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ABSTRACT

Dynamics and Control of Flexure-based Large Range Nanopositioning Systems

by

Gaurav K. Parmar

Chair: Shorya Awtar

The objective of this thesis is to demonstrate desktop-size and cost-effective flexure-

based multi-axis nanopositioning capability over a motion range of several millimeters

per axis. Increasing the motion range will overcome one of the main drawbacks of

existing nanopositioning systems, thereby significantly improving the coverage area

in nanometrology and nanomanufacturing applications.

A single-axis nanopositioning system, comprising a symmetric double parallelo-

gram flexure bearing and a traditional-architecture moving magnet actuator, is de-

signed, fabricated, and tested. A figure of merit for the actuator is derived and

shown to directly impact the system-level trade-offs in terms of range, resolution,

bandwidth, and temperature rise. While linear feedback controllers provide good po-

sitioning performance for point-to-point commands, the tracking error for dynamic

commands prove to be inadequate due to the nonlinearities in the actuator and its

driver. To overcome this, an iterative learning controller is implemented in conjunc-

tion with linear feedback to reduce the periodic component of the tracking error by

more than two orders of magnitude. Experimental results demonstrate 10 nm RMS

tracking error over 8 mm motion range in response to a 2 Hz bandlimited triangular

xii



command.

For the XY nanopositioning system, a lumped-parameter model of an existing

XY flexure bearing is developed in order to understand the unexplained variation ob-

served in the transfer function zeros over the operating range of motion. It is shown

that the kinematic coupling, due to geometric nonlinearities in the beam mechanics,

and small dimensional asymmetry, due to manufacturing tolerances, may conspire

to produce complex-conjugate nonminimum phase zeros at certain operating points

in the system’s workspace. This phenomenon significantly restricts the overall per-

formance of the feedback control system. After intentional use of large asymmetry

is employed to overcome this problem, independent feedback and iterative learning

controllers are implemented along each axis. Experimental results demonstrate 20

nm RMS radial tracking error while traversing a 2 mm diameter circle at 2 Hz.

Moving forward, investigating new architectures for the moving magnet actuator

having an improved figure of merit would ease the system-level trade-offs and help

achieve better performance. Also, the dynamic modeling effort could be extended to

gain physical explanation for the existence of complex-conjugate nonminimum phase

zeros in mechanical structures.

xiii



CHAPTER I

Introduction and Overview

1.1 Introduction

A nanopositioning system or a nanopositioner is a mechatronic motion system

capable of generating and measuring motion with nanometric motion quality. Mo-

tion quality refers to precision, accuracy, and resolution. A nanopositioning system

generally comprises a bearing for motion guidance, actuators that generate the mo-

tion, associated actuator drivers, sensors that measure the motion, associated signal

conditioning electronics, a control algorithm to meet the required motion specifica-

tions, control hardware that executes the control algorithm, a power source, and

often a computer-based user interface. Some nanopositioning systems may further

incorporate a transmission that transmits motion from the actuator to the bearing

while providing some modulation or isolation, and damping elements that help reject

undesired vibrations. Although it is the physical components and their integration

that makes a nanopositioning system capable of achieving nanometric motion qual-

ity, the motion quality ultimately depends upon the closed-loop dynamic performance

provided by the control system.

The motion quality of a nanopositioning system is generally characterized by its

resolution, precision, and accuracy. These terms are described qualitatively in Fig. 1.1

[1] in a point-to-point positioning setup. Precision is the ability of the system to go

1
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Fig. 1.1: Qualitative illustration of accuracy, precision and resolution [1]

through the same commanded position again and again from either direction. Accu-

racy is the measure of the closeness or agreement between the commanded position

and the measured position. Resolution can be thought as the smallest increment in

the position such that the consecutive steps can be differentiated. The motion qual-

ity of the nanopositioner is the major factor that directly influences the performance

attributes of its applications. A more thorough discussion about the definitions of

the abovementioned performance specifications and systematic characterization pro-

cedure to evaluate them can be found in [2].

1.2 Applications

Due to their high motion quality, there are several existing and emerging nan-

otechnology applications where nanopositioners are becoming increasingly impor-

tant. References [3, 4] provide a good overview of numerous applications in the field

of semiconductors, data storage, optoelectronics, biotechnology, nanomanufacturing,

nanometrology etc., in which a nanopositioner is a key enabling component. For

example, as shown in the schematic in Fig. 1.2, nanopositioners form an important

subsystem of various scanning probe microscopes (SPM) such as atomic force mi-

2
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Fig. 1.2: An XY nanopositioning system employed in scanning probe microscopy

croscopes (AFM) and scanning tunneling microscopes (STM). In these applications,

the nanopositioner moves the sample or the probe in a raster pattern with nanomet-

ric motion quality. The probe, mounted on a flexible cantilever, follows the surface

profile, and this movement is detected by a sensor. This measurement, along with

the position measurements from the nanopositioner, provides a three dimensional to-

pographical image of the substrate. In addition to visualizing small features with

dimensions down to the size of atoms and molecules, SPM technology is also utilized

to characterize many surface-specific properties at the nanoscale such as magnetism,

friction, thermal conductivity, etc [5]. Another important area of nanotechnology

enabled by emergence of SPMs is that of nanomanipulation. In one such technique,

commonly known as scanning probe lithography (SPL), a microscopic probe is moved

3



across the substrate to create nanoscale features by selective deposition or removal of

nanoparticles [6], while the setup remains similar to that shown in Fig. 1.2.

In each of the aforementioned applications, the nanometric motion quality remains

a prerequisite. Specifically, the spatial resolution of the image or the pattern will

depend, in part, on the resolution of the nanopositioning system. Also, the lack of

precision or accuracy of the nanopositioner will manifest itself as the distortion of

the image or the pattern. In addition to this, the substrate size and the process

throughput are directly dependent on the motion range and the scanning speed of

the underlying nanopositioning system, respectively.

1.3 Motivation for Large Motion Range

Over the years there has been a tremendous growth in the field on precision

positioning systems. The prediction by Professor Norio Taniguchi in 1974 [7], that

“the ultra-precision machines would be capable of achieving 1 nm machine accuracies

by the year 2000 ”, has been proven to be true. A comparison of various precision

positioning system is provided in Fig. 1.3 [8], in which they are plotted with motion

range and motion quality along X and Y axes respectively. From this figure, the

trade-off between the motion range and motion quality across the spectrum is clearly

evident.

The limited motion range of the currently available nanopositioning system can be

attributed to the use of flexure-based bearings and piezoelectric actuators for motion

guidance and actuation, respectively. While these components are inherently capable

of producing high motion quality due to lack of friction and backlash, their motion

range is limited to a few hundred microns [3, 4, 9, 10]. On the other hand, traditional

motion systems, based on roller or slider bearings, that can provide large motion

range from millimeter to meter have their motion quality limited to hundreds of

nanometers [11–13]. This trade-off is also apparent from a comparison of various off-

4
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Fig. 1.3: Broad classification of precision positioning systems based on their range
and resolution [8]

the-shelf commercially available nanopositioning systems [14–21] shown in Table 1.1.

The comparison is also shown in a graphical form, in Fig. 1.4, where it can be easily

seen that the dynamic range of all listed nanopositioning systems is around 105. Here,

dynamic range refers to the ratio of motion range over motion quality. The limited

dynamic range of nanopositioning systems has restricted the scope of applications of

various technologies, of which nanopositioning systems are a key component. There

has been a long-standing need for nanopositioning systems which can achieve large

motion range (∼ 10 mm) and high motion quality (< 10 nm) simultaneously. This

corresponds to a dynamic range greater than 106, also shown as target specification

in Fig. 1.4.
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Fig. 1.4: Comparison of various commercially available off-the-shelf nanopositioning
systems based on data provided in Table 1.1

1.4 Applications of Large Range Nanopositioning Systems

Limited motion range of nanopositioning systems have in turn restricted the scope

of scanning probe microscopy and scanning probe lithography techniques to substrate

sizes on the order of 200 µm × 200 µm. In the absence of nanopositioning systems

with adequate motion range, a common approach to cover large area substrates has

been to use an array of parallel probes both for imaging and surface modification

[22–24]. One such effort is shown in Fig. 1.5(d), in which an array of 10 parallel

probes were installed on a typical AFM to image a 2 mm × 2 mm integrated circuit

chip [22]. But there are still significant practical challenges that lie ahead in terms

of sensing and control of individual tips to achieve uniform tip-surface interaction,

tip-tip spacing, sensitivity calibration of the individual tips, etc. [23, 24]. Another

popular approach has been to merge multiple localized scan images to form a large

image [25, 26]. This is commonly known as stitching of images. However, stitching

generally leads to image distortion at the interfaces of merged images due to lack of
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Table 1.1: Comparison of various commercially available off-the-shelf nanopositioning systems

Vendor, Product No. Range Resolution Precision Accuracy
µm × µm nm nm nm

PhysikInstrumente, P-542.2 [14] 200× 200 0.7 5 60
Queensgate, NPS-XY-100A [19] 100× 100 0.5 5 10
Mad City Labs, NanoBio200 [18] 200× 200 0.4 NA NA
Piezosystem Jena, Nano PXY200 [15] 200× 200 4 45 180
nPoint, NPXY400A [17] 400× 400 1.5 120 200
PhysikInstrumente, P-629.2 [21] 1, 800× 1, 800 3.5 28 540
Discovery Tech., NTS10 [16] 10, 000× 10, 000 50 500 3,000
Aerotech, ANT95-25-XY-PLUS [20] 25, 000× 25, 000 1 150 500
’NA’ implies information was not provided by the vendor
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precision and accuracy in the positioning stages used for moving the substrate from

one localized area to another [25–28]. Increasing the instrument range to several

millimeters will enable the use of large-sized substrates in several applications, some

of which are briefly described below:

1. Inspection of optical components, e.g., automotive reflectors, for nanoscale surface

quality and defects [29]. In this case, the use of optical and mechanical profilome-

ters is limited as reflector material is generally soft and transparent (Fig. 1.5 (a))

2. Large area 3D measurement of micro-structured surfaces such as holograms, anti-

reflective films, measurement standards etc. (Fig. 1.5(b)) [30], quality control of

LCD panels (Fig. 1.5(c)) [25].

3. Measurement of micro-roughness and flatness [31] with increased lateral resolution.

This provides a clear advantage over stylus profilometers, which have a limited

lateral resolution due to the large radius of the stylus tip.

4. High resolution imaging of integrated circuits over square centimeter areas (Fig. 1.5(d))

[22].

5. Characterization of millimeter sized 1D and 2D grating scales standards used for

calibration purposes (Fig. 1.5(e)) [32, 33].

6. High resolution lithography in niche microelectronics, where integrated circuit

chips typically have nanometer scale features over square centimeter areas (Fig. 1.5(f))

[22].

7. Deposition of molecules or other materials with nanometric feature size over large

areas (Fig. 1.5(g)) [34].

8. Microscopic quality control of tablets in the pharmaceutical industry. Confocal

Raman microscopy is used along with large area scanning to study the distribution
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(a) 0.6 mm × 0.6 mm
AFM image of an automo-
tive reflector with a large
scratch [29]

(b) 10 mm × 10 mm AFM image
of a sinusoidal metrology standard
[30]

(c) 0.56 mm × 0.57
mm stitched AFM
image of an LCD
panel [25]

(d) 2 mm × 2
mm AFM image of
an integrated cir-
cuit chip [22]

(e) 1.35 mm × 1.35 mm
SPM measurement of a 1D
grating scale [32]

(f) 10 mm × 10 mm
Parallel probe AFM
lithography [22]

(g) 0.5 mm × 0.5 mm SEM image of part of
88,000,000 gold dot array deposited on an oxidized
silicon substrate [34]

(h) 19 mm × 9 mm Large area Raman scan of a tablet
with 80 µm × 80 µm inset images [35]

Fig. 1.5: Applications of large range nanopositioning systems
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Fig. 1.6: Classification of large range nanopositioning systems

of chemicals along the entire tablet with resolutions down to 200 nm. (Fig. 1.5(h))

[35]

1.5 Prior Art1

The ongoing research efforts in the area of large range translational nanoposition-

ing systems can be broadly classified into three categories, as shown in Fig. 1.6.

The first category is of positioning systems that have friction and backlash in

one or more of their physical components, such as the bearing or transmission (e.g.,

see Fig. 1.7(a)). The motion stage in these cases is supported by rolling [36, 37] or

sliding [38–40] guideways. Either direct-drive linear motors [39–41] or rotary mo-

tors coupled with lead-screw drives [36–38, 42] are used for actuation. The presence

of friction limits the motion quality of these tradition motion systems to hundreds

of nanometers [10–12, 43–46]. For these systems, linear feedback controllers do not

offer adequate positioning performance due to the nonlinear and parameter-varying

characteristics of friction, especially in the micro-dynamic regime [43]. Implementa-

tion of advanced controllers [36, 37, 40] has shown some performance improvements

over linear feedback, especially for point-to-point positioning. However, achieving

1Further prior art is also mentioned in Sections 2.1, 3.1, 4.3, relevant to the corresponding chap-
ters.
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(b)

(a)

(c)

Fig. 1.7: Examples of large range nanopositioning systems. (a) Friction based tradi-
tional motion system: A DC motor coupled with lead screw with a linear ball guide
[36]. (b) Coarse-fine motion system: Coarse stage consist of an electromagnetic motor
driven crossed-roller stage, fine stage consist of a PZT driven flexure stage [41]. (c)
Frictionless / non-contact motion system: Magnetically levitated stage with moving
magnet actuators [47].

nanometric tracking performance for dynamic commands remains a challenge.

To overcome the performance limitations associated with friction, another ap-

proach has been to mount a small range, high motion quality positioning system

(fine stage) on top of a large range, friction-based traditional motion system (coarse

stage) [38, 39, 41, 42]. Fig. 1.7(b) shows one such example where the idea is to use

the fine stage to compensate for the positioning errors of the coarse stage, thereby

improving the overall positioning performance. The major challenge here lies in the

control system design of the resulting multi-input multi-output (MIMO) system to

ensure coordination between the coarse and fine motion systems [42].
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Separately, there has been a considerable effort focused on positioning systems

that are based on non-contact and frictionless operation (e.g., see Fig. 1.7(c)). These

systems rely on magnetic [47–49], aerostatic [50–52], or flexure bearings [8, 53] for

motion guidance, and generally employ direct-drive electromagnetic actuators. Each

of these present unique control design challenges to achieve nanometric motion qual-

ity. For example, electromagnetic bearings as well as actuators suffer from force-

stroke nonlinearities [47]. Also, the noise and distortion in the driver degrades the

positioning performance [8]. Air bearings exhibit sustained vibrations due to both

load-bearing as well as motion direction [54, 55]. Although aerostatic bearings and

magnetic bearings are employed in lithographic steppers and scanners used for semi-

conductor manufacturing and inspection that require large range and nanometric

motion quality at relatively higher speeds [56], these machines are not targeted to-

wards niche low-cost desktop applications mentioned above. Such specifications in

a cost-effective and desktop-sized setup is still a challenging problem, which is the

targeted application of this work.

In contrast to magnetic and aerostatic bearings, flexure bearings offer unmatched

simplicity in design and operation, and lower manufacturing and operating costs,

and are therefore the most common bearing choice for desktop-size nanoposition-

ing systems. Their monolithic construction entirely eliminates friction and backlash

leading to sub-nanometric precision, zero maintenance, and potentially infinite life.

The main limitation of flexure bearings has been their small range of motion, which

in turn has restricted the range of flexure-based nanopositioning systems. However,

recent advances [57–60] have shown up to 10 mm motion range in multi-axis flex-

ure bearings, which is sufficient for intended applications. A few examples of such

large range single-axis and parallel-kinematic, multi-axis flexure bearings with trans-

lational degrees of freedom (DoF) are shown in Fig. 1.8. Flexure mechanisms (a) and

(c) shown in the figure are used in this work. It is important to note that although,
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(a) (b)

(c) (d)

Ground

Motion stage

Motion stage

Ground

Ground

Motion stage Motion stage

Fig. 1.8: Examples of translational flexure mechanisms with large range of motion.
(a) 1-DoF symmetric double parallelogram flexure bearing in a deformed configura-
tion (also known as folded beam suspension) [60]. (b) 1-DoF symmetric diaphragm
flexure [59]. (c) 2-DoF parallel-kinematic flexure mechanism comprised of double
parallelogram flexure modules as a building block [57]. (d) 3-DoF parallel-kinematic
flexure mechanism comprised of parallelogram flexure modules as a building block
[58].
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compared to the coarse-fine motion systems mentioned before, large-range nanopo-

sitioning systems comprising of flexure bearing involve equally challenging control

problems, flexure-based motion systems are still preferable due to their low-cost and

compact-size.

In addition to nanometric motion quality and large range, high scanning speed is

also desirable to maximize process throughput. Furthermore, minimizing and expedi-

ently removing any heat generated from the motion system is also important because

of the highly sensitive nature of these applications [33, 61].

1.6 Organization of the Thesis

In Chapter I, a typical nanopositioning system is described and some of its

applications are mentioned. This is followed by a discussion on the limitations on

currently available nanopositioning systems. A list of applications for large range

nanopositioning systems is provided as a motivation to this work. Recent and ongoing

research in the area of large range nanopositioning are described in the prior art.

Finally, a summary of the chapters is provided, followed by suggestions for future

work.

One of the major pending challenges in achieving large range high speed nanopo-

sitioning is that of actuation technology, which constitutes the focus of Chapter II.

Several existing actuator options along with their limitations are discussed. The po-

tential of moving magnet actuators (MMA) is highlighted in comparison to other

actuators. Inherent tradeoffs in the specifications of an MMA and their impact on

the performance of flexure-based nanopositioning systems are qualitatively discussed.

A systematic model for the MMA is used to derive a figure of merit that captures

the dynamic performance of the actuator. Next, performance tradeoffs at the mo-

tion system level are quantitatively identified in terms of the individual specifications

of the actuator, actuator driver, flexure bearing, and thermal management system.
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This understanding is employed in the optimal design and fabrication of a single-

axis nanopositioning system comprising the aforementioned four components. Fi-

nally, preliminary testing results for the individual components, as well as the overall

nanopositioning system, are reported.

In Chapter III, dynamic tracking performance in large range nanopositioning

systems reported in the literature are compared. A classical feedback controller is

implemented, and shown to achieve nanometric steady-state precision and resolu-

tion in point-to-point positioning experiments over the entire motion range in the

single-axis nanopositioning system mentioned above. However, nonlinearities associ-

ated with the actuator as well as the driver result in inadequate tracking performance

in response to dynamic commands. It is shown that a linear feedback and feedfor-

ward controller by itself offers inadequate performance. This is because of the limited

sensitivity reduction that is possible by employing a feedback loop, given actuator

saturation and low open-loop bandwidth of the system. For scanning-type applica-

tions, in which the command is a periodic signal, the deterministic part of the error

arising due to nonlinearities also repeats every period. This provides the motiva-

tion to employ iterative learning control (ILC) to reduce the repeating portion of

the tracking error. A brief introduction to ILC is presented followed by the design

and implementation of a lead type ILC in conjunction with the existing feedback and

feedforward controller. Experimental results are reported which demonstrate more

than two orders of magnitude reduction in the tracking error while following dynamic

commands, when compared to the performance obtained with a linear feedback and

feedforward controller alone.

Chapter IV deals with the dynamic modeling of an XY flexure mechanism,

comprised of double parallelogram flexure modules. A brief overview of different

approaches undertaken to model the dynamics of flexure mechanisms are described

first. Next, a lumped parameter model for a parallelogram flexure module, incorpo-
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rating the nonlinear kinematic coupling that exists between its transverse and axial

directions due to large deformations of its constituent beams, is presented. This is

then extended to model the dynamics of two simpler, representative mechanisms.

The nonlinear equations of motion are linearized about varying operating points and

the effect of small structural asymmetry on the dynamics to produce nonminimum

phase (NMP) zeros is studied. Finally, modeling and analysis of the entire XY flexure

mechanism is presented. It is proposed that intentional asymmetry in the structural

design can be employed to overcome the problem of NMP zeros.

A brief discussion about the control system design challenges and trade-offs for XY

nanopositioning system is presented first in Chapter V. This is followed by design

and implementation of independent and identical classical controllers along each axis

and corresponding positioning performance. Similar to the approach adopted for the

single-axis system, it is shown that implementation of independent iterative leaning

controllers in conjunction with feedback along each axes reduces the tracking error in

the XY plane by more than two orders of magnitude.

The following list highlights the specific contributions of this thesis:

1. Quantitative design trade-offs and performance limitations of moving magnet ac-

tuators as well as of the flexure-based motion systems employing these actuators.

2. Application of iterative learning control to overcome nonlinearities in the physical

system, as well as limitations of linear feedback control, to achieve nanometric

tracking performance for dynamic commands.

3. Modeling of the XY flexure mechanism to show that coupling between closely

spaced resonances may conspire to produce complex-conjugate nonminimum phase

zeros in mechanical structures.

4. Experimentally demonstrated nanometric tracking performance over several mil-
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limeters of motion range for both single-axis and XY nanopositioning systems.

1.7 Future Work

In this thesis, some of the important challenges in simultaneously achieving large

range and high motion quality in flexure-based nanopositioning systems have been

highlighted and addressed. With the benefit of hindsight, some suggestions for further

improving the positioning performance of the system, as well as a few interesting

topics for future research are listed here:

1. Currently, a major limitation in the overall positioning performance comes from

the existing hardware. In this regard, first, a better sensor in terms of speed

and resolution as well as data acquisition hardware with higher speed and bit-

size would greatly improve the achievable closed-loop resolution. Second, all the

experiments were performed on a isolation table in a less-than-ideal laboratory

environment. A real application would require the setup to be operated in a space

with a stringent vibration isolation criterion such as VC–E or NIST–A [62]. Third,

although a linear current driver is used to power the actuator, the power supply for

the current driver is still a switching-type. Instead, a low-noise linear power supply

is recommended. Also, the servoamplifier could not be operated over the desired

power range due to the problem of excessive temperature rise with increasing

power. A fan-based thermal management system should be employed with the

servoamplifier to minimize its temperature rise.

2. For the XY nanopositioning system, the use of “XY Flexure Mechanism Design

1”, proposed in [63], should be explored. This design, due to its asymmetry, is

not prone to suffer from low frequency non-minimum phase zeros. Secondly, the

stiffness and hence the power requirement for this design will reduce by a factor

of 2, compared to its symmetrical extension used in this thesis, without sacrificing
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the open-loop bandwidth along both the axes. However, some of the disadvantages

of this design include increased rotations of the rigid stages as well as unwanted

out-of-plane vibration of the motion stage, over the desired range of motion [63].

3. Irrespective of the design of the flexure mechanism, any design would benefit from

the incorporation of passive damping. It is shown in Section 4.6 that foam-based

damping could be employed to overcome the problem of nonminimum phase zeros

in flexure mechanisms. An additional advantage of damping the high-frequency

resonances is the improvement in the closed-loop bandwidth and the low-frequency

disturbance rejection. However, a systematic study, that will lead to a more de-

terministic approach to incorporate damping, is needed.

4. Further improvement in the controller design is suggested in Sections 3.6 and 5.5.

With regards to the ILC, averaging of the ILC input and optimizing the ILC code

to reduce the computation time should lead to further reduction in the tracking

error and faster convergence, respectively. Also, MIMO feedback controller along

with cross-coupled ILC should be investigated for their effectiveness in improving

the tracking performance, while following more demanding command trajectories

such as those having sharp turns.

5. The identification of a figure of merit for the moving magnet actuator raises some

interesting questions. For example, what is the maximum theoretical value of

the dynamic actuator constant that is achievable in these actuators across various

architectures with and without manufacturing constraints? Novel MMA architec-

tures, such as the one proposed in Section 2.5, should be further explored in this

regard.

6. One of the interesting but unanswered aspects remains the physical explanation

of complex-conjugate nonminimum phase zeros in mechanical structures. The

symmetric double parallelogram flexure mechanism, described in Section 4.4.3, is
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found to be one of the simplest structures exhibiting this phenomenon. A study

of the energy transfer between modes at the nonminimum phase zero frequency in

this mechanism could be a starting point.
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CHAPTER II

Moving Magnet Actuation1

A moving magnet actuator (MMA) is a direct-drive, single-phase, linear electro-

magnetic actuator. The traditional MMA architecture is shown in Fig. 2.1, where

an axially-oriented cylindrical permanent magnet sandwiched between two iron pole-

pieces forms the mover. The stator consists of a back iron along with two oppositely

wound coils connected in series. The permanent magnet field produces a Lorentz force

on the static coils, proportional to the coil current, which in turn creates an equal

and opposite reaction force on the mover. The fact that MMAs provide non-contact,

frictionless, and cog-free actuation over several millimeters range of motion makes

them useful in a wide range of precision motion applications [65], disk drives [66],

and automotive valves [67]. The goal of this chapter is to systematically investigate

the feasibility of MMAs in enabling large range (∼ 10 mm) and high scanning speed

(> 10 Hz or 300 mm/s) in flexure-based nanopositioning systems.

2.1 Actuators Used in Nanopositioning

The performance of an actuator is usually specified via its motion range, resolution

capability, output force, speed of response, size, power consumption, efficiency, etc.

1This work was done in collaboration with David Hiemstra in the Precision Systems Design
Laboratory at the University of Michigan. A part of this work has been published in a journal paper
in IEEE/ASME Transactions on Mechatronics [64].
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Fig. 2.1: Moving magnet actuator schematic

[9, 68]. In general, it is difficult to simultaneously achieve desirable values of all

these specifications due to limitations and trade-offs arising from the construction

and underlying physics of the actuator [69].

2.1.1 Piezoelectric Stack Actuators

Given their high resolution, force, operating bandwidth, and lack of friction and

backlash, piezoelectric actuators based on Lead Zirconate Titanate (PZT) are the

standard actuation method used in most existing nanopositioning systems. The pri-

mary limitation of these actuators is their inherently small stroke (∼ 10–200 µm)

[3]. In an attempt to overcome this, PZT actuators may be integrated with suitable

flexure-based motion transmissions that amplify their range [70–72]. However, am-

plifying the motion by N times reduces the actuator’s effective stiffness by N2 times

and force by N times, at the output of the transmission. This also leads to a smaller

than expected stroke when the actuator and amplifier are integrated with a flexure

bearing because of the blocking force that the latter generates. In many instances, the

transmission may be cleverly designed such that it also serves as the flexure bearing

and provides motion guidance for the motion system [71]. In these cases, the stroke

of the motion system is indeed amplified to be N times that of the actuator, but the
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natural frequency of the motion system still scales inversely with N due to reduc-

tion in stiffness. Furthermore, to achieve high transmission ratios and yet maintain

an overall compact motion system footprint, these designs exploit kinematic nonlin-

earities in the transmission mechanism. But this produces a transmission ratio that

changes considerably, especially over a large motion range, as well as the possibility of

over-constraint [72]. Moreover, the elastic deviation of a flexure-based transmission

from true kinematic characteristics leads to lost motion between the actuator and

motion stage [70].

2.1.2 Quasi-static and Ultrasonic Piezomotors

These motors employ a repetitive actuation pattern that converts the limited

displacement of a piezo-ceramic element to theoretically infinite displacement. The

actuation pattern relies on friction to produce relative motion between the piezo-

ceramic element and the mover. Quasi-static piezomotors, which implement this

repetition at frequencies lower than the resonant frequency of their piezo-ceramic

elements, operate on either the clamping principle or the inertial principle. In the

former case, motion is generated through a succession of quasi-static coordinated

clamp/unclamp and extension/contraction step cycles. These so-called inchworm

motors typically have a step size in the range of 10 nm to 1 µm and operating speed

less than 10 mm/s [3, 9, 45]. In the inertial style quasi-static piezomotors, inertia and

the difference in dynamic and static friction are exploited to produce discrete slipping

steps, which may be repeated indefinitely [73]. While these quasi-static piezomotors

provide good performance in large-range point-to-point positioning with nanometric

precision, they are not suitable for high-speed scanning where precision has to be

maintained along the entire motion profile. This is because of the impact-induced

axial vibrations during steps, often termed as glitch, which is typically of the order of

50 nm [3]. These glitches become even more prominent at higher speeds.
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Ultrasonic piezomotors excite resonant bending modes of a piezo-ceramic element

in the ultrasonic frequency range which combine to produce a repeating elliptical

stepping motion. These actuators provide higher speeds (100–500 mm/s) but much

lower force capability (< 10 N) [9, 74]. Another potential drawback of ultrasonic

actuators is heat generation [74]. Furthermore, a major drawback of all quasi-static

and ultrasonic piezomotors, especially for large range nanopositioning, is their low

fatigue life [3].

2.1.3 Linear Electromagnetic Actuators

Recognizing the limitations of piezoelectric actuators, several direct-drive, linear

electromagnetic actuators have been designed and investigated for large-range, high-

speed nanopositioning [8, 48, 75–79]. Although multi-phase electromagnetic linear

motors provide non-contact operation over a large motion range (∼ 100 mm), they

sometimes suffer from cogging, thus limiting the achievable precision [61, 79]. While

cogging may be eliminated via slot-less and iron-less constructions [80], the single-

phase non-commuted voice coil actuator (VCA) and moving magnet actuator (MMA)

offer unmatched simplicity in design and construction, along with non-contact and

cog-free motion, low cost, and sufficiently large stroke [8, 76, 77].

A cross-section of a typical VCA configuration is shown in Fig. 2.2(a), where an

axially-magnetized cylindrical permanent magnet and an integrated tubular back iron

form the stator, and a coil wound on a bobbin forms the mover. The heavy permanent

magnet and back iron are stationary, allowing the lightweight coil to achieve a fast

mechanical response time [77, 78]. However, heat dissipation from the coil connected

to the motion stage and non-deterministic disturbance due to the moving coil wires

degrade the motion quality [81]. To overcome these problems, the voice coil is some-

times employed in an inverted configuration [8] (Fig. 2.2(b)). While this configuration

eliminates disturbance from moving wires and improves thermal dissipation, it adds
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Fig. 2.2: Voice coil actuator schematic with (a) coil as mover and (b) magnet as
mover

the large mass of the magnet and back iron to the motion stage. When employed

with a flexure bearing, the resulting low natural frequency not only limits the open-

loop and closed-loop bandwidth of the overall motion system but also compromises

closed-loop disturbance rejection, which is necessary to achieve nanometric motion

quality [82].

The MMA shown in Fig. 2.1 embodies all the benefits of the inverted voice coil

and also has a significantly lower moving mass since the relatively heavy back-iron

remains static along with the coil. Additionally, the non-deterministic disturbance

due to the moving coil leads is eliminated. The static back iron also allows for

improved heat dissipation and keeps the heat generated due to resistive losses in the

coils further away from the motion stage. While these advantages make MMAs a

promising candidate for actuation in nanopositioning, several design challenges and

performance trade-offs remain, as discussed next. Also, while other variations exist

[78, 83], the traditional MMA architecture of Fig. 2.1 is most commonly used because

of its simple construction and practical viability, and is therefore the focus of this

work.

24



2.2 MMA Performance Tradeoffs and Design Challenges

The requirements placed by the desired nanopositioning performance on the MMA

specifications are qualitatively discussed below.

1. In the absence of friction and backlash, the motion quality of the nanoposition-

ing system is determined by its closed-loop tracking performance, which is partly

limited by noise and harmonic distortion in the electrical driver that supplies cur-

rent to the actuator. Higher open-loop bandwidth helps attenuate the effect of

this noise/distortion in closed-loop operation [82], enabling higher motion quality.

The open-loop bandwidth, which correlates with the first natural frequency of the

motion system, can be increased by increasing the flexure stiffness and decreasing

the overall moving mass. The noise and distortion in the electrical driver can also

be reduced at the source by lowering the actuator power input.

2. A large stroke and high flexure bearing stiffness demands a large actuation force.

For high scanning speed and large stroke, the actuator also has to overcome inertial

loads, which place further demands on the actuation force. For the scanning

applications described earlier in Chapter I, external forces on the motion stage are

negligible in comparison to the spring and inertial forces.

3. Non-uniformity in the MMA’s force output over its stroke, for a fixed current input,

also leads to non-linearities that produce higher order harmonics in open-loop as

well as closed-loop operation [61]. While the adverse effect of these harmonics

on the motion quality may be mitigated by a high closed-loop bandwidth, which

ensures better disturbance rejection, the actuator can also be designed to provide

greater force-stroke uniformity.

4. Temperature rise due to power dissipated as heat is detrimental to the compo-

nents as well as to the assembly of the motion system. The feedback sensor can
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lose accuracy and the mechanical assembly can develop undesired stresses and dis-

tortion. Minimizing these effects requires minimizing the power consumption of

the actuator and effectively removing the generated heat from the system, even

though the heat source in an MMA is located further away from the motion stage

as compared to a VCA.

5. Separation of the back-iron from the permanent magnet in an MMA introduces

the risk of snap-in instability in the direction perpendicular to the motion axis [84].

This instability gets worse with increasing actuator force, and can be mitigated by

a flexure bearing that provides a much higher positive off-axis stiffness compared

to the negative off-axis stiffness associated with the actuator.

This discussion reveals several conflicting requirements placed on the MMA spec-

ifications – force capability, force-stroke uniformity, moving mass, power consumed,

heat generated etc. For example, the force output of an MMA can be raised by in-

creasing either the moving magnet mass or the input power, but both are undesirable

for reasons explained above. Reducing the flexure stiffness in the motion direction

allows a larger portion of the actuation force to be devoted to inertial loads, leading

to higher operating speeds; but lower stiffness also reduces the open-loop bandwidth

and compromises disturbance rejection capability. While greater force-stroke unifor-

mity reduces the reliance on large open-loop bandwidth to provide the desired motion

quality, it typically requires an axially longer coil, which in turn implies greater power

consumption and heat generation. Furthermore, any design features that increase the

actuation force also increase the negative off-axis stiffness associated with the MMA.

Clearly, these design challenges and performance trade-offs cut across the multiple

components and physical domains of the overall motion system.

Although such trade-offs associated with MMAs have been previously identified,

the discussion has been largely component-level and qualitative [78, 83, 85]. This

work attempts to systematically capture these design limitations and performance
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trade-offs in a model-based quantitative manner, so as to identify the key bottlenecks

to better system-level performance. For the MMA, it is important to identify good

figures of merit that capture the above specifications and trade-offs quantitatively.

Figures of merit help compare MMAs from different vendors, determine the suitability

of an MMA for a given application, and set the objective in the conception and

optimization of new MMA designs. It is also important to recognize if there exist

fundamental limits on these figures of merit, arising from the inherent construction

and underlying physics of the actuator. One such figure of merit that has been

traditionally used is the actuator constant, which is defined as the actuator output

force per unit square root of power consumed. It captures an important actuator-level

trade-off, i.e., the output force of an MMA cannot be indefinitely increased without

increasing the power input and heat generated. However, this actuator constant only

captures the quasi-static performance of the MMA since it does not incorporate the

actuator’s moving mass. As a result, it does not reflect on the dynamic performance of

the MMA when used in a flexure-based nanopositioning system. Other figures of merit

for MMAs that do capture some degree of dynamic performance include the electrical

time constant and the mechanical time constant. The electrical time constant (τe) is

defined as the rise time of the current for a step voltage change and depends on the

inductance to resistance ratio of the coil. While it does represent a trade-off between

the current rise-time and heat generation, this trade-off is readily overcome via the

use of a current driver. The mechanical time constant (τm) is defined as the rise-time

of the velocity for a step voltage change and depends on the actuator constant as

well as the moving mass. However, it does not reveal any inherent trade-off or design

insights associated with the construction and physics of the MMA.
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Fig. 2.3: MMA geometry and simplified lumped parameter model

2.2.1 MMA Figure of Merit to Capture Dynamic Performance

In order to capture dynamic performance, an MMA figure of merit is needed that

not only includes the continuous output force and the power consumption, but also

the actuator’s moving mass. To quantitatively investigate the existence of such a

figure of merit, the effect of geometric scaling on the actuator output force, power

consumption, and moving mass is considered. Fig. 2.3 shows a lumped parameter

model of an MMA with a traditional architecture. The dimensions lm, lp, rm, and

tm denote the nominal magnet axial length, pole piece length, magnet radius, and

magnetic air gap radial thickness, respectively. α is the geometric scaling factor. The

following assumptions are made to simplify the analysis:

1. Any fringing and leakage flux is neglected.

2. The permeability of the back-iron and the pole pieces are much larger than that of

a vacuum. Hence, the reluctance of the back iron and the pole pieces are neglected

(µiron � µ0).

3. The permeability of the magnet material, aluminum, and air is approximately

equal to that of vacuum (µair ≈ µAl ≈ µmagnet ≈ µ0).

4. All the radial space between the pole pieces and the back iron (tm) is occupied
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by coils. In other words, the mechanical air-gap (tg) is negligible compared the

thickness of coil (tc).

Based on standard lumped parameter magnetostatic analysis [86], the magneto-

motive force (Fm) and the lumped reluctances of the magnet and the air gap (Rm

and Rg) are given by

Fm =
αBrlm
µm

; Rm =
lm

παµmrm2
; Rg =

1

2παµ0lp
ln

(
1 +

tm
rm

)
(2.1)

where Br denote the remanent flux density of the permanent magnet and µm and µ0

are the permeability values for the permanent magnet material and vacuum, respec-

tively. Next, the resultant flux (φ) and average magnetic flux density in the air gap

(Bg) are then given by

φ =
Fm

Rm + 2Rg

; Bg =
φ

2πα2lp(rm + tm/2)
(2.2)

The force output (F ), the power consumed, i.e., dissipated as heat (P ), and the

moving mass (ma) can be determined to be

F = Bgilw = iφ
2αtm
d2

(2.3)

P = i2R = i2
ρclw
Aw

= i2ρc
16α3lptm(rm + tm/2)

d4
(2.4)

ma = ρmπα
3rm

2lm (2.5)

where i is the coil current, R is the coil resistance, ρc is the resistivity of the coil

wire, d is the wire diameter, Aw is the cross-sectional area of the wire, lw is the total

length of the wire in the air gap, and ρm is the mass density of the magnet. It should
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be noted that the current (i), force (F ), and power (P ), are all dynamic variables.

These three relations lead to

F√
P
√
ma

=
Br

lmlp
rm2 + ln

(
1 + tm

rm

)√ πlmlptm
4ρcρmrm2(rm + tm/2)

(2.6)

In the above relation, the scaling factor α, wire diameter d, and coil current i get

canceled out, and the left-hand side term is only dependent on the physical constants

and nominal dimensions, which are constant for a given MMA architecture. Thus,

the force output (F ) remains directly proportional to the square root of the actuator

moving mass (ma) and the square root of power consumed (P ), irrespective of the

scale of the actuator (α). Equation (2.6) may be restated as follows:

F√
P
√
ma

=
Kt√
R
√
ma

, β (constant) (2.7)

where Kt is the force constant (force per unit current) of the MMA.

The constant β (units of
√

Hz), therefore, turns out be an important figure of

merit in the design of an MMA, and is referred to, hereafter, as the dynamic actuator

constant. While this constant is related to the previously known mechanical time

constant (τm = 1/β2), it provides an important design insight that the latter does

not. It reveals an inherent trade-off associated with the force, moving mass, and the

power consumption of an MMA, which cannot be overcome by varying the actuator

size. It should be noted, however, that β varies when the relative proportions between

the actuator’s dimensions are changed.

While several simplifying assumptions were made in the derivation of the MMA’s

dynamic actuator constant, Eq. (2.7) is found to be true even when these assumptions

are removed in a finite element analysis (FEA) using Maxwell�. A snapshot of the

analysis showing the flux path is shown in Fig. 2.4. The comparison of the closed-form

model and the FEA is shown in Fig. 2.5. The ratio (Kt/
√
R), which is the actuator
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constant, is plotted against the square root of the actuator moving mass (
√
ma)

for different values of the scaling factor (α). The slope of the curve represents the

dynamic actuator constant (β=14
√

Hz), for a particular choice of actuator dimension
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In addition to the closed-form and finite element analysis, a survey of commercially

available off-the-shelf MMAs [87–90] further validates the significance of Eq. (2.7). All
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these MMAs are of the traditional architecture, offer a motion range of around 10

mm, and are of various sizes and proportions. However, as seen in Fig. 2.5, they all lie

close to the straight line corresponding to β=14
√

Hz. This suggests that the dynamic

actuator constant, in addition to being independent of the actuator size, cannot be

increased beyond a certain limit even by optimizing the dimensional proportions.

2.2.2 Impact of β on the Motion System Performance

When the MMA is employed in a flexure-based nanopositioning system, an im-

portant consequence of Eq. (2.7) is that it places a fundamental trade-off between

the system’s open-loop bandwidth (ωn), desired scanning speed (ω), desired motion

range (±∆0), power consumed (P ), and the moving masses (actuator: ma, motion

stage: m). Assuming a sinusoidal motion profile (∆ = ∆0 cosωt), this trade-off may

be derived by equating the actuation force with the spring and inertial forces:

F = Kti = (m+ma)|ωn2 − ω2|∆ (2.8)

where ωn
2 = Ky/(m+ma) and Ky is the flexure stiffness.

Equation (2.8) indicates that when the desired scanning speed is less than the

natural frequency of the system (ω � ωn), the required actuation force is dominated

by the spring stiffness, and the actual scanning speed is less important. However,

when the scanning speed is greater than the natural frequency (ω � ωn), the re-

quired actuation force is dominated by inertial loads and depends on the square of

the scanning speed. These two conditions represent the worst-case actuation force

requirements. As expected, the actuation force becomes very small around resonance

(ω ≈ ωn).
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Substituting β from Eq. (2.7) and P = i2R, Eq. (2.8) may be restated as:

β

√
ma

m+ma

≥ ∆|ωn2 − ω2| 1√
P

(2.9)

This expression quantitatively captures the performance trade-off that achieving

large motion range, high resolution (enabled by good disturbance rejection due to high

natural frequency), high scanning speed, and low power consumption (to minimize

temperature rise and driver noise/distortion) are all at odds with respect to each

other. The only way to simultaneously achieve these nanopositioning performance

attributes is to use an MMA that provides a large β and minimize all moving masses

in the system.

This represents a system level performance trade-off. If, for example, the flexure

bearing is designed to be stiffer to increase the open-loop bandwidth and improve

disturbance rejection of the driver noise/distortion and the actuator force-stroke non-

uniformity, it would also require an increase in the actuation force in order to retain

the same motion range. But, as per the MMA trade-off given by Eq. (2.7), this can

only be achieved by increasing the magnet mass, for a given power consumption limit.

Ultimately, using a stiffer bearing will not lead to the desired increase in the open-

loop bandwidth. Trying to improve disturbance rejection via controller design hurts

the closed-loop system stability robustness [82]. Therefore, it becomes important to

employ an electrical driver with minimal noise and distortion, and design the MMA

with maximal force-stroke uniformity. Furthermore, while increasing the current and

therefore power into the system will improve its overall performance, it will also

produce a temperature rise that is detrimental. Therefore, any increase in power has

to be matched by a thermal management system that carries the heat out of the

system to maintain its temperature.
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2.3 Design and Fabrication of the Experimental Setup

In order to experimentally establish the validity of the dynamic actuator con-

stant as an MMA figure of merit and to verify the performance limitations that it

imposes on the overall motion system, a single-axis flexure-based nanopositioning

system was designed, fabricated, and tested. This system comprises an MMA, an

electrical driver, a symmetric double parallelogram flexure bearing, a novel thermal

management system, a linear optical encoder, and feedback control hardware. The

targeted positioning performance was set at: range ±5 mm, sinusoidal scanning speed

10 Hz, motion precision and resolution less than 5 nm, and temperature rise less than

0.5 ◦C. A high open-loop bandwidth was sought to reject disturbances and achieve

the desired motion quality. At the same time, noise and harmonic distortion were

minimized at the source in the electrical driver.

A custom-made driver was designed and tested to achieve high signal-to-noise-

ratio (110 dB) and low total harmonic distortion (–90 dB). Details regarding the

design of the driver and its characterization are provided in Appendix B. This driver

was operated in the current mode with a gain of 1 A/V to provide direct control of the

actuation force over a 1 kHz bandwidth. This driver is rated for 20 W power; higher

power tends to further deteriorate the noise and harmonic distortion. Therefore 20

W was set as the upper limit of power input to the MMA. Since, in the worst case

scenario of steady state operation, this input power is entirely converted to heat, the

thermal management system was also designed to dissipate 20 W while maintaining

the temperature of the motion stage within the targeted range.

2.3.1 Moving Magnet Actuator

The MMA dimensions and material were selected in a systematic manner to max-

imize β, while maintaining high force-stroke uniformity. In a minor deviation from

the topology of Fig. 2.3, the designed MMA does not feature pole pieces. It can be
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separately shown that, although removing the pole pieces reduces the force constant

(Kt), it leads to an overall higher value of β due to the reduced moving mass. All

results presented in this section are based on FEA using Maxwell�.

1. The minimum magnet length (lm) is governed by the stroke (∆0) and the coil

separation (lg), i.e.,

lm ≥ 2∆0 + lg (2.10)

The coil separation (lg) should be large enough so that the fringing flux from

one face of the magnet does not pass through the opposite coil when the magnet

is at the end of the stroke. Otherwise, this would lead to reduced force-stroke

uniformity. For a desired stroke of ±5 mm and a chosen minimum coil separation

of 10 mm, the magnet length was, therefore, selected to be 25.4 mm. The magnet

dimension was also influenced by the standard available sizes.

2. While β is invariant with geometric scaling, it does vary with the dimensional

proportions of the actuator. Therefore, once the magnet length is chosen, the

magnet radius (rm) and the coil thickness (tc) can be selected to maximize β.

Fig. 2.6 shows the effect of varying the magnet radius and coil thickness on β for

a fixed coil length (lc). Based on this plot, and taking manufacturing constraints

and standard magnet sizes into account, rm and tc were chosen to be 12.7 mm and

15 mm, respectively. Assuming Neodymium-Iron-Boron (NdFeB) magnets, the

actuator moving mass for these dimensions is 106 g. These selections lead to a β

value of 14
√

Hz and an actuator constant of 4.5 N/
√

W, resulting in an achievable

actuation force of 17 N for a power constraint of 20 W.

3. With the assumption that the flux path width is approximately equal to the radius

of the magnet, the coil length (lc) is dictated by the stroke and the magnet radius

as

lc ≥ 2∆ + rm (2.11)
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Increasing the length of the coil improves the force-stroke uniformity but only

at the cost of an increase in the coil resistance, which reduces β. As shown in

Fig. 2.7, the coil length was chosen to be 26 mm to limit the drop in force constant

(Kt) at the ends of the stroke to be less than 10% without any appreciable loss

in the dynamic actuator constant. The resultant force on the moving magnet is

plotted against its axial position for 1 A coil current in Fig. 2.8 confirming this

force-stroke non-uniformity.

4. As shown previously in Eq. (2.6), β is only dependent on the volume of the coil

and is independent of the wire diameter (d). For example, although reducing d

increases the coil resistance R, it also increases Kt due to greater number of turns,

as per Eq. (2.4), thereby keeping β invariant. However, the choice of wire diameter

presents a trade-off between voltage and current, for a fixed power level of 20 W,

as shown in Fig. 2.9. Using this plot, 25 AWG wire with a diameter of 0.455 mm

was chosen to keep the required voltage below 25 V, a limit imposed by the power

supply used. This resulted in maximum continuous current of 0.56 A and coil

resistance of 44.3 Ω.
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5. The thickness of the back iron (ts = 7.6 mm) is chosen such that the magnetic

flux density in the iron remains below saturation for all values of coil current.

Increasing the length of the back iron (ls) reduces the axial magnetic force between

the magnet and the back iron. This force, which acts in addition to the Lorentz

force, tends to push the magnet towards the center of the stroke and is plotted

explicitly in Fig. 2.8 for i = 0 A and ls = 65 mm. It should be noted that while

the Lorentz force component is symmetric with respect to zero stroke position,

the overall force-stroke profile of the MMA turns out to be non-symmetric due to

the force between the magnet and the back iron. This latter force component is

unique to MMAs and does not exist in VCAs, in which the magnet and back-iron

are rigidly attached.

Table 2.1 summarizes the MMA size and specifications. Based on this design,

an MMA prototype was fabricated and assembled in-house, as shown in Fig. 2.10.

The mover comprises a stack of four Grade 52 Neodymium-Iron-Boron (NdFeB) axial

magnets (Br = 1.45 T) mounted on a lightweight carbon fiber shaft and constrained

using aluminum shaft collars. One drawback of this magnet is its low Curie tem-

38



Table 2.1: Key MMA dimensions

Parameter Value Units

Dynamic actuator constant 14
√

Hz
Stroke 10 mm
Moving mass 106 g

Actuator constant 4.5 N/
√

W
Force-stroke nonuniformity 9 %
Resistance 44.3 Ω

Inductance 133 mH
Radial/Axial size 36.8/85 mm
Air gap magnetic flux density 0.1–0.3 T

perature of 80 ◦C, but this risk is mitigated by the thermal management system

described next. The coil bobbin was made of Aluminum 6061 because of its good

machinability and high thermal conductivity. Also, it serves as a shorted turn which

reduces the effective coil inductance [91]. However, one drawback of using aluminum

as bobbin material is its susceptibility to eddy currents, because of its high electrical

conductivity. These eddy currents give rise to phase lag [92], thereby degrading the

dynamic performance of the feedback loop. The physical air gap between the mover

AL Shaft 

Collars

NdFeB 

Magnets

Carbon 

Fiber 

Shaft

1020C Back 

Iron

Coils

Fig. 2.10: MMA prototype
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and bobbin was chosen to be 0.5 mm, primarily limited by manufacturing and as-

sembly tolerances. The back iron was made from 1020C Steel with a saturation flux

density of 1.6 T. In order to simplify the assembly process, the back iron was designed

as two symmetric halves so that the magnet and the bobbin can be easily assembled

a priori without the iron being in the vicinity of the strong magnetic force generated

by the permanent magnet.

2.3.2 Thermal Management System

During steady-state operation, which represents the worst-case scenario of heat

generation, most of the power sent to the actuator is converted to heat. As mentioned

earlier, heat dissipated from the coils poses several potential problems. If 20 W heat

is not drawn away from the actuator coils, FEA and experimental results show that

the temperature rise at the motion stage is approximately 10 ◦C, and at the coil

bobbin is more than 50 ◦C. Such a temperature rise, along with spatial thermal gra-

dient, leads to significant internal stresses and distortion in the mechanical structure

and assembly [61]. Furthermore, a temperature rise decreases the remanence of the

permanent magnet, a process that is dramatically accelerated close to the magnet’s

Curie temperature [93]. This obviously reduces the actuation force. Also, a 10 ◦C

rise causes the 10 mm long linear encoder scale to expand by 60 nm, as per encoder

datasheet [94]. All these factors adversely affect the precision and accuracy of the

nanopositioning system. Therefore, thermal management becomes a critical aspect

of the overall system design.

Shown in Fig. 2.11, a novel passive thermal management system (TMS) was de-

signed and integrated with the MMA [95]. While fan-based active heat dissipation

systems can be designed to precisely control the temperature, they lead to air flow-

induced vibrations that are detrimental to nanopositioning performance. Instead, a

passive system was conceived that is based on latent heat transfer and therefore does
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not suffer from this disadvantage.

This TMS effectively transfers heat from the aluminum housing around the MMA

coils to separately placed, water-sealed ice-packs using wick-type Copper heat pipes

that serve as low thermal resistance paths. The heat generated at the coils is absorbed

by ice as it converts to water, without any rise in its temperature. The aluminum

housing and the racks containing ice-packs are thermally insulated via a double-

layered acrylic box in order to minimize any thermal fluctuations of the surrounding

environment. The critical components of the TMS (heat pipes, ice packs, and alu-

minum racks) were designed using a lumped-parameter thermal model in order to

ensure that the steady-state coil bobbin temperature remains near room temperature

for at least 4 hours of operation under constant 20 W power input to the actuator.

Details of this model are provided in [95].
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2.3.3 Flexure Bearing

A single-axis symmetric double-parallelogram flexure bearing was designed and

fabricated (Fig. 2.12) to provide frictionless and backlash-free motion guidance over

the entire range of motion. This design provides uniform motion direction stiffness

over a relatively large stroke and high bearing stiffness in all other translation and ro-

tation directions [96]. Aluminum 6061 was selected for the bearing material given its

overall good flexure characteristics. As the first step, the size and mass of the motion

stage were minimized (m = 42 g), while providing adequate space to interface the

sensor and actuator. With the overall moving mass (m+ma), dynamic actuator con-

stant (β), power consumption limit (P ), and desired stroke (∆0) and scanning speed

(ω) all known, Eq. (2.9) predicts that the maximum achievable natural frequency

(ωn) is 27 Hz.

The beam thickness (T ), width (W ), length (L), and spacing (B) in the flexure

bearing were set to be 0.75 mm, 25.4 mm, 80 mm, and 40 mm, respectively. The

resulting geometry provides a motion direction stiffness of 3.43 N/mm, stroke of ±5

mm while maintaining a safety factor of 4 against yielding, and a natural frequency

of 25 Hz.
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The negative (destabilizing) stiffness of the off-axis force between the magnet and

the back iron was calculated via electromagnetic FEA to be 1.3 N/mm at the nominal

position. The stiffness values provided by the bearing in the X and Z directions are

the lowest at the maximum motion stage displacement [96]. At the desired 5 mm

displacement, these values are found to be 149.6 N/mm and 70.6 N/mm, respectively,

thereby ensuring adequate off-axis stability of the magnet-back iron assembly.

2.3.4 Experimental Setup Assembly

In addition to the above subsystems, an off-the-shelf 5 nm, resolution linear opti-

cal encoder (RELM scale, Si-HN-4000 Read-head, and SiGNUM Interface from Ren-

ishaw) was used for position measurement of the motion stage. The assembly of

the MMA, TMS, flexure bearing, and encoder is shown in Fig. 2.13. A removable

back-plate simplifies the assembly of the MMA with the flexure bearing. Alignment

between the MMA, back plate, and flexure bearing is achieved via dowel pins. As

shown in Fig. 2.13 (inset), the motion stage was designed to hold the MMA mover

shaft and optical encoder scale (A). The mover shaft is aligned and secured to the

motion stage via a sleeve collar (B). Dowel pins (C) provide alignment of the encoder

scale with respect to the motion stage. The optical encoder readhead (D) is mounted

and aligned using three ground-mounted dowel pins (E). The final, fabricated single-

axis nanopositioning system assembly is shown in Fig. 2.14.

2.4 Experimental Testing and Results

The performance of the MMA and TMS were measured first, followed by the

characterization of the overall motion system.
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2.4.1 Moving Magnet Actuator

The MMA force was measured using a load-cell (Model No. ELFF-T4E-20L from

Measurement Specialties) in a temporary setup shown in Fig. 2.15. With the magnet

held at the nominal position (∆ = 0 mm), the MMA force is plotted with respect to

the coil current in Fig. 2.16(a). The slope of this line provides the measured force

constant Kt. This is within 3.5% of the value predicted by FEA; the difference is

most likely due to a discrepancy between number of turns employed in the prototype

coils and the FEA model. The measured Lorentz force-stroke non-uniformity, plotted

in Fig. 2.16(b), is within 10% over the entire ±5 mm stroke. The constant force offset

in this plot is due to the abovementioned discrepancy in Kt.

The MMA coil resistance was measured to be 44.3 Ω. Assuming first order coil

dynamics, the inductance of the coil was estimated by measuring the electrical time

constant for a step change in applied voltage. From Fig. 2.17, the electrical time

constant of the actuator is about 3 milliseconds, or 53 Hz. This corresponds to an

inductance value of approximately 133 mH.

2.4.2 Thermal Management System

Fig. 2.18 shows the measured coil bobbin and motion stage temperatures for an

MMA power input of 20 W, with and without the TMS. The motion stage, which

is the most sensitive location in the motion system, remains within 0.5◦C of room

45



-0.5 -0.25 0 0.25 0.5
-20

0

20

Current i, Amperes
Fo

rc
e,

 N
 (

x 
=

 0
m

m
) (a)

 

 
Measured
Predicted

-5 -2.5 0 2.5 5
25

27.5

30

32.5

35

Stroke, mm

Fo
rc

e,
 N

 (
i =

 1
A

)

(b)

Fig. 2.16: MMA force measurement (a) Measured force constant (b) Measured force-
stroke non-uniformity

-0.02 0 0.02 0.04
-2

0

2

4

6

8

Time, sec

V
ol
ta
ge
,
V

-0.02 0 0.02 0.04
-0.05

0

0.05

0.1

0.15

0.2
C
u
rr
en
t,
A

Fig. 2.17: Response of the MMA coil current to step voltage command

46



0 20 40 60 80
0

20

40

60

80

Time, min

T
em

p
er
a
tu
re
,
◦
C

Coil Bobbin

0 20 40 60 80
10

15

20

25

30

35

40

Time, min

T
em

p
er
a
tu
re
,
◦
C

Motion Stage

 

 
With TMS
Without TMS

Fig. 2.18: Temperature rise of the coil bobbin and the motion stage with and without
the thermal management system

temperature over the entire testing period, once steady-state is reached. This demon-

strates the effectiveness of the proposed TMS in maintaining temperature stability.

2.4.3 Dynamic Response

Next, the open-loop frequency response of the overall nanopositioning system.

Fig. 2.19 shows the resulting experimentally obtained transfer function between the

command to the current driver (in volt) and the motion stage displacement (in µm).

As expected, the first natural frequency of the system is found to be approximately

25 Hz. Damping seen at this resonance peak primarily comes from eddy currents in

the aluminum bobbin.

A note on eddy current dynamics: Eddy currents are induced in the aluminum bobbin

due to the changing magnetic field of the moving magnet. In order to experimen-

tally study the possible effects of eddy currents on the dynamic performance of the

actuator, an identical plastic (nylon) bobbin was manufactured. Fig. 2.20 shows the

comparison of the open-loop frequency response of the motion system with aluminum
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and plastic bobbin respectively. It can be seen that eddy currents in the aluminum

bobbin leads to additional damping in the first resonance mode of the system as well

as additional phase-lag at higher frequencies. The damping at the first resonance

mode is inconsequential because the crossover frequency of the feedback loop lies

much above the first resonance frequency. However, the additional phase-lag near

crossover frequency (about 20◦ at 240 Hz) degrades the dynamic performance by re-

ducing the phase margin in the closed-loop operation. On the other hand, the use of

aluminum bobbin is beneficial from the point of view of heat dissipation, given its high

thermal conductivity. Thermal management being a significant concern, aluminum

bobbin was used finally. Alternately, a lamination of conductive but non-magnetic

material, or a combination of plastic and aluminum, could be used for the coil bobbin

to reduce the effect of eddy currents, while maintaining high thermal conductivity.

A more detailed discussion about the effects of eddy currents on the electromagnetic

actuator dynamics can be found in [92, 97].

2.5 Closure

In this chapter, the limits of motion performance allowed by MMAs in flexure-

based nanopositioning systems have been established analytically and experimentally.

It quantitatively elucidates the various design challenges and trade-offs that exist in

simultaneously achieving range, speed, motion quality, and temperature stability.

The key engineering specifications of the single-axis nanopositioning system are sum-

marized in Table 2.2.

A figure of merit for the MMA, referred to as the dynamic actuator constant, is

introduced. This figure of merit captures the inherent trade-offs between the actuator

specifications, as well as the limitations on the performance of the nanopositioning

system. It is important to note, however, that these trade-offs and performance

limitations, associated with the dynamic actuator constant, holds only for moving
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Table 2.2: Motion system specifications

Specification Value Units

Motion Range 10 mm
Open-loop natural frequency 25 Hz
Max. continuous power 20 W
Temperature stability 0.5 ◦C

magnet actuators and flexure-based motion systems employing these actuators.

Moving forward, this finding provides motivation to look into improved MMA

architectures that offer greater values of the dynamic actuator constant while main-

taining low force-stroke non-uniformity. One such proposed MMA architecture [98] is

shown in Fig. 2.21, via a schematic cross-sectional view and a CAD rendition. From

an electromagnetic standpoint, a major improvement in this design lies in the use of

a radial permanent magnet (3) as opposed to the axial permanent magnet used in

conventional MMAs. This not only reduces the moving mass considerably but the

magnetic flux is also naturally aligned perpendicular to the coils (4). This in turn

Mover
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Fig. 2.21: Proposed MMA architecture [98]: 1. Back iron (stator) 2. Mover 3. Radial
permanent magnet 4. Coils 5. Heat pipes to cooling system
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decreases the fringing of the flux in the air-gap, thereby increasing the magnetic flux

density between the moving permanent magnet and the static back-iron (1). In ad-

dition to these advantages, a low reluctance flux-return path through the back iron

reduces the overall circuit reluctance, which further increases the flux density in the

air-gap. These design modifications leads to an appreciable improvement in the con-

tinuous force output of the MMA. Initial FEA confirms that the reduction in the

moving mass along with an increase in the force output increases the performance

metric, β, by a factor of 2. This should provide greater open-loop bandwidth for bet-

ter disturbance rejection as well as higher operating speeds for the overall positioning

system.
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CHAPTER III

Control System Design for Single-axis

Nanopositioning System1

In Chapter II, the design, fabrication, and testing of a single-axis nanopositioning

system employing a flexure bearing and moving magnet actuator was presented. In

this chapter, design and implementation of a classical feedback controller along with

an iterative learning controller is presented to overcome these nonlinearities in or-

der to achieve nanometric tracking performance for dynamic commands over a large

motion range. First, a brief comparison of single-axis large range nanopositioning sys-

tems in literature, in terms of their dynamic positioning performance, is presented.

Next, it is shown that a linear feedback and feedforward controller by itself offers

inadequate performance. This is because of the limited sensitivity reduction that is

possible by employing a feedback loop, given actuator saturation and low open-loop

bandwidth of the system. For scanning-type applications, in which the command is

a periodic signal, the deterministic part of the error arising due to nonlinearities also

repeats every period. This provides the motivation to employ iterative learning con-

trol (ILC) to reduce the repeating portion of the tracking error. Since its inception

in early eighties, ILC has seen tremendous applications in the fields of robotics [100]

and motion systems [101, 102]. Some of the advantages of ILC include its linear for-

1A part of this work has been published in a journal paper in Precision Engineering [99].
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mulation, minimal knowledge of plant dynamics, simple design and implementation,

and the fact that it can be applied to any existing feedback control system [100]. A

brief introduction to ILC is then presented followed by the design and implementation

of a phase-lead type ILC in conjunction with the existing feedback and feedforward

controller. Experimental results demonstrate more than two orders of magnitude re-

duction in the tracking error while following dynamic commands, when compared to

the performance obtained with a linear feedback and feedforward controller only.

3.1 Prior Art

The motion quality of nanopositioning systems is dictated by the tracking error,

which is the difference between the commanded and the measured position. Tracking

error may be evaluated for either point-to-point positioning commands or for path-

following commands. Point-to-point positioning is concerned with moving the motion

stage from one point to another and staying there for some finite period of time. Only

the final position is relevant and the path taken to reach that position is not. Even

after the commanded point is reached, the position output would still exhibit some

random variation with time. This variation is referred to as the positioning noise,

and is a measure of the motion system’s resolution. While precision and accuracy

of the nanopositioning system can be estimated for point-to-point positioning, these

should be ideally measured in a more general case of path-following, such as raster

scanning. In such cases, the motion stage is moved along a pre-defined trajectory

in time and space, and position at each point along this trajectory is important [2].

Tracking error in the path-following experiments directly contribute to the lack of

accuracy. However, it should be noted that the overall accuracy and precision for the

nanopositioning systems, presented in this thesis, are not measured explicitly.

Obtaining nanometric tracking performance for such dynamic commands is rel-

atively challenging because a linear controller may not provide adequate command
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Table 3.1: Comparison of dynamic tracking performance in large range nanopositioning systems

Reference
Motion
Range
(mm)

Bearing
Actuator /

Transmission
Reference
Command

Tracking
Error
(nm)

Buice et al. [38] 50
Linear guide (coarse),

flexure (fine)

DC motor with
leadscrew (coarse),

PZT (fine)
2.5 mm sine @ 0.01 Hz 45

Choi et al. [39] –
Linear guide (coarse),

air bearing (fine)
linear motor (coarse),

voice coil (fine)

20 mm/s constant
velocity, 300 mm

motion range
150

Michellod et al. [42] 70
Flexure (coarse and

fine)

Stepper motor with
leadscrew (coarse),

PZT (fine)

10 µm, 200 Hz
Kolmogorov signal

8 (RMS)

Fujita et al. [103] 200
Linear guide (coarse),

flexure (fine)

DC motor with
leadscrew (coarse),

PZT (fine)
100 µm sine @ 0.2 Hz 200

Maeda et al. [36] 10 Air bearing Voice coil
3 mm bandlimited

triangular profile @ 5
Hz

5

Zschaeck et al. [40] 200 Linear guide Linear motor
1 mm/s constant

velocity, 10 mm motion
range

15 (RMS)

Fukada et al. [8] 1 Flexure
Moving magnet

actuator

0.125 mm/s constant
velocity, 0.5 mm

motion range
50

Kim et al. [47] 5 Electromagnetic Electromagnetic
2.5 mm/s constant

velocity, 5 mm motion
range

25
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following and disturbance rejection over a desired finite frequency range. While a

number of authors [8, 36, 37, 41, 47–49, 51–53] have reported large range (> 1 mm)

and high resolution (< 10 nm Root Mean Square or RMS) for point-to-point posi-

tioning commands, only a few have shown nanometric positioning performance for

dynamic commands over a large motion range (see Table 3.1 for a comparison). It

should be noted that due to differences in the range, frequency content, and type of

command trajectory used, it is not possible to compare the tracking performances of

these systems in a consistent manner. However, it can be observed that the nanomet-

ric tracking performance is reported either over a small motion range or for slower or

quasi-static commands.

Although lithographic steppers and scanners used for semiconductor manufactur-

ing and inspection do provide large range and nanometric motion quality at relatively

higher speeds [56], these machines are not targeted towards niche low-cost desktop

applications. Achieving such specifications in a cost-effective and desktop-size setup

is still a challenging problem.

3.2 Experimental Setup

The single-axis nanopositioning system, shown in Fig. 2.14, consists of a symmetric

double parallelogram flexure bearing and a moving magnet actuator (MMA). The

detailed design and fabrication of the experimental setup can be found in Chapter II.

A linear optical encoder with 5 nm quantization steps is used for position measurement

and feedback. The encoder read-head is mounted on the local ground of the flexure

bearing and the scale is mounted on the motion stage. Hence, the sensor output is

the relative displacement of the motion stage with respect to the local flexure ground.

A custom-made driver, operating in the voltage mode, with a gain of 5 V/V and a

bandwidth of 10 kHz is used to drive the MMA. Details regarding the design of the

driver and its characterization are provided in Appendix B. The control system is
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implemented on a real-time hardware (DS1103 from DSpace) equipped with 16-bit

digital-to-analog converter. While the sampling frequency and the loop rate are fixed

at 10 kHz, all the measurements shown in this chapter are taken at a bandwidth of 1

kHz.

3.2.1 System Identification

In order to design a linear feedback controller, a linearized frequency domain

model of the system is needed. Although, as mentioned in the next section, there

are known sources of nonlinearities in the system, they can be neglected for the

purpose of obtaining a linearized plant model. The open-loop frequency response

of the nanopositioning system was found experimentally via broadband FFT-based

system identification technique. For this purpose, a chirp signal with a frequency

content of 1–1000 Hz was sent as the input to the amplifier. The amplitude of the

chirp signal was chosen to restrict the maximum displacement of the stage to be less

than 10 µm. Next, the Matlab� function invfreqs was used to fit a continuous-time

stable transfer function, P (s), to the open-loop frequency response, obtained using

Fourier analysis of the collected input and output signals [104]. The resulting 5th

order transfer function is given by

P (s) =
1.28× 1010(s2 + 5.63s+ 3.34× 105)

(s+ 333.1)(s2 + 150.50s+ 3.31× 104)(s2 + 12.43s+ 3.87× 105)
(3.1)

Fig. 3.1 shows the experimentally obtained frequency response along with the

frequency response of the estimated transfer function from the amplifier command to

the measured position. The pole at 53 Hz corresponds to the electrical time constant

of the actuator (44.3 Ω coil resistance and 133 mH coil inductance). The damping seen

in the rigid body mode is contributed by the eddy currents in the MMA Aluminum

coil bobbin as well as by the back-electromotive force dynamics. The open-loop
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Fig. 3.1: Open-loop frequency response of the single-axis nanopositioning system

bandwidth, defined as the frequency where the plant gain drops down by –3 dB,

is approximately 35 Hz. The low open-loop bandwidth of the motion system is a

consequence of the fundamental limitations arising from the physical design of MMA

in flexure based motion systems, mentioned earlier in Section 2.2.2.

3.2.2 Modal Analysis

Structural modal analysis was carried out to predict the natural frequencies and

associated mode shapes of the overall mechanical structure, which includes the flexure

bearing as well as the MMA magnet. As seen in Fig. 3.2, the first natural frequency

around 25 Hz corresponds to the fundamental mode of vibration. At this mode, the

motion stage as well as the secondary stages move in-phase with each other. The

next two higher-order modes are related to the in-phase and out-of-phase vibration

of the secondary stages. At these modes, the motion stage moves with a relatively

small magnitude. The two zero-pole pairs at approximately 85-90 Hz are due to a

combination of these two modes. The next higher-order mode, although not seen

clearly in the frequency response, is an out-of-plane mode which occurs due to the
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(a) 1st Mode: 22.4 Hz (FEA), 25 Hz (Ex-
periment)

(b) 2nd Mode: 82.0 Hz (FEA), 91 Hz
(Experiment)

(c) 3rd Mode, 86.3 Hz (FEA), 98 Hz (Ex-
periment)

(d) 4th Mode, 109.4 Hz (FEA), 110 Hz
(Experiment)

(e) 5th Mode, 152.8 Hz (FEA), 153 Hz
(Experiment)

Fig. 3.2: Modal analysis of the single-axis nanopositioning system
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twisting of the beams. The final mode shown is an out-of-plane mode due to the

bending of the connecting rod. The pole-zero pair due around 150 Hz happens due to

this mode. It is important to note that, because all these four closely spaced zero-pole

pairs occur such that the poles are preceded by the associated zeros, there is no loss of

phase in the open-loop system. At each zero, the phase starts to rise, and then, due to

the pole, falls back to the nominal value. Thus, the controller design and closed-loop

system performance are not affected much by the high frequency dynamics.

3.3 Linear Feedback Design and Limitations

Although the physical system described above is free of friction and backlash, the

achievable positioning performance in the closed-loop setup, shown in Fig. 3.3, is still

limited by the following factors:

1. Several sources of noise and disturbance that exist in the system limit the position-

ing resolution. This includes position sensor noise, actuator driver noise, electronic

noise and quantization in the real-time control hardware, and mechanical floor vi-

brations.

2. As shown in Fig. 2.16(b), the force constant of the MMA is dependent on the

position of the moving magnet with respect to the stator (coils and back-iron).

This force-stroke non-uniformity degrades the tracking performance.

3. The non-linearity in the actuator driver also contributes to the tracking error.

This nonlinearity shows up as harmonic distortion at multiples of the fundamental

excitation frequency of the command signal. Fig. 3.4 shows one such measurement

of the power spectral density (PSD) of the driver output, when the desired output

is a 15 V, 2 Hz sinusoid. The signal-to-noise ratio, which is a measure of the

broadband noise, is approximately 110 dB. However, the total harmonic distortion,

defined as the ratio of power in the harmonics with respect to the power at the
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Fig. 3.4: Harmonic distortion in the actuator driver

fundamental signal frequency, is about –90 dB. Since this nonlinearity is less than

0.01%, it is generally very difficult to model it accurately or further reduce it via

circuit design.

A linear feedback controller is first implemented to achieve good command track-

ing as well as noise and disturbance rejection to overcome the abovementioned sources

of errors. The estimated open-loop transfer function, P (s) in Eq. (3.1), is used to

design an internal-model type linear feedback controller C(s) using loop-shaping tech-

nique. The controller consists of zeros to cancel the coil dynamics as well as the first
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Fig. 3.5: Closed-loop frequency response

resonance poles of the flexure. An integrator is added to ensure zero steady-state

error and low frequency disturbance rejection. This is followed by high frequency

damped poles to make the controller structure strictly proper in order to attenuate

sensor noise amplification. The following compensator was implemented:

C(s) =
1.57× 104(s+ 141.5)(s2 + 159.50s+ 5.01× 104)

s(s+ 4000)(s2 + 6700s+ 1.92× 107)
(3.2)

The resulting closed-loop transfer function is given by

T (s) =
P (s)C(s)

1 + P (s)C(s)
(3.3)

The frequency response of the analytical closed-loop transfer function, T (s), along

with the experimentally obtained closed-loop frequency response is shown in Fig. 3.5.

The phase margin and gain margin of the loop transfer function are 43◦ and 9 dB,

respectively. The effective bandwidth of the feedback loop, defined as the frequency

where the sensitivity transfer function first crosses –3 dB from below, is approximately

85 Hz. Because the controller is implemented digitally with a loop-rate of 10 kHz,
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the phase loss due to sampling is estimated to be only 3◦ near the gain crossover

frequency of around 240 Hz. For higher closed-loop bandwidth, it would be beneficial

to design the feedback controller in the digital domain in order to account for the

phase loss due to the finite loop-rate.

The nanopositioning system was tested for its point-to-point positioning perfor-

mance with step commands of 2 mm and 20 nm, and the measured position response

is shown in Fig. 3.6. The steady-state positioning error, which is a measure of the

positioning resolution, is approximately 20–25 nm peak-to-peak or 4 nm RMS. Al-

though the quantization step size of the linear optical encoder is 5 nm, the steady

state peak-to-peak position variation of the encoder output is 20–25 nm. Thus, it can

be seen that the closed-loop positioning noise is reduced to the sensor noise.

A note on the sensor noise: The quantization step of the position measurements ob-

tained via the linear optical encoder is 5 nm. However, the position stability of the
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Fig. 3.7: Resolution of the linear optical encoder

encoder is 20–25 nm (peak-to-peak). This means that even if the motion stage (on

which the encoder scale is mounted) is physically clamped to the ground (on which

the encoder read-head is mounted), the position variation in the encoder output is of

the order of 20–25 nm. One such measurement is shown in Fig. 3.7. This position

variation is sometimes referred to as the jitter in the encoder and is mainly caused

due to the electronic noise in the interpolation hardware. The RMS value of the

position variation is 4 nm, which is referred to as the resolution of the sensor.

In order to evaluate the tracking performance with the linear feedback controller,

a 4 mm (i.e., 8 mm peak-to-peak), 2 Hz sinusoidal signal is applied as the command.

The resulting tracking error was observed to be within ±46µm, which is quite high

for nanopositioning. A part of the tracking error comes from the phase error in the

closed-loop transfer function at 2 Hz, which is approximately 0.6◦. A lead-lag type

feedforward compensator F (s) is added to correct for the phase error in the frequency
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range below 10 Hz. F (s) is given by:

F (s) =
3.807s+ 3350

s+ 3350
(3.4)

Fig. 3.8(C) shows the power spectrum of the tracking error with 0 dB correspond-

ing to 1 µm2/Hz. It is evident that the tracking error consists of broadband noise

along with a component at the command signal frequency, as well as its higher har-

monics. While the component at 2 Hz can be attributed to inadequate command

following, the higher-frequency harmonics are a consequence of the nonlinearities in

the actuator and the driver, as mentioned earlier. With the addition of the feedfor-

ward compensator, the tracking error is reduced to ±2.5 µm (see Fig. 3.8(A)). This

corresponds to a reduction of about 18 times compared to performance obtained with

feedback alone. This improvement comes only due to reduction of the tracking error

at 2 Hz (see Fig. 3.8(C)). The fact that the error component is not fully eliminated

can be attributed to the uncertainty in the closed loop transfer function model used to

design the feedforward compensator. The higher frequency harmonics which originate

due to the nonlinearities remain unaffected.

The feedback part of the linear controller does provide some reduction in the

harmonic content as compared to tracking in an open-loop setting (see Fig. 3.8(D)).

This reduction in the magnitude of the harmonics is a result of sensitivity reduction

achieved due to feedback, and can be predicted by plotting the sensitivity transfer

function, S(s), which is given by

S(s) =
1

1 + P (s)C(s)
(3.5)

Fig. 3.8(B) shows the Bode magnitude plot of the sensitivity transfer function of

the feedback loop. The harmonic component at 10 Hz, for example, is suppressed by

25 dB in closed-loop, corresponding to the –25 dB magnitude of the sensitivity trans-
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fer function. To achieve greater reduction of the harmonics, the sensitivity transfer

function would have to be reduced further in the low frequency range. However,

this can be done only at the cost of decreasing the stability robustness, given the

actuator saturation concerns due to low open-loop bandwidth of the plant. This is a

direct consequence of the analytic design tradeoff associated with the feedback loop,

known as the Bode waterbed effect [82]. To explain this further, consider the following

bounds on the sensitivity and the complementary sensitivity transfer functions:

|S(jω)| ≤ α < 1, ∀ ω ≤ ω1 (3.6)

|T (jω)| < ε
(ωc
ω

)1+k
, ∀ ω > ωc (3.7)

where α demotes the upper bound of the sensitivity transfer function in the low

frequency range up to ω1 rad/s; ε < 1/2 and k > 0 constrain the roll-off rate and

the gain of the closed-loop transfer function, respectively, after the corner frequency

denoted by ωc. Then, it can be shown that [82]

sup
ω∈(ω1,ωc)

log |S(jw)| ≥ 1

ωc − ω1

{
ω1 log

(
1

α

)
− 3εωc

2k

}
(3.8)

Equation (3.6) conveys the low-frequency sensitivity reduction requirement associ-

ated with the feedback loop for improving the tracking performance. The closed-loop

bandwidth constraint in Eq. (3.7) results from actuator saturation, given the low

open-loop plant bandwidth. Also, such constraint is necessary to increase robustness

against unmodeled high frequency plant dynamics. However, from Eq. (3.8), sensitiv-

ity reduction at low frequencies can only be achieved by increasing the lower bound

on the peak of sensitivity function at intermediate frequencies, which results in loss

of stability robustness. This trade-off is also shown graphically in Fig. 3.9. This

implies that there is a limit to improving the tracking performance of the system by

employing a feedback loop because of its low open-loop bandwidth. In other words,
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sensitivity reduction at low frequencies can only be achieved by increasing the lower

bound on the peak of sensitivity function at intermediate frequencies, which results

in loss of stability robustness.

From Fig. 3.8(C), it can be seen that the deterministic part of the tracking error

due to the nonlinearities as well as due to lack of command following is relatively

large compared to the stochastic part due to various sources of noise and disturbance

mentioned earlier. Moreover, if the command signal is periodic, then the determin-

istic part of the error also repeats every period. Therefore, in such cases, iterative

learning control could be applied in conjunction with feedback in order to reduce the

deterministic or the repeating portion of the tracking error [100, 105]. As explained

in the next section, this is done by modifying the control signal based on learning

from the error histories obtained during previous iterations.

3.4 Iterative Learning Control: Design and Implementation

3.4.1 Overview of ILC

The iterative learning control (ILC) block diagram incorporated with the feed-

back loop in shown in Fig. 3.10. Here, P , C, and F denote the plant, the feedback
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compensator, and the feedforward compensator, respectively. yd(k) is a periodic com-

mand signal and y(k) is the measured response. The objective of ILC is to generate a

feedfoward command u(k) in order to reduce the tracking error e(k) = yd(k)− y(k).

The tracking error ej(k) and the ILC input uj(k) are stored in a memory for every it-

eration j and time instant k. The ILC algorithm then evaluates the new input signal,

uj+1(k), in an offline manner, to be applied during the next iteration. The iteration

period can be chosen as the command period or any multiple of the command period.

The arrangement shown is also known as the serial ILC architecture because the ILC

input is added to the command before the feedback loop. Although a serial archi-

tecture is chosen here, a similar analysis and design procedure could be followed to

implement an equivalent parallel ILC architecture [105]. Since the implementation of

ILC (storing, processing, and retrieving, of error signals) is usually performed using

a digital computer, it is beneficial to start with a discrete-time formulation [100].

A first-order classical ILC update law is given as follows [100]:

uj+1(k) = Q(z)[uj(k) + L(z)ej(k)] (3.9)
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where L(z) and Q(z) are known as the learning filter and the robustness filter, re-

spectively. The design of these filters determines the performance and the robustness

of the ILC algorithm as described next [105, 106].

With the assumption that the feedback loop is stable and linear time-invariant, a

sufficient condition guaranteeing stability and monotonic convergence of the tracking

error in successive iterations is given by the following standard frequency-domain

result:

|Q(z)[1− L(z)T (z)]| < 1, z = eiωT ∀ω (3.10)

where T (z) represents the z-transform of the closed-loop transfer function, and |.|

refers to H2 norm. The error dynamics is given by the following relation:

(e∞(k)− ej+1(k)) = Q(z)(1− L(z)T (z))(e∞(k)− ej(k)) (3.11)

Additionally, it can be shown that given the initial tracking error, e0(t), the track-

ing error finally converges to

e∞(k) =
1−Q(z)

1−Q(z)(1− L(z)T (z))
e0(k) (3.12)

One of the inherent assumptions in the derivation of Eq. (3.10)–(3.12) is that the

system returns to the same initial state at the start of every iteration. However,

this assumption is too restrictive and, in general, the final converged error can be

shown to be bounded in the presence of bounded initial conditions [107]. In case of

the motion system following a continuous sinusoidal or triangular command, while

operating under a closed-loop feedback, the initial conditions would be bounded by

some finite error, which may consist of a bias as well as random variations.
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3.4.2 ILC Design

From Eq. (3.11), it can be deduced that the learning filter determines the rate of

convergence of tracking error in successive iterations. Specifically, the magnitude of

(1 − L(z)T (z)) should be small for fast convergence. Since the closed-loop transfer

function T (z) is designed to have unity magnitude up to a frequency range of ap-

proximately 400 Hz (see Fig. 3.5), L(z) can be simply chosen as L(z) = λzγ with

λ ≤ 1 as a constant gain and γ > 0 representing the linear phase lead, resulting in

a linear phase lead type iterative learning controller [100]. While higher values of λ

leads to aggressive learning, smaller gains makes the learning process less sensitive

to noise and lead to lower final errors. Also, because λ is a constant gain, it can

be easily tuned online while performing experiments. Secondly, γ > 0, which helps

compensate for the phase loss in T (z), is chosen to satisfy the stability criterion, re-

sulting in a non-causal transfer function. Non-causal implementation is not an issue

because the ILC computation is performed retrospectively, in an offline manner, once

per trajectory repetition.

The robustness filter Q(z) is usually chosen to be a low pass filter with the band-

width, ωn, of Q(z) presenting a trade-off between performance and robustness. As

seen from Eq. (3.12), choosing Q(z) as unity ensures convergence to zero tracking

error. The Nyquist plot of Q(z)(1 − L(z)T (z)) for λ = 0.5, γ = 0 and Q(z) = 1 is

shown in Fig. 3.11. The plot goes outside the unit circle at the frequency of about

280 Hz, thereby violating the monotonic convergence criterion given in Eq. (3.10).

The phase lead zγ can be used to increase the bandwidth of the Q filter. Also plotted

in Fig. 3.11 is the Nyquist plot of Q(z)(1− L(z)T (z)) for λ = 0.5, ωn = 500 Hz, and

γ = 6. The curve remains within the unit circle over the entire frequency range with

the maximum value of |Q(z)(1−L(z)T (z))| being 0.93. Simulations showed that the

overall system remains stable for plant gain variations up to 45%. The Q filter is

designed as a 5th order Butterworth filter to obtain a sharp cut-off. Moreover, since
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Fig. 3.11: Nyquist plot for monotonic convergence criterion

the filtering is done in an offline manner, Q(z) is designed to be non-causal, using the

filtfilt function [104] in Matlab�. This function performs signal filtering in both the

forward and the reverse directions, resulting in zero-phase error in the filtered signal.

3.4.3 ILC Implementation

Figure 3.12 shows the scheme adopted for the implementation of the ILC. The

error signal ej−1(k) and the ILC input signal uj−1(k) are stored in a memory buffer

during the (j − 1)th iteration. The buffers already contain signal values from the

previous two iterations. During iteration j, these buffers are then used to compute

the ILC control signal for (j + 1)th iteration according to the following modified ILC

law:

uj+1(k) = Q(z)[uj−2(k) + L(z)ej−2(k)] (3.13)

The resultant ILC control input uj+1(k) is then unbuffered and applied to the

feedback loop during the (j + 1)th iteration. Although Eq. (3.13) differs from the

standard ILC law, given in Eq. (3.9), it provides an advantage from the point of view
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of non-causal implementation. As shown in Fig. 3.12, the memory buffers contain

signal values for three iterations. In order to facilitate an error-free non-causal filtering

of middle stack (ej−2(k) and uj−2(k)), the knowledge of data before and the after the

(j−2)th iteration helps to set the filter initial conditions for both the forward and the

reverse directions. Since the ILC computation takes more than 0.1 ms, corresponding

to 10 kHz loop-rate, the updated ILC control signal is applied in the (j+1)th iteration

instead of the jth iteration. Therefore, while the feedback computations are done at

the sampling rate, the ILC calculation is carried out only once per iteration.

The final code implemented on the dSPACE� microcontroller is described in Ap-

pendix A.

3.5 Experimental Results

3.5.1 Sinusoidal Command Tracking

The combined feedback and ILC controller described above was applied to the

single-axis nanopositioning system. Figure 3.13 shows the resulting tracking perfor-

mance for a 4 mm amplitude (i.e., 8 mm peak-to-peak), 2 Hz sinusoidal command.

Based on the ILC design described earlier, the learning gain (λ), phase lead param-

eter (γ), and Q filter bandwidth (ωn) were set to 0.5, 6 and 500 Hz, respectively.

Figure 3.13(A) shows the decrease in the tracking error as a function of the iteration
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number. The RMS of the tracking error is reduced from about 1.8 µm to 10 nm in

approximately 40 iterations. This corresponds to a reduction by a factor of about

180 in 20 seconds. The tracking error at the end of the 40th iteration is plotted in

Fig. 3.13(B). The performance improvement, compared to linear controller by itself,

comes from a reduction in the repeating portion of the tracking error at the command

frequency and its harmonics (Fig. 3.13(D)). The ILC input follows a profile similar to

the tracking error, because of the use of constant gain type learning controller. The

dynamic range of the nanopositioning system, defined as the ratio of the RMS com-

mand (2.83 mm) to that of the RMS tracking error (10 nm), is equal to 2.83×105. The

power spectrum of the converged position response, shown in Fig. 3.13(C), reflects

the true dynamic range of the nanopositioning system.

3.5.2 Triangular Command Tracking

In a separate experiment, a 4 mm and 2 Hz band-limited triangular waveform

was applied as the command. The signal was optimized to have a perfectly linear

(constant velocity) region within ±2 mm while minimizing the power content beyond

the first three harmonics [108]. The motion speed in the linear region is 32 mm/s. As

compared to sinusoids, multi-tone command signals are more challenging to follow

since they give rise to the intermodulation products in addition to the harmonics.

Even in this case, the tracking error after 40 iterations (Fig. 3.14(A)) is reduced to

10 nm RMS. The power spectrum of the measured response and the tracking error

are shown in Fig. 3.14(B).

3.6 Closure

In this chapter, application of ILC is shown to improve the tracking performance of

a large range single-axis flexure-based nanopositioning system. The resultant tracking

error is approximately two times larger than the sensor resolution, leaving some scope
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for further improvement. It should be noted that the sensor noise contributes to the

random component of the tracking error. In this regard, averaging of the ILC input

[109] should be investigated to further reduce the tracking error.

One of the reasons for the slow error convergence rate (about 40 iterations) is the

fact that two extra iterations are needed in the ILC implementation using Eq. 3.13, as

compared to the classical update law given in Eq. 3.9. As discussed in Section 3.4.3,

Eq. 3.13 enables error-free non-causal filtering as well as provides extra time for

offline computation. If the non-causal filtering with zero initial conditions does not

have an significant effect on the converged error, and the ILC implementation can

be optimized to enable the computation time less that one sampling-period, then the

classical update law could be used. This should ideally decrease the convergence time

by a factor of two. Secondly, since a large component of the repeating error lies in a

the frequency range less than 50 Hz, the learning filter could be redesigned to have

high gain value in the low-frequency region and decreasing gains thereafter [100]. This

will also lead to faster learning without sacrificing the ILC stability robustness.

Instead of using ILC, another possible approach could have been to apply a model

inversion type feedforward controller based on a nonlinear model. Two known sources

of nonlinearities in the physical system are the actuator and its driver. In this re-

gard, an attempt was made to implement feedback linearization to cancel the force-

displacement nonlinearity of the actuator. While this reduces the harmonics seen in

the position output to some extent, it was still inadequate. With the final aim of

achieving a high dynamic range of more than 105, this approach requires a highly ac-

curate model or identification of the nonlinearities, obtaining which is not easy. One

of the reason being that the sensors used to characterize these nonlinearities in vari-

ous components themselves suffer from nonlinearities in their input-output behavior.

Additionally, nonlinearities in the driver and the actuator vary with the power level

and experimental setup assembly, respectively. In the presence of such nonlinearities
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that are variable and difficult to model accurately, ILC proves to be a much more

pragmatic approach. This is because it does not require any knowledge of the non-

linearities. The only drawback of ILC is that it works only for repetitive or periodic

commands, which is acceptable for the targeted scanning-type applications. However,

compensation of nonlinearities would bring down the tracking error due to feedback

alone, thereby reducing the convergence time for the ILC.
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CHAPTER IV

Dynamic Modeling of XY Flexure Mechanism1

The objective of this chapter is to model the low frequency dynamics of XY flexure

mechanism, comprising double parallelogram flexure modules, in order to understand

the unexplained variation in the zero dynamics observed around 150 Hz. While it be-

comes important to consider geometric nonlinearities due to large beam deformation,

several simplifying assumptions are made, without sacrificing its ability to capture

relevant dynamics, to come up with the simplest competent model that provide sig-

nificant insights. Using the derived model, it is shown that kinematic coupling, due

to geometric nonlinearities in the beam mechanics and small dimensional asymmetry,

may conspire to produce complex-conjugate NMP zeros at certain operating points

in the mechanism’s workspace. This finding is the main contribution of this chapter.

In the future, such modeling effort would in turn pave the way for structural opti-

mization or modification of mechanisms in the design phase itself to avoid the NMP

phenomenon and thereby ensure improved control system performance. Even though

this research is motivated by a specific mechanism, the modeling approach presented

here is broadly applicable to flexure mechanism undergoing large beam deformations.

1This work was done in collaboration with Leqing Cui and Kai Wu in the Precision Systems
Design Laboratory at the University of Michigan.
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4.1 Physical System Description

Shown in Fig. 4.1 is the XY nanopositioning system that employs a parallel-

kinematic flexure mechanism to achieve a motion range of 10 mm × 10 mm. This

flexure mechanism [57] consists of eight symmetrically-placed, double parallelogram

flexure modules (DPFMs). This unique layout provides a high degree of geometric

decoupling between the two motion axes (X and Y) by avoiding geometric over-

constraint, provides actuator isolation that allows the use of large-stroke single-axis

actuators, and enables a complementary end-point sensing scheme using commonly

available sensors [110]. The experimental setup is described below in further detail.

4.1.1 Flexure Bearing

The flexure bearing was designed [57] to minimize in-plane and out-of-plane para-

sitic error motions as well as cross-axis coupling between the X and Y directions over
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the motion range of interest. The critical dimensions are as follows: center-to-center

distance between adjacent DPFMs is 46.25 mm; beam length is 47.5 mm; beam in-

plane thickness is 0.63 mm, beam out-of-plane height is 25 mm; and, inner and outer

beam spacing in each DPFM are 12.81 mm and 18.44 mm, respectively. The flexure

bearing along with the ground frame that is used for mounting all sensors and actua-

tors was created monolithically from a 25.4 mm thick AL6061-T651 plate, machined

down to 25 mm, using wire- Electric Discharge Machining (EDM). The flexure bear-

ing spans a 255 mm × 255 mm area in the center, while the outer dimensions of the

ground frame, and therefore the overall system, are 385 mm × 385 mm.

4.1.2 Sensors

A linear optical encoder (RELM scale, Si–HN–4000 Read-head, and SIGNUM In-

terface from Renishaw, 5 nm resolution, 80 mm range) is employed as the first X

sensor between ground and intermediate stage. The resolution of a linear encoder is

limited by its line grating period and electronic interpolation, and its digital output

makes it immune to electronic noise. The encoder scale is mounted on the interme-

diate stage while the encoder read-head is fixed to the ground, which allows easy

routing of the read-head cable.

It was verified experimentally as well as analytically that the relative X displace-

ment between the intermediate stage and the motion stage is of the order of tens of

microns over the entire motion range of the system [57]. Accordingly, a capacitance

probe (Model # C23–C, Driver # CPL290 Elite Series, from Lion Precision, 1 nm

resolution, 50 µm range) is selected for the second X sensor. The probe is mounted on

intermediate stage using a simple flexure-based clamp, while a high precision Starrett

gauge block mounted on the motion stage served as the probe target.

The two sensor signals are fed to a real-time controller, where they are added in

order to obtain the net X displacement of the motion stage with respect to the flexure
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ground. An analogous arrangement is repeated along the Y direction.

4.1.3 Actuators

An off-the-shelf voice coil actuator is used in an inverted configuration to provide

actuation along both X and Y directions. Based on the flexure bearing stiffness char-

acteristics, voice coil actuator from BEI Kimco Magnetics (model # LA24–20–000A)

was selected. These actuators have a force constant of 11.12 N/A and are capable of

111.2 N bidirectional peak force. In the physical system layout (Fig. 4.1), since inter-

mediate stage is constrained to move only along the X axis with respect to ground,

the actuator mover may be directly attached to it. In fact, no additional bearing or

decoupling is needed for the actuator, which provides considerable simplicity in the

system integration. The permanent magnet of the voice coil actuator is connected to

the intermediate stage as the mover, while the coil is attached to the ground frame as

the stator. Similar to a moving magnet actuator, this offers two advantages: first, a

static coil avoids moving wires, which can be a source of disturbance; and second, the

coil, which is a heat source, is separated from the flexure bearing. The ground frame

with its greater thermal mass and surface area is better able to channel and dissipate

this heat generated in the coil due to actuation current. As mentioned in Chapter II,

the only drawback of using a voice coil actuator in an inverted configuration is a

large moving mass of the actuator. In the next generation prototype, this voice coil

actuator is planned be replaced by a custom-made moving magnet actuator, thereby

greatly reducing the actuator moving mass.

Although voice coil actuators offer sufficiently large-range, non-contact, and cog-

free motion, the achievable motion resolution and accuracy is limited partly by the

noise and distortion in its current driver (or servoamplifier). A current driver provides

a direct control of the actuation force and offers a greater actuation bandwidth. A

desired dynamic range of 107 or 140 dB is extremely difficult, if not impossible, to
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achieve in practical high-current drivers due to the presence of broad-band noise and

harmonic distortions. However, the effect of amplifier noise on motion resolution

could be mitigated to some extent via effective controller design. The detailed design

and characterization of the servoamplifier is given in Appendix B.

4.1.4 Real-time Control Hardware

The control algorithm is developed in Simulink� and deployed real-time via dSPACE

DS1103 microcontroller. The controller is equipped with 16-bit ADCs and DACs with

a SNR greater than 83 dB and 24–bit digital incremental encoder interfaces with a

fourfold pulse count rate of 6.6 MHz.

4.2 System Identification

Achieving large motion range as well as nanometric precision and resolution in

a nanopositioning system requires good command tracking, noise rejection and dis-

turbance rejection, which in turn require effective feedback control. The design and

implementation of a feedback controller requires an understanding of overall system

dynamics, particularly the flexure dynamics, for optimal closed-loop performance.

As a first step to understand the dynamics of the XY nanopositioning system, the

open-loop frequency response was obtained experimentally via broadband FFT-based

system identification technique. Within the frequency range of less than 500 Hz, the

actuator, current driver and the sensor can be described by constant gains, inde-

pendent of any dynamics. Shown in Fig. 4.2, Gxx(s) represents the non-collocated

transfer function from the force provided by the X actuator to the position of the

motion stage along the X axis. Large range of motion in the nanopositioning system

implies large deformations in the individual flexure beams, which can make struc-

tural non-linearities relevant in the dynamic response. Since structural non-linearities

are deformation dependent, the transfer function was measured at various operating
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Fig. 4.2: System transfer function along X axis, Gxx(s)

points in the workspace along the Y axis. Each operating point was realized by send-

ing constant DC offset force commands Y actuator, thereby pre-distorting the beams

within four of the DPFMs. Shown in Fig. 4.2, the XY flexure mechanism has a first

natural frequency at about 18 Hz. The mode shape for this resonance is shown in

Fig. 4.3(a), which is the fundamental mode of vibration along the X direction. A sim-

ilar mode exist along the Y direction as well by virtue of symmetry in the mechanism.

However, at operating points (0,1.5) mm and (0,3) mm the transfer function encoun-

ters an additional phase drop of 360◦ or 720◦, respectively, near 150 Hz, as compared

to the (0,0) mm operating point. As the entire operating range along the Y axis was

spanned, no particular trend in this phase drop was observed (only 3 datasets are

shown for clarity). It is interesting to note that the transfer function magnitude at

the frequencies before and after 150 Hz remains the same for all the operating points.
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Fig. 4.3: Modal analysis of XY flexure bearing
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This observation, which was found to be repeatable, leads to an inference that some

of the complex-conjugate zero pairs migrate to the right-side of the imaginary axis on

the s-plane, giving rise to the additional phase drop and nonminimum phase (NMP)

behavior. A zoomed-in plot (inset) shows the presence of multiple closely-spaced

complex-conjugate poles and zeros in the frequency range of 140-160 Hz. A linear

modal analysis of the overall flexure mechanism, carried out separately using the finite

element method, shows that these dynamics are related to the vibration of the inter-

mediate stages within the DPFMs. There are eight such poles or natural frequencies

corresponding to the number of DPFMs. The mode shape at one of these natural fre-

quencies is shown in Fig. 4.3(c). However, these poles are not clearly distinguishable

in the figure due to fact that some of the complex-conjugate poles and zeros happen

to be very close to each other, leading to approximate pole-zero cancelations.

NMP zeros in the plant transfer function severely restrict the overall performance

of the feedback control system. Specifically, the presence of NMP zeros decreases

the stability robustness as well as puts hard constraints on the achievable closed-

loop bandwidth [111, 112]. This is because as the feedback gain is increased, some

of the closed-loop poles move towards right half plane open-loop zeros, leading to

instability. Hence, stability margins cannot be arbitrarily increased, resulting in ro-

bustness limits. Secondly, complex NMP zeros contribute to additional phase lag,

thereby necessitating the gain crossover frequency to be less than the corresponding

zero frequency.

Before a low frequency dynamic model of XY flexure mechanism, which explains

the variation in the zero dynamics observed around 150 Hz, is attempted, a litera-

ture review of the various approaches undertaken to model the dynamics of flexure

mechanisms is presented.
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4.3 Prior Art

Flexure mechanisms are often employed in precision motion applications due to

their ability to produce frictionless and therefore highly repeatable motion. Exam-

ples include mirco- and nanopositioning systems used as scanners in scanning probe

microscopy [113] and scanning probe lithography [114]. Flexure mechanisms are also

used in various MEMS devices [115] because their monolithic construction and com-

pact size is well-suited for micro-fabrication processes. Flexure mechanisms are also

used in energy harvesting applications [116] due to their combined functionality of

motion guidance and elastic spring behavior. In all these applications, it becomes

important to understand the dynamic characteristics of the flexure mechanisms to

achieve optimal system-level performance.

Dynamic modeling of rigid link mechanisms with inherent flexibilities, e.g., robotic

manipulators, has been studied extensively in the past. An overview and classifica-

tion of various modeling approaches can be found in the review paper by Dwivedy

and Eberhard [117]. Most of the approaches outlined in this paper assume small

link deformations to significantly reduce the model complexity. This assumption is

justified considering the deformation is generally small relative to the link motion. In

contrast to these flexible manipulators in which the majority of motion is achieved by

virtue of joints, the motion in flexure mechanisms is entirely due to the large defor-

mations of its constituent links or beams. Large deformations in beams in turn give

rise to geometric nonlinearities, which may significantly affect its dynamics even at

low frequencies [118]. Da Silva studied the effect of geometric nonlinearities on the

dynamics of beams [119, 120] and later extended it to a class of multi-beam structures

[118]. The resulting set of nonlinear equations was solved either using perturbation

techniques or via numerical methods. However, it would be impractical to extend

these modeling and analysis methods in an analytical closed-form manner to more

complex flexure mechanisms such as the one presented in this paper.
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Much of the research in the field of flexure mechanisms so far has been focused on

its kinetostatic design and topology synthesis [96, 121, 122]. However, the dynamic

analysis of flexure mechanisms has been increasingly getting more attention. Lan

and Lee [123] presented a distributed-parameter dynamic modeling approach of flex-

ure mechanism with large deformation incorporating shear and axial deformations.

The resulting equations of motion were solved using numerical methods. Wang and

Yu [124] and Akano and Fakinlede [125] used finite element based nonlinear analy-

sis to predict the effect of design parameters on the dynamic performance of flexure

mechanisms. Although accurate, these methods are computationally intensive and

provide little physical insights. Alternately, lumped-parameters closed-form model-

ing approaches have been developed. Shilpiekandula and Youcef-Toumi [126] used a

lumped-parameter model of a Timoshenko beam to come up with a linear dynamic

model of a diaphragm flexure. The resulting model was used to predict the effect of

asymmetry due to manufacturing errors on natural frequencies and modal coupling

as well as to come up with quantitative performance trade-offs useful for design pur-

pose. Yu et. al. [127] and Boyle et. al. [128] presented a modeling method based on

pseudo-rigid-body model for analyzing the dynamics of flexure mechanisms. While

this approach also leads to a simple lumped-parameter closed-form model, some of

the model parameters still need to be computed using numerical methods. Also, the

model parameters vary with the type of loading on the individual constituent beams.

In this chapter, a lumped parameter model of a XY flexure mechanism is derived

keeping in mind the relevant geometric nonlinearities. The resulting nonlinear equa-

tions of motion are then linearized about varying operating points in the mechanism’s

workspace in order to predict the existence of complex-conjugate NMP zeros in the

transfer function observed via experimental system identification. It should be noted

that, while analytical perturbation methods [129] could be applied to solve the set of

nonlinear equations, such analysis is not needed here.
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The existence of NMP zeros that lie on the real axis, in the non-collocated trans-

fer function of a flexible beam, is well known [130, 131]. Spector and Flashner [130]

studied the sensitivities of beam cross-section, material properties, and sensor loca-

tions on the locations of poles and zeros via a distributed-parameter Euler-Bernoulli

beam model. They showed that, as the sensor is displaced away from the actua-

tor, the complex-conjugate zeros along the imaginary axis migrate towards infinity

and reappear along the real axis. Miu [131] provided an physical explanation to

these real NMP zeros stating that they are related to the non-propagation of energy

within the structural subsystem confined by the actuator and the sensor. However,

in the phenomenon reported in this chapter, a zero quartet migrate symmetrically

away from the imaginary axis, with one of the pair moving to the right-side of the

imaginary axis and the other pair moving to the left-side, the former giving rise to

NMP complex-conjugate zeros. In the past, complex-conjugate NMP zeros has been

reported in the context of an acoustical transfer function of a room [132], as well as

in the non-collocated transfer function of a lumped parameter coupled spring-mass

system [133]. However, effect of modal coupling and small structural asymmetry in

producing complex NMP zeros in flexure mechanisms has not been shown before as

per author’s knowledge.

4.4 Dynamic Modeling

The XY flexure mechanism, shown in Fig. 4.1, is designed for a maximum trans-

lational displacement of ±5 mm along each axis, corresponding to a maximum indi-

vidual beam deflection of 2.5 mm or about 5.3% of the beam length. Therefore, it

becomes necessary to consider the effect of geometric nonlinearities in the formulation

of its dynamics [96]. The XY mechanism consists of eight identical DPFMs, each of

which is a serial combination of two parallelogram flexure modules (PFMs). In this

section, the force-displacement relationship of a PFM, capturing the relevant geo-
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Fig. 4.4: Parallelogram flexure module

metric nonlinearities, is used to derive its lumped parameter quasi-static model. This

lumped-parameter model is then used as a starting point to derive a dynamic model

of two representative, relatively simpler flexure mechanisms, termed as Mechanism I

and Mechanism II, that are also constructed from DPFMs. The modeling of these two

representative mechanisms provides valuable understanding of the dynamic behavior

of flexure mechanisms when geometric nonlinearities are relevant. This modeling ap-

proach and associated understanding is then extended to the XY flexure mechanism

of Fig. 4.1 in the subsequent section. In the modeling process, several simplifying as-

sumptions are made to keep the resultant model manageable and insightful, without

sacrificing its ability to capture relevant dynamics. These assumptions are listed, as

they become relevant in the modeling process.

4.4.1 Parallelogram Flexure Module (PFM)

Fig. 4.4 shows a PFM comprising two identical beams connecting the mechanism

ground to the motion stage. The PFM is one of the simplest single-axis transla-

tional flexure modules, with Y direction representing the degree-of-freedom (or DoF)

89



direction of the motion stage, and X and Θ directions representing the degree-of-

constraint (or DoC) directions. The quasi-static force-displacements relations for the

PFM, shown to be accurate over a beam deformation within 10% of the beam length,

are given below [96]. All the nonlinear terms in these equations arise as a consequence

of arc-length conservation of the constituent beams.

Y

L
=

 1

2
(
a− i P

EI/L2

)
︸ ︷︷ ︸

cy

F

EI/L2
(4.1)
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{
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EI/L
− c

a
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EI/L2
− hY

L

P

EI/L2

}
(4.3)

Here, F , P , and M represent the forces and moment applied on the motion stage,

and Y , X, and Θ are the corresponding displacements and rotation. L and T are the

length and in-plane thickness of the beams, respectively, W is the half-spacing be-

tween the beams, E is the Young’s modulus, and I is the second moment of area of the

individual beams about Z axis. The coefficients a, r, i, c, and h are non-dimensional

numbers, and assume the values of 12, 1/700, −0.6, −6, and −0.1, respectively, for a

uniform cross-section thin beam [96]. The values of all the physical variables used in

this chapter are summarized in Table 4.1.

In Eq. (4.1)-(4.3), cx, cy and cθ denote the non-dimensional compliance of the PFM

in the X, Y, and Θ directions, respectively. The DoF compliance (cy) is a function of

the axial force on the motion stage and it increases when the axial force is tensile in
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Table 4.1: Physical parameters and constants

Parameter Symbol Value Units

Length of the beam L 47.5 mm
Thickness of the beam T 0.6 mm
Height of the beam H 25 mm
Young’s Modulus of Aluminum E 6.9× 1010 N/m2

Moment of inertia of the beam I 5.1× 10−4 mm3

Mass of the motion stage m1 0.284 Kg
Mass of the secondary stage m 0.018 Kg
Mass of the moving stage M 0.177 Kg
Mass of the actuator Ma 0.570 Kg

nature. The DoC compliance (cx and cθ) is comprised of two components. The first

component arises by virtue of purely elastic effects. The other, known as the elas-

tokinematic component, also has a dependence on the DoF displacement in addition

to elastics effects. The elastokinematic component leads to an overall increase in the

DoC compliance with increasing DoF motion. Even after the considering the increase

in compliance due to abovementioned elastokinematic effect, the compliance of the

PFM in the DoC directions (cx = 9.2×10−6 and cθ = 5.4×10−5) remain several orders

of magnitude smaller than its compliance along the DoF direction (cy = 3.9× 10−2).

Therefore, as a first step to simplify the modeling effort, the compliance of the PFM

along its constraint directions is neglected. This assumption is justified given our

objective of capturing NMP behavior that occurs in the frequency range less than

200 Hz. It was separately confirmed that the constraint directions compliance only

affect the dynamics in the frequency range greater than 2000 Hz, for the dimensions

given in Table 4.1.

The geometric nonlinearity arising due to beam arc-length conservation leads to

the purely kinematic error motion along the X directions due to the DoF or Y direction

displacement of PFM. Equation (4.2) also captures this error motion in the axial

direction in the non-dimensionalised form, represented by ex. For the dimensions
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mentioned in in Table 4.1, the corresponding kinematic error motion in the X direction

of the PFM is approximately equal to 0.08 mm, given for a maximum Y direction

displacement of 2.5 mm.

Given the abovementioned assumptions, Eq. (4.2)-(4.3) can be simplified as fol-

lows:

X

L
≈ i

(
Y

L

)2

(4.4)

Θ ≈ 0 (4.5)

4.4.2 Double parallelogram flexure module (Mechanism I)

In this section, the dynamic model of a representative flexure mechanism, com-

prising a DPFM, is presented. This model, shown in Fig. 4.5 and referred to as

Mechanism I, consists of a motion stage (1) connected to a moving frame (3) via a

DPFM, which includes a secondary stage (2). The moving frame is constrained to

move only along the X direction. Additionally, the operating point is varied via ap-

plication a constant force (F̄ ) to the motion stage along the Y direction. The nominal

position of the masses at this operating point can be derived using the quasi-static
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force-displacement relations for PFM given in Eq. (4.1) and Eq. (4.4). They are given

by:

Ȳ1 = 2Ȳ2 =
1

a

F̄

EI/L3
(4.6a)

X̄2 = −i Ȳ2
2

L
(4.6b)

X̄1 = X̄3 = Ȳ3 = 0 (4.6c)

Here, the bars on the variables represent their corresponding values at the operating

point. The inner and the outer PFMs in the DPFM are displaced equally in their

transverse direction. The free-body diagram of the individual members is shown in

Fig. 4.6. Here, the mass of the beams is neglected compared to the rigid masses.
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Also, without loss of generality, the spring kA is assumed to have a stiffness equal to

that of the transverse stiffness of a DPFM, i.e.,

kA = a
EI

L3
(4.7)

From the free-body diagram, the corresponding equations of motion can be derived

using Eq. (4.1) and Eq. (4.4):

−P1 = m1Ẍ1 (4.8a)

F − F1 = m1Ÿ1 (4.8b)

P1 − P2 = m2Ẍ2 (4.8c)

F1 − F2 = m2Ÿ2 (4.8d)

P + P2 − kAX3 = m3Ẍ3 (4.8e)

F1L
3 = 2(aE − iP1L

2)(Y1 − Y2) (4.8f)

F2L
3 = 2(aE + iP2L

2)(Y2 − Y3) (4.8g)

X1 −X2 = i(Y1 − Y2)2/L (4.9a)

X3 −X2 = i(Y2 − Y3)2/L (4.9b)
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Y3 = 0 (4.9c)

The above equations are nonlinear in force and displacement. In order to study

the frequency response of the mechanism along the X direction, these equations of

motion are linearized about a particular operating point using the following notation:

Xj = X̄j + X̂j ; X̂j � X̄j (4.10a)

Fj = F̄j + F̂j ; F̂j � F̄j ... and so on. (4.10b)

Here, the hat on the variables denotes their perturbations about the operating point.

Since there are three masses, each having two DoFs, and three geometrical constraints

corresponding to Eq. (4.10), Mechanism I can only have 3 DoFs. The displacement

coordinates X̂1, Ŷ1 and Ŷ2 are chosen arbitrarily to represent these DoFs. The re-

sultant linearized equations of motion derived using Eqs. (4.6)–(4.10). are shown

below: 
m1 +m2 +m3 −α(m2 +m3) α(m2 + 2m3)

αm1 m1 0

α(2m1 +m2) −α2m2 m2(α
2 − 1)




¨̂
X1

¨̂
Y1

¨̂
Y2



+


kA −αkA 2αkA

0 k −k

0 k −2k



X̂1

Ŷ1

Ŷ2

 =


P̂

0

0

 (4.11)
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Fig. 4.7: Transfer function, Gxx(s), for Mechanism I and Mechanism II

where,

α = i
Ȳ1
L

; k = 2a
EI

L2
(4.12)

Here, α is termed as the coupling coefficient, representing the kinematic coupling

that exists in the DPFM between its axial and transverse directions. α depends upon

the operating point or the initial pre-distortion applied to the PFMs. The remain-

ing two displacements X̂2 and X̂3, can be found out using the following linearized

constraint relationship derived from Eq. (4.9) as follows:

X̂2 = X̂1 − α(Ŷ1 − Ŷ2) (4.13a)

X̂3 = X̂1 − α(Ŷ1 − 2Ŷ2) (4.13b)

The non-collocated transfer function, Gxx(s), from the X actuation force (P̂ ) to

the displacement of the motion stage in the X direction (X̂1) can be derived us-

ing Eq. (4.11). Gxx(s) is plotted in Fig. 4.7 for the operating point denoted by
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Fig. 4.8: Natural frequencies and mode shapes for Mechanism I

(X̄1, Ȳ1) = (0, 0) mm and (0, 5) mm. An infinitesimal amount of proportional damp-

ing is incorporated in this model to keep the transfer function magnitude finite at

resonances. The natural frequencies and the corresponding mode shapes for Mech-

anism I are shown pictorially in Fig. 4.8 for the latter operating point. Following

observations can be made based on the above analysis:

1. In the first mode, corresponding to the natural frequency of 18.2 Hz, all the three

masses move in-phase in the X direction with approximately equal amplitudes.

This mode is related to the spring kA. The transverse motion of masses m1 and

m2 remains small in magnitude.

2. In the second mode, at a natural frequency of 25.6 Hz, masses m1 and m2 move

in-phase predominantly along the Y direction with m1 having twice the amplitude

of m2. This mode occurs due to the transverse bending stiffness of the PFMs.

At this mode, the X direction motion of the motion stage is negligible. Hence,

this mode does not show up in the transfer function due to approximate pole-zero

cancelation.

3. The third mode, corresponding to the natural frequency of 151.7 Hz, is also related

to the transverse vibration of secondary stage inside the DPFM. The X direction

motion of the masses remains small. Also, in this mode, m1 (point of sensing)
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moves out-of-phase with m2 and m3 (point of actuation) in the X direction. In

case of the nominal operating point (X̄1, Ȳ1) = (0, 0) mm, the value of coupling

coefficient α is zero. Therefore, the transverse vibration of the secondary stage, in

the third mode, has no effect on the motion stage, which acts act as a node. This

leads to a pole-zero cancelation. Hence, this mode is not seen in Fig. 4.7 at this

operation point. However, for other operating points, the coupling coefficient has

a finite value. Therefore, the third mode shows up in the transfer function with

the sensor located at mass m1.

4. Furthermore, with the non-zero value of α, there is no pole-zero cancelation and

the minimum-phase zero occurs at the frequency of 157.1 Hz for the operating

point (0, 5) mm.

4.4.3 Symmetric double parallelogram flexure module (Mechanism II)

In the next step, the dynamic modeling is extended to the XY flexure mechanism,

referred as Mechanism II and shown in Fig. 4.9, which is a symmetrical extension

of Mechanism I. All the assumptions from the previous sections are carried over to

come up with a linearized set of equation of motion for Mechanism II about varying
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operating points. While the five masses together have 10 DoF, the two roller supports

along with four PFMs provide six constraint equations. Hence, Mechanism II can be

described by a 4 DoF model. The displacement coordinates X̂1, Ŷ1 and Ŷ2 and Ŷ4 are

arbitrarily chosen to represent these DoFs and the equation of motion for Mechanism

II is derived in a similar manner as above. Here, only the finally linearized equations

around the operating point (0, Ȳ1) are given by:

[M ]



¨̂
X1

¨̂
Y1

¨̂
Y2

¨̂
Y4


+ [K]



X̂1

Ŷ1

Ŷ2

Ŷ4


=



2α

0

1

α


P̂ (4.14)

where,

[M ] =



α(m2 + 2m3) −α2(m2 + 2m3)

α(m4 + 2m5) −α2(m4 + 2m5)

m1 +m2 +m3 +m4 +m5 −α(m2 +m3 −m4 −m5)

α(m2 +m3 −m4 −m5) −m1 − α2(m2 +m3 +m4 +m5)

(1 + α2)m2 + 4α2m3 0

0 −(1 + α2)m4 − 4α2m5

α(m2 + 2m3) −α2(m4 + 2m5)

α(m2 + 2m3) α2(m4 + 2m5)


(4.15)
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and,

[K] =



2αkA −(k + 2α2kA) −2(k + 2α2kA) 0

2αkA′ −(k + 2α2kA′) 0 −2(k + 2α2kA′)

kA + kA′ −α(kA − kA′) 2αkA −2αkA′

α(kA − kA′) −2k − α2(kA + kA′) −(k + 2α2kA) −(k + 2α2kA′)


(4.16)

Here, by virtue of symmetry in Mechanism II, the following equalities hold:

m2 = m4 ; m3 = m5 ; kA = kA′ (4.17)

Based on Eq. (4.14) and Eq. (4.17), the transfer function, Gxx(s), from the X

actuation force (P̂ ) to the displacement of the motion stage in the X direction (X̂1) can

be easily derived. Gxx(s) turns out to be similar to the corresponding transfer function

derived earlier for Mechanism I, shown earlier in Fig. 4.7. The natural frequencies and

the corresponding mode shapes for Mechanism II are shown pictorially in Fig. 4.10.

The following observations can be made based on this analysis:

1. The similarity in the transfer function, Gxx(s), for Mechanism I and II can be

attributed to fact that Mechanism II is a symmetrical extension of Mechanism I.

Although Mechanism II is described by a 4 DoF model, the transfer function shows

only two poles. At the other two natural frequencies, the motion stage behaves as

a node in the X direction, leading to pole-zero cancelations in the transfer function

at those frequencies.

2. Similar to Mechanism I, at the first mode of Mechanism II at 18.2 Hz, all the

masses move approximately with equal amplitude along the X direction. This

mode is related to the springs kA and kA′ .

3. The second mode at 27.6 Hz is related to the transverse stiffness of PFMs within
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Fig. 4.10: Natural frequencies and mode shapes for Mechanism II
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the two DPFMs with m1 moving in-phase with approximately twice the amplitude

compared to m2 and m4, in the Y direction. At this frequency, the motion stage

has no motion in the X direction.

4. The two higher order modes, at 146.0 Hz and 149.5 Hz, are also related to trans-

verse vibration of PFMs in DPFMs. In this mode, m2 and m4 move either in-phase

or out-of-phase in the Y direction. When these two masses move in-phase, the

motion stage acts as a node in the X direction, again a consequence of structural

symmetry. The corresponding pole at 146.0 Hz is therefore not seen in a transfer

function due to the pole-zero cancelation. At the other mode at 149.5 Hz, m2 and

m4 move out-of-phase, leading to a non-zero displacement of the motion stage in

the Y direction. Therefore, this mode appears in the Gxx(s) transfer function.

5. The only minimum phase zero seen in the transfer function occurs at the frequency

of 154.8 Hz.

4.4.4 Effect of Asymmetry

One of the consequences of the structural symmetry in Mechanism II is the pole-

zero cancelations in the transfer function. However, some amount of structural asym-

metry is always expected in reality due to the tolerances on the dimensions, depending

upon the manufacturing processes used. This manufacturing tolerance may manifest

itself as mass or stiffness variation in the model given in Eq. (4.17). To study the

effect of structural asymmetry on the dynamics of Mechanism II, as an example, a

parameter variation in the mass m2 is introduced as follows:

m2
′ = m2

(
1 +

δ

100

)
(4.18)

where, m2
′ is the actual mass, m2 is the nominal mass, and δ is the percentage

deviation in m2. Substituting Eq. (4.18) back in to Eq. (4.14), we can numerically
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Table 4.2: Parameter variation in Mechanism II

Case % deviation in m2 NMP zero pairs

I -10 0
II 10 1
III 30 0

predict the variation in the poles and zeros of the transfer function of Mechanism II

due to variation in mass m2.

Figure 4.11 shows the variation in the transfer function, Gxx(s), for Mechanism II

at the operating point of (X̄1, Ȳ1) = (0, 5) mm for three cases shown in Table 4.2. As

opposed to the nominal case shown in Fig. 4.7, there is no pole-zero cancelation in case

of mass asymmetry, and two pole pairs are seen around 150 Hz. While the natural

frequencies or the pole locations changes with this parameter variation, a dramatic

change in the nature of transfer function zeros is observed. If m2 is lighter by 10%

(Case I ), there are two minimum phase zero pairs on the left of the imaginary axis.

However, if m2 is heavier by 10% (Case II ), these zero pairs migrate symmetrically
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Fig. 4.11: Variation in the transfer function, Gxx(s), with variation in mass m2
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on either side of the imaginary axis in the complex plane, giving rise to a pair of non-

minimum phase complex-conjugate zeros. This unexpected change in zero behavior

leads to an additional 360◦ drop in phase in the transfer function. Furthermore, as

the mass asymmetry is increased to 30% (Case III ), these zero pairs move back on

the left side of the imaginary axis, thus becoming minimum phase again.

In Fig. 4.12, the locus of the zeros for Gxx(s) is plotted for different operating

points along the Y axis (Ȳ1) as well as deviation in mass m2 (δ). Figure 4.12(a) shows

the zero map with varying m2 for the operating point (X̄1, Ȳ1) = (0, 5) mm. As the

mass asymmetry is increased, the two zero pairs on the left of the imaginary axis

move towards each other before they diverge away, symmetrically, with respect to the

imaginary axis, on the complex frequency plane. Figure 4.12(b) shows the pole-zero

map with varying operating point for δ = 10. The NMP zero behavior is observed

for operating points described by Ȳ1 ≥ 2 mm. This is because with the increase in

Ȳ1, the coupling term α in Eq. (4.12) increases. This coupling term determines the

contribution of the two resonances on the transfer function Gxx(s).

In addition to the mass of the secondary stages (m2 and m4) and the pre-distortion

(Ȳ1), the existence of NMP zeros is also sensitive to transverse stiffness (k) of the

PFMs in Mechanism II. However, the mass of the motion stage (m1), the two moving

frames (m3 and m5), and the springs (kA and kA′) do not affect the zero behavior as

much. This is because the dynamics in the concerned frequency range around 150 Hz

is dominated by the transverse vibration of the secondary stages.

The variation of transfer function zeros could be explained by considering the

modal expansion of the transfer function, Gxx(s), as follows:

Gxx(s) =
r1

s2 + ω1
2

+
r2

s2 + ω2
2︸ ︷︷ ︸

M1+M2

+
r3

s2 + ω3
2︸ ︷︷ ︸

M3

+
r4

s2 + ω4
2︸ ︷︷ ︸

M4

(4.19)

where ωi are the natural frequencies and ri are the corresponding residues, and any
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damping present is neglected. Near the 150 Hz frequency range, the primary contri-

bution to the transfer function comes from the terms corresponding to the third and

the forth modes. In comparison, the contribution of the first two modes, with natural

frequencies much below 150 Hz, remains small. These contributions, as well as their

sum, are plotted for the three cases considered above in Fig. 4.13. The frequencies at

which the sum equals zero are the corresponding zero frequencies of the transfer func-

tion Gxx(s). When m2 is lighter by 10% (Case I ), the sum crosses zero values before

and after the two natural frequencies. This leads to two minimum phase zero pairs

on the left of the imaginary axis (shown in inset). In case of m2 being heavier by 10%

(Case II ), sum never crosses zero. However, this case leads to complex-conjugate zero

pairs on either side of the imaginary axis. If the mass asymmetry is further increased

to 40% (Case III ), the intersection points move inside the two natural frequencies,

again leading to minimum phase zero pairs on the left of the imaginary axis.

4.5 Dynamic model of the XY flexure mechanism

In this section, the assumptions and modeling procedure described in the Sec-

tion 4.4 are extended to the entire XY mechanism shown in Fig. 4.1. As shown in

Fig. 4.14, there are 13 rigid stages in the model, each having 2 DoFs, and 16 PFMs,

each providing one kinematic constraint. Therefore, the resulting model can be de-

scribed by 10 DoFs. A constant force (F̄ ) is applied to displace the motion stage

to the operating point (0, Ȳ1) and the transfer function from the X actuation force

(P̂ ) to the displacement of the motion stage along the X direction (X̂1) is sought.

All the eight secondary stage masses, as well as the operating point, were randomly

varied to study the variation in the transfer function via simulation. As observed

before in the 4 DoF model, it was found that the transfer function zeros around 150

Hz are highly sensitive to these parameter variations. Although no particular trend

was observed, the variation seen in the transfer function could be broadly classified
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Table 4.3: Parameter values for Fig. 4.15

Case Ȳ1 % deviation in mass NMP zero
mm m2 m4 m5 m7 m8 m10 m11 m13 pairs

I 1.99 -0.79 0.31 -0.01 0.56 0.43 0.81 0.78 -0.33 0
II 1.68 0.07 -0.78 0.65 -0.32 -0.41 0.49 -0.98 -0.90 1
III -1.04 -0.77 0.63 -0.35 -0.51 -0.31 -0.25 0.09 0.12 2
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in three categories, according to the number of NMP zeros observed. These cases are

shown in Fig. 4.15 and the corresponding parameters are tabulated in Table 4.3. The

simulations corroborate the experimental frequency response observed in Fig. 4.2. It

should be noted that, in addition to asymmetry in masses, dimensional tolerances on

the beams will also introduce small asymmetries in the stiffness of PFMs, which in

turn could lead to NMP complex-conjugate zeros.

While small asymmetry in mass as well as stiffness is always expected in practice,

intentional use of large asymmetry in the design could be employed to overcome

the occurrence of NMP zeros. One such experimental result is shown in Fig. 4.16.

In this experiment, additional weight was added to increase the mass m2 in the

XY mechanism by 30%. It is intuitive to add additional weight on m2, as this is

the only secondary stage between the actuator and the sensor locations. With this

modification, all the zeros in the frequency response of Gxx(s) remain minimum phase

throughout the operating points along the Y axis.

4.6 Closure

The main contribution of this chapter is to show that the coupling between closely

spaced resonances may conspire to produce complex-conjugate nonminimum phase ze-

ros in mechanical structures. In the modeling of the XY flexure mechanism, the kine-

matic coupling arises due to beam geometric nonlinearities that cannot be neglected

in case of beams undergoing large deformations. Additionally, the small asymmetries

in the modal parameters (mass and stiffness) result in closely-spaced resonances.

In the future, such modeling efforts would in turn pave the way for structural

optimization or modification of mechanisms in the design phase itself to avoid the

NMP phenomenon and thereby ensure improved control system performance. For

example, in this chapter, intentional use of large asymmetry is shown to overcome

the problem of nonminimum phase zeros. Another approach worth exploring would
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Fig. 4.15: Variation in transfer function, Gxx(s), for XY mechanism
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be to exactly constrain the secondary stages inside the DPFM [134]. This is because

the modes near 150 Hz in the XY mechanism are related to the transverse vibration

of these secondary stages, which are underconstrained in the current design. Lastly,

effect of passive damping on complex-conjugate nonminimum phase zeros needs to be

explored. For example, by coupling the flexure blades with a low wave-speed medium

such as foam, a relatively high degree of damping can be introduced in most of the

modes of the mechanism [135]. Fig. 4.17 shows a picture of the XY nanopositioning

system with flexure blades bonded with EAR C–301 energy absorbing foam. The

frequency response of the system along the X axis, Gxx(s), is plotted for the undamped

and damped cases in Fig. 4.18. While damping is substantially increased at almost all

the poles and zeros, it is also interesting to note that the nonminimum phase behavior,

that is observed in the undamped case for operating points with Y coordinate more

than 1.5 mm, is not seen when the flexure is damped with foam. The damped

XY mechanism remains minimum phase throughout the operating range of motion.

However, the passive damping employed also resulted in increased stiffness by a factor

of 2, thereby necessitating a correspondingly high actuation force. Therefore, a more

systematic study is needed to intelligently couple the beams with foam instead of the

ad hoc damping experiment shown in Fig. 4.17.

An interesting but unanswered aspect remains the physical explanation of complex-

conjugate nonminimum phase zeros in mechanical structures. Mechanism II, de-

scribed in Section 4.4.3, is one of the simplest structures that is found to exhibit this

phenomenon. A study of the energy transfer between modes at the nonminimum

phase zero frequency in this mechanism could be a good starting point in this regard.
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Fig. 4.17: Foam-based passive damping
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CHAPTER V

Control System Design for XY Nanopositioning

System

In this chapter, the control system design and resulting positioning performance

of a large range flexure-based XY nanopositioning system is presented. In addition

to motion range, the performance of a nanopositioning system is specified in terms

of its motion precision, accuracy, and resolution, along with speed of operation. In a

closed-loop setup, these specifications can be translated to equivalent control system

design objectives. Accuracy and precision depend on command tracking as well as

low frequency disturbance rejection. Positioning noise and the minimum incremental

motion determine the resolution. While positioning noise depends on high frequency

noise and disturbance rejection, minimum incremental motion is determined by com-

mand tracking. Closed-loop bandwidth determines the speed and response time of

the nanopositioning system. Finally, closed-loop robustness against modeling uncer-

tainties and parameter variations affect all of the above.

5.1 Control System Challenges

In the context of the XY nanopositioning system described in Chapter IV, several

control design challenges and trade-offs are identified in achieving the abovementioned
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performance objectives:

1. Most existing nanopositioning systems have a high first natural frequency because

they operate over a relatively small motion range. Therefore, simple lower-order

integral controllers with loop crossover frequency far less than the first resonance

provide good overall performance [3]. In our case, an extended range of motion

leads to low primary stiffness, resulting in a low first natural frequency (∼18 Hz).

In order to achieve a bandwidth greater than this first natural frequency, a higher-

order controller is needed, which poses greater performance trade-offs in terms of

actuation effort, robustness, and noise and disturbance rejection.

2. In general, lightly-damped poles and zeros in a flexible system severely affect the

closed loop stability and performance [136]. In addition to this, the non-collocation

of the sensor and the actuator places additional limitations on the achievable band-

width [130].

3. As discussed in Chapter IV, small asymmetry and kinematic coupling results in

parameter variation in the frequency response along each axis over the operating

motion range of the nanopositioning system. This includes not only the small

variations in pole and zero frequencies, but also a change in the zero dynamics

from minimum phase to nonminimum phase. The latter poses greater challenges

and puts hard limitations to obtaining robust stability and performance, especially

near frequencies where nonminimum phase zeros appear [111, 112]. Additionally,

static and dynamic cross-axis coupling between the two axes, defined as the motion

along one axis due to actuation along the other axis, also degrades the positioning

performance. This cross-axis coupling can be either linear or non-linear, depending

on its source.

4. Various sources of noise and disturbance limit the achievable positioning noise.

This includes feedback sensor noise, actuator driver noise and harmonic distortion,
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electronic noise in the data acquisition hardware, and mechanical floor vibrations.

The individual contribution of these sources to the positioning noise depends upon

their respective magnitude, where they enter the feedback system, the control

architecture, and the controller design (See Fig. 3.3).

5. In additional to the challenges that are specific to this XY system, any closed-loop

framework, in general, is subject to fundamental limitations and trade-offs [111,

137]. One such trade-off, between disturbance rejection and stability robustness

in the case of low open-loop bandwidth, is discussed in further detail later in this

chapter.

5.2 Feedback Design and Implementation

Having identified various control system objectives, challenges, and limitations,

the goal of this section is to evaluate the performance of a classical controller on the

XY nanopositioning system. The system can be thought of as a 2-input 2-output

dynamical system with the voltage signals to the current drivers as inputs (ûx and

ûy) and the corresponding displacement of the motion stage (x̂1 and ŷ1) along the X

and Y directions as outputs. This would result in four transfer functions, as shown

below. x̂1ŷ1
 =

Gxx Gxy

Gyx Gyy


ûxûy

 (5.1)

It is important to note that all the transfer functions vary with the operating

point of the motion stage in the XY plane, i.e., Gij ≡ Gij(X̄1, Ȳ1), where i, j ∈ x, y.

Here, we make a few observations. First, after the design modification employed in

the previous chapter, the transfer function Gxx(s) and Gyy(s) remain minimum phase

throughout the operating range. The parameter variation, in terms of the variation

of pole and zero frequencies, remains small and manageable. The variation in transfer
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Fig. 5.1: Experimentally measured frequency responses for the XY nanopositioning
system. (a) Parameter variation in Gxx(s) after design modification with operating
point (X̄1, Ȳ1) = (0, Ȳ1) mm. (b) Comparison between transfer function along X axis
and Y axis at the nominal operating point (X̄1, Ȳ1) = (0, 0) mm
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function Gxx(s) is shown in Fig. 5.1(a). Second, as seen in Fig. 5.1(b), there is a good

match between the transfer functions along both the axes up to 400 Hz, due to the

symmetry in the setup. After 400 Hz, a pole-zero pair is reversed. And third, the

cross-axis transfer functions, Gxy(s) and Gyx(s), are more than 50 times smaller than

the transfer functions along the two axes, at frequencies below 100 Hz, as seen in

Fig. 5.2. The cross-axis coupling between the two axes in this frequency range can be

treated as an output disturbance from the perspective of each individual axis. Next,

the linear controller design along the Y axis, for the plant transfer function Gyy(s)

at the nominal operating point (0, 0) mm, is presented. An identical controller is

implemented along the X axis as well.

The Matlab� function invfreqs [104] was used to fit a continuous-time stable

transfer function, Gyy(s), to the open-loop frequency response along the Y axis at

the nominal operating point (0, 0) mm. The resulting 11th order transfer function is

given by

Gyy(s) =
−8.38× 106

(s2 + 5.77s+ 1.164× 104)

(s2 + 21.12s+ 2.28× 104)

(s2 + 24.43s+ 3.14× 104)

×(s2 + 11.27s+ 1.58× 106)

(s2 + 17.50s+ 1.54× 106)

(s2 + 3.25s+ 4.72× 106)

(s2 + 6.99s+ 4.49× 106)

×(s2 + 20.72s+ 6.71× 106)

(s2 + 14.76s+ 7.04× 106)

(s− 7500)

(s+ 7500)
(5.2)

A comparison between the analytical transfer function and the experimentally

obtained frequency response in shown in Fig. 5.3. The analytical transfer function

has a high-frequency nonminimum phase pole-zero pair at around 1.2 kHz to account

for the phase loss at high frequencies. The source of this phase loss is not explored.

It may be due to the eddy current dynamics of the actuator or due to the structural

dynamics of the mechanism itself.

The open-loop plant transfer function is used to design a lag-lead controller,
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Fig. 5.3: Open-loop plant transfer functions along the Y axis at the nominal operating
point (0, 0) mm

Cyy(s), to achieve acceptable closed-loop stability and performance. The lag part

includes an integrator to achieve zero steady state error and low frequency distur-

bance rejection, and the lead part is needed to increase the phase near gain crossover

frequency. In order to ensure a good roll-off at higher frequencies, an additional pole

is added after the crossover frequency. The following feedback controller was finally

implemented:

Cyy(s) =
260(s+ 100)2

s(s+ 2000)(s+ 3000)
(5.3)

The experimentally measured frequency response of the resulting loop transfer

function Lyy(s) = Gyy(s)Cyy(s) along with corresponding stability margins is shown

in Fig. 5.4. This confirms a Gain Margin (GM) or 12.9 dB and a Phase Margin

(PM) of 37.2◦ at a gain crossover frequency of approximately 70 Hz. Fig. 5.5 shows

the experimentally obtained frequency response of the closed-loop transfer function

along Y axis from the command r̂y to ŷ1. The dip in gain and phase seen at lower

frequencies is due to the zeros of the Cyy(s).

From the perspective of each axis and its respective independent controller, the
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amplifier noise and distortion serve as input disturbance, while the cross-axis cou-

pling and the ground vibration can be thought of as output disturbances. Therefore,

it is important to consider the effect of the feedback controller in rejecting these dis-

turbances. The closed-loop transfer functions from the input disturbance di and the

output disturbance do to the motion stage displacement along the Y axis, ŷ1, are

given by:

Tdi→ŷ1(s) =
Gyy(s)

1 +Gyy(s)Cyy(s)
(5.4)

Tdo→ŷ1(s) =
1

1 +Gyy(s)Cyy(s)
(5.5)

It is clear that the ability of the feedback system to reject both the disturbances

depends upon the magnitude of Cyy(s). In other words, higher closed-loop bandwidth,

which requires a high control gain over a certain frequency range, ensures improved

disturbance rejection. However, there is obviously a limit to which controller gain

can be increased due to concerns arising from stability margins and sensor noise

amplification. For the controller Cyy(s) given in Eq. (5.3), Fig. 5.6 shows the compar-
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Fig. 5.7: Amplitude distribution of the open-loop and closed-loop positioning noise

ison between the open-loop and closed-loop transfer functions from di to ŷ1, Gyy(s)

and Tdi→ŷ1(s), respectively. Thus, the improvement in input disturbance rejection is

clearly evident. A similar trend exists for the output disturbance rejection.

Next, the positioning performance for the XY nanopositioning system based on

the controller design are presented. To measure the positioning noise, which is also

representative of the resolution, the stage was commanded to stay at a fixed posi-

tion. In steady-state, the current amplifier harmonics and cross-axis coupling are

absent and the amplifier’s broad-band Gaussian noise is the dominant contributor

to positioning noise. The effect of this input disturbance on ŷ1 is directly propor-

tional to the area under the transfer function Tdi→ŷ1(s) in Fig. 5.6 [138]. This area is

approximately 4 times less than the area under the transfer function Gyy(s), which

indicates a corresponding improvement in input disturbance rejection. Indeed, this

is corroborated by the time domain analysis of positioning noise in Fig. 5.7, which

shows the probability density function of the open-loop and closed-loop positioning

noise of ŷ1. The closed-loop positioning noise is approximately 4 nm RMS, which is
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3.6 times better than that measured in the open-loop.

Fig. 5.8 shows the position response of the motion stage to step commands of size

1.5 mm and 20 nm (inset) along the Y axis, over a 9 mm range. The steady-state posi-

tioning resolution as seen in this time-domain plot is under 4 nm RMS, in agreement

with Fig. 5.7. Similar closed-loop positioning resolution, in point-to-point motion

commands, was measured for the X axis actuation, as well as simultaneous X and

Y axis actuation. Because of the absence of friction and backlash, the figure (inset)

also indicates a positioning repeatability or precision on the order of the positioning

resolution.

Next, the motion stage was commanded to move in a 5 mm diameter circle at 1

Hz. This was done by sending sinusoidal reference commands along both axes with a

magnitude of 2.5 mm and separated in phase by 90◦. The measured trajectory along

with the ideal commanded circle is plotted in Fig. 5.9. For better visualization, the

radial deviation from the ideal circle is magnified 25 times. The RMS of the radial

error between the measured trajectory and the ideal circle is approximately 2.9 µm.
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Fig. 5.9: Motion stage tracking a 5 mm diameter circle

Corresponding RMS errors for the same diameter circle tracking at frequencies 0.1

Hz and 0.01 Hz were also measured and found to be 319 nm and 58 nm, respectively.

A power spectrum analysis of these closed-loop tracking errors at various frequencies

reveals the presence of three components: 1. Magnitude and phase errors in the ac-

tual motion profile along each axis with respect to the sine and cosine commands, 2.

Higher order harmonics of the commanded frequency and 3. Broad-band Gaussian

noise. The magnitude and phase error is due to lack of adequate closed-loop com-

mand following. The higher order harmonics in the measured trajectory arise from

inadequate attenuation of the nonlinearities in the actuator and its driver as well as

the cross-axis coupling (i.e., lack of input and output disturbance rejection). The

broad-band positioning noise is largely due to the corresponding broad-band noise in

the current amplifier. The circle tracking performance at lower frequencies is better,

as noted above, due to relatively better command following and disturbance rejection

provided by the feedback controller at these frequencies. However, achieving better
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command tracking and disturbance rejection at higher frequencies via linear feedback

controllers results in tradeoffs with stability margins and sensor noise rejection. Thus,

large range and nanometric motion quality is achieved in point-to-point positioning

but not in dynamic command tracking, even at low frequencies.

For periodic commands, the deterministic part of the tracking error due to the

nonlinearities and lack of command following is relatively large compared to the

stochastic part due to various sources of noise and disturbances. Therefore, in a

manner similar to the control of the single-axis nanopositioning system presented

in Chapter III, independent iterative learning controllers can to be implemented in

conjunction with the feedback along each axis to reduce the repeating part of the

tracking error.

5.3 Iterative Learning Controller

In this section, the design and performance of the iterative learning controller

(ILC) along the Y axis is presented. The control architecture remains similar to that

shown earlier in Fig. 3.10. A similar arrangement is repeated along the X axis as

well. The closed-loop transfer function Tyy(s), shown in Fig. 5.5, encounters gain and

phase errors even in the low frequency range after 30 Hz. To compensate for this

error, the learning controller could be designed to be a constant gain (λ) times the

inverse of the closed-loop transfer function. Since the transfer function has a high

frequency non-minimum phase zero, a stable inverse is designed via the zero-phase

error tracking controller (ZPETC) algorithm [139]. The resulting learning controller

is given below:

Lyy(z) = λ
1535.9(z − 0.4464)(z − 0.4806)(z − 0.6805)(z − 0.9172)

z2(z + 0.1676)(z − 0.99)

×(z − 0.9949)(z + 0.4727)(z2 − 1.997z + 0.997)(z2 − 1.959z + 0.9604)

(z − 0.9901)(z2 − 1.997z + 0.9971)
(5.6)
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Fig. 5.10: Closed-loop transfer function with and without non-causal zero-phase learn-
ing controller

Note that Lyy(z) has more zeros than poles and therefore is a non-causal com-

pensator. However, as mentioned before, its offline implementation is not an issue

because the ILC computations are performed retrospectively. For example, if Lyy(z)

has m number of excess zeros, then the classical ILC update law given in Eq. (3.9)

can be modified according to the following equation:

uj+1(k) = Q(z)[uj(k) + z−mL(z)ej(k +m)] (5.7)

Figure 5.10 shows the comparison between the discrete-time closed-loop transfer

function, Tyy(z) with and without the learning controller. The gain and phase of

the compensated transfer function remains close to 0 dB and 0◦, respectively, up

to 200 Hz. The high frequency pole-zero pairs after 200 Hz are not compensated.

The robustness filter Q(z) is designed as a low-pass 7th order Butterworth filter with

a bandwidth ωn of 200 Hz to ensure monotonic convergence as well as stability.

Figure 5.11 shows the Nyquist plot of Q(z)(1 − L(z)T (z)) for values of λ = 0.5 and

ωn =∞, 200 Hz. With 200 Hz Q filter bandwidth, the plot remains within the unit
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Fig. 5.11: Nyquist plot for Qyy(z)(1−λLyy(z)Tyy(z)) showing monotonic convergence
criterion

circle over the entire frequency range with the maximum value of |Q(z)(1−L(z)T (z))|

being 0.5, thus satisfying the stability criterion mentioned in Eq. (3.10).

The combined feedback and ILC controller described above was implemented along

the Y axis of the XY nanopositioning system. Figure. 5.12 shows the resulting track-

ing performance for a 1 mm amplitude (i.e., 2 mm peak-to-peak), 1 Hz sinusoidal

command. Figure 5.12(a) shows the decrease in the tracking error as a function of

the iteration number. The RMS of the tracking error is reduced from about 7.8 µm to

15.8 nm in approximately 70 iterations. This corresponds to a reduction by a factor

of about 500. The tracking errors before the application of ILC and at the end of the

70th iteration are plotted in Fig. 5.12(b). The performance improvement, compared to

the linear feedback control by itself, comes from a reduction in the repeating portion

of the tracking error at the command frequency and its harmonics (see Fig. 5.12(c)).

The final tracking error is still 4 times larger than that obtained in a position

hold experiment. This is also reflected in the comparison of the power spectrum of

the tracking error for 1 mm, 2 Hz sinusoidal command and zero command, shown
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Table 5.1: Comparison of the radial tracking error (in nm RMS) obtained for circle
tracking experiments

2 mm, 1 Hz 3 mm, 1 Hz 2 mm, 2 Hz

Feedback Only 184 845 379
Feedback + ILC 18 22 20

in Fig. 5.12(d). The noise floor in the sinusoidal tracking experiment is much larger

leading to an increased final tracking error. Also, it was observed that the noise floor

increases with increasing the amplitude of the command signal. This behavior may be

a result of the increase in electrical noise in the current amplifier or the power supply

with increasing electrical power, but the actual cause remains to be investigated.

5.4 Circle Tracking Experiments

The performance of the combined ILC and feedback controller was evaluated for

the motion stage tracking a circular command. This was done by sending equal

amplitude sinusoidal reference commands along both the axes separated in phase by

90◦. The measured trajectory before and after the application of ILC, along with the

commanded circle, is plotted in Fig. 5.13. For better visualization, the contour error

(radial deviation from the ideal circle) is magnified. The RMS of the contour error

for three separate experiments are mentioned in Table 5.1. With ILC, the RMS of

the contour error is reduced by a factor of 10 to 40.

5.5 Closure

In this chapter, the potential and capability of a flexure-based XY nanoposi-

tioning system in simultaneously achieving large range and high motion quality is

demonstrated experimentally. It is shown that by modifying the dynamics of the

accompanying XY flexure mechanism, feedback and iterative learning controllers de-
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signed for the nominal operating point can be applied over a large operating range of

motion, without robustness issues.

Further reduction in the tracking error could be achieved by reducing the noise

and disturbance at the sources by using better hardware, as mentioned in Section 1.7.

Additionally, incorporation of passive damping needs to be investigated. By coupling

the flexure blades with a low wave-speed medium such as foam, relatively high degree

of damping can be introduced over a wide frequency range, without being affected

by the variation in pole and zero frequencies [135]. Damping of lightly-damped high-

frequency poles in the flexure mechanism will ease the trade-off between the achievable

closed-loop stability and disturbance rejection, and thereby lead to an improvement

in the closed-loop bandwidth and positioning performance. In order to achieve a

higher closed-loop bandwidth, it will also be necessary to take into account the cross-

coupling transfer functions. A MIMO feedback controller design should be pursued

in this regard [140].

Moving forward, a cross-coupling controller [141] may be applied in addition to

the existing controllers. The control objective of the cross-coupling controller is to

reduce the contour error (tracking error perpendicular to the command trajectory),

rather than focusing on reducing the tracking error along individual axis. This will be

especially useful in case of trajectories that involve sharp turns, where the tracking

error will have high-frequency components beyond the bandwidth of the feedback

loop. In such cases, independent ILCs will not be able to completely eliminate the

tracking error along each axis. The cross-coupling controller can also be applied

within the framework of iterative learning controller, resulting in a cross-coupled

iterative learning control (CCILC) system [142]. In a manner similar to ILC, CCILC

helps reduce the repeating portion of the contour tracking error in case of periodic

command trajectories.
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APPENDIX A

Iterative Learning Controller Implementation in

Simulink�

In this appendix, the implementation procedure for the combined feedback con-

trol and iterative learning control (ILC) on the single-axis nanopositioning system,

described in Chapter III, is presented. The code was developed in Simulink� and

deployed real-time via dSPACE DS1103 microcontroller. A snapshot of the code is

shown in Fig. A.1. The input to the code is the position signal from the linear op-

tical encoder and the output command is the voltage signal to the servoamplifier.

The feedback loop runs at a fixed loop-rate of 10 kHz. Within every repetition of

the command period, the tracking error is stored in a form of an array using the

Buffer block. The ILC input is computed based on these arrays and is applied as

an additional input to the feedback loop in the subsequent cycles using the Unbuffer

block.

The ILC computations are performed, once per command period, inside the Matlab

Function block via the script shown below:
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%% Define function inputs and outputs

function [unewfilt,RMS] = fcn(enew,Lgain,Ldelay)

%% Define global variables

global earray uarray evec uvec;

%% Initialize variables

evec = [earray(3,:) earray(2,:) earray(1,:)];

uvec = [uarray(3,:) uarray(2,:) uarray(1,:)];

%% Implement learning function

unewvec = uvec + Lgain*circshift(evec',−ceil(Ldelay))';

%% Implement Q−filter

Qnum = 1e−6*[0.29,2.03,6.11,10.19,10.19,6.11,2.03,0.29];

Qden = [1,−5.87,14.85,−20.97,17.84,−9.15,2.61,−0.32];

unewfiltvec = filtfilt(Qnum,Qden,unewvec);

unewfilt = unewfiltvec(10001:20000)';

%% Update variable histories

uarray = circshift(uarray,1);

uarray(1,:) = unewfilt';

earray = circshift(earray,1);

earray(1,:) = enew;

%% Compute RMS error

RMS = 20*log10(norm(enew)/sqrt(length(enew)));
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APPENDIX B

Servoamplifier Design and Characterization

Introduction

Servoamplifiers are used to drive electromagnetic actuators by providing control

over either coil current or voltage. They are generally classified into the following two

categories: Pulse-width-modulated (PWM) servoamplifiers and linear servoamplifiers.

PWM servoamplifiers regulate the power through the actuator coil via on-off switching

of a constant voltage, at a very high frequency of about 10 kHz or higher. While PWM

amplifiers are widely used due to their high efficiency (> 90%) and low cost, they suffer

from high-frequency noise as well as dead-band near zero crossing. The high-frequency

noise leads to unwanted velocity ripples, which degrade the position stability. Also,

the dead-band near zero causes increased dynamic errors during direction reversals

[143, 144]. Linear amplifiers, in contrast to their PWM counterparts, vary the power

in the coil proportionally to the input command. Therefore, they have a relatively

higher linearity near zero as well as lower noise. However, they are not very efficient

(< 50%) and are expensive as compared to the PWM servoamplifiers. In low-power

high-precision positioning applications, therefore, linear servoamplifiers prove to be a

better choice.
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Servoamplifier Design

After considering several off-the-shelf linear servoamplifiers, which proved to be

inadequate in their noise and distortion characteristics, a custom-built linear ser-

voamplifier using was designed. This amplifier consists of a low-noise power Op-Amp

(MP111) from Apex Microtechnology, which was chosen due to its high current ca-

pability and 10 µV RMS output noise at 1 MHz bandwidth. The servoamplifier was

assembled using an evaluation board (EK57) from the same vendor. As shown in

Fig. B.1, the servoamplifier is designed to be operated in both current mode as well

as voltage mode. For the current mode, an inverting voltage-controlled-current-source

circuit in a floating load configuration is used [145]. The gain and the bandwidth of

the amplifier were set to be –1 A/V and 1 kHz, respectively. The bandwidth is set well

above the frequency range of motion control. For the voltage mode, the Op-Amp is

operated in an inverting feedback configuration, with gain of –5 V/V and bandwidth

of about 10 kHz. The experimentally measured input-output frequency response of

the servoamplifiers is shown in Fig. B.2.
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Servoamplifier Characterization

The noise and distortion in the servoamplifier directly impacts the positioning

resolution and dynamic command tracking, respectively. In order to measure these

performance specifications, a 1 Hz sinusoidal command was applied as input. The

magnitude of the command was varied to set the voltage across the 2.2Ω, 2.05 mH coil

to be 19 V peal-to-peak. For this experiment, NI PXI–4461 from National Instruments

was used for data-acquisition. It consists of 24–bit ADCs and DACs with a high

dynamic range of 118 dB. The power spectrum of the output voltage, for both the

current mode and the voltage mode operation, is shown in Fig. B.3. Based on this

figure, the signal-to-noise ratio (SNR1) for both cases was estimated to be about

110 dB, corresponding to a value of 20 µV RMS in the time-domain. However, the

1SNR is the ratio of the RMS amplitude of the signal to the RMS amplitude of the noise which
is not harmonic distortion [146].
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total harmonic distortion (THD2) up to 50 Hz was found to be slightly higher in

the current mode (–76 dB) than in the voltage mode (–87 dB). It should be noted

that THD generally gets worse with increasing command amplitude or command

frequency.

In the current mode, the servoamplifier circuit incorporates a current feedback

loop. The current feedback loop not only compensates for the coil inductance dy-

namics but also overcomes the effect of back–EMF in the coil. Since the actuator

force is proportional to coil current, the frequency response from the servoamplifier

command to the actuator force can be approximated by a constant gain up to the

bandwidth of the servoamplifier, which is typically at least 10 times higher than the

bandwidth of the overall position control loop. In contrast, when operated in the

voltage mode, the back-EMF dynamics produces additional damping in the funda-

mental mode. Secondly, the coil inductance leads to an additional pole with the

corresponding phase lag in the overall open-loop frequency response of the motion

system. However, this effect can be mitigated by placing an additional lead-pair in

the position feedback loop. In this thesis, both the current mode and the voltage

mode servoamplifiers are used. Positioning results for the single-axis nanopositioning

system, presented in Chapter III, are based on the voltage mode servoamplifier. For

the experiments on the XY nanopositioning system in Chapter V, the servoamplifier

was operated in the current mode. Although the current mode servoamplifier has

more distortion than the voltage mode, the noise level in both the modes of operation

are the same. Hence, with the application of combined feedback and iterative learn-

ing control in the position control loop, similar positioning performance was obtained

irrespective of the mode of operation.

2THD is the ratio between the root-sum-of-squares of all the harmonic distortion components
that can be distinguished from the noise floor and the RMS value of the component at the input
frequency [146].
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