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ABSTRACT 

 

 Hallmarks of calorie restriction (CR; consuming ~60% of ad libitum, AL, intake) 

include greater whole body insulin sensitivity and insulin-stimulated glucose uptake 

(ISGU) by skeletal muscle.  This thesis aimed to extend knowledge on mechanisms for 

CR-effects on ISGU by elucidating: 1) CR-effects on insulin signaling and muscle ISGU 

in old age, 2) mechanisms for CR-enhanced Akt phosphorylation (pAkt), and 3) in vivo 

signaling and ISGU in multiple muscles of varying fiber types.  The results demonstrated 

that 24-month-old CR versus AL rats had greater ISGU in isolated epitrochlearis and 

soleus muscles with greater pAkt and phosphorylation of Akt-substrate filamin C, but not 

greater phosphorylation of Akt-substrates AS160 or TBC1D1 or insulin receptor tyrosine 

phosphorylation.   Greater pAkt in isolated soleus from 9-month-old CR versus AL rats 

was not attributable to greater activation of signaling steps proximal to Akt (insulin 

receptor phosphorylation, insulin receptor substrate-1 tyrosine phosphorylation or greater 

insulin receptor substrate-1-phosphatidylinositol-3-kinase activity at 5, 15 or 50 minutes 

insulin exposure).  Analysis of six muscles from 9-month-old rats with in vivo insulin 

exposure revealed that CR versus AL rats had greater pAkt in each of four predominantly 

Type II muscles (epitrochlearis, gastrocnemius, tibialis anterior and plantaris) and one of 

two predominantly Type I muscles (soleus, but not adductor longus) with greater ISGU 

for three of four predominantly Type II muscles (not plantaris) and neither predominantly 

Type I muscle and no diet-effect on insulin receptor tyrosine phosphorylation for any  
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muscle.   In conclusion:  1) the CR-related increase in insulin-stimulated pAkt regardless 

of age or experimental model (in vivo or ex vivo) in multiple muscles suggests that Akt  

may be necessary, but not sufficient for a CR-related increase in muscle ISGU; 2) greater 

pAkt for CR versus AL rats was not attributable to detectable diet-related differences in 

insulin signaling steps proximal to Akt suggesting CR-effects on pAkt may rely on other 

mechanisms such as modulation by regulatory proteins that bind to Akt; and 3) the 

similarity for CR-related effects on ex vivo and in vivo ISGU for the epitrochlearis, but 

not the soleus, suggested a muscle-specific difference in susceptibility to the influence of 

systemic factors.
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CHAPTER I 

 

 

INTRODUCTION 

 

 

Insulin resistance is a condition in which a physiological amount of insulin leads 

to subnormal glucose disposal into insulin target tissues and inadequate suppression of 

hepatic glucose production.  It is a primary defect in type 2 diabetes (T2DM) and is also 

an independent risk factor for several chronic diseases that increase in prevalence with 

advancing age (1).  In particular, skeletal muscle can clear as much as 85% of the blood 

glucose load, therefore is a very significant peripheral tissue for preventing the 

accumulation of glucose into the blood (2). It would be tremendously valuable to 

elucidate the mechanisms of insulin stimulated glucose transport and to develop 

meaningful therapies that may serve as interventions that increase insulin sensitivity 

particularly in aging models. 

Calorie restriction without malnutrition (CR; consuming ~60 to 75% of ad libitum 

food intake) is characterized by multiple adaptations that can lead to improved function 

and health in many species.  One of the hallmarks of CR is improved insulin sensitivity 

which is largely secondary to increased insulin-stimulated glucose uptake by skeletal 

muscle.  The greater glucose uptake by insulin-stimulated muscle is attributable to greater 
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recruitment of GLUT4 to cell surface membranes (3).  Many studies have found that CR 

does not elevate skeletal muscle GLUT4 protein abundance,  which suggests that  the CR 

effect on glucose transport depends on improved function of insulin signaling and/or 

GLUT4 vesicle trafficking proteins (4-7).  Insulin binds to its receptor to stimulate 

tyrosine autophosphorylation to phosphorylate insulin receptor substrates (IRS).  IRS1 is 

the predominant isoform in skeletal muscle, and tyrosine phosphorylated-IRS1 binds 

phosphatidylinositol 3-kinase (PI3K), which is essential for insulin to induce GLUT4 

translocation.  A key post-PI3K activator of insulin-stimulated glucose transport is the 

Ser/Thr kinase known as Akt.  A consistent effect of CR is a substantial increase in the 

insulin-stimulated Akt phosphorylation, on two important sites (Thr308 and Ser473) 

important for insulin mediated glucose uptake (8-13).   Mammals express three Akt 

isoforms that have distinct, but overlapping functions, and Akt1 and Akt2 are abundantly 

expressed by skeletal muscle.   Akt2 has been identified as the isoform that is crucial for 

insulin-mediated GLUT4 translocation and glucose uptake (14-17).  Insulin also causes a 

protein named Akt substrate of 160 kDa (AS160) to become phosphorylated on multiple 

Akt-phosphomotifs (18).  Two sites (Thr642 and Ser588) were shown to be crucial for a 

large portion, but not all, of insulin-mediated GLUT4 translocation to cell surface 

membranes (19).  

 This dissertation aimed to extend knowledge on mechanisms for CR-effects on 

insulin-stimulated glucose uptake by elucidating: 1) CR-effects on insulin signaling and 

muscle insulin-stimulated glucose uptake in old age, 2) mechanisms for CR-enhanced 

Akt phosphorylation, and 3) in vivo signaling and insulin-stimulated glucose uptake in 

multiple muscles of varying fiber types. 
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Study 1: Calorie Restriction Enhances Insulin-stimulated Glucose Uptake and Akt 

Phosphorylation in Both Fast-twitch and Slow-twitch Skeletal Muscle of 24 Month-old 

Rats 

Earlier studies have assessed the influence of CR on various aspects of the insulin 

signaling pathway that regulates GLUT4 vesicles in skeletal muscle in adult animals (3, 

8-10, 20-25).  In contrast to the relatively extensive amount of research on the 

mechanisms for the CR-induced elevation in insulin-stimulated glucose uptake in 

muscles from adult animals, little is known about CR effects on insulin signaling in 

muscle from old rats.  A few studies have evaluated the influence of CR on insulin 

receptor function in skeletal muscle of old rats (6, 26, 27), but these studies did not 

determine if there were fiber type differences.  The effects of CR on Akt or AS160 

phosphorylation in insulin-stimulated muscle from old rats, regardless of fiber type, have 

not been reported.  Furthermore, the influence of CR on GLUT4 abundance in the 

epitrochlearis and soleus of old rats is unknown. 

 

Study 2: Comparison of Ad Libitum Fed and Calorie Restricted Rats for the Time 

Course of Insulin’s Activation of Signaling Steps Required for Greater Glucose Transport 

by Isolated Skeletal Muscle  

Most (28-30), but not all (6) of the published studies that have evaluated CR 

effects on skeletal muscle insulin receptor (IR) function at submaximally effective insulin 

levels have not found diet-induced differences.  In a previous study (24), there were no 

significant diet effects on IR tyrosine phosphorylation or IRS1-PI3K activity with a 

physiologic insulin concentration. These results suggest elevation in Akt phosphorylation 
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with CR was not attributable to enhancement in insulin receptor or IRS1-PI3K activity 

(13). The goal of this project is to determine the time course of insulin signaling with CR 

versus. AL in response to a physiological insulin dose and determine if these observations 

may be attributable to reversal of transient CR effect on proximal steps of insulin 

signaling that may have reversed by the time point at which previous studies have 

evaluated insulin signaling (typically after ~50 minutes of insulin exposure). 

 

Study 3: In Vivo Assessment of the Effects of Calorie Restriction on Insulin-stimulated 

Glucose Uptake and the Insulin Signaling Pathway in Multiple Skeletal Muscles 

Compared to the relatively detailed information about CR effects on insulin 

signaling in muscle ex vivo, relatively few studies have focused on insulin signaling in 

rodent muscle of CR rats exposed to insulin in vivo.  A major gap in current knowledge is 

the lack of any published data on the effect of in vivo administration of a physiologic 

insulin dose on insulin signaling in skeletal muscle from CR compared to AL rats. The 

purpose of this study was to evaluate the mechanisms of in vivo insulin-stimulated 

glucose uptake and phosphorylation of key insulin regulated proteins in multiple skeletal 

muscles from adult ad libitum fed and CR (consuming 65% of ad libitum intake) 9mo-old 

Fisher 344 X Brown Norway rats under euglycemic-hyperinsulinemic clamp conditions. 
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CHAPTER II 

 

 

REVIEW OF LITERATURE 

 

 

Significance of Calorie Restriction 

Multiple lines of evidence indicate that calorie restriction (CR; consuming ~60-

75% of ad libitum intake) has beneficial effects on health span and extends lifespan 

across various species, including worms, fish, flies, mice, and rats (31-33).  Although 

knowledge of CR effects on lifespan in humans is  not entirely clear due to difficulty in 

conducting the proper scientific studies, there is an on-going 20-year longitudinal study 

on CR effects in non-human primates that demonstrates some important benefits of CR, 

including delayed mortality and reduced incidence of diabetes, cancer, and cardiovascular 

disease (34).    Older rhesus monkeys undergoing long-term CR exhibit benefits on 

skeletal muscle, including attenuation of sarcopenia (35) and increased insulin sensitivity 

(36) thereby delaying common age-related declines in skeletal muscle function and 

insulin resistance.  

Increased insulin sensitivity and reduced plasma insulin levels are hallmarks of 

CR in multiple species including mice (8, 37), rats (24, 38), monkeys (39), and humans 

(40-42).  Insulin resistance is defined as a subnormal response to a normal dose of 
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insulin. It is associated with several other chronic diseases including type 2 diabetes, 

atherosclerosis, hypertension, malignancy, and cognitive dysfunction (2, 43, 44).  Thus, 

CR serves as an intervention that may help alleviate or prevent prevalent age-related 

pathologies associated with insulin resistance.  

 

Significance of Skeletal Muscle Glucose Transport 

Insulin resistance is a precursor for the progression to type 2 diabetes mellitus 

(T2DM).  Twenty years ago T2DM was primarily diagnosed as a disease of adulthood. 

However, with increased incidence, T2DM now is estimated in the world to account for 

as much as 45% of  diabetes diagnosed in children and as much as 95% of all diabetic 

cases in the United States as of 2007 (45, 46).    In 2000, 8.8% of U.S. adults at least 20 

years of age were diagnosed with diabetes and this estimate is expected to rise to 11.2% 

of the population by 2030 (46). The economic burden and health consequences of T2DM 

are therefore expected to increase significantly within the next two decades.  

Glucose transport in skeletal muscle occurs by facilitated diffusion mediated by 

glucose transporter proteins, with the GLUT4 transporter responsible for insulin-

stimulated glucose transport (47-50).  Glucose transport is a rate controlling step for 

glucose metabolism in skeletal muscle cells (51).  Insulin induces increased glucose 

uptake into insulin-sensitive cells (including skeletal muscle and adipocytes), and thus 

regulates blood glucose levels especially after feeding (27).  In particular, skeletal muscle 

can dispose of as much as 85% of insulin-induced clearance of the blood glucose load 

(10).  Chronic hyperglycemia is a diagnostic sign of diabetes mellitus which is the 

leading cause of blindness due to retinopathy, end stage renal disease, and lower 
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extremity amputations.   In addition to hyperglycemia, compensatory hyperinsulinemia 

ensues further contributing to disease (43, 44, 52).  High blood insulin concentrations 

result from the increased production of insulin from the pancreas in an attempt to 

overcome insulin resistance in peripheral tissues, i.e. skeletal muscle. Given that skeletal 

muscle is the tissue that accounts for the greatest amount of whole body glucose disposal 

(2), elucidating interventions that increase insulin-mediated glucose uptake by skeletal 

muscle (38, 53, 54) is critically important in the context of an obesity and the T2DM 

epidemic 

 It has been well-established that insulin stimulates GLUT4 translocation. A 

tremendous amount of research has been performed to elucidate the specific mechanisms 

that regulate insulin-stimulated GLUT4 translocation and glucose transport in skeletal 

muscle with the goal of developing meaningful therapies that may serve as interventions 

for hyperinsulinemia and hyperglycemia.  A full understanding of skeletal muscle 

glucose uptake regulation via the insulin signaling pathway is important to maximize 

targets for interventions that aim to reverse defects in glucose metabolism.  

 

The Insulin Signaling Pathway 

 The insulin receptor is a heterotetrameric protein consisting of two alpha subunits 

and two beta subunits. The alpha subunits are located on the extracellular surface of the 

plasma membrane and contain the insulin binding site. The beta subunits span the plasma 

membrane and are involved with intracellular signaling (55). Insulin action begins by 

binding to the alpha subunit of the insulin receptor on the cell surface (56) and triggers 

autophosphorylation of tyrosine residues on the beta subunit of the insulin receptor (57).  
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Mutations of insulin receptor tyrosine residues 1162 and 1163 reduce insulin-stimulated 

autophosphorylation of the insulin receptor, receptor tyrosine kinase activity and insulin-

stimulated uptake of 2-deoxyglucose (58).  Insulin receptor autophosphorylation enables 

the recruitment and phosphorylation of the intracellular adaptor proteins called insulin 

receptor substrates (IRS).  IRS-1 is the predominant isoform in skeletal muscle, and 

skeletal muscle IRS-1 is important for normal glucose homeostasis (59, 60).  IRS-1 

associates with and activates the phosphoinositol 3 kinase (PI3K) enzyme.  Activated 

PI3K phosphorylates the 3rd position on the inositol ring of phosphoinositides (61) 

catalyzing the formation of phosphatyidyinositol-3,4-biphosphate (PIP2) to  

phosphatidylinositol 3,4,5-triphosphate (PIP3).  PIP3 recruits serine kinases (including 

PDK1 and Akt) to the plasma membrane which are important for insulin transduction 

(62).  

Akt, a serine kinase downstream of the PI3K, regulates many diverse functions in 

the cell including glucose transport, protein synthesis, glycogen synthesis, cellular growth 

and development.  Of the three isoforms of Akt, Akt 1 and Akt 2 are the predominant Akt 

isoforms expressed in skeletal muscle (63-66).  Upstream phosphoinositide-dependent 

kinases-1 (PDK1) and mammalian target of rapamycin complex-2 (mTORC2) activate 

Akt by phosphorylation on T308 and S473 residues, respectively. Through knockout 

mice and cell culture mutation analysis it has been demonstrated that Akt1 is important 

for growth and development while Akt2 is primarily responsible for regulating glucose 

metabolism (67, 68). Further, Ng et al. reported that Akt2 is sufficient to stimulate 

GLUT4 translocation (69).  Akt phosphorylates various protein substrates on serine or 
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threonine residues in the RXXRXXS/T consensus motif (70). Therefore substrates 

containing this motif are candidates that may link Akt to glucose transport. 

A protein named Akt substrate of 160kDa (AS160) was discovered to be insulin 

responsive (18) and involved in GLUT4 translocation (19). AS160 was characterized in 

3T3-L1 adipocytes and, in addition to being insulin responsive, was determined to be 

located downstream of the PI3K-Akt pathway.  It is the most distal insulin signaling 

protein to date that has been clearly linked to GLUT4 translocation.  AS160 contains a 

Rab GTPase activating protein (GAP) domain suggesting a possible role in insulin 

dependent vesicular trafficking (71). It was revealed that AS160 contained 5 potential 

Akt target phosphomotiffs (RXXRXXS/T). Kane et al. (18) demonstrated that AS160 is a 

substrate of Akt by incubating AS160 with recombinant Akt1 in vitro.   To demonstrate 

the link between AS160 and GLUT4 translocation, Sano et al. (19) produced mutations 

on one key Akt phosphomotif (Thr642) on AS160 and found a significant decrease in 

insulin stimulated GLUT4 translocation. Although these initial findings characterized 

AS160’s role as a regulator of insulin-stimulated glucose transport in 3T3-L1 cells, it was 

also recognized that AS160 was expressed by skeletal muscle. Studies by Arias et al. (72) 

and Bruss et al. (73) revealed that insulin increases AS160 phosphorylation in rat skeletal 

muscle. Insulin-stimulated AS160 phosphorylation was eliminated by the PI3K inhibitor 

wortmannin indicating that the increase in AS160 phosphorylation in muscle is PI3K 

dependent. Furthermore, in skeletal muscle from Akt2 knockout mice, an intraperitoneal 

injection of insulin did not increase AS160 phosphorylation suggesting that Akt2 is the 

key isoform that phosphorylates AS160 with insulin stimulation (74). AS160 was also 

shown to be important for glucose uptake in skeletal muscle. Overexpression of AS160 
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that was mutated on 4 key insulin-responsive Akt phosphomotifs (4P mutant) inhibited 

~50% of the insulin-stimulated increase in glucose uptake in skeletal muscle. The results 

in skeletal muscle support the idea that AS160 is essential for the full effect of insulin on 

glucose uptake in skeletal muscle.  

Although AS160-dependent mechanisms are important for a substantial portion of 

insulin-mediated glucose uptake, it is not sufficient for the full effect. TBC1D1 is a 

recently discovered paralog of AS160.   TBC1D1 also has a GAP domain, regulating Rab 

activity, and it can regulate GLUT4 translocation in 3T3- L1 cells. Chen et al.(75) 

demonstrated in a cell free assay that Akt can phosphorylate TBC1D1 on several sites.  

TBC1D1 can also modulate glucose uptake in skeletal muscle.  Therefore, TBC1D1 

could function as an Akt-dependent substrate important for glucose transport regulation 

in skeletal muscle.  

Philip Cohen’s group identified the cytoskeleton protein filamin C (FLNc) as an 

Akt substrate. FLNc was shown to be phosphorylated on S2213 with insulin stimulation 

and this phosphorylation was prevented by the presence of the specific PI 3-kinase 

inhibitor wortmannin in C2C12 myoblasts (76). Filamin C is highly expressed in skeletal 

muscle and is reported to stabilize actin filament networks on cell membranes (77).  

Insulin signaling molecules and translocation of GLUT4 transporter vesicles to the cell 

membrane has been shown to rely on the integrity and maintenance of actin filaments 

(78, 79).  Furthermore, CR increased filamin C phosphorylation in the rat epitrochlearis 

muscle stimulated with physiological insulin (Sharma et al. unpublished). 
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Relationship between Skeletal Muscle Fiber Type and Insulin-Stimulated Glucose 

Transport 

Skeletal muscle is a heterogeneous tissue and specific muscles can vary greatly in 

their fiber type composition. The gold standard method for categorizing fiber types is 

identifying each skeletal muscle fiber by its myosin heavy chain (MHC) expression. In 

adult rat skeletal muscle, type I, IIA, IIB, and IIX are the myosin isoforms expressed.  

This heterogeneity can be accompanied by different metabolic characteristics (i.e. 

insulin-stimulated glucose uptake) for a particular skeletal muscle. Insulin-stimulated 

glucose uptake is regulated by the GLUT4 transporter and GLUT4 abundance has been 

shown to vary within different isolated rat skeletal muscles (80, 81).  When this 

variability was correlated with the fiber type, studies suggest that GLUT4 abundance is 

greater for oxidative (type I) fibers or the fast-oxidative (type IIA) compared to fast-

glycolytic fibers (IIB) (81, 82).  The results from these studies demonstrate the 

importance of considering skeletal muscle fiber type make-up and its capacity for insulin-

stimulated glucose transport. Rat skeletal muscle composed of primarily of type I 

oxidative fibers (soleus) and type IIA fibers (flexor digitorum brevis) were both shown to 

have at least two fold higher insulin stimulated glucose uptake compared to skeletal 

muscle with a greater proportion of fast-glycolytic fibers(80). Furthermore, MacKrell et 

al. (83) studied insulin-stimulated glucose uptake in isolated skeletal muscle single fibers 

from rats and found that fast-oxidative fibers (type IIA) have significantly higher glucose 

uptake rates compared to fast-glycolytic fibers (type IIB).  The data together suggest that 

type I and type IIA fibers have more similar profiles when compared to type IIB and type 

IIX fibers with respect to insulin stimulated glucose transport.  A full understanding of 
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the mechanisms of insulin-stimulated glucose transport in skeletal muscle requires 

knowledge on multiple skeletal muscle tissue as each skeletal muscle is composed of a 

unique metabolic profile based on its own fiber type composition.   

 

Effects of Aging on Skeletal Muscle Insulin Signaling and Glucose Transport  

Identifying defects in skeletal muscle insulin signaling which are responsible for 

the inability of the muscle cell to properly dispose of blood glucose are important in 

understanding both primary and secondary aging as causes of insulin resistance.  There is 

progressive insulin resistance, even in “healthy” individuals who will not progress to the 

development of Type 2 diabetes as they age.  However, very little is understood about the 

specific mechanisms that cause these primary age-related changes in muscle glucose 

metabolism.  Previous studies have revealed a subtle yet significant decrement in glucose 

uptake in both skeletal muscle in vivo and isolated skeletal muscle (84). The euglycemic-

hyperinsulinemic clamp technique is the gold standard for assessing whole body in vivo 

insulin sensitivity. Results from in vivo experiments include the direct influences of 

various factors absent from ex vivo experiments, including:  blood flow, neural inputs, 

blood hormones and cytokines, in addition to the intrinsic characteristic of the muscle.   

Previous studies using this technique assessed whole body insulin resistance and 

observed that old rats (20 to 24 month old rats) compared to adult (6 to 10 month old rats) 

have an age-related insulin resistance in peripheral tissues which includes skeletal 

muscle. The euglycemic-hyperinsulinemic clamp in combination with use of an 

injectable radiolabeled 2DG tracer allows measurement of 2DG uptake in individual 

skeletal muscles.  One study using this procedure found an age-related decrement in 
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insulin sensitivity in the predominantly slow twitch soleus muscle, but not in the 

predominantly fast twitch quadriceps femoris. This result suggests that not all skeletal 

muscles become resistant with age in the face of whole body age-related insulin 

resistance.    In order to  more closely examine this phenomenon intrinsic to the skeletal 

muscle,  Sharma et al.(84) evaluated glucose uptake by both the isolated soleus and 

epitrochlearis muscles from 9 month old and 25 month old rats ex vivo. Advantages of ex 

vivo preparations include more experimental control and measurements are separated 

from sustained systemic effects. In the predominantly slow-twitch soleus muscle there 

was age-related insulin resistance for glucose uptake, however for the predominantly fast-

twitch epitrochlearis insulin stimulated glucose uptake there was not a significant 

difference between the 9 month and 25 month old rats. The extent of age-related 

resistance therefore is not uniform in all muscles. Aging has variable effects on insulin-

stimulated glucose transport within muscles that vary in their metabolic profiles. The 

GLUT4 transporter carries glucose into the muscle cell from the bloodstream in response 

to insulin. Despite the differences in glucose transport with age in skeletal muscle, 

research studies show that there are not differences in total GLUT4 content in adult rats 

versus old rats. Thus age-related insulin resistance on each individual skeletal muscle 

may be explained by an aging effect on the insulin signaling pathway which regulates 

GLUT4 trafficking and/or defects in the GLUT4 trafficking process. 

The study by Sharma et al. was also one of the seminal papers to evaluate age-

related resistance on key insulin signaling proteins in 9 versus 24 month rats. In isolated 

epitrochlearis and soleus muscles that were incubated ex vivo with 1.2 nM (physiologic) 

or 30 nM (supraphysiologic) insulin, insulin signaling (Akt and AS160) was examined in 
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adult versus old rats. In the epitrochelaris, there was no decrease reported in the major 

skeletal muscle isoforms pAkt1 T308 and pAkt2 T308 in the old versus adult group with 

30nM of insulin. There were similarly no age-related changes seen in either of the 

isoforms at the T308 site with 1.2nM of insulin.   At Akt S473 (the other important Akt 

insulin-stimulated phosphorylation site) in the epitrochlearis there were no age related 

changes at basal or physiological insulin, but with a supraphysiological insulin level there 

was an age-related decrement. In the soleus, there was an age related decrement in pAkt2 

T308 at 30nM insulin and a trend to decrease with 1.2nM insulin. In the soleus there was 

a trend (P=0.07) for a decrease in glucose uptake in 24 versus 9 month old rats with 

1.2nM insulin, and a significantly reduced glucose uptake with 30 nM insulin. It seems 

likely that Akt2 is related to the decrease in insulin stimulated glucose uptake with age.  

When the Akt substrate, AS160 was evaluated at the critical T642 site there was no 

apparent age-related decrease in AS160 phosphorylation at any insulin concentration. 

This result seemed to suggest that age-related resistance occurs through an AS160 

independent mechanism through other Akt substrates. However, AS160 is regulated on 

multiple insulin-regulated phosphorylation sites, and it can be regulated by binding to 14-

3-3 proteins.  Therefore AS160 cannot be ruled out completely.  Further studies in aging 

muscle are required to fully elucidate the mechanisms that account for glucose transport 

and insulin signaling particular in the face of primary age-related resistance.  

   

Effect of CR on Adult and Old Rat Skeletal Muscle Insulin Signaling and Glucose 

Transport 
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 Calorie restriction is well known to enhance insulin-stimulated glucose transport 

in skeletal muscle. Previous studies have documented the CR effect on insulin stimulated 

glucose uptake in adult rats (3, 10, 21, 25, 85-87) and mice (8, 37) in both epitrochlearis 

and soleus muscles.  In 23 month-old rats, CR was to shown to increase insulin 

stimulated glucose uptake in the epitrochlearis muscle.  Dean et al. (3) demonstrated that 

this effect is attributable to a proportional CR-mediated increase in the cell surface 

GLUT4 at the plasma membrane in rat skeletal muscle.  The effect of CR on insulin-

stimulated glucose transport can occur in the absence of increased total GLUT4 protein 

abundance (88).  These results suggest that the mechanism for the CR effect on skeletal 

muscle glucose transport is related to the specific enhancement of the insulin signaling 

pathway leading to increase GLUT4 recruitment to the plasma membrane.     

A few studies have evaluated the effect of CR on the insulin signaling pathway in 

skeletal muscle, but the mechanisms that account for the CR enhancement of insulin-

stimulated glucose uptake are still not entirely clear.  In adult rodents, most studies that 

have evaluated the insulin receptor activation with physiological doses of insulin do not 

report a CR effect (24, 29). Roughly half of the studies that looked at the insulin receptor 

with a supraphysiological dose of insulin found significant changes with the remaining 

studies not detecting altered insulin receptor function with CR (6, 7, 23, 27, 29, 89, 90). 

In old rats, a few studies have evaluated the effect of CR on insulin receptor function in 

skeletal muscle by using an insulin injection. CR does not seem to alter insulin receptor 

function in skeletal muscle (24) unless a supraphysiological dose of insulin is present (26, 

27).  
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Post-insulin receptor signaling has also been shown to increase in some, but not 

all studies using a supraphysiological dose of insulin (3, 7, 10, 23, 25, 89, 90). With a 

physiological does of insulin several studies do not report a significant  CR versus AL 

change in either IRS-1 associated PI3K signaling or IRS-1 tyrosine phosphorylation in rat 

skeletal muscle (24).  However, other studies have reported that muscles from mice (7) 

and monkeys (6) reported that CR resulted in greater IRS-1-PI3K activity.   Taken 

together, these results suggest that CR may affect the insulin signaling pathway 

downstream of PI3-kinase.  

Akt and atypical PKC are key insulin signaling proteins downstream of PI3 kinase 

that have been implicated in the regulation of insulin stimulated glucose uptake in 

skeletal muscle. Insulin-stimulated aPKC was reduced in skeletal muscle from obese non-

diabetic and diabetic rodent skeletal muscle (91, 92). However, Sharma et al. (24) studied 

aPKC in isolated rat skeletal muscle (epitrochlearis and soleus) from adult rats and found 

that aPKC activity did not differ with CR versus AL.  Insulin-stimulated Akt 

phosphorylation has been the most consistent and striking result with CR versus AL in 

adult rats. In numerous studies Akt phosphorylation increases at two key sites (T308 and 

S473) in skeletal muscle undergoing CR (8-10, 24).   This effect is seen with both 

supraphysiologic and physiological levels of insulin. Cho et al. (68) showed that Akt2 is 

the critical isoform for regulating most of the insulin-stimulated glucose transport in 

skeletal muscle. McCurdy et al. (9) revealed that Akt2 at both T308 and S473 were 

increased for CR versus. AL with rodent skeletal muscle stimulated with a submaximally 

effective level of insulin. The effects of CR on Akt phosphorylation in insulin-stimulated 

muscle in old rats in not known.  These previous reports have demonstrated that Akt is 
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likely important for the CR enhanced insulin-mediated GLUT4 translocation and glucose 

uptake in skeletal muscle.   However, further studies elucidating the specific Akt 

substrates that link Akt signaling to the greater insulin-induced GLUT4 translocation and 

glucose transport in response to CR are important. 

CR has been shown to increase insulin-stimulated phosphorylation of AS160 in 

skeletal muscle in adult rats. Sharma et al. (24) evaluated AS160 phosphorylation in the 

epitrochlearis and found that AS160 phosphorylation (T642 and S588) was significantly 

greater in the CR than the AL group with a physiological dose of insulin. In the soleus, 

there was no significant dietary effect on AS160 phosphorylation with either a 

physiologic or supraphysiologic insulin concentration. The CR effect on AS160 

phosphorylation in insulin stimulated skeletal muscle from old rats has not been reported.   

 

Role of CR on In Vivo Insulin Signaling and Glucose Transport 

The euglycemic-hyperinsulinemic clamp is considered the gold standard for 

assessing in vivo insulin sensitivity at the whole body level. In vivo skeletal muscle 

glucose uptake can be specifically evaluated by applying the clamp technique together 

with infusion of radiolabeled 2-deoxyglucose to rodents. There is limited literature 

regarding the effect of CR on insulin signaling and glucose uptake in rodents in skeletal 

muscles in vivo. Wetter et al. (22) utilized an in vivo radioactive 2DG tracer method to 

assess the CR effects on in vivo glucose uptake by various skeletal muscles under 

endogenous insulin levels (i.e., without insulin infusion) in adult rats. Plasma insulin was 

reported to be significantly lower in CR versus AL rats, consistent with increased whole 

body insulin sensitivity. The skeletal muscle of CR versus AL rats had at least equal or 
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higher in vivo glucose uptake values despite having lower insulin levels.  These results 

suggest that CR versus AL enhances in vivo insulin sensitivity and enhances tissue 

specific glucose uptake in skeletal muscle.  In a more recent study, the euglycemic-

hyperinsulinemic clamp was used to study in vivo glucose metabolism with CR in both 

adult and old rats (93). Wistar rats at 8 month and 24 months of age were used to 

determine CR’s effect on in vivo insulin sensitivity in skeletal muscle as function of age.  

With a physiologically-effective dose of insulin it was reported that CR significantly 

increased insulin-stimulated glucose uptake in the soleus and quadriceps at 24 months. At 

8 months of age there was a statistically non-significant trend for increased glucose 

uptake in the soleus with CR, but in the quadriceps there was no observed difference 

between CR versus AL rats. In addition the average insulin level during the clamp 

procedure in the 8 month rats with CR was significantly lower versus AL animals.  

Although there is a large body of evidence of the beneficial effects of CR, little is 

known about the diversity of CR effects in different skeletal muscles.  Therefore, it would 

be valuable to perform an assessment of the effects on insulin signaling and glucose 

uptake with CR in multiple skeletal muscles under controlled physiologic experimental 

conditions.   Apparently no published studies have assessed the influence of long-term 

(several months) of moderate CR on insulin signaling in rat skeletal muscle collected in 

vivo with a physiologic insulin concentration. 

 

Rationale for Models Used in this Research  

Rats were used for the experiments in this dissertation research. Rats are a useful 

model for humans with regard to the influence of age on insulin-stimulated glucose 
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uptake. Like humans, rats have a modest decline in glucose disposal from young to old 

age (~15-35%) (94, 95). Calorie restriction (CR) is used in this thesis as a dietary 

intervention that has been shown to increase insulin sensitivity and therefore is a useful 

model to explore as an intervention to reverse insulin resistance and associated 

pathology.  Past research exploring the CR effects on insulin signaling and glucose 

uptake using rat skeletal muscle has been well established including but not limited to: 

increase cell surface GLUT4 with CR (3), increase glucose uptake with CR (24, 37), 

insulin signaling with CR (6, 9, 10, 23-25, 96). These experiments have contributed to 

our current understanding of CR effects on insulin signaling and glucose uptake but 

future studies are necessary to fully understand the mechanism for CR effects on glucose 

uptake.  Study 1 used 24 month old Fisher Brown Norway (FBN) rats. The 24 month old 

rat is relatively 60 human years (97) and representative of the onset of old age in humans.  

Insulin resistance is more prevalent in old age (98) and knowledge with regard to CR 

effects on skeletal muscle insulin signaling, GLUT4, and glucose uptake in old rats is 

lacking. The FBN strain has been well characterized for aging and calorie restriction 

research from the National Institute of Aging (NIA). Results from Study 1 can also be 

compared to earlier studies that have evaluated the underlying mechanisms for enhanced 

insulin sensitivity in skeletal muscle from adult FBN rats.  

Isolated epitrochlearis and soleus skeletal muscles were used in Study 1 and Study 

2 of this thesis. The epitrochlearis and soleus are examples of skeletal muscles of 

differing fiber types that are widely used in ex vivo incubation experiments. The 

epitrochlearis muscle assists in extension of the forelimb and originates from the tendon 

of the m. lattisimus dorsi and inserts on the medial epicondyle of the humerus (99). The 
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epitrochlearis is 21 to 24 fibers thick (100) which allows for adequate  tissue oxygenation 

to be maintained  and is appropriate for ex vivo muscle incubation for glucose uptake and 

insulin signaling measurements. The predominantly fast-twitch fiber type composition of 

the rat epitrochlearis (75% Type IIb, 17% Type IIa, and 8% Type I) is representative of 

the average fiber type composition of the entire rat hindlimb (76% Type IIb, 19% Type 

IIa, and 5%Type I) (100, 101). The soleus is a postural hindlimb muscle that assists in 

plantarflexion of the foot. The soleus is composed of primarily  slow-twitch Type I fibers 

(0% Type IIb, 12% Type IIa, and 88% Type I) (81) and is also well characterized for ex 

vivo incubations (24, 102, 103).  

The euglycemic-hyperinsulinemic clamp is used in Study 3 of this thesis. This 

method is considered the gold standard for assessing insulin sensitivity and allows for in 

vivo measurements of glucose uptake and insulin signaling. In vivo measurements reflect 

effects of a physiologic milieu by taking into account the intrinsic muscle properties in 

addition to extrinsic factors (i.e. skeletal muscle blood flow, neural inputs, and humoral 

factors). Studies using an in vivo model coupled to an ex vivo model together provides a 

more complete perspective to that of either model in isolation.  

 

Gaps to be Filled by this Research 

The precise cellular mechanism by which CR enhances insulin-mediated cell 

surface GLUT4 translocation in skeletal muscle has not been fully elucidated. The studies 

in this dissertation investigate CR changes in expression and phosphorylation of key 

proteins in the insulin signaling pathway that correspond to an increase in insulin-

stimulated glucose uptake in skeletal muscle. Study 1 assessed the CR effects on insulin 
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signaling and glucose uptake by isolated skeletal muscles (epitrochlearis and soleus) in 

old (24 month-old) rats. CR enhances glucose uptake and Akt phosphorylation in isolated 

epitrochlearis and soleus muscles from adult (9 month-old) rats however AS160 

phosphorylation increased only in the epitrochlearis. We hypothesized that CR would 

enhance glucose uptake and Akt, TBC1D1, and Filamin C phosphorylation in the soleus 

and epitrochlearis muscles from 24 month-old rats, while AS160 phosphorylation would 

increase in the epitrochlearis but not in the soleus.  Study 2 investigated whether the CR 

effect on Akt phosphorylation in isolated soleus muscle from 9 month-old rats is 

attributable to a rapid and transient activation of proximal insulin signaling (pY-IR, pY-

IRS-1, & IRS1-PI3K) in the soleus.  We hypothesized that  phosphorylation of pY-IR, 

pY-IRS-1, and PI3K-IRS-1 would be greater for CR versus AL with insulin stimulation 

at 5 and 15 minutes but not at 50 minutes in the soleus muscle.  Study 3 investigated the 

effects on insulin signaling and glucose uptake in muscles from 9 month-old rats in vivo, 

and explored if the CR effects for epitrochlearis and soleus are similar to other fast-twitch 

(gastrocnemius, plantaris, tibialis anterior) and slow-twitch (adductor longus) muscles. 

We hypothesized that in vivo stimulation of  both predominantly fast-twitch and slow-

twitch muscle of CR versus AL would induce greater glucose uptake and Akt 

phosphorylation while fast twitch muscle of CR versus AL rats would induce greater 

AS160 phosphorylation and slow twitch muscle  from CR versus AL would induce 

greater TBC1D1 and/or filamin C phosphorylation. 
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Chapter III 

 

 

Study 1 

 

 

Calorie Restriction Enhances Insulin-stimulated Glucose Uptake and Akt 
Phosphorylation in Both Fast-twitch and Slow-twitch Skeletal Muscle of 24 Month-

old Rats 
 

 

ABSTRACT 

Calorie restriction (CR) induces enhanced insulin-stimulated glucose uptake 

(ISGU) in fast-twitch (type II) muscle from old rats, but the effect of CR on slow-twitch 

(type I) muscle from old rats is unknown.  The purpose of this study was to assess ISGU 

and phosphorylation of key insulin signaling proteins in isolated epitrochlearis (fast-

twitch) and soleus (slow-twitch) muscles from 24 month-old ad libitum (AL) fed and CR 

(consuming 65% of ad libitum, AL, intake) rats. Muscles were incubated with and 

without 1.2 nM insulin.  CR versus AL rats had greater ISGU, Akt phosphorylation 

(pAkt) on T308 and S473, and filamin C phosphorylation on S2213 for both muscles 

incubated with insulin.  GLUT4 protein abundance and phosphorylation of the insulin 

receptor (Y1162/1163), AS160 (T642 and S588) and TBC1D1 (T596) were unaltered by 
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CR in both muscles.  These results implicate enhanced pAkt and pfilamin C as potentially 

relevant for the mechanism leading to the CR-induced increase in ISGU by the fast-

twitch epitrochlearis and slow-twitch soleus of old rats.  

 

INTRODUCTION 

Calorie restriction (CR; i.e., consuming ~60-75% of ad libitum, AL, intake) 

without malnutrition leads to improved function and health in many species (104, 105).  

One of the hallmarks of CR is an increase in whole body insulin sensitivity (39-41, 106).  

Given that skeletal muscle accounts for the greatest amount of whole body glucose 

disposal (2), it is not surprising that CR leads to increased insulin-mediated glucose 

uptake by skeletal muscle (38, 53, 54) .   

Because skeletal muscle is a heterogeneous tissue that is composed of type I 

(slow-twitch) and type II (fast-twitch) fibers that differ on the basis of contractile and 

metabolic properties, it is valuable to assess muscles with differing fiber type 

compositions to gain a full understanding of CR effects.  Previous research on adult rats 

or mice has reported that CR leads to greater insulin-stimulated glucose uptake in skeletal 

muscles composed primarily of type I (soleus) or type II (epitrochlearis or extensor 

digitorum longus) fibers (8, 9, 24, 37).  In isolated muscle, CR increases insulin-

stimulated glucose uptake in the primarily type II epitrochlearis muscle of 23 month-old 

rats (4, 21), but there have been no reports on insulin-stimulated uptake in a 

predominantly type I muscle of old rats.    

A number of earlier studies have evaluated the underlying mechanisms for 

improved insulin sensitivity in skeletal muscle from adult rats.  Most of the previous 
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studies have reported little or no CR effect on the abundance of GLUT4 (4, 6, 24, 107), 

the insulin-regulated glucose transporter protein.   We have performed a series of studies 

that characterized the effects of CR on key insulin signaling proteins in skeletal muscle.  

Insulin-induced phosphorylation of Akt is essential for insulin-stimulated glucose uptake 

(68).  In this context, it is significant that the most consistent and substantial increase in 

insulin signaling with CR in skeletal muscle has been an increase in insulin-mediated 

phosphorylation of Akt (3, 8, 9, 23, 25).   Insulin-stimulated Akt phosphorylation was 

increased by CR in both the soleus (composed of ~90% type I fibers) and the 

epitrochlearis (~90% type II fibers) in 9 month-old rats (24).     

In view of the striking CR effect on Akt phosphorylation in adult animals, it is 

clearly relevant to identify the Akt substrate(s) that regulate insulin-stimulated glucose 

uptake.  One link between Akt and glucose uptake was discovered by Sano et al. (18, 19) 

who identified a protein that they called Akt Substrate of 160 kDa (AS160; also known as 

TBC1D4).  They found that AS160 was phosphorylated by Akt in response to insulin, 

and that the phosphorylation of AS160 modulated insulin-stimulated glucose uptake.  

They also convincingly demonstrated that Thr642 and Ser588 of AS160 were the most 

important insulin-regulated Akt phosphosites for insulin-mediated glucose uptake (19).  

Sharma et al. (24) recently reported a muscle-specific effect of CR in 9 month-old rats:  

insulin-stimulated Thr642 and Ser588 phosphorylation of AS160 was increased by CR in 

the epitrochlearis, but not in the soleus. Recently TBC1D1, a paralog of AS160, was 

shown to be phosphorylated on T596 with insulin stimulation and when Thr596 was 

substituted to Ala GLUT4 translocation was decreased in 3T3-L1 adipocytes (108). 

TBC1D1 has also been reported to increase with insulin in rat skeletal muscle (109) 
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however it is not clear whether TBC1D1 is important for the CR effect on insulin-

stimulated glucose uptake in rat skeletal muscle.  Another group identified the 

cytoskeleton protein filamin C (FLNc) as an Akt substrate. FLNc was shown to become 

phosphorylated on S2213 in response to insulin stimulation, and this insulin-induced 

phosphorylation was prevented by the presence of the specific PI 3-kinase inhibitor 

wortmannin in C2C12 myoblasts (76). Filamin C is highly expressed in skeletal muscle 

and is reported to stabilize actin filament networks on cell membranes (77).  Insulin 

signaling molecules and translocation of GLUT4 transporter vesicles to the cell 

membrane have been shown to rely on the integrity and maintenance of actin filaments 

(78, 79).  Furthermore, for CR versus AL rats, filamin C phosphorylation in the 

epitrochlearis muscle stimulated with physiological insulin (Sharma, Arias, Sequea and 

Cartee, unpublished results). 

In contrast to the relatively extensive amount of research on the mechanisms for 

the CR-induced elevation in insulin-stimulated glucose uptake in muscles from adult 

animals, little is known about CR effects on insulin signaling in muscle from old rats.  A 

few studies have evaluated the influence of CR on insulin receptor function in skeletal 

muscle of old rats (6, 26, 27), but these studies did not determine if there were fiber type 

differences.  The effects of CR on Akt, AS160, TBC1D1, or filamin C phosphorylation in 

insulin-stimulated muscle from old rats, regardless of fiber type, have not been reported.  

Furthermore, the influence of CR on GLUT4 abundance in the epitrochlearis and soleus 

of old rats is unknown. 

 The goal of the current study was to begin to fill some of these gaps in knowledge 

with regard to CR effects on skeletal muscle insulin signaling, GLUT4 and glucose 
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transport in old rats.  A novel aspect of the experiment was to assess CR effects on 

insulin-stimulated glucose uptake by both predominantly type I (soleus) and 

predominantly type II (epitrochlearis) skeletal muscles of old rats.  In addition, in the 

same muscles, we probed the influence of CR on the phosphorylation of key insulin 

signaling proteins, including the insulin receptor, Akt, AS160, TBC1D1, and filamin C.  

Finally, we determined if CR resulted in altered expression of GLUT4 protein in the 

soleus and epitrochlearis of old rats.  

 

EXPERIMENTAL PROCEDURES 

Materials. Unless otherwise noted, all chemicals were purchased from Sigma Chemical 

(St. Louis, MO) or Fisher Scientific (Hanover Park, IL).  Human recombinant insulin was 

obtained from Eli Lilly (Indianapolis, IN). Reagents and apparatus for SDS-PAGE and 

immunoblotting were from Bio-Rad Laboratories (Hercules, CA). Anti-phospho-insulin 

receptor Tyr1162/1163 (pIRTyr1162/1163; # 44-504G) and anti-insulin receptor (IR; #AHR0271) 

were from Invitrogen (Camarillo, CA).  Anti-Akt (#9272), anti-phospho AktSer473 

(pAktSer473; #9271), anti-phospho AktThr308 (pAktThr308; #9275), anti-GLUT4 (#2213), and 

anti-rabbit IgG horseradish peroxidase (#7074) were from Cell Signaling Technology 

(Danvers, MA). Anti-phospho-AS160Ser588 (pAS160Ser588; # 3028P2) was from B-

Bridge International (Mountain View, CA).  Anti-phospho-AS160Thr642 (#07-802) and 

anti-AS160 (#07-741) were from Millipore (Billerica, MA). Anti-phospho-filamin CS2213 

(#PB-131) was from Kinasource (Scotland, UK). Anti-filamin C (#SC-48496) was from 

Santa Cruz Biotechnology (Santa Cruz, CA). Anti-phospho-TBC1D1T596 was provided 
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by Dr. Makoto Kanzaki (Tohoku University). 2-Deoxy-D-[3H] glucose ([3H]2-DG) and 

[14C]mannitol were from Perkin Elmer (Boston, MA).    

 

Animal Care. Procedures for animal care were approved by the University of Michigan 

Committee on Use and Care of Animals. CR and AL male Fischer 344 × Brown Norway, 

F1 generation rats were obtained at 23 months of age from the National Institute of Aging 

Calorie Restriction Colony and were individually housed for a month prior to 

experimentation.  CR was initiated at 14 weeks of age with 90% of AL, increased to 75% 

of AL at 15 weeks, and to 60% of AL at 16 weeks, a level maintained until 23 months of 

age.   Upon arrival at the Michigan animal facility, rats were housed individually in 

shoebox cages and maintained on a 12:12-h light-dark cycle (lights out at 1700) in 

specific pathogen-free conditions. The AL group had ad libitum access to the NIH31 

chow for the duration of the study. The CR group received NIH31/NIA fortified chow 

(Test Diet), which contains extra vitamin supplementation to provide CR animals with a 

level of vitamins similar to that of animals allowed ad libitum access to the NIH31 diet. 

The CR group received 60-65% of the intake of the AL group daily during the final 

month of the study.  All rats were fed between 1530 and 1630 each day, and food intake 

of both groups was measured daily. All rats were weighed weekly at the same time of 

day. Muscle experiments were performed on AL (N=12 and CR (N=13) fed rats at 24 

months of age. 

Muscle Dissection and Incubation. Food was removed from the cages of all rats on the 

morning of the experimental day between 07:00 and 08:00 h.  Rats were anesthetized 
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with an intraperitoneal injection of sodium pentobarbital (50 mg/kg) between 10:30 and 

13:30 h.  Upon loss of pedal reflexes, soleus and epitrochlearis muscles were removed 

and rapidly rinsed in warm (35oC) Krebs-Henseleit buffer (KHB).  Muscles were 

longitudinally split into strips of similar size for each muscle (2 strips for each 

epitrochlearis, and 4 strips for each soleus).  Muscles strips were subsequently placed in 

vials containing the appropriate media shaking and continuous gassing (95% O2/5% CO2) 

in a heated (35oC) water bath. In the first incubation step, all muscles were incubated in 

vials containing 2 ml KHB supplemented with 0.1% bovine serum albumin (BSA), 2mM 

sodium pyruvate, 6mM mannitol as a rinse step for 30 minutes.   In the second incubation 

step, all muscles were incubated in vials containing 2 ml KHB supplemented with 0.1% 

BSA, 2 mM sodium pyruvate, 6 mM mannitol, and either 0 nM (basal) or 1.2 nM insulin 

for 30 min.  All muscles were then transferred to a third vial containing 2 ml of 

KHB/BSA solution, the same insulin concentration as the previous step, 1 mM 2-DG; 

including a final specific activity of 2.25 mCi/mmol [3H]-2-DG), and 9 mM mannitol 

(including a final specific activity of 0.022 mCi/mmol [14C]-mannitol) for 20 min.  

Following the third incubation step, muscles were rapidly blotted on filter paper 

moistened with ice-cold KHB, trimmed, freeze-clamped using aluminum tongs cooled in 

liquid nitrogen, and stored at -80oC for later processing and analysis. 

 

Muscle Lysate Preparation. Frozen muscles were weighed, transferred to microfuge 

tubes and homogenized in ice-cold lysis buffer (1 ml/muscle) using Qiagen a TissueLyser 

II (Valencia, CA). The lysis buffer contained Tissue Protein Extraction Reagent (Thermo 

Scientific, Rockford, IL; #78510) supplemented with 1 mM EDTA, 1 mM EGTA, 2.5 
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mM sodium pyrophosphate, 1 mM sodium vanadate (Na3VO4),
 1 mM ß-

glycerophosphate, 1 µg/ml leupeptin, and 1 mM phenylmethylsulfonyl fluoride (PMSF).   

Homogenates  were transferred to microfuge tubes, rotated for 1 h at 4°C, and then 

centrifuged (15,000 g) for 15 min (4oC) to remove insoluble material.  Protein 

concentration was measured using the bicinchoninic acid method (Pierce Biotechnology, 

Rockford, IL; #23225).   

Immunoblotting. Equal amounts of protein from each sample were mixed with 6× 

Laemmli buffer, boiled with SDS loading buffer for 5 min, separated by 10% SDS-

PAGE, and then transferred to nitrocellulose.  Membranes were rinsed with Tris-buffered 

saline plus Tween-20 (TBST; 0.14 mol/l NaCl, 0.02 mol/l Tris base, pH 7.6, and 0.1% 

Tween-20), blocked with 5% bovine serum albumin (BSA) in TBST for 1 h at room 

temperature and transferred to primary antibody 1:1000 in TBST plus 5% BSA overnight 

at 4°C.  Blots were washed 3 x 5 min with TBST and incubated in buffer containing the 

appropriate secondary antibody (1:20,000 dilution) for 1 h at room temperature.  

Membranes were then washed 3 x 5 min with TBST and subjected to enhanced 

chemiluminescence with West Dura Extended Duration Substrate (Pierce; #34075) for 

visualization of protein bands. Immunoreactive proteins were quantified by densitometry 

(AlphaEase FC, Alpha Innotech, San Leandro, CA).  

  

2-Deoxy-D-glucose Uptake. Aliquots (200 µl)  of the supernatants were combined in a 

vial with 10 ml of scintillation cocktail (Research Products International, Mount 

Prospect, IL) and a scintillation counter (Perkin Elmer, Waltman, MA) was used to 
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determine  3H and 14C disintegrations per min.  These values were used to determine 

[3H]-2-DG uptake as previously described (110, 111).   

 

Statistical Analysis. A student’s t-test was used to compare AL and CR groups.  Data are 

presented as mean ± SEM.  A P value < 0.05 was considered statistically significant.   

 

RESULTS 

Food Intake, Body Mass and Mass of Muscle Strips 

As intended, daily food intake for AL rats (18.4±1.46 g) was greater (P< 0.01) 

than for CR rats (12.0±1.02 g; 65% of AL), and as expected, body mass was greater (P< 

0.05) for AL (533±7 g) versus CR (302.5±1.8 g) rats.   Also as expected, the masses of 

the muscle strips used for ex vivo incubation were greater for the soleus (P< 0.01) of AL 

(51.7 ±2.5 mg) versus CR (42.0 ±2.4 mg) rats and for the epitrochlearis (P< 0.001) of AL 

(84.2 ±3.2 mg) versus CR (58.5 ±2.2 mg) rats.    

2-Deoxy-D-glucose Uptake 

2-DG uptake in the absence of insulin for both the epitrochlearis (P = 0.34) and 

soleus (P = 0.041) was not significantly different between AL and CR rats (Figure 1).  2-

DG uptake with insulin was significantly greater (P < 0.05) for CR versus AL rats in both 

the epitrochlearis (56% increase) and the soleus (40% increase). 

Protein Abundance 

Insulin receptor abundance for the CR versus AL group was increased 

significantly in the epitrochlearis (35% increase; P<0.005) and tended to increase in the 
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soleus (P=0.056) (Figure 2).  Akt abundance was decreased slightly for the CR compared 

to AL group in the epitrochlearis (9% decrease; P<0.05) (Figure 2).  Akt abundance was 

increased with CR versus AL in the soleus (15% increase; P<0.01). Filamin C abundance 

did not change with diet in the epitrochlearis.  Filamin C was increased (62% increase; 

P<0.05) with CR versus AL in the soleus muscle.  Neither total AS160 nor GLUT4 

abundance in either muscle differed for AL versus CR rats (Figure 2). 

Insulin Receptor Phosphorylation 

In the epitrochlearis, there were no diet effects on insulin receptor 

phosphorylation either with or without insulin (Figure 3). There were also no significant 

diet effects on insulin receptor phosphorylation in the soleus with or without insulin.  

Akt Phosphorylation  

In the absence of insulin, there was no diet effect observed on Akt 

phosphorylation on either T308 (Figure 4) or S473 (Figure 5) in the epitrochlearis or 

soleus.  In both the epitrochlearis and the soleus under insulin-stimulated conditions, Akt 

phosphorylation was increased on both T308 (300% in epitrochlearis, P<0.001; and 

177% in soleus, P<0.001) and S473 (350% increase in epitrochlearis, P<0.001; and 94% 

in soleus, P<0.001) for CR versus AL rats.   

AS160 Phosphorylation 

In both the epitrochlearis and soleus muscle, phosphorylation of AS160 at both 

the T642 (Figure 6) and S588 (Figure 7) sites did not differ between AL and CR animals 

in either the absence or the presence of insulin stimulation. 

TBC1D1 Phosphorylation 
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In both the epitrochlearis and soleus muscle, phosphorylation of TBC1D1 at the 

T596 site did not differ between AL and CR animals in either the absence or the presence 

of insulin stimulation (Figure 8). 

Filamin C Phosphorylation 

In the absence of insulin, there was no diet effect observed on FLNc 

phosphorylation on S2213 in the epitrochlearis or soleus (Figure 9).  In both the 

epitrochlearis and the soleus under insulin-stimulated conditions, FLNc phosphorylation 

was increased on S2213 (52% in epitrochlearis, P<0.05; and 110% in soleus, P<0.05) for 

CR versus AL rats. 

DISCUSSION 

We  previously demonstrated in 23 month-old rats that CR leads to increased 

insulin-stimulated glucose uptake by the predominantly type II epitrochlearis muscle (4, 

21), but the influence of CR on glucose uptake in primarily type I skeletal muscle from 

old rats had not been previously reported.  It was important to fill this gap in knowledge 

because the insulin-stimulated glucose uptake  rates of muscles composed of primarily 

type I fibers are approximately 2-fold greater than muscles composed of predominantly  

type II fibers (24, 80, 84).  Furthermore, relatively greater age-related insulin resistance 

has been reported for predominantly type I versus predominantly type II muscles from 

older rats (84, 112). The most important new findings of the current study for isolated 

skeletal muscles with a physiological insulin concentration, old (24 month-old) CR 

versus AL rats were:  1) glucose uptake was enhanced for both type I soleus and type II 

epitrochlearis; 2) GLUT4 abundance was unchanged in both the soleus and 
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epitrochlearis; 3) insulin receptor phosphorylation was not altered by diet in either soleus 

or epitrochlearis; 4) Akt phosphorylation was enhanced in both the soleus and 

epitrochlearis; 5) AS160 phosphorylation at both T642 and S588 was unchanged by diet 

in both the soleus and epitrochlearis; 6) TBC1D1 phosphorylation at T596 was 

unchanged by diet in both soleus and epitrochlearis; and 7) Filamin C phosphorylation at 

S2213 was greater for CR versus AL rats in both soleus and epitrochlearis.     

Total GLUT4 abundance is highly correlated to the capacity for insulin-stimulated 

glucose uptake in rat skeletal muscle (80).  However, total GLUT4 content was unaltered 

by CR in both the epitrochlearis and the soleus.  These results were consistent with the 

previously published data for the CR effect on GLUT4 in skeletal muscle of old rats. 

Wang et al reported that CR did not alter total GLUT4 content in the diaphragm of 29 

month-old rats (6).  Because the diaphragm contracts continuously, and chronic 

contraction can increase GLUT4 expression (113), the results of the current study for the 

soleus and epitrochlearis provided valuable new information.  The absence of a CR effect 

on GLUT4 abundance in the soleus of 24 month-old rats is consistent with the results that 

we previously reported for the soleus of 9 month-old rats (24).  GLUT4  abundance in the 

epitrochlearis was also unaltered by CR in 24 month-old rats, consistent with our 

previous results for the epitrochlearis of 8 month-old rats (4).  However, in a recent study 

we found a modest (22%) CR-induced increase in GLUT4 abundance in the 

epitrochlearis of 9 month-old rats (24).  CR did not result in altered GLUT4 abundance in 

the vastus lateralis muscle from adult rhesus monkeys (5).  GLUT4 abundance in 

hindlimb muscles from mice were unaltered (89, 90) or increased (7) in response to CR.   

Taken together, a number of previous studies have established that even though skeletal 
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muscle GLUT4 abundance is often unaltered by CR, improved insulin sensitivity is 

consistently reported with CR in adults.  Furthermore, the current results clearly 

demonstrate that enhanced insulin-stimulated glucose uptake can occur in both type I and 

type II muscles of old rats in the absence of increased GLUT4 expression.  The CR-

induced enhancement on insulin-mediated glucose uptake in isolated epitrochlearis 

muscles from 5.5 month-old rats is attributable to a proportional increase in GLUT4 

translocation to the cell surface (3).  It seems reasonable to suspect that greater GLUT4 

translocation may also mediate the CR-related elevation in insulin-stimulated glucose 

uptake of muscles from old rats.  Because GLUT4 translocation is regulated by the 

insulin signaling pathway, it was important that we also evaluated CR effects on key 

insulin signaling steps in muscles from old rats.  

There was no CR effect on tyrosine1162/1163 phosphorylation of the insulin 

receptor for either muscle with a physiologic insulin dose. These tyrosine residues on the 

insulin receptor’s β subunit are major regulatory sites that account for most of the 

receptor’s insulin-mediated autophosphorylation and tyrosine kinase activity (58).  

Furthermore, replacement of both of these tyrosine residues with phenylalanine residues 

results in a marked reduction of insulin-stimulated 2DG uptake (58).   The lack of a CR-

related increase in insulin receptor tyrosine phosphorylation was found despite a 

moderate (35%) increase for insulin receptor abundance of the epitrochlearis of CR 

compared to AL rats.  These results for insulin receptor abundance are reminiscent of the 

previously reported modest increase (~19%) in insulin receptor binding capacity (Bmax) 

for CR versus AL rats in the diaphragm of 29 month-old rats (6).  Zhu et al. (26, 27) 

reported that after 25 month-old rats were injected with a high dose of insulin into the 
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portal vein, gastrocnemius muscle (predominantly type II fibers) from CR compared to 

AL animals had greater insulin receptor tyrosine phosphorylation.  In 9 month-old rats, 

we previously reported no significant CR compared to AL differences for tyrosine 

phosphorylation of the insulin receptor from soleus or epitrochlearis muscles incubated 

with a physiologic insulin dose, but there was a CR-related increase in both muscles with 

a supraphysiologic insulin concentration (24).  These results suggest that CR effects on 

tyrosine phosphorylation of the insulin receptor in skeletal muscle may be insulin dose-

dependent.  Furthermore, the CR-related amplification of post-receptor signaling and 

glucose uptake in muscle stimulated by a physiologic insulin dose in the current study do 

not appear to be attributable to greater tyrosine phosphorylation of the insulin receptor.  

We have consistently found a robust CR-induced increase in skeletal muscle Akt 

phosphorylation in skeletal muscle (both soleus and epitrochlearis) of young adult rats or 

mice (8-10, 24).   The current study was the first to assess the influence of CR on Akt 

phosphorylation in skeletal muscle from old rats.  Consistent with earlier results, CR 

versus AL rats had a striking increase in insulin-stimulated phosphorylation of the key 

regulatory sites of Akt (T308 and S473) in both muscles.  The small CR effects on Akt 

abundance (15% increase in soleus and 9% decrease in epitrochlearis) were insufficient 

to account for the marked (177% increase in soleus and 300% increase in epitrochlearis 

for T308; 94% increase in soleus and 350% increase in epitrochlearis for S473) increases 

for Akt phosphorylation with CR.  The dramatic increases in Akt phosphorylation with 

CR at a physiologic insulin dose occurred without an apparent change in upstream 

signaling at the insulin receptor, and these data are consistent with our previous results 

for the effect of CR on the soleus and epitrochlearis for 9 month-old rats (24).  
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AS160 is an Akt substrate and the most distal insulin signaling protein that is 

clearly implicated in insulin-mediated activation of glucose uptake in skeletal muscle (50, 

109).  The ability to phosphorylate AS160 on T642 and S588 is essential for the full 

effect of insulin on GLUT4 translocation and glucose uptake (18, 19, 50, 74).   However, 

we found no evidence for diet-related changes in insulin-stimulated T642 or S588 

phosphorylation in either the epitrochlearis or soleus muscle of old rats.  Consistent with 

the current results, we previously reported that T642 phosphorylation of the insulin-

stimulated soleus was unaltered by CR for 9 month-old rats (24). The lack of a CR effect 

on T642 or S588 phosphorylation of AS160 in the epitrochlearis with physiologic insulin 

in 24 month-old rat differs from the CR-related increase in T642 and S588 for the 

epitrochlearis  of 9 month-old rats (24).  The explanation for the different results for T642 

and S588 in the epitrochlearis of adult compared to old rats remains to be determined.     

TBC1D1 is an Akt substrate and has been implicated in the regulation of glucose 

uptake(50, 109).  In the absence of AS160 phosphoryation, one plausible scenario would 

be that TBC1D1 may play a role in the CR-mediated increase in insulin-stimulated 

glucose uptake in old rats.  However, we found no evidence of enhanced phosphorylation 

of T596 in either epitrochlearis or soleus muscles. An alternative possibility is that CR 

may lead to greater phosphorylation of another Akt substrate that modulates glucose 

transport.   In this context, it was interesting that CR resulted in greater phosphorylation 

of filamin C in the insulin-stimulated epitrochlearis and soleus muscles.  Filamin C was 

previously identified as a substrate of Akt that in C2C12 myocytes incubated with insulin 

becomes phosphorylated on Ser2213 (76). Insulin-regulated remodeling of actin 

filaments has been implicated in the control of both the spatial localization of insulin 
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signaling proteins and translocation of GLUT4 glucose transporter vesicles (78).  Sharma 

et al. (unpublished results), studying isolated epitrochlearis from 9 month-old rats, also 

found a CR-induced increase in insulin-stimulated filamin C phosphorylation.   They 

further found that a low dose of a highly selective Akt inhibitor that eliminated the CR-

induced increase in Akt phosphorylation also eliminated the CR-induced increases in 

both glucose uptake and filamin C phosphorylation of the insulin-stimulated 

epitrochlearis.   We demonstrated in this study that insulin-stimulated filamin C 

phosphorylation at S2213 is enhanced with CR in both the epitrochlearis and soleus 

muscles from old rats.  It should be noted that in the soleus, but not the epitrochlearis, the 

greater filamin C phosphorylation (110%) in CR rats is likely at least in part attributable 

to an increase (62%) in total filamin C abundance.  If the filamin C phosphorylation of 

the soleus is expressed as a ratio of total filamin C abundance, there is no longer a 

statistically significant difference between the AL and CR rats. Regardless, it is unclear if 

filamin C plays any role in the regulation of glucose transport, and the functional 

significance of the observed CR-related increase in insulin-mediated phosphorylation of 

filamin C is unknown. 

In conclusion, the most significant new result was that the CR-effect on insulin-

stimulated glucose uptake was well-preserved for both type I soleus and type II 

epitrochlearis of old rats.  Furthermore, in both muscles, it seems likely that this increase 

is secondary, at least in part, to greater insulin-stimulated Akt phosphorylation.  

However, in neither muscle was insulin-stimulated AS160 (T642 and S588) 

phosphorylation or TBC1D1 T596 phosphorylation enhanced by CR. Earlier research in 

adult (9 month-old) rats implicated CR-induced elevation in phosphorylation of Akt and 
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AS160 as likely important for the greater insuln-stimulated glucose transport in the 

epitrochlearis muscle (24).  The results of the current study suggest that the mechanisms 

for improved insulin-stimulated glucose uptake in the epitrochlearis with CR may not be 

completely identical for adult compared to old rats.  In both the current study and the 

previous study of 9 month-old rats, greater insulin-stimulated glucose transport in the 

soleus was accompanied by greater Akt phosphorylation in the absence of enhanced 

phosphorylation of either AS160 or TBC1D1. An interesting finding of uncertain 

functional significance was that CR resulted in greater S2113 phosphorylation of filamin 

C in insulin-stimulated epitrochlearis and soleus muscles.  Future research should focus 

on determining if the CR effect on filamin C phosphorylation plays a role in greater 

insulin-stimulated glucose transport in either the epitrochlearis or soleus of old rats.   
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Figure 3.1 2-Deoxy-D-glucose (2-DG) uptake in isolated epitrochlearis and soleus 

from old rats. 2-DG in epitrochlearis (A) and soleus (B) muscles with 0 or 1.2nM 

insulin.  *p<0.05, CR versus AL in the same insulin treatment group.  Data are means ± 

SEM.  n=9-11 muscles per diet group and insulin concentration.   Open bars represent AL 

group. Closed bars represent CR group.   
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Figure 3.2 Total protein abundance in isolated epitrochlearis and soleus from old 

rats. Total protein abundance in epitrochlearis (A) and soleus (B) muscles for IR (insulin 

receptor), Akt, AS160,  FLN C (Filamin C) and GLUT4.  *p<0.05, CR versus AL. Open 

bars represent AL group. Closed bars represent CR group.  
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Figure 3.3 Insulin receptor tyrosine phosphorylation (IRTyr1162/1163) in isolated 

epitrochlearis and soleus from old rats. IRTyr1162/1163 in the epitrochlearis (A) and 

soleus (B) muscles with 0 or 1.2 nM insulin.  *p<0.05, CR versus AL in the same insulin 

treatment group.    Data are means ± SEM.  n=9-11 muscles per diet group and insulin 

concentration.  Open bars represent AL group. Closed bars represent CR group.   
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Figure 3.4 AktThr308 phosphorylation in isolated epitrochlearis and soleus from old 

rats. AktThr308 phosphorylation in epitrochlearis (A) and soleus (B) muscles with 0 or 

1.2nM insulin .  *p<0.05, CR versus AL in the same insulin treatment group.  Data are 

means ± SEM.  n=9-11 muscles per diet group and insulin concentration.  Open bars 

represent AL group. Closed bars represent CR group.   
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Figure 3.5 AktSer473 phosphorylation in isolated epitrochlearis and soleus from old 

rats. AktSer473 phosphorylation in epitrochlearis (A) and soleus (B) muscles with 0 or 

1.2nM insulin. Data are means ± SEM.  n=9-11 muscles per diet group and insulin 

concentration.  Open bars represent AL group. Closed bars represent CR group.   

 

 

 

 

 

 

 

 



44 
 

 

Figure 3.6 AS160Thr642 phosphorylation in isolated epitrochlearis and soleus from 

old rats. AS160Thr642  phosphorylation in epitrochlearis (A) and soleus (B) muscles with 

0 or 1.2 nM insulin. Data are means ± SEM.  n=9-11 muscles per dietary group and 

insulin concentration. Open bars represent AL group. Closed bars represent CR group.   
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Figure 3.7 AS160Ser588 phosphorylation in isolated epitrochlearis and soleus from old 

rats. AS160Ser588  phosphorylation in epitrochlearis (A) and soleus (B) muscles with 0 or 

1.2 nM insulin. Data are means ± SEM.  n=9-11 muscles per dietary group and insulin 

concentration.  Open bars represent AL group. Closed bars represent CR group.   
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Figure 3.8  TBC1D1Thr596 phosphorylation in isolated epitrochlearis and soleus from 

old rats. TBC1D1Thr596  phosphorylation in epitrochlearis (A) and soleus (B) muscles 

with 0 or 1.2 nM insulin. Data are means ± SEM.  n=9-11 muscles per dietary group and 

insulin concentration. Open bars represent AL group. Closed bars represent CR group.   
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Figure 3.9 Filamin CSer2213  phosphorylation in isolated epitrochlearis and soleus 

from old rats. Filamin CSer2213  phosphorylation in epitrochlearis (A) and soleus (B) 

muscles with 0 or 1.2 nM insulin. Data are means ± SEM.  n=9-11 muscles per dietary 

group and insulin concentration. Open bars represent AL group. Closed bars represent 

CR group. 
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Chapter IV 

 

 

Study 2 

 

 

Comparison of Ad Libitum Fed and Calorie Restricted Rats for the Time Course of 
Insulin’s Activation of Signaling Steps Required for Greater Glucose Transport by 

Isolated Skeletal Muscle  
 
 
ABSTRACT 
 
 Calorie restriction (CR) induces enhanced insulin-stimulated glucose uptake but 

the mechanisms responsible are not fully understood.  Earlier studies with isolated rat 

skeletal muscle from rats found CR versus AL animals had greater insulin-stimulated Akt 

phosphorylation and glucose uptake without diet-effects on key insulin signaling steps 

proximal to Akt.  However, it seemed possible that transient CR effects may have been 

missed because the signaling effects were made after 45-50 minutes of insulin exposure.   

Accordingly, the purpose of this study was to evaluate the time course of insulin action 

on insulin receptor (IR) tyrosine phosphorylation, insulin receptor substrate1 (IRS-1) 

tyrosine phosphorylation, IRS-1 associated PI3K activity, and Akt phosphorylation in 

isolated soleus muscles from AL and CR rats with a physiologic dose of insulin for 5, 15, 

and 50 minutes in soleus muscles from 9 month-old ad libitum (AL) fed and CR 
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(consuming 65% of ad libitum, AL, intake) Fisher 344/Brown Norway rats. Insulin-

stimulated 2-deoxyglucose uptake was significantly increased for CR versus AL rats. 

There were no significant differences between muscles from CR and AL rats for 

phosphorylation of the IR on Tyr1162/1163, tyrosine phosphorylation of IRS-1 or IRS-1 

associated PI3K at any time point with or without insulin.  There was no significant effect 

of diet for Akt Thr308 and Ser473 phosphorylation at any time point under basal 

conditions.  However, Akt phosphorylation on both Thr308 and Ser473 was significantly 

increased for the CR versus AL group in muscles that were incubated with insulin for 50 

minutes, but not for muscles incubated with insulin for 5 or 15 minutes. The results 

suggest that the greater Akt phosphorylation and glucose uptake in the muscles from CR 

rats were attributable to mechanisms independent of diet-related elevations in the levels 

of IR, IRS-1, and IRS-1 associated PI3K.   Our working hypothesis is that the improved 

Akt activation with CR is related to altered Akt binding to protein partners (TRB3, 

ClipR-59, CTMP, PHLDB1) that have been reported to regulate Akt phosphorylation.  

 
 

INTRODUCTION 

 One of the hallmarks of calorie restriction (CR; i.e., consuming ~60-75% of ad 

libitum, AL, intake) is an increase in whole body insulin sensitivity (39-41, 106).  Given 

that skeletal muscle accounts for the greatest amount of whole body glucose disposal (2), 

it is not surprising that CR leads to increased insulin-mediated glucose uptake by skeletal 

muscle (38, 53, 54).  Dean et al. (3) demonstrated that the increased glucose uptake with 

CR is attributable to a proportional CR-mediated increase in the cell surface GLUT4 at 

the plasma membrane in insulin-stimulated rat skeletal muscle.  The effect of CR on 
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insulin-stimulated glucose uptake can occur in the absence of increased total GLUT4 

protein abundance (88).  These results suggest that the mechanism for the CR effect on 

skeletal muscle glucose transport is related to the specific enhancement of the insulin 

signaling pathway leading to increase GLUT4 recruitment to the plasma membrane.  

Most (24, 28-30, 114), but not all (6) of the published studies that have evaluated 

CR effects on skeletal muscle insulin receptor (IR) activation with physiologic insulin 

levels have not found diet-induced differences.  In our previous studies, there were no 

significant diet effects on IR tyrosine phosphorylation (24, 114) or IRS1-PI3K activity 

(24) with a physiologic insulin concentration.  Phosphorylation of Akt (also known as 

protein kinase B, PKB) on both Ser473 and Thr308 is essential for the full effect of 

insulin on glucose transport (8).  In this context, it is notable that the most consistent 

result of a series of studies on isolated muscles from CR versus AL rodents has been 

elevated insulin-induced phosphorylation of Akt for isolated muscles from CR rats (9, 10, 

24) and mice (8). These results together suggest elevation in Akt phosphorylation with 

CR was not attributable to enhancement in insulin receptor or IRS1-PI3K activity. 

However, enhanced Akt phosphorylation without enhanced IR and IRS-1-PI3Kactivation 

for CR versus AL was measured at 50 minutes of insulin stimulation so it is possible 

these observations are attributable to reversal of transient CR effect on proximal steps of 

insulin signaling that may have reversed by the 50 minute time point.  The primary aim 

of this study was to determine the time course of insulin signaling with CR versus AL in 

response to a physiological insulin dose.   In isolated soleus muscle from AL and CR rats, 

we evaluated key upstream insulin signaling proteins [tyrosine phosphorylation of the 

insulin receptor (IR) and insulin receptor substrate 1(IRS-1) and IRS-1 associated 
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phosphatidylinositol 3-kinase (PI3K) activity] with insulin stimulation at 5, 15 and 50 

minutes.  We hypothesized that phosphorylation of IRTyr1162/1163 and IRS-1Tyr, and PI3K-

IRS-1 activity would be greater for CR versus AL with insulin stimulation at 5 and 15 

minutes, but not at 50 minutes of insulin exposure.  We also measured insulin-stimulated 

glucose uptake at 50 minutes of insulin exposure to confirm the expected CR effect on 

insulin sensitivity. 

 

EXPERIMENTAL PROCEDURES 

Materials. Unless otherwise noted, all chemicals were purchased from Sigma Chemical 

(St. Louis, MO) or Fisher Scientific (Hanover Park, IL).  Human recombinant insulin was 

obtained from Eli Lilly (Indianapolis, IN). Tissue Protein Extraction Reagent (#78510) 

was from Thermo Scientific (Rockford, IL). MILLIPLEXMAP cell signaling buffer and 

detection Kit (#48-602), MILLIPLEX phospho-MAPmates for IRTyr1162/1163(#46-688), 

IRS1Tyr (#46-627), AktSer473 (#46-601), AktThr308 (#46-645), total MAPmates for Akt 

(#46-605), IR (#46-687), and IRS1 (#46-628) were all purchased from Millipore 

(Billerica, MA). Reagents and apparatus for SDS-PAGE and immunoblotting were from 

Bio-Rad Laboratories (Hercules, CA). Anti-Akt (#9272), anti-phospho AktSer473 

(pAktSer473; #9271), and anti-rabbit IgG horseradish peroxidase (#7074) were from Cell 

Signaling Technology (Danvers, MA). Pierce BCA (bicinchoninic acid) protein assay 

(#23225) and West Dura Extended Duration Substrate (#34075) were from Pierce 

Biotechnology (Rockford, IL). Scintillation counter, 2-Deoxy-D-[3H] glucose ([3H] 2-

DG), [14C]mannitol, and γ-[32P]ATP were from Perkin Elmer (Boston, MA). Scintillation 

cocktail # 111195 was from Research Products International (Mount Prospect, IL). A-
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Sepharose beads (#17-0469-01) were from GE Healthcare (Piscataway, NJ).  

Phosphatidylinositol (PI) was from Avanti Polar Lipids (Alabaster, AL). TLC plates 

#4865-821 were from Whatman (Piscataway, NJ).  

 

Animal Care.  Procedures for animal care were approved by the University of Michigan 

Committee on Use and Care of Animals. CR and AL male Fischer 344 × Brown Norway, 

F1 generation rats were obtained at 8 months of age from the National Institute of 

Aging(NIA) Calorie Restriction Colony and were individually housed for a month prior 

to experimentation.  CR was initiated with NIA colony at 14 weeks of age with 90% of 

AL, increased to 75% of AL at 15 weeks, and to 60% of AL at 16 weeks, a level 

maintained until 8 months of age.   Upon arrival at the Michigan animal facility at 8 

months-old, rats were housed individually in shoebox cages and maintained on a 12:12-h 

light-dark cycle (lights out at 1700) in specific pathogen-free conditions.  The AL group 

had ad libitum access to the NIH31 chow for the duration of the study. The CR group 

received NIH31/NIA fortified chow (Test Diet), which contains extra vitamin 

supplementation to provide CR animals with a level of vitamins similar to that of animals 

allowed ad libitum access to the NIH31 diet. The CR group received 60-65% of the 

intake of the AL group daily during the final month of the study.  All rats were fed 

between 15:30 h and 16:30 h each day, and food intake of both groups was measured 

daily.  Muscle experiments were performed on AL (N=14 and CR (N=14) rats at 9 

months of age. 
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Muscle Dissection and Incubation.  Food was removed from the cages of all rats on the 

morning of the experimental day between 07:00 and 08:00 h.  Rats were anesthetized 

with an intraperitoneal injection of sodium pentobarbital (50 mg/kg) between 10:30 and 

13:30 h.  Upon loss of pedal reflexes, soleus and epitrochlearis muscles were removed 

and rapidly rinsed in warm (35oC) Krebs-Henseleit buffer (KHB).  Muscles were 

longitudinally split into strips of similar size for each muscle (4 strips for each soleus).  

Muscles strips were subsequently placed in vials containing the appropriate media 

shaking and continuous gassing (95% O2/5% CO2) in a heated (35oC) water bath. In the 

first incubation step, all muscles were incubated in vials containing 2 ml KHB 

supplemented with 0.1% bovine serum albumin (BSA), 2mM sodium pyruvate, 6mM 

mannitol as a rinse step for 30 minutes.   In the second incubation step, muscles were 

incubated in vials containing 2 ml KHB supplemented with 0.1% BSA, 2 mM sodium 

pyruvate, 6 mM mannitol, and either 0 nM (basal) or 1.2 nM insulin for 5 min, 15 min, or 

30 min.  The muscles incubated in the second step for 5 minutes and 15 minutes were 

then rapidly blotted on filter paper moistened with ice-cold KHB, trimmed, freeze-

clamped using aluminum tongs cooled in liquid nitrogen, and stored at -80oC for later 

processing and analysis.   The remaining muscles were either transferred to a third vial 

containing 2 ml of KHB/BSA solution, the same insulin concentration as the previous 

step with 0.1% BSA, 2 mM sodium pyruvate, 6 mM mannitol for 20 minutes or to assay 

for 2-Deoxy-D-glucose uptake transferred to a third vial containing 2 ml of KHB/BSA 

solution, the same insulin concentration as the previous step, 1 mM 2-DG; including a 

final specific activity of 2.25 mCi/mmol [3H]-2-DG), and 9 mM mannitol (including a 

final specific activity of 0.022 mCi/mmol [14C]-mannitol) for 20 min.  Following the 
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third incubation step, the muscles were rapidly blotted on filter paper moistened with ice-

cold KHB, trimmed, freeze-clamped using aluminum tongs cooled in liquid nitrogen, and 

stored at -80oC for later processing and analysis. 

 

Muscle Lysate Preparation.  Frozen muscles were weighed, transferred to microfuge 

tubes and homogenized in ice-cold lysis buffer (1 ml/muscle) using Qiagen a TissueLyser 

II (Valencia, CA).  The lysis buffer contained Tissue Protein Extraction Reagent 

supplemented with 1 mM EDTA, 1 mM EGTA, 2.5 mM sodium pyrophosphate, 1 mM 

sodium vanadate (Na3VO4),
 1 mM ß-glycerophosphate, 1 µg/ml leupeptin, and 1 mM 

phenylmethylsulfonyl fluoride (PMSF).   Homogenates  were transferred to microfuge 

tubes, rotated for 1 h at 4°C, and then centrifuged (15,000 g) for 15 min (4oC) to remove 

insoluble material.  Protein concentration was measured using the bicinchoninic acid 

method. 

 

Immunoblotting.  Equal amounts of protein from each sample were mixed with 6× 

Laemmli buffer, boiled with SDS loading buffer for 5 min, separated by 10% SDS-

PAGE, and then transferred to nitrocellulose.  Membranes were rinsed with Tris-buffered 

saline plus Tween-20 (TBST; 0.14 mol/l NaCl, 0.02 mol/l Tris base, pH 7.6, and 0.1% 

Tween-20), blocked with 5% bovine serum albumin (BSA) in TBST for 1 h at room 

temperature and transferred to primary antibody 1:1000 in TBST plus 5% BSA overnight 

at 4°C.  Blots were washed 3 x 5 min with TBST and incubated in buffer containing the 

appropriate secondary antibody (1:20,000 dilution) for 1 h at room temperature.  

Membranes were then washed 3 x 5 min with TBST and subjected to enhanced 
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chemiluminescence with West Dura Extended Duration Substrate for visualization of 

protein bands.  Immunoreactive proteins were quantified by densitometry (AlphaEase 

FC, Alpha Innotech, San Leandro, CA).   

 

2-Deoxy-D-glucose Uptake.  Aliquots (200 µl) of the supernatants were combined in a 

vial with 10 ml of scintillation cocktail (Research Products International, Mount 

Prospect, IL) and a scintillation counter was used to determine 3H and 14C disintegrations 

per min.  These values were used to determine [3H]-2-DG uptake as previously described 

(110, 111). 

 

 IRS-1-associated PI3K activity.  IRS1-PI3K activity in the soleus muscle was 

determined as previously described (23, 24).  After addition of 3 μg of anti-IRS-1 

antibody to 500 μg of supernatant protein from each muscle sample, the 

immunocomplexes were allowed to form overnight at 4°C with slow rotation.  Then 100 

μl of protein A-Sepharose beads were then added to each aliquot, and samples were 

rotated for 2 h at 4°C.  Samples were centrifuged at 2,000 g to pellet the protein A-

Sepharose immunocomplex.  Each immunopellet was washed three times with Buffer 

1 (PBS, pH 7.5, containing 1% NP-40 and 100 μM Na3VO4), three times with Buffer 

2 (100 mM Tris, pH 7.5, 500 mM LiCl2, and 100 μM Na3VO4), and twice with Buffer 

3 (10 mM Tris, pH 7.5, 100 mM NaCl, 1 mM EDTA, and 100 μM Na3VO4).  After the 

immunopellet was washed, the entire buffer was removed, and the immunopellet was 

resuspended in 40 μl of the Tris·NaCl, pH 7.5, buffer containing 20 μg of 

phosphatidylinositol and 100 mM MgCl2. The reaction was initiated at room temperature 
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by addition of 5 μl of a phosphorylation mixture containing 880 μM ATP and 30 μCi of 

γ-[32P]ATP.  After 40 min with continuous rotation at 30°C, the reaction was stopped by 

sequential addition of 20 μl of 8 N HCl and 160 μl of chloroform-methanol (1:1).  The 

reaction mixture was vortexed for 5 min and then centrifuged at 15,000 g for 2 min; 50 μl 

of the organic phase containing the reaction products was spotted onto a TLC plate. The 

products were resolved in a chloroform-methanol-water-ammonium hydroxide 

(60:47:11.3:2) solution and visualized by autoradiography.  The spots corresponding to 

the PI phosphorylated product were scraped from the TLC plate and counted in a 

scintillation counter.  

 

Luminex.  Luminex analysis was performed by the Luminex L200 instrument (Luminex, 

Austin, TX), as described previously (115).  An aliquot of lysate from each tissue was 

used to determine the phosphorylation status of insulin signaling proteins (IRTyr1162/1163, 

IRS-1Tyr, AktSer473, AktThr308) using a commercially available kit (#48-602, Millipore). 

Another aliquot from each tissue sample was used in a second multiplex assay to 

determine the relative abundance of proteins (IR, IRS1, Akt). 

   

Statistical Analysis.  3-way ANOVA was used to determine the main effects of Insulin (0 

or 1.2nM), Time (5, 15 or 15 min) and Diet (AL or CR) on insulin signaling in the soleus 

muscles (pIR Tyr1162/1163, pIRS-1Tyr, PI3K-IRS-1 activity, pAktSer473, and pAktThr308).  A 

student’s t-test was used to compare AL and CR groups for 2-DG uptake and insulin 

signaling matched for both time-point and insulin dose. Data are presented as mean ± 

SEM.  A P value ≤ 0.05 for was considered statistically significant.  
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RESULTS 
 
2-Deoxy-D-Glucose Uptake 
 

2-DG uptake in the absence of insulin was not significantly different between AL 

and CR rats.  2-DG uptake with insulin was significantly greater (P<0.05) for CR versus 

AL rats (Figure 1).  

 
IRTyr1162/1163 Phosphorylation Time Course   
 

ANOVA revealed that there was a non-significant trend for a main effect of 

insulin (P=0.058), but no evidence for main effects of either time or diet on IR 

Tyr1162/1163 phosphorylation (Figure 2).   Based on t-tests comparing AL versus CR 

values at each insulin dose and time, there were no significant effects of diet on IR 

phosphorylation on Tyr1162/1163, either in the absence or presence of insulin (Table1). 

 
IRS-1Tyr Phosphorylation Time Course 
 

ANOVA revealed that there was significant main effect insulin (P<0.005), but no 

evidence for main effects of either time or diet on IRS-1 Tyr phosphorylation (Figure 2). 

Based on t-tests comparing AL versus CR values at each insulin dose and time, there 

were no significant diet effects on IRS-1 phosphorylation, either in the absence or 

presence of insulin (Table 1).  

 
IRS-1 associated PI3K Activity Time Course 
 

ANOVA revealed that there was a significant main effect of insulin (P<0.001), 

but no evidence for main effects of either time or diet on IRS-1 associated PI3K activity 

(Figure 2).  Based on t-tests comparing AL versus CR values at each insulin dose and 
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time, there was no significant diet effect seen on IRS-1 associated PI3K activity, either in 

the absence or presence of insulin (Table 1).  

 
AktThr308 Phosphorylation Time Course 

ANOVA revealed that there were significant main effects of insulin (P<0.001), 

time (P<0.05), and diet (P<0.05) on Akt Thr308 phosphorylation (Figure 3).  Based on t-

tests comparing AL versus CR values in the absence of insulin at each time, there were 

no significant diet effects on Akt Thr308 phosphorylation (Table 1).  The results of the t-

tests comparing AL versus CR values at each time in the presence of insulin also revealed 

no significant diet effects on Akt phosphorylation on Thr308 at 5 or 15 minutes, but at 50 

minutes, Akt phosphorylation on Thr308 was significantly greater (P<0.05) for CR 

versus AL rats (Table 1).  

 
AktSer473 Phosphorylation Time Course 
 

ANOVA revealed that there were significant main effects of insulin (P<0.001) 

and diet (P<0.05), but not time on Akt Ser473 phosphorylation (Figure 3).  Based on t-

tests comparing AL versus CR values in the absence of insulin at each time, there were 

no diet effects for Akt Ser473 phosphorylation (Table 1).  The results of the t-tests 

comparing AL versus CR values at each time in the presence of insulin also revealed no 

significant diet effects on Akt phosphorylation on Ser473 at 5 or 15 minutes, but at 50 

minutes, Akt phosphorylation on Thr308 was significantly greater (P<0.05) for CR 

versus AL rats (Table 1).  

 
DISCUSSION 
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Prior research has shown that CR can enhance insulin-stimulated glucose uptake 

in isolated muscle, and this effect consistently occurs concomitant with an increase in 

phosphorylation of Akt.  Several earlier studies of CR effects that used isolated rat 

skeletal muscle reported that CR did not induce significantly greater activation of key 

upstream insulin signaling steps (tyrosine phosphorylation of IR or IRS1, and IRS-1-

associated PI3K activity) that regulate Akt phosphorylation (3, 24, 25).   These results 

suggest that the mechanism for the CR-induced increase in Akt activation is not 

dependent on greater activation of these important proximal insulin signaling steps.  

However, because earlier studies had only evaluated the soleus at a single time-point of 

insulin exposure (50 minutes), it seemed possible that a transient CR-related activation 

might have been missed.  Therefore, we evaluated the time course of insulin action on 

insulin receptor (IR) tyrosine phosphorylation, insulin receptor substrate1 (IRS-1) 

tyrosine phosphorylation, IRS-1 associated PI3K, and Akt in isolated soleus muscles 

from AL and CR rats with a physiologic dose of insulin for 5, 15, and 50 minutes.  As 

expected, skeletal muscle 2-DG uptake was significantly increased with insulin for CR 

versus AL. There was no significant increase between muscles from CR and AL rats for 

phosphorylation of the IR on Tyr1162/1163 at any time point with or without insulin.  

Tyrosine phosphorylation of IRS-1 was also not significantly different between CR and 

AL rats regardless of insulin dose or time point.  There was also not significantly greater 

IRS-1 associated PI3K for CR versus AL at any time point with or without insulin.  There 

was no significant effect of diet for Akt Thr308 and Ser473 phosphorylation at any time 

point under basal conditions.  However, phosphorylation of Akt on both Thr308 and 

Ser473 was significantly increased for the CR versus AL group in muscles that were 
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incubated with insulin for 50 minutes, but not for muscles incubated with insulin for 5 or 

15 minutes.   

Muscle 2-DG uptake was increased with 50 minutes of insulin exposure for CR 

versus AL rats, indicating that, as expected, there was enhanced insulin sensitivity in the 

soleus muscles of the CR group.  The CR effect on insulin-stimulated glucose uptake has 

been seen numerous times before in the soleus and epitrochlearis muscles of rats (9, 10, 

24) and in the soleus, epitrochlearis and extensor digitoroum longus muscles of mice (8, 

37). The increased insulin-mediated glucose uptake is attributable to an increase in cell-

surface GLUT4 (3) and can occur without an increase in overall GLUT4 abundance (4, 

84, 114).  

IR phosphorylation has previously been shown to be similar between AL and CR 

rats with 50 minutes of insulin stimulation in 9 month and 24 month-old rats of the same 

strain used in this study (24, 114).  It was not clear, however, if transiently greater insulin 

receptor activation with CR may have occurred at an earlier timepoint and reversed by 50 

minutes.  In this study we show that IR phosphorylation at Tyr1162/1163 is similar 

between AL and CR rats at 5, 15, and 50 minutes of insulin stimulation.  These tyrosine 

residues on the insulin receptor’s β subunit are major regulatory sites that account for 

most of the receptor’s insulin-mediated autophosphorylation and tyrosine kinase activity 

(58).   Based on the current results, it appears that CR’s effects on more distal signaling 

in isolated soelus muscles from rats are attributable to some mechanism other than 

greater IR phosphorylation at Tyr1162/1163.   

The effect of CR on IRS-1 tyrosine phosphorylation has apparently not been 

studied in isolated rodent skeletal muscle with a submaximal insulin dose, but Dean and 
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Cartee (23) studied AL and CR rats that received a portal injection of a supraphysiologic 

insulin dose.  Gastrocnemius muscle pan-tyrosine phosphorylation of IRS-1 was greater 

for insulin-injected CR versus AL rats.   Wang et al. (116) evaluated pIRS-1Tyr612 in 

calorie restricted and ad libitum cytomolgus monkeys at 5, 20, and 40 minutes of insulin 

infusion (plasma insulin of ~1.5 nM) during a euglycemic-hyperinsulinemic clamp.  At 

40 minutes of insulin infusion, there was no significant CR versus AL effect on vastus 

lateralis muscle pIRS-1Tyr612.  However at both 5 and 20 minutes there were significant 

increases in IRS-1 phosphorylation at Tyr612. In our study we found no evidence for a 

CR versus AL increase in IRS-1 tyrosine phosphorylation at either 5, 15, or 50 minutes in 

the rat soleus muscle.  It is important to note that the current study evaluated pan-tyrosine 

phosphorylation whereas Wang et al. looked at the specific Tyr 612 site.   Pan-tyrosine 

IRS-1 phosphorylation was used to capture the multiple tyrosine phosphorylation sites on 

IRS-1 that are activated by insulin.  It remains to be determined if pIRS-1Tyr612 increases 

with CR versus AL in isolated rat soleus muscles.  It is also possible that other 

differences between the current study the study of Wang et al. account  for the differing 

results on the activation of tyrosine phosphorylation in skeletal muscle (e.g., differences 

in the species studied, specific muscles studied, in vivo versus ex vivo, etc.) 

Previous studies evaluating the effect of CR on IRS-1-, IRS-2- or 

phosphotyrosine-associated PI3K activity have reported no significant differences 

between CR versus AL rats in muscle exposed to 45 to 50 minutes with submaximally 

effective insulin doses in isolated epitrochlearis muscles from rats (24, 25) suggesting 

that the enhanced insulin sensitivity with CR is dependent on effects occurring 

downstream of IRS-1-PI3K signaling.  Dean et al. (3) evaluated IRS-1-PI3K activity in 
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with 4, 8, and 20 minutes of a supraphysiological insulin dose (120nM) and did not find a 

significant difference with CR versus AL at any time point.  However, a recent study by 

Schenk et al. (117) in isolated soleus muscle from mice found that phosphotyrosine-

associated PI3K activity increased with CR versus AL using 60 μU/ml insulin with10 

minutes of insulin stimulation. In CR versus AL, there was no change on insulin 

stimulation  of IRS1-, IRS2-, or phosphotyrosine-PI3K in rat epitrochlearis (25). Wang et 

al. (116) reported that in vastus lateralis muscle from calorie restricted monkeys, IRS-1 

associated PI3K activity was greater for CR versus AL with 5, 20, and 40 minutes of 

insulin stimulation. The current study and earlier studies with rats have not found 

significant CR effects on PI3K activity, whereas two studies that found CR effects on 

PI3K activity studied other species (mice and monkeys).   It remains possible that there 

may be species differences in PI3K activation with insulin for CR versus AL animals.   

In the current study, no significant differences between AL and CR rats were 

detected for IRS-1-PI3K activity in isolated rat soleus muscle at 5, 15, and 50 minutes 

with 1.2 nM insulin.  At least in isolated rat skeletal muscles, the results of multiple 

studies have not identified significant CR-induced elevations in IRS-1 PI3K activity, and 

the current study has extended earlier research by providing evidence at earlier time-

points than previously evaluated with a physiologic insulin dose.  The lack of a 

statistically detectable CR effect on proximal signaling concomitant with a consistently 

significant CR effect on Akt could potentially be related to differences in the technical 

precision of the methods used to quantify the different insulin signaling steps. The 

dynamic range was smaller and the variability was greater for proximal signaling markers 

versus Akt signaling.  It is possible that the lack of a statistically detectable CR effect of 
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proximal signaling steps in this study was due to insufficient sample size and statistical 

power.  Only 3 time points were assessed and a difference may have been missed at an 

intermediate time point that was not studied.  However, it is notable that the results of the 

current study are consistent with earlier studies for rat skeletal muscle.  Previously, no 

CR effect on IRS1-, IRS2, or phosphotyrosine PI3K was reported with 3 nM insulin in 

the epitrochlearis (25).  Sharma et al.  (24) observed no CR effect on PI3K activity 

together with no evidence for a CR effect on atypical PKC activity.  The lack of any 

change in atypical PKC activity with CR, a step that is dependent on the proximal 

signaling events that also regulate Akt (including insulin receptor and IRS-1 tyrosine 

phosphorylation and IRS-1-PI3K activity) is consistent with a lack of a general increase 

in proximal signaling with CR, and it supports the idea of CR does not uniformly enhance 

all signaling events that are modulated by insulin via activation of PI3K activity. 

The most consistent CR effect on insulin signaling in skeletal muscle that has 

been observed in numerous studies is greater Akt phosphorylation on the two key sites 

that regulate Akt activity (Thr308 and Ser473) (8-10, 24).  This effect has been 

repeatedly seen with both supraphysiologic and physiological levels of insulin.  Cho et al. 

(68) showed that Akt2 is the critical isoform for regulating most of the insulin-stimulated 

glucose transport in skeletal muscle.  In the current study, consistent with earlier research, 

Akt phosphorylation on Thr308 and Ser473 was significantly increased for CR versus AL 

at 50 minutes of insulin-treatment.  Akt phosphorylation was not significantly different 

between the diet groups at either 5 or 15 minutes, although there was a trend for higher 

values on Ser473 at both times and Thr308 at 15 minutes.  In insulin-infused cynomolgus 

monkeys, there were significant CR-related increases in Akt Ser473 phosphorylation at 5, 
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20 and 40 minutes (116). An earlier time of onset for the CR effect on pAkt with in vivo 

insulin infusion would be favored by the delivery of insulin via the vascular system as 

opposed to the diffusion of insulin from media to the tissue in isolated muscles, but there 

may also be other in vivo factors that would favor the more rapid time course for the CR-

effect.   

The lack of evidence for significant CR effects on proximal insulin signaling steps 

in isolated rat skeletal muscle at various early time-points begs the question, what might 

account for the greater Akt that is consistently found in rat skeletal muscle?  One 

possibility is that CR may influence the subcellular localization of Akt.  Full activation 

requires Akt insertion into the plasma membrane.  CR may increase the number of Akt 

molecules at the plasma membrane leading to greater activation.  However, it is unclear 

what might account for such a change in Akt localization with CR.  There is evidence 

that CR may alter the binding of Akt to proteins that lead to greater phosphorylation thus 

enhancing Akt signaling.  In the epitrochlearis muscles from 9 mo-old rats, CR versus AL 

animals had greater HSP90-bound to Akt (based on co-immunoprecipitation) 

concomitant with increased Akt phosphorylation.  However, there was no evidence of 

increased HSP90-Akt association in the soleus of CR rats in this earlier study.  It remains 

possible that CR may be improving Akt signaling in the soleus through alterations in the 

binding to other protein partners.   Because phosphorylation of proteins depends on the 

balance between the actions of kinases and phosphatases, another possibility is that CR 

reduces the rate of Akt dephosphorylation.  However, Sharma et al. (24) found in soleus 

and epitrochlearis muscles from 9 mo-old rats that there was no CR-related difference in 
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Akt association with Protein Phosphatase 2A (PP2A), the key Ser/Thr protein 

phosphatase that dephosphorylates Akt. 

In summary, the current study confirms earlier research that demonstrated 50 

minutes of exposure to a physiologic insulin dose is sufficient for enhanced glucose 

uptake concomitant with increased Akt phosphorylation in isolated muscles from CR 

versus AL rats.  We predicted that upstream signaling would be transiently (at 5 and/or 

15 minutes) greater for CR versus AL rats.  However, muscles from CR versus AL rats 

did not differ significantly for IRTyr1162/1163 phosphorylation, IRS-1Tyr phosphorylation, or 

IRS-1-associated PI3K activity, at any of the times tested (5, 15 and 50 minutes) 

suggesting that the greater Akt phosphorylation and glucose uptake in the muscles from 

CR rats were attributable to another mechanism.   Our working hypothesis is that the 

improved Akt activation with CR is related to altered Akt binding to protein partners that 

regulate Akt phosphorylation.   It will be important for future research to test this idea by 

evaluating Akt binding to proteins that have been reported to favor greater Akt 

phosphorylation [e.g.PHLDB1(118) and ClipR-59 (119)] as well Akt’s binding to CTMP 

(120) and TRB3 (121) that have been reported to favor less Akt phosphorylation.  
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Table 4.1 Summary of t-tests for CR versus AL at each time and insulin dose.  
 

 
 
 
 
Summary of results of student’s t-tests compare CR versus AL values for each 

measurement (IRTyr1162/1163, IRS-1Tyr, IRS-1-PI3K, AktThr308, AktSer473, and 2-Deoxy-D-

glucose uptake) made at each time of insulin exposure (5, 15, and 50 minutes of insulin) 

and each insulin dose (no insulin, basal, and 1.2 nM insulin).  Not significantly different, 

NS; Not determined, ND.  Student’s t-test, *P<0.05. 
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Figure 4.1 2-Deoxy-D-glucose (2-DG) uptake in isolated soleus from adult rats. 2-DG 
uptake in the soleus with 0 or 1.2nM insulin. Open bars=ad libitum (AL).  Closed bars = 
calorie restriction (CR). *p<0.05, CR versus AL in the same insulin treatment group.  
Data are means ±SEM.  N = 6 muscles per diet group and insulin concentration.  
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Figure 4.2 Time course of IRTyr1162/1163 phosphorylation. IRTyr1162/1163 phosphorylation 
in the soleus with 0 or 1.2nM insulin at 5, 15, and 50 minutes.  Main effects on diet, 
insulin and time from 3-way ANOVA are shown. Data are means ±SEM. N=6 muscles 
per diet group and insulin concentration. 
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Figure 4.3 Time course of IRS-1Tyr  phosphorylation. IRS-1Tyr phosphorylation in the 
soleus with 0 or 1.2nM insulin at 5, 15, and 50 minutes.  Main effects on diet, insulin and 
time from 3-way ANOVA are shown.  Data are means ±SEM.  N=6 muscles per diet 
group and insulin concentration. 
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Figure 4.4 Time course of IRS-1-associated PI3K Activity.  IRS-1-associated PI3K 
activity in the soleus with 0 or 1.2nM insulin at 5, 15, and 50 minutes.  Main effects on 
diet, insulin and time from 3-way ANOVA are shown. Data are means ±SEM.  N=6 
muscles per diet group and insulin concentration. 
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Figure 4.5 Time course of AktThr308 and AktSer473 phosphorylation. AktThr308 and 
AktSer473 phosphorylation in the soleus with 0 or 1.2nM insulin at 5, 15, and 50 minutes.  
Main effects on diet, insulin and time from 3-way ANOVA are shown.  Data are means 
±SEM. N=6 muscles per diet group and insulin concentration. 
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CHAPTER V 

 

 

STUDY 3 

 

 

In Vivo Assessment of the Effects of Calorie Restriction on Insulin-stimulated 

Glucose Uptake and the Insulin Signaling Pathway in Multiple Skeletal Muscles 

 
 
ABSTRACT 
 

The purpose of this study was to evaluate the mechanisms of in vivo insulin-

stimulated glucose uptake and phosphorylation of key insulin regulated proteins (insulin 

receptor, IR; Akt; AS160 and filamin C) in multiple skeletal muscles from adult ad 

libitum fed and CR (consuming 65% of ad libitum intake)  9mo-old Fisher 344 X Brown 

Norway rats under euglycemic-hyperinsulinemic clamp conditions.  We found that 

glucose infusion rates were 78% higher (P<0.001) in CR (31.7 ± 1.6 mg/kg-1 x min-1) 

versus AL (17.8 ± 0.8 mg/kg-1 x min-1) rats with matched plasma insulin levels (AL, 

141.3 ± 9.1 µU/ml; CR, 140.3 ± 6.7 µU/ml) thus CR leads to greater whole body insulin 

sensitivity. We evaluated four different predominantly fast-twitch (epitrochlearis, 

gastrocnemius, tibialis anterior, and plantaris) and two predominantly slow-twitch 

(adductor longus and soleus) skeletal muscles and found a significant increase in insulin-
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stimulated glucose uptake in the epitrochlearis, gastrocnemius, and tibialis anterior for 

CR versus AL rats. Phosphorylation of IR was not different between AL and CR rats in 

any muscle. The most uniform insulin signaling effect of CR compared to AL was an 

increase in insulin-stimulated Akt phosphorylation at Ser473 and Thr308 in the 

epitrochlearis, gastrocnemius, tibilais anterior, and soleus muscles. Akt Ser473 

phosphorylation alone increased for CR versus AL in the plantaris muscle however there 

was a strong statistically non-significant trend (P=0.07) for an increase at Akt Thr308. 

Adductor longus did not differ between AL and CR at either Akt phosphorylation sites. 

There was not a consistent diet effect on AS160 or filamin C phosphorylation with CR 

versus AL.  The results suggest that CR leads to greater whole body insulin sensitivity 

attributable to, at least in part, CR effects on in vivo insulin-stimulated glucose uptake by 

multiple predominantly fast-twitch skeletal muscles, but the CR effects on in vivo 

insulin-mediated glucose uptake and the associated insulin signaling mechanisms are not 

identical in all skeletal muscles. 

 

INTRODUCTION 

Calorie restriction (CR) without malnutrition (consuming ~60-75% of ad libitum, 

AL, intake) has been demonstrated to improve whole body insulin sensitivity in various 

species, including humans (40-42), non-human primates (39), rats (38) and mice (8, 37). 

Because up to 80% of insulin-stimulated blood glucose clearance is taken up by skeletal 

muscle (2), it is reasonable to expect that CR leads to increased insulin-mediated glucose 

uptake in skeletal muscle.  Supporting this idea, a number of studies using isolated mouse 

muscle (8, 37) or isolated (3-5, 9, 10, 21, 23, 24, 85, 87, 122) or perfused rat (53) skeletal 
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muscle have reported increased insulin-stimulated glucose uptake for CR versus AL 

animals.  Apparently only one publication has evaluated the effects of several months of 

CR on insulin-stimulated glucose uptake by individual rat skeletal muscles under in vivo 

conditions.  Surprisingly, the results of this study indicated that CR by 8 mo-old rats 

(consuming ~80% of AL intake beginning at 5 mo-old) did not significantly increase 

insulin-stimulated glucose uptake of  two skeletal muscles of the hind-limb  during a 

euglycemic-hyperinsulinemic clamp (93).  However, the same study reported for 24 mo-

old rats that CR (consuming ~80% of AL intake beginning at 21 mo-old) resulted in an 

increased glucose uptake by hind-limb skeletal muscles during a euglycemic-

hyperinsulinemic clamp. 

The mechanisms that account for improved CR effects on insulin-stimulated 

glucose uptake have been most frequently studied in skeletal muscle under ex vivo 

conditions.  These studies have documented that when skeletal muscle is exposed to 

insulin ex vivo, CR can enhance the effect of insulin on selected proteins in the insulin 

signaling pathway that controls the subcellular distribution of GLUT4, the insulin-

regulated glucose transporter protein.   Phosphorylation of Akt (also known as protein 

kinase B, PKB) on both Ser473 and Thr308 is essential for the full effect of insulin on 

glucose transport (8).  In this context, it is notable that the most consistent result of a 

series of studies on isolated muscles from CR versus AL rodents has been elevated 

insulin-induced phosphorylation of Akt for isolated muscles from CR rats (9, 10, 24) and 

mice (8).   Akt substrate of 160 kDa (also known as AS160 or TBC1D4) is the most 

distal substrate of Akt that has been clearly linked to insulin’s activation of GLUT4 

translocation in skeletal muscle (18, 19).  AS160 undergoes Akt-dependent 
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phosphorylation on several sites, with Thr642 and Ser588 being the sites that appear to 

account for most of insulin’s effect on glucose transport (19).   CR was recently reported 

to lead to greater insulin-mediated AS160 phosphorylation on both Thr642 and Ser588 in 

isolated epitrochlearis muscle from 9 mo-old rats (24).   

Compared to the relatively detailed information about CR effects on insulin 

signaling in muscle ex vivo, relatively few studies have focused on insulin signaling in 

rodent muscle of CR rats exposed to insulin in vivo.  Furthermore, these studies have 

focused on the effects of a supraphysiologic bolus injection of insulin rather than on 

insulin signaling in response to physiologic insulin concentrations (7, 27, 89, 123).   A 

major gap in current knowledge is the lack of any published data on the effect of in vivo 

administration of a physiologic insulin dose on insulin signaling in skeletal muscle from 

CR compared to AL rats.   

Accordingly, the first major aim of the current study was to compare adult (9 mo-

old) CR (60-65% of AL intake initiated at 3 mo-old) versus age-matched AL rats with 

regard to key insulin signaling steps (insulin receptor tyrosine phosphorylation, 

phosphorylation of Akt on Ser473 and Thr308, and phosphorylation of AS160 on Ser588 

and Thr642) in rat skeletal muscles (epitrochlearis, gastrocnemius, tibialis anterior, 

plantaris, adductor longus, and soleus) stimulated by a physiologic insulin concentration 

during a euglycemic-hyperinsulinemic clamp.  A second major goal was to measure in 

vivo glucose uptake in each of these muscles using radiolabeled 2-deoxyglucose (2DG).   

In addition, whole body insulin sensitivity was assessed based on glucose infusion rate 

during the clamp, and body composition was determined by a  Minispec LF9011 NMR-

based analyzer. 
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EXPERIMENTAL PROCEDURES 
 
Materials.  Unless otherwise noted, all chemicals were purchased from Fisher Scientific 

(Hanover Park, IL) or Sigma Chemical (St. Louis, MO). Reagents and apparatus for 

SDS-PAGE and immunoblotting were obtained from Bio-Rad Laboratories (Hercules, 

CA). Anti-phospho-AS160 Ser588 (pAS160Ser588; catalog no. 3028P2) was from B-

Bridge International (Mountain View, CA);  anti-phospho-Akt Thr308 (pAktThr308; 

catalog no. 9275), anti-phospho-Akt Ser473 (pAktSer473; catalog no. 9272 and anti-

rabbit IgG-horseradish peroxidase conjugate (catalog no. 7074) were from Cell Signaling 

Technology (Danvers, MA); Anti-phospho-IR Tyr1162/1163 (pIRTyr1162/1163; catalog 

no. 44-504G) Invitrogen (Camarillo, CA); Anti-phospho-AS160 Thr642 

(pAS160Thr642; catalog no. 07-802) and anti-sheep IgG horseradish peroxidase 

conjugate (catalog no. 12-342) were from Millipore (Billerica, MA).  West Dura 

Extended Duration Substrate (catalog no. 34075) was from Pierce (Rockford, Il).  The 

bicinchoninic acid protein assay kit (catalog no. 23227) was from Thermo Scientific 

(Rockford, Il). 

 

Animal care.  Procedures for animal care were approved by the University of Michigan 

Committee on Use and Care of Animals. Male Fischer 344 × Brown Norway, F1 

generation rats were obtained at 3 mo of age from Harlan (Indianapolis, IN). Animals 

were housed individually in shoebox cages and maintained on a 12:12-h light-dark cycle 

(lights out at 1700) in specific pathogen-free conditions. Animals had free access to food 

(Lab Diet 5053, PMI Nutritional International, Brentwood, MO) and water for a 2-wk 

acclimation period. Animals then had free access to food (NIH31 chow, Test Diet, 
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Richmond, IN) and water for another 2-wk acclimation period. During this time, food 

consumption of all rats was measured daily between 1530 and 1630 to determine baseline 

food intake (food provided minus food remaining). After the acclimation period, rats 

were ranked by weight (lowest to highest) and alternately assigned to the AL (ad libitum) 

group or the CR (calorie restricted) group, so that the initial mean weight was similar for 

both groups. After the 2-wk acclimation period, the AL group had ad libitum access to 

the NIH31 chow for the duration of the study. The CR group received NIH31/NIA 

Fortified chow (Test Diet), which contains extra vitamin supplementation to provide CR 

animals with a level of vitamins similar to that of animals allowed ad libitum access to 

the NIH31 diet. The CR group was restricted to 60–65% of the intake of the AL group 

gradually over 3 wk (90%, 75%, 60–65%). Thereafter, the CR group received 60–65% of 

the intake of the AL group daily for ∼6 mo (182–200 days). All rats were fed between 

1530 and 1630 each day, and food intake of both groups was measured daily. All rats 

were weighed weekly at the same time of day.  

 

Body composition analysis. Body fat, lean mass, and free fluid were measured using an 

NMR-based analyzer (Minispec LF90II, Bruker Optics, Billerica, MA). The 

measurements took less than 2 minutes while conscious rats were placed individually in 

the measuring tube.  

 

Surgical procedures.  AL (n=13) and CR (n=14) rats had catheters surgically placed into 

the jugular vein and carotid artery to sample blood.  All surgical instruments were 

initially autoclaved and sterilized using a hot glass bead sterilizer.  Rats were anesthetized 
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with an intraperitoneal injection of ketamine (50-90 mg/kg) and xylazine (5-10 

mg/kg).  The ventral neck and back of the head was shaved and the skin was prepared 

with 3 alternating scrubs of iodine and 70% ethanol.  Under aseptic conditions, a small 

incision was made superior to the clavicle, exposing the carotid artery and jugular 

vein.  Both vessels were catheterized and ligated in place with non-absorbable 

suture.  Catheters were tunneled subcutaneously using a 16 gauge needle and exteriorized 

at the back of the neck via stainless steel connectors that were coated with medical silicon 

and fixed subcutaneously upon the closure of the incision.  The catheters were filled with 

heparinized saline and tightly plugged with stainless steel surgical wire.  Post-

operatively, animals were placed in an isolator equipped with a heating pad for recovery. 

Ampicillin (100 mg/kg, intravenously) was given and if needed, buprenorphine (0.01-0.5 

mg/kg, subcutaneously) for pain every 8-12 h.  Warm ringers solution was given to 

replace lost fluids (1 ml/100 g bw/h surgery). 

 

Procedures for euglycemic hyperinsulinemic clamp (clamp).  At approximately 0800 on 

the morning of clamp experiments, food was removed from rats (~5 h prior to the start of 

the clamp and infusion procedures).  The clamp protocol consisted of a 120 min 

experimental clamp period (t = 0 to 120 min). At t = -10 min, a blood sample (~100 μl) 

was taken from the arterial catheter for assessment of basal levels of insulin and glucose. 

The insulin infusion was begun at t = 0 with a primed-continuous infusion of human 

insulin (Novo Nordisk).  Euglycemia (120-130 mg/dL) was maintained during the clamp 

by measuring blood glucose every 10 min starting at t = 0 and infusing 50% glucose at 

variable rates accordingly. Blood insulin concentrations were determined from samples 



79 
 

taken at t = -10 and 120 min.  Insulin infusion rates were selected with the goal of 

achieving similar plasma values for insulin in the CR group compared to the AL group. 

We have previously reported that CR rats compared to AL rats have higher C-peptide-to-

insulin ratio suggesting that insulin clearance is greater for CR animals (22). Others have 

reported that CR versus AL that were injected with [125I]-insulin have greater hepatic 

binding of insulin (124, 125).  Therefore, to achieve similar plasma insulin in CR and AL 

rats, insulin was infused at a higher rate for CR rats (4.7 to 6.0 mU·kg-1·min-1) versus AL 

rats (4.0 mU·kg-1·min-1).  The insulin fusion rate for AL rats was 4.0 mU/kg/min, and 

insulin-infusion rate for CR rats was 4.7 to 6.0 mU/kg/min.    

 

Blood and plasma analysis.  Blood glucose during clamps was measured using an Accu-

Chek glucometer (Roche, Germany). Plasma insulin was measured using  Linco 

rat/mouse insulin ELISA kits.  For determination of plasma radioactivity of [1-14C]2DG, 

plasma samples were deproteinized with zince sulfate (0.3N) and barium hydroxide 

(0.3N) and counted using a Liquid Scintillation Counter (Beckman Coulter LS6500 

Multi-purpose Scintillation Counter) (126-128).  

 

Skeletal muscle glucose uptake. To estimate glucose uptake in skeletal muscle, a bolus 

injection of [1-14C]-2-deoxyglucose ([14C]2DG; PerkinElmer) was given at t = 120 min 

while continuously maintaining the hyperinsulinemic-euglycemic steady-state.  At the 

end of the experiment, skeletal muscles (epitrochlearis , gastrocnemius, tibialis anterior, 

plantaris, adductor longus, and soleus) were collected and immediately frozen in liquid 

nitrogen.  A portion of each muscle was used for later analysis of muscle [14C]2DG-6-
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phosphate ([14C]2DG6P).  Muscles used for this analysis were homogenized in 0.5% 

perchloric acid and centrifuged at 2,000g for 15 min at 4°C.  The supernatants were 

neutralized with potassium hydroxide (5N).  An aliquot of the homogenate was 

quantified by liquid scintillation counting (Perkin Elmer TRI-CARB 2800TR 

Scintillation Counter) to determine total tissue values (disintegrations per minute,dpm)   

for the sum of [14C]2DG and [14C]2DGP.   Another aliquot was deproteinized with zinc 

sulfate (0.3N) and barium hydroxide (0.3N) to precipitate the [14C]2DG6P and quantify 

[14C]2DG in the supernatant.  The value for the [14C]2DG in the supernatant (dpm) was 

subtracted from the total tissue [14C]2DG and [14C]2DGP (dpm) to calculate the glucose 

uptake rate as indicated by the skeletal muscle [14C]2DGP  accumulation.  Another 

aliquot of muscle homogenate was used to determine total protein concentration using the 

bicinchoninic acid protein assay kit, and the glucose uptake value was expressed relative 

to muscle total protein concentration (126-128).  

 

 Immunoblotting.  Equal amounts of protein from each sample were mixed with 6× 

Laemmli buffer, boiled with SDS loading buffer for 5 min, separated by 10% SDS-

PAGE, and then transferred to nitrocellulose.  Membranes were rinsed with Tris-buffered 

saline plus tween (TBST; 0.14 mol/l NaCL, 0.02 mol/l Tris base, pH 7.6, and 0.1% 

Tween), blocked with 5% bovine serum albumin (BSA) in TBST for 1 h at room 

temperature and transferred to primary antibody 1:1000 in TBST plus 5% BSA overnight 

at 4°C.  Blots were washed 3 x 5 min with TBST and incubated in buffer containing the 

appropriate secondary antibody (1:20,000 dilution) for 1 h at room temperature.  

Membranes were then washed 3 x 5 min with TBST and subjected to enhanced 
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chemiluminescence for visualization of protein bands. Immunoreactive proteins were 

quantified by densitometry (AlphaEase FC, Alpha Innotech, San Leandro, CA).   

 

Statistical analyses.   Data were analyzed using SigmaPlot, version 11.0 (SPSS, San Jose, 

CA).  Student’s t-test was used for comparisons between two groups (i.e., AL versus CR 

for glucose infusion rate, body mass and body composition measurements).   Data are 

presented as mean ± SEM.  A p value ≤ 0.05 was accepted as statistically significant. 

 
RESULTS   

Body Mass, Body Composition, Blood Glucose, and Blood Insulin 

  Body mass was greater (P < 0.05) in the AL (417.4 ± 9.4 g) versus CR (274.3 ± 

4.3 g) rats. Body fat percentage was greater (P < 0.05) for AL (15.4 ± 0.5%) versus CR 

(7.1 ± 0.6%) rats. Lean body mass percentage was greater (P < 0.05) in the CR (78.1 ± 

0.4%) versus AL (70.0 ± 1.4%) rats. The fluid percentage was not different between AL 

(7.6 ± 0.2%) and CR (7.9 ± 0.1%). The fasting blood glucose was not significantly 

different between AL (106.5 ± 2.7 mg/dl) and CR (100.9 ± 4.24mg/dl) (P=0.28).  Fasting 

insulin levels were greater (P < 0.005) for AL (53.7 ± 5.6 µU/ml) versus CR (28.3 ± 4.5 

µU/ml) rats. 

 

Euglycemic-Hyperinsulinemic Clamp   

Glucose levels during the clamp were maintained at 120.7 ± 2.7 mg/dl for AL and 

126.1 ± 2.4 mg/dl CR.  Insulin levels during the clamp were similar for AL (141.3 ± 9.1 

µU/ml) and CR (140.3 ± 6.7 µU/ml).   Glucose infusion rates were 78% higher (P<0.001) 

in CR (31.7 ± 1.6 mg/kg-1 x min-1) versus AL (17.8 ± 0.8 mg/kg-1 x min-1) rats. 
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2-Deoxy-D-glucose Uptake 

Epitrochlearis 2-DG uptake was significantly greater (P < 0.05) for CR versus AL 

rats.  In the gastrocnemius, 2-DG uptake increased (P < 0.05) in CR versus AL rats.  Also 

in the tibialis anterior 2-DG uptake was significantly increased (P < 0.05) for CR versus 

AL rats. There were no significant diet effects for 2-DG uptake between AL and CR rats 

in the plantaris, adductor longus, or soleus muscles. (Figure 5.1) 

 

Insulin Receptor Phosphorylation 

 There were no significant diet effects on IR (insulin receptor) Tyr1162/1163 

phosphorylation between AL and CR rats in the epitrochlearis, gastrocnemius, tibalis 

anterior, plantaris, adductor longus, or soleus (Figure 5.2).  

 

Akt Phosphorylation  

In the epitrochlearis, Akt phosphorylation increased in CR versus AL rats at both 

the Thr308 (P<0.05) and Ser473 sites (P<0.05).  For the gastrocnemius, Akt 

phosphorylation for CR versus AL rats was increased at the Ser473 site (P<0.05) and 

increased at the T308 site (P=0.05) with CR versus AL rats. There were significant 

increases in Akt phosphorylation in the CR versus AL rats in the tibialis anterior at both 

Thr308 (P=0.05) and Ser473 (P<0.05). In the plantaris, Akt phosphorylation increased in 

CR versus AL at the Ser473 site (P<0.05) and tended to increase at the Thr308 site 

(P=0.07). There were no significant diet effects on Akt phosphorylation at either site in 



83 
 

the adductor longus muscle. In the soleus, Akt phosphorylation increased for CR versus 

AL at both the Thr308 (P<0.05) and Ser473 (P<0.05) sites (Figure 5.3 and 5.4). 

 

AS160 Phosphorylation 

In the epitrochlearis of CR versus AL rats, AS160 phosphorylation tended to 

increase at the Thr642 site (P=0.08) and increased at the Ser588 site (P<0.05). In the 

gastrocnemius, AS160 phosphorylation at the Thr642 site or the Ser588 site did not 

change significantly with diet. In the tibialis anterior of CR versus AL rats, AS160 

phosphorylation increased at both the Thr642 (P<0.05) and Ser588 (P<0.05) sites. In the 

plantaris, AS160 phosphorylation did not increase at the Thr642 site and tended to 

increase (P=0.06) at the Ser588 site.  In the adductor longus, AS160 phosphorylation at 

the Thr642 site or the Ser588 site did not change significantly with diet. In the soleus, 

AS160 phosphorylation increased at the Thr642 site (P<0.05) and did not change at the 

Ser588 site (Figure 5.5 and 5.6). 

 

Filamin C Phosphorylation 

In the plantaris of CR versus AL rats, filamin C phosphorylation at the Ser2213 

site increased (P<0.05).  There were no significant diet effects on filamin C Ser2213 

phosphorylation in the epitrochlearis, gastrocnemius, tibalis anterior, adductor longus, or 

soleus (Figure 5.7).  

 

DISCUSSION 
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Our research group has previously shown that CR can enhance insulin-stimulated 

glucose uptake in skeletal muscle under ex vivo conditions (3, 8-10, 21, 24, 25, 85-87, 

114). The current study is the first to look at the effects of CR on in vivo glucose uptake 

by skeletal muscle together with the associated insulin signaling events.  We determined 

glucose uptake and phosphorylation of key insulin signaling proteins in AL and CR rats 

with insulin levels elevated to similar physiologic levels in both diet groups. We 

evaluated four different predominantly fast-twitch (epitrochlearis, gastrocnemius, tibialis 

anterior, and plantaris) and two predominantly slow-twitch (adductor longus and soleus) 

skeletal muscles (81) and found a significant increase in insulin-stimulated glucose 

uptake in three out of six skeletal muscles studied.  There was increased 2-DG uptake in 

the epitrochlearis, gastrocnemius, and tibialis anterior for CR versus AL rats and no 

significant difference between diet groups for plantaris, adductor longus, and soleus. We 

evaluated the most proximal insulin signaling protein, the insulin receptor (IR).  

Phosphorylation of IR was not different between AL and CR rats. The most consistent 

effect of CR compared to AL was a robust increase in insulin-stimulated Akt 

phosphorylation. We looked at the two important sites on Akt (Ser473 and Thr308) that 

are phosphorylated upon activation by insulin, and we found an increase with CR versus 

AL at both sites in the epitrochlearis, gastrocnemius, tibilais anterior, and soleus muscles. 

Akt Ser473 phosphorylation alone increased for CR versus AL in the plantaris muscle 

however there was a strong statistically non-significant trend (P=0.07) for an increase at 

Akt Thr308. Adductor longus did not differ between AL and CR at either Akt 

phosphorylation sites. AS160 is an Akt substrate and the most distal insulin signaling 

protein that is linked to insulin-stimulated glucose uptake in skeletal muscle. We found 
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that AS160 (Thr642 and Ser588) phosphorylation was increased with CR versus AL in 

the epitrochlearis and tibialis anterior. AS160 phosphorylation increased only at Thr642 

in the soleus muscle and in the plantaris had a statistically non-significant trend to 

increase only at Ser588 (P=0.06). We found no evidence for an increased AS160 

phosphorylation in the gastrocnemius or adductor longus. Filamin C is a highly expressed 

protein in skeletal muscle (129)  and believed to be involved with stabilizing actin 

filament structures (130). Actin filaments have been implicated to play a role with the 

insulin-mediated regulation of GLUT4 transporter vesicle movement (131) but the 

possible functional significance of filamin C for GLUT4 translocation has not been 

tested.  Filamin C was previously identified as an Akt substrate that is phosphorylated on 

Ser2213 in insulin-stimulated C2C12 myocytes (129).  Interestingly, it has been 

demonstrated that the CR-related increase in activation of Akt is accompanied by greater 

phosphorylation of filamin C on Ser2213 in rat skeletal muscle (Sharma, Arias, Sequea 

and Cartee, unpublished results). In the current study, in vivo filamin C phosphorylation 

on Ser2213 increased with CR versus AL only in the plantaris muscle. 

Using the euglycemic-hyperinsulinemic clamp, we demonstrated that overall 

insulin sensitivity is increased with calorie restriction in the FBN rat.  In a previous 

publication, Escriva et al. (93) also found that rats that were calorie restricted had higher 

glucose disposal rates indicating that calorie restriction increased whole body insulin 

sensitivity.   Earlier studies using the euglycemic clamp had also found calorie restriction 

can improve whole body insulin sensitivity in rhesus monkeys (36, 39) and humans (40-

42). 
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Escriva et al. also measured muscle-specific glucose disposal in the soleus and 

quadriceps femoris from 8 mo-old rats and reported that CR did not significantly increase 

in vivo insulin-stimulated glucose uptake in either of these muscles.  The results for the 

soleus are reminiscent of the current study where we found that glucose uptake was also 

not increased in the soleus.   We also found no evidence for CR to increase glucose 

uptake by the adductor longus, which has been reported to have a fiber type composition 

(90% type I and 10% type II) similar to the soleus (88% type I and 12% type II) (81).  

The quadriceps femoris is a predominantly fast-twitch muscle (2% type I and 98% type 

II).  In our study we found a significant CR versus AL effect in glucose uptake in three 

predominantly fast-twitch muscles:  the epitrochlearis (8% type I and 92% type II), 

gastrocnemius (10% type I and 90% type II), and tibialis anterior (1% type I and 99% 

type II) muscles, but not in the predominantly fast-twitch plantaris (4% type I and 96% 

type II).  It is not clear why there was no significant CR result in the quadriceps femoris  

and plantaris muscles compared to the significant CR effect on 3 of 4 predominantly fast-

twitch muscle in the current study, but it is possible that a similar reason is relevant for 

the lack of a detectable CR effect on the quadriceps and the plantaris.   Other important 

differences between the experiment by Escriva et al. versus the current study include:   

difference in strain (Wistar versus Fischer Brown Norway), the duration (3 months versus 

6 months) and degree (80% versus 65% of AL intake) of calorie restriction, or 

differences in the clamp procedures.   The euglycemic-hyperinsulinemic clamp of Escriva 

et al. was conducted with anesthetized rats in which the surgery was performed 

immediately prior to the clamp whereas in the current study rats were conscious 

throughout the clamp procedure and the surgery was performed 7 days prior to the clamp.   



87 
 

In spite of these differences in experimental design and methods, the similarity between 

the key results for CR effects on glucose uptake in 8-9 mo-old rats is notable (greater 

whole body insulin sensitivity, lack of a significant effect on the soleus, and the lack of a 

significant effect on at least one predominantly fast-twitch muscle). 

Although there is very limited literature regarding the effect of CR on glucose 

uptake in rodents in skeletal muscles in vivo, many previous studies have documented 

CR-induced increases in insulin-stimulated glucose uptake by isolated skeletal muscle ex 

vivo (3, 8-10, 21, 24, 25, 85-87, 114).  A recent study from our group evaluated ex vivo 

glucose uptake by epitrochlearis and soleus muscles from rats that undergone the same 

treatment as the current study.  In isolated skeletal muscle, male 9-mo old FBN rats with 

the same feeding protocol as the rats used in the current study, showed epitrochlearis 

(predominantly fast-twitch) from CR versus AL rats result in enhanced glucose uptake. In 

this study the predominantly fast-twitch epitrochlearis muscle showed an increase in 

glucose uptake for CR versus AL. The isolated soleus (predominantly slow-twitch) 

muscle from CR versus AL rats had enhanced glucose uptake, however in this study the 

soleus did have a significant increase for insulin-mediated glucose uptake with CR versus 

AL. It is notable that in the ex vivo experiment the epitrochlearis had a relatively higher 

increase in glucose uptake with CR compared to the soleus muscle (61% versus 40%) 

(24).  Although there was not a significant CR effect on in vivo glucose uptake in the 

soleus, there was a non-significant trend (P=0.26) for 19% greater values for the CR 

versus AL group.  Escriva et al. (93) also found a non-significant trend for ~48% greater 

glucose uptake by the soleus of CR compared to rats.  The lack of a significant CR effect 

on glucose uptake in the soleus may be explained by a difference in ex vivo versus in 
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vivo conditions.  Differences between the in vivo and ex vivo condition that may 

influence glucose uptake include but are not limited to: 1) the influence of blood flow, 2) 

presence of circulating hormones and cytokines (i.e. adiponectin, resistin, leptin, 

cortiscosterone, etc.) 3) circulating fuels (free fatty acids, amino acids and glucose), and 

4) neural recruitment and contractile activity of skeletal muscles.  Skeletal muscle 

glucose uptake, in addition to intrinsic mechanisms in the muscle itself, is regulated by 

extrinsic factors such as blood flow.   

An increase in blood flow delivers more glucose and insulin to skeletal muscle 

which increases the insulin-stimulated glucose uptake (132).  Calorie restriction of obese 

humans has been shown to increase skeletal muscle blood flow with an insulin infusion 

(133). In obese, insulin resistant OLETF rats, CR for 8 weeks led to improved whole 

body insulin sensitivity without detectable effects on insulin-induced vasodilation of 

isolated microvascular preparations from the red or white gastrocnemius muscles (134).   

We are not aware of any evidence that muscle blood flow is reduced by calorie restriction 

in rats, and seem an unlikely explanation of why there was not a significant CR effect on 

insulin-stimulated glucose uptake in the soleus in vivo.  Circulating blood cytokines have 

been shown to influence insulin sensitivity and may affect in vivo insulin-mediated 

glucose uptake.  Adiponectin and leptin have been shown to increase insulin sensitivity 

and conversely resistin has been shown to decrease insulin sensitivity (135).  In 8 mo-old 

rats, fasting plasma adiponectin was shown to increase significantly while plasma leptin 

and plasma resistin significantly decreased in CR versus AL rats (93).  Increased 

adiponectin and decreased resistin would favor increased insulin sensitivity and increased 

insulin-stimulated glucose uptake and thus would not adequately explain the soleus 
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muscle result. However, decreased circulating leptin levels is a plausible factor that 

would favor reduced insulin sensitivity and subsequent insulin-stimulated glucose uptake 

thus blunting insulin-stimulated uptake in the soleus in vivo relative to ex vivo 

conditions.   Physiological concentrations of corticosterone was shown to have no effect 

on insulin-stimulated glucose uptake and only supraphysiological levels of corticosterone 

decreased 2DG uptake  in soleus and extensor digitorum longus muscles (136).  

Corticosterone has been shown to increase with CR versus AL in rats (137, 138), but 

physiologic levels of corticosterone would not be expected to alter the in vivo insulin-

stimulated uptake in the soleus.  

Philip Randle described the reciprocal relationship between the oxidation rates of 

lipids and carbohydrates (called the Glucose Fatty Acid Cycle), and demonstrated that 

this relationship can be influenced by extracellular concentrations of free fatty acids 

(139). Plasma free fatty acids have been shown to decrease with CR in old rats during a 

clamp (140). If plasma free fatty acids were lower in CR rats, it would not be expected to 

reduce glucose uptake in muscle.   

In this study, we reported that fasting plasma glucose was not significantly 

different between CR and AL rats and a similar observation was also reported previously 

(93) in another study.  High rates of glucose uptake by muscle during the clamp could 

lead to an increase conversion of glucose-6-phosphate (G-6-P) if hexokinase could not 

keep pace with the high glucose entry  into the muscle via the greater insulin-stimulated 

translocation of the GLUT4 transporter that has been reported for muscles of CR rats (3).  

Accumulation of G-6-P can exert end-product inhibition on hexokinase leading to 

accumulation of free glucose within the muscle which would subsequently result in 
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counter-transport of glucose and decreased net glucose uptake measured in vivo relative 

to ex vivo in the absence of glucose.  Although plasma glucose was matched between diet 

groups during the clamp, glucose was not included during the 50 minutes of ex vivo 

incubation of muscles. When the glucose analog that was present ex vivo (2-

deoxyglucose, 2-DG) is phosphorylated to 2-DG-6-P, unlike G-6-P, it is not a potent 

inhibitor of hexokinase (110).   It should also be noted that the measurement of glucose 

uptake in vivo versus ex vivo was not identical. Ex vivo glucose uptake measurements 

included total 2-DG and 2-DG-6-P as described previously (110, 141), whereas in vivo 

glucose uptake measured the accumulation of 2-DG-6-P only as described above. 

Measuring only 2-DG-6-P would be expected to be lower than 2DG plus 2-DG-6-P if 

hexokinase were rate-limiting.   

Skeletal muscle in vivo maintains physiological neural inputs and recruitment 

patterns during the course of experimentation.  The soleus muscle is a predominantly 

slow-twitch, postural muscle and is likely recruited for contraction while the conscious 

rat is standing during the clamp procedure in this study. Increased contraction would 

seem to favor an insulin-independent increase in skeletal muscle glucose uptake and 

would increase the in vivo glucose uptake observed in the soleus.  Some studies have 

suggested small differences in spontaneous physical activity of CR versus AL rats, with 

the greatest differences evident near the time when CR rats are fed (142).  Physical 

activity was not systematically monitored during the clamps, but neither group was 

noticed to have high levels of activity, and there were not obvious differences between 

groups.  There does not appear to be a compelling reason to expect that in vivo 
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recruitment of the soleus muscle would likely explain why there was no significant 

increased insulin-mediated glucose uptake in vivo when compared to the soleus ex vivo.   

Other notable differences between the in vivo and ex vivo conditions in our 

experiment are the dosage and duration of insulin stimulation. The insulin concentration 

in vivo (~140 µU/ml) versus ex vivo (200 µU/ml) was similar but not identical. We do 

not expect this  small difference in insulin concentration to play a significant role in the 

skeletal muscle glucose accumulation but it is possible the lower insulin dosage in vivo 

could have accounted for the lower insulin-stimulated glucose uptake in the soleus in 

vivo relative to ex vivo.   The duration of insulin stimulation during the clamp was 

approximately 120 minutes compared to 50 minutes with ex vivo incubations.  It is 

possible that the longer exposure of insulin may have caused inhibition via the insulin 

signaling pathway in vivo versus ex vivo, which would favor decreased insulin-

stimulated glucose uptake as was seen in the soleus in vivo versus ex vivo.    

Taking together results for CR effects on insulin-stimulated glucose uptake in 

skeletal muscle under both in vivo and ex vivo are powerful because in combination these 

methods provide greater insights into the mechanisms by which CR increases insulin 

sensitivity in skeletal muscle than would not be evident using only one of the approaches.  

Ex vivo incubations allow greater experimental control for investigating the intrinsic 

ability of the muscle to respond to insulin and CR without the influence of blood flow, 

neural inputs, and blood-borne chemokines.  In vivo experimentation is advantageous 

because insulin-stimulated glucose uptake measurements are taken in a physiological 

context.  The influence of usual-living insulin levels, blood flow, neural inputs, and blood 

chemokines may influence CR’s effects on skeletal muscle.  In combination, the results 
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from ex vivo and in vivo experimentation give us the most comprehensive view of the 

CR effects on insulin-stimulated glucose uptake in skeletal muscle to date. 

Phosphorylation of IR was not different between AL and CR rats. This result is 

consistent with a number of prior experiments examining the phosphorylation state of the 

IR with CR versus AL with physiologic insulin. In studies analyzing ex vivo CR effect in 

rats, there was also no difference in insulin receptor phosphorylation between AL and CR 

muscles incubated with a physiologic insulin dose (24, 114). Published studies that have 

previously reported increased insulin receptor phosphorylation in vivo with CR used a 

supraphysiologic dose of insulin via a bolus injection (6, 27).  

To our knowledge Akt phosphorylation with CR has not been studied with 

physiologic insulin in a clamp study.  The CR-mediated increase for Akt phosphorylation 

is very similar to results ex vivo with similar aged rats fed with the exact protocol as the 

current study.  Sharma et al. (24) found that CR significantly increased Akt 

phosphorylation versus AL fed rats at both the Thr308 and Ser473 sites. Other studies 

have also seen similar increases in CR for Akt phosphorylation in rats ex vivo (9, 10, 

114).   In the current study, Akt phosphorylation was increased in the epitrochlearis, 

gastrocnemius, tibialis anterior, plantaris, and soleus muscles, with only the adductor 

longus not having a significant increase.  Of all of the insulin signaling measurements 

made in this and previous studies, Akt phosphorylation has been most consistently 

increased with CR versus AL animals, both in vivo and ex vivo.  

There are no other reports on phosphorylation of AS160 with calorie restriction 

on insulin-stimulated muscles in vivo.  In 9 month old rat epitrochlearis muscle incubated 

ex vivo with physiological insulin there was an increase in the phosphorylation of AS160 
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at both Thr642 and Ser588 sites. Three out of four (epitrochlearis, tibialis anterior, and 

plantaris) predominantly fast-twitch muscles in the current study increased in at least one 

AS160 phosphorylation site.  In 9 month old rat soleus muscle incubated with 

physiological insulin there was no increase in the phosphorylation of AS160 with CR 

versus AL, and in this study, the soleus muscle had increased phosphorylation at Thr642 

but not Ser588 with CR versus AL.  In another study of isolated epitrochlearis and soleus 

muscle from 24 mo-old rats incubated in physiological insulin there was no increase in 

AS160 phosphorylation with CR versus AL in either muscle (114).  In the current study, 

there was also no increase for AS160 phosphorylation in either the adductor longus or 

gastrocnemius.  In summary, although the CR effect on AS160 phosphorylation appeared 

to be generally similar for the epitrochlearis of 9 month-old rats under both in vivo and ex 

vivo conditions, greater AS160 phosphorylation with CR versus AL was not uniformly 

found in all muscles in either condition.   

In 9 month old rat epitrochlearis muscle incubated with physiological insulin 

there was an increase in the phosphorylation of filamin C on Ser2213 (Sharma et al, 

unpublished results). Also in 24 month-old rat epitrochlearis and soleus muscle incubated 

with physiological insulin there was an increase in the phosphorylation of filamin C on 

Ser2213 (Sequea, Sharma, Arias and Cartee, unpublished results).  The current study was 

the first to report CR effects on filamin C phosphorylation on Ser2213 in muscle 

collected after in vivo insulin treatment.   The only significant increase for CR versus AL 

was in the plantaris muscle.  The current data indicate that, in contrast to results for 

muscles studied ex vivo, greater filamin C phosphorylation is not a typical result for CR 

versus AL muscles stimulated with insulin in vivo. 
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Taking together the results for glucose uptake and insulin signaling in five 

different muscles offers an opportunity to probe for insights into possible mechanisms for 

CR-related benefits on insulin sensitivity in muscle.  For CR versus AL rats, in vivo 

glucose uptake was significantly greater in the predominantly fast-twitch epitrochelaris, 

gastrocnemius, and tibialis anterior muscle.  In each of these muscles, the CR-mediated 

increase in glucose uptake occurred independent of a diet effect on insulin receptor 

activation together with an increase in Akt phosphorylation.   A number of previous 

studies have consistently reported a CR-associated increase in muscle Akt 

phosphorylation concomitant with greater insulin-stimulated glucose uptake (8-10, 24, 

114).  However, in the current study, the CR-related increases in Akt phosphorylation in 

the soleus and plantaris muscles were not accompanied by significantly increased glucose 

uptake.   Neither Akt phosphorylation nor glucose uptake was significantly increased in 

the adductor longus muscle of CR versus AL rats. Taken together, these results suggest 

that the CR-induced increase in Akt activation by greater phosphorylation on Ser473 and 

Thr308 may be necessary, but not sufficient for greater in vivo insulin-stimulated glucose 

uptake of CR versus AL rats.  There is not a simple relationship between CR effects on 

glucose uptake and AS160 phosphorylation.  For two (epitrochlearis and tibialis anterior) 

of the three muscles characterized by greater in vivo glucose uptake in CR compared to 

AL rats, AS160 phosphorylation on at least one site was also greater for CR rats.  

However, there was not a consistent relationship between CR effects on AS160 

phosphorylation and in vivo glucose uptake in the gastrocnemius (only glucose uptake 

increased with CR) or the soleus (only phosphorylation of Ser588 increased with CR).  

Under ex vivo conditions in 9 month-old rats, both the epitrochlearis and soleus were 
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characterized by CR-related improvements in glucose uptake, but only in the 

epitrochlearis was AS160 phosphorylation greater for CR versus AL rats. Taking together 

the ex vivo results from previous research and the in vivo results from the current study, 

it is apparent that CR effects on insulin-stimulated glucose uptake in the soleus are not 

attributable to CR effects on AS160 phosphorylation on Thr642 or Ser588.  There was no 

correspondence between CR effects on in vivo glucose uptake and filamin C 

phosphorylation.  Based on the current results, the strongest link between CR effects on 

insulin signaling and glucose uptake are found with greater Akt phosphorylation that is 

usually observed for CR compared to AL muscles.  However, the important intermediate 

steps between CR effects on Akt and glucose uptake are uncertain.  Regulation of in vivo 

glucose uptake by AS160 and filamin C may be regulated on other Akt-phosphorylation 

sites not measured in this study.  There may be CR effects on AS160 or filamin C that are 

localized to certain subcellular regions and not evident when analyzing the whole muscle 

lysate.  It is also possible that other unknown Akt substrates may play a role in regulating 

CR’s effect on glucose uptake.   It also remains possible that CR can influence glucose 

uptake by Akt-independent mechanisms.    

Regardless of the possible role of different insulin signaling steps for CR effects 

on glucose uptake, another important issue is to understand how CR effects on the 

different insulin signaling steps are related to each other.  There was no effect of CR on 

the insulin receptor tyrosine phosphorylation on 1162/1163 observed in any muscle, so 

other mechanisms must account for the CR effects on post-receptor signaling.  We 

reported that Akt phosphorylation was increased with CR in five out of six muscles and 

was the most consistent effect of CR. The increase in Akt phosphorylation did not appear 
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to be a result of increased upstream insulin receptor activation.  We did not find a 

uniform predicative relationship between Akt phosphorylation and AS160 

phosphorylation with CR versus AL. Only in the tibialis anterior did phosphorylation on 

both Akt sites lead to phosphorylation on both AS160 phosphorylation sites. There was 

increased AS160 phosphorylation in the epitrochlearis, plantaris, and soleus on only one 

out of two phosphorylation sites despite an increase for both Thr308 and Ser473 on Akt. 

The adductor longus muscle consistently lacked a diet effect for CR versus AL for the 

insulin signaling molecules in which we studied.  AS160 phosphorylation with CR versus 

AL was not increased seemingly because there was no increase in the upstream Akt 

phosphorylation in the adductor longus muscle. It is not clear why the gastrocnemius did 

not have an increase for AS160 phosphorylation despite an increase in Akt 

phosphorylation.  Similarly, there were no significant diet effects for Ser2213 

phosphorylation on filamin C in the epitrochlearis, gastrocnemius, tibialis anterior, or 

solelus despite an increase in Akt phosphorylation in these muscles.  Only in the plantaris 

muscle did an increase in Akt phosphorylation coincide with an increase in filamin C 

phosphorylation.  The ability of a kinase to phosphorylate substrates depends heavily on 

proximity.  In some cases, the subcellular localization of AS160 and filamin C may not 

be accessible for activated Akt and may explain why we found a diet effect on Akt but 

not known Akt substrates in some muscles.  In addition, although an increase for total 

Akt phosphorylation does not lead to an increase for AS160 and filamin C 

phosphorylation, the Akt2 specific isoform may be a better predictor of AS160 and/or 

filamin C phosphorylation. 
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In conclusion, the current data demonstrate that CR leads to greater whole body 

insulin sensitivity that is, at least in part, attributable to substantial CR effects on in vivo 

insulin-stimulated glucose uptake by multiple predominantly fast-twitch skeletal muscles.  

The current results also clearly demonstrate that CR does not uniformly enhance insulin-

stimulated glucose uptake in all skeletal muscles.  Although CR did not significantly 

enhance in vivo glucose uptake in either predominantly slow-twitch muscle that was 

studied, there was also no evidence for a CR effect on glucose uptake by the 

predominantly fast-twitch plantaris.  The results support the idea that CR effects on 

glucose uptake are, at least in part, related to enhancing Akt phosphorylation.  However, 

the current results indicate that CR effects on neither AS160 (Thr642 and Ser588) 

phosphorylation nor filamin C Ser2213 phosphorylation are essential for greater glucose 

uptake in skeletal muscle.  This result implies that the signaling mechanisms for CR 

enhanced insulin-mediated glucose uptake are not identical in all skeletal muscles and 

increased Akt phosphorylation does not simply translate to increase phosphorylation of 

AS160 and filamin C.  Future studies will be necessary to fully determine the precise role 

of CR on in vivo glucose uptake and the insulin signaling mechanisms in skeletal muscle.   

Assessing the effect of CR on Akt-binding proteins in vivo may provide insight into how 

Akt may be regulated with CR.  Further, identifying other insulin-regulated Akt 

phosphorylation sites on AS160, filamin C, and other known Akt substrates (e.g. 

TBC1D1 and CDP-138) may elucidate the links between CR effects on Akt 

phosphorylation and the CR-mediated increase in skeletal muscle glucose uptake.   
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Figure 5.1 In Vivo 2-Deoxy-D-glucose (2-DG) uptake. 2-DG uptake in epitrochlearis 
(A), gastrocnemius (B), tibialis anterior (C), plantaris (D), adductor longus (E), and 
soleus (F) muscles in AL and CR treated groups.  *p<0.05, CR versus AL.  Data are 
means ± SEM.  n=6-13 muscles per diet group.     
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Figure 5.2 In vivo insulin receptor tyrosine phosphorylation (IRTyr1162/1163). 
IRTyr1162/1163 phosphorylation in epitrochlearis (A), gastrocnemius (B),  tibialis anterior 
(C), plantaris (D), adductor longus (E), and soleus (F) muscles in AL and CR treated 
groups.  *p<0.05, CR versus AL.  Data are means ± SEM.  n=6-8 muscles per diet group.     



101 
 

 

Figure 5.3 In vivo AktSer473 phosphorylation. AktSer473 phosphorylation in epitrochlearis 
(A), gastrocnemius (B), tibialis anterior (C), plantaris (D), adductor longus (E), and 
soleus (F) muscles in AL and CR treated groups.  *p<0.05, CR versus AL.  Data are 
means ± SEM.  n=6-8 muscles per diet group.     
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Figure 5.4 In vivo AktThr308 phosphorylation. AktThr308 phosphorylation in 
epitrochlearis (A), gastrocnemius (B), tibialis anterior (C), plantaris (D), adductor longus 
(E), and soleus (F) muscles in AL and CR treated groups.  *p<0.05, CR versus AL.  Data 
are means ± SEM.  n=5-8 muscles per diet group.     
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Figure 5.5 In vivo AS160Thr642 phosphorylation. AS160Thr642 phosphorylation in 
epitrochlearis (A), gastrocnemius (B), tibialis anterior (C), plantaris (D), adductor longus 
(E), and soleus (F) muscles in AL and CR treated groups.  *p<0.05, CR versus AL.  Data 
are means ± SEM.  n=6-8 muscles per diet group.     
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Figure 5.6 In vivo AS160Ser588 phosphorylation. AS160Ser588 phosphorylation in 
epitrochlearis (A), gastrocnemius (B), tibialis anterior(C), plantaris (D), adductor longus 
(E), and soleus (F) muscles in AL and CR treated groups.  *p<0.05, CR versus AL.  Data 
are means ± SEM.  n=5-8 muscles per diet group. 
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Figure 5.7 In vivo Filamin CSer2213 phosphorylation. Filamin CSer2213 phosphorylation 
in epitrochlearis (A), gastrocnemius (B), tibialis anterior(C), plantaris (D), adductor 
longus (E), and soleus (F) muscles in AL and CR treated groups.  *p<0.05, CR versus 
AL.  Data are means ± SEM. n=5-8 muscles per diet group
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CHAPTER VI 

 

 

DISCUSSION 

 

 

Focus of this Discussion 

 This chapter of the dissertation will first summarize the major new results of 

Studies 1 to 3.  A concise summary of the results from the three studies in this 

dissertation is provided in Table 6.1 (page 124).   The chapter will also provide a brief 

discussion that integrates the insights gained by considering together the novel results 

from each study to extend our current understanding of CR-related increase on insulin-

stimulated glucose uptake by sequentially addressing the novel insights from this 

dissertation with regard to CR effects on:  insulin signaling proximal to Akt, activation of 

Akt, phosphorylation of Akt substrates, and glucose uptake.  This discussion will also 

identify some of the key issues for future research that these studies brought to the 

forefront.  The final section of this discussion will focus on how the contributions from 

the research included in the dissertation have provided a unique and important new 

perspective to understanding the influence of CR on insulin signaling and glucose uptake 

in skeletal muscle.     
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Summary of Key Findings 

Results from this dissertation provide novel insights into fully understanding the 

mechanisms that account for enhanced insulin-stimulated glucose transport with calorie 

restriction (CR).  Study 1 provided the first data on the effects of CR in old age on insulin 

signaling and glucose uptake in skeletal muscle with a physiologic insulin dose.  Results 

from Study 2 evaluated the possibility that CR results in a transiently greater insulin-

mediated activation in skeletal muscle of key insulin signaling that are proximal to Akt.  

Study 3 extended the observations based on evaluation of four predominantly fast-twitch 

and two predominantly slow-twitch skeletal muscles in vivo by probing CR effects on 

insulin-stimulated glucose uptake and insulin signaling in an in vivo model.  A bulleted 

summary of the key findings is provided below.  

 

Study 1: Calorie Restriction Enhances Insulin-stimulated Glucose Uptake and Akt 

Phosphorylation in Both Fast-twitch and Slow-twitch Skeletal Muscle of 24 Month-

old Rats 

 In male 24 mo-old Fisher 344 Brown Norway rats, CR (6 mo duration) 

glucose uptake was enhanced for both the insulin-stimulated soleus (primarily 

type I fibers) and epitrochlearis (primarily type II fibers). 

 GLUT4 abundance was unchanged by CR in the soleus and epitrochlearis. 

 Insulin receptor phosphorylation was not altered by diet in either soleus or 

epitrochlearis either with or without insulin.  

 Akt phosphorylation on Thr308 and Ser473 was enhanced in the insulin-

stimulated soleus and epitrochlearis.  
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 AS160 phosphorylation at Thr642 and Ser588 was unchanged by diet in the 

soleus and epitrochlearis either with or without insulin.  

 TBC1D1 phosphorylation at Thr596 was unchanged by diet in both soleus and 

epitrochlearis either with or without insulin.  

 Filamin C phosphorylation at Ser2213 was greater for CR versus AL rats in 

the insulin-stimulated soleus and epitrochlearis. 

 

Study 2: Comparison of Ad Libitum Fed and Calorie Restricted Rats for the Time 

Course of Insulin’s Activation of Signaling Steps Required for Greater Glucose 

Transport by Isolated Skeletal Muscle 

 In male 9 mo-old Fisher 344 Brown Norway rats, 2-DG uptake by the 

insulin-stimulated soleus was significantly increased for the CR versus AL 

group.  

 There was no significant difference between CR and AL rats for soleus 

phosphorylation of the IR on Tyr1162/1163 at any time point, either with 

or without insulin.   

 Soleus tyrosine phosphorylation of IRS-1 was not significantly different 

between CR and AL rats regardless of insulin dose or time point.   

 IRS-1 associated PI3K in the soleus muscles was not significantly 

different for the CR versus AL group at any time point, either with or 

without insulin.   

 There was no significant effect of diet for either Akt Thr308 or Ser473 

phosphorylation in the soleus at any time point under basal conditions.  
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However, phosphorylation of Akt on both Thr308 and Ser473 was 

significantly increased for the CR versus AL group in muscles that were 

incubated with insulin for 50 minutes, but not for muscles incubated with 

insulin for 5 or 15 minutes. 

 

Study 3: In Vivo Assessment of the Effects of Calorie Restriction on Insulin-

stimulated Glucose Uptake and the Insulin Signaling Pathway in Multiple Skeletal 

Muscles 

 Whole body insulin sensitivity measured by glucose infusion rate during a 

euglycemic-hyperinsulinemic clamp was greater for CR versus AL rats 

that were studied with similar plasma insulin concentrations. 

 There was increased 2-DG uptake of the epitrochlearis, gastrocnemius, 

and tibialis anterior for insulin-stimulated CR versus AL rats and no 

significant difference between diet groups for 2-DG uptake of the 

plantaris, adductor longus, and soleus.  

 Phosphorylation of IR was not different between insulin-stimulated AL 

and CR rats for any of the muscles studied.  

 The most consistent effect of CR compared to AL was a robust increase in 

insulin-stimulated Akt phosphorylation found at both the Thr308 and 

Ser473 sites in the epitrochlearis, gastrocnemius, tibilais anterior, and 

soleus muscles.  
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 Akt Ser473 phosphorylation was increased for CR versus AL rats in the 

plantaris muscle, and there was a strong statistically non-significant trend 

(P=0.07) for an increase at Akt Thr308.  

 Only the adductor longus did not significantly differ between AL and CR 

for Akt phosphorylation at either the Thr308 or the Ser473 site.  

 AS160 (Thr642 and Ser588) phosphorylation was greater for CR versus 

AL in the insulin-stimulated epitrochlearis and tibialis anterior.  

 AS160 phosphorylation at Thr642, but not at S588, was greater for CR 

versus AL rats in the insulin-stimulated soleus muscle, and the plantaris 

had a statistically non-significant trend to increase at Ser588 (P=0.06) 

without a diet effect at Thr642.  

 There was no evidence for an increased AS160 phosphorylation in the 

gastrocnemius or adductor longus.  

 Filamin C phosphorylation on Ser2213 was greater for CR versus AL rats 

only in the insulin-stimulated plantaris muscle. 

 
Insights from Integrating the Results of Studies 1 to 3 

The studies in this dissertation investigated the mechanisms for calorie restriction 

(CR) effects on insulin-simulated glucose uptake in skeletal muscle using rats of different 

ages (9 or 24 mo-old) and using different experimental models for measuring glucose 

uptake (ex vivo or in vivo).  Together these studies offer new insights into possible 

mechanisms for CR-related benefits on insulin sensitivity in muscle.  This discussion will 

sequentially address the specific results for the insulin signaling pathway and then 

comment on the functional outcome of glucose uptake, with ideas for future research 
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included for each topic.  Table 6.1 summarizes the experimental design and results for the 

study by Sharma et al. and the studies from this dissertation. The following section 

integrating results from Studies 1 to 3 will periodically refer to table 6.1.    
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Table 6.1 Summary of experimental design and results for study by Sharma et al. 
(24) and Studies 1 to 3 from dissertation.   
 

 Sharma et al.  
(24) 

Study 1 Study 2 Study 3 

Model Used for 
Insulin Exposure 

Ex Vivo Ex Vivo Ex Vivo In Vivo 

Age of Rats 9 mo-old 24 mo-old 9 mo-old 9 mo-old 
Muscles Studied E & S E & S S E, S, G ,T, P & A  
Insulin-stimulated  

pY-IR 
↔ E    ↔ S ↔ E   ↔ S ↔ S ↔ (E, S, G ,T, P & 

A) 
Insulin-stimulated  

pY-IRS1 
not measured not measured ↔ S not measured 

Insulin-stimulated  
IRS1-PI3K 

↔ E    ↔ S not measured ↔ S not measured 

Insulin-stimulated  
pAkt 

↑ E     ↑ S ↑ E   ↑ S ↑ S ↑ (E, S, G, T & P); 
↔ A 

Insulin-stimulated  
pAS160 

↑ E   ↔ S ↔ E   ↔ S not measured ↑ (E, S, T & P);  
↔ (G & A) 

Insulin-stimulated  
2DG Uptake 

↑ E     ↑ S ↑ E    ↑ S ↑ S ↑ (E, G & T);  
↔ (S, P & A) 

 
 
KEY:  E = Epitrochlearis; S=Soleus; G=Gastrocnemius; T=Tibialis Anterior; 

P=Plantaris; A=Adductor Longus; ↑ = CR significantly greater than AL for 

corresponding measurement; ↔ = no significant difference for CR versus AL for 

corresponding measurement. 
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Table 6.2 Results of 2-way ANOVA showing main effects of insulin and diet and 
post-hoc analysis for Study 1.  
 

 Main Effect of 
Insulin 

Main Effect of 
Diet 

Post-hoc AL vs. 
CR with no 

insulin 

Post-hoc AL vs. 
CR with 1.2 
nM insulin 

Insulin-stimulated 
pY-IR 

EPI: P < 0.05 
SOL:P < 0.001 

 

EPI: P = 0.384 
SOL:P = 0.311 

EPI: P = 1.00  
SOL:P = 1.00  

EPI: P = 1.0   
SOL:P= 1.00 

Insulin-stimulated 
pAkt T308 

EPI: P < 0.001 
SOL: P < 0.001 

 

EPI: P < 0.001 
SOL: P < 0.001 

EPI: P = 1.00   
SOL: P = 1.00  

EPI: P< 0.001  
SOL: P< 0.001  

Insulin-stimulated 
pAkt S473 

EPI: P < 0.001 
SOL: P < 0.001 

 

EPI: P < 0.001 
SOL: P < 0.001 

EPI: P = 1.00  
SOL: P = 1.0 

EPI: P< 0.001  
SOL: P< 0.001 

Insulin-stimulated 
pAS160 T642 

EPI: P < 0.001 
SOL: P < 0.001 

 

EPI: P =0.198 
SOL: P = 0.388 

EPI: P = 1.00  
SOL:P = 0.699 

EPI: P = 0.341  
SOL:P = 1.00 

Insulin-stimulated 
pAS160 S588 

EPI: P < 0.01 
SOL: P < 0.001 

 

EPI: P = 0.310 
SOL: P = 0.051 

EPI: P = 1.00  
SOL:P = 1.00 

EPI: P = 0.850  
SOL:P = 0.203 

Insulin-stimulated 
pTBC1D1 T596 

EPI: P = 0.108 
SOL: P = 0.194 

 

EPI: P = 0.301 
SOL: P = 0.979 

EPI: N/A  
SOL:N/A 

EPI: N/A  
SOL:N/A 

Insulin-stimulated 
pFilaminC S2213 

EPI: P < 0.005 
SOL: P < 0.001

 

EPI: P < 0.05 
SOL: P < 0.001 

EPI: P = 1.00  
SOL:P = 1.00 

EPI: P = 0.055  
SOL:P < 0.001 

Insulin-stimulated 
2DG Uptake 

EPI: P < 0.005 
SOL: P < 0.001 

 

EPI: P < 0.01 
SOL: P < 0.01 

EPI: P = 1.00  
SOL:P = 1.00 

EPI: P < 0.05 
SOL:P < 0.05 

 
 
KEY:  Epi = Epitrochlearis; Sol=Soleus; N/A= Not applicable; Post-hoc AL vs. CR 
refers to the results of the post-hoc Bonferroni test for each incubation for insulin 
exposure during ex vivo incubation (with no insulin or with 1.2 nM insulin).  P value 
<0.05 was considered statistically significant.  
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CR Effects on Insulin Signaling Proximal to Akt 

Insulin receptor phosphorylation did not increase with CR versus AL regardless 

of age (9 or 24 months) or model (ex vivo or in vivo).  Muscles from CR versus AL rats 

did not differ significantly for IRTyr1162/1163 phosphorylation, IRS-1Tyr phosphorylation, or 

IRS-1-associated PI3K activity, when tested at multiple time points (5, 15 and 50 

minutes).  These results suggest that the CR-related amplification of post-receptor 

signaling and glucose uptake in muscle stimulated by a physiologic insulin dose do not 

appear to be attributable to greater activation of insulin signaling proximal to Akt.  

Supporting the results of Study 2 of this dissertation, previously published research 

indicated a lack of a CR effect on IRS1-, IRS2, or phosphotyrosine PI3K was reported 

with 3 nM insulin in the epitrochlearis (25).  Sharma et al.  (24) observed no CR effect on 

PI3K activity together with no evidence for a CR effect on atypical PKC activity.  The 

lack of any change in atypical PKC activity with CR, a step that is dependent on the 

proximal signaling events that also regulate Akt (including insulin receptor and IRS-1 

tyrosine phosphorylation and IRS-1-PI3K activity) is consistent with a lack of a general 

increase in proximal signaling with CR, and it supports the idea of CR does not uniformly 

enhance all signaling events that are modulated by insulin via activation of PI3K activity. 

Nonetheless, it remains possible that the lack of a statistically detectable CR 

effect on proximal signaling concomitant with a consistently significant CR effect on Akt 

could potentially be related to differences in the technical precision of the methods used 

to quantify the different insulin signaling steps.  The dynamic range was smaller and the 

variability was greater for proximal signaling markers versus Akt signaling.  It is possible 

that the lack of a statistically detectable CR effect of proximal signaling steps in this 
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study was due to insufficient sample size and statistical power.  Only 3 time points were 

assessed and a difference may have been missed at an intermediate time point that was 

not studied.  However, it is important to note that significant insulin effects were detected 

for proximal signaling in Studies 1 (Table 6.2 includes the P-values for insulin main 

effects based on 2-Way ANOVA) and 2 (Figures 4.2 to 4.5) of this dissertation, 

indicating that there was sufficient technical precision and statistical power to discern the 

effects of a physiologic insulin dose on each of the proximal insulin signaling steps 

measured for ex vivo epitrochlearis and soleus muscles.  In addition, a recently published 

study from our group also found significant effects of insulin infusion compared to basal 

conditions (without insulin infusion) on insulin receptor tyrosine phosphorylation in 

multiple muscles studied under hyperinsulinemic clamp conditions identical to those used 

in Study 3 (115).  However, it remains possible that a small and/or variable CR-related 

increase occurred for one or more proximal insulin signaling step, but was missed 

because it was below the limit of detection of the technical approaches that were used.  

 
CR Effects on Activation of Akt  

Akt phosphorylation was greater for CR versus AL for each age (9 versus 24 

months) and for each model (ex vivo and in vivo).  Thus, in striking contrast to the lack 

of detectable CR effects on insulin signaling at steps proximal to Akt, there was a 

substantial and significant CR effect on Akt phosphorylation in all of the studies of the 

dissertation.  The simplest interpretation of the results of this dissertation is that the 

increase in Akt phosphorylation does not appear to be attributable to CR effects on key 

upstream signaling steps.   What are some possible mechanisms whereby CR may be 
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affecting insulin sensitivity by distinctly acting on the level of Akt signaling without the 

need for enhanced signaling at proximal steps?   

One possible explanation for increased Akt phosphorylation for CR versus AL 

could be due to a CR effect that results in attenuated action of the relevant protein 

phosphatases that are responsible for dephosphorylation of Akt.  Several studies have 

demonstrated that protein phosphatase 2A (PP2A) can regulate kinase activity such as 

Akt phosphorylation (143-146).  However, CR was reported to have no effects on Akt 

associated PP2A in the epitrochlearis and soleus muscles from 9 mo-old rats (24).  PP2A 

has also been shown to be regulated by tyrosine 307 phosphorylation (147-149) and 

leucine 309 methylation (150-153), but the effects of CR on these post-translational 

modifications is unknown.  PP2A is one of several phosphatases that regulate protein 

serine/threonine phosphorylation in skeletal muscle (154-158), and it is possible that 

other phosphatases (PP1, PP2B, PP2C) may be altered with CR.  

A second possibility is that there are other post-translational modifications (e.g. 

acetylation) of Akt are influenced by CR and modulate Akt activation. The Sirt1 

deacetylase has been reported to promote localization and activation of Akt (159, 160) 

and represents a mechanism that may play a role in the increase in Akt activation with 

CR.  CR was reported to increase Sirt1 deacetylase activity in skeletal muscle of mice 

(117), but CR effects on Akt acetylation are currently unknown. 

A third possibility is that regulatory proteins that are known to bind to and 

modulate Akt phosphorylation may be altered by CR.  Heat-shock protein 90 (HSP90) 

has been reported to oppose dephosphorylation of Akt by protein phosphatases (161).  

Sharma et al (24) studied the effect of CR on HSP90 and found that CR increased the 
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association of HSP90 and Akt with insulin stimulation in the epitrochlearis muscle.  

However, there was no evidence for increase Akt and HSP90 association in the soleus 

muscle suggesting that different mechanisms may account for greater Akt 

phosphorylation in the soleus of CR rats.  At least in the epitrochlearis, the CR mediated 

increase in HSP90-Akt binding may be significant for the CR-enhancement of Akt 

phosphorylation.  Specific HSP90 inhibitors (162, 163) could be used to determine if 

HSP90 is playing a significant role in the CR effect on Akt phosphorylation that is 

routinely seen in skeletal muscle.  Several other proteins have been reported to favor 

either greater Akt phosphorylation [e.g. PHLDB1(118), ClipR-59 (119)] or less Akt 

phosphorylation [e.g CTMP (120), TRB3 (121)].  Co-immunoprecipation of Akt and 

these various Akt-binding proteins in multiple muscles from CR compared to AL rats 

would provide clues on how CR acts to enhance Akt phosphorylation.  It seems possible 

that CR actions on Akt–binding proteins may also influence the localization of Akt and 

influence the spatial organization to regulate Akt’s co-localization with specific Akt 

substrates.  To further probe this idea, specific inhibitors or genetic approaches to 

manipulate the expression of these candidate proteins would be useful.  For example, 

siRNA that is specific to each candidate protein could be transfected into the skeletal 

muscle of CR and AL rats to determine if CR enhanced Akt association with Akt-binding 

proteins are important for the CR-mediated increase in Akt phosphorylation. Similarly, 

altering binding of Akt to Akt binding proteins by mutations on key binding amino acids 

would be an additional method to determine the significance of their association.  

Alternatively, overexpression experiments could also shed light on the importance of 

these Akt-binding proteins.  Electrotransfection experiments could be used to up-regulate 
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plasmid DNA of interest using in vivo gene delivery to skeletal muscle.  These 

approaches would provide important information on the regulation of Akt 

phosphorylation by Akt binding proteins. 

 
CR Effects on Phosphorylation of Akt Substrates 

Akt, the insulin signaling protein that has been found to be most consistently 

altered in response to CR, is a kinase that phosphorylates downstream substrates that are 

necessary for the CR-mediated enhancement of insulin stimulated glucose uptake in 

skeletal muscle.  AS160 is the most studied Akt substrate that has been implicated in 

regulating glucose transport.  AS160 was evaluated in the soleus for Studies 1 and 3, but 

was not studied for the soleus ex vivo in 9 mo-old rats.  However, this information is 

available from an earlier study by Sharma et al. (24) (see Table 6.1) that was a precursor 

and template for the design of the 3 studies in this dissertation (with regard to the strain 

and sex of the rats, the specific CR protocol used, the insulin dose evaluated, and many of 

the key measurements that were made).  Therefore, if we consider the results of Studies 1 

and 3 together with the results of Sharma et al. (24) for AS160, it is apparent that CR 

does not increase AS160 phosphorylation in the soleus ex vivo in either 9 or 24 mo-old 

rats, even though CR is characterized by greater insulin-stimulated glucose uptake in the 

soleus at both ages.  However, data from Study 3 indicate that CR does result in greater 

insulin-stimulated AS160 phosphorylation in the soleus when measured in vivo in the 

absence of a CR-related increase in insulin-stimulated glucose uptake. Taken together, 

the results for the soleus demonstrate that greater AS160 phosphorylation is not 

responsible for diet-related differences in glucose uptake by the soleus of CR versus AL 

rats.  
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AS160 phosphorylation in the ex vivo epitrochlearis was greater for CR versus 

AL in 9 mo-old rats, but there was no evidence of a CR-related increase in AS160 

phosphorylation in the ex vivo epitrochlearis of 24 mo-old rats.   It is unclear what links 

elevated Akt phosphorylation to enhanced glucose uptake in old rats, but the lack of 

greater AS160 phosphorylation in the epitrochlearis of old CR rats suggests that alternate 

Akt substrates may be enhanced and account for greater glucose uptake with CR.  It 

would be worthwhile to probe CR effects on new Akt substrates to reveal potential 

mechanisms that may explain the CR improved glucose uptake in 24 mo-old rats. 

CDP138, an Akt substrate, was reported to regulate GLUT4 insertion into the plasma 

membrane (164) and may be relevant for the CR effect on insulin-stimulated glucose 

uptake in the epitrochlearis and other skeletal muscles.  

This dissertation also evaluated the effect of CR on in vivo insulin induced 

activation of AS160 in the epitrochlearis. When the CR effects on AS160 

phosphorylation were probed in vivo there was a significant increase in the epitrochlearis 

for CR versus AL in 9mo-old rats.  Comparing the AS160 phosphorylation for ex vivo 

and in vivo, the data provides evidence that AS160 phosphorylation is responsive to the 

effects of CR in the epitrochlearis.  Three additional predominantly fast-twitch muscles 

were studied in 9 mo-old CR and AL rats, and there was evidence for a CR-related 

increase in AS160 phosphorylation in the tibialis anterior and plantaris muscles but no 

effect of CR on AS160 phosphorylation in the gastrocnemius.  The lack of a uniform 

effect of CR on AS160 phosphorylation in the 4 fast-twitch muscles that were studied in 

vivo is not attributable to differences in these muscles for CR effects on Akt 
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phosphorylation, because all 4 of the fast-twitch muscles responded to CR with greater 

Akt phosphorylation.  

Filamin C is a protein that was recently discovered in research using cultured cells 

to be regulated by Akt-dependent phosphorylation in response to insulin (76).  Prior to 

the completion of this dissertation, there was no published research on insulin’s effects on 

the phosphorylation of filamin C in skeletal muscle tissue (i.e., only in cultured cells).  

This dissertation demonstrated phosphorylation of filamin C in insulin-stimulated 

muscles from 24 mo-old rats in Study 1 to be responsive to CR.  Filamin C increased 

with CR in Study 1 in 24 mo-old rats in epitrochlearis and soleus muscles.  However, in 

Study 3, filamin C only increased in 1 out of 6 muscles studies in vivo, and glucose 

uptake was not enhanced by CR for this muscle (the plantaris), indicating that greater 

filamin C phosphorylation does not account for CR effects on muscle glucose uptake in 

vivo.  Although these results argue against greater phosphorylation of filamin C being 

essential for CR effects on in vivo glucose uptake by skeletal muscle, it remains possible 

that filamin C is important for insulin-stimulated glucose uptake in skeletal muscle.  

Therefore, it would be valuable to perform experiments with serine to alanine mutations 

on the Ser2213 site to test if the ability to phosphorylate this site is important for insulin-

stimulated glucose uptake. 

CR does not uniformly enhance phosphorylation of all Akt substrates and this 

may be due to localization in certain subcellular regions. It is possible that the inability to 

recognize a CR effect on particular signaling proteins in skeletal muscle may be the result 

of measuring the signaling proteins in whole muscle lysates.  Subcellular localization of 

proteins is crucial for their functional capacity, and localization of insulin signaling 
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proteins to the plasma membrane is necessary for their ability to regulate the GLUT4 

transporter and glucose transport (165).  Therefore, measuring specialized pools of key 

signaling proteins may reveal CR effects on insulin-stimulated samples that previously 

were masked by measuring whole cell lysates. It is still not entirely clear how Akt 

substrates implicated in GLUT4 translocation function with CR.  

  
CR Effects on Glucose Uptake 

The effects of CR on insulin signaling were examined to probe the potential 

mechanism of the CR-enhancement of insulin-stimulated glucose uptake in skeletal 

muscle.  Glucose uptake is a rate-limiting step in skeletal muscle glucose metabolism and 

represents a key regulatory step improved by CR.  Thus, insulin-stimulated glucose 

uptake was the most significant functional endpoint measurement that was studied in this 

dissertation.  

Studies 1 and 3 included data for the predominantly fast-twitch epitrochlearis 

muscle, but the dissertation did not include results for ex vivo epitrochlearis muscles 

from 9 mo-old rats.  However, this information is available from the earlier study by 

Sharma et al. (24).  Therefore, the next section of the discussion will consider the results 

of Studies 1 and 3 together with those of Sharma et al. for the epitrochlearis.   2DG 

uptake increased with CR versus AL in the epitrochlearis regardless of age (9 versus 24 

mo-old) or model (ex vivo or in vivo).   Thus, there was a consistent CR effect on glucose 

uptake by the epitrochlearis in every model in this dissertation.   It might be suspected 

that because the epitrochlearis is a predominantly fast-twitch muscle, that it may also be 

true that other predominantly fast-twitch muscles are also very responsive to the CR-

mediate increase in insulin-stimulated glucose uptake.  However, it would be unwise to 
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make this generalization based only on the results of a single muscle.  The epitrochlearis 

along with three additional fast-twitch muscles (gastrocnemius, tibialis anterior and 

plantaris) were evaluated in Study 3.  Although these muscles were not studied under ex 

vivo conditions because their large sizes makes them unsuitable for this procedure, it is 

possible to compare their results with the epitrochlearis in vivo data to evaluate the 

possibility of identifying fiber-type related patterns for the effects of CR.  There was a 

significant CR effect on 3 of 4 predominantly fast-twitch muscle.  The plantaris was the 

only predominantly fast-twitch muscle in which there was not a CR effect on insulin-

stimulated glucose uptake.  Because the MHC isoform makeup of the plantaris is similar 

to the other predominantly fast-twitch muscles in this study, fiber type composition does 

not seem to account for the lack of a CR-mediated increase in insulin-stimulated glucose 

uptake in the plantaris.  It remains to be determined why CR had no effect on glucose 

uptake in the plantaris.   The results of previous studies from a single muscle (e.g., the 

epitrochlearis) are often used to represent all predominantly fast-twitch muscles (3, 10, 

21, 25, 85-87).  The current results demonstrated that most, but not all (3 of 4) of the 

predominantly fast-twitch muscles studied were responsive to a calorie restriction-

induced elevation in insulin-stimulated glucose uptake.  Based on available evidence in 

this dissertation, there is not an obvious explanation to why there was not was not 

significant increase in insulin-stimulated glucose uptake for CR versus AL in the 

plantaris.    

Enhanced insulin-stimulated glucose uptake with CR was observed in the 

epitrochlearis using both ex vivo and in vivo models. Sharma et al. reported a 61% 

increase in insulin-stimulated glucose uptake for CR versus AL. Similarly, in this study 
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there was a 71% increase in insulin-stimulated glucose uptake for CR versus AL in the 

epitrochlearis.  Studying both models in the epitrochlearis allowed the comparison of 

factors intrinsic to the muscle (ex vivo) versus the combination of intrinsic and extrinsic 

factors (in vivo) that contributed to CR effects on the muscle. The fold increase ex vivo 

(~1.6-fold) was roughly similar to the fold increase in vivo (~1.7-fold), suggesting that 

the mechanism for the CR-enhancement on glucose uptake in the epitrochlearis is, at least 

in large part, intrinsic to the muscle because most of the CR effect on insulin-stimulated 

glucose appears to be present even in the absence of systemic factors.  The results from 

the ex vivo condition also show that the effect of CR on insulin-stimulated glucose 

uptake in skeletal muscle persists in the presence of systemic factors extrinsic to the 

epitrochlearis.  This shows that the benefit of CR by increasing insulin-stimulated 

glucose uptake is preserved in a more physiologically relevant environment and likely 

critical to the general benefits of CR on whole organisms.   

Glucose uptake measured ex vivo in the soleus increased with CR versus AL for 

both 9 mo-old (Study 2) and 24 mo-old (Study 1) rats, but there was no significant CR-

related increase when 2DG uptake was measured in vivo in the soleus.  The difference for 

in vivo versus ex vivo glucose uptake by the soleus of 9 mo-old rats suggests that 

systemic factors may have eliminated the CR effects observed in isolated soleus muscles. 

It is possible that differences for the effect of CR on soleus glucose uptake measured in 

vivo versus ex vivo are related to differences in measurement methods used for the in 

vivo versus ex vivo experiments.  Ex vivo glucose uptake measurement for Studies 1 and 

2 and for the experiment by Sharma et al. (24) used the standard assay procedures that 

result in quantifying the accumulation of both 2-DG and 2-DG-6-P as described 
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previously (110, 141).   In vivo glucose uptake was measured in Study 3 using the 

standard assay procedures that result in the accumulation of only 2-DG-6-P as described 

previously (126-128). Another possibility is that differences between the in vivo and ex 

vivo conditions (e.g., duration and concentration of insulin exposure; presence or absence 

of glucose when 2-DG uptake occurred) may have contributed to the differences with 

regard to CR effects on 2-DG uptake by the soleus measured in the two conditions.  It is 

not possible to recapitulate the ex vivo incubations (no glucose during 2-DG 

accumulation) during in vivo glucose uptake measurement, but it is feasible to mimic 

many of the conditions of the in vivo experiment (2 hr insulin exposure in the presence of 

glucose, with radiolabelled 2-DG included during the final 30 min of insulin exposure) 

for the ex vivo glucose uptake measurement.  It is also possible to measure both 2-DG 

and 2-DG-6-P accumulation as well as only 2-DG-6-P accumulation in the ex vivo 

muscles.  Insulin-stimulated soleus and epitrochlearis muscles from AL and CR rats 

would be studied using the conditions that simulated the in vivo conditions during the 

clamp.   After incubation, muscles would be divided and processed so that one portion 

could be used to quantify 2-DG-6-P alone and the other portion would be processed to 

quantify both 2DG-6-P and 2-DG.  If necessary, follow-up studies could then be 

performed to probe the specific roles of insulin concentration, insulin exposure time, and 

inclusion of glucose during the 2-DG uptake assay to account for differing effects of CR 

on glucose uptake results.   

 
Novel Insights and Perspectives from the Research in this Dissertation 

The most unique and important feature of the research  in this dissertation was 

probing the mechanisms of CR effects on insulin-stimulated glucose uptake by rat 
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skeletal muscles using multiple perspectives by exploring time-course effects, evaluating 

both ex vivo and in vivo models, and studying six different muscles.  This strategy 

provided the most complete representation of CR on skeletal muscle glucose metabolism 

to date by combining all of the individual assessments in Study 1 to 3.  

Overall, CR’s most consistent effect on signaling was for Akt phosphorylation, 

regardless of age or experimental model (in vivo or ex vivo).  From each perspective, Akt 

phosphorylation was enhanced with CR.  Without exception, insulin-stimulated Akt 

phosphorylation increased without any detectable change in proximal insulin signaling 

when insulin-stimulated glucose uptake was increased in any skeletal muscle for CR 

versus AL.  Taken together, these results provide evidence that strongly suggests that  

increased Akt phosphorylation is a key insulin signaling step that is important for the CR-

related increased insulin-stimulated glucose uptake.  It would be valuable for future 

experiments to focus on Akt signaling in order to establish causality of Akt 

phosphorylation on the CR-mediated increase in skeletal muscle insulin-stimulated 

glucose uptake.  

Studies 1 and 3 evaluated CR effects on both Akt and two of its substrates, AS160 

and filamin C in multiple muscles under both ex vivo and in vivo conditions.  The more 

consistent effect of CR on Akt than on its Akt substrates reveals the complexity of their 

relationship with each other.   It was clear that there was not a single uniform pattern for 

the activation of Akt substrates even though there was a consistent increase in Akt 

phosphorylation in almost every condition. This complex relationship between the CR 

effects on phosphorylation of Akt and Akt substrates may be related to CR effects on 

various regulatory factors, including altering the level of binding of proteins to Akt or to 
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the substrates, the actions of protein phosphatases, and/or the extent of co-localization of 

Akt and each of its substrate. 

The similarity for CR-related effects on ex vivo and in vivo glucose uptake for the 

epitrochlearis, but not the soleus, suggests a muscle-specific difference in susceptibility 

to the influence of systemic factors.  In vivo experimentation is advantageous because 

insulin-stimulated glucose uptake measurements are taken in a physiological context and 

includes the influence of usual-living insulin levels, blood flow, neural inputs, and blood 

chemokines that may influence CR’s effects on skeletal muscle.  It will be important that 

future experiments use in vivo models in combination with ex vivo experimentation. 

Conclusions made from ex vivo models provide a framework that should guide in vivo 

experimentation where effects can be quite distinct but more physiologically relevant.   

A striking result of this dissertation was the demonstration that skeletal muscles 

with similar fiber type profiles can have different responses to CR for effects on in vivo 

insulin signaling and glucose uptake. The most interesting example of this heterogeneity 

was the plantaris muscle.  The plantaris was the only predominantly fast-twitch muscle in 

which CR did not enhance in vivo insulin-stimulated glucose uptake.  It is evident that 

there is not a simple fiber-type pattern that uniformly predicts a CR-related increase for 

insulin-stimulated glucose uptake.  Akt and AS160 phosphorylation increased for CR 

versus AL in the plantaris, but there was no increase in insulin-stimulated glucose uptake.  

These observations support the conclusion that the CR-induced enhancement of insulin-

stimulated activation of Akt may be necessary, but not sufficient for the CR-induced 

increase in insulin-stimulated glucose uptake.  In vivo filamin C phosphorylation was 

increased for CR versus AL in the plantaris muscle which suggests that filamin C is 
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neither necessary nor sufficient for insulin-stimulated glucose uptake.  The results of 

Study 1 indicated that filamin C may be important for the CR related increase in insulin-

stimulated glucose uptake in ex vivo muscles from 24 mo-old rats.  However, filamin C 

appears to be less important in 9 mo-old rats (versus 24 mo-old rats) and in vivo (versus 

ex vivo) for the CR related increase in insulin-stimulated glucose uptake.    

The novel results of the research in this dissertation revealed that there are 

similarities and differences among different skeletal muscles of similar fiber type 

profiles, suggesting a complex interplay between each muscle’s intrinsic properties and 

the extrinsic systemic factors, with the interaction between the intrinsic and extrinsic 

features accounting for the CR effects on each skeletal muscle.  The effects of CR on 

insulin-stimulated glucose uptake in skeletal muscle are not simply attributable to the 

fiber type composition as might have been predicted based on earlier studies.  The results 

of Study 3 confirm that greater whole body insulin sensitivity, at least in part, is 

attributable to substantial CR effects on in vivo insulin-stimulated glucose uptake by 

skeletal muscle.  However, fully understanding the effects of CR on whole body insulin 

sensitivity will require additional research to elucidate the specific mechanisms that 

modulate the metabolic functions of multiple diverse skeletal muscles.  Ultimately, the 

influence of CR across of the muscles and other tissues can be summed to create a mosaic 

that accounts for how CR leads to greater whole body insulin sensitivity. 

 



128 
 

REFERENCES 

 
1. Muoio DM, Newgard CB. Mechanisms of disease: molecular and metabolic 
mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol 
Cell Biol. 2008;9:193-205. 
2. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of 
insulin on the disposal of intravenous glucose. Results from indirect calorimetry and 
hepatic and femoral venous catheterization. Diabetes. 1981;30:1000-1007. 
3. Dean DJ, Brozinick JT, Jr., Cushman SW, Cartee GD. Calorie restriction 
increases cell surface GLUT-4 in insulin-stimulated skeletal muscle. Am J Physiol. 
1998;275:E957-964. 
4. Cartee GD, Kietzke EW, Briggs-Tung C. Adaptation of muscle glucose transport 
with caloric restriction in adult, middle-aged, and old rats. Am J Physiol. 
1994;266:R1443-1447. 
5. Gazdag AC, Sullivan S, Kemnitz JW, Cartee GD. Effect of long-term caloric 
restriction on GLUT4, phosphatidylinositol-3 kinase p85 subunit, and insulin receptor 
substrate-1 protein levels in rhesus monkey skeletal muscle. J Gerontol A Biol Sci Med 
Sci. 2000;55:B44-46; discussion B47-48. 
6. Wang ZQ, Bell-Farrow AD, Sonntag W, Cefalu WT. Effect of age and caloric 
restriction on insulin receptor binding and glucose transporter levels in aging rats. Exp 
Gerontol. 1997;32:671-684. 
7. Argentino DP, Dominici FP, Munoz MC, Al-Regaiey K, Bartke A, Turyn D. 
Effects of long-term caloric restriction on glucose homeostasis and on the first steps of 
the insulin signaling system in skeletal muscle of normal and Ames dwarf 
(Prop1df/Prop1df) mice. Exp Gerontol. 2005;40:27-35. 
8. McCurdy CE, Cartee GD. Akt2 is essential for the full effect of calorie restriction 
on insulin-stimulated glucose uptake in skeletal muscle. Diabetes. 2005;54:1349-1356. 
9. McCurdy CE, Davidson RT, Cartee GD. Brief calorie restriction increases Akt2 
phosphorylation in insulin-stimulated rat skeletal muscle. Am J Physiol Endocrinol 
Metab. 2003;285:E693-700. 
10. McCurdy CE, Davidson RT, Cartee GD. Calorie restriction increases the ratio of 
phosphatidylinositol 3-kinase catalytic to regulatory subunits in rat skeletal muscle. Am J 
Physiol Endocrinol Metab. 2005;288:E996-E1001. 
11. Barger JL, Kayo T, Vann JM, Arias EB, Wang J, Hacker TA, et al. A low dose of 
dietary resveratrol partially mimics caloric restriction and retards aging parameters in 
mice. PLoS One. 2008;3:e2264. 
12. Liu X, Liu M, Zhang J, Bai X, Ramos F, Van Remmen H, et al. Downregulation 
of Grb2 contributes to the insulin-sensitizing effect of calorie restriction. Am J Physiol 
Endocrinol Metab. 2009;296:E1067-1075. 
13. Sharma N, Arias EB, Bhat AD, Sequea DA, Ho SS, Croff KK, et al. Mechanisms 
for increased insulin-stimulated Akt phosphorylation and glucose uptake in fast- and 
slow-twitch skeletal muscles of calorie restricted rats. American journal of physiology 
Endocrinology and metabolism. 2011. 
14. Katome T, Obata T, Matsushima R, Masuyama N, Cantley LC, Gotoh Y, et al. 
Use of RNA interference-mediated gene silencing and adenoviral overexpression to 



129 
 

elucidate the roles of AKT/protein kinase B isoforms in insulin actions. J Biol Chem. 
2003;278:28312-28323. 
15. Kohn AD, Summers SA, Birnbaum MJ, Roth RA. Expression of a constitutively 
active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose 
transporter 4 translocation. J Biol Chem. 1996;271:31372-31378. 
16. Bae SS, Cho H, Mu J, Birnbaum MJ. Isoform-specific regulation of insulin-
dependent glucose uptake by Akt/protein kinase B. J Biol Chem. 2003;278:49530-49536. 
17. Jiang ZY, Zhou QL, Coleman KA, Chouinard M, Boese Q, Czech MP. Insulin 
signaling through Akt/protein kinase B analyzed by small interfering RNA-mediated 
gene silencing. Proc Natl Acad Sci U S A. 2003;100:7569-7574. 
18. Kane S, Sano H, Liu SC, Asara JM, Lane WS, Garner CC, et al. A method to 
identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a 
Rab GTPase-activating protein (GAP) domain. J Biol Chem. 2002;277:22115-22118. 
19. Sano H, Kane S, Sano E, Miinea CP, Asara JM, Lane WS, et al. Insulin-
stimulated phosphorylation of a Rab GTPase-activating protein regulates GLUT4 
translocation. J Biol Chem. 2003;278:14599-14602. 
20. Cartee GD. Exercise and calorie restriction use different mechanisms to improve 
insulin sensitivity. In: Hawley JA and Zierath JR, ed. Physical Activity and Type 2 
Diabetes. Champaign, IL: Human Kinetics; 2008:119-134. 
21. Dean DJ, Cartee GD. Brief dietary restriction increases skeletal muscle glucose 
transport in old Fischer 344 rats. J Gerontol A Biol Sci Med Sci. 1996;51:B208-213. 
22. Wetter TJ, Gazdag AC, Dean DJ, Cartee GD. Effect of calorie restriction on in 
vivo glucose metabolism by individual tissues in rats. Am J Physiol. 1999;276:E728-738. 
23. Dean DJ, Cartee GD. Calorie restriction increases insulin-stimulated tyrosine 
phosphorylation of insulin receptor and insulin receptor substrate-1 in rat skeletal muscle. 
Acta Physiol Scand. 2000;169:133-139. 
24. Sharma N, Arias EB, Bhat AD, Sequea DA, Ho S, Croff KK, et al. Mechanisms 
for increased insulin-stimulated Akt phosphorylation and glucose uptake in fast- and 
slow-twitch skeletal muscles of calorie-restricted rats. American journal of physiology 
Endocrinology and metabolism. 2011;300:E966-978. 
25. Davidson RT, Arias EB, Cartee GD. Calorie restriction increases muscle insulin 
action but not IRS-1-, IRS-2-, or phosphotyrosine-PI 3-kinase. Am J Physiol Endocrinol 
Metab. 2002;282:E270-276. 
26. Zhu M, Miura J, Lu LX, Bernier M, DeCabo R, Lane MA, et al. Circulating 
adiponectin levels increase in rats on caloric restriction: the potential for insulin 
sensitization. Experimental Gerontology. 2004;39:1049-1059. 
27. Zhu M, de Cabo R, Anson RM, Ingram DK, Lane MA. Caloric restriction 
modulates insulin receptor signaling in liver and skeletal muscle of rat. Nutrition. 
2005;21:378-388. 
28. Bak JF, Moller N, Schmitz O, Saaek A, Pedersen O. In vivo insulin action and 
muscle glycogen synthase activity in type 2 (non-insulin-dependent) diabetes mellitus: 
effects of diet treatment. Diabetologia. 1992;35:777-784. 
29. Balage M, Grizard J, Manin M. Effect of calorie restriction on skeletal muscle and 
liver insulin binding in growing rat. Horm Metab Res. 1990;22:207-214. 



130 
 

30. Cecchin F, Ittoop O, Sinha MK, Caro JF. Insulin resistance in uremia: insulin 
receptor kinase activity in liver and muscle from chronic uremic rats. Am J Physiol. 
1988;254:E394-401. 
31. Fleming BB, Barrows CH, Jr. The influence of aging on intestinal absorption of 
vitamin B12 and niacin in rats. Experimental Gerontology. 1982;17:121-126. 
32. Weindruch R, Naylor PH, Goldstein AL, Walford RL. Influences of aging and 
dietary restriction on serum thymosin alpha 1 levels in mice. Journal of gerontology. 
1988;43:B40-42. 
33. Heilbronn LK, Ravussin E. Calorie restriction and aging: review of the literature 
and implications for studies in humans. The American journal of clinical nutrition. 
2003;78:361-369. 
34. Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley 
TM, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. 
Science. 2009;325:201-204. 
35. Colman RJ, Beasley TM, Allison DB, Weindruch R. Attenuation of sarcopenia by 
dietary restriction in rhesus monkeys. The journals of gerontology Series A, Biological 
sciences and medical sciences. 2008;63:556-559. 
36. Gresl TA, Colman RJ, Havighurst TC, Byerley LO, Allison DB, Schoeller DA, et 
al. Insulin sensitivity and glucose effectiveness from three minimal models: effects of 
energy restriction and body fat in adult male rhesus monkeys. American journal of 
physiology Regulatory, integrative and comparative physiology. 2003;285:R1340-1354. 
37. Gazdag AC, Dumke CL, Kahn CR, Cartee GD. Calorie restriction increases 
insulin-stimulated glucose transport in skeletal muscle from IRS-1 knockout mice. 
Diabetes. 1999;48:1930-1936. 
38. Gupta G, She L, Ma XH, Yang XM, Hu M, Cases JA, et al. Aging does not 
contribute to the decline in insulin action on storage of muscle glycogen in rats. Am J 
Physiol Regul Integr Comp Physiol. 2000;278:R111-117. 
39. Kemnitz JW, Roecker EB, Weindruch R, Elson DF, Baum ST, Bergman RN. 
Dietary restriction increases insulin sensitivity and lowers blood glucose in rhesus 
monkeys. Am J Physiol. 1994;266:E540-547. 
40. Arciero PJ, Vukovich MD, Holloszy JO, Racette SB, Kohrt WM. Comparison of 
short-term diet and exercise on insulin action in individuals with abnormal glucose 
tolerance. J Appl Physiol. 1999;86:1930-1935. 
41. Wing RR, Blair EH, Bononi P, Marcus MD, Watanabe R, Bergman RN. Caloric 
restriction per se is a significant factor in improvements in glycemic control and insulin 
sensitivity during weight loss in obese NIDDM patients. Diabetes Care. 1994;17:30-36. 
42. Petersen KF, Dufour S, Morino K, Yoo PS, Cline GW, Shulman GI. Reversal of 
muscle insulin resistance by weight reduction in young, lean, insulin-resistant offspring 
of parents with type 2 diabetes. Proceedings of the National Academy of Sciences of the 
United States of America. 2012. 
43. Haffner SM. Epidemiology of insulin resistance and its relation to coronary artery 
disease. Am J Cardiol. 1999;84:11J-14J. 
44. Kumari M, Brunner E, Fuhrer R. Minireview: mechanisms by which the 
metabolic syndrome and diabetes impair memory. J Gerontol A Biol Sci Med Sci. 
2000;55:B228-232. 
45. Economic costs of diabetes in the U.S. In 2007. Diabetes Care. 2008;31:596-615. 



131 
 

46. Type 2 diabetes in children and adolescents. American Diabetes Association. 
Pediatrics. 2000;105:671-680. 
47. Birnbaum MJ. The insulin-sensitive glucose transporter. Int Rev Cytol. 
1992;137:239-297. 
48. Lavan BE, Lienhard GE. Insulin signalling and the stimulation of glucose 
transport. Biochem Soc Trans. 1994;22:676-680. 
49. Yeh JI, Gulve EA, Rameh L, Birnbaum MJ. The effects of wortmannin on rat 
skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated 
hexose transport. The Journal of biological chemistry. 1995;270:2107-2111. 
50. Cartee GD, Wojtaszewski JF. Role of Akt substrate of 160 kDa in insulin-
stimulated and contraction-stimulated glucose transport. Appl Physiol Nutr Metab. 
2007;32:557-566. 
51. Ziel FH, Venkatesan N, Davidson MB. Glucose transport is rate limiting for 
skeletal muscle glucose metabolism in normal and STZ-induced diabetic rats. Diabetes. 
1988;37:885-890. 
52. Facchini FS, Hua N, Abbasi F, Reaven GM. Insulin resistance as a predictor of 
age-related diseases. J Clin Endocrinol Metab. 2001;86:3574-3578. 
53. Ivy JL, Young JC, Craig BW, Kohrt WM, Holloszy JO. Ageing, exercise and 
food restriction: effects on skeletal muscle glucose uptake. Mech Ageing Dev. 
1991;61:123-133. 
54. Banerjee S, Saenger P, Hu M, Chen W, Barzilai N. Fat accretion and the 
regulation of insulin-mediated glycogen synthesis after puberty in rats. Am J Physiol. 
1997;273:R1534-1539. 
55. Hedo JA, Simpson IA. Internalization of insulin receptors in the isolated rat 
adipose cell. Demonstration of the vectorial disposition of receptor subunits. The Journal 
of biological chemistry. 1984;259:11083-11089. 
56. Kahn CR, White MF. The insulin receptor and the molecular mechanism of 
insulin action. J Clin Invest. 1988;82:1151-1156. 
57. White MF, Stegmann EW, Dull TJ, Ullrich A, Kahn CR. Characterization of an 
endogenous substrate of the insulin receptor in cultured cells. J Biol Chem. 
1987;262:9769-9777. 
58. Ellis L, Clauser E, Morgan DO, Edery M, Roth RA, Rutter WJ. Replacement of 
insulin receptor tyrosine residues 1162 and 1163 compromises insulin-stimulated kinase 
activity and uptake of 2-deoxyglucose. Cell. 1986;45:721-732. 
59. White MF. The IRS-1 signaling system. Current opinion in genetics & 
development. 1994;4:47-54. 
60. White MF. The insulin signalling system and the IRS proteins. Diabetologia. 
1997;40 Suppl 2:S2-17. 
61. Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, et al. 
Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction 
protein. Nature. 1991;352:73-77. 
62. Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: 
insights into insulin action. Nat Rev Mol Cell Biol. 2006;7:85-96. 
63. Walker KS, Deak M, Paterson A, Hudson K, Cohen P, Alessi DR. Activation of 
protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-



132 
 

dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. Biochem J. 
1998;331 ( Pt 1):299-308. 
64. Nakatani K, Sakaue H, Thompson DA, Weigel RJ, Roth RA. Identification of a 
human Akt3 (protein kinase B gamma) which contains the regulatory serine 
phosphorylation site. Biochem Biophys Res Commun. 1999;257:906-910. 
65. Masure S, Haefner B, Wesselink JJ, Hoefnagel E, Mortier E, Verhasselt P, et al. 
Molecular cloning, expression and characterization of the human serine/threonine kinase 
Akt-3. Eur J Biochem. 1999;265:353-360. 
66. Whiteman EL, Cho H, Birnbaum MJ. Role of Akt/protein kinase B in 
metabolism. Trends Endocrinol Metab. 2002;13:444-451. 
67. Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. Akt1/PKBalpha is 
required for normal growth but dispensable for maintenance of glucose homeostasis in 
mice. J Biol Chem. 2001;276:38349-38352. 
68. Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB, 3rd, et al. Insulin 
resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 
(PKB beta). Science. 2001;292:1728-1731. 
69. Ng Y, Ramm G, Lopez JA, James DE. Rapid activation of Akt2 is sufficient to 
stimulate GLUT4 translocation in 3T3-L1 adipocytes. Cell metabolism. 2008;7:348-356. 
70. Lawlor MA, Alessi DR. PKB/Akt: a key mediator of cell proliferation, survival 
and insulin responses? J Cell Sci. 2001;114:2903-2910. 
71. Kane S, Lienhard GE. Calmodulin binds to the Rab GTPase activating protein 
required for insulin-stimulated GLUT4 translocation. Biochem Biophys Res Commun. 
2005;335:175-180. 
72. Arias EB, Kim J, Cartee GD. Prolonged incubation in PUGNAc results in 
increased protein O-Linked glycosylation and insulin resistance in rat skeletal muscle. 
Diabetes. 2004;53:921-930. 
73. Bruss MD, Arias EB, Lienhard GE, Cartee GD. Increased phosphorylation of Akt 
substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile 
activity. Diabetes. 2005;54:41-50. 
74. Kramer HF, Witczak CA, Taylor EB, Fujii N, Hirshman MF, Goodyear LJ. 
AS160 regulates insulin- and contraction-stimulated glucose uptake in mouse skeletal 
muscle. J Biol Chem. 2006;281:31478-31485. 
75. Chen S, Murphy J, Toth R, Campbell DG, Morrice NA, Mackintosh C. 
Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK 
activators. The Biochemical journal. 2008;409:449-459. 
76. Murray JT, Campbell DG, Peggie M, Mora A, Cohen P. Identification of filamin 
C as a new physiological substrate of PKBalpha using KESTREL. The Biochemical 
journal. 2004;384:489-494. 
77. Zhou AX, Hartwig JH, Akyurek LM. Filamins in cell signaling, transcription and 
organ development. Trends in cell biology. 2010;20:113-123. 
78. Zaid H, Antonescu CN, Randhawa VK, Klip A. Insulin action on glucose 
transporters through molecular switches, tracks and tethers. The Biochemical journal. 
2008;413:201-215. 
79. Wang Q, Bilan PJ, Tsakiridis T, Hinek A, Klip A. Actin filaments participate in 
the relocalization of phosphatidylinositol3-kinase to glucose transporter-containing 



133 
 

compartments and in the stimulation of glucose uptake in 3T3-L1 adipocytes. Biochem J. 
1998;331 ( Pt 3):917-928. 
80. Henriksen EJ, Bourey RE, Rodnick KJ, Koranyi L, Permutt MA, Holloszy JO. 
Glucose transporter protein content and glucose transport capacity in rat skeletal muscles. 
Am J Physiol. 1990;259:E593-598. 
81. Castorena CM, Mackrell JG, Bogan JS, Kanzaki M, Cartee GD. Clustering of 
GLUT4, TUG, and RUVBL2 protein levels correlate with myosin heavy chain isoform 
pattern in skeletal muscles, but AS160 and TBC1D1 levels do not. Journal of applied 
physiology. 2011;111:1106-1117. 
82. Megeney LA, Neufer PD, Dohm GL, Tan MH, Blewett CA, Elder GC, et al. 
Effects of muscle activity and fiber composition on glucose transport and GLUT-4. Am J 
Physiol. 1993;264:E583-593. 
83. Mackrell JG, Cartee GD. A novel method to measure glucose uptake and Myosin 
heavy chain isoform expression of single fibers from rat skeletal muscle. Diabetes. 
2012;61:995-1003. 
84. Sharma N, Arias EB, Sajan MP, MacKrell JG, Bhat AD, Farese RV, et al. Insulin 
resistance for glucose uptake and Akt2 phosphorylation in the soleus, but not 
epitrochlearis, muscles of old vs. adult rats. Journal of applied physiology. 
2010;108:1631-1640. 
85. Cartee GD, Dean DJ. Glucose transport with brief dietary restriction: 
heterogenous responses in muscles. Am J Physiol. 1994;266:E946-952. 
86. Gazdag AC, Tucker MZ, Turcotte LP, Dean DJ, Cartee GD. Effect of 
extracellular palmitate on 2-deoxy-d-glucose uptake in muscle from Ad libitum fed and 
calorie restricted rats. Biochem Biophys Res Commun. 1998;252:733-737. 
87. Gazdag AC, Wetter TJ, Davidson RT, Robinson KA, Buse MG, Yee AJ, et al. 
Lower calorie intake enhances muscle insulin action and reduces hexosamine levels. Am 
J Physiol Regul Integr Comp Physiol. 2000;278:R504-512. 
88. Cartee GD, Briggs-Tung C, Kietzke EW. Persistent effects of exercise on skeletal 
muscle glucose transport across the life-span of rats. J Appl Physiol. 1993;75:972-978. 
89. Argentino DP, Dominici FP, Al-Regaiey K, Bonkowski MS, Bartke A, Turyn D. 
Effects of long-term caloric restriction on early steps of the insulin-signaling system in 
mouse skeletal muscle. J Gerontol A Biol Sci Med Sci. 2005;60:28-34. 
90. Argentino DP, Munoz MC, Rocha JS, Bartke A, Turyn D, Dominici FP. Short-
term caloric restriction does not modify the in vivo insulin signaling pathway leading to 
Akt activation in skeletal muscle of Ames dwarf (Prop1(df)/Prop1(df)) mice. Horm 
Metab Res. 2005;37:672-679. 
91. Farese RV. Function and dysfunction of aPKC isoforms for glucose transport in 
insulin-sensitive and insulin-resistant states. Am J Physiol Endocrinol Metab. 
2002;283:E1-11. 
92. Farese RV, Sajan MP, Standaert ML. Atypical protein kinase C in insulin action 
and insulin resistance. Biochem Soc Trans. 2005;33:350-353. 
93. Escriva F, Gavete ML, Fermin Y, Perez C, Gallardo N, Alvarez C, et al. Effect of 
age and moderate food restriction on insulin sensitivity in Wistar rats: role of adiposity. 
The Journal of endocrinology. 2007;194:131-141. 
94. Catalano KJ, Bergman RN, Ader M. Increased susceptibility to insulin resistance 
associated with abdominal obesity in aging rats. Obes Res. 2005;13:11-20. 



134 
 

95. Nishimura H, Kuzuya H, Okamoto M, Yoshimasa Y, Yamada K, Ida T, et al. 
Change of insulin action with aging in conscious rats determined by euglycemic clamp. 
Am J Physiol. 1988;254:E92-98. 
96. Sharma N, Bhat AD, Kassa AD, Xiao Y, Arias EB, Cartee GD. Improved insulin 
sensitivity with calorie restriction does not require reduced JNK1/2, p38, or ERK1/2 
phosphorylation in skeletal muscle of 9-month-old rats. American journal of physiology 
Regulatory, integrative and comparative physiology. 2012;302:R126-136. 
97. Andreollo NA, Santos EF, Araujo MR, Lopes LR. Rat's age versus human's age: 
what is the relationship? Arq Bras Cir Dig. 2012;25:49-51. 
98. Harris MI, Flegal KM, Cowie CC, Eberhardt MS, Goldstein DE, Little RR, et al. 
Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U.S. 
adults. The Third National Health and Nutrition Examination Survey, 1988-1994. 
Diabetes Care. 1998;21:518-524. 
99. Chiasson RB. Laboratory Anatomy of the White Rat. Dubuque, Iowa, USA: 
WMC Brown Company Publishers. 1969. 
100. Wallberg-Henriksson H. Glucose transport into skeletal muscle. Influence of 
contractile activity, insulin, catecholamines and diabetes mellitus. Acta Physiol Scand 
Suppl. 1987;564:1-80. 
101. Armstrong RB, Phelps RO. Muscle fiber type composition of the rat hindlimb. 
Am J Anat. 1984;171:259-272. 
102. Higaki Y, Wojtaszewski JF, Hirshman MF, Withers DJ, Towery H, White MF, et 
al. Insulin receptor substrate-2 is not necessary for insulin- and exercise-stimulated 
glucose transport in skeletal muscle. J Biol Chem. 1999;274:20791-20795. 
103. Howlett KF, Sakamoto K, Hirshman MF, Aschenbach WG, Dow M, White MF, 
et al. Insulin signaling after exercise in insulin receptor substrate-2-deficient mice. 
Diabetes. 2002;51:479-483. 
104. Weindruch R. Caloric restriction and aging. Sci Am. 1996;274:46-52. 
105. Masoro EJ. Caloric restriction and aging: an update. Exp Gerontol. 2000;35:299-
305. 
106. Gupta G, She L, Ma XH, Yang XM, Hu M, Cases JA, et al. Aging does not 
contribute to the decline in insulin action on storage of muscle glycogen in rats. 
American journal of physiology Regulatory, integrative and comparative physiology. 
2000;278:R111-117. 
107. Wilkes JJ, Nagy LE. Chronic ethanol feeding impairs glucose tolerance but does 
not produce skeletal muscle insulin resistance in rat epitrochlearis muscle. Alcohol Clin 
Exp Res. 1996;20:1016-1022. 
108. Roach WG, Chavez JA, Miinea CP, Lienhard GE. Substrate specificity and effect 
on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1. Biochem J. 
2007;403:353-358. 
109. Cartee GD, Funai K. Exercise and insulin: Convergence or divergence at AS160 
and TBC1D1? Exercise and sport sciences reviews. 2009;37:188-195. 
110. Hansen PA, Gulve EA, Holloszy JO. Suitability of 2-deoxyglucose for in vitro 
measurement of glucose transport activity in skeletal muscle. J Appl Physiol. 
1994;76:979-985. 
111. Cartee GD, Bohn EE. Growth hormone reduces glucose transport but not GLUT-
1 or GLUT-4 in adult and old rats. Am J Physiol. 1995;268:E902-909. 



135 
 

112. Escriva F, Agote M, Rubio E, Molero JC, Pascual-Leone AM, Andres A, et al. In 
vivo insulin-dependent glucose uptake of specific tissues is decreased during aging of 
mature Wistar rats. Endocrinology. 1997;138:49-54. 
113. Ivy JL. Muscle insulin resistance amended with exercise training: role of GLUT4 
expression. Med Sci Sports Exerc. 2004;36:1207-1211. 
114. Sequea DA, Sharma N, Arias EB, Cartee GD. Calorie Restriction Enhances 
Insulin-Stimulated Glucose Uptake and Akt Phosphorylation in Both Fast-Twitch and 
Slow-Twitch Skeletal Muscle of 24-Month-Old Rats. The journals of gerontology Series 
A, Biological sciences and medical sciences. 2012. 
115. Sharma N, Castorena CM, Cartee GD. Tissue-Specific Responses of IGF-
1/Insulin and mTOR Signaling in Calorie Restricted Rats. PLoS One. 2012;7:e38835. 
116. Wang ZQ, Floyd ZE, Qin J, Liu X, Yu Y, Zhang XH, et al. Modulation of 
skeletal muscle insulin signaling with chronic caloric restriction in cynomolgus monkeys. 
Diabetes. 2009;58:1488-1498. 
117. Schenk S, McCurdy CE, Philp A, Chen MZ, Holliday MJ, Bandyopadhyay GK, et 
al. Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. 
The Journal of clinical investigation. 2011;121:4281-4288. 
118. Zhou QL, Jiang ZY, Mabardy AS, Del Campo CM, Lambright DG, Holik J, et al. 
A novel pleckstrin homology domain-containing protein enhances insulin-stimulated Akt 
phosphorylation and GLUT4 translocation in adipocytes. The Journal of biological 
chemistry. 2010;285:27581-27589. 
119. Ding J, Du K. ClipR-59 interacts with Akt and regulates Akt cellular 
compartmentalization. Molecular and cellular biology. 2009;29:1459-1471. 
120. Franke TF. Intracellular signaling by Akt: bound to be specific. Sci Signal. 
2008;1:pe29. 
121. Du K, Herzig S, Kulkarni RN, Montminy M. TRB3: a tribbles homolog that 
inhibits Akt/PKB activation by insulin in liver. Science. 2003;300:1574-1577. 
122. Dean DJ, Gazdag AC, Wetter TJ, Cartee GD. Comparison of the effects of 20 
days and 15 months of calorie restriction on male Fischer 344 rats. Aging (Milano). 
1998;10:303-307. 
123. Zhu M, de Cabo R, Lane MA, Ingram DK. Caloric restriction modulates early 
events in insulin signaling in liver and skeletal muscle of rat. Annals of the New York 
Academy of Sciences. 2004;1019:448-452. 
124. Feuers R, Desai V, Chen F, Hunter J, Duffy P, Oriaku E. Effects of dietary 
restriction on insulin resistance in obese mice. Age (Dordr). 2000;23:95-101. 
125. Feuers RJ. 125I-insulin binding in liver and the influence of insulin on blood 
glucose in calorically restricted B6C3F1 male mice. Annual Review of 
Chronopharmacology. 1990;7:95-98. 
126. Virkamaki A, Rissanen E, Hamalainen S, Utriainen T, Yki-Jarvinen H. 
Incorporation of [3-3H]glucose and 2-[1-14C]deoxyglucose into glycogen in heart and 
skeletal muscle in vivo: implications for the quantitation of tissue glucose uptake. 
Diabetes. 1997;46:1106-1110. 
127. Halseth AE, Bracy DP, Wasserman DH. Overexpression of hexokinase II 
increases insulinand exercise-stimulated muscle glucose uptake in vivo. The American 
journal of physiology. 1999;276:E70-77. 



136 
 

128. Ayala JE, Bracy DP, McGuinness OP, Wasserman DH. Considerations in the 
design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes. 
2006;55:390-397. 
129. Murray JT, Campbell DG, Peggie M, Mora A, Cohen P. Identification of filamin 
C as a new physiological substrate of PKBalpha using KESTREL. Biochem J. 
2004;384:489-494. 
130. Fujita M, Mitsuhashi H, Isogai S, Nakata T, Kawakami A, Nonaka I, et al. 
Filamin C plays an essential role in the maintenance of the structural integrity of cardiac 
and skeletal muscles, revealed by the medaka mutant zacro. Dev Biol. 2012;361:79-89. 
131. Zaid H, Antonescu CN, Randhawa VK, Klip A. Insulin action on glucose 
transporters through molecular switches, tracks and tethers. Biochem J. 2008;413:201-
215. 
132. Clark MG, Wallis MG, Barrett EJ, Vincent MA, Richards SM, Clerk LH, et al. 
Blood flow and muscle metabolism: a focus on insulin action. Am J Physiol Endocrinol 
Metab. 2003;284:E241-258. 
133. Hagstrom-Toft E, Thorne A, Reynisdottir S, Moberg E, Rossner S, Bolinder J, et 
al. Evidence for a major role of skeletal muscle lipolysis in the regulation of lipid 
oxidation during caloric restriction in vivo. Diabetes. 2001;50:1604-1611. 
134. Mikus CR, Roseguini BT, Uptergrove GM, Matthew Morris E, Scott Rector R, 
Libla JL, et al. Voluntary wheel running selectively augments insulin-stimulated 
vasodilation in arterioles from white skeletal muscle of insulin resistant rats. 
Microcirculation. 2012. 
135. Dyck DJ, Heigenhauser GJ, Bruce CR. The role of adipokines as regulators of 
skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol (Oxf). 
2006;186:5-16. 
136. Tan MH, Bonen A. The in vitro effect of corticosterone on insulin binding and 
glucose metabolism in mouse skeletal muscles. Canadian journal of physiology and 
pharmacology. 1985;63:1133-1138. 
137. Chiba T, Komatsu T, Nakayama M, Adachi T, Tamashiro Y, Hayashi H, et al. 
Similar metabolic responses to calorie restriction in lean and obese Zucker rats. 
Molecular and cellular endocrinology. 2009;309:17-25. 
138. Nelson JF, Karelus K, Bergman MD, Felicio LS. Neuroendocrine involvement in 
aging: evidence from studies of reproductive aging and caloric restriction. Neurobiology 
of aging. 1995;16:837-843; discussion 855-836. 
139. Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose 
fatty acid cycle after 35 years. Diabetes/Metabolism Reviews. 1998;14:263-283. 
140. Einstein FH, Huffman DM, Fishman S, Jerschow E, Heo HJ, Atzmon G, et al. 
Aging per se increases the susceptibility to free fatty acid-induced insulin resistance. The 
journals of gerontology Series A, Biological sciences and medical sciences. 2010;65:800-
808. 
141. Young DA, Uhl JJ, Cartee GD, Holloszy JO. Activation of glucose transport in 
muscle by prolonged exposure to insulin. Effects of glucose and insulin concentrations. J 
Biol Chem. 1986;261:16049-16053. 
142. Duffy PH, Feuers RJ, Leakey JA, Nakamura K, Turturro A, Hart RW. Effect of 
chronic caloric restriction on physiological variables related to energy metabolism in the 
male Fischer 344 rat. Mech Ageing Dev. 1989;48:117-133. 



137 
 

143. Borgatti P, Martelli AM, Tabellini G, Bellacosa A, Capitani S, Neri LM. 
Threonine 308 phosphorylated form of Akt translocates to the nucleus of PC12 cells 
under nerve growth factor stimulation and associates with the nuclear matrix protein 
nucleolin. Journal of cellular physiology. 2003;196:79-88. 
144. Ivaska J, Nissinen L, Immonen N, Eriksson JE, Kahari VM, Heino J. Integrin 
alpha 2 beta 1 promotes activation of protein phosphatase 2A and dephosphorylation of 
Akt and glycogen synthase kinase 3 beta. Molecular and cellular biology. 2002;22:1352-
1359. 
145. Liu W, Akhand AA, Takeda K, Kawamoto Y, Itoigawa M, Kato M, et al. Protein 
phosphatase 2A-linked and -unlinked caspase-dependent pathways for downregulation of 
Akt kinase triggered by 4-hydroxynonenal. Cell death and differentiation. 2003;10:772-
781. 
146. Yellaturu CR, Bhanoori M, Neeli I, Rao GN. N-Ethylmaleimide inhibits platelet-
derived growth factor BB-stimulated Akt phosphorylation via activation of protein 
phosphatase 2A. The Journal of biological chemistry. 2002;277:40148-40155. 
147. Janssens V, Longin S, Goris J. PP2A holoenzyme assembly: in cauda venenum 
(the sting is in the tail). Trends in Biochemical Sciences. 2008;33:113-121. 
148. Liu R, Zhou XW, Tanila H, Bjorkdahl C, Wang JZ, Guan ZZ, et al. 
Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary 
pathology. Journal of cellular and molecular medicine. 2008;12:241-257. 
149. Suryawan A, Escobar J, Frank JW, Nguyen HV, Davis TA. Developmental 
regulation of the activation of signaling components leading to translation initiation in 
skeletal muscle of neonatal pigs. American journal of physiology Endocrinology and 
metabolism. 2006;291:E849-859. 
150. De Baere I, Derua R, Janssens V, Van Hoof C, Waelkens E, Merlevede W, et al. 
Purification of porcine brain protein phosphatase 2A leucine carboxyl methyltransferase 
and cloning of the human homologue. Biochemistry. 1999;38:16539-16547. 
151. Favre B, Zolnierowicz S, Turowski P, Hemmings BA. The catalytic subunit of 
protein phosphatase 2A is carboxyl-methylated in vivo. The Journal of biological 
chemistry. 1994;269:16311-16317. 
152. Palanivel R, Veluthakal R, Kowluru A. Regulation by glucose and calcium of the 
carboxylmethylation of the catalytic subunit of protein phosphatase 2A in insulin-
secreting INS-1 cells. American journal of physiology Endocrinology and metabolism. 
2004;286:E1032-1041. 
153. Zhu T, Matsuzawa S, Mizuno Y, Kamibayashi C, Mumby MC, Andjelkovic N, et 
al. The interconversion of protein phosphatase 2A between PP2A1 and PP2A0 during 
retinoic acid-induced granulocytic differentiation and a modification on the catalytic 
subunit in S phase of HL-60 cells. Archives of biochemistry and biophysics. 
1997;339:210-217. 
154. Cohen P. The structure and regulation of protein phosphatases. Annu Rev 
Biochem. 1989;58:453-508. 
155. Herzig S, Neumann J. Effects of serine/threonine protein phosphatases on ion 
channels in excitable membranes. Physiological reviews. 2000;80:173-210. 
156. Ingebritsen TS, Stewart AA, Cohen P. The protein phosphatases involved in 
cellular regulation. 6. Measurement of type-1 and type-2 protein phosphatases in extracts 



138 
 

of mammalian tissues; an assessment of their physiological roles. European journal of 
biochemistry / FEBS. 1983;132:297-307. 
157. Shenolikar S. Protein serine/threonine phosphatases--new avenues for cell 
regulation. Annu Rev Cell Biol. 1994;10:55-86. 
158. Weiser DC, Shenolikar S. Use of protein phosphatase inhibitors. Curr Protoc Mol 
Biol. 2003;Chapter 18:Unit 18 10. 
159. Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, et 
al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and 
PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 2011;4:ra46. 
160. Glidden EJ, Gray LG, Vemuru S, Li D, Harris TE, Mayo MW. Multiple site 
acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-
dependent phosphorylation of Akt protein. The Journal of biological chemistry. 
2012;287:581-588. 
161. Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding to 
Hsp90. Proceedings of the National Academy of Sciences of the United States of 
America. 2000;97:10832-10837. 
162. Porter JR, Fritz CC, Depew KM. Discovery and development of Hsp90 inhibitors: 
a promising pathway for cancer therapy. Current Opinion in Chemical Biology. 
2010;14:412-420. 
163. Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 
complex in cancer. Nat Rev Cancer. 2010;10:537-549. 
164. Xie X, Gong Z, Mansuy-Aubert V, Zhou QL, Tatulian SA, Sehrt D, et al. C2 
domain-containing phosphoprotein CDP138 regulates GLUT4 insertion into the plasma 
membrane. Cell metabolism. 2011;14:378-389. 
165. Patel N, Huang C, Klip A. Cellular location of insulin-triggered signals and 
implications for glucose uptake. Pflugers Archiv : European journal of physiology. 
2006;451:499-510. 
 

 
 


