross sectional area and perimeter of the bluff body respectively. Notice 

that for bluff bodies with circular and square cross sections, cL  becomes equal to simply the 

diameter and side length respectively. The Strouhal number for a particular bluff body depends 

on the shape of the bluff body and the Reynolds number. The Reynolds number (Re ) can be 

expressed as, 

 cUL
Re


=  (2.4) 

 where U  and cL  are defined for equation (2.2) and   is the kinematic viscosity of the fluid. 
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Table 2.2: Summary of parameters and results from the piezoelectric grass proof-of-concept experiments 
corresponding to the plots in Figures 2.9 through 2.14. 

Figure Element 
Type 

Bluff Body 
Type 

fs    
(Hz) 

Lc   
(cm) St U: fv=fs 

(m/s) 
Re: fv=fs 

(×106) 
Pmax 

(per cantilever) 

2.9 PVDF Rectangular 14.3 6.10 0.13 6.71 2.6 1.474 μW 
2.10 PVDF Rectangular 14.3 6.10 0.13 6.71 2.6 1.196 μW 
2.11 PVDF Circular 14.3 6.10 0.23 3.79 1.5 0.841 μW 
2.12 PVDF Circular 14.3 8.89 0.23 5.53 3.1 0.820 μW 
2.13 PVDF Square 14.3 4.45 0.12 5.30 1.5 0.573 μW 
2.14 PZT Square 31.1 4.45 0.12 11.52 3.3 1.005 mW 

 

 

 Table 2.2 summarizes several parameters and results from the six proof-of-concept wind 

tunnel experiments performed on the piezoelectric grass prototypes. Strouhal numbers used for 

the rectangular and square bluff body types were chosen to be 0.13 and 0.12 respectively based 

on results of a study performed by Knisely (1990) [76]. Note that there is a significant amount of 

variability in circular cylinder Strouhal numbers for Reynolds’s numbers within the range 2×105 

< Re < 3.5×106 which is referred to as the transition range [77]. Because both circular cylinder 

experiments were performed in the transition range, no clearly defined value for the Strouhal 

number was found in the literature. Instead, the Strouhal number used for the circular cylinders 

was chosen to be 0.23 which is the value that causes fv   fs at a velocity (5.53 m/s) where a local 

maximum in power output is visible in Figure 2.12. 

2.3 Chapter Summary 

Five fluid flow energy harvester concept designs were presented. Operational details, 

advantages, and disadvantages of each design were discussed. A final biologically-inspired 

concept design called piezoelectric grass was chosen because it addressed and overcame many of 

the design issues considered for potential application environments. 
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 The results of an extensive experimental study on several piezoelectric grass harvester 

prototypes were presented. It was shown that the PZT harvester array (Type-2) was able to 

achieve a power output of 1.0 mW per cantilever with a mean airspeed of 11.5m/s. The similarly 

sized PVDF harvester array (Type-1) was expected to produce significantly less power due to a 

lower electromechanical coupling constant, but was still able to achieve an output of 1.47 W  

per cantilever at 6.7 m/s. From an application standpoint, note that the PZT harvester produced 

nearly 1000 times the output for approximately 10 times the cost compared to the PVDF 

harvester. However, when considering long-term deployment in an uncontrolled environment, 

the soft, flexible PVDF design is much less susceptible to damage than the brittle PZT design.  

 Harvester array results show that an optimum turbulence condition for maximum power 

output exists for all array configurations. It is shown that these ideal harvesting conditions are 

functions of both flow velocity and harvester location downstream of a bluff body. An estimate 

of the optimum harvester design can be attained by matching the natural frequency of the 

harvester to the primary vortex shedding frequency of the bluff body. Plots given in Figures 2.9 

through 2.14 show how power trends from PVDF arrays appear as large plateaus which span 

across a wide range of both flow velocity and bluff body distance. This broadband type of 

behavior from the PVDF array was very different compared to the sharp peak in power output 

produced by the PZT array. While the array studies presented here were strictly experimental, 

these results may provide valuable insight for the future development of mathematical models 

for large harvester arrays containing many more harvester elements. 
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CHAPTER III 

3. A FULLY COUPLED ELECTROMECHANICAL DISTRIBUTED 

PARAMETER MODEL FOR A CANTILEVERED UNIMORPH 

HARVESTER IN TURBULENT CROSS-FLOW 

3.1 Mathematical Modeling 

This Chapter presents a model on turbulence-induce vibration (TIV) energy harvesting beginning 

with time-series pressure measurements made along an array of points in space. This time-series 

pressure data was then reduced into the frequency-domain by calculating the pressure cross-

power spectral density. The data was further reduced into modal fluid forcing functions for a 

cantilever beam. The modal forcing functions were then combined with the modal equations of 

the fully-coupled, electromechanical model for a cantilevered unimorph harvester. Finally, the 

full turbulence-induced vibration energy harvesting model was used to calculate displacement 

and power output of the harvester. 

3.1.1 Spectral Statistics Overview 

Velocity measurements of highly turbulent flow in the time domain appear as random noise and 

do not provide any useful information about the turbulence other than crude estimates of mean 

velocity and turbulence intensity. This section will discuss how spectral statistics are used to take 
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time domain pressure measurements and represent them as functions in the frequency domain. A 

key assumption of this analysis is that the turbulence measurement time-series can be treated as a 

stationary, random process where the mean, mean square, variance, and standard deviation do 

not vary with time [78]. In this work, turbulent flow data was attained using an invasive 

approach where a fast-response pressure probe was placed in the flow and dynamic pressure 

measurements were made. Further details concerning the turbulence measurement and 

experimental work can be found in Chapter 4 and in recent work by the author [79,80]. The most 

useful statistical quantity which is used many times throughout this modeling procedure is called 

the power spectral density (PSD). The pressure PSD between two points or an array of points is 

essential in order to provide a measure of spatial dependence of the pressure field. Pressure in the 

time-domain at a point az  in space is represented as ( , )ap z t  and has units of Pa. The pressure 

PSD between two points in space is called the pressure cross-power spectral density (CPSD) and 

can be expressed as, 

 
1

( , , ) lim ( , ) ( , ) e
4

T j t
p a b a b

TT
S z z E p z t p z t dt d

T
  



¥ 

¥ ®¥

ì üï ïï ïé ù= ,í ýê úë ûï ïï ïî þ
ò ò  (3.1) 

where T  is the sample time,   is a time offset,   is angular frequency with units of rad/s, and 

E  denotes that an expectation of the two pressure signals must be taken [81]. Units of the 

pressure CPSD (and PSD) function are Pa2/rad/s. 

3.1.2 Distributed Parameter Electromechanical Model 

The first fully coupled distributed parameter energy harvesting model was presented by Erturk 

and Inman (2008) for cantilever beams with sinusoidal base excitation [82]. The model proposed 

in this dissertation uses the same approach as in [82]; however, a statistically determined 

distributed force is applied rather than base excitation. 
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Figure 3.1: Schematic of cantilevered unimorph harvester with distributed fluid force. 

 

 The present analysis assumes that the harvester is a long, slender, unimorph cantilever 

consisting of one piezoelectric layer with continuous electrodes perfectly bonded to an elastic 

substrate experiencing small transverse deflection. See the work of Priya & Inman (2008) [83] 

for details concerning both unimorph and bimorph harvester configurations, and Erturk et al  

(2009) [84] for a study on the effects of segmented electrode pairs. The model presented here 

will apply not only to cases where the piezoelectric layer length pL  is less than that of the 

substrate sL , but also for cases where the piezoelectric layer significantly modifies the mass 

and/or stiffness of the substructure. If the piezoelectric material does not extend the full length of  
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the substrate, such as shown in Figure 3.1, the mass and stiffness of the beam become 

discontinuous functions of z . Because of these non-uniform mass and stiffness properties, the 

Rayleigh-Ritz method is used to provide analytical approximations for natural frequencies, mode 

shapes, and frequency response functions of the beam. The segment of beam bonded to 

piezoelectric material will be referred to as the composite portion, and may consist of many 

layers each with their own material properties and dimensions. (See Figure 3.2.) 

 The governing differential equation of motion for transverse (bending) deflection of a fully 

coupled, electromechanical, Euler-Bernoulli beam, subject to a distributed force can be 

expressed as, 
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 (3.2) 

where YI is the bending stiffness, I is the area moment of inertia, rc  and vc  are coefficients of 

strain rate damping and viscous damping respectively, m  is the linear mass density, fm  is 

added mass of the surrounding fluid,   is the piezoelectric coupling term, v  is the strain induced 

voltage across a load resistor LR , and fF  is the distributed turbulence-induced force. See Figure 

3.1 for a schematic showing a unimorph cantilever in turbulent cross flow. The Dirac delta 

function   is used in equation (3.2) to localize electromechanical coupling induced from the 

piezoelectric material which is bonded to the beam over the distance from 1z  to 2z . 
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Figure 3.2: Schematic of a typical unimorph beam cross-section showing several dimensional terms used 
in this analysis. 

  

 Constitutive relationships of the piezoelectric material for bending (or 31 mode) deformation 

are used to derive the piezoelectric coupling term  . These constitutive relationships are given as 

[85], 
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 (3.3) 

and for the fully elastic case where there is no piezoelectric coupling the stress-strain relationship 

can be shown as, 

 1 1 1
s s sT Y S=  (3.4) 

where – in equations (3.3) – S  is strain, D  is electric displacement, T  is stress, E  is electric 

field, Y  is the modulus of elasticity, d  is the piezoelectric constant and T  is the stress-free 

dielectric permittivity. The superscripts s and p denote substrate and piezoelectric material 

respectively. The z  and x  axis directions within the material layers are denoted with subscripts 1 
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and 3 respectively. Through derivations of the piezoelectric coupling term   defined in equation 

(3.5) and the electrical circuit expression given in equation (3.6) for a unimorph cantilevered 

beam were presented and discussed in [82]. 

 ( )31 2 2

2
p p
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Y d b
h h

h
 =   (3.5) 
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In the previous two equations b  is width, h  is thickness, and subscripts p  and s  denote 

piezoelectric material and substrate material respectively. The terms bh , ch , and pch  are 

locations of the bottom surface, top surface, and centerline (respectively) of the piezoelectric 

material relative to the neutral axis of the composite beam segment. These locations and other 

dimensional terms used throughout this analysis are illustrated in Figure 3.2. 

 Composite bending stiffness cYI  and location of the neutral axis of the composite beam 

segment are calculated using a composite cross-section area transformation technique [86]. This 

technique can be found in most intermediate mechanics of materials textbooks and will not be 

discussed here. Material properties of the beam can be defined as functions of z  simply by using 

the Heaviside step function H( f ) which is equal to zero if  f < 0 and equal to unity if  f > 0. The 

mass and stiffness material property functions can therefore be represented as, 

 ( ) ( ) ( ) ( )1 2 2( ) H H H Hc s sm z m z z z z m z z z Lé ùé ù=    ,   ê úê úë û ë û  (3.7) 

 ( ) ( ) ( ) ( )1 2 2( ) H H H Hc s sYI z YI z z z z YI z z z Lé ùé ù=    ,   ê úê úë û ë û  (3.8) 
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where cm  and sm  are the linear mass densities of the composite and substrate beam segments 

respectively, while cYI  and sYI  are the bending stiffness values of the composite and substrate 

segments respectively. The mass and stiffness matrices used for the Rayleigh-Ritz formulation 

are defined as [87], 

 
0

sL

m nmU U dz= òM  (3.9) 
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g
d U d U

YI dz
dz dz

= ,òK K  (3.10) 

where U  are orthogonal and orthonormal polynomial shape functions which were found using 

the Gram-Schmidt iterative procedure presented by Bhat 1985 [88]. Subscripts m  and n  are 

integer values that denote a particular mode of vibration such that 1,2, 3...m N=  and 

1,2, 3...n N=  where N  is the number of terms used in the Rayleigh-Ritz approximation. The 

geometric stiffness gK  was included in equation (3.10) to account for axial loading and is 

defined as, 

 
0

( ) ( )sL
m n

g z
dU z dU z

N dz
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ì üï ïï ï= í ýï ïï ïî þ
òK  (3.11) 

where zN  is the axial load due to gravity and is given below in equation (3.12). 

 ( )( )z sN z mg L z=   (3.12) 

Note that the acceleration due to gravity is in the negative z  direction; therefore, the value for g  

is a negative quantity i.e., the beam is in compression. Also, note that negative acceleration 

causes the diagonal terms in the geometric stiffness matrix to become negative. 
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Figure 3.3: Rayleigh-Ritz mode shapes of the unimorph harvester used in the case study from Section 3.2 
compared to those of a uniform elastic Euler-Bernoulli beam. 

 

If these negative elements in the geometric stiffness matrix become large enough, the system will 

go unstable i.e., the beam will buckle. The lowest axial load that causes this instability is called 

the critical buckling load. 

 The mass and stiffness matrices of equations (3.9) – (3.11) are used in the following typical 

eigenvalue problem formulation, 

 ( )2 0m m =K M c  (3.13) 

where c  are the eigenvectors, and 2  are the eigenvalues such that the natural angular frequency 

of the mth mode of vibration is simply m  with units of rad/s. The Rayleigh-Ritz mode shapes   
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are then found using eigenvectors from the eigenvalue problem solution and are calculated with 

the following finite summation series. 

 
1

( )
N

m m m
m

z U
=

= å c  (3.14) 

Figure 3.3 shows the first three normalized Rayleigh-Ritz mode shapes of a cantilevered 

unimorph harvester calculated from equation (3.14) and how they compare to those of an elastic 

uniform Euler-Bernoulli beam. 

 Orthogonality conditions of the Rayleigh-Ritz mode shapes are shown in the following 

expressions, 
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where mn  is the Dirac delta function which is equal to unity for m n=  and zero for m n . 

The modal beam and fluid mass are mm , and m  respectively. Because the Rayleigh-Ritz mode 

shapes are orthogonal to each other, the equation of motion can be represented as a series of N 

uncoupled, second order, ordinary differential equations which describe the modal dynamics of 

the beam. Total beam displacement is assumed to have the following form, 
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where   is the modal displacement. It is now possible to get the modal equations of motion 

which can be expressed as,   
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where   is the modal damping ratio. Assuming a sinusoidal response for both voltage and 

displacement of each mode, the steady-state modal displacements can be solved from the Fourier 

transform of equation (3.19). The modal displacements can be represented with the following 

expression, 
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where 0V  is the steady-state strain-induced voltage across the load resistor LR . For convenience, 

the modal fluid forcing term   and the modal piezoelectric coupling term   are defined as 

follows. 
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The numerator terms in parentheses in equation (3.20) are referred to as the forcing terms (or 

system inputs), while the denominator contains the modal displacement frequency response 
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function (FRF) terms. The modal displacement FRF of the fully elastic system is defined in 

equation (3.23) and will be used extensively throughout the remainder of this analysis.1 
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Recall the assumed solution form for the mechanical response of the beam given in equation 

(3.18), substitute it into the electrical circuit expression given in equation (3.6), and perform the 

integration to get, 
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where it is important to recognize that all the terms are now either constants or sinusoidal 

functions of time only. Therefore, taking the Fourier transform of equation (3.24) yields the 

following modal representation of the electrical equation, 
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where it is convenient to define the time constant c  as that of a simple RC circuit [89], 

 33
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1 Note the difference between the Heaviside step function symbol H  used in equations (3.7) and (3.8), and the 
italicized FRF symbol H . 
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and the modal constant can be defined as, 
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Upon substitution of equation (3.20) into equation (3.25), it is possible to show an analytical 

expression for the fully coupled electromechanical modal response of a piezoelectric unimorph 

cantilever excited with an arbitrary distributed force along the length of the beam. 
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The distributed modal forcing term   in equation (3.28) for highly turbulent fluid flow cannot 

be defined analytically. The following section presents a model for the statistical derivation of 

this modal fluid forcing term. 

3.1.3 Distributed Parameter Turbulence-Induced Vibration 

Random vibration theory shows that the mean square displacement 2x  of a single degree of 

freedom system is, 
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where xS  is the displacement PSD, H  is the system FRF, and fS  is the force PSD. For 

distributed parameter turbulence-induced vibration problems, the force PSD is difficult to 

predict. Powell (1958) developed the acceptance integral approach which is a statistical measure 

of how well a turbulent pressure field excites particular vibration modes of a structure [90].  
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Figure 3.4: Theoretical joint and cross acceptance values with their corresponding mode shapes for the 
first three modes of a uniform cantilever beam. 

 

One form of the acceptance integral is given as, 
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where J  is the acceptance, pS  is the pressure CPSD along the length of the beam,   are the 

Rayleigh-Ritz mode shapes defined in equation (3.14), and both z  and z¢  are arrays of points 

along the z-axis [61]. Figure 3.4 shows theoretical acceptance values for the first three modes of 

a cantilever beam as functions of correlation length  . 

 Correlation length can be considered a measure of how the pressure at one point on a surface 

varies from that of another point over time. A large correlation length in this case means that 

pressure along the entire beam length varies similarly with time. Notice that as   ¥ , the 
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acceptance trends approach theoretical maximum values. The total beam displacement PSD can 

be expressed as, 

 
22 *( , ) 2
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where JN  is the number of modes used to approximate the displacement PSD, A  is the area of 

the cantilever normal to the turbulent flow, and H  is the modal displacement FRF for the beam 

as defined in equation (3.23)2. 

 In many cases, the cross acceptance terms (for m n ) are much smaller than the joint 

acceptance terms (for m n= ) and can be neglected with minimal effect on the displacement 

PSD predictions. Assuming that the cross acceptance terms are negligible, equation (3.31) can be 

reduced to, 
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but caution should be taken to validate this assumption. Great inaccuracies may result if 

conditions such as those discussed by Au-Yang (2000) cannot be met [91]. The example 

calculations given in Figure 3.5 are from the case study presented in section 3.2. These 

calculations demonstrate that displacement due to joint acceptance terms are orders of magnitude 

greater than displacement caused by cross acceptance terms thus validating the use of equation 

(3.32). 

 

 

 

                                                 
2 The asterisk (*) in equation (3.31) denotes the complex conjugate of the modal displacement FRF. 
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Figure 3.5: Example of tip displacement PSD functions comparing contributions of joint acceptance terms 
and cross acceptance terms for the first three modes of a long, slender cantilever beam. 

 

 Similar to the single degree of freedom expression given in equation (3.29) the total mean 

square displacement of a cantilever in turbulent cross-flow can be approximated with, 
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where S  is the frequency bound of the pressure PSD. For practical application purposes s  is 

equal to or less than the Nyquist frequency ( )s nyq  . Realize that equations (3.32) and (3.33) 

can be expressed in terms of modal displacement rather than physical displacement simply by 

removing the mode shape terms. It is then possible to define the modal displacement PSD 

function as, 
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where the modal turbulence-induced force PSD mS  is simply mmJ A . Given the previous 

assumption that the structural response will be sinusoidal, the mean modal amplitude of vibration 

e  can be found by multiplying the modal root-mean-square amplitude by 2  such that, 
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where the subscript e denotes the fully elastic (uncoupled) system. In other words, equation 

(3.35) is the mean modal displacement of the cantilever without backwards coupling effects of 

the piezoelectric material. This result of the elastic system can be combined with the analytical 

solution for the coupled system to yield the fully coupled electromechanical response as 

demonstrated in the following section. 

3.1.4 Fully Coupled Electromechanical Response 

From equations (3.20) and (3.23) it is straightforward to express the mean modal displacement 

amplitude for the coupled electromechanical system as, 
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 (3.36) 

where the right-hand side of the equation may be thought of as modal displacement of the fully 

elastic structure modified by the electrical coupling of the piezoelectric material. The overbar on 

  serves as a reminder that equation (3.36) has a statistically derived distributed fluid forcing 

term which can be expressed as, 
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Substituting equation (3.37) into equation (3.28) an expression for the modal mean steady-state 

load voltage amplitude can be given as, 
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where the total average power output can then be estimated from, 
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Upon substitution of equation (3.38) into equation (3.36) and recalling equation (3.18), the total 

mechanical response of the beam can be given as follows. 
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 Depending on the desired application of this analysis, it may be necessary to have an 

expression for the load voltage PSD function. According to equation (3.29), classic random 

vibration theory shows that the displacement PSD xS  of a single degree of freedom system can 

be given as, 
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( ) ( ) ( )x fS H S  =  (3.41) 
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where an FRF ( )H  and a forcing function PSD ( )fS  are required. In this work the authors 

present a similar expression for the modal load voltage PSD given in equation (3.43), where vH  

is the electromechanical FRF, and S  is the turbulence-induced modal force PSD which was first 

introduced in equation (3.34). Upon inspection of equation (3.38) an FRF between elastic modal 

displacement e  and load voltage 0V  may be defined with the following expression. 

 ( )
1
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m m
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j
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 (3.42) 

 Taking the amplitude of the coupling FRF in equation (3.42) and multiplying by the modal 

displacement PSD S  yields the following expression for modal load voltage PSD, 
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where the modal force PSD S  was introduced into the expression upon substitution of equation 

(3.34). It is then possible to attain the electromechanical FRF vH  from equation (3.43) by 

multiplying the amplitude of both the coupling FRF cH  and the fully elastic FRF H  as show in 

equation (3.44) below. 
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Figure 3.6: Electromechanical FRF as defined in equation (3.44) for various load resistance values. 

 

 Figure 3.6 shows the electromechanical FRF defined in equation (3.44) for the cantilevered 

unimorph harvester used in the case study discussed in section 3.2. One can see in Figure 3.6 that 

an increase in load resistance causes an increase in amplitude. This increasing trend is clearly 

shown in the enlarged window surrounding the fundamental mode frequency in Figure 3.6.  

 Multiplying the modal load voltage PSD given in equation (3.43) by the square of the modal 

piezoelectric coupling constant, one can obtain the modal piezoelectric coupling force PSD given 

in equation (3.45) below. 

 2( ) mcm vmS S =  (3.45) 

Now that the PSD of both forcing terms is defined in equations (3.34) and (3.45), the fully-

coupled displacement PSD can be found by recalling the form of equations (3.32) and (3.36), 
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where the squared mode shape terms 2
m  are included to transform the expression from modal to 

physical displacement coordinates. 

3.2 Experimental Validation 

This section provides details about an experimental case study performed for model validation 

purposes. Results show that the model presented in section 2.1 agrees well with experiment.  

More details concerning proof of concept experiments and initial modeling strategies can be 

found in Chapter 2, and in [60] and [80]. See also Chapter 4 and [79] for a more in-depth 

discussion about predicting turbulence-induced vibration using pressure probe measurements. 

3.2.1 Case Study Results 

 A case study was performed using a single unimorph harvester placed in highly turbulent 

cross-flow. Material properties and dimensions of the harvester used in this case study are 

summarized in Table 3.1. The harvester was constructed by bonding a QuickPack™ from Mide 

Technology Corp. (model QP16n) to a spring steel cantilever with Scotch-Weld™ structural 

adhesive from 3M (model DP-460). Figure 3.7 illustrates construction details of the unimorph 

harvester included in the model and shows the relative length and thickness of each material. 

Neutral axis locations of the bonded and un-bonded portions of the beam are also shown. The 

ratio of bending stiffness between the composite portion of the harvester and the substrate 

( / )c sYI YI  was 4.58. 
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Table 3.1: Design parameters for the unimorph harvester used in the case study 

Substrate Properties Symbol Value Units 

Mass density           s  7800 kg/m3 

Young's modulus   1
sY  205 GPa 

Length                    sL  9.53 cm 
Width                      sb  2.55 cm 
Thickness               sh  241 m  

PZT Properties Symbol Value Units 

Mass density  p  7700 kg/m3 

Young's modulus 1
pY  61.0 GPa 

Length pL  4.28 cm 

Width pb  2.10 cm 

Thickness ph  152 m  

Dielectric permittivity 33
T  7.35 nF/m 

Strain coefficient 31d  -190 pm/V 
 

 

  
 

Figure 3.7: A scaled representation of the unimorph used in this case study showing materials and 
construction details. 
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 Turbulent flow conditions were generated and maintained within a wind tunnel using a 

vertical cylindrical bluff body. The bluff body had a diameter of 4.83 cm and was positioned 

15.24 cm upstream of the cantilever location. Flow velocity was approximately 8.1 m/s. Two 

custom pressure probes were used to make all turbulence measurements. A laser displacement 

sensor was used to measure cantilever tip deflection u , while voltage v  across the load resistor 

LR  was measured directly with National Instruments data acquisition hardware. See Figure 3.1 

for an illustration that helps define parameters u , v , and LR . 

 The general experimental procedure began by first placing the harvester at a known location 

in turbulent air flow. Tip deflection and load voltage data were recorded for seven load resistor 

values. Actual load resistance values are listed in table 3.2. While keeping flow conditions 

approximately constant, the harvester was then removed, and the pressure probes were 

positioned such that they measured the fluctuating dynamic pressure normal to where the 

harvester’s surface was previously located. Pairs of pressure measurements were made by 

keeping one probe fixed while the other was positioned at a known separation distance (or 

known location along the z-axis). Pressure measurements were made at several separation 

distances along the length of the harvester. These pairs of pressure measurements were then used 

to calculate the pressure CPSD from equation (3.1) and eventually the distributed fluid forcing 

function from equation (3.34). 

 

Table 3.2: Actual load resistance values used in the case study 

Parameter Symbol Values Units 

Resistance No. n  1 2 3 4 5 6 7  

Load Resistance LR  9.88 19.7 24.9 29.5 34.5 39.9 49.6 k  
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Figure 3.8: Unimorph harvester tip displacement PSD comparing model predictions to experimental 
measurements. 

 

 

 

 
 

Figure 3.9: Load voltage PSD for various load resistance values comparing model predictions to 
experimental measurements. 
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 Figure 3.8 and Figure 3.9 clearly demonstrate that the model agrees well with experimental 

data for both tip displacement and load voltage PSD functions as defined in equations (3.46) and 

(3.43) respectively. The most prominent peak at in both Figure 3.8 and Figure 3.9 is caused by a 

dominant frequency contained in the turbulent flow pressure measurements. This dominate 

frequency of approximately 34.0 Hz corresponds to the primary vortex shedding frequency of the 

bluff body which can easily be estimated using the Strouhal vortex shedding equation, 

 v
StU

f
L

=  (3.47) 

where vf  is the vortex shedding frequency in Hz, St  is the dimensionless Strouhal Number, U  

is the mean flow velocity in m/s, and L  is the characteristic length with units of meters. The 

second highest peak in both Figure 3.8 and Figure 3.9 corresponds to the fundamental bending 

mode frequency of the harvester. This fundamental bending mode is referred to as sf  and was 

approximately 41.2 Hz. In this case study vf  was intentionally offset from sf  in order to 

demonstrate how well the model can predict both the fluid forcing effects and the structural 

dynamics of the fully coupled distributed parameter system. A majority of the error seen at 

higher frequencies in the tip displacement PSD and voltage PSD functions can be attributed to 

electrical noise and bandwidth limitations of the pressure probes as discussed in Chapter 4. 

 Average power and RMS voltage as defined in equation (3.39) are shown in Figure 3.10 as 

functions of load resistance. Again, one can see that model predictions agree well with 

experimental measurements. The optimum resistance was found to be approximately 40 k  

where the maximum power output was 0.122 mW. Recall that the harvester was designed such 

that the first bending mode frequency sf  was significantly higher than the primary vortex 

shedding frequency vf . 
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Figure 3.10: Experimental results and model predictions for RMS load voltage and average power output 
as functions of load resistance. 

 

As these two frequencies coalesce, the harvester experiences a resonance condition where the 

amplitude of vibration and power output increase drastically. The modal damping ratios were 

adjusted one time such that the first three structural mode peaks in the displacement PSD 

predictions matched with those measured in experiment. After this initial damping ratio 

adjustment, the same damping ratios were used for all results and model predictions presented in 

this Chapter. The following section demonstrates how the model proposed in Section 2.1 can be 

used to modify the current harvester design in order to maximize power output. 

3.3 Parameter Optimization 

A brief analytical study was performed with the model presented in section 3.1. The goal of this 

study was to demonstrate how the power output of a single harvester could be maximized by 

modifying the most practical design variables. These variables were chosen to be the length and 

thickness of the substrate ( sL  and sh ) and PZT ( pL  and ph ) respectively, the load resistance LR

, and an added tip mass tM . 
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Figure 3.11: Schematic of cantilevered unimorph harvester modeled with a distributed fluid force and 
added tip mass (all parameters highlighted with a gray box were constrained variables used in the 
optimization study). 

 

3.3.1 Modified Rayleigh-Ritz Model 

Figure 3.11 shows a schematic of the modified unimorph harvester used in this optimization 

study. For every optimization case the original turbulent flow measurements discussed in section 

3.1.3 were used as the fluid forcing function, while only the harvester design was modified. In 

this section, the harvester design parameters given in Table 3.1 will be referred to as the initial 

design. 
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 The Rayleigh-Ritz model described in section 3.1.2 was modified to account for added tip 

mass tM  and axial loading from gravitational effects on both the tip mass and distributed beam 

mass. The modified Rayleigh-Ritz mass M  and stiffness K  matrices can be expressed as, 
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where the tip mass tM  contributes to both the total mass and stiffness of the system. Recall from 

the discussion following equation (3.12) that the acceleration due to gravity is in the negative z  

direction; therefore, the value for g  is a negative quantity. 

3.3.2 Effect of Natural Frequency on Power Output 

Recall that the natural frequency of the harvester sf  (41.2 Hz) and the primary vortex shedding 

frequency vf  (34.0 Hz) were intentionally offset in the initial design. It is obvious that the 

optimum natural frequency of the harvester is where s vf f=  causing the harvester to be driven 

at (or near) resonance. A tip mass was incrementally added to the harvester in order to 

demonstrate the effect that the natural frequency has on the voltage and power output. The 

results in figures 3.12 and 3.13 show that simply changing the natural frequency with the 

addition of a tip mass can cause a significant increase in power output. 
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Figure 3.12: Trends in load voltage PSD with increasing tip mass. 

 

 

 

Figure 3.13: Comparison of theoretical maximum power output (with tip mass) and experimental output 
(without tip mass). 
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 Figure 3.13 shows the experimental results originally shown in Figure 3.10 for no tip mass 

and an optimum resistance of approximately 40.0 k  compared to theoretical results given the 

optimum tip mass of 0.423 grams and an optimum load resistance of ~51.0 k . The power 

output at optimum load resistance increased approximately 280% from 0.122 mW for the initial 

design to 0.464 mW with the added tip mass. 

3.3.3 Parametric Sweep Approach 

Because every geometric design parameter listed in Table 3.3 affects the natural frequency of the 

harvester, it was obvious from the results shown in Figures 3.12 and 3.13 that a maximum in 

power output will occur where s vf f= . In order to isolate the effect that each of the four 

primary design parameters ( sL , sh , pL , ph ) had on the power output, the natural frequency was 

held constant by using an added tip mass as a frequency tuning parameter. For example: if the 

design parameter was chosen to be substrate length, then for every new value of substrate length, 

a new tip mass was calculated such that the harvester’s natural frequency was held 

approximately constant. This constant frequency was called the target frequency. 

 Calculations for every tip mass were performed iteratively for each new design parameter 

value using a numerical solver developed with MATLAB software. This iterative tip mass solver 

(illustrated in Figure 3.14) successfully caused the natural frequency of each design iteration to 

be within ±0.01 Hz of the target frequency. 
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Table 3.3: Summary of constrained parameters used in this optimization study. 

Parameter Type Symbol Constraint Range Units 

Substrate Length Geometric sL  (4.318  - 9.144) cm 

Substrate Thickness Geometric sh  (0.178  - 1.270) mm 

PZT Length Geometric pL  (3.048  - 9.144) cm 

PZT Thickness Geometric ph  (0.127  - 1.270) mm 

Load Resistance Electrical LR  (1.00  - 100) k  
Tip Mass Mass tM  (0.00  - 1.50) grams 
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Figure 3.14: Flowchart illustrating the computational procedure followed for each new value assigned to a 
geometric parameter. 
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In the present study, the target frequency was set to 34.0 Hz, which is approximately equal to the 

vortex shedding frequency of the bluff body. Table 3.3 lists each of the six design parameters 

along with their constraints. The geometric type parameters from Table 3.3 were the primary 

focus of this optimization study. Parameter constraint ranges listed in Table 3.3 were set using 

the following practical design considerations: 

Substrate Length ( )sL  

• Min: Cannot be less than initial PZT length. 

• Max: Cannot cause natural frequency to become less than the target frequency. 

Substrate Thickness ( )sh  

• Min: Cannot cause natural frequency to become less than the target frequency. 

• Max: Reasonable bound to capture all maximum values and interesting trends. 

PZT Length ( )pL  

• Min: Cannot cause natural frequency to become less than the target frequency. 

• Max: Cannot exceed length of initial substrate length. 

PZT Thickness ( )ph  

• Min: Cannot cause natural frequency to become less than the target frequency. 

• Max: Reasonable bound to capture all maximum values and interesting trends. 

Load Resistance ( )LR  

• Max/Min: Reasonable bound to capture all maximum values and interesting trends. 

Tip Mass ( )tM  

• Min: Equal to initial design ( 0tM = ) 

• Max: Cannot cause initial design to buckle 
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 The following describes the general computational procedure used to evaluate trends in 

power and voltage output as functions of all six design parameters listed in Table 3.3. First, a 

value was assigned to a given geometric parameter of interest from within the constraint range of 

that parameter. The other three geometric parameters were set to their initial design values given 

in Table 3.1. Next, a tip mass was added to the new design (if necessary) such that the natural 

frequency was within 0.01 Hz of the target frequency of 34.0 Hz. The model presented in section 

3.1 along with modified equations (3.48) and (3.49) was then used with the new geometric 

parameter and tip mass to calculate power and voltage output as functions of load resistance. 

Finally, the value of the geometric parameter of interest was incremented to its next value and 

the procedure was repeated. See Figure 3.14 for an illustration of this procedure. 

3.3.4 Mechanical Stress Considerations 

It is important to note that the geometric constraints were set without considering maximum 

allowable stress limits of the PZT or substrate. It was therefore possible for the maximum stress 

limits to be exceeded before reaching the geometric constraints. In order to identify which design 

iterations (if any) caused material stresses to exceed allowable limits, maximum bending stresses 

were calculated for every combination of geometric parameter, load resistance, and tip mass. 

 The failure strength for an un-bonded QP10n PZT QuickPack was determined to be 176.5 

MPa which was the lowest failure strength observed from three-point bending tests performed on 

30 samples during a study conducted by Anton et al [92]. Based on Anton’s results, the 

maximum allowable stress for the PZT was set to 170 MPa. Note that this allowable stress may 

be significantly lower for harvester designs that do not encapsulate the PZT wafer between two 

layers of kapton as is done with QuickPacks (see Figure 3.7). 
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 It was assumed that the first material failure to occur would be fracturing of the brittle PZT 

ceramic wafer. The maximum stress in the PZT can be expressed as, 

 max

0

c

c z

Mh
I


=

=  (3.50) 

where max  is the maximum stress due to bending, M  is the bending moment, ch  is the 

distance from the neutral axis to the outermost surface of PZT (see Figure 3.2), and cI  is the 

second moment of area of the composite section. The moment was calculated with the following 

expression, 
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d u
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dz=

= å  (3.51) 

where YI  is the bending stiffness, and mu  is the beam deflection amplitude as defined in 

equations (3.8) and (3.40) respectively. Only the first three modes were considered in the 

deflection and stress calculations because higher modes had negligible contributions to the final 

results. 

3.3.5 Parametric Sweep Results 

Figures 3.15 through 3.19 summarize the results from five sets of parametric sweep calculations 

which were performed following the procedure illustrated in Figure 3.14. Each of the five figures 

below show how the average power output of a cantilevered unimorph harvester varies with the 

tip mass, load resistance, and each of the four geometric parameters. Recall Table 3.3 for a list of 

all design parameters and their constraints.  
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Figure 3.15: Theoretical results showing power output as a function of tip mass and load resistance for a 
unimorph harvester in turbulent cross-flow. The dashed and solid lines respectively represent optimum 
resistance and tip mass as functions of the tip mass. 

 
 

 
Figure 3.16: Theoretical results showing power output as a function of substrate length and load 
resistance for a unimorph harvester in turbulent cross-flow with a constant natural frequency of 34.0 Hz. 
The dashed and solid lines respectively represent optimum resistance and tip mass as functions of the 
substrate length. 
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Figure 3.17: Theoretical results showing power output as a function of PZT length and load resistance for 
a unimorph harvester in turbulent cross-flow with a constant natural frequency of 34.0 Hz. The dashed 
and solid lines respectively represent optimum resistance and tip mass as functions of the PZT length. 

 
 

 
Figure 3.18: Theoretical results showing power output as a function of substrate thickness and load 
resistance for a unimorph harvester in turbulent cross-flow with a constant natural frequency of 34.0 Hz. 
The dashed and solid lines respectively represent optimum resistance and tip mass as functions of the 
substrate thickness. 
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Figure 3.19: Theoretical results showing power output as a function of PZT thickness and load resistance 
for a unimorph harvester in turbulent cross-flow with a constant natural frequency of 34.0 Hz. The dashed 
and solid lines respectively represent optimum resistance and tip mass as functions of the PZT thickness. 

 

 Figures 3.15 through 3.19 plot the geometric parameter on the x-axis, the load resistance on 

the primary y-axis (y1), the average power output on the z-axis, and the tip mass on the 

secondary y-axis (y2). The dashed line shows the optimum resistance or maximum power output 

as a function of geometric parameter. The solid line shows tip mass as a function of geometric 

parameter. Lastly, the vertical dotted line is located at the initial design value of the geometric 

parameter only. Recall that the initial design had no tip mass while the results in Figures 3.15 

through 3.19 have a varying tip mass. 

 The results in Figure 3.15 clearly show the optimum tip mass and load resistance of 0.423 

grams and 51.0 k  respectively. Note that Figure 3.15 contains the average power output trends 

first shown in Figure 3.13 for a tip mass of 0 and 0.423 grams. Figure 3.16 shows theoretical 

average power output as functions of substrate length and load resistance. It is interesting to note 
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that changing the substrate length modifies the forcing function mS  defined in equation (3.34) 

because the area A  and the acceptance integral J  are functions of substrate length. 

 Figure 3.17 shows a clearly defined ridge of optimum resistance values. Here we see that the 

tip mass initially increases as the PZT length increases then it reaches a maximum and begins to 

decrease all while keeping the natural frequency constant. This initial increase of tip mass is 

caused by an increase in beam stiffness. As the length of the PZT increases, it continues to 

increase the mass of the beam but has a decreasing influence on the stiffness. This added mass 

increases the axial compressive load in the beam which begins to soften the structure; thus, 

decreasing the tip mass required to maintain a constant natural frequency. 

 Figures 3.18 and 3.19 show that by minimizing the substrate and PZT thickness, one can 

maximum power output. Minimizing PZT thickness influences the power output by causing an 

increase in capacitance and mechanical stress in the PZT. Minimizing the substrate thickness 

decreases the piezoelectric coupling and modal constant given in equations (3.22) and (3.27) 

respectively. Furthermore, minimizing PZT or substrate thickness causes a significant increase in 

amplitude of vibration which also causes an increase in stress and ultimately power output. The 

power appears to increase without bound as the PZT or substrate thickness is minimized. For all 

cases, the maximum bending stress in the PZT never exceeded the allowable limit of 170 MPa. 

3.4 Chapter Summary 

A fully coupled electromechanical distributed parameter model for energy harvesting from 

turbulence-induced vibration of a cantilever unimorph harvester was presented and 

experimentally validated. The model includes a combination of both statistical and analytical 

components. The distributed turbulence-induced force was derived using a statistical model 

called the acceptance integral technique. Natural frequencies, mode shapes, and frequency 
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response functions of the harvester were calculated using the Rayleigh-Ritz analytical 

approximation method. Lastly, the electromechanical coupling terms of the unimorph harvester 

were derived from constitutive relationships for the 31 bending mode of a piezoelectric material. 

 Two custom pressure probes were used to take measurements at several locations in the 

turbulent wake of a bluff body in air. These measurements were used to calculate the pressure 

CPSD in equation (3.1) and eventually the modal forcing function given in equation (3.34). 

Figures 3.8-3.10 show good agreement between experimental measurements and model 

predictions for tip displacement PSD, load voltage PSD, RMS load voltage, and average power 

output as defined in equations (3.46), (3.43), and (3.39) respectively. 

 A brief parameter optimization study was performed using the proposed model. It was shown 

that simply adding a tip mass could increase the power output by 280%. This drastic increase in 

power was caused when the natural frequency of the harvester approached the primary vortex 

shedding frequency of the turbulent flow. For each optimization case, a sweep parameter was set, 

then a tip mass was iteratively solved for such that the harvester’s natural frequency remained 

constant. The four geometric sweep parameters were chosen to be the length and thickness of the 

substrate and PZT. For every new geometric parameter value and corresponding tip mass, the 

power was calculated and plotted as a function of the geometric parameter and load resistance. 

This parametric sweep optimization study demonstrated that minimizing the thickness of the 

PZT or substrate, or maximizing the substrate length can cause significant increases in power 

output. 
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CHAPTER IV 

4. DUAL PRESSURE PROBES FOR PREDICTING TURBULENCE-

INDUCED VIBRATION 

 Measuring highly turbulent fluid flow is challenging, especially in cases where the 

turbulence intensity exceeds acceptable limits for hot wire anemometry techniques. Using fast 

response pressure probes is an effective and well documented turbulence measurement method; 

however, there is little mentioned in the literature about using pressure probes to measure 

turbulence in low mean velocity air flows (0-12 m/s). Also lacking in the literature is a complete 

method of using pressure probe measurements to predict turbulence-induced vibration. Pressure 

probes are commercially available; however, they are intended for high-velocity environments 

(e.g. jet engine exhaust) and have a bandwidth on the order of 10 kHz. Considering the low-

velocity (0-12 m/s), low bandwidth (300 Hz), and high sensitivity needed in the current study, it 

was decided to design, build, calibrate, and model a custom pair of pressure probes. 

 In this chapter the design and analysis of two high-sensitivity pressure probes is discussed. It 

will be shown how measurements with these probes are used to develop a statistically derived 

turbulent fluid forcing function. This function will then be combined with an analytical structural 

dynamics model such that not only the modal RMS displacements, but also the modal 
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displacement power spectral density plots can be predicted for a given structure. The pressure 

probe design, turbulence measurement techniques, and both the statistical and analytical models 

will be validated with experimental results. The results shown in Section 4.4.3 of this chapter are 

for three case studies, each performed with a single cantilever exposed to highly turbulent cross-

flow. 

4.1 Introduction 

Turbulent and highly unsteady fluid flows are abundant in nature and are commonly encountered 

in real-world engineering applications. When elastic structures are exposed to turbulent flow, 

turbulence-induced vibration (TIV) is inevitable. In many cases TIV is problematic, and can 

cause catastrophic structural damage. In other cases, such as energy harvesting applications for 

example, one may wish to maximize vibration caused by turbulence [13,60,80]. Regardless of 

the application, the most challenging aspect of understanding and modeling turbulence-induced 

vibration is that turbulent flows are both unpredictable and difficult to measure. Therefore, the 

motivation behind the work presented in this chapter is not only to propose an effective method 

of turbulence measurement, but also to show how these measurements can be used to predict 

turbulence-induced vibrations. The modeling techniques developed in this work could then be 

used to modify the design of any structure to allow only desired levels of turbulence-induced 

vibration. 

 Motivation for the research presented in this chapter began during a recent investigation of 

energy harvesting methods in low velocity flows with high-intensity turbulence [60,80]. Many 

authors have explored energy harvesting techniques for flow-induced vibration; however, most 

harvester designs and modeling methods found in the literature are focused on either vortex 
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induced vibration (VIV) or flutter3. The first TIV energy harvesting study was performed by 

Akaydin et al (2010) with a piezoelectric cantilever in boundary layer turbulence; however, this 

was purely an experimental study and no TIV modeling was presented [13]. An experimentally 

validated model for energy harvesting from TIV remained absent from the literature until 

Hobeck and Inman (2011-2013) [60,80,93]. Although an energy harvesting study inspired the 

work presented here, this chapter focuses on the details of modeling TIV which proved to be a 

necessary and interesting aspect of the energy harvesting research. 

4.1.1 Existing Methods for Measuring Turbulent Flow 

Extensive efforts have been put toward the development of fast response pressure probes for 

measuring turbulent flow. Work done by Jezdinsky (1966) is among the earliest discussed in 

literature on the topic of measuring turbulent flows with pressure probes [94]. The majority of 

research on this topic has been developed for high velocity turbulent flow environments such as 

those encountered in turbomachinery [95–98]. The work presented in this chapter, however, is to 

make measurements and predictions based on low-velocity turbulent flows such as those found 

in ventilation systems, slow moving vehicles, or natural environments i.e., wind and streams. 

The proposed turbulence-induced vibration model is a modification of a model first 

developed by Powell (1958) [90], used extensively by Au-Yang [99–101], and more recently by 

Finnveden et al in 2005 [102]. This original model was only applied to direct measurement 

techniques where pressure fluctuations are measured by arrays of transducers fixed on the 

surface of the structure. Direct measurement techniques could not be implemented in the current 

                                                 
3 See Chapter 1, for an extensive review of various flow-induced vibration energy harvesting techniques. 
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study because fixing an array of transducers to the structure surface would greatly modify or 

hinder the true turbulence-induced vibration response. 

 Indirect measurement methods have also been explored, and are discussed in the literature. 

Indirect measurement refers to a process where the free stream turbulence is measured using hot 

wire anemometry, pressure probes, or other techniques and the dynamic response of a structure 

placed in that flow can be approximated. Research done by Grover et al (1978) shows extensive 

experimental analysis of tube bank dynamics where hot wire probes were used to measure the 

turbulence spectra [103]. Later, Axisa et al (1990) performed both theoretical and experimental 

analyses on turbulent excitation of tubes in cross-flow [104]. 

The technique presented in this chapter along with the work of Hobeck and Inman (2012) 

[79] combines indirect turbulence measurements with the previously discussed direct model 

approach. The primary advantage to the proposed method is that it is easy to implement, yet still 

provides very accurate predictions compared to existing techniques. Another key advantage is 

that after the turbulence is measured, predictions can be made for any structure experiencing 

similar flow conditions. These advantages along with other performance metrics, calibrations, 

and a detailed model are discussed later. 

4.2 Mathematical Model 

Due to the unpredictable nature of high-intensity turbulent flow, the most practical approach 

toward developing a turbulent fluid forcing function is to employ statistical techniques. The full 

model consists of an analytical structural dynamics portion which will be combined with a 

statistically derived forcing function. In order to maintain the focus of this modeling approach on 

the development of a turbulent forcing function, a simple Euler-Bernoulli cantilever beam will be 
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used in the analytical structural component (see Figure 3.1). It is important to note, however that 

this model can easily be adapted to accommodate more complex structures. 

4.2.1 Preliminaries on Spectral Statistics 

For the proposed model, the measured pressure p(t) is assumed to be a stationary random process 

in which its mean, mean square, variance, and standard deviation do not change with time [78]. 

Turbulence measurements performed for this work were recorded as time-series pressure data. It 

is necessary therefore, to perform several statistical operations which reduced the raw data into 

more useful and meaningful forms. The correlation function is a measure of how similar the 

pressure varies with time at two points in space (say az  and bz ). The pressure cross-correlation 

can be given as, 
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where T  is the sample time period, E  denotes that an expectation of the two pressure signals 

must be taken, and   is a shift in time t  between the two pressure signals. Another statistical 

measure used commonly in this analysis is called the pressure cross power spectral density 

(CPSD). The pressure CPSD is a measure of energy content within a signal and how it is 

distributed across the entire frequency spectrum of interest. Simply by taking the Fourier 

transform of the cross-correlation function one can get the following expression for the CPSD, 
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where j is the imaginary number and   is angular frequency in rad/s. It is important to note that 

throughout this chapter pS  is referred to as the double-sided CPSD function with units Pa2/rad/s. 
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See Figure 4.18a a for a plot of equation (4.2) that was calculated with data collected from 

measurements made using the pressure probes discussed in this chapter. 

4.2.2 Analytical Model 

This portion of the model defines the structural dynamics equations and how they are coupled 

with the turbulence-induced forcing function. The simple case presented here is modeled as a 

cantilever beam subject to a distributed turbulence-induced fluid force along its length and 

normal to its surface as illustrated in Figure 4.1. 
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Figure 4.1: Cantilevered Euler-Bernoulli beam subject to a distributed turbulence-induced fluid force 
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In the following analysis it is assumed that the beam is a long, slender, rectangular, cantilever 

experiencing small transverse deflections. Provided the previous assumptions hold true, the beam 

can be modeled using the well-known Euler-Bernoulli beam equations. The governing 

differential equation of motion for a beam subject to a distributed force can be expressed as 
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where ( , )u z t  is the transverse beam deflection, Y  is the Young’s modulus of the beam, sc  is 

the coefficient of viscoelastic strain rate damping, I  is the beam area moment of inertia, m  is 

the linear mass density, ac  is the coefficient of viscous damping, and ( , )fF z t  is an arbitrary 

distributed transverse load along the length of the beam. Assuming that the solution can be 

expressed as the following infinite and convergent series, 
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the relationship between steady state modal displacement m , and a modal distributed fluid force 

m  can be expressed as, 
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where the subscript m  denotes the mode number, m  is the natural frequency, m  is the mode 

shape and ( )H   is the complex frequency response function. The damping terms in equation 

(4.3) can be combined to give a single modal damping ratio m  which can be defined as, 
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Upon performing the general modal analysis procedure of substituting the assumed solution into 

equation (4.3), multiplying by the mode shape m , integrating over beam length L , and taking 

the Fourier transform one can attain the following. 
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Equation (4.7) is an expression for the modal forcing term due to an arbitrary distributed force. 

Analytical solutions for predicting the velocity or pressure field within a highly turbulent flow do 

not exist. Therefore, the time-domain forcing function ( , )fF z t  cannot be defined, and either 

statistical or numeric methods must be used to develop the modal forcing function m . 

4.2.3 Statistical Model 

Using classic random vibration theory, one can express the mean-square amplitude of a single 

degree of freedom oscillator subject to a random forcing function as, 
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where xS  is the displacement power spectral density (PSD) of the system, fS  is the forcing 

function PSD, and H  is the complex frequency response function of the oscillator [78]. A 

similar approach is taken for the distributed parameter system and is discussed in this section. 

 The most difficult aspect of predicting turbulence-induced vibrations is estimating the PSD 

of the distributed forcing function fS . Powell (1958) developed a technique for estimating 

turbulence-induced vibration called the acceptance integral method. 
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Figure 4.2: Theoretical cross and joint acceptance for first three modes of a cantilever beam. 

 

The acceptance integral is a measure of how effective a turbulent force is at exciting particular 

dynamic modes of a structure. One form of the acceptance integral can be expressed as, 
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where mnJ  is the acceptance term, L  is the beam length, pS  is the pressure CPSD function along 

the length of the beam, and both z  and z¢  are arrays of points along the z-axis [90]. 

 Figure 4.2 shows theoretical trends of the acceptance for the first three modes of a cantilever 

beam. An idealized expression for the coherence function as discussed by Au-Yang (2000) was 

used to evaluate the acceptance integral as a function of correlation length  . The plots in Figure 

4.2 can be regarded as upper bounds of the acceptance value where a perfectly correlated 

turbulent force along the length of the beam causes   ¥  conversely, a poorly correlated force 

causes 0  . 
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Figure 4.3: Comparison of tip displacement contributions between joint and cross acceptance terms. 

 

Provided that an expression for the acceptance can be attained, the total displacement PSD of a 

cantilever beam can then be expressed as, 
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where A  is the area of the cantilever normal to the turbulent flow, and mH  is the modal 

complex frequency response function for the structure as defined in equation (4.5) [100] 4. In 

many cases it can be shown that the amplitudes of vibration associated with the cross-terms 

( )m n  in equation (4.10) are significantly less than those for the joint terms ( )m n= . 

                                                 
4 The asterisk (*) in equation (4.10) denotes the complex conjugate of the frequency response function. 
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Assuming that the joint terms are negligible, the total displacement PSD of the cantilever beam 

becomes, 
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 For the remainder of this analysis it is assumed that the cross terms are negligible. This 

assumption is experimentally justified in the case study results from Figure 4.3, where the tip 

displacement PSD contribution from cross acceptance terms is approximately 2 orders of 

magnitude less than that of the joint acceptance terms at all frequencies. Because RMS 

displacement is a function of the integral of the PSD as shown in equation (4.8), one can 

conclude that the cross term contributions are indeed negligible. Au-Yang states that this 

assumption to neglect cross-acceptance is only valid if (a) the modal frequencies are well 

separated or (b) the cross-acceptance terms are small compared with the joint acceptances [100]. 

Au-Yang also lists and explains several other simplifying assumptions that are typically made 

while using the acceptance integral approach for TIV. 

4.2.4 Combined Turbulence-Induced Vibration Model 

Similar to a single degree of freedom system, the mean square displacement of the cantilever is 

found by integrating the displacement PSD over the frequency range. The modal mean square 

displacement can then be expressed as, 
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where the overbar on u  denotes a time-averaged value. By removing the mode shape terms from 

equation (4.12) and assuming a sinusoidal response, it can be shown than the mean modal 

displacement can be attained with the following expression. 
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Upon substituting equation (4.13) into equation (4.4) and recalling the expression for H  given 

in equation (4.5), it is now possible to express the total cantilever displacement as, 
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where one can immediately see that an attractive feature of this model is that only the acceptance 

terms ( )mnJ  are determined statistically. All other parameters of the cantilever (or structure of 

interest) can be chosen according to desired or allowable levels of vibration. 

4.3 Pressure Probes 

Two high sensitivity pressure probes were designed and built for the measurement of fluctuating 

dynamic pressure within highly turbulent, low-velocity flow. Pressure transducers and pitot tubes 

were preinstalled in the wind tunnel where the experiments were performed; however, they could 

not be used due to their lack of bandwidth and sensitivity. Because of the extremely high 

turbulence intensities (>50%), hot wire anemometry could not provide reliable velocity 

measurements [105].  
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4.3.1 Probe Design 

Each probe consists of a MEMS-based differential pressure sensor enclosed such that one port is 

exposed directly to turbulent flow while the other is isolated within a breathable chamber. This 

chamber consists of rigid walls with portions of thick cloth which act as a buffer for the static 

port to insure fluctuating pressures are measured at the dynamic port only. The pressure sensor in 

each probe has a differential pressure range of 249 Pa with a dynamic response time of 

100 s  (All Sensors Corp. Model 1-INCH-D-MV). Overall design details of the probes are 

listed in Table 4.1, while a schematic and photo of the probes are shown in Figure 4.4. 

 

 

Table 4.1: Overall design parameters of both pressure probes5 

Parameter Value Unit(s) 
Probe diameter 1.50 mm 
Tip length 8.25 cm 
Static port length 7.75 cm 
Sensor volume 134 mm3 

Pressure range 249 Pa 
Bandwidth 300 Hz 
Output voltage range 16 mV 
Sensitivity 0.064  mV/Pa 

 

 

 

 

                                                 
5 See Table 4.2 and Figure 4.13 for more details concerning pressure probe dimensions. 
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Figure 4.4: (a) Schematic of pressure probe design and (b) a photo showing the two probes used to 
perform turbulence measurements for the statistical TIV model. 

 

 

4.3.2 Static Calibration 

Static calibration refers to low turbulence intensity (<1%) flow measurement where the average 

probe sensor voltage output and average flow velocity is recorded at fixed incremental velocities. 

All calibrations were performed in a small, open loop, single stage wind tunnel with a test 

section measuring 91.0 cm long with a cross section of 35.6 cm wide and 13.6 cm high. For 

details on the wind tunnel construction and instrumentation see Bilgen (2010) [73].  

 

 

b) 

a) 
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 Static pressure probe calibration was performed on each probe individually where only the 

pressure probe and a pitot tube were in a sealed test section during the calibration procedure. 

Each pressure probe was positioned in the test section such that the probe tip was oriented 

normal to the mean flow direction and was held in a fixed position throughout the entire 

calibration procedure. Actual velocity was measured with a pitot tube positioned near the 

pressure probe. In order to minimize velocity profile effects, the pressure probe tip and pitot tube 

tip were separated in the widthwise direction yet set at equal height and lengthwise location in 

the test section. Results of the static calibrations are shown in Figure 4.5. 

 Wind tunnel velocity and sensor voltage were measured during pressure probe calibration; 

however, pressure rather than velocity was needed for the model. According to documentation 

for the pressure sensor, a linear relationship existed between voltage and pressure. A linear 

function is significantly easier to fit and well behaved over the entire voltage range compared to 

the non-linear, exponential function shown in Figure 4.5. Because of these practical advantages 

of establishing a linear relationship between voltage and pressure each probe was calibrated with 

dynamic pressure instead of velocity. 
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Figure 4.5: Static pressure probe calibration curves for velocity as a non-linear function of voltage output. 

 

 

Figure 4.6: Static pressure probe calibration curves for dynamic pressure as a linear function of voltage 
output. 
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 Dynamic pressure p  corresponding to the velocity data was calculated using the following 

relationship, 

 
2

2
a

a a

pU
p

R T
=  (4.15) 

where ap  and aT  are ambient pressure and temperature, U  is the velocity measured with the 

pitot tube and aR  is the universal gas constant for air [106]. Table 4.3 lists the actual values used 

in the calibration calculations for ap , aT , and aR . Both pressure probes were able to 

demonstrate excellent linearity between voltage and pressure using the data from Figure 4.5 

along with equation (4.15). Static calibration results for pressure are shown in Figure 4.6. 

 A hot wire probe was used to measure the reference velocity for the dynamic calibration 

procedure in section 4.3.3. Before dynamic velocity measurements could be made, the hot wire 

probe had to be calibrated statically using the same procedure for the static pressure probe 

calibrations as discussed previously.  

 

 

 

 

Figure 4.7: Static hot wire probe calibration results for (a) velocity and (b) pressure as non-linear 
functions of voltage output. 
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Figure 4.7a presents raw data from the hot wire calibration measurements along with a second 

order polynomial fitted to the data representing velocity as a continuous function of voltage. 

Figure 4.7b shows results of using equation (4.15) to calculate dynamic pressure as a function of 

hot wire voltage output with the data and fitted polynomial function from Figure 4.7a. 

4.3.3 Dynamic Calibration 

Dynamic calibrations were performed on each pressure probe individually. The dynamic 

response characteristics of both probes were found using a broadband excitation system 

identification technique. The general procedure involves measuring the input and output of an 

unknown dynamic system where the input can be represented as a broadband signal i.e. white or 

colored noise. The unknown system in this case is the pressure probe sensor assembly. This 

system identification method was used in a similar analysis performed by both Lenherr et al 

(2011) [95] and Ommen et al (1999) [107]. Figure 4.8 illustrates the sequence of gathering and 

processing pressure probe data, and shows where the static and dynamic calibrations were 

applied. Note that the dynamic calibration calculations were performed after the time domain 

data was converted to the frequency domain. Performing calibrations on the frequency response 

was appropriate because the forcing function used in the TIV model (Section 4.2) was applied in 

the frequency domain. Therefore, it was not necessary to compensate for pressure probe 

dynamics in the time domain. 

 

Pressure Probe 
Measurements

Apply Static Calibration: 
Convert voltage into pressure

Calculate Power 
Spectrums

Apply Dynamic Calibration: 
Inverse FRF compensation

Time Domain Analysis Frequency Domain Analysis

 

Figure 4.8: Diagram showing the flow of data gathered from the pressure probes. 
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 The input or reference signal was produced by measuring grid turbulence having an intensity 

of approximately 10%. An intensity of 10% was chosen because it was high enough to excite the 

pressure probe dynamics, yet low enough to be measured accurately with a single sensor hot wire 

probe. Grid turbulence refers to a turbulent flow that is assumed to be approximately both 

homogeneous and isotropic. Turbulence intensity is calculated using the following expression, 

 100%rmsU
TI

U
= ´  (4.16) 

where rmsU  is the root mean square velocity, and U  is the mean flow velocity [105]. Grid 

turbulence used for the calibrations was produced by placing an array of vertical cylinders at the 

upstream end of the test section. All cylinders had a diameter of 6.35 mm and were evenly 

distributed across the test section width spaced at 22.9 mm measured between their centers. Hot 

wire and pressure probe measurements were made approximately 30.5 cm downstream from the 

array of cylinders. The mean flow velocity was held constant at approximately 10 m/s for both 

calibration tests. 

 The dynamic calibration setup and procedure was similar to that of the static calibration. Two 

major aspects of the dynamic calibrations that were different from the static calibrations were: 

first, a hot wire probe rather than a pitot tube was used as the reference velocity; and second, 

time-series data rather than time-averaged data was measured and recorded.  

 For a given calibration test, a pressure probe and the hot wire probe were placed in the test 

section where they measured the grid turbulence simultaneously. Hot wire probe measurements 

were used as the input to the system, while the corresponding pressure probe measurement was 

used as the system output. The diagram shown in Figure 4.9 illustrates the components of the 

dynamic calibration setup. 
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Figure 4.9: Diagram showing the components of the dynamic calibration setup. 

 

 Even though the hot wire measurement was an output by definition, it was used as the input 

or reference signal; thus, hot wire system dynamics were assumed to be negligible compared to 

those of the pressure probes. This assumption to ignore hot wire sensor dynamics is justified 

considering that the pressure probes have a bandwidth of 100 Hz (Figure 4.10b) while hot wire 

probes have a bandwidth on the order of 100 kHz [108]. 

 Siglab software was used to sample and store the time-series voltages of the hotwire and 

pressure probes at a rate of 5.12 kHz. The output voltage was filtered digitally using lowpass, 

fourth-order, Butterworth topology with a cutoff frequency of 2.56 kHz. Matlab software was 

used for all post-processing of the data. The hot wire probe used in these calibrations was a TSI 

Model 1201 single sensor element. A Dantec 55M01 main unit and a Type 55M10 constant 

temperature anemometer bridge were used to produce the output voltage of the hot wire probe.  

 Figure 4.10a shows PSD functions of the hot wire and pressure probe measurements for both 

pressure probes. Notice that the PSD for both pressure probes clearly shows attenuation due to 

the first two acoustic resonance modes at approximately 525 Hz and 1580 Hz. 
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Figure 4.10: Grid turbulence measurements made with hot wire and pressure probes showing (a) pressure 
PSD functions and (b) FRF estimates. 

 

The DC offset seen between the two sets of data in Figure 4.10a is due to the second calibration 

test having a slightly higher mean flow velocity. Because the FRF is a function of the ratio 

between input and output PSD functions, the DC offset seen in Figure 4.10a had no effect on the 

FRF estimate results shown in Figure 4.10b. Both pressure probes had a similar physical design; 

therefore, their FRF estimates shown in Figure 4.10b are nearly identical. The following 

expression was used to calculate the FRF estimates from Figure 4.10b, 

 
( , )

1, 2
( , )
PP i i

Pi
PP i i

G P P
H for i

G HW HW
= =  (4.17) 

where PH  is the FRF, ( , )PPG P P  is the pressure PSD of the pressure probe output, 

( , )PPG HW HW  is the pressure PSD of the hot wire probe output, and the index i  denotes data 

measured during the first or second pressure probe calibration.  
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Figure 4.11: Results showing how the inverse FRF from figure 4.10b is used to completely eliminate PSD 
function attenuation caused by acoustic resonance for (a) pressure probe 1 and (b) pressure probe 2. 

  

 After determining the FRF for each pressure probe, it is then possible to compensate for the 

effects of acoustic attenuation in each probe. Compensated PSD and CPSD functions are 

calculated using the following expression, 

 1 1 1, 2
( , ) ( , )

1, 2PPc i k PP i k Pi Pk
i

G P P G P P H H for
k

 
ìï =ï= íï =ïî

 (4.18) 

where PPcG  is the compensated PSD for i k= , and CPSD for i k . Figure 4.11(a,b) 

demonstrates how the PSD function attenuations are minimized or completely eliminated using 

equation (4.18). Figure 4.12(a,b) demonstrates how effective the inverse FRF compensation 

technique is for CPSD calculations with the pressure probe measurements. Both compensated 

outputs from Figure 4.12(a,b) are calculated using the same set of inverse FRF functions shown 

in Figure 4.10b. Again, the compensated pressure CPSD appears to be unaffected by the acoustic 

attenuation. 
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Figure 4.12: Comparisons between uncompensated and compensated CPSD functions calculated from (a) 
low intensity grid turbulence measurements and (b) from high intensity turbulence measurements made in 
the near wake of a bluff body. 

 

 All of the inverse FRF compensation results previous to (and including) Figure 4.12a have 

been for low intensity grid turbulence. Because all of the measurements used for the TIV 

modeling were made in high intensity turbulence, it was necessary to validate the inverse FRF 

compensation technique with high intensity turbulence measurements. Figure 4.12b shows the 

pressure CPSD of turbulence measured simultaneously with both pressure probes in the near 

wake of a bluff body. 

 Mean flow velocity for this test was measured with the Pitot tube and was set to 

approximately 10 m/s. The pressure probe tips were spaced approximately 5.72 mm apart and 

located 15.24 cm downstream of a rectangular bluff body measuring 4.45 cm x 4.45 cm x 10.92 

cm. Results in Figure 4.12b show that the inverse FRF compensation proved to be effective even 

between drastically different turbulence intensities and mean velocities. Figure 4.11(a,b) and 

Figure 4.12(a,b) demonstrate that the dynamic calibration techniques were able to extend the 

pressure probe bandwidth by an order of magnitude from 100 Hz to over 1000 Hz. 
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4.3.4 Modeling Pressure Probe Dynamics 

Extensive modeling techniques performed on various pneumatic tube and transducer 

configurations can be found in the literature [107,109–111]. Among the earliest of these is a 

model that was presented by Bergh and Tijdeman in 1965 [109]. This early model remains one 

of the most accurate, and was used to predict the dynamic acoustic response characteristics of 

both pressure probes discussed in this chapter. 

 Each pressure probe was treated as a series of tubes and volumes as illustrated in Figure 4.13. 

For modeling purposes, the probe was split into four sections. Each section was composed of a 

tube of radius R  and length   connected to a cavity having a volume tV . The two joints where 

the probe tube is attached to the sensor ports are modeled as a single tube having a discontinuity 

in its radius; therefore, volumes 1tV  and 2tV  are set to zero. The open end of the static port is 

modeled as having a volume much larger than all other volumes. See Section 4.3.1 for more 

details concerning the pressure probe design and fabrication. 

 Table 4.2 lists the final dimensional values of the pressure probes used in the model. The 

transducer volume 2tV  was provided by the manufacturer of the differential pressure transducer. 

Dimensions for the pressure probe ports ( 2 , 3 , 2R , and 3R ) were fixed to the design 

specifications of the manufacturer. Dimensions for 1 , 4 , 1R , and 4R  were variable design 

parameters used to maintain a desired bandwidth while achieving high probe sensitivity. 

 Bandwidth and sensitivity were two critical design criteria for the pressure probes that were 

maximized using the following model. It was essential that both pressure probes could accurately 

measure pressure fluctuations within a frequency range up to approximately 200 Hz. This range 

contains the first and second natural frequencies of the structures to be tested. 
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  Table 4.2: Dimensional parameters used in the pressure probe model. 

Probe Section Tube Length (cm) Tube Radius (mm) Transducer Volume (mm3) 
Sec. #1 1  = 6.858 1R  = 0.749 1tV  = 0 
Sec. #2 2  = 1.397 2R  = 0.711 2tV  = 112 
Sec. #3 3  = 1.397 3R  = 0.711 3tV  = 0 
Sec. #4 4  = 6.350 4R  = 0.749 4tV   ¥  
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Figure 4.13: Schematic defining terms used for the pressure probe model. 

 

The bandwidth limit was set based on preliminary experimental results that showed no 

significant structural displacement amplitudes were present from the third mode and higher. 

With bandwidth requirements determined, design efforts were then focused on maximizing 

sensitivity. As probe diameter increases, sensitivity increases, and bandwidth decreases. 

Bandwidth also decreases with increased probe length. Therefore, the probe length was fixed, 

while the diameter was increased until the uncompensated bandwidth fell to its lowest allowable 

limit (~200 Hz) thus maximizing sensitivity. 
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 The model developed by Bergh and Tijdeman is a recursion formula that relates the 

fluctuating pressure in one volume tiV  to that of the adjacent volumes ( 1)t iV   and ( 1)t iV ,  [109]. 

Pressure fluctuations are assumed to be sinusoidal having the following form,  

 j t
sP P Pe = ,  (4.19) 

where P  is the total pressure, sP  is the static pressure, P  is the fluctuating pressure,   is 

angular frequency in rad/sec, and t  is time in seconds. The ratio between the amplitude of 

fluctuating pressure in two adjacent volumes can be given as, 
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 (4.20) 

where P  is the transducer volume pressure,   is the tube segment length, tV  is the transducer 

volume, R  is the tube radius,   is the ratio of transducer volume increase due to diaphragm 

deflection, vn  is the polytropic expansion factor of the fluid inside the transducer volume, 0  

and 2  are zeroth and second order Bessel functions of the first kind respectively, tn  is the 

polytropic expansion factor of the fluid within the tube, 


 is the so called shear wave number, 

and   is a dissipation function representing the heat transfer due to fluid friction within the 

probe. The shear wave number is defined as, 

 a
i i

a

j
jR





=

  (4.21) 
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where j  is an imaginary number, a  and a  are the mean density and dynamic viscosity 

(respectively) of the fluid being measured, and   is angular frequency at which the fluid within 

the probe oscillates. The dissipation function can be given as, 

 0

2

( )
( )

i
i

a ti ic n
   


 

=  



 (4.22) 

where ac  and 


 are the velocity of sound and the ratio of specific heats (respectively) of the 

fluid being measured. The polytropic expansion factor of the air within each tube segment is 

defined as,  
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 (4.23) 

where Pr is the Prandtl number which is a dimensionless number that represents a ratio of 

momentum and thermal diffusivity of the fluid being measured by the pressure probe. The 

Prandtl number can be calculated using the following expression, 

 Pr a hp

t

C


=  (4.24) 

where a  is the dynamic viscosity, hpC  is the specific heat at constant pressure, and t  is the 

thermal conductivity [112]. The fluid properties used in equations (4.21) through (4.24) are 

provided in Table 4.3. 
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Table 4.3: Properties of air used in the pressure probe model. 

Property Symbol Value Unit(s) 

Temperature aT  293 K 

Atmospheric Pressure aP  100.9 kPa 

Polytropic constant3 [106] vn  1.4 
 Ratio of specific heats6 [106] 


 1.4  

Gas Constant [106] aR  287 J kg-1 K-1 

Specific Heat at Constant Pressure [106] hpC  1.005 kJ kg-1 K-1 

Thermal Conductivity [112] t  25.7 kW m-1 K-1 

Absolute (Dynamic) Viscosity [113] a  1.814´10-5 kg m-1 s-1 
Prandtl Number Pr  0.7094 

 Density a  1.2 kg m-3 

Speed of Sound ac  343.1 m s-1 
 

 

 Figure 4.14 shows all analytical FRFs between adjacent volumes within the pressure probe. 

Notice that since 4tV  ¥  the FRF between the static opening 4P  and the static port junction 

pressure 3P  goes to zero, i.e. 4P / 3P  0. The bold solid line in Figure 4.14 is the FRF between 

the pressure inside the transducer 2P  and the measured dynamic pressure 0P  which was 

calculated using the following relationship. 

 

 2 2 1

0 1 0

P P P
P P P

=  (4.25) 

 

                                                 
6 Note that in this case k =  thus the system is assumed to behave as an isentropic process.  
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Figure 4.14: Analytical transfer functions between all adjacent tubes and volumes within the pressure 
probe. 

 
All results in Figure 4.14 are coupled according to equation (4.20) such that 2P / 1P  is a function 

of 3P / 2P , and 1P / 0P  is a function of 2P / 1P . The FRF in equation (4.25) is of particular interest 

because it is directly proportional to the FRF between sensor voltage output and the measured 

dynamic pressure 0P . 

 Figure 4.15 shows the normalized FRF for 2P / 0P  calculated from the analytical model 

compared to the measured FRF calculated with equation (4.17) first shown in Figure 4.10b. 

Results of the model shown in Figure 4.15 demonstrate good agreement between measurement 

and theory. These results also show that the desired bandwidth of 200 Hz was successfully 

attained.  
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Figure 4.15: Experimental and theoretical results of the dynamic response characteristics for both pressure 
probes showing acoustic attenuation and phase distortion between measured pressure 0P  and sensor 
pressure 2P . 

 
 

The model was able to predict the first acoustic resonance mode very well; however, significant 

error accumulated as frequency increased. Error between measurement and theory is most likely 

attributed to the model being unable to account for unknown geometries within the transducer 

and imperfect junctions between the sensor ports and probe tubes. 

4.4 Case Studies & Model Validation 

Both the measurement techniques and the turbulence-induced vibration model were 

experimentally validated by performing three single-cantilever case studies. Procedures and 

results of these studies are presented in this section. 
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Figure 4.16: Schematic showing the layout, coordinate system, and relevant dimensions of the single 
cantilever case study experiments (top view). 

 

4.4.1 Experimental Setup 

Turbulent flow for all three case studies was generated by placing a bluff body immediately 

upstream of the cantilever to be analyzed. The bluff body used in the three case studies had a 

cylindrical cross section with a radius of 4.83 cm and a height of 14.21 cm. The center of the 

cantilever was both the system origin and cantilever reference point, while the reference point of 

the bluff body was the edge or face nearest the cantilever. Figure 4.16 illustrates the reference 

points for both the cantilever and bluff body, and also shows the bluff body location relative to 

the cantilever. 

 The layout shown in Figure 4.16 was used for all three case study experiments where 

dimensions a  and b  were fixed at 15.24 cm and 2.54 cm respectively. Average flow velocity for 

all tests was measured with a pitot tube and was fixed at approximately 10 m/s.  
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Figure 4.17: Schematic of pressure probe measurement locations relative to the cantilever surface. 

 

4.4.2 Turbulence Measurement Results 

Flow near the cantilever contained large vortices that shed off the sides and over the top of the 

bluff body. Because the turbulence was not homogeneous, both temporal and spatial information 

had to be measured in order to accurately represent the turbulence spectra over the length of the 

cantilever. The goal of these pressure probe measurements was to create a statistical profile of 

the turbulence as a function of both space and frequency. After the turbulence profile was 

computed, the modal turbulence-induced force exerted on the cantilever could be predicted. The 

modal forcing function was then applied to the cantilever, and the displacement PSD was 

calculated using the full model given in equation (4.14). 

 Without a cantilever in the test section, pairs of pressure probe measurements were made at 

the origin (i.e. the cantilever reference point in Figure 4.16) spaced vertically along the z-axis in 
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turbulent flow having a constant mean velocity of 10 m/s. Figure 4.17 illustrates the pressure 

probe measurement locations relative to where the cantilever would later be positioned. 

 Each pressure probe was powered with 16 VDC and had an output range of 16mV 

providing a pressure sensitivity of 0.064 mV/Pa (Recall Table 4.1). Siglab data acquisition 

hardware was used to simultaneously power the sensors and measure their output. The time 

series voltage output from each probe was sampled at 5.12 kHz with a sample size of 221 

samples. The duration of each test was approximately seven minutes. At the end of each test, 

probe-2 was repositioned and the procedure was repeated at a total of 17 locations along the z-

axis. After the pressure probe measurements were made, the flow conditions were maintained 

while the probes were removed and a cantilever was placed at the origin. A laser displacement 

sensor (Micro-Epsilon model ILD 1800-200) was used to measure cantilever tip deflection. The 

laser sensor had a profile comparable to that of the cantilever and was positioned approximately 

25 cm downstream of the test specimen to minimize or eliminate any aerodynamic effects the 

sensor might have on the beam. 

 Data from these measurements was processed using the statistical modeling techniques 

discussed in Section 3.1.1. Pressure probe measurements from these case studies yield the 

pressure CPSD and coherence functions shown in Figure 4.18 a and b respectively.  The pressure 

coherence function can be considered as a type of normalized CPSD function and is defined as, 

 
( , , )

( , , )
( , )

p
op

p

S z z
C z z

S z




¢=¢  (4.26) 

which can more simply be considered as the CPSD normalized by the PSD. Probe separation on 

the y-axis in Figure 4.18(a,b) corresponds directly to the probe locations illustrated in Figure 

4.17.  
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Figure 4.18: Results from pressure probe measurements showing profiles of (a) pressure CPSD and (b) 
pressure coherence functions. 

 

 As expected, the coherence decreases exponentially with increased separation distance. 

Notice that four prominent frequencies exist in Figure 4.18(a,b). The first and strongest peak 

occurs at 33.7 Hz and the following three occur at the second, third, and fourth multiples of the 

first, while steadily decaying in amplitude. All four frequencies appear as dark vertical bands in 

a) 

b) 

Pressure CPSD 
(Pa2/Hz) 

Coherence 



 

110 

both the CPSD and coherence plots of Figure 4.18(a,b). The first dark vertical band is clearly 

located at the primary (or first mode) vortex shedding frequency of the bluff body. This first 

frequency can easily be estimated with the well-known Strouhal vortex shedding equation given 

as, 

 v
c

StU
f

L
=  (4.27) 

where vf  is the vortex shedding frequency in Hz, U  is the free-stream velocity past the bluff 

body, cL  is the characteristic length of the bluff body, and St  is known as the Strouhal Number. 

The higher multiples of the Strouhal frequency are caused when a single vortex shedding off of 

the bluff body intermittently splits into a pair of vortices. This causes the bluff body wake to 

contain a combination of single and double vortices. This type of vortex shedding behavior has 

been well documented by Williamson et al [38,39], and is to be expected in high Reynolds 

number flow such as that in the case studies presented here. 

4.4.3 Model Validation 

The three case studies discussed in this section were performed to experimentally validate the 

full turbulence-induced vibration model and the turbulence measurement technique discussed in 

Section 4.4.2. Three types of beam designs having similar geometries were used for the case 

study. Table 4.4 summarizes the beam design parameters along with experimental measurements 

and theoretical predictions of their first two natural frequencies. The elastic beam had uniform 

material properties while the unimorph and bimorph beams had properties that varied along their 

length due to QuickPack™ QP10n bonded at the root of each cantilever. Natural frequencies and 

mode shapes for all three beam types were calculated using a Rayleigh-Ritz model approach. 
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Table 4.4: Design parameters and modal analysis results of the cantilevers used in the current case studies. 

Type Dimensions Natural Frequency (Hz) % Error 

 

Length 
(cm) 

Width 
(cm) 

Thick. 
(mm) 1f  1.expf  2f  2.expf  1f  2f  

Elastic 8.814 2.548 0.241 25.6 25.6 161.1 160.0 0.03% 0.69% 
Unimorph 9.525 2.548 0.241 41.5 41.9 174.9 175.6 -1.00% -0.41% 
Bimorph 9.525 2.548 0.241 51.3 51.9 198.3 193.8 -1.12% 2.32% 

 

 

 The acceptance integrals were calculated for the first three modes of vibration using the 

pressure coherence profile shown in Figure 4.18b in conjunction with equation (4.9). Plots of 

these acceptance integrals are shown in Figure 4.19. As expected, the acceptance associated with 

the first bending mode of the cantilever 11( )J  was the largest. Notice that the first mode joint 

acceptance in Figure 4.19 approaches its maximum theoretical value of 0.6 as shown in Figure 

4.2. 

 

 

Figure 4.19: Joint and cross-acceptance values calculated from pressure probe data used for formulating a 
turbulence-induced modal forcing function. 
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Table 4.5: Experimental measurements compared to model predictions for RMS tip displacement of the 
beams. 

Beam Design Load Resistance 
(kΩ) 

Capacitance 
(nF) 

RMS Tip Deflection 
(mm) 

Error 
(%) 

   Model Exp.  
Elastic - - 1.312 1.313 -0.05% 
Unimorph 39.90 123.0 0.570 0.566  0.74% 
Bimorph 29.49 251.5 0.338 0.337  0.14% 

 

 

 The three cantilevers were designed such that their fundamental mode frequencies and 

complex response functions were significantly different from each other and from the primary 

vortex shedding frequency within the turbulent flow spectrum. By separating these known 

frequencies of interest, the model’s ability to capture both fluid forcing effects and structural 

dynamics could be demonstrated. Results of the tip displacement PSD shown in Figure 4.20 and 

RMS tip displacement listed in Table 4.5 show very good agreement between model predictions 

and experimental measurements. 

 The unimorph and bimorph tip deflection results listed in Table 4.5 were measured and 

calculated for a load resistance of 39.90k  and 29.49 k  respectively. The bimorph electrodes 

were wired in a parallel configuration.  The greatest errors were seen for the unimorph and 

bimorph beams. The majority of these errors can be attributed to uncertainty in material 

properties and thicknesses. Errors may also be caused by imperfectly bonded layers including 

un-bonded areas and non-uniform adhesive thickness. More details concerning the construction 

of the unimorph beam can be found in Chapter 3. 
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Figure 4.20: Tip displacement PSD functions comparing model results to experimental measurements for 
the (a) elastic, (b) unimorph, and (c) bimorph beam types. 
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 Pressure coherence and PSD are two forms of the turbulence profile produced from spectral 

analysis of the pressure probe data (See Figure 4.18.). Applying slightly different forms of the 

full model, nearly identical displacement PSD results can be achieved by using either the 

coherence function or the pressure PSD function. The results shown in Figure 4.20 were 

produced using the pressure coherence function. The first and second peaks of the elastic case 

are associated with the first mode of the cantilever and the primary vortex shedding frequency 

respectively. The opposite is true for case-2. The primary vortex shedding frequency is 33.7 Hz. 

4.4.4 Error Analysis of Turbulence Measurement Method 

Recall that 17 pairs of pressure probe measurements were made in order to calculate the pressure 

profiles given in Figure 4.18(a,b). These measurements were ultimately used to predict the tip 

displacement of three types of cantilever beams. The results of these predictions are summarized 

in Table 4.5. An error analysis was performed to investigate the effect of the quantity and 

location of pressure probe measurements on the accuracy of beam displacement predictions.  

 Two error analysis case studies were performed. In each case, the number of total probe 

measurements was increased from 2 to 18. For each set of probe locations the tip displacement of 

a cantilever beam was calculated following the steps discussed in section 2.1. Error between the 

measured displacement and predicted displacement was then calculated and plotted. The results 

of these two case studies are shown in Figure 4.21 and Figure 4.22. The cantilever beam used in 

these error analysis case studies was the same elastic cantilever beam discussed in section 4.4.3. 
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Figure 4.21: Case 1 error analysis results showing (a) pressure probe locations and (b) percent error of tip 
deflection estimate. 

 

 Figure 4.17 and Section 4.4.2 provide a more detailed explanation of how the probe locations 

are represented in Figure 4.21a and in Figure 4.22a. Note that the probe locations are measured 

in the positive z direction where 0 cm is located at the clamped base of the cantilever. The probe 

locations for case 1 (Figure 4.21a) were systematically added such that a more even distribution 

across the beam length was achieved. In case 2, the probe locations were incrementally added 

starting at the base of the cantilever and working toward the tip as shown in Figure 4.22b. 
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Figure 4.22: Case 2 error analysis results showing (a) pressure probe locations and (b) percent error of tip 
deflection estimate. 

 

 Using the probe locations from case 2 shown in Figure 4.22a one can see from Figure 4.22b 

that the error was kept below 2% with as few as 8 probe measurements. In Figure 4.21b it can be 

seen that this same 2% error was not achieved until 12 probe measurements were made. This 

brief error analysis study shows that a significant amount of time, effort, and computational cost 

can be saved by taking fewer measurements closer together rather than many measurements 

spread further apart. If many turbulence profiles are going to be measured, then a more in-depth 

error analysis should be conducted. 
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4.5 Chapter Summary 

The modeling and turbulence measurement techniques presented in this chapter are shown to be 

quite effective at predicting turbulence-induced vibration. Pressure probes were designed and 

constructed such that they were able to measure turbulent air flow with a full pressure range of 

249 Pa and a sensitivity of 0.064 mV/Pa. The probes had an uncompensated bandwidth of 

approximately 100 Hz until the first acoustic resonance mode caused significant attenuation. An 

inverse FRF compensation technique was successfully employed and was shown to extend the 

probe bandwidth by an order of magnitude from 100 Hz to over 1000 Hz. Successful modeling 

and calibration methods were applied to the pressure probes to ensure reliable measurements 

even in highly turbulent air flow with a mean velocity range of only (0-12 m/s). Results of three 

case studies showed that the turbulence-induced vibration predictions agreed well with those 

measured in experiments. The largest error associated with predicting RMS tip deflection was 

found to be 0.74% for the unimorph beam design. 
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CHAPTER V 

5. ENERGY HARVESTING FROM LARGE ARRAYS OF FLEXIBLE 

STRUCTURES 

 The primary driving mechanism for most flow-induced vibration energy harvesting devices 

can be categorized as either vortex-induced vibration [2,13,40], or aerodynamic flutter 

[17,51,55]. There are many circumstances where conditions necessary for the onset of vortex-

induced vibration or flutter cannot be met; however, turbulence-induced vibration is practically 

unavoidable in most situations were dynamic fluid is in contact with an elastic structure. 

 In this chapter the author will discuss the design and experimental analysis of a robust, 

lightweight, energy harvester to be used in turbulent fluid flow environments such as small 

rivers, tidal currents, or air ventilation systems. Applications for such a device include powering 

remote sensor networks for structural health monitoring, environmental monitoring, or 

surveillance. In recent work the authors showed that properly designed structures made with 

piezoelectric materials can produce a significant amount of useful power from turbulence-

induced vibration [60,114]. Until now, the focus of these previous efforts has been limited to 

only a single structure or small arrays containing up to 6 elements. 

 Turbulent flows in crops and natural vegetation is of great interest, particularly to the 

agricultural and environmental science communities. Models which help explain the fluid-
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structure interaction that occurs in vegetated environments have been discussed extensively in 

the literature. The studies that are most applicable to the work presented in this paper are those 

dealing with the mechanics of waving wheat or grass. It will be shown that the documented 

response of waving wheat is very similar to that observed from experiments performed in a wind 

tunnel on arrays of cantilever beams. It will also be shown that an empirical model proposed by 

Finnigan in 1979 was able to predict the flow velocity required to cause large amplitude 

vibrations in the cantilever arrays [115]. 

5.1 Modeling Strategy 

In recent work the authors developed an energy harvesting model for predicting the frequency 

response and power output of a single unimorph cantilever in turbulent cross-flow [60,114]. One 

of the most challenging aspects of modeling turbulence-induced vibration energy harvesting is 

developing the fluid forcing function. For the case of a single cantilever or simple structure, one 

can use pressure probe measurements to make spatiotemporal turbulence profiles that can be 

used to very accurately predict the structural response [79]. While the modeling techniques in 

[60,79,114] provide accurate predictions, they are limited to single structure cases and are not 

suitable for large array dynamics. 

5.1.1 Biological Inspiration 

An empirical relationship developed by Finnigan (1979) showed that the periodicity of large-

scale coherent structures traveling across the top of waving wheat was approximately 5L to 8L, 

where L is the wheat height i.e., the array element length [115]. Finnigan also showed that these 

vortex structures could be as wide as several L and travel at a rate of approximately 2U , where 

U  is the mean free-stream flow velocity.  
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Figure 5.1: Illustration of a cantilever array in fluid flow showing the formation of vortices and how the 
fluid-structure interaction of the passing vortices causes wave-like motions to form in the array. 

 

Vortices pass over the array at a frequency proportional to flow velocity called the vortex 

passing frequency ( vf ) as illustrated in figure 5.1. When these vortices pass over the array at a 

frequency near the fundamental frequency of the array elements, persistent large amplitude 

vibrations occur. Because the flow-induced forcing function is traveling across the array at a 

relatively constant velocity, all array elements are slightly out of phase from their nearest 

streamwise neighbor. This phase shift gives the array a waving appearance which can be 

observed in fields of wheat or grass on a windy day. This waving phenomenon (termed 

‘honami’) was first studied and documented by Inoua in 1955 [116]. 

5.1.2 Proposed Modeling Approach 

From the previously mentioned relationships provided by Finnigan and illustrated in Figure 5.1, 

one can predict the mean flow velocity required to produce large amplitude vibrations of the 

array elements. Because the current study focuses on the design of an energy harvester, it may be 

most useful to use the following expression, 

 ( )0.25 0.42 v
v v

Uk
tofor k

L
 

æ ö÷ç ÷= =ç ÷ç ÷çè ø
 (5.1) 
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where v  is the vortex passing frequency in rad/s, and vk  represents an experimentally 

determined coefficient which provides upper and lower bounds of the vortex passing frequency 

at a given mean flow velocity U . Because the waving, large amplitude vibrations in the array are 

a result of array elements being forced into a resonance condition, it is important that all 

cantilevers in the array have the same fundamental frequency as well as the same length. The 

energy harvester can therefore be modeled as an array of identical cantilevers all having a length 

L and a fundamental frequency 1 . For a given application in an environment where the average 

air velocity is known, a harvester can easily be designed such that its fundamental frequency 

matches the vortex passing frequency i.e., 1 v = . 

 Total power output of the harvester array, of course, depends not only on frequency, but also 

on amplitude of the element vibrations. Predicting the amplitude of vibration for a waving array 

of cantilevers requires a model that describes the force exerted by the flowing fluid on the 

cantilevers. Equation (5.1) provides an estimate for frequency but not the magnitude of the fluid 

forcing function. Details concerning the portion of the model used to estimate this force 

magnitude will not be presented at this time. 

5.2 Initial Experimental Analysis 

A brief experimental analysis was performed on a large array harvester prototype for observation 

and proof of concept design. The harvester array discussed in this paper will serve as a platform 

for future experimental studies and model validation. This section presents details concerning the 

harvester array design, and experiments conducted in the current study. 
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Table 5.1: Array Element Design Parameters 

Element Type Layer Material Length 
(mm) 

Width 
(mm) 

Thickness 
(μm) 

Fundamental 
Mode (Hz) 

Passive Substrate Steel 304.80 25.40 254 1.95 
Active Substrate Steel 304.80 25.40 254 2.60 

 
Active layer PZT 45.97 20.57 508  

 

 

Passive
element

Active 
element

Elastic 
material

Piezoelectric 
material

       

Figure 5.2: Sketch of passive and active array element types used in this study with 
accompanying plots comparing their frequency response functions and mode shapes. 

 

5.2.1 Array Design 

Two types of array elements used in this study are referred to as passive and active. The passive 

elements were modeled as uniform cantilevers, and the active elements were modeled as 

unimorph cantilevers having a patch of piezoelectric material bonded to them as show in the 

sketch in Figure 5.2. Dynamic response characteristics of both element types were estimated 

using a distributed parameter, Euler-Bernoulli beam model for passive elements and a Rayleigh-

Ritz analytical approximation for active elements. 
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Figure 5.3: Photo of (a) passive and (b) active array elements along with (c) a schematic illustrating 
electrical circuit connectivity details for the active elements. 

 

The Rayleigh-Ritz approach was necessary because the section of beam bonded to piezoelectric 

material had significantly greater mass and stiffness than the rest of the beam. A comparison of 

the frequency response and mode shapes for both element types is shown in Figure 5.2. 

 The harvester array consisted of up to 112 individual elements. Each element had a grade 

N42, nickel plated, neodymium magnet from K&J Magnetics (part #BX082) built into its base to 

provide secure and completely variable element placement. Two types of array elements 

classified as passive and active were designed and built for this study. The active elements were 

piezoelectric unimorph cantilevers constructed by mounting a PZT wafer QuickPack™ from 

Mide Technology Corp. (model QP10n) to the root of one side of a spring steel cantilever. The 

passive elements were basic spring steel cantilevers. See Table 5.1 for design parameters of both 

element types. Photos of the two element types are shown in Figure 5.3(a,b). 

 In this study, only three array configurations were considered. The first (type-1) had no bluff 

body and a uniform grid of 14 elements in the x direction with 7.62 cm spacing and 8 elements in 

the y direction with 5.08 cm spacing. The second (type-2) was the same as type-1 but a bluff 

body was added 30.48 cm upstream of the array as shown in Figure 5.4a. 
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Figure 5.4: Schematics of both the (a) type-2 array and (b) type-3 array drawn to scale showing the bluff 
body placement and the location of all active elements. The type-1 array had the same element placement 
as shown in (a) except the bluff body was removed. 

 

Finally, the third configuration (type-3) was a staggered array with 16 elements in the x 

direction, 11 elements in the y direction, and a bluff body 30.48 cm upstream as shown in Figure 

5.4b. Because this harvester was originally intended for applications in highly turbulent flows, 

the bluff bodies were added to generate high-intensity turbulence. Performing experiments on 

arrays with and without upstream bluff bodies allowed for a direct comparison of results which 

will show how turbulence affects the power output of the harvester. A photo of the type-2 array 

is shown in Figure 5.5b. Array rows run in the y-direction while columns are in the x-direction. 

For example: The array in Figure 5.4a has 14 rows and 8 columns. 

 The schematics in Figure 5.4 are drawn to scale to accurately show the location of each array 

element and bluff body. The footprint of each array element is represented as 2.54 cm square 

where active elements are shown as solid black numbered 1-10, and passive elements are shown 

as white with a black border. The two large rectangular grids in each schematic represent two 

sheets of steel having dimensions 121.9 cm x 29.21 cm x 2.00 mm that were secured to the 

aluminum test section floor. Each plate was white with a black 2.54 cm square grid as shown in 

Figure 5.5b. 
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5.2.2 Experimental Procedure 

Each of the ten active elements had a separate load resister RL which was connected across the 

PZT electrode leads such that each element was part of an individual circuit. (See Figure 5.3c.) 

This was done to avoid out-of-phase voltage cancelation that would occur if the elements were 

connected in series or parallel. Voltage outputs (V1, V2, …V10) were sampled at 2.0 kHz on 

separate channels with National Instruments data acquisition hardware. A laptop with LabVIEW 

software was used to display both the time and frequency response of the load voltage output for 

each of the 10 active array elements. For a given test, the air velocity was kept approximately 

constant and data was recorded for ~270 seconds (approximately 219 samples per channel). The 

velocity was then adjusted and the procedure repeated for a total of 14 velocity increments. 

5.2.3 Wind Tunnel Facility 

All experiments were conducted in an open loop, single stage wind tunnel with variable 

frequency drive (VFD) fan motor control. Inside dimensions of the test section measured 61cm x 

61cm x 122cm. The test section sides and top were clear acrylic, and the floor was aluminum. 

Photos of the wind tunnel showing the experimental setup are provided in Figure 5.5(a,b). 

 

LabVIEW 
LaptopData Acquisition 

Hardware 

Test Section Speed Control(a) (b)

Bluff Body

FanType-2 Array

Flow

Steel Base Plate  
Figure 5.5: Photos showing (a) the 2’x2’ wind tunnel and components of the experimental setup, and (b) 
the type-2 array setup inside the test section. 
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Figure 5.6: Example of voltage PSD 
measurement used to calculate flow velocity 
showing a prominent peak corresponding to 
bluff body vortex shedding. 

 Figure 5.7: Velocities from measured vortex 
shedding frequencies for type-2 and type-3 
array configurations. 

 

 Because all experiments were designed for low velocity flow (0-3 m/s), existing wind tunnel 

instrumentation was unable to provide reliable velocity measurements. Considering the 

frequency response of the active elements was already being measured and displayed in real-

time, the most readily available low velocity measurement technique was bluff body vortex 

shedding.  Frequency measurements were used to estimate the mean flow velocity with the well-

known Strouhal vortex shedding equation [117], 

 v cf L
St

U
=  (5.2) 

where vf  is the vortex shedding frequency, U is the mean free-stream velocity, cL  is the 

characteristic length of the bluff body, and St  is the Strouhal Number. For this study the bluff 

body had a rectangular cross section where the thickness (streamwise dimension) was 3.81cm 

and the width was 8.89cm. The characteristic length was therefore c 8.89cmL =  and the 

Strouhal number was 0.2St = [118]. 
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 As demonstrated in Figure 5.6, the vortex shedding frequency was well defined and clearly 

visible on the array voltage output PSD. It was then straightforward to use equation (5.2) to 

calculate the corresponding mean flow velocity. Because motor speed rather than flow velocity 

was controlled, the velocity was dependent on the test section blockage ratio. The blockage ratio 

changed for each array configuration where the maximum and minimum blockage was with the 

type-2 and type-3 configurations respectively. Velocity trends calculated for the maximum and 

minimum blockage conditions show a significant increase in velocity when going from the type-

2 to the type-3 array. These velocity trends are shown in Figure 5.7. It was assumed that because 

the blockage ratios for the type-1 and type-2 arrays were very similar, the velocity as a function 

of fan speed was approximately equal for both arrays. 

5.2.4 Results & Discussion 

Raw time-series voltage data was saved for the ten active elements at 14 velocity increments for 

each of the three array types. Post-processing of all 42 test files and 4.7 GB of data was 

performed using MATLAB software. The following results show trends in average power output 

and active element voltage power spectral density functions versus flow velocity. 

5.2.4.1 Power Trends 

Average power output from the ten active elements was calculated using the voltage measured 

across each load resistor. Trends in the average power output are plotted in Figure 5.8(a-f) as 

functions of mean flow velocity for each of the three array configurations. For clarity, power 

trends from the ten active elements were plotted on two graphs for each array configuration. 
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Figure 5.8: Experimental results from (a,b) the type-1 array, (c,d) the type-2 array, and (e,f)  the 
type-3 array all demonstrating the influence of mean flow velocity and element location on 
average power output per element. 
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 It is important to note that for all cases the waving mode resonance condition of the array 

(honami) was only allowed to occur for the passive elements. Because the fundamental 

frequency of the passive elements was less than that of the active elements, the passive elements 

would experience resonance at a lower flow velocity. Keeping the active elements from reaching 

resonance was done to avoid over-straining, and potentially damaging the PZT. Flow velocity 

was therefore increased until the deflection of the active elements reached a maximum allowable 

limit. Considering the active elements were kept from reaching waving mode resonance the 

power values presented here represent an output that is significantly less than what could be 

available in the array. A minor design modification allowed the active elements to safely reach 

waving mode resonance; however, results from the modified elements will not be presented until 

Section 5.3. 

 Figure 5.8(a-d) shows results of an array having the same type 1 and type 2 element 

arrangements to serve a direct comparison of the power output without a bluff body Figure 

5.8(a,b) and with a bluff body Figure 5.8(a-d). Recall Figure 5.4 for the locations of the active 

array elements. Notice that the presence of a bluff body only has a significant effect on power 

output from elements on the front row of the array (elements 1 and 6). This is due to the fact that 

large turbulence structures in bluff body wake are immediately destroyed after contacting the 

array. The peak in power output seen at a velocity of approximately 1.25 m/s in Figure 5.8(c-f) is 

the point at which the bluff body vortex shedding frequency matches the natural frequency of the 

active elements. As velocity increased past 1.25 m/s, output from all active elements increased 

exponentially. 

 It is interesting to note that the waving mode resonance condition of the passive elements 

was not affected by the bluff body. This suggests that the waving mode will occur regardless of 
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the presence of large-scale upstream turbulence. Another interesting observation was that after 

the waving mode ‘locked-in’, large amplitude excitation continued with a velocity increase of 

over 100%. 

5.2.4.2 Frequency Domain Analysis 

The power calculations for Figure 5.8 required only average values of the time-series active 

element load voltages. Analyzing these active element voltages in the frequency domain 

provided valuable insights to the fluid and structural dynamics of the three array types discussed 

in Section 5.2.1. The PSD function was calculated for each of the ten load voltages at each 

velocity increment. For a given element, a PSD profile was created by plotting the voltage PSD 

as a function of both frequency and flow velocity. A total of ten PSD profiles from each of the 

three array types were created and analyzed. The following discussion focuses on five of these 

PSD profiles which are shown in Figures 5.9-5.11. 

 

Plot Description for Figures 5.9-5.11: 

 

a) The primary and secondary y-axes are denoted by ‘y1‘ and ‘y2‘ respectively in both of the 

y-axis labels and in the legend entries for all plots. 

 

b) The vertical dash-dot lines with ‘x’ (×) markers are plotted at the natural frequencies 

(structural modes) of the active element. As expected, the structural modes are constant 

for all velocities. Notice that the vertical structural mode lines don’t always align exactly 

on the peaks of the PSD plot. This frequency misalignment is due to the fact that the lines 
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are plotted at exactly the same frequencies for each figure while the PSD functions are 

produced from elements #1,#3, and #4 which have slightly different natural frequencies. 

 

c) The vertical dash-dot lines with large dot (•) markers are plotted at the waving mode 

resonance frequencies (waving modes) of the array. The lowest waving mode frequency 

is equal to the first natural frequency of the passive elements (1.9 Hz). The other three 

vertical waving mode frequency lines are multiples of the first corresponding to higher 

vortex shedding modes. These multiples of the first resonant frequency are caused by 

higher-mode vortex shedding across the top of the array. Higher-mode vortex shedding 

occurs when a single vortex splits into two or more vortices. Higher-mode vortex 

shedding is intermittent and occurs more frequently as the Reynolds number increases. 

See the work of Williamson et al for further discussion on this type of vortex shedding 

behavior [38,39]. 

 

d) The curved dash-dot line with square (□) markers is plotted at the vortex shedding 

frequency of the array (array vortex). This array vortex line is calculated from equation 

(5.1) for a vk  value of 0.4. 

 
e) The curved dash-dot lines with circle (○) markers are located at the vortex shedding 

frequencies of the bluff body (bluff body vortex). These curves were produced from the 

relationship given in equation (5.2) using a Strouhal number of 0.2 and a characteristic 

length of 8.89 cm. The lowest frequency bluff body vortex curve corresponds to the 

primary vortex shedding frequency. The two higher frequency curves are first and second 
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multiples of the primary frequency. See Plot Description (c) above for an explanation of 

higher mode vortex shedding. 

 

f) A 2D voltage PSD function is plotted with a solid black line on the secondary y-axis (y2). 

This 2D function is the active element voltage PSD calculated at the maximum mean 

flow velocity. This plot can be made by taking a slice of the 3D PSD profile along its top 

edge or at the maximum velocity on the primary y-axis. 

 

 Figures 5.10a and 5.11a show that the first row of elements in the array is heavily influenced 

by upstream turbulence. The first and second modes of bluff body vortex shedding frequencies 

are clearly visible in the 3D PSD profile from first-row elements. Also, no waving modes are 

visible in elements on the first row which explains why the power output from the first row is 

extremely low compared to all other elements as seen in Figure 5.8(a,b). 

 

 

Figure 5.9: Load voltage PSD profile from element #3 of the type-1 array including lines that indicate 
frequencies for the structural modes, waving modes, and array vortex shedding as functions of flow 
velocity. 
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Figures 5.10a and 5.11a also show a large peak in the PSD profile when the primary bluff body 

vortex shedding frequency equals the natural frequency of the active element. This peak in 

output can also be seen in the power results shown in Figure 5.8(c-f). 

 The array vortex frequency is a linear function of velocity as show in equation (5.1). In the 

PSD profiles of Figures 5.9 and 5.10b one can see that the primary waving mode begins when 

the array vortex frequency equals the natural frequency of the passive elements. Small amplitude 

waving mode vibration was first observed and can be seen on the PSD profiles at approximately 

1.35 m/s. It was not until 1.45 m/s that persistent large amplitude waving motions were observed. 

Increasing the velocity beyond 1.45 m/s caused a continued increase in waving mode amplitude 

while the frequency remained approximately constant. 

 Initially the vertical waving mode lines appear to be underestimating the actual peak 

frequencies in Figures 5.9 and 5.10b. A closer look at the trends in waving mode peaks of the 

PSD profile shows that they increase linearly as a function of mean flow velocity. The waving 

mode peaks in the PSD profile increase about 8.1% with a 47.3% increase in flow velocity. As 

velocity increases, higher waving modes become visible in the PSD profile. At maximum 

velocity the 2D PSD function clearly shows four waving modes in Figure 5.9 and five waving 

modes in Figure 5.10b. 
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Figure 5.10: Load voltage PSD profile from (a) element #1, and (b) element #3 of the type-2 array 
including lines that indicate frequencies for the structural modes, waving modes, array vortex shedding, 
and bluff body vortex shedding as functions of flow velocity. 

 

 

 
(a) 

 
(b) 
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Figure 5.11: Load voltage PSD profile from (a) element #1, and (b) element #4 of the type-3 array 
including lines that indicate frequencies for the structural modes, waving modes, array vortex shedding, 
and bluff body vortex shedding as functions of flow velocity. 

 

 

 
(a) 

 
(b) 
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 The following is a list of more subtle observations made both during experiments, and from 

results of experiments shown in Figures 5.9 and 5.10b. 

 

Subtle observations made during experiments and from Figures 5.9 and 5.10b: 

• All elements in columns containing active elements (e.g. columns 2 and 4 in Figure 5.4a) 

were observed to have vibration amplitudes significantly less than those for columns 

containing all passive elements. 

• Results in Figures 5.9 and 5.10b along with experimental observations, showed that 

waving mode vibrations occurred at (or near) the natural frequency of the passive 

elements (~1.95 Hz). 

• Recall that Figures 5.9 and 5.10b were produced from the load voltage output of an active 

element which has a natural frequency of 2.6 Hz while the maximum output (i.e. highest 

peak in the PSD function) occurred near 1.95 Hz. 

 

 From this list of results and observations, one can conclude that fluid coupling within large 

arrays causes the array to force all elements to behave similar to the majority of elements in the 

array. This coupling among multiple dynamic systems is called entrainment or sympathetic 

excitation. Recall that only 10 active elements are placed among 102 passive elements where 

their natural frequencies are 2.6 Hz and 1.95 Hz respectively. Therefore, the active elements are 

being forced at an off-resonance frequency which can explain why columns containing active 

elements had the lowest vibration amplitudes. This also explains why the maximum output from 

an active element occurs at the natural frequency of the surrounding passive elements rather than 

that of the active element. 
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 Lastly, Figure 5.11 shows that waving modes did not occur on the front row nor did they 

occur within the array. These results along with experimental observations of the type-3 array 

revealed that staggered array configurations do not work well for energy harvesting. A majority 

of the power for the type-1&2 arrays was produced from waving mode vibrations; therefore, all 

future large array tests presented in this chapter are for in-line array configurations (type-1&2) 

rather than staggered (type-3). 

5.3 In-Depth Analysis: Experimental Details 

Numerous wind tunnel experiments were performed on the piezoelectric grass harvester to 

further explore energy harvesting potential. The harvester prototype, wind tunnel, and procedures 

discussed in this section are significantly different from those of section 5.2. The purpose of 

these experiments was to identify and quantify trends in power output versus flow velocity for 

many different array configurations. This section discusses experimental details such as: array 

materials and design, terminology and coordinate system, data processing, testing facilities, 

instrumentation, circuitry, and software. 

5.3.1 Wind Tunnel Facility 

All experiments presented in this section were performed in an open loop, single stage wind 

tunnel. The test section has a length of 1.22 m, and has a cross-section of 30.5 x 30.5 cm. With 

exception of the flow straightener and contraction section, the author designed the entire wind 

tunnel and assembled all of its components. (See Figure 5.12.) Fan speed or flow velocity can be 

controlled manually or automatically using a 3-phase, 3-hp, variable frequency drive (VFD) 

controller with build-in PID feedback control (Mitsubishi Electric, Model: FR-E720-110-NA). 
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Figure 5.12: Photo of the 1’x1’ wind tunnel testing facility 

 

 The wind tunnel is able to produce flow velocities ranging from 0 to 35 m/s (approx. 80 

mph). Accurate velocity measurements can be made from 35 m/s down to 0.2 m/s using a pitot 

static tube attached to a differential pressure transducer with a full range of +/-748 Pa (Omega, 

Model: PX653-03D5V). Air temperature measurements were made with a T-type thermocouple 

(Omega, Model: 5TC-GG-T-20-36) placed downstream of the test section. LabVIEW 

development software was used to design a virtual control panel which allows for a PC to 

interface with National Instruments hardware for data acquisition and control. A 14-bit, 

multifunction DAQ with 8 analog inputs and 2 analog outputs (National Instruments, Model: 

USB-6009) was used as the dedicated data acquisition and control hardware. The LabVIEW 

virtual control panel was used for displaying, controlling, and saving real-time data from the 

pressure transducer and VFD along with any other external inputs. 
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Table 5.2: Design parameters for passive and active element types 

Type Layer Material Length 
(cm) 

Width 
(cm) 

Thickness 
(mm) 

Natural Frequency 
(Hz) 

Passive Substrate Steel 14.610 2.540 0.254 9.3 

 
Active layer  - - - -  

Active Substrate Steel 14.610 2.540 0.254 16.3 (Mt = 0 gm) 
  Active layer PZT 4.295 2.096 0.254 9.3   (Mt = 2.9 gm) 

 

 

5.3.2 Array Design 

Considering factors such as assembly time, material expense, availability of data acquisition 

hardware, and quantity of data, the authors decided against building an entire array of 

piezoelectric cantilevers. Rather, only ten cantilevers consisted of a steel substrate with 

piezoelectric material bonded to them while all other cantilevers in the array were steel with 

uniform mass and stiffness. The cantilevers with piezoelectric material will be referred to as 

active array elements while all others will be called passive. Table 5.2 summarizes the design 

parameters for both element types. 

 Figure 5.13 shows schematics of the passive and active array element assemblies. Compared 

to the passive elements, active elements had increased mass and bending stiffness caused by the 

bonded piezoelectric material. This increased stiffness caused an increase in natural frequency. 

Because all elements must have approximately the same natural frequency for waving mode 

vibration (honami) to occur, a tip mass was added to all active elements. Each tip mass was 

adjusted until the active elements had the same natural frequency as the passive elements. A tip 

mass of approximately 2.9 grams was found reduced the natural frequency of the active elements 

from 16.3 Hz to 9.3 Hz. 
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Figure 5.13: Schematic of (a) passive and (b) active array elements showing details of the magnetic clamp 
assembly for both element types along with the added tip mass and piezoelectric material for the active 
element. 

  

 All array elements were fixed in individual clamps, and all clamps were attached to a high-

grade neodymium magnet. The magnets provided enough attractive force to a steel plate to hold 

all elements in place during a test, yet allowed for convenient repositioning between tests. The 

steel plate was centered on and attached to the test section floor and had a 2.54 cm square grid 

drawn on it for a reference. The grid was used as the x-y plane where the positive x direction was 

the same as the flow direction. Figure 5.14 shows the coordinate system and defines common 

terminology used for all large array tests presented in this section.  

(a) (b) 
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Figure 5.14: Schematic of a top view of the steel plate (drawn to scale) showing the coordinate system, 
the 2.54 cm square grid, and the locations of all array elements for a given array configuration. 

 

 In order to estimate the total power output that could be generated from a given array, active 

elements were systematically positioned among passive elements. The following is a list of 

observations made from initial large array experiments. Included below each of these 

observations is the corresponding conclusion used to determine the placement of active elements 

for all array configurations in this study. 

 

a) The first row produced a negligible amount of power compared to all other rows: 

⇒ No active elements were positioned on the first row. 

b) Power output changed rapidly as a function of x-position toward the front of the array: 

⇒ More active elements were placed toward the front of the array. 

c) The array configuration and power output was symmetric about the y-axis: 

⇒ Output from all active elements was assumed to be symmetric about the y-axis. 

d) Power output toward the back of the array showed little change as a function of x-

position: 

⇒ Active element spacing increased as a function of x-position. 
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Figure 5.14 shows a typical array configuration where one can see how active elements were 

placed among passive elements in a manner determined by the previous list of conclusions. 

5.3.3 Experimental Procedures 

All elements were positioned on the steel plate in the wind tunnel test section to a specified x and 

y spacing. Then, the velocity was increased from 0 to 15 m/s in 15 evenly spaced increments. At 

each velocity increment, the wind tunnel was allowed come to steady average velocity before 

data was gathered. All time-series data, including wind tunnel speed settings, velocity, and load 

voltages from the ten active elements was sampled at 2.0 kHz for 60 seconds and recorded in a 

LabVIEW measurement file (.lvm). Data recording was then paused while the velocity was 

adjusted to the next velocity increment. This procedure was automated within LabVIEW. After 

all 15 velocity increments were completed, the next array configuration was set by adjusting the 

x or y spacing of the array. 

 This procedure was repeated for ten different x-spacing values ranging from 3.01 cm to 15.24 

cm, and at each x-spacing there were five y-spacing values ranging from 3.49 cm to 6.35 cm. In 

total, experiments were performed on 50 different array configurations which yielded 750 data 

sets, and 9.1 GB of data. Table 5.3 gives a test parameter summary for all experiments performed 

during this study. 

 

Table 5.3: Piezoelectric grass wind tunnel test matrix. 

Parameter No. of Increments Range 

Velocity 15 (0 - 15) m/s 
x-spacing 10 (3.01 – 15.24) cm 
y-spacing 5 (3.49 – 6.35) cm 

 

 



 

143 

5.3.4 Data Processing 

All post-processing of the raw data was performed using MATLAB software. Raw data refers to 

unfiltered, time-series voltages. These voltages were first digitally filtered, then converted into 

their respective physical properties via predetermined calibration equations. For each 60 second 

test, average flow velocity, fan speed, and the active element RMS load voltages were calculated 

and stored. 

 In order to ensure that the measured voltage did not exceed limits of the data acquisition 

hardware, the voltage was split across two resistors in series. The total load resistance was 

therefore equal to the sum of the two resistors, i.e. 1 2LR R R= , . The voltage was measured 

across 1R  therefore the total voltage was calculated using ohms law, 

 ( )1 2
1

m
L

v
v IR R R

R

æ ö÷ç ÷= = ,ç ÷ç ÷çè ø
 (5.3) 

where v  is the total load voltage, mv  is the measured voltage, mI  is the electrical current, and 

LR  is the total load resistance as defined earlier. After the total load voltage was calculated, the 

average power for each element was found using the following expression, 

 
2
rms

ave
L

V
P

R
=  (5.4) 

where aveP  is the average power output and rmsV  is the root-mean-square voltage. 

 Recall that symmetry was assumed about the y-axis; therefore, the 10 active elements yielded 

20 average power output values for a given array configuration and flow velocity. A smooth 3D 

surface was fitted to these 20 power values across the array using a shape-preserving piecewise 

cubic interpolation scheme. (See Figures 5.21(a-c) and 5.22(a-c) for results of this interpolation 

method.) Average power output for all elements could then be estimated as if all passive 
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elements were replaced with active elements having the same design parameters as those listed in 

Table 5.2. For example: given the x-y location of a passive element, its average power output 

could be estimated from the interpolated 3D surface as if that element were replaced with an 

active element. Finally, the average power values for all elements are combined to yield the total 

estimated power output for a given array configuration and flow velocity. The total estimated 

power can be given as, 

 

1 1

peae

tot

NN

ave ave
n n

P Active Passive

P P
= =

= ,

= ,

å å

å å





 (5.5) 

where aeN  and peN  are the number of active and passive elements respectively, aveP  is the 

estimated average power from interpolation at the passive element locations. 

 The total power output is then normalized by the total area covered by the array to generate 

plots such as those in figures 5.23 and 5.24. This normalized total power output is called the area 

power density and is calculated using the following expression, 

 
( ) ( )1 1

tot

x x y y

P
P

N N


 
=

 



  (5.6) 

where P  is the area power density,   is the element spacing, N  is the number of elements, 

and subscripts x  and y  respectively denote the x  and y  directions in which   and N  are 

measured. 
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5.4 In-Depth Analysis: Experimental Results & Discussion 

Given the large amount of data recorded in this study, results from all experiments will not be 

shown. Rather, the results presented in this section will focus first on only 6 (out of 50 total) 

specific array configurations that have notable differences. Then the results from all 50 array 

configurations each with 15 velocity increments (750 tests total) will be summarized and 

discussed. 

5.4.1 Test Cases: Single Array Configurations 

Average velocity profiles and power output profiles for six different array configurations are 

presented here. Average velocity profiles were measured at 5 x-locations along the middle of the 

test section (at y = 0 cm). Each velocity profile was made by taking local average velocity 

measurements with the pitot-static tube at 10 evenly spaced z-locations. Velocity profiles were 

made at each x-location for 5 evenly spaced free-stream flow velocities. 

5.4.1.1 Velocity profiles 

Figures 5.15-5.20 show velocity profiles and their measurement locations throughout the test 

section. The horizontal bold dotted line in each of the velocity profile plots indicates the array 

element height while the horizontal bold solid lines indicate the floor and ceiling of the test 

section. The lower large rectangular plot in Figures 5.15-5.20 show locations of the elements 

denoted with blue squares while the pitot tube tip locations are shown as red triangles. The bold 

solid lines in these lower plots indicate the edge of the steel grid plate. 
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Figure 5.15: Array #1: Velocity profiles as functions of array height shown at five x-locations in the center 
of a 14x6 element array having an x and y spacing of 3.01 cm and 3.49 cm respectively. 

 
 
 

 

Figure 5.16: Array #2: Velocity profiles as functions of array height shown at five x-locations in the center 
of a 14x6 element array having an x and y spacing of 7.62 cm and 3.49 cm respectively. 
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Figure 5.17: Array #3: Velocity profiles as functions of array height shown at five x-locations in the center 
of a 7x6 element array having an x and y spacing of 15.24 cm and 3.49 cm respectively. 

 
 
 

 
 

Figure 5.18: Array #4: Velocity profiles as functions of array height shown at five x-locations in the center 
of a 26x4 element array having an x and y spacing of 3.01 cm and 6.35 cm respectively. 
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Figure 5.19: Array #5: Velocity profiles as functions of array height shown at five x-locations in the center 
of a 14x4 element array having an x and y spacing of 7.62 cm and 6.35 cm respectively. 

 
 
 

 
 

Figure 5.20: Array #6: Velocity profiles as functions of array height shown at five x-locations in the center 
of a 7x4 element array having an x and y spacing of 15.24 cm and 6.35 cm respectively. 
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Table 5.4: Single array configurations used for velocity and power profile tests. 

Array # Rows Cols. x-spacing (cm) y-spacing (cm) 
1 14 6 3.01 3.49 
2 14 6 7.62 3.49 
3 7 6 15.24 3.49 
4 26 4 3.01 6.35 
5 14 4 7.62 6.35 
6 7 4 15.24 6.35 

 

 

 Three of the six velocity profile tests were performed on array configurations (arrays 1-3) 

having six columns and a fixed y-spacing of 3.49 cm where only the x-spacing and number of 

rows were varied. The three remaining velocity profile tests were with array configurations 

(arrays 4-6) having four columns and a fixed y-spacing of 6.35 cm where only the x-spacing and 

number of rows varied. See Table 5.4 for a summary of all array configurations used in the 

velocity profile tests. The following is a list of observations made from the velocity profile 

results displayed in Figures 5.15-5.20. 

 

Primary observations made from velocity profiles shown in Figures 5.15-5.20: 

• As x-spacing increases, the velocity within the array increases. 

• Velocity within the array drops drastically as a function of x-location. 

• Velocity profiles transition from straight vertical lines at the front of the array to highly 

skewed functions toward the rear. 

• For the measurement location furthest from the front, the velocity within the array drops 

to nearly zero while the velocity above the array is approximately double that of the free-

stream. 
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 Much of the velocity profile trends for arrays 1-3 (Figures 5.15-5.17) are similar to those 

shown in arrays 4-6 (Figures 5.18-5.20). A more subtle difference between these two sets of 

velocity profiles is that arrays 4-6 have velocity profiles that are skewed much less than those in 

arrays 1-3. In other words, the velocity inside the array increases as the y-spacing increases. This 

increase in velocity is most likely due to the fact that more flow is being allowed to pass through 

the array rather than being forced above the array. Conversely, one would expect that as y-

spacing decreases all flow through the array is forced to go above the array. One would also 

expect that as y-spacing becomes very large, flow velocity within the array will approach the 

free-stream velocity. 

5.4.1.2 Power profiles 

Using the procedure discussed in Section 5.3.4, smooth 3D surfaces were fitted to the average 

power output of each active element for all 750 data sets. Obviously it would not be practical to 

show the power profiles for every data set. Therefore, only six profiles from array configurations 

similar to those mentioned previously in Section 5.4.1.1 will be presented here. 

 For all plots given in Figures 5.21 and 5.22, active element locations are shown as blue x’s 

while passive element locations are shown as black dots. The steel grid plate is shown as a large 

rectangle with a bold black-lined border that surrounds the power profile. Flow is in the positive 

x-direction. 
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Figure 5.21: Single array power profiles for (a) array 1, (b) array 2, and (c) array 3 showing locations of 
passive elements (black dots) and active elements (blue x’s) relative to the edges of the steel grid plate 
(bold black lines). 
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Figure 5.22: Single array power profiles for (a) array 4, (b) array 5, and (c) array 6 showing locations of 
passive elements (black dots) and active elements (blue x’s) relative to the edges of the steel grid plate 
(bold black lines). 
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Table 5.5: Summary of results from single array power profiles. 

Array 
# 

Free-Stream 
Velocity (m/s) 

Total Estimated 
Power (mW) 

Area Power 
Density (W/m2) 

x-spacing 
(cm) 

y-spacing 
(cm) 

1 14.27 42.00 0.44 3.01 3.49 
2 14.30 25.53 0.15 7.62 3.49 
3 14.27 13.07 0.08 15.24 3.49 
4 14.26 303.90 1.89 3.01 6.35 
5 14.17 59.77 0.32 7.62 6.35 
6 14.16 9.78 0.06 15.24 6.35 

 

 

 All power profiles show that power output as a function of x varied drastically toward the 

front of the array and became more gradual toward the rear. These results were consistent for 

numerous tests and agreed with the initial observations listed at the end of Section 5.3.2. The 

total power output and area power density were calculated for each of the six power profiles 

using equations (5.5) and (5.6) respectively. The maximum area power density for arrays 1-3 

was 0.44 W/m2 which was achieved at a free-stream flow velocity of 14.27 m/s. The maximum 

area power density for arrays 3-4 increased significantly to 1.89 W/m2 at a free-stream flow 

velocity of 14.26 m/s. All power output results are summarized in Table 5.5.  

5.4.2 Test Cases: Multiple Array Configurations 

The total average power output of each array configuration at each flow velocity was computed 

as described in Section 5.3.4. Each power profile was used to estimate total power that could be 

harvested from all elements in the array. Notice that the area of each power profile (such as those 

in Figures 5.21 and 5.22) changes along with array element packing density. Packing density 

refers to the number of elements that are able to populate a square meter for a given 

configuration. In order to account for the changing area and packing density for each 

configuration, the total estimated power output was normalized by the area covered by each 
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power profile. This normalized output is called the area power density of the harvester rather 

than the more conventional volume-based power density performance metric. Equations (5.5) 

and (5.6) in section 5.3.4 provide formal definitions of the total estimated power output and the 

area power density respectively. 

 Plots a, b, and c in Figure 5.23 show the area power density results for arrays with varying x-

spacing having a y-spacing of 3.49 cm, 4.45 cm and 6.35 cm respectively. Note that the z-axis 

(out of the page) is represented in log scale. A single point on each of the power density plots 

was calculated from arrays with configurations similar to those of the single arrays discussed in 

Sections 5.4.1.1 and 5.4.1.2. Each power density plot summarizes results from 10 array 

configurations each at 15 velocity increments. 

 Results in Figure 5.23 show that decreasing the x-spacing between elements increases the 

area power density. Notice that the maximum area power density in Figure 5.23 increases as the 

y-spacing increases and is a maximum of 1.89 W/m2 in Figure 5.23c for an x and y spacing of 

3.01 cm and 6.35 cm respectively. Unfortunately the lowest possible x-spacing was 3.01 cm 

which is the point at which the clamps (see Figure 5.13) were in contact with each other. Without 

the clamps, the next limiting factor would be the thickness of the active elements. Considering 

the trend in Figure 5.23c it is likely that the area power density would continue to increase if it 

was possible to further decrease x-spacing. It is assumed that should the x-spacing continue to 

decrease, increasing amounts of contact between cantilevers would cause much of their motion 

to be suppressed. This excessive contact and suppressed motion would then significantly reduce 

power output such that the area power density would begin to decrease. These assumptions 

imply that an optimum x-spacing exists. 
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Figure 5.23: Area power density profiles for arrays having a fixed y-spacing of (a) 3.49 cm, (b) 4.45 cm, 
and (c) 6.35 cm. 
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Figure 5.24: Area power density profiles for arrays having a fixed x-spacing of (a) 3.01 cm, (b) 7.62 cm, 
and (c) 15.24 cm. 
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 Recall that the area power density in Figure 5.23 increased as y-spacing increased for each of 

the three plots. The plots in Figure 5.24 were created to provide deeper insight to these area 

power density trends across all y-spacing values rather than x-spacing as displayed in Figure 

5.23. Plots a, b, and c in Figure 5.24 show how area power density changes as a function of flow 

velocity and y-spacing for fixed x-spacing values of 3.01 cm, 7.62 cm, and 15.24 cm 

respectively. Plots a and b of Figure 5.24 show that power density initially decreases as y-

spacing increases. This trend gradually reverses as velocity increases such that power density 

begins to increase with increased y-spacing. This reversal in power density trends can be 

understood by considering equations (5.5) and (5.6) along with the following explanation. At low 

velocities, all elements are driven purely by turbulence such that simply increasing packing 

density (i.e. decreasing y-spacing) increases power density because all cantilevers are producing 

similar amounts of very low power. As velocity increases, the waving mode vibration begins as 

discussed in Section 5.2.4.2. The waving mode array dynamics are highly coupled and cause an 

exponential increase in power output of each element. During this highly coupled waving state of 

vibration, reducing the packing density (i.e. decreasing y-spacing) to improve flow conditions 

within the array results in a greater increase in output compared to adding more elements to the 

array. 

 Plot c of Figure 5.24 shows that power density decreases as y-spacing increases for all 

velocities. As discussed in the previous paragraph, this decreasing trend suggests that turbulence-

induced vibration rather than waving mode vibration is the dominate form of excitation within 

the array. In this case, increasing packing density also increases power density. Note that Figure 

5.24c is for very large x-spacing thus very low power density, and therefore should not be 
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considered as a general representation of power density trends expected from a well-designed 

array. 

 The area power density trend in Figure 5.24a will likely continue to increase as y-spacing 

increases. It is obvious; however, that eventually an increase in y-spacing will cause a decrease 

in area power density because the number of power producing elements is decreasing. This 

suggests that similar to the x-spacing an optimum y-spacing also exists. Further investigation is 

required to determine this optimum x-y spacing along with scalability and CFD modeling, all of 

which will be the primary focus of future work. 

5.5 Chapter Summary 

This Chapter presented results and observations from a thorough experimental investigation of 

large arrays of piezoelectric grass harvester prototypes. Results demonstrate that large arrays of 

flexible structures possess dynamic characteristics which make them unique and effective energy 

harvesting devices. It was shown that unlike earlier studies performed with single cantilevers, the 

presence of a bluff body does not significantly contribute to the power output of the array.  Early 

large array investigations showed that when the flow velocity reaches a critical point, elements in 

the array are forced into a resonance condition where they experience large amplitude, persistent 

vibration. This waving mode resonance state is called honami and has been found to be an 

extremely robust excitation mechanism for flow-induced vibration energy harvesting. Because a 

harvester of this type could potentially consist of hundreds or thousands of elements, it would 

continue to produce power even if several of the elements should become damaged. This 

redundancy of the biologically inspired design makes large array harvesters ideal for applications 

requiring long term survivability in uncontrolled environments. 



 

159 

 The most attractive feature of the excitation mechanism that causes waving mode vibration is 

that large amplitude vibrations were observed to continue even after the velocity was increased 

by 100%. From an energy harvesting perspective, this type of broadband performance is 

extremely valuable. Experiments showed that waving mode vibration of the array elements 

occurred at nearly the same velocity both with and without a bluff body. Therefore, another 

advantageous feature of the waving mode excitation is that it appears to be unaffected by the 

presence of large-scale turbulence upstream of the array. 

 The model used to predict the minimum velocity at which large amplitude waving mode 

vibrations are initiated was developed by Finnigan in 1979 [115]. Upon observation of wheat 

crops waving in the wind, Finnigan was able to relate the wheat height and natural frequency to 

the flow velocity required for the onset of waving mode vibration. While this relationship given 

in equation (5.1) estimates the frequency of the fluid force, a model describing the force 

magnitude or amplitude of vibration is still currently under investigation. 

 The piezoelectric grass arrays in this study were composed of passive and active elements. 

Passive elements were spring steel cantilevers with uniform cross section and active elements 

were made by bonding a piezoelectric material to passive elements. Eventually, a tip mass was 

added to the active elements in order to tune them to the same natural frequency as the passive 

elements. 

 Active elements were strategically positioned throughout the array in order to provide an 

average power output profile for the entire array. Initial experiments were performed on three 

array configurations each for 14 velocity increments. Results of this initial study showed that in-

line (type-1 and type-2 arrays from Figure 5.4) rather than staggered (type-3) configurations 

easily achieved waving mode vibration as predicted by equation (5.1). These early experiments 
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also showed that the waving mode vibration amplitude increased significantly when all elements 

in the array had approximately the same natural frequency. Considering these observations and 

results from the early experiments, a more in-depth analysis was performed on in-line arrays 

where all elements had the same natural frequency. 

 Power estimates from the in-depth analysis were calculated from 50 different array 

configurations each for 15 velocity increments. A maximum estimated area power density of 

1.89 W/m2 was achieved. Results from all 792 tests provided trends in power output versus 

velocity, x-spacing, and y-spacing. It was shown that maximum power density was achieved by 

minimizing the streamwise gap between elements (x-spacing) and maximizing the y-spacing. 

These results suggest that an optimum x-y spacing exists which can be attained by minimizing 

the x-spacing and maximizing the y-spacing. Future work should focus on determining this 

optimum spacing along with scalability of the array and modeling techniques. 
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CHAPTER VI 

6. ENERGY HARVESTING FROM THE DUAL CANTILEVER FLUTTER 

PHENOMENON 

6.1 Introduction 

Perhaps the oldest and most common form of flow-induced vibration discussed in the literature is 

vortex-induced vibration (VIV) [38,39,119–124]. Another form of well documented flow-

induced vibration popular among those in the aerospace community is flutter [125–128]. This 

chapter presents a preliminary study on a newly discovered form of flow-induced vibration that 

occurs with two identical adjacent cantilevers in cross-flow. This flow-induced vibration 

phenomenon will be referred to here as dual cantilever flutter (DCF). 

 For the past several decades, many authors have successfully investigated flow-induced 

vibration energy harvesting techniques that can primarily be categorized as either VIV 

[2,13,14,40,42,43] or flutter [15,17,49,54,55,57–59]. This chapter will also show the results of an 

experimental proof-of-concept case study performed with a novel DCF energy harvesting device. 
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Figure 6.1: A schematic used to illustrate critical components of the dual cantilever flutter mechanism 
showing identical cantilevered beams positioned side-by-side and oriented perpendicular to air flow. 

 

6.1.1 The Dual Cantilever Flutter Concept 

It was demonstrated in Chapter 5 that large arrays of cantilevers experienced large amplitude 

persistent vibration when exposed to air flow at a certain and predictable velocity [129,130]. 

While performing wind tunnel experiments on these large arrays of cantilevers, the DCF flow-

induced vibration phenomenon was first observed. These early observations of DCF occurred 

when only two cantilevers were placed side-by-side and positioned such that their faces were 

perpendicular to low velocity (~6 m/s) air flow. See Figure 6.1 for a schematic of the DCF 

mechanism. At the appropriate combination of both gap distance (q ) between the cantilevers and 

flow velocity (U), both cantilevers experienced large amplitude persistent vibration at their 

fundamental bending mode. Cantilever tip displacements are shown in Figure 6.1 as 1u  and 2u  

for beam #1 and beam #2 respectively. Visual observations confirmed by laser displacement 
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measurements showed that during DCF the tip displacements of the two cantilevers are 

consistently 180 degrees out of phase.  

 Several series of experiments showed that the cantilevers began to oscillate at relatively 

small amplitudes where a slight increase of flow velocity initially caused a large increase in the 

amplitude of vibration. The velocity that caused this large amplitude state of vibration will be 

referred to as the lock-in velocity which is a term adopted from numerous studies on the topic of 

vortex-induced vibration. During DCF, vibration amplitude and frequency remain nearly 

constant even after increasing the flow velocity to more than twice the lock-in velocity. Because 

a large range of flow velocity is able to excite the cantilevers at or near resonance, there may be 

many cases were DCF-type excitation can cause structural fatigue, unwanted acoustic noise, and 

even catastrophic structural failure. In energy harvesting applications, this ability to excite the 

beams at or near resonance for a large velocity range is most desirable. For example: if an energy 

harvester is to be implemented in an environment with highly unsteady fluid flow, a DCF-type 

harvester could be designed to operate at resonance for the entire flow velocity range. 

6.1.2 Modeling Approach 

The analytical model presented in this chapter and the related CFD model discussed in Appendix 

B are based on a lumped parameter system. First, a single-degree-of-freedom lumped parameter 

model was developed for both beams without considering fluid damping or coupling effects. 

Fluid damping was then added to the lumped parameter model. These fluid damping effects were 

then validated experimentally with results of a single beam in air. The lumped parameter 

equivalent stiffness and drag coefficient were then experimentally validated the with static 

deflection measurements of a single beam over a large range of flow velocities. After the single-
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degree-of-freedom lumped parameter model was developed and experimentally validated for 

both single beams, fluid coupling effects between the beams were then considered. 

 These fluid coupling effects were first implemented and experimentally validated in the 

lumped parameter model (now a two-degree-of-freedom system) for the case of no flow velocity. 

This no flow velocity fluid coupling is referred to as entrainment or sympathetic vibration. The 

final task of the modeling approach was to add a flow-induced vibration component to the 

lumped parameter model, thus capturing the full DCF dynamics. See Table 6.2 for a definition of 

several constants used in this study. Both the entrainment and flutter dynamics of an equivalent 

2-D lumped parameter system were also successfully modeled in CFD simulations using 

ANSYS-CFX. Meshing details and preliminary results of the CFD simulations are discussed in 

Appendix B.  

6.2 Entrainment Modeling 

One would expect that as a single beam vibrates, it moves through the surrounding fluid (air in 

this case) which causes the fluid to move. When two cantilevers are positioned as shown in 

Figure 6.1, the dynamics of one beam affect the dynamics of the other beam via fluid coupling. 

The behavior of two or more lightly coupled systems having similar dynamics can become 

synchronized; i.e. their relative dynamics or motion can become similar or predictable. This 

synchronizing dynamic coupling is called entrainment or sympathetic vibration. 

6.2.1 Observations of Entrainment for a Distributed Parameter System 

The effects of entrainment can clearly be seen from the results of a simple experiment using two 

identical cantilevers positioned as shown in Figure 6.1. A tip mass was used to fine-tune the 

natural frequency of each cantilever to be approximately 9.28 Hz. 
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Figure 6.2: Entrainment modeling results showing good agreement between the measured tip 
displacements of the cantilever beams compared to the displacements of the equivalent lumped masses of 
the entrainment model for (a) beam and plate #1, (b) beam and plate #2, and (c) both beams and plates. 

 

Then, for the case of no flow velocity ( 0U = ), cantilever #1 began with an initial static tip 

deflection while cantilever #2 remained at its neutral position (no deflection). After cantilever #1 

was released from its initially deflected position, cantilever #2 began to oscillate. The amplitude 

of cantilever #2 grew gradually before eventually reaching a maximum where the amplitude then 

began to decay at a rate similar to that of an underdamped oscillator. Even though the motion of 

cantilever #1 began to excite cantilever #2, the response of cantilever #1 appeared to behave as 

though there was no coupling between the beams. Results of this experiment are shown in Figure 

6.2. Note that the amplitudes of beam and plate #2 in Figure 6.2c are increased by a factor of 10 

to show in greater detail their displacements relative to beam and plate #1. It is interesting to note 

that the displacements of both beams appeared as if they were forced to be 180 degrees out of 

phase from each other while they oscillated. 
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 A close look at Figure 6.2c shows that the beam initially at rest (beam #2) immediately 

begins to move toward beam #1 as beam #1 approaches it. This response suggests that the fluid 

coupling causes the beams to become attracted to each other. If beam #1 was forced to move 

very slowly past beam #2 at a frequency much lower than the natural frequency of beam #2, it is 

assumed that fluid coupling would have little or no effect on beam #2. Similarly, it is assumed 

that if the gap between the two beams becomes very large, the fluid coupling effects would 

become negligible. These assumptions along with results shown in Figure 6.2 allow one to make 

the following two statements regarding the fluid coupling between the two beams. First, the 

attraction between the beams is proportional to their relative velocity and displacement in the x-

direction. Second, the coupling between the beams is proportional to the gap or separation 

distance in the y-direction. 

6.2.2 Lumped Parameter Entrainment Model 

Beginning with a simple lumped parameter model, it is possible to approximate the dynamics of 

two beams as two single-degree-of-freedom rigid plates. Each plate has mass (m


), viscous 

damping (c ), and stiffness (k ) as illustrated in Figure 6.3. The uncoupled system without fluid 

damping has the following governing equations of motion, 

 1 1 1 1 1 1 0m x c x k x, , = 

 (6.1) 

 2 2 2 2 2 2 0m x c x k x, , = 

 (6.2) 

where m


, c , and k  are the equivalent mass, damping, and stiffness of the lumped parameter 

system, x  is the displacement, over-dots denote time derivatives such that x  and x  are the 

velocity and acceleration respectively. Subscripts 1 and 2 will be used throughout this section to 

denote plate #1 and plate #2 respectively.  
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Figure 6.3: A schematic of the lumped parameter system used for the dual cantilever entrainment model. 

 

 Fluid damping is estimated by using the drag force equation where the total velocity of the 

surrounding fluid is estimated to equal the velocity of the plate. Note that the free-stream flow 

velocity of the surrounding fluid is zero for the entrainment model. The viscous fluid damping 

force for each plate can therefore be expressed as, 

 1 1 1 1 1
1
2

v f DvF AC x x=    (6.3) 

 2 2 2 2 2
1
2

v f DvF AC x x=    (6.4) 

where f  is the density of the surrounding fluid, A  is the equivalent area of the plate which is 

moving normal to the surrounding fluid, and DvC  is the viscous drag coefficient of the plate. The 

absolute value on the last terms of Equations (6.3) and (6.4) is necessary in order to preserve the 

correct sign (direction) of the force acting on the plate. 

 Recall from the assumptions and experimental observations of Figure 6.2 discussed earlier 

that the fluid coupling force between the beams is proportional to both relative displacement and 

relative velocity. 
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Figure 6.4: Plot of estimated force contribution 
on plate #1 as a function of both relative 
displacement between the plates and the 
displacement coupling parameter ( ). 

 Figure 6.5: Plot of estimated force contribution 
on plate #1 as a function of both relative velocity 
between the plates and the velocity coupling 
parameter ( ). 

 

The coupling force estimate associated with relative displacement of the two plates can be 

expressed as, 
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where   is the displacement coupling parameter. Equation (6.5) is a smooth unit impulse 

function that equals unity when the plate displacements are equal ( 1 2x x= ) and approaches zero 

when the plate displacements become far apart. Increasing   increases the rate at which 

Equation (6.5) approaches zero. Figure 6.4 displays trends of the displacement coupling force as 

functions of both relative plate displacement and coupling parameter  . The coupling force 

estimate associated with relative velocity of the two plates can be given as, 

 ( )1 1 2 1 2S x x x x =     
 (6.6) 

 ( )2 2 1 1 2S x x x x =     
 (6.7) 
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where   is the velocity coupling parameter. Notice that Equations (6.6) and (6.7) have a form 

similar to that of the previously defined fluid damping terms given in Equations (6.3) and (6.4). 

Again, the absolute value on the last two terms of Equation (6.6) is used to preserve the sign of 

the relative velocity of the two plates. This absolute value makes Equation (6.6) unsymmetrical 

unlike Equation (6.5). Figure 6.5 shows trends of Equation (6.6) as functions of relative velocity 

of the two plates and coupling parameter  . Equations (6.5) and (6.6) can then be multiplied 

together to form the total fluid coupling force estimate which can be defined with the following 

expressions. 
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Now Equations (6.8) and (6.9) can be combined with Equations (6.1) through (6.4) to form 

Equations (6.10) and (6.11) which are the equations of motion for the two-degree-of-freedom, 

lumped parameter system with fluid damping and fluid coupling. 
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This coupled, two-degree-of-freedom lumped parameter model was solved numerically using a 

standard ordinary differential equation solver (ODE45) with MATLAB programming software. 

Initial velocity and displacement for plate #2 were set to zero, while plate #1 had zero initial 

velocity and a non-zero initial displacement. All initial conditions can be summarized as, 
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 (6.12) 

where 1ix  is the initial displacement of plate #1. This initial displacement was set equal to the 

measured value of initial displacement used in the dual cantilever entrainment model validation 

experiments. 

6.2.3 Parameter Estimation & Results 

 Results of the numerical simulations using Equations (6.10) through (6.12) agree quite well 

with experimental measurements as shown in Figure 6.2; however, these results are for only one 

gap distance and only one initial deflection. An entrainment parameter estimation study was 

performed for eleven gap distances ranging from 0.66 cm to 2.49 cm. Three different initial 

displacements ranging from 0.5 cm to 2.54 cm were used at each of the eleven gap distances. 

The simulated displacement response of both beams for all 33 entrainment cases was matched to 

the experiments by adjusting the two coupling parameters   and   along with the viscous drag 

coefficient DvC . The goal of this parameter estimation study was to help identify trends in the 

three parameters as a function of gap distance. See Table 6.2 for a definition of several constants 

used in this study. 
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Figure 6.6: Summary of parameter estimation results for the dual cantilever lumped-mass entrainment 
model showing the (a) displacement coupling parameter  , (b) velocity coupling parameter  , and (c) 
viscous drag coefficient DvC . 

 

 Initially, an unconstrained parameter estimation study was performed and the average trend 

as a function of gap distance was identified for each of the three parameters. Results of the 

parameter estimation simulations are summarized in Figure 6.6 where the bold x’s (×) and bold 

squares (□) represent the average parameter value found for the three different initial conditions. 

Using average trends of the unconstrained parameter values, constraint boundaries (shown as 

dotted lines in Figure 6.6) could then be defined for each of the three parameters. A second 

parameter estimation study was then performed for all 33 entrainment cases where the 

parameters were constrained within the boundaries. 

 Average trends (shown as solid black lines in Figure 6.6) were then fitted to the constrained 

parameter estimation results. Results of the two coupling parameters (  and  ) were fitted to 

inverse-square functions which can be defined as, 
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Table 6.1: Summary of coefficients used to define the parameter functions fitted to the constrained 
parameter estimation results for the lumped mass entrainment model. 

Parameter 
function Equation Coefficient    Value Units 

( )q  (6.13) 
1O  0.1710 m2 

2O  8.728×10-4 m 

( )q  (6.14) 
3O  8.374×10-8 kg*m 

4O  9.119×10-3 m 

( )DvC q  (6.15) 
5O  -55.38 [ ] 

6O  3.125 [ ] 
 

 

and the viscous drag coefficient was fitted to a linear function given as, 

 5 6( )DvC q O q O= ,  (6.15) 

where q  is the gap distance (in meters) and coefficients 1O  through 6O  are constants defined in 

Table 6.1. 

6.2.4 Error Analysis 

 An error analysis was performed between experimental results of the 33 entrainment tests 

and a final set of simulations. These final simulation were performed using the analytical model 

as defined in equations (6.10) through (6.15) with the fitted parameter functions for   ,  , and 

DvC . The mean squared error (MSE) for each entrainment case was calculated using the 

following expression, 

 ( )2
1

1 n

i i
i

MSE x u
n =

= å  (6.16) 
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Figure 6.7: Summary of entrainment modeling results showing the mean squared error between model 
and experiment at various gap distances calculated for the unconstrained parameter estimation results and 
the fitted parameter functions. 

 

where x  is the simulated displacement array, u  is the measured displacement array, and n  is the 

number of elements in x  and u . Recall that three different initial conditions were used at each of 

the eleven gap distances; therefore, three MSE values were calculated for each gap distance. The 

average of these three MSE values is plotted in Figure 6.7 (shown as blue x’s) at each gap 

distance for both masses. Also plotted in Figure 6.7 are the average MSE values calculated using 

parameters from the unconstrained parameter estimation results (shown as black circles ‘o’). As 

expected, the error increased when using the fitted parameter functions; however, the maximum 

average magnitude of error was approximately 0.39 mm or only 2.2% of the average initial 

deflection. 

6.3 Dual Cantilever Flutter Modeling 

Previous steps of the modeling procedure presented and experimentally validated the lumped 

parameter structural dynamics, fluid damping, and fluid coupling between two adjacent beams 
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vibrating in a quiescent fluid. The final goal of the DCF model was to predict not only the 

entrainment dynamics, but also the flow-induced excitation at multiple flow velocities and gap 

distances. This section will discuss two additional components of the lumped parameter model 

which will predict mean deflection and flutter amplitude of the cantilevers as a function of flow 

velocity. 

6.3.1 Lumped Parameter Model 

The flow-induced drag force on both beams can be estimated with the well-known drag force 

equation which can be expressed as, 

 2
1 1 1

1
2

d f DdF AC U=  (6.17) 

 2
2 2 2

1
2

d f DdF AC U=  (6.18) 

where f  and A  are defined for equations (6.3) and (6.4), DdC  is the equivalent drag 

coefficient, and U  is the free-stream flow velocity. As in the previous section, subscripts 1 and 2 

denote plate #1 and plate #2 respectively. Notice that these drag force expressions are 

independent of position, velocity, or acceleration of the beams and therefore create a mean 

deflection which is proportional to the square of the flow velocity. 

 As was observed in many experiments, the two cantilevers were stable as long as the total 

displacement amplitude remained below a certain threshold. Prior to flutter, the beams 

experienced static deflection due to the drag force defined by equations (6.17) and (6.18). At a 

certain flow velocity, this static deflection exceeds the stable threshold causing the system to go 

unstable, thus producing limit-cycle oscillations. These flow-induced vibration characteristics are 

similar to those of a Van der Pol oscillator. The Van der Pol equation is similar to the differential 
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equation of motion for a single-degree-of-freedom, spring, mass oscillator with a non-linear, 

position-dependent damping term. This term causes the system to have a so-called isolated and 

unstable periodic solution called a limit-cycle [131]. A Van der Pol model has been used in 

previous work to predict flow-induced vibration caused by reed flutter [70]. 

 The key component of a Van der Pol oscillator equation that dictates the stability of the 

system can be expressed as, 

 ( )2 2
1 1 1pF x x =  

 (6.19) 

 ( )2 2
2 2 2pF x x =  

 (6.20) 

where   is the linearity parameter, and   is the stability threshold parameter. The linearity 

parameter is always positive and determines how linear the system behaves such that a smaller   

value produces a more linear (sinusoidal) response. Note that the terms in the parentheses in 

equations (6.19) and (6.20) can change sign depending on the deflection (x ) and the stability 

threshold parameter ( ).  

 When equations (6.17) through (6.20) are inserted into the right-hand side of equations (6.10) 

and (6.11), the full DCF flutter model can be expressed as, 

 1 1 1 1 1 1 1 1 1 1c v d pm x c x k x F F F F, , =  , ,   (6.21) 

 2 2 2 2 2 2 2 2 2 2c v d pm x c x k x F F F F, , =  , ,   (6.22) 

where the four terms on the right-hand side of both equations can be referred to as fluid coupling 

force ( cF ), viscous damping force ( vF ), drag force ( dF ), and flutter force ( pF ). Recall the 

flutter force defined in equations (6.19) and (6.20), and notice that the terms in parentheses and 
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  are multiplied by velocity (x ) and therefore create a position-dependent damping expression. 

If x  exceeds a given value of  , this damping expression becomes negative. Because there are 

other forms of damping in the full DCF model, it is not until this negative damping expression 

exceeds a certain limit that the system becomes unstable and flutter occurs. 

6.3.2 Parameter Estimation & Results 

A parameter estimation study was performed using the full model given in equations (6.21) and 

(6.22) with the fitted parameter functions given in equations (6.13) through (6.15). The primary 

goal of this study was to validate the final form of the proposed model and to identify trends in 

the three remaining unknown parameters DdC ,  , and   as functions of gap distance (q ) and 

flow velocity (U ). For simplicity, it was initially assumed that the linearity parameter ( ) could 

remain constant for a range of gap distances and velocities. This assumption was later validated 

with results of the parameter estimation study. 

 For a given gap distance and flow velocity parameters DdC  and   were varied until the mean 

displacement and vibration amplitude of the model converged to those from experimental 

measurements. After the model converged, parameters DdC  and   were recorded and the 

velocity or gap distance was incremented. A new set of parameters was recorded for each new 

set of velocity and gap distance. This procedure was performed for five gap distances ranging 

from 0.9 mm to 5.3 mm and each gap distance had 20 velocity increments ranging from 0.10 to 

15.0 m/s. 

 For every combination of desired velocity and gap distance, the model was able to very 

accurately match experimental measurements for both mean displacement and flutter amplitude.  
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Figure 6.8: Comparison of experimental measurements compared to results of the final DCF model 
showing (a) average vibration amplitude and (b) mean displacement of both beams as a function of flow 
velocity and gap distance. 

 

A summary of results from the parameter estimation study is shown in Figure 6.8 where the 

amplitude of vibration and mean deflection of both beams is given as a function of both flow 

velocity and gap distance. The blue lines in Figure 6.8 are experimental measurements and the 

black empty circles (o) are solutions of the lumped parameter DCF model from equations (6.21) 

and (6.22). The mean displacement results shown in Figure 6.8b are plotted for every velocity of 

all five gap distances. Notice that these mean displacement trends are nearly equal for every gap 

distance; therefore, it is clear that the drag coefficient is not a function of gap distance. 
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Figure 6.9: Parameter estimation results showing trends in (a) drag coefficient and (b) stability threshold 
as functions of gap distance and flow velocity.  

  

 Figure 6.9 summarizes results of the parameter estimation study where trends in both drag 

coefficient ( DdC ) and stability threshold ( ) are shown as functions of flow velocity and gap 

distance. Obvious trends are visible for both parameters as functions of flow velocity. The drag 

coefficient increases as velocity increases until reaching a maximum at approximately 9.0 m/s 

then gradually decreases as flow velocity increases (see Figure 6.9a). There was no obvious trend 

in drag coefficient as a function of gap distance. The stability threshold increased exponentially 

as a function of velocity (see Figure 6.9b). With exception of the two smallest gap distances, it is 

clear that the stability threshold also increases with increasing gap distance. 

 Notice that the results in Figure 6.9 are only shown for a velocity range of approximately 4.0 

to 15.0 m/s. This limited velocity range is due to the fact that the parameter estimation code 

(written in MATLAB) was unable to converge on results for DdC  and   when flutter did not 

occur. It was also observed that the model was not as sensitive to the stability threshold 

parameter ( ) when flutter did not occur which was in the lower velocity range (< 4.0 m/s). In 

fact,   could be any value ranging from 0 to the minimum value shown in Figure 6.9b 
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(approximately 0.8 cm) without causing flutter or affecting the mean displacement results. If   

were to exceed this minimum value, then the model would begin to flutter. This lack of 

convergence and reduced sensitivity to   is explained by considering how the full model as 

defined in equations (6.21) and (6.22) can be simplified for the case of no flutter and only static 

deflection due to drag. For this case, all velocity and acceleration terms go to zero and a single 

uncoupled solution remains. The full steady-state model for the case of no flutter in a flowing 

fluid reduces to simply, 

 2
1 1 1 1

1
2

f Ddk x AC U=  (6.23) 

 2
2 2 2 2

1
2

f Ddk x AC U=  (6.24) 

where the force due to displacement must equal the average drag force of the fluid. 

 The model results shown in Figure 6.8 for velocities less than 4.0 m/s were produced using 

the full model from equations (6.21) and (6.22). Values for DdC  and   were found by 

extrapolating the trends shown in Figure 6.9. It was understood that because no flutter occurred 

in this velocity range, the values used for   had no effect on the results which obeyed the 

simplified relationship given in equations (6.23) and (6.24). 

 Table 6.2 defines all constants used in the lumped parameter modeling discussed in Sections 

6.2 and 6.3. Because both beams were nearly identical, their properties were assumed to be 

identical. The effective area (A ) equals the beam width (b ) multiplied by an effective beam 

length of 12.0 mm. This beam length was chosen because the unit depth of the 2-D CFD 

simulations discussed in Appendix B was also 12.0 mm. 
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Table 6.2: List of constants used in the lumped parameter entrainment and dual cantilever flutter modeling 
presented in Sections 6.2 and 6.3. 

Property Symbol Value Units 
Beam length L  14.69 cm 
Beam width b  2.540 cm 
Beam thickness h  238.8 μm 
Effective mass m


 9.669×10-4 kg 

Effective stiffness k  3.287 N/m 
Viscous damping c  6.000×10-4 Ns/m 
Effective area A  3.048×10-4 m2 

Fluid density f  1.225 kg/m3 

Linearity parameter   410m´  kg/m2s 
 

 

Making the analytical model area (A ) equal to the CFD model area was important when 

comparing equivalent damping parameters and drag coefficients between the models. 

6.4 Experimental Details 

Many experiments were performed for two primary reasons. First, results of these experiments 

were (and will be) used for current (and future) model validation. These models include both 

analytical and CFD models for both entrainment and flutter dynamics of two adjacent cantilevers 

in a fluid. The second reason for performing these experiments was to produce proof-of-concept 

results of a novel DCF energy harvesting device.  

6.4.1 Experimental Setup 

Both the entrainment and flutter experiments had a similar setup where two identical cantilevers 

were placed side-by-side as shown in Figure 6.11. Entrainment experiments were performed in 

stagnant (not flowing) air at a temperature of approximately 25oC. Flutter experiments were 

performed in a wind tunnel at various steady flow velocities. 
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Figure 6.10: Schematics showing details of the 
(a) passive and (b) active cantilever designs used 
in the experiments. 

Figure 6.11: A snapshot of the general experimental 
setup used for both dual cantilever flutter (shown) 
and entrainment tests. 

 

The tip deflection of each beam was measured simultaneously using a pair of Keyence 

Corporation laser displacement sensors (Model: LK-G402). Two types of cantilevers referred to 

here as passive and active were used in the experiments. Both types of cantilevers had identical 

lengths, widths, and thicknesses of 14.7 cm, 2.54 cm, and 0.239 mm respectively. (See Table 

6.2.) Passive cantilevers had a basic uniform design and were made with spring steel. Active 

cantilevers were constructed by bonding a QP10n PZT QuickPack (from Mide Technology 

Corporation) to the base of a spring steel cantilever identical to those used for the passive 

cantilevers. Tip masses were added to both passive and active cantilevers in order to fine-tune 

their natural frequencies. The natural frequency of each pair of cantilevers was made nearly 

identical prior to each test. A schematic of the passive and active cantilevers is shown in Figure 

6.10. All experiments and results presented in this chapter are for the case of two identical 

cantilevers, i.e. a pair of passive elements, or a pair of active elements. 
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6.4.2 Entrainment Tests 

Only passive pairs of cantilevers were used in the entrainment experiments because the primary 

focus of these tests was on fluid coupling effects rather than electromechanical coupling. Two 

beams were placed next to each other as shown in Figure 6.11 with a known measured gap 

distance. While measuring and recording tip displacement data for both beams, a single beam 

was released from an initially deflected state. Displacement data from each sensor was recorded 

at a sampling rate of 1.0 kHz. After 30 seconds, the vibration amplitude of both cantilevers 

decayed to nearly negligible values and no further data was collected. This tip deflection data 

was recorded three times for a given gap distance in order to ensure the quality of measurement. 

This entire procedure was repeated for a total of 13 gap distances ranging from 0.66 mm to 7.34 

cm. Results from one of these experiments is shown in Figure 6.2. 

6.4.3 Dual Cantilever Flutter Tests 

Both passive and active element pairs were used for the DCF experiments. Both cantilevers were 

placed in a wind tunnel at a known gap distance, and the velocity in the wind tunnel was adjusted 

to a desired value. When the velocity became steady, tip displacement and air velocity data were 

recorded at a sampling rate of 1.0 kHz per-channel for a total of 60 seconds. Active cantilevers 

were used for the energy harvesting tests where the PZT electrodes of each active element were 

connected to separate load resistors ( LR ) such that they acted as independent circuits (see Figure 

6.10b). The load voltage (v ) for each active element was then measured and recorded along with 

velocity data. After 60 seconds of data was gathered at a constant velocity, the velocity was then 

adjusted and the procedure repeated. Passive element DCF tests were performed at 20 velocity 

increments and 15 gap distance increments for a total of 300 datasets. Active element tests were 

performed at 15 velocity increments and 5 gap distance increments for a total of 75 datasets. 
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Figure 6.12: Plots summarizing the results of two dual cantilever flutter case studies showing (a) passive 
cantilever RMS tip displacement, and (b) active cantilever power output both as functions of air velocity 
and gap distance. 

 

 The results of two DCF case studies are summarized in Figure 6.12 where trends in RMS tip 

displacement and average power output are shown as functions of air velocity and gap distance. 

Note that the z-axis of both plots is represented in a logarithmic scale. Passive cantilevers were 

used for the tip displacement data and active cantilevers were used to generate the power data. 

Tip masses were used to adjust the natural frequency of both pairs to approximately 9.2 Hz. Each 
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black dot shown on the plots in Figure 6.12 represents the gap distance and average flow velocity 

for a given dataset. 

 Figure 6.12a shows clearly defined regions of large and small amplitude vibrations. This 

large amplitude region is where DCF occurs. Notice that the onset of DCF is highly sensitive to 

velocity where the amplitude increases suddenly to a high amplitude state with a small velocity 

increase of only about 0.5 m/s. Figure 6.12a also shows that DCF is highly sensitive to gap 

distance especially between the range of approximately 0.5 cm to 1.25 cm. Notice that after DCF 

occurs the flow velocity has very little effect on the vibration amplitude, and the cantilevers 

become locked-in a high amplitude resonance-type state of vibration. The average power trends 

shown in Figure 6.12b are similar to the tip displacement trends. These power trends show that 

for smaller gap distances (between 0.25 cm and 1.0 cm) the cantilevers can produce a significant 

amount of power over a very large range of velocity (from 3 m/s to 15 m/s). 

6.5 Chapter Summary 

This chapter presents the results of an investigation on a flow-induced vibration phenomenon 

referred to as dual cantilever flutter (DCF). A lumped parameter entrainment model was able to 

successfully predict the effects of fluid coupling between two adjacent vibrating beams in air. 

This chapter discussed how the entrainment model was developed and experimentally validated. 

Also presented in this chapter was an experimentally validated model for predicting vibration 

amplitude, and mean deflection during DCF. 

 A novel DCF energy harvesting device was also presented in this chapter. Results of wind 

tunnel experiments performed with this novel device show that significant amounts of power can 

be harvested over a very large range of flow velocity. This energy harvesting capability over 

such a large velocity range makes DCF an attractive and robust energy harvesting method in 

areas of highly unsteady fluid flow. 
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CHAPTER VII 

7. CONCLUDING STATEMENTS 

7.1 Master Summary 

This dissertation discusses analytical and experimental aspects of energy harvesting for 

autonomous self-sustaining sensor networks with a robust, biologically-inspired device called 

piezoelectric grass. The following is a summary of chapters 2 through 6 which highlights the 

primary findings, successes, and contributions of each chapter. 

7.1.1 Chapter 2 

Five fluid flow energy harvester concept designs were presented. Operational details, 

advantages, and disadvantages of each design were discussed. A final biologically-inspired 

concept design called piezoelectric grass was chosen because it addressed and overcame many of 

the design issues considered for potential application environments. 

 The results of an extensive experimental study on several piezoelectric grass harvester 

prototypes were presented. It was shown that the PZT harvester array (Type-2) was able to 

achieve a power output of 1.0 mW per cantilever with a mean airspeed of 11.5m/s. The similarly 

sized PVDF harvester array (Type-1) was expected to produce significantly less power due to a 

lower electromechanical coupling constant, but was still able to achieve an output of 1.47 W  
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per cantilever at 6.7 m/s. From an application standpoint, note that the PZT harvester produced 

nearly 1000 times the output for approximately 10 times the cost compared to the PVDF 

harvester. However, when considering long-term deployment in an uncontrolled environment, 

the soft, flexible PVDF design is much less susceptible to damage than the brittle PZT design.  

 Harvester array results show that an optimum turbulence condition for maximum power 

output exists for all array configurations. It is shown that these ideal harvesting conditions are 

functions of both flow velocity and harvester location downstream of a bluff body. An estimate 

of the optimum harvester design can be attained by matching the natural frequency of the 

harvester to the primary vortex shedding frequency of the bluff body. Plots given in Figures 2.9 

through 2.14 show how power trends from PVDF arrays appear as large plateaus which span 

across a wide range of both flow velocity and bluff body distance. This broadband type of 

behavior from the PVDF array was very different compared to the sharp peak in power output 

produced by the PZT array. While the array studies presented here were strictly experimental, 

these results may provide valuable insight for the future development of mathematical models 

for large harvester arrays containing many more harvester elements. 

7.1.2 Chapter 3 

A fully coupled electromechanical distributed parameter model for energy harvesting from 

turbulence-induced vibration of a cantilever unimorph harvester was presented and 

experimentally validated. The model includes a combination of both statistical and analytical 

components. The distributed turbulence-induced force was derived using a statistical model 

called the acceptance integral technique. Natural frequencies, mode shapes, and frequency 

response functions of the harvester were calculated using the Rayleigh-Ritz analytical 
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approximation method. Lastly, the electromechanical coupling terms of the unimorph harvester 

were derived from constitutive relationships for the 31 bending mode of a piezoelectric material. 

 Two custom pressure probes were used to take measurements at several locations in the 

turbulent wake of a bluff body in air. These measurements were used to calculate the pressure 

CPSD in equation (3.1) and eventually the modal forcing function given in equation (3.34). 

Figures 3.8-3.10 show good agreement between experimental measurements and model 

predictions for tip displacement PSD, load voltage PSD, RMS load voltage, and average power 

output as defined in equations (3.46), (3.43), and (3.39) respectively. 

 A brief parameter optimization study was performed using the proposed model. It was shown 

that simply adding a tip mass could increase the power output by 280%. This drastic increase in 

power was caused when the natural frequency of the harvester approached the primary vortex 

shedding frequency of the turbulent flow. For each optimization case, a sweep parameter was set, 

then a tip mass was iteratively solved for such that the harvester’s natural frequency remained 

constant. The four geometric sweep parameters were chosen to be the length and thickness of the 

substrate and PZT. For every new geometric parameter value and corresponding tip mass, the 

power was calculated and plotted as a function of the geometric parameter and load resistance. 

This parametric sweep optimization study demonstrated that minimizing the thickness of the 

PZT or substrate, or maximizing the substrate length can cause significant increases in power 

output. 

7.1.3 Chapter 4 

The modeling and turbulence measurement techniques presented in this chapter are shown to be 

quite effective at predicting turbulence-induced vibration. Pressure probes were designed and 

constructed such that they were able to measure turbulent air flow with a full pressure range of 
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249 Pa and a sensitivity of 0.064 mV/Pa. The probes had an uncompensated bandwidth of 

approximately 100 Hz until the first acoustic resonance mode caused significant attenuation. An 

inverse FRF compensation technique was successfully employed and was shown to extend the 

probe bandwidth by an order of magnitude from 100 Hz to over 1000 Hz. Successful modeling 

and calibration methods were applied to the pressure probes to ensure reliable measurements 

even in highly turbulent air flow with a mean velocity range of only (0-12 m/s). Results of three 

case studies showed that the turbulence-induced vibration predictions agreed well with those 

measured in experiments. The largest error associated with predicting RMS tip deflection was 

found to be 0.74% for the unimorph beam design. 

7.1.4 Chapter 5 

This Chapter presented results and observations from a thorough experimental investigation of 

large arrays of piezoelectric grass harvester prototypes. Results demonstrate that large arrays of 

flexible structures possess dynamic characteristics which make them unique and effective energy 

harvesting devices. It was shown that unlike earlier studies performed with single cantilevers, the 

presence of a bluff body does not significantly contribute to the power output of the array.  Early 

large array investigations showed that when the flow velocity reaches a critical point, elements in 

the array are forced into a resonance condition where they experience large amplitude, persistent 

vibration. This waving mode resonance state is called honami and has been found to be an 

extremely robust excitation mechanism for flow-induced vibration energy harvesting. Because a 

harvester of this type could potentially consist of hundreds or thousands of elements, it would 

continue to produce power even if several of the elements should become damaged. This 

redundancy of the biologically inspired design makes large array harvesters ideal for applications 

requiring long term survivability in uncontrolled environments. 
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 The most attractive feature of the excitation mechanism that causes waving mode vibration is 

that large amplitude vibrations were observed to continue even after the velocity was increased 

by 100%. From an energy harvesting perspective, this type of broadband performance is 

extremely valuable. Experiments showed that waving mode vibration of the array elements 

occurred at nearly the same velocity both with and without a bluff body. Therefore, another 

advantageous feature of the waving mode excitation is that it appears to be unaffected by the 

presence of large-scale turbulence upstream of the array. 

 The model used to predict the minimum velocity at which large amplitude waving mode 

vibrations are initiated was developed by Finnigan in 1979 [115]. Upon observation of wheat 

crops waving in the wind, Finnigan was able to relate the wheat height and natural frequency to 

the flow velocity required for the onset of waving mode vibration. While this relationship given 

in equation (5.1) estimates the frequency of the fluid force, a model describing the force 

magnitude or amplitude of vibration is still currently under investigation. 

 The piezoelectric grass arrays in this study were composed of passive and active elements. 

Passive elements were spring steel cantilevers with uniform cross section and active elements 

were made by bonding a piezoelectric material to passive elements. Eventually, a tip mass was 

added to the active elements in order to tune them to the same natural frequency as the passive 

elements. 

 Active elements were strategically positioned throughout the array in order to provide an 

average power output profile for the entire array. Initial experiments were performed on three 

array configurations each for 14 velocity increments. Results of this initial study showed that in-

line (type-1 and type-2 arrays from Figure 5.4) rather than staggered (type-3) configurations 

easily achieved waving mode vibration as predicted by equation (5.1). These early experiments 
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also showed that the waving mode vibration amplitude increased significantly when all elements 

in the array had approximately the same natural frequency. Considering these observations and 

results from the early experiments, a more in-depth analysis was performed on in-line arrays 

where all elements had the same natural frequency. 

 Power estimates from the in-depth analysis were calculated from 50 different array 

configurations each for 15 velocity increments. A maximum estimated area power density of 

1.89 W/m2 was achieved. Results from all 792 tests provided trends in power output versus 

velocity, x-spacing, and y-spacing. It was shown that maximum power density was achieved by 

minimizing the streamwise gap between elements (x-spacing) and maximizing the y-spacing. 

These results suggest that an optimum x-y spacing exists which can be found by minimizing the 

x-spacing and maximizing the y-spacing. Future work should focus on determining this optimum 

spacing along with scalability of the array and modeling techniques. 

7.1.5 Chapter 6 

This chapter presents the results of an investigation on a flow-induced vibration phenomenon 

referred to as dual cantilever flutter (DCF). A lumped parameter entrainment model was able to 

successfully predict the effects of fluid coupling between two adjacent vibrating beams in air. 

This chapter discussed how the entrainment model was developed and experimentally validated. 

Also presented in this chapter was an experimentally validated model for predicting vibration 

amplitude, and mean deflection during DCF. 

 A novel DCF energy harvesting device was also presented in this chapter. Results of wind 

tunnel experiments performed with this novel device show that significant amounts of power can 

be harvested over a very large range of flow velocity. This energy harvesting capability over 
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such a large velocity range makes DCF an attractive and robust energy harvesting method in 

areas of highly unsteady fluid flow. 

7.2 Key Contributions of the Dissertation 

The following is a summary of primary contributions that the research proposed in this 

dissertation provides for the analytical and experimental scientific communities of energy 

harvesting, flow-induce vibration, structural dynamics, and others. 

• Chapter 1 delivers an extensive literature review and history of flow-induced vibration 

energy harvesting devices. A summary of several performance metrics from selected 

harvesting methods is summarized in Table 1.1. These performance metrics were 

calculated in the same manner in order to provide a direct comparison between existing 

harvesting methods and those proposed in this dissertation. Chapter 1 also highlights the 

novelty of the proposed harvester design by showing how unique it is compared to the 

most similar harvester designs found in the literature. 

• Chapter 3 presents a fully coupled electromechanical model for turbulence-induced 

vibration energy harvesting of a single unimorph cantilever in cross-flow. There are two 

primary novel aspects of this model that were proposed and experimentally validated. 

First, it was shown that a forcing function statistically derived from actual turbulence 

measurements could be applied to the electromechanical energy harvesting model. 

Second, it was demonstrated that results of this model can produce not only average 

power and displacement predictions, but also voltage and displacement PSD functions. 

The following section about future work discusses the potential scientific merit of 

predicting the aforementioned PSD functions. 
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• Chapter 4 proposes an experimentally validated turbulence measurement technique and 

how said measurements can be used to predict turbulence-induced vibration of a 

cantilever beam in highly turbulent cross-cross flow. The primary contribution of this 

work was showing how invasive turbulence measurements made with two pressure 

probes can be used to predict displacements of a lightweight structure exposed to high-

intensity turbulence. Turbulence-induced vibration prediction techniques shown in the 

literature typically involve fixing arrays of pressure transducers on the structure and 

measuring the turbulence directly. The proposed technique provides the accuracy of 

direct measurement while at the same time eliminates the obvious issue of adding size, 

mass and possibly stiffness to the structure due to fixing pressure transducers to its 

surface. A secondary contribution from Chapter 4 was showing the design, fabrication, 

and calibration of two low-cost pressure probes used for making invasive turbulence 

measurements. 

• Chapter 5 demonstrated how large arrays of cantilevers in cross-flow achieved a 

resonance condition where the entire array experienced coupled, persistent, large 

amplitude vibration. It was found that this vibration was due to a highly robust flow-

induced excitation mechanism. This type of excitation was well known in the agricultural 

community; however, it had never been investigated in an energy harvesting study. 

• Chapter 6 introduced a novel flow-induced excitation phenomenon based on the 

piezoelectric grass concept referred to as dual cantilever flutter (DCF). A lumped mass 

model for DCF was proposed and experimentally validated. This model was able to 

accurately predict fluid entrainment coupling and the flow-induced excitation between 

two adjacent cantilevers. The entrainment and flutter dynamics were also successfully 



 

193 

modeled using a commercial CFD code (See Appendix B). Another key contribution of 

Chapter 6 was the proposal of a novel energy harvesting device that took advantage of 

the DCF phenomenon. 

7.3 Recommendations for Future Work 

The following discussion focusses on potential future investigations inspired by the research 

presented in this dissertation. 

• Extensive experimental analyses were performed with piezoelectric grass harvester 

prototypes in a laboratory setting; however, the long-term performance and durability of 

these prototypes was not investigated. Future work should focus on field tests in 

uncontrolled, remote, natural, or potentially hazardous environments where a 

piezoelectric grass harvester can be compared directly with existing traditional and/or 

non-traditional devices. (See Chapter 1 for examples of such devices.) A primary task of 

this study would be to simultaneously monitor the structural integrity and record power 

output from a piezoelectric grass harvester and an existing harvester for a period of 

several months, possibly a year. 

• As mentioned in Section 7.2, Chapter 3 presents a model for predicting the voltage and 

displacement PSD functions. It was found that this model can also be used to measure 

turbulence with a novel, single-sensor measurement technique. Rather than making a 

series of tedious pressure probe measurements, a single unimorph cantilever can be 

inserted into the flow and the voltage output from the PZT can be measured. After the 

output voltage is gathered, the voltage PSD function can be calculated. Using the coupled 

electromechanical model proposed in Chapter 3, it is then possible to calculate the PSD 
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of the turbulence-induced force on the beam. This forcing function can then be used to 

predict the turbulence-induced vibration of another structure placed in that flow. 

 This concept was validated with a simple experiment where the turbulence-induced 

force PSD was determined with a single unimorph beam using the method previously 

stated. This unimorph was removed and a second beam having a different design was 

inserted into the flow. Using the turbulence-induced force PSD measured with the 

unimorph, the displacement of the second beam was then predicted. The success of this 

novel turbulence measurement technique was made apparent by comparing the predicted 

displacement of the second beam with laser displacement measurements. 

• A third area of potential future work would focus on the design and implementation of an 

efficient energy harvesting circuit for large arrays of piezoelectric grass. Collecting the 

alternating voltage from several unimorph or bimorph elements in a series or parallel 

configuration would lead to a significant amount of cancellation thus reducing harvester 

efficiency. An obvious alternative would be to design an individual harvesting circuit for 

each element in the array; however, this may be expensive and add unnecessary mass to 

the harvester. The goal of this work would be to develop a circuit that could harvest the 

most power without adding significant cost or weight. 

• Future work should also be focused on energy harvesting from DCF as proposed in 

Chapter 6. This work includes determining the physical significance of the coupling and 

excitation parameters used in the lumped parameter model. Additional CFD modeling 

(See Appendix B) should be performed and compared to experimental and analytical 

results. Future work should also be directed toward developing a coupled 

electromechanical model for energy harvesting from DCF. 
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• Other future work dedicated to the topic of DCF should include a non-dimensional 

analysis of the equations of motion given in equations (6.21) and (6.22). Part of this study 

would investigate the effects of having the mass, damping, and/or stiffness terms of one 

beam differ significantly from those of the adjacent beam. It may be found that an 

optimum combination of these parameters could maximize the energy output of a DCF-

type harvester. 
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APPENDIX A 

A. WIND TUNNEL DESIGN 

 This Appendix provides a detailed description of the wind tunnel which was designed and 

built primarily for experiments presented in Chapters 5 and 6. All major design aspects of the 

wind tunnel will be discussed including part and assembly drawings, materials, flow 

calculations, motor and fan selection, control circuitry, instrumentation, calibration, and 

LabVIEW programming. 

 Several wind tunnels were available to borrow for the work presented in Chapters 5 and 6. It 

was decided, however, that due to the extensive amount of testing required, having a dedicated 

wind tunnel in a more private laboratory setting would allow experiments and equipment to be 

left setup and secured for many days. Having a dedicated wind tunnel would also eliminate the 

need to schedule time in other facilities and would ultimately be the most efficient investment of 

time and resources. 

 A specific list of wind tunnel design requirements and capabilities could be made for the 

experiments presented in this dissertation. Rather than imposing such limitations on the wind 

tunnel capabilities, the focus throughout the design process was placed on making the tunnel as 

functional, versatile, and user-friendly as possible for current and future research projects. 
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A.1 Primary Wind Tunnel Components 

 The wind tunnel had a typical single stage, open circuit design. The tunnel was comprised of 

five major components: contraction (or nozzle), test section, fan vibration isolator, diffuser, and 

finally the fan and motor assembly. The supporting framework was also a major part of the 

design project which was all cut and assembled out of both slotted and solid steel 1.625 x 1.625 

inch strut. The strut stock and all standard assembly hardware was supplied from McMaster-

Carr. 

A.1.1 Contraction Section 

 The contraction section was the only existing component of the wind tunnel which was 

salvaged from a dismantled vertical wind tunnel facility from the University of Michigan. 

Snapshots of the contraction section are shown in Figure A.1. 

 

 

 

 

Figure A.1: Snapshots of the wind tunnel contraction section showing (a) a detailed view of the throat and 
mounting flange including dimensions, and (b) the entire contraction section resting on a steel strut 
support structure. 

(a) 

(b) 
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The contraction ratio was 16:1 and the throat or exit of the contraction had a height and width of 

12.031 x 12.000 inches respectively. The test section mounting flange was 2.0 inches wide and 

had no existing bolt pattern as shown in Figure A.1a. A 3.25-inch thick aluminum honeycomb 

flow straightener was installed at the entrance of the contraction section. Immediately after the 

flow straightener was a steel coarse mesh screen which was then followed by a finer mesh 

screen. The screens and flow straightener were all spaced approximately 3.25 inches apart. The 

total length of the contraction section including the nozzle and flow conditioning inserts was 111 

inches. 

A.1.2 Test Section 

 Perhaps the most critical and intricate component of the wind tunnel was the test section. A 

majority of the design efforts including both time and expenses were dedicated to the test 

section. The following is a list of initial design specifications which includes specific items such 

as overall dimensions and tolerances.  

 

Initial Test Section Design Considerations: 

a. The test section is for an open-loop wind tunnel with a rectangular (approximately square) 

cross section. 

b. The current wind tunnel position is such that while standing at the test section, flow is from 

right to left. Considering that the wind tunnel may be repositioned or moved in the future, 

one should be able to unbolt the section at its flanges and rotate it such that the access door 

can be on either side. In other words, the bolt patterns, alignment, and edge transitions should 

be smooth and symmetric such that the quality of air flow and overall functionality is not 

dependent on the test section orientation. 



 

199 

c. Velocity range: (subsonic)  0-50 mph 

d. Max pressure: 2 inches of water (vacuum) 

e. Test section dimensions as measured from the contraction section. 

1. Inside height: 12.031 (12 + 1/32) inches 

2. Inside width: 12.00 inches 

3. Viewable length: 48.000 inches* 

*The viewable length is the length inside the test section that is viewable from 
outside the test section. The total test section length is not specified and will be 
the viewable length (48-inches) plus the total frame and flange widths at each end. 

4. Tolerance on inside height and width are (+0.03, -0) inches 

5. Tolerance on viewable length is ( 0.1) inches 

6. The inside corners of the test section should be square, but can be rounded or 
chamfered if necessary. 

f. The mating flange for both ends has a 2-inch wide face on all sides that can be thru-bolted. 

The flange on both ends should be left 'blank' (no machined bolt pattern). A bolt pattern will 

be defined after receiving the vibration isolator, diffuser and test section to ensure proper 

alignment and symmetry between all major tunnel components. 

g. The top and sides should be made of 0.375 inch thick float glass. Glass is much harder than 

acrylic or plexiglass and therefore less susceptible to scratching. Float glass is more brittle 

than tempered glass; however, it has the best optical clarity compared to tempered glass, 

acrylics, and plexiglass. Ultimately, float glass was chosen as the best option for allowing 

high-quality laser measurements and digital imaging to be made through the glass with 

minimal distortion. 
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h. The floor should be made of 1.00 or 0.75 inch thick, moderately hard, clear acrylic or 

plexiglass (rather than glass) so that ports for instrumentation mounts, wires, etc. could easily 

be machined. All glass and acrylic/plexiglass panels should be fairly easy to replace in the 

event that one should become damaged. 

i. An entire side of the test section should hinge open to allow maximum accessibility for 

setting up tests. The door should hinge open with at least 90 degrees of motion - 180 degrees 

of motion is preferred. The door should also be held open such that it is not allowed to slam 

shut possibly injuring the operator or damaging the test section. 

j. The access door should have a simple-to-use latching system. 

k. Lastly, the test section should have its own stand with wheels, vibration isolation, and screw 

down leveling feet. The horizontal mid-plane of the test section should be approximately 47-

inches off the ground with its feet screwed down such that there is ±1.0 inch of height 

adjustability. 

 The previous list of design considerations was sent to two companies: Engineering 

Laboratory Design, Inc. (ELD) and Aerolab, LLC. After more than three months of 

communication, neither company was able to provide an acceptable solution. It was decided to 

start designing the test section using Pro/Engineer (now called Creo) CAD software developed 

by Parametric Technology Corporation (PTC). Dimensions of the final test section design are 

listed in Table A.1 and renderings of the test section assembly are shown in Figures A.2 and A.3. 
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Table A.1: Dimensions of the final test section design. 

Dimension Value (inches) 
Inside Height 12.031 
Inside Width 12.000 
Viewable Length 48.00 
Total Length 55.00 
Glass Thickness 0.375 
Acrylic Thickness 0.750 
Mounting Flange Thickness 2.00 
Mid-plane Height 47.00 
Height/Leveling Range ± 1.0 

 

 

 

 

Figure A.2: A rendering of the final version of the test section design developed by the author using 
Pro/Engineer CAD software. 
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Figure A.3: A schematic (drawn to scale – not actual size) showing a cross-section view of the final 
design of the test section assembly. The zigzag lines represent segments of the sides, top, and bottom of 
the test section that were removed from the schematic in order to show greater detail in each of the four 
corners. 
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 After each individual part of the test section was designed, an .stp file was created for each 

unique part. These .stp files were uploaded online using a service provided by QuickParts.com 

where material and tolerance specifications were set, and a few brief comments to the machinist 

were made. After the order was placed, QuickParts was able to complete all machining and 

fabrication and had the parts delivered within two weeks. It took the author a total of 

approximately two months to design the entire test section and have all of the individual pieces 

fabricated, delivered, and ready to assemble. A total of 52 custom parts (34 of them unique) were 

fabricated to form the assembly shown in Figures A.2 and A.3. Most of the custom parts were 

made of 6061-T6 aluminum, the door hinge was 316 stainless steel, the floor was acrylic, and 10 

smaller non-structural pieces were made of PTFE – Teflon. A snapshot of all machined parts is 

shown in Figure A.4. 

 

 

Figure A.4: A snapshot of all test section pieces machined by QuickParts prepared for assembly. 
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Figure A.5: A snapshot of the test section fully assembled and operational. 

 

 Immediately after assembly, the test section was mounted to a stand constructed from steel 

strut. Rubber-padded leveling feet were bolted into the bottom of the stand and allowed for 

height adjustments and leveling up to ±1.0 inch. Figure A.5 shows a snapshot of the test section 

mounted on its stand and bolted to the contraction (right) and vibration isolator (left). 

 Figure A.6 shows a series of snapshots taken at each end of the test section in order to 

highlight details of the latch and pulley system of the hinging door. One end of each cable is 

attached to the front corners of the hinging door while the other ends are attached to an 

adjustable counterweight (not shown). This counterweight system is used to make the heavy door 

very easy to open and holds the door in a stable open position. 
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Figure A.6: Snapshots of the test section showing the latch and pulley system and the hinging door both 
open (a,c) and closed (b,d) at the test section exit (a,b) and entrance (c,d). 
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 Another function of the counterweight system is to prevent the door from being slammed 

shut. Because there is always constant tension in the cables, the door can be dropped from any 

position and it will not fall shut. Restraining the door with the counterweight also protects the 

operator from accidentally dropping the door which could possibly cause injury or damage the 

test section. It was necessary to adjust the counterweight incrementally until the desired 

previously discussed performance was achieved. 

 Access ports were made in the test section by drilling a 1-inch diameter hole through the 

acrylic floor, and inserting the smooth end of a ¾-inch female threaded copper pipe adapter from 

below. The adapter was temporarily held in place with hot melt adhesive (HMA) while epoxy 

was poured between the acrylic floor and copper adapter. See Figure A.8c for a detailed 

schematic of the access port design. After the epoxy hardened, the HMA was simply peeled off. 

Five of these access ports were made at locations along the center line of the test section floor as 

shown in Figure A.7. 

 

 

y

Flow

x
Front 
(inlet)

Rear
(outlet)

Access ports

 

Figure A.7: A schematic of the test section floor on a square 2.54 cm grid showing access port locations 
and the coordinate system relative to the inlet. 
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A.1.3 Pitot-Static Tube Assembly 

 Local velocity measurements were made with a pitot-static tube system. For most 

experiments, the pitot tube was positioned at the front of the test-section such that the tube tip 

was approximately 2 to 3 cm above the floor as shown in Figure A.8a. Details of the pitot-static 

tube support and mounting system are shown in Figure A.8 b and c. The pitot support was a 

thick-walled steel pipe having an outer diameter of 1.27 cm. One end of the pitot support had a 

male threaded section with a hole machined perpendicularly through both walls of the pipe. The 

pitot-static tube was inserted through this hole then clamped in place by a pair of thin nuts, wide 

flange washers, and soft rubber washers as shown in Figure A.8b. 

 A steel shaft coupling (for 1.27 cm diameter shafts) was modified such that one end could be 

inserted into a ¾-inch copper pipe adapter with male threads as shown in Figure A.8c. This 

modified coupling was inserted into the adapter and the two parts were bonded together using 

epoxy. Prior to bonding, a thru hole was milled into the side of the adapter to allow a set screw to 

pass through the adapter to the threaded hole in the coupling. These two bonded parts could be 

screwed into any of the five access ports in the test section floor. The pitot support could pass 

freely through an access port and through the shaft coupling. Two set screws in the side of the 

coupling could then be tightened to fix the pitot support in place. 
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Figure A.8: Detailed views of the pitot-static tube system showing (a) a snapshot of the pitot-static tube 
installed in the test section, (b) a schematic of the pitot-static tube and support tube assembly, and (c) a 
schematic showing how the pitot support is held in place and passed through an access port in test section 
floor. 
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A.1.4 Vibration Isolation 

 Even though the fan assembly was dynamically balanced by the manufacturer in order to 

minimize vibration, significant amounts of vibration could be transmitted from the fan to the rest 

of the wind tunnel. Depending on the experimental setup, vibration introduced by the fan may 

cause measurement error, or potentially damage sensitive instrumentation. In order to reduce the 

transmission of this unwanted fan-induced vibration, an isolation joint was inserted between the 

test section and the diffuser. 

 The vibration isolation joint consisted of two flanges joined with a rubber jacket as shown in 

Figure A.9. This design allowed for robust, rigid, air-tight flange connections while allowing 

each flange to move independently. Figure A.9a shows an exploded view of a CAD rendering of 

the vibration isolation joint with one of the flanges removed for clarity. Each of the two flanges 

was constructed with 0.125 inch thick steel angle welded together at each corner. Figure A.9b 

shows another CAD rendering of the isolation joint completely assembled. A snapshot of the 

isolation joint assembled and installed on the wind tunnel is shown in Figure A.9c. Note that one 

bolt pattern was used for the contraction section, test section, isolation join and one end of the 

diffuser. A detailed drawing showing all dimensions of the mounting flanges and bolt pattern of 

the isolation joint is given in Figure A.9d. 
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Figure A.9: Design details of the vibration isolator showing (a) an exploded view and (b) a fully 
assembled view of CAD renderings along with (c) a snapshot of the full assembly installed on the wind 
tunnel, and (d) a drawing showing the dimensions of the flange and bolt pattern. 

 

(a) (b) (c) 

(d) 

(all dimensions in inches) 

Rubber 
Steel clamp 

Welded steel flange 
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A.1.5 Diffuser Section 

 The diffuser was designed simply by defining the flange width and bolt patterns at both ends 

to be identical to those for the fan assembly and the vibration isolation joint assembly (Figure 

A.9d). Because the dimensions for the flange width and bolt patterns were already known, the 

only dimensions needed for a complete design were the contraction section length and material 

thicknesses. The total diffuser length was set to 40.0 inches. The flanges were constructed from 

0.125 inch thick steel while the diffuser wall was made of 0.055 inch thick steel. Seams on the 

sides of the diffuser were spot welded then sealed while both flanges were joined to the diffuser 

walls with a continuous weld joint. Complete fabrication of the diffuser was performed by the 

University of Michigan Sheetmetal Shop. In order to prevent unsightly and potentially damaging 

oxidation from forming on the steel, all surfaces of the diffuser were cleaned and painted prior to 

installing it on the wind tunnel assembly. A snapshot of the diffuser installed and ready for 

operation is shown in Figure A.10. 

 

 

Figure A.10: A snapshot of the diffuser section installed on the wind tunnel assembly and ready for 
operation. 
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A.1.6 Fan Assembly 

 A direct drive, axial, three-blade, airfoil type fan was used to pull air through the wind 

tunnel. The fan assembly was purchased from Air and Liquid Systems, Inc. The fan was 

designed by American Fan Company, Model: 45JM/20/2/3. The motor was a NEMA, 3 HP, 

TEFC, Premium Efficiency, 3600 RPM, 460/230 VAC, 3-phase, 60 Hz, inverter duty motor 

designed by WEG, Model:  00336ET3EPM182/4Y. Drawings of the fan assembly provided by 

American Fan Company are shown in Figure A.11, and the corresponding labeled parameters are 

given in Table A.2 

 

 

                              

Figure A.11: Drawings of the fan assembly. 
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Table A.2: Parameter definitions for the drawings given in Figure A.11 

Parameter Value Units  
 

Parameter Value Units 
A 545 mm  

 
K 397 mm 

B 500 mm  
 

L 280 mm 
C 450 mm  

 
M 200 mm 

D 406 mm  
 

N 451 mm 
E 2.5 mm  

 
FF 122 mm 

G 12.7 mm  
 

GG 165 mm 
H 8 

 
 

 
HH 83 mm 

J 321 mm  
 

JJ  3/4 inch 
 

 

 

 

 

Figure A.12: Snapshots of the fan assembly installed on the wind tunnel and prepared for normal 
operation showing views (a) from outside the wind tunnel, and (b) from inside the test section looking 
downstream toward the fan. 

 

 Fan guards were constructed from 2.03 mm diameter type-304 stainless steel wire welded to 

form a 2.54 cm x 2.54 cm wire mesh. Two identical circular patterns were cut from the mesh and 

installed on the fan assembly. One guard was bolted between the diffuser and the fan housing 

while the other guard was bolted to the fan outlet flange. Snapshots of the fan assembly with 

attached fan guards are shown in Figure A.12. Notice that the fan blades are positioned closest to 

the diffuser side (inlet) of the fan in order to provide maximum protection against foreign objects 

(a) (b) 

Fan blade location 

Fan guard Fan blades 

Vibration Isolator 

Flow direction 
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accidentally coming in contact with the fan blades or motor shaft from the open end (outlet) of 

the fan. 

A.1.6.1 Fan Sizing & Flow Calculations 

 Motor and fan sizing and matching was performed by American Fan Company for a 

requested flow rate of 4500 cfm (cubic feet per minute) at a static pressure of 2.0 inH2O (inches 

of water).7 The flow rate and pressure were determined using Bernoulli equation. Treating low 

velocity air as an incompressible fluid, continuity was used to first estimate a volumetric flow 

rate based on a desired average test section velocity. The following expression was used to first 

calculate volumetric flow rate of air (Q ) for a desired test section flow velocity ( tsv ), 

 = =ts ts in inQ v A v A  (A.1) 

where tsA  and inA  represent the cross-sectional area normal to the flow direction of the test 

section and contraction inlet respectively, and inv  is the inlet flow velocity. Given the 

dimensions and flow rate, Equation (A.1) was then used to calculate the inlet velocity based on 

the desired test section flow velocity. The pressure difference between the inlet and test section 

could then be estimated with Bernoulli’s equation, 

 ( )2 2

2


D = a
in tsP v v  (A.2) 

where P  is the differential pressure and a  is the density of air at laboratory conditions. For a 

desired test section flow velocity of 20 m/s the flow rate was found to be approximately 1.86 

m3/s or approximately 4000 cfm and the differential pressure was 239.1 Pa or approximately 

0.96 inH2O. These flow rate and pressure values were increased to 4500 cfm and 2 inH2O to 

                                                 
7 Standard units used in the HVAC industry for flow rate and pressure are cfm and inH2O (respectively) rather 

than SI units of m3/s and Pa. 
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account for losses caused by the flow straighteners, fan guards, and blockage of various future 

experiments and instrumentation installed in the test section. 

A.2 Instrumentation & Control 

 This section of the Appendix will focus on all electrical aspects of the wind tunnel. Main 

topics of this section discuss the power supplies for both the fan motor and the instrumentation, 

along with the fan motor controller, pressure transducer, thermocouples, optical isolation (for 

electrical noise reduction), LabVIEW programming, and general wind tunnel operation. Most of 

the electrical components used for monitoring and control were able to be conveniently 

positioned under the diffuser section of the wind tunnel as shown in Figure A.13. 

 

 
(1) Fan assembly 
(2) Variable frequency motor drive controller 
(3) Main ON/OFF power switch 
(4) Power supply for instrumentation and low-power control circuitry 
(5) Project box containing optical isolation and thermocouple amplification circuits 
(6) Data acquisition hardware for wind tunnel instrumentation and control 
(7) Pressure transducer 
(8) Vibration isolation joint 

Figure A.13: A snapshot showing a detailed view of the wind tunnel instrumentation and control circuitry. 
A brief description of each labeled item is provided in the numbered list. 

 

2 3 4 5 6 7 1 8 
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A.2.1 Fan Motor Power Supply 

 Installation of the main electrical power supply was performed by licensed electricians 

working for the University of Michigan. An electrical disconnect box was installed in the lab 

near the wind tunnel. This box houses a 3-phase disconnect switch with 20 amp dual-element, 

time-delay, current limiting fuses on each phase. The disconnect box also contains a magnetic 

motor starter with 10 amp thermal overload protection elements on each phase. These disconnect 

fuses and thermal overloads provide two levels of protection for the motor and motor controller. 

The magnetic starter is a large relay or electromagnetic switch between the main disconnect 

switch and the motor controller. If power to the magnetic starter is interrupted, the switch will 

disengage and not allow power to the motor until a physical reset switch is pushed. This reset 

switch is located on the outside of the electrical disconnect box. An emergency stop switch was 

installed near the test section. If pushed, the emergency stop switch will cause the magnetic 

starter to fault or disengage and a red indicator light located on the disconnect box will 

illuminate. In order to restore power to the motor controller, the emergency stop switch must first 

be pulled out to the open position and the reset switch on the disconnect box must be pushed. 

A.2.2 Instrumentation & Control Power Supply 

 A Mastech, Model: HY3005F-3 power supply was used to provide up to 30 volts and 5 amps 

of continuously variable regulated power from two independent outputs. A third output supplied 

a constant 5 VDC at 3 amps. The power supply is shown as item #4 in Figure A.13. 

A.2.3 Variable Frequency Drive 

 After the appropriate motor size was selected by American Fan Company (See Section 

A.1.6), a variable frequency drive (VFD) motor controller was used to adjust and regulate motor 

power and speed. The VFD chosen was a Mitsubishi model: FR-E720-110-NA which is a 240 
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VAC, 3-phase controller for motor sizes up to 3 Hp. The most attractive features of the VFD are 

summarized below. 

 

a. Motor speed could be controlled manually simply by using a turn dial located on the front of 

the controller. 

b. Motor speed could also be controlled with an external DC voltage or current input such that 

motor speed is linearly proportional to the input signal. 

c. Flow velocity rather than fan speed could also be controlled by enabling an on-board PID 

controller which uses an external voltage or current source (e.g. the output from a velocity 

sensor) as the feedback signal. 

d. Automatic overload protection disengages motor power if the load or power demand on the 

motor exceeds limits set by the controller. 

Only features a, b, and d from the previous list were successfully implemented; however, all 

circuitry and hardware necessary for PID velocity control (feature c) were designed and installed 

on the final wind tunnel design. Enabling feature c would require the operator to follow steps 

clearly documented in the manual provided by Mitsubishi. The VFD and ON/OFF switches were 

mounted on an aluminum sheet and positioned under the exit end of the diffuser (see items #2 

and #3 in Figure A.13). 

 Feature d of the previous list gives added safety for the operator and electrical protection 

for the controller and motor. Recall that this added electrical protection is in addition to the two 

levels of protection already provided by the fuses and thermal overloads of the power supply 
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discussed in Section 0. In the case of an overload fault caused by either excessive current or 

voltage demanded by the controller, the controller will disconnect power to the motor and show 

an error code on the LCD display. The cause of the error and the procedure required to continue 

running the controller, are discussed in the troubleshooting section of the manual provided by 

Mitsubishi. 

A.2.4 Pressure Transducer 

 A high accuracy, low pressure laboratory transducer manufactured by Omega Engineering, 

Inc. (Model: PX653-03D5V) was used to make differential pressure measurements from the 

pitot-static tube. The transducer had a differential pressure range of 0 to 748 Pa (0 to 3 inH2O) 

and produced an output of 1 to 5 VDC that was linearly proportional to the pressure. The output 

signal was temperature compensated from 2o C to 57o C and was calibrated by the manufacturer. 

A regulated 24 VDC signal provided by the instrumentation power supply (#4 in Figure A.13) 

was used to power the transducer. Clear tubing having an inner diameter of 6.35 mm was pressed 

onto barbed pressure ports of the transducer. These tubes connected the transducer to the 

dynamic and static pressure ports of the pitot-static tube. For convenience, the transducer was 

fixed to the test section support frame and positioned under the vibration isolation joint. See item 

#7 in Figure A.13. 

A.2.5 Thermocouples 

 Two T-type thermocouples were calibrated and installed inside the wind tunnel. Both 

thermocouples were purchased from Omega Engineering, Inc. (Model: 5TC-GG-T-20-36). One 

was used to measure air temperature in the test section while another was used to monitor fan 

motor temperature. Normal operating temperatures for the fan motor allow for an increase in 

temperature of 80o C. If the fan temperature monitor detects excessive temperatures, the operator 
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can be warned of a potentially hazardous or damaging condition. The output of each 

thermocouple was amplified using a non-inverting op-amp circuit. Each amplified thermocouple 

voltage was then connected to the main National Instruments data acquisition box and displayed 

in real time using LabVIEW. All calibration measurements were performed on the amplified 

signals. 

A.2.6 Optical Isolation 

 Variable frequency drives such as those used for the current wind tunnel design typically 

produce large amounts of electrical noise. For DC systems, most electrical noise problems can be 

solved with averaging and filtering. As expected, the initial wind tunnel setup had high 

frequency large amplitude electrical noise. Digital filtering and averaging were used to reduce 

most of this noise. Unfortunately, it was discovered that both AC and DC noise was generated. 

This electrical noise issue was compounded by the fact that the amplitudes of both the AC and 

DC noise were not constant and seemed to vary as unknown functions of motor speed. 
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Figure A.14: A schematic of the optical isolation circuit used to isolate the VFD from the data acquisition 
and instrumentation circuits. 
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 It was decided to use optical isolation in an attempt to reduce electrical noise generated by 

the VFD. Optical isolation uses light to transfer electrical information (typically voltage or 

current) across two circuits such that the two circuits act as one while being electrically 

independent. A linear optocoupler (Model: IL300) manufactured by Vishay Semiconductors, was 

used along with two operational amplifiers (Model: LM358) manufactured by National 

Semiconductor Corp. and three resistors (R1, R2, R3) to form an isolation circuit as shown in 

Figure A.14. This optical isolation circuit behaves similar to a non-inverting amplifier such that 

the gain K=VOUT/VIN is a function of the resistors. More details of this circuit and its components 

can be found in readily available technical documents provided by their manufacturers. 

 

 

Table A.3: Nominal resistance values and measured gains for the optical isolation circuits. 

Nominal Resistance (kΩ) Measured Gain (Kn=VOUT/VIN) 
R1 R2 R3 K1 K2 K3 
80.0 80.0 1.00 1.378 1.443 1.400 
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Figure A.15: A schematic illustrating where optical isolation circuits were implemented and how the 
VFD, thermocouples, and pressure transducer were connected to a single data acquisition device. 
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 In order to ensure that both sides of the circuit (i.e. the input and the output) are optically 

isolated, the 24 VDC power supplies and their commons CIN and COUT must also be electrically 

independent. This electrical independence was achieved by using the two independent outputs on 

the instrumentation power supply. Both outputs were set to 24 VDC. One output (output #1) was 

used for the VFD side of the optical isolation boundary while the other output (output #2) was 

used for the DAQ and sensor side of the boundary. For convenience, output #1 and #2 common 

terminals are denoted as C1 and C2 respectively. The VFD common terminal (terminal T-5) was 

connected to C1, and the DAQ and sensor commons were all connected to C2. Figure A.15 shows 

a schematic that illustrates where the optical isolation circuits were implemented. The gains for 

each isolation circuit (shown as K1, K2, and K3 in Figure A.15) were measured after each circuit 

was completed. Table A.3 lists the nominal resistance values and measured gains for all three 

isolation circuits. 

 

 

Figure A.16: A snapshot showing the inside of the project box where the optical isolation and 
thermocouple amplifier circuits were contained. 

 

Screw terminals 

Wire ports 

Optical 
isolation 
circuits 

Thermocouple 
circuits 



 

222 

 All three optical isolation circuits were built on a single solderable breadboard. In order to 

protect the circuits and help shield them from electrical noise, the breadboard was mounted 

inside of an aluminum project box (#5 in Figure A.13). Wires for inputs, outputs, and power 

supplies were extended from the breadboard and routed through ports that were milled on the 

side of the project box. These wires were connected to screw terminals that were fixed to the 

outside of the project box to provide convenient and reliable connections. A snapshot of the 

project box (with the lid removed) is shown in Figure A.16. Notice that the thermocouple 

amplifier circuits were built on a separate smaller breadboard which was also mounted inside the 

project box. The thermocouple circuits were mounted such that they were elevated above the 

optical isolation circuits with nylon spacers. 

A.2.7 Data Acquisition Hardware 

 Fan speed was most commonly controlled by generating a DC voltage signal which could be 

varied from 0 to 5 volts. This voltage signal was generated by an analog output channel (AO-0) 

of a data acquisition (DAQ) card which was connected to the speed set point terminal (terminal 

T-2) of the VFD as illustrated in Figure A.15. The fan speed could then be set to a value that was 

linearly proportional to the voltage generated by the DAQ. 

 The DAQ card was an 8-channel, 14-bit, multifunctional, USB powered device produced by 

National Instruments (Model: USB-6009). This DAQ was connected to a PC computer dedicated 

to wind tunnel operation. National Instruments, LabVIEW software was used to design and 

develop a virtual control panel for the wind tunnel. This virtual control panel was used to vary 

the voltage output to the VFD based on a desired fan speed set by the operator. Voltages from 

the VFD AM terminal and sensors were converted within LabVIEW to display desired and 

actual fan speeds in RPM, air and motor temperatures in degrees Celsius, and pitot-static tube 



 

223 

velocity in m/s and mph. All values were displayed or controlled in real-time. LabVIEW was 

also used for implementing digital filtering and averaging of the measured voltage signals in 

order to minimize the effect of electrical noise. 

A.3 Final Design & Performance Overview 

 Figure A.17 shows a snapshot of the completed wind tunnel fully assembled and fully 

operational. Immediately upon completion of the wind tunnel project, several performance tests 

were administered. The purpose of these tests was to define maximum and minimum limitations 

of the complete wind tunnel system and to ensure that the safety measures were functioning 

properly. All major aspects of the final design were found to exceed expected performance 

capabilities. Table A.4 summarizes selected performance metrics, dimensions, control options, 

operational functions, and safety features for the final wind tunnel design. 

 

Fan Diffuser Test Section

VFD Fan Controller

Attached Work Surface

LabVIEW Control Panel

Wind Tunnel PC

Contraction

Flow Conditioning

Emergency STOP

 

Figure A.17: A snapshot showing the completed final design of the wind tunnel testing facility fully 
assembled and prepared for operation. 
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Table A.4: Summary of performance, dimensions, and functionality of final wind tunnel design. 

Parameter Value Notes 

Maximum velocity 33 m/s (73.8 mph) Inside empty test section 

Minimum measurable velocity 0.1 m/s (0.224 mph) 

 Maximum fan speed 583 rad/s (5570 RPM) See fan specifications 

Fan speed resolution Continuously variable   

Test section height 30.48 cm (12 in)   

Test section width 30.48 cm (12 in) 

 Viewable test section length 1.219 m (48 in) Measured glass length 

Total test section length 1.397 m (55 in) Measured between flange faces 

Total wind tunnel length 5.782 m (228 in) Measured from inlet to exit 

Motor controller type VFD Variable frequency drive 

Fan type 3-blade, axial Direct drive 

Velocity measurement Pitot-static tube  

Temperature measurement T-type thermocouple Air and motor temp. monitoring 

Computer interface Yes Dedicated PC w/ LabVIEW 

Electronic noise reduction Optical isolation  

Digital filtering Yes LabVIEW 

Manual turn dial control mode Yes See controller manual 

Analog input control mode Yes See controller manual 

PID velocity control mode Yes See controller manual 

Real-time virtual control panel Yes Fully customizable / LabVIEW 

Sacrificial element overload protection Yes 3-phase fuses and thermal overloads 

Automatic overload protection Yes Digitally monitored by controller 

Electrical fault interruption Yes Electromagnetic motor starter 

Emergency STOP button Yes Mounted on test section 
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APPENDIX B 

B. DUAL CANTILEVER FLUTTER: CFD MODELING 

While investigating the lumped parameter dual cantilever flutter (DCF) model from Chapter 6, a 

model was also developed for both entrainment and flutter using commercially available CFD 

code. Details of this work are presented in this Appendix. 

B.1 CFD Modeling 

A CFD model was developed in order to help understand what initiates the instability between 

two beams in a flowing fluid ultimately causing them to undergo DCF. The CFD modeling was 

based on a 2-D system with two rigid plates similar to the lumped parameter model discussed in 

Section 6.2.2. It was decided to develop this 2-D model first, rather than a computationally 

expensive, 3-D fluid-structure-interaction model. All properties from Table 6.2 except L  and   

were applied to the CFD model. 

 A schematic of the meshing zones designed for the CFD model is shown in Figure B.1. Two 

different types of CFD simulations were performed using the same basic mesh layout. The first 

simulations were focused on fluid coupling effects and entrainment dynamics between two plates 

in a quiescent fluid where one plate is released from an initial deflection causing an adjacent 

plate to vibrate. 
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Figure B.1: A schematic showing details of the computational domain (not to scale) and various meshing 
zones (a) without and (b) with relative plate deflection to demonstrate the translation and deformation of 
the meshing zones. 

 

The second type of CFD simulations investigated the DCF phenomenon using the same two 

plates and mesh as the entrainment simulations. The two primary differences between the 

entrainment and DCF simulations were that the DCF simulations had a non-zero velocity 

prescribed at the inlet, and both plates had no initial deflection or initial velocity. 

B.1.1 Meshing Zones & Boundaries 

Figure B.1 shows a schematic that defines the major meshing zones, interfaces, and general 

layout of the computational domain developed using ANSYS-CFX for the 2-D CFD simulations. 

Two rigid plates were placed in a surrounding fluid and assigned individual coordinate systems 

(a) 

(b) 
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which will be referred to as C1 and C2 for plate #1 and plate #2 respectively. The motion of both 

plates was constrained such that only translation in the x-direction was allowed. Both plates were 

prescribed with identical mass, stiffness, and damping parameters. Both mass and stiffness could 

be defined using standard rigid-body options in CFX; while the damping parameter was 

implemented using CFX expression language (CEL). A no-slip wall boundary condition was 

imposed on all surfaces of both plates. The top and bottom boundary conditions of the 

computational domain were open for all simulations. The left and right boundary conditions were 

set to inlet and outlet (respectively) for DCF simulations as shown in in Figure B.1a. For 

entrainment simulations however, both left and right boundary conditions were set to open as 

illustrated in Figure B.1b. 

 The fluid was divided into three major zones for each plate (six total zones). Immediately 

surrounding each plate was an inflation zone which contained a mapped mesh having 

quadrilateral elements. This mapping was designed such that the cell sizing was biased to be very 

small at the plate surface while increasing at a geometric rate as distance from the plate 

increased. Each inflation zone was surrounded by a moving fluid zone which was meshed with 

unstructured triangular elements. Cell sizing within the moving fluid zones was controlled by 

prescribing a maximum cell size and growth rate. The final and outermost meshing zone was 

called the stationary fluid zone which was also meshed with unstructured triangular elements. 

Cell sizing within the stationary fluid zones was controlled by specifying growth rate. This 

growth rate was defined such that the outermost cells were much larger than the cells within the 

moving fluid zones. 

 A non-conformal fluid-fluid interface was used to separate the fluid into two halves such that 

the mesh in each half could move completely independent of the other half. This non-conformal 
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interface is shown as the horizontal black dotted line that extends the entire length of the fluid 

between the two plates. Nodes along both sides of this interface were allowed to slide past each 

other and information was freely passed across the interface between adjacent nodes using an 

interpolation scheme. No deformation was allowed within the inflation and moving fluid meshes; 

however, they were able to translate with each plate as shown in Figure B.1b. This translation 

was made possible by linking the mesh to the local coordinates of each plate (C1 and C2) while 

the fluid within the mesh remained in the global coordinate system. Defining the individual 

coordinate systems in this way allowed the mesh to translate without affecting the fluid motion. 

Mesh within the stationary fluid zones was allowed to deform to serve as a buffer zone between 

the moving fluid zones and the fixed boundaries of the computational domain. Again, the 

deformation of the mesh within the stationary fluid zones did not affect the motion of the fluid. A 

conformal, fluid-fluid interface was used between the moving and stationary mesh zones as is 

shown as a white dotted line along the three outer edges of the moving fluid zones in Figure B.1. 

This conformal interface requires nodes on one side of the interface to be linked to those on the 

other such that no sliding or separation is allowed. 

B.1.2 CFD Simulation Results 

A significant amount of effort was devoted to developing and validating the mesh described in 

Section B.1.1. After many design iterations, consistent simulation results that were independent 

of both the mesh and the time-step were attained. A shear stress transport (SST) turbulence 

model was used for all final simulations because it was found to produce the most reliable results 

compared to laminar, k- , and k-  models. 

 The time-series results of two CFD simulations are shown in Figure B.2. Both of these 

results were produced using the same parameters for the mesh, solver, and plates. 
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Figure B.2: Time-series displacement results of two CFD simulations demonstrating (a) the entrainment 
dynamics and (b) the flutter dynamics of two adjacent plates in in air. 

 

The entrainment results shown in Figure B.2a. clearly show a similar response to the model and 

experimental results shown previously in Figure 6.2. The response of plate #1 gradually begins 

to excite plate #2 through fluid coupling only. Notice that the displacement amplitude of plate #2 

in Figure B.2a is increased by a factor of ten in order to show relative motion between the plates 

with greater detail. 

 The flutter response is shown in Figure B.2b where both plates start with zero displacement 

and velocity, then they are quickly forced into limit cycle oscillations with a positive mean 

displacement. The plates have similar displacements for nearly the entire first cycle of oscillation 

and they maintain a similar phase for approximately 2.5 cycles before becoming locked-in at 180 

degrees out of phase. During this phase change the amplitude of plate #1 decreases significantly 

below that of plate #2. After approximately 1.0 second, both plates begin oscillating at a steady 

and nearly identical amplitude. 
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