
Molecular Dynamics Study of Heat Transfer between 

Dissimilar Materials 

by 

Chen Shao 

A dissertation submitted in partial fulfillment of  
the requirements for the degree of  

Doctor of Philosophy 
(Materials Science and Engineering) 

in The University of Michigan 
2014 

 

 

Doctoral Committee: 

 Professor John Kieffer, Chair  
 Associate Professor Max Shtein  
 Associate Professor Kevin P. Pipe 
 Associate Professor Veera Sundararaghavan 



 

 

 

 

 

 

 

© Chen Shao 

2014 



 ii 

Dedication 

To my parents Zhengming Shao and Xijuang Zhang, for their unconditional support. 

To my uncle Xianda Zhang, for his guidance and advise.  

Last but most importantly, to my love, Jinghan Liu, for our years together and many more 

to come. 

 



 iii 

Acknowledgement 

I would like to thank my advisor Prof. John Kieffer for training and instruction on 

computational research and thank Prof. Max Shtein, Prof. Kevin Piple, and Prof. Veera 

Sundararaghavan for helpful discussions. I would like to thank my experimental 

cooperators, Dr. Yansha Jin for her support. Also special thanks to my friends Dr. 

Changgua Zhen, Mr. Xiao Ma, Mr. Michael Waters, Mr. Michael Aldridge and Ms. 

Katherine Sebeck for many intellectually inspiring conversations and research help 

without which this thesis could not have been completed. 



 iv 

Table of Contents 

Dedication .......................................................................................................................... ii	  

Acknowledgement............................................................................................................ iii	  

List of Figures.................................................................................................................. vii	  

List of Tables ................................................................................................................... xii	  

List of Appendices.......................................................................................................... xiii	  

Abstract........................................................................................................................... xiv	  

Chapter 1 Introduction .................................................................................................... 1	  

1.1	   Thermal management at nano-scale............................................................................... 1	  

1.2	   Thermal boundary resistance and theoretical models.................................................. 6	  

1.3	   Experimental challenges.................................................................................................. 9	  

1.4	   Simulation Techniques .................................................................................................... 9	  

1.5	   Generating realistic interface structures ..................................................................... 11	  

1.6	   Thermal transport coefficient calculation in MD simulations................................... 18	  

1.7	   Computational resources and thesis layout ................................................................. 23	  

1.8	   References ....................................................................................................................... 25	  

Chapter 2 Simulation of Crystalline and Amorphous Copper Phthalocyanine: Force 

Field Development and Analysis of Thermal Transport Mechanisms ...................... 27	  

Synopsis .................................................................................................................................... 27	  

2.1	   Introduction .................................................................................................................... 28	  

2.2	   Force Field Description.................................................................................................. 30	  



 v 

2.3	   Force field parameterization procedure ...................................................................... 32	  

2.4	   Simulation procedure Details........................................................................................ 34	  

2.5	   Results and Discussion................................................................................................... 35	  

2.5.1	   Intra-Molecular Properties........................................................................................ 35	  

2.5.2	   Vibrational Density of States.................................................................................... 38	  

2.5.3	   Crystalline Structure ................................................................................................. 39	  

2.5.4	   Thermal Conductivity of CuPc ................................................................................. 41	  

2.6	   Conclusion....................................................................................................................... 55	  

2.7	   References ....................................................................................................................... 57	  

Chapter 3 Molecular Dynamics Study of Interface Bonding and Thermal Boundary 

Conductance at Copper Phthalocyanine Metal Interfaces ......................................... 68	  

Synopsis .................................................................................................................................... 68	  

3.1	   Introduction .................................................................................................................... 69	  

3.2	   Molecular dynamics simulation details ........................................................................ 72	  

3.3	   Results and discussion ................................................................................................... 75	  

3.3.1	   TBC at CuPc-metal interfaces with fixed bonding strength ..................................... 75	  

3.3.2	   TBC at a congruent interface between metals with tunable properties .................... 78	  

3.3.3	   Phonon mode coupling across the interface ............................................................. 81	  

3.3.4	   Calculation of work of adhesion at CuPc-metal interfaces....................................... 85	  

3.3.5	    Effect of interfacial bonding strength on the TBC .................................................. 87	  

3.4	   Conclusion....................................................................................................................... 91	  

3.5	   References ....................................................................................................................... 93	  

Chapter 4 Active Control of Thermal Transport using PVDF Thin Films – An MD 

Simulation Prediction ..................................................................................................... 97	  



 vi 

Synopsis .................................................................................................................................... 97	  

4.1	   Introduction .................................................................................................................... 98	  

4.2	   Molecular dynamics simulation details ...................................................................... 100	  

4.3	   Force field validation ................................................................................................... 103	  

4.4	   Results and discussion ................................................................................................. 109	  

4.4.1	   Glass transition of PVDF constrained by electric fields......................................... 109	  

4.4.2	   Behavior of PVDF thin films poled at high temperature........................................ 112	  

4.4.3	   Behavior of disordered PVDF thin films................................................................ 117	  

4.4.4	   Vibrational density of states (VDOS)..................................................................... 119	  

4.4.5	   Thermal transport across the PVDF-gold interface ................................................ 122	  

4.5	   Summary and Conclusion ........................................................................................... 126	  

4.6	   References ..................................................................................................................... 127	  

Chapter 5 Summary and outlook ................................................................................ 129	  

5.1	   Summary....................................................................................................................... 129	  

5.2	   Future work and outlook............................................................................................. 132	  

Appendices..................................................................................................................... 133	  

 



 vii 

List of Figures 

1.	   Figure 1.1 Schematic diagram of thermal path of LEDs. Huaiyu et al. Journal of 

Semiconductors 32, 014008 (2011) ............................................................................ 2	  

1.	   Figure 1.2 Thermoelectric module with direction of charge flow. Snyder & Toberer, 

Nature materials 7, 105-114 (2008) ........................................................................... 4	  

Figure 1.3 (a) High-resolution STM image of FePc on Au(111) surface at saturated 

coverage (6 nm by 6 nm, V=-0.4 V, I=0.05 nA). (b) Model for one unit cell of FePc 

molecule monolayer on Au(111). Cheng et al. The Journal of Physical Chemistry C 

111, 9240-9244 (2007). (c) MD simulation of CuPc absorption on Au (111) ......... 13	  

Figure 1.4 Tradeoff between open circuit voltage (Voc) and short circuit current (Jsc) 

observed when deposition order of the active layers in a (SubPc)/C60 organic 

photovoltaic (OPV) is inverted. Experiments conducted by S. Morris et al. ........... 15	  

Figure 1.5 Most favorable site for SubPc absorption on C60 (100) surface. Simulation 

studies conducted by H. Hashemi et al. .................................................................... 16	  

Figure 1.6 MD simulation of SubPc absorption on C60 (100) surface.............................. 18	  

Figure 1.7 Plot of a typical heat current autocorrelation function vs. correlation time from 

MD simulation .......................................................................................................... 19	  

Figure 1.8 Typical plot of thermal conductivity vs. correlation time in MD simulation.. 20	  



 viii 

Figure 1.9 System setup for Müller-Plathe formalism. Müller-Plathe, The Journal of 

chemical physics 106, 6082 (1997)........................................................................... 21	  

17.	   Figure 1.10 Typical temperature profile using Müller-Plathe formalism. Müller-

Plathe, The Journal of chemical physics 106, 6082 (1997) ...................................... 22	  

Figure 2.1 Copper phthalocyanine molecular structure.................................................... 33	  

Figure 2.2 Comparison of (a) bond lengths and (b) bond angles calculated using our force 

field with experimental data. The maximum absolute percentage deviation (max), 

average percentage deviation (ave), and root mean squares (rms) percentage 

deviation are listed. ................................................................................................... 37	  

Figure 2.3 Unit cell structures of: (a) α-CuPc and (b) β-CuPc crystals ............................ 41	  

Figure 2.4 Plot of system volume vs. temperature for amorphous CuPc ......................... 43	  

Figure 2.5 XRD patterns for crystalline and amorphous CuPc: (a) calculated based on a 

structure relaxed in MD simulations, and (b) experimental data. Experiments 

completed by Y. Jin .................................................................................................. 44	  

Figure 2.6 Transmission Electron Microscropy (TEM) image of β-CuPc sample. Domain 

size is estimated to be 20-50 nm. TEM image of CuPc was taken on a JEOL 2010F 

Analytical Electron Microscope at 200 kV. 50 nm of CuPc was vacuum thermal 

evaporated onto thin holey carbon film coated Copper grid (Cu-400HN) from 

Pacific Grid-Tech, then imaged by TEM to show the domain size. Image taken by Y. 

Jin.............................................................................................................................. 45	  



 ix 

Figure 2.7 Heat current autocorrelation functions for (a) crystalline CuPc, (b) amorphous 

CuPc, shown up to 50 ps, beyond which the noise levels remain constant. ............. 47	  

Figure 2.8 Thermal conductivity of crystalline and amorphous CuPc for (a) small and (b) 

large systems............................................................................................................. 48	  

Figure 2.9 Heat current autocorrelation spectrum for β-crystalline and amorphous CuPc.

.................................................................................................................................. 50	  

Figure 2.10 Mode analysis of the heat current auto-correlation spectrum for (a) β–

crystalline and (b) amorphous CuPc using Lorentzian functional fits.  Inset in (a): 

illustration of how individual modes contribute to the thermal conductivity 

(intercepts at zero frequency).  The low-frequency region of both spectra is 

magnified along the frequency and intensity axes to better reveal these intercepts. 53	  

Figure 3.1 Schematic setup for CuPc-metal junction ....................................................... 73	  

Figure 3.2 Procedures to calculate ΔT at the interface: minimum slope is extrapolated to 

the interface to determine ΔT ................................................................................... 75	  

Figure 3.3 TBC for systems with scaled gold atomic mass.............................................. 77	  

Figure 3.4 Temperature profiles for 4 different pairings of the structurally congruent 

interfaces ................................................................................................................... 80	  

Figure 3.5 VDOS of Au and CuPc ................................................................................... 81	  



 x 

Figure 3.6 Vibrational density of states spectra attributed to the differential trajectories 

upon displacing a single Au plane for the Au and CuPc layers (upper pane), and the

.................................................................................................................................. 84	  

Figure 3.7 Work of adhesion versus ε for CuPc-Ag,Au,Al, ε0 corresponds to the potential 

well depth between different atom species calculated from mixing rules(Eqn. 3.2-3.3)

.................................................................................................................................. 87	  

Figure 3.8 Thermal boundary conductance versus work of adhesion for CuPc/Ag, 

CuPc/Au, and CuPc/Al interfaces............................................................................. 89	  

Figure 3.9 Estimated work of adhesion using MD vs. peel off percentage in experiments

.................................................................................................................................. 90	  

Figure 4.1 PVDF polymer chain in the β-conformation, showing a terminal hydrogen on 

the left and side (pink) and four CH2–CF2 repeat units (carbon in black, fluorine in 

green).  Atoms are labeled with the partial charges determined using DFT 

calculations.  Note that chain termination affects these charges.  Repeat units are 

shown until charges stabilize. ................................................................................. 102	  

Figure 4.2 Stress strain curve from tensile test simulation of PVDF ............................. 107	  

Figure 4.3 Comparison between the stress-strain relationship resulting from the tensile 

test simulations, the Stark-Garton model, and the film deformation resulting from an 

applied electric field................................................................................................ 108	  

Figure 4.4 Glass transition behavior of PVDF polymeric configurations subject to 

different applied electric fields during cooling, as apparent from their volume-



 xi 

temperature relationships: (a) E = 0, (b) E = 0.01 V/Å, (c) E = 0.1 V/Å, and (d) 

E = 1 V/Å................................................................................................................ 111	  

Figure 4.5 Thermal conductivities of poled PVDF layers with and without applied 

electric field ............................................................................................................ 113	  

Figure 4.6 Net dipole moment vs time after release of electric field.............................. 115	  

Figure 4.7 System dipole moment after re-polarization in both its original polarized 

direction (y) and new direction (x) with field strengths of: 0.01 V/Å in (a) and (b); 

0.1 V/Å in (c) and (d).............................................................................................. 116	  

Figure 4.8 Net dipole moment in the direction of applied electric field and thickness of 

PVDF layer as a function of applied field strength ................................................ 118	  

Figure 4.9 Müller-Plathe thermal conductivity calculation results for PVDF layers with 

different applied electric field strengths ................................................................. 119	  

Figure 4.10 Comparison of phonon DOS for (a) PVDF layers prepared without electric 

field and subject a field of 1 V/Å, (b) PVDF layers poled at 1 V/Å and the same 

system with field released....................................................................................... 121	  

Figure 4.11 Temperature profile for PVDF junctions (a) with charged gold substrate (b) 

neutral gold substrate .............................................................................................. 124	  

 



 xii 

List of Tables 

Table 2-1 Hybrid-COMPSS force field parameters for CuPc .......................................... 59	  

Table 2-2 Bond lengths of the CuPc molecule ................................................................. 62	  

Table 2-3 Bond angles of CuPc molecule ........................................................................ 63	  

Table 2-4 Vibrational Frequencies of the CuPc Molecule ............................................... 64	  

Table 2-5 Unit cell parameters for α-CuPc....................................................................... 65	  

Table 2-6 Unit cell parameters for β-CuPc....................................................................... 65	  

Table 2-7 Densities of CuPc crystals ................................................................................ 66	  

Table 2-8 Thermal conductivities from MD simualtions and experiments ...................... 66	  

Table 2-9 Peak location and time constants in HCACF spectrum ................................... 67	  

Table 3-1 Experimental TBC results for CuPc/Ag and CuPc/Au interfaces .................... 96	  

Table 3-2 Estimated work of adhesion for CuPc-metal interfaces ................................... 96	  

 



 xiii 

List of Appendices 

Appendix A MATLAB code for multivariable optimization ..........................................133 

Appendix B Source code for LAMMPS extensions ........................................................147 

B1. Compute style: dipole ...........................................................................................147  

B2. Fix style: vacf ........................................................................................................151 

 

 



 xiv 

Abstract 

 Molecular organics have become materials of considerable interest for electronic 

devices, due to their low manufacturing cost.  Thermal management is a crucial factor in 

microelectronics because of the high power density associated with miniaturization. In 

this thesis, molecular dynamics (MD) simulations are used to understand heat transfer 

process at organic-metal interfaces and to guide materials design for devices with 

controllable thermal transport properties. 

 A Hybrid-COMPASS force field for the copper phthalocyanine (CuPc) molecule 

has been developed and parameterized using ab initio and empirical parameterization 

techniques. The valence parameters and atomic partial charges were derived by fitting to 

ab initio calculation results, and the van der Waals (vdW) parameters were derived by 

comparing MD simulations of CuPc crystal structures to experimentally determined 

characteristics. The resulting force field successfully predicts accurate molecular 

structure, crystal structure, and vibrational density of states (VDOS) of CuPc molecule in 

isolation and in condensed phase. Thermal conductivities for both crystalline and 

amorphous phase of CuPc are calculated using the Green-Kubo formalism. Calculation 

results show reasonable agreements with experimental measurements and a significant 

difference between crystalline and amorphous CuPc. Further analysis of the thermal 

conductivity spectral modes reveals that this difference mainly stems from the scattering 

of acoustic phonons, and to a lesser extent from the suppression of optical phonon modes 



 xv 

in the amorphous structure.  Accordingly, phonon scattering at amorphous domain walls 

in nano-crystalline materials effectively eliminates over half of conduction pathways. 

 The newly optimized force field provides a great means for carrying out a 

systematic study of the nanoscale processes that govern thermal transport at CuPc/metal 

interfaces. Non-equilibrium MD simulations (NEMD) are performed on metal–CuPc–

metal junctions using the Müller-Plathe method. Also, by varying the density and 

modulus of a structurally congruent test system, interfaces with matched and mismatched 

acoustic impedance or speed of sound are constructed and characterized. These 

simulations show that the traditional acoustic mismatch model (AMM) does not 

accurately describe heat transfer across weakly bonded interfaces.  On the other hand, 

when controlling the interfacial bonding strength in MD simulations directly by scaling 

the interaction parameters for the materials juxtaposed at the interface, we find that the 

thermal boundary conductance is closely related to this interfacial bonding strength. By 

comparing the MD calculation results with the experimental measurements, the work of 

adhesion between CuPc and metal substrates is estimated to be 0.046 ± 0.014 J/m2 for 

CuPc/Ag, 0.095 ± 0.004 J/m2 for CuPc/Ag, and 0.439 ± 0.1 J/m2 for CuPc/Al interfaces. 

These findings confirm the experimental observation of very weak bonding between 

CuPc and Au or Ag, and stronger bonding at the CuPc/Al interface.  Phonon spectral 

analysis shows that the majority of heat transfer between CuPc and Au is accomplished 

via anharmonic coupling, which appears to be facilitated by strongly adhesive interfacial 

bonding. 
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 The insight gained in the study of factors to influence heat transfer at weakly 

bonded organic-metal interfaces is further used to design materials with controllable 

thermal transport properties.  MD simulations reveal that the thermal transport properties 

of piezoelectric polymers such as poly(vinylidene difluoride) (PVDF) thin films depend 

on the magnitude and direction of externally applied electric fields.  Accordingly, the 

thermal conductivity of PVDF thin films increases with the strength of the applied 

electric field.  Our simulations predict a 33% conductivity boost at 80% of the breakdown 

field strength.  A poled PVDF film possesses a remnant conductivity enhancement that 

can be removed by an opposing electric field.  Finally, the applied electric field raises the 

adhesive force to the substrate and thereby increases the interfacial thermal boundary 

conductance by a factor of up to 6.  We elucidate the observed behaviors by comparing 

the phonon spectra of PVDF structures exhibiting various degrees of polarization.  

Accordingly, the effect of electric fields, either externally applied or resulting from the 

residual dipole moment of a poled structure, is to distort the structure during reorientation 

so as to cause a stiffening in the bonding structure, which in turn enhances the phonon 

contributions to the thermal conductivity. 

 Overall solid understanding has been achieved in heat transfer at organic-metal 

interfaces, where anharmonic coupling contributes to most of the transport process. 

Interfacial bonding strength is identified as dominant factor facilitating this heat 

transport. Furthermore, MD simulations predict the possibility for active control of 

thermal conductivity and interfacial conductance in the PVDF-metal system, and helped 

us identify the underlying materials design principles. 
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Chapter 1 Introduction 

1.1 Thermal management at nano-scale 

 Technologies have been advancing rapidly in the past few years in the design and 

manufacturing electro-mechanical devices at micro and nanometer length scales. As the 

limits of classical and continuum theories are reached, phenomena that may be 

insignificant at large length scales can become dominant such as interfacial effects etc. 

Thermal management is one of the important factors to consider when designing devices, 

especially at nano-scale as the dimensions of the manufactured devices have become 

smaller and smaller. 

 One good example of the importance of thermal management would be the 

application in light emitting diodes (LED) technology. In LED devices, the injected 

electrical energy is converted into both light and heat. Today, the efficiency of 

commercially available LEDs is about 10% - 20%, meaning the rest 80% - 90% energy 

will need to be dissipated as heat.1 With current research focusing improving light 

emitting efficiency that boosts the development of the LED technology, it is reported that 

the luminous output is doubled very 18 to 24 months.2 This requires better thermal 

management to conduct heat from LED package to the environment. 
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 Figure 1.1 shows a schematic diagram of typical architecture of LED module. It 

contains an LED package, thermal solution and a board for electrical and thermal 

connection.3  

 

1. Figure 1.1 Schematic diagram of thermal path of LEDs. Huaiyu et al. Journal of 

Semiconductors 32, 014008 (2011)  

In the LED package, the chip is enclosed in a package of polymer lens and plastic carrier 

holder. Heat is generated by the chip inside the package and most of the heat will be 

conducted to the heat sink despite some can be dissipated by radiation and convection 

along the package surfaces. In order to maximize the heat transfer rate, we need to 

minimize thermal resistance in the module. In addition to using materials with high 

thermal conductivity such as carbon nanotubes, grapheme, etc., interface effects become 

crucial in the heat transfer process. In LED module, thermal interface materials (TIMs) 

are used to connect different components and studies show that 60% of thermal resistance 

in the system is in TIMs.4 This type of thermal resistance at interface is called Kapitza 
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resistance or thermal boundary resistance. Detailed discussion of thermal conductivity 

and Kapitza resistance can be found in section 1.2. 

 Conversely, in applications such as thermoelectric devices, low heat transfer rate 

is desired for better performance. In metals or semiconductors, charge carriers carry both 

heat and charge. When a temperature gradient is applied to such material, the mobile 

charge carrier at the hot end will diffuse to the cool end. Eventually, this process will 

reach a steady state where the chemical potential for diffusion balances the electrostatic 

repulsion build up due to the charge accumulation of the carriers. This effect is named 

Seebeck effect and is the basis of thermoelectric devices enabling thermoelectric devices 

to collect waste heat to produce electrical energy or to serve as a refrigerator for cooling 

purpose. Figure 1.2 shows a thermoelectric module with direction of charge flow on both 

cooling and power generation.5 
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1. Figure 1.2 Thermoelectric module with direction of charge flow. Snyder & 

Toberer, Nature materials 7, 105-114 (2008)  

 Thermoelectric devices contain many thermoelectric couples consisting of both n 

type and p type thermoelectric elements wired electrically in series and thermally 

parallel. The efficiency of a thermoelectric material is determined by its figure of merit 

(ZT): 

  
ZT =

α 2T
ρκ

  (1.1) 
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where α is the carrier concentration, T is absolute temperature, ρ is electrical resistivity, 

and κ is thermal conductivity. To increase the efficiency of thermoelectric device, we 

need to maximize its figure of merit by either increasing carrier concentration, by 

reducing thermal conductivity, or by reducing electrical resisticvity. Many times 

semiconductors are favored in making thermoelectric devices because people can dope 

semiconductors and increase carrier concentration α and thus increase ZT. For the past 

few decades, reducing resistivity ρ as well as thermal conductivity κ is the key focus in 

thermoelectric research. It should be noted that the thermal conductivity in thermoelectric 

devices comes from two sources: (1) electrons and holes transporting heat (κe) and (2) 

phonons travelling through the lattice (κp). So the κ in eqn. (1) should be written as: 

€ 

κ =κe +κ p   (1.2) 

and most of the electronic term κe is directly related to the electrical conductivity through 

the Wiedemann-Franz law: 

€ 

κe = LσT = neµLT   (1.3) 

where L is the Lorenz factor, 2.4·10-8 J2K-2C-2 for free electrons. From eqn. (3) we can 

see that essentially κe and ρ has an inverse relation and the two cancels each other out. 

Therefore to maximize zT, we need to have a material with phonon thermal conductivity 

as low as possible. 

 The above examples are just two of many applications where thermal 

management is crucial in determining the performance of the devices. Although many 

efforts have been exerted to study and to understand the fundamental science of thermal 
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transport, there are still a lot that remains unknown. This thesis is thus motivated to study 

heat transfer process at interfaces of dissimilar materials. 

1.2 Thermal boundary resistance and theoretical models 

 To study the heat transport at interface, we need more than just simple thermal 

conductivity of materials to consider. The thermal conductivity is defined as the constant 

of proportionality relating the temperature gradient ∇𝑇 and the heat flux q in a bulk 

material as: 

€ 

q = −k∇T   (1.4) 

This is the Fourier law of conduction and was originally formulated based on empirical 

results. For two different materials joining at interface, the temperature is usually not 

continues across the interface. Such phenomenon was first reported by Kapitza in 1941 in 

his measurements of temperature drop near the boundary between helium and a solid 

when heat flows across the boundary. It is therefore the thermal boundary resistance is 

sometimes called Kapitza resistance. Essentially, the thermal boundary resistance is a 

measure of interface’s resistance to heat flow and is defined as: 

€ 

Rb = ΔT⋅ q   (1.5) 

where ΔT is the temperature discontinuity at the interface and q is the heat flux passing 

through the interface. Taking the inverse of the thermal boundary resistance would result 

in the thermal boundary conductance. Similarly to thermal conductivity, both the energy 

carriers such as electron and holes and phonons contribute to thermal boundary 
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resistance. This thesis will focus on the organic material/metal interfaces and the 

contribution from phonons will dominate the thermal boundary resistance in these 

systems. Therefore the thermal boundary resistance is mainly determined by the number 

of phonons incident on the interface, the energy carried by each phonon, and the 

probability that each phonon is transmitted across the interface. The difficult part in 

theoretical study of the boundary resistance would be to model the transmission 

probability correctly.6,7 

 Two primary models have been developed and improved over the years to 

understand thermal boundary resistance. They are acoustic mismatch model and diffuse 

mismatch model respectively. 

 The acoustic mismatch model treats the phonons as plane waves. The materials in 

which the phonons propagate are treated as continua (no lattice). With these assumptions, 

the simplest picture derivable from the acoustic mismatch model is that each material can 

be ascribed an acoustic impedance equal to the product 𝑍𝑖=𝜌𝑖𝑐𝑖 of the mass density and 

phonon velocity. For a phonon with normal incidence, the energy transmission 

probability looks like:8 

€ 

α1→ 2 =
4Z1Z2
Z1 + Z2( )2

  (1.6) 

A crucial assumption made in the acoustic mismatch model is that no scattering occurs at 

the interface and the theory does not distinguish between various phonon wavelengths. 

While such assumption is reasonable at very low temperature where the phonon 
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wavelength is larger than the surface roughness, it is not accurate at higher temperature 

where phonon wavelength decreases and compromises the theory.6 

 The second theory is the diffuse mismatch model (DMM) and assumes all the 

phonons incident on the interface will scatter diffusively. The DMM phonon boundary 

transmission probability can be approximated as: 

€ 

α1→ 2 =

up,2,i
−2

i
∑

up,1,i
−2

i
∑ + up,2,i

−2

i
∑

  (1.7) 

At high temperatures, DMM results are in better agreement with experimental 

measurements. Due to such assumptions made in these two models, neither of them are 

accurate enough for the thermal boundary resistance prediction and usually serves as 

upper and lower limit in the boundary resistance calculations. In addition, in both models, 

continuum materials are assumed, meaning the two materials would have strong bonding 

connection. However in many real world applications, only weak van der Waals 

interactions are present at the interfaces such as the organic-metal interface, meaning the 

materials are not continuous and the assumptions from the models will not hold. In these 

circumstances, these models would result in large deviations from the experimental 

measurements and fail to provide useful insights. Therefore new models and techniques 

are in great need to further understand the heat transfer process at interfaces. 
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1.3 Experimental challenges 

 Experiments are the foundation of scientific research and no theory is valid unless 

it is proven by experiments. As the research reaches smaller and smaller length scale, 

even with the constant evolution of experimental techniques, it becomes more and more 

challenging to design and conduct experiments, especially when the experiment is 

designed to study materials’ interfaces. There are many factors that influence property of 

the interface, such as interface roughness, defects, adhesion etc. For the organic-metal 

systems that the thesis would focus on, many challenges are difficult to overcome in 

experiments. It is very difficult to get a sample with clean organic surface in experiments 

to start with, not to mention isolating a single factor to analysis at the interface. 

Moreover, characterization of interfaces is also difficult in experiments and it is almost 

impossible to measure properties of interfaces such as roughness or adhesion strengths 

without destroying the sample. Computer simulations offer a convenient way to study 

and analyze properties of materials at atomistic scale and has many advantages over 

experiments such as easiness of constructing interface systems, fast simulation setup, 

ability to control specific factors during simulations etc. Therefore this thesis will focus 

on the simulation study of heat transfer at interfaces. 

1.4 Simulation Techniques 

 In simulation, one builds a model of real system and explores its behavior. The 

model is a mathematical description of the system and computational power has been 

used to expedite exploration process. Over the years, many simulation techniques have 
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been developed and now two of the many are most popular in atomistic simulations: 

density functional theory (DFT) calculations and MD simulations. 

 Quantum mechanics provides a reliable way to calculate behaviors of electrons 

and atomic nuclei in any situation and thereby offering us a means to understand the 

properties of any material from first-principles, that is, based on fundamental physical 

laws and without using free parameters, by solving the Schrodinger equation for the 

electrons in that material. However, one can quickly run into calculation difficulties due 

to the manybody interaction of electrons. Anything more complex than a hydrogen atom 

needs to be solved numerically and even the computer power seems to run out if the 

modeling systems contain a few handfuls of atoms. The birth of density functional theory 

(DFT) greatly simplifies the calculation process. DFT starts with two deceptively simple 

principles: (1) the total energy of a system of electrons and nuclei is a unique functional 

of the electron density, and (2) the variational minimum of the energy is exactly 

equivalent to the true ground-state energy. By throwing out the fearsome 

multidimensional wavefunction and instead working with a simple scalar field, the degree 

of simplification is immense and therefore allows first-principles calculations to be 

conducted on larger modeling systems.9,10 Nonetheless, the system size is still a limiting 

factor in DFT calculations despite all the efforts in the past to improve the computational 

power. Based on the current cluster computing power, systems containing more than 

1000 atoms would not be practical for DFT predictions. 

 By ignoring the electrons and performing classical calculations at atomistic level, 

the computational demands are greatly reduced. In MD simulations, the forces from 
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interacting atoms are calculated from empirical potentials of the atoms, and the position 

of the atoms are predicted at each time step according to Newton’s second law. Given 

appropriate empirical potentials, materials structures containing interfaces can be 

constructed to simulate real systems. Compared to DFT calculations, MD simulations 

have two major advantages: (1) systems in MD simulations can contain hundreds of 

thousands of atoms, which is far larger than a typical system under DFT calculation and 

thus makes modeling amorphous materials possible in MD, (2) DFT focus on the ground 

state calculation while MD simulation takes temperature into calculation and able to 

study dynamic properties of materials. With the ability to predict the positions of atoms at 

every time steps, MD simulation allows us to directly observe the structure evolution at 

the interface during a simulation, which in experiments is almost impossible to observe. 

Compared to experimental techniques, MD simulation provides a powerful ability to 

control specific factors in a virtual structure during simulation. Thus, it enables us to 

systematically study the influence of different factors on transport phenomenon at 

materials interfaces at a microscopic scale. 

1.5 Generating realistic interface structures 

 In MD simulations, the force field or empirical potential that defines interactions 

of atoms determines the success or failure of an MD simulation. Therefore the force field 

needs to be parameterized carefully to experimental measurements or DFT calculation 

results because the ground state calculation results from DFT are of high accuracy and 

can serve as the reference value during parameterization. There are several types of 

interactions that need to be modeled in a force field, which include bonds (interaction 
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between two bonded atoms), angles (interaction between two bonds), dihedrals (planar 

angles), and non-bond interactions such as Coulomb and van der Waals interactions. 

Different functional forms are chosen to model the various types of interactions. The 

general procedure to parameterize can be divided into two parts: (1) intra-molecular 

parameterization can be done with the help of DFT calculations (2) non-bond parameters 

can be obtained by adjusting force field parameters to reproduce experimental 

measurements such as density etc.11 For the intra-molecular parameters, we first need to 

optimize the structure of the target molecules. Then part of the optimized molecule is 

shifted in space and DFT calculation is used to obtain the single point energy of the 

shifted structure. Eventually we can get an energy surface with respect to atomic 

displacements and parameters are then obtained by fitting the force field functions to the 

calculated energy surface from DFT.12 Multivariate optimization algorithms are used for 

the fitting, MATLAB code have been developed for such purpose and is attached in 

Appendix A. Following these procedures, we can assure the models can successfully 

reproduce atomic structures in dynamics environment where thermal effect is important. 

 This thesis focuses on the interface between organic molecules and metals. One of 

the systems that we explore is the copper phthalocyanine (CuPc) and metal interface. 

After the force field parameters are optimized with the above procedures, absorption 

simulations have been conducted to explore if the simulation results successfully predict 

experimental observations. In Fig. 1.3 (a) and (b), the DFT prediction and high resolution 

STEM image of FePc absorption on Au (111) surface at saturate coverage are presented. 

Although we are interested in CuPc, both CuPc and FePc molecule share similar property 
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and almost the same structure.13 Therefore we compare our absorption of CuPc on Au 

(111) results (Fig. 1.3 (c)) to the experimental measurements. 

 

(c)  

Figure 1.3 (a) High-resolution STM image of FePc on Au(111) surface at saturated 

coverage (6 nm by 6 nm, V=-0.4 V, I=0.05 nA). (b) Model for one unit cell of FePc 

molecule monolayer on Au(111). Cheng et al. The Journal of Physical Chemistry C 111, 

9240-9244 (2007). (c) MD simulation of CuPc absorption on Au (111) 

 Due to the limitation of system size and time frame under MD simulation, it is 

extremely difficult to obtain fully saturated coverage of CuPc molecules. However, the 
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CuPc layer still assembles key characteristics observed from experiments and tends to 

form packed domains on Au(111) surface. 

 Another system that we explored is the SubPc/C60 interface. It is discovered in 

experiments that a tradeoff between open circuit voltage (Voc) and short circuit current 

(Jsc) occured when deposition order of the active layers in a (SubPc)/C60 organic 

photovoltaic (OPV) is inverted.14 Such effect is shown in Fig. 1.4 and it is suspected that 

depending on the deposition order, the SubPc (dipole) orientation allows for a 

heterojunction comprised of disparate polaron pairs, which can be related to dissociation 

and recombination rate constants in the OPV specific diode equation proposed by 

Giebink et al.15 
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Figure 1.4 Tradeoff between open circuit voltage (Voc) and short circuit current (Jsc) 

observed when deposition order of the active layers in a (SubPc)/C60 organic photovoltaic 

(OPV) is inverted. Experiments conducted by S. Morris et al. 

 DFT studies have been by H. Hashemi and X. Ma et al16 to identify the ground 

state of SubPc absorption on both C60 (100) and (111) surface. The interesting finding is 

that on the (111) surface, the SubPc molecule will stay on top of the C60 molecule with 

the halide containing Cl atom sticking perpendicular out of the surface, while for the 

(100) surface, SubPC buries its halide in between C60 molecules, offering the tripod of 

aromatic rings as the substrate for the second growth layer. The configuration of (100) 

surface ground state is shown in Fig. 1.5 
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Figure 1.5 Most favorable site for SubPc absorption on C60 (100) surface. Simulation 

studies conducted by H. Hashemi et al. 

With the appropriately developed force field parameters for SubPc and C60 molecules, 

MD simulations have also been used to explore temperature influence on the absorption 

of SubPc. For the (111) surface, the SubPc molecule will stay in the upward position due 

to the close-packed nature of the C60 (111) surface. For (100) surface, even if the SubPc 

starts with an upward position, the molecule will eventually flip and pursue the most 

energy stable site as predicted from the DFT study. The process is shown in Fig. 1.6. 



 17 

 

(a) 0 ps 

(b) 10 ps 

(c) 15 ps 
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Figure 1.6 MD simulation of SubPc absorption on C60 (100) surface 

It can be clearly seen that the MD simulations successfully predict same results as DFT 

calculations for single molecule absorption. It should be noted that under room 

temperature, as the number of molecules grows, some SubPc molecule will remain the 

upward position as a result of thermal fluctuation. These findings are all based on the 

careful parameterization procedure of the force field development and thus can provide 

useful insight and support to the explanation of experiment observations. 

1.6 Thermal transport coefficient calculation in MD 

simulations 

 Two general approaches have been adapted to the calculation of thermal transport 

coefficients in MD simulations. The first approach is called Green-Kubo method and is 

based on the linear response theory, where the overall system is kept under equilibrium 

and the response of the system is analyzed when it is driven away from the equilibrium.17 

The steady state thermal conductivity of such equilibrium system is directly related to the 

time integral of the heat flux – heat flux correlation function. For a cubic isotropic 

system, the thermal conductivity is written as: 

k = 1
3VkBT

2 J(0) ⋅ J(t) dt
0

∞

∫   (1.8) 

where <J(0)·J(t)> is the time autocorrelation function of the heat flux in the equilibrium 

system. In MD simulations, a typical heat flux autocorrelation function would start with 
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large fluctuations, but the fluctuation would quickly die out and the autocorrelation 

function would reach zero and have only minor fluctuations as is shown in Fig. 1.7 

 

Figure 1.7 Plot of a typical heat current autocorrelation function vs. correlation time from 

MD simulation 

 The heat current autocorrelation function is then integrated over time to give 

thermal conductivity. The integral would first fluctuate and then converge to a certain 

value. Fig. 1.8 shows a typical plot of thermal conductivity vs correlation time in MD 

simulation and it is clear that the thermal conductivity value converges after about 10 ps 

correlation time. 
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Figure 1.8 Typical plot of thermal conductivity vs. correlation time in MD simulation 

 The Green-Kubo relation is a generalized theory and is not limited only to the 

prediction of thermal conductivity. Similarly, an alternative version of equation (1.8) 

predicts the thermal boundary conductance in an equilibrium system.18 as: 

€ 

h1→ 2 =
1

kBT 2
˙ H 1(0)⋅ ˙ H 1(t)0

∞

∫ dt   (1.9) 

where H is the Hamiltonian of the material. 

 One major shortcoming of the Green-Kubo method is the computational resources 

and time it requires to get good statistics on the autocorrelation function. A few decades 

ago, Green-Kubo calculation may take months to finish and even with the help of super 

computer and parallel computing, it still needs weeks to get results with convincing 

statistics. Nonetheless, it is still a reliable method in predicting thermal conductivity 
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without introducing non-equilibrium conditions in the system, which may potentially bias 

the thermal transport calculation results. 

 The second approach is called Müller-Plathe method or non-equilibrium method, 

where a temperature source and a temperature sink is placed directly in the system. 

Temperature gradient is thus developed in the system and key parameters can be 

monitored simultaneously during the simulation process. The formalism uses the periodic 

boundary feature in MD simulations and divides the system into N slabs (Fig. 1.9).19 

 

Figure 1.9 System setup for Müller-Plathe formalism. Müller-Plathe, The Journal of 

chemical physics 106, 6082 (1997) 

 The slabs are labeled from 0 to N-1 and slab 0 is set to be “cool” slab and N/2 as 

the “hot” slab. Kinetic energy is transferred from hot slab to cool slab. This is done by 

exchange velocity vectors of the coolest atom in the hot slab (atom with minimum kinetic 

energy) with the velocity of the hottest atom in the cool slab. The energy is then flowed 

back from hot slab to cool slab by heat conduction. Once the system reaches steady state, 
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the energy transfer imposed by the artificial velocity exchange is exactly balanced by the 

heat flux in the opposite direction affected by the thermal conductivity of the system. 

Since one can easily calculate the exchanged kinetic energy, the heat flux is therefore 

calculated. The temperature profile can be calculated by determining the temperatures in 

the intervening slabs. The kinetic energies of each atoms are averaged to calculate the 

temperature of the slab. In general, several thousand of atoms should be included in the 

slab to achieve reliable statistics for the temperature calculations. A typical temperature 

profile is shown in Fig. 1.10 for a uniform system.19 

 

17. Figure 1.10 Typical temperature profile using Müller-Plathe formalism. Müller-

Plathe, The Journal of chemical physics 106, 6082 (1997)  
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If there is a interface in the system, one would observe temperature discontinuity from 

the temperature profile, which allows the calculation of ΔT in equation (1.5) for thermal 

boundary resistance prediction. 

 The Müller-Plathe method has many advantages such as easy to understand, easy 

to implement in computational codes, moderate calculation time etc. In the work of this 

thesis, both the Green-Kubo and Müller-Plathe methods will be used in investigations. 

1.7 Computational resources and thesis layout 

 To accomplish the work in this thesis, we use cluster computers from Center for 

Advanced Computing (CAC) in University of Michigan, Ann Arbor. The MD simulation 

package LAMMPS developed by Sandia National Lab is used for all the MD simulations. 

Some extensions have been made to the LAMMPS package in order to facilitate the 

computing needs in the work of this thesis. The source code for the new features of 

computing net dipole moment in system and velocity autocorrelation function (vacf) are 

included in Appendix B. 

 In the discussion above, we showed the motivation of this thesis as well as 

theoretical backgrounds needed for the research. The thesis will be organized in the 

following way to study heat transfer process at interface of dissimilar materials. In 

Chapter 2, new force field parameters will be carefully developed for CuPc and the force 

field is validated through many methods that the MD simulations of CuPc will produce 

comparable results to DFT predictions as well as experimental measurements. With the 

validated new force field, we then study the thermal boundary resistance at CuPc-metal 
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interfaces using MD simulations in Chapter 3. Traditional theories such as AMM and 

DMM will be discussed if they would be appropriate to predict thermal boundary 

resistance at such weakly bonded interface. Different factors that may influence the heat 

transfer process will also be discussed. In Chapter 4, with the knowledge that we gained 

in the CuPc-metal system, we further move forward and explore the possibility of 

actively control of the heat transport property of piezoelectric polymers such as PVDF. 

Both the thermal conductivity and the boundary resistance at PVDF-metal interface will 

be discussed. Finally we will present a summary of this thesis and the outlook in this 

field. 
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Chapter 2  Simulation of Crystalline and 

Amorphous Copper Phthalocyanine: Force Field 

Development and Analysis of Thermal Transport 

Mechanisms 

Synopsis 

 The thermal conductivities of crystalline and amorphous CuPc structures have 

been studied using molecular dynamics simulations.  To this end, a Hybrid-COMPASS 

force field for the CuPc molecule has been developed and parameterized using ab initio 

and empirical parameterization techniques. The valence parameters and atomic partial 

charges were derived by fitting to ab initio calculation results, and the van der Waals 

(vdW) parameters were derived by comparing MD simulations of CuPc crystal structures 

to experimentally determined characteristics. The resulting force field successfully 

predicts accurate molecular structure, crystal structure, and vibration density of states 

(VDOS) of CuPc molecule in isolation and in condensed phase. Thermal conductivities 

calculated using the Green-Kubo formalism show a significant difference between 

crystalline and amorphous CuPc. Further analysis of the thermal conductivity spectral 

modes reveals that this difference mainly stems from the scattering of acoustic phonons, 
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and to a lesser extent from the suppression of optical phonon modes in the amorphous 

structure.  Accordingly, phonon scattering at amorphous domain walls in nano-crystalline 

materials effectively eliminates nearly two thirds of conduction pathways. 

2.1 Introduction 

 Copper phthalocyanine (CuPc) was originally developed as a paint pigment, a dye 

for textiles and plastics, and for ballpoint pen inks, printing inks, and even as food 

coloring.1 In 1948, Vartanyan and Khim reported the discovery of semiconductor 

behavior in CuPc.2  Further research revealed good chemical stability and low 

photochemical activity, which made CuPc highly suitable and heavily employed in light 

emitting diodes, organic lasers, and solar cells. CuPc has also been used in chemical 

sensors3 and optical data storage applications.4, 5  The relatively complex geometry of the 

CuPc molecule can pose challenges for controlling the structural definition of interfaces 

CuPc thin films form with other materials in these devices, and further molecular design 

may be indicated to improve performance. 

 In this context, molecular simulations provide an efficient means for predicting 

the structure and properties of materials, and thereby guide the conception and 

optimization of molecular architectures before synthesis is attempted in the laboratory. 

Key to the correct prediction of materials is the ability to generate realistic materials 

structures, e.g., by reproducing the reaction and transport processes that underlie 

molecular assembly in experimental systems.  For complex organic molecules this 

approach can be time consuming and we therefore must rely on molecular dynamics (MD) 

simulations based on empirical force fields, which provide for the efficient computation 
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of atomic trajectories.  For a successful structure and property prediction, this force field 

must accurately describe atomic interactions. 

 To date, very few force fields have been developed specifically for metal 

phthalocyanine materials. Yin has developed the ESFF force field to study CuPc 

adsorption on graphite surface and alkane adlayer using molecular mechanics method.6 

Recently, Chen studied CuPc orientation and charge transport based on the CuPc crystal 

structure generated by MD simulation using CVFF force field.7  Nonetheless, none of 

them characterize the thermo-mechanical properties of CuPc to the extent we deemed 

necessary. Therefore, our first task was to improve upon the current state-of-the-art.  As a 

starting point we selected the COMPASS (condensed-phase optimized molecular 

potentials for atomistic simulation studies) force field because it is well-accepted for 

simulating organic molecules.8-10 The COMPASS force field was introduced by Sun in 

1998.9 It is a “Class II” force field that evolves from previous force fields such as MM4,11 

CFF93,12 OPLS,13 etc. and it has been parameterized as a universal force field to study 

most common organic molecules, organic and inorganic polymers, zeolites, and 

metal/trasition-metal oxides. Indeed, a number of bonding interactions between species 

that are part of the CuPc molecule are available in the literature, have been directly 

adopted for the present study of CuPc. 

In this chapter, we report new parameters for the Hybrid-COMPASS force field. 

Hybrid-COMPASS, proposed by Ionescu,14 is a simplified version of the COMPASS 

force field with acceptable simulation accuracy. The first optimization step consists of 

adjusting interaction parameters so that the CuPc crystal structure reported in literature is 
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reproduced.  Interaction energy magnitudes and local charges are obtained using first-

principles calculations. Next, comparison between calculated and experimental phonon 

density of states serves to fine-tune the interaction parameters. Finally, the force field 

parameterization so obtained is validated by computing thermal conductivities for both 

crystalline and amorphous CuPc and directly compared with experimental measurements 

carried out in our laboratory. The remainder of the paper is organized as follows: first, we 

provide a detailed description of the force field used in this work, followed by the details 

of simulations procedure, including the determination of thermal conductivities. 

Subsequently, we analyze and discuss our findings regarding heat transport in amorphous 

and crystalline CuPc, and conclude with a summary of our findings. 

2.2 Force Field Description 

 In the COMPASS force field, the potential energy, U, is given by, 

U  = Ub +Uθ +Uφ +Uχ +Ubb’ +Ubθ + Ubφ +Uθφ +Ubθφ +Ucoul +Uvdw     (2.1) 

The potential energy (U) given in COMPASS force field can be divided into 

valence and non-bonding terms. The valence terms include bond-stretching (Ub), bond-

angle-bending (Uθ), torsion (Uφ), out-of-plane bending (Uχ), cross-coupling terms (such 

as bond-bond (Ubb’), bond-angle (Ubθ), bond-torsion (Ubφ), angle-torsion (Uθφ) and bond-

angle-torsion (Ubθφ) interactions). The non-bonding terms are electrostatic interactions 

(Ucoul) and van der Waals interaction (Uvdw).  In the hybrid-COMPASS force field used 

here, the out-of-plane bending and cross-coupling terms are neglected, which greatly 

reduces the amount of parameters to be developed, without significantly sacrificing 
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accuracy in reproducing experimental observations. The functional forms of bond-

stretching (Ub) and bond-angle-bending (Uθ) terms are described as 

Ub = k2 ( b - b0 )2 + k3 ( b - b0 )3 + k4 ( b - b0 )4    (2.2) 

Uθ = V2 ( θ - θ0 )2 + V3 ( θ - θ0 )3 + V4 ( θ - θ0 )4    (2.3) 

where b0 and q0 are equilibrium bond length and equilibrium bond angle, respectively. b 

and q are the equilibrium bond lengths and bond angles, and k2, k3, k4, H2, H3, and H4 are 

constants. The functional form of the torsional term is given by 

Uφ = H1 ( 1 – cosφ ) + H2 ( 1 – cos2φ ) + H3 ( 1 – cos3φ ),     (2.4) 

where j is the equilibrium torsional angle and H1, H2, and H3 are constants. The 

electrostatic interaction can be described by the Coulomb law, 

€ 

Ucoul =
qiq j

riji, j
∑    (2.5) 

where the atomic partial charges can be evaluated through bond increments, dij, which 

represent the charge transfer between two valence-bonded atoms i and j. Accordingly, for 

atom i, the resulting partial charge is the result of summing up all bond increments for 

valence-bonded atoms j, 

€ 

qi = δ ij
j
∑    (2.6) 

Lennard-Jones 9-6 potential is implemented to model non-bonding van der Waals 

interactions. The functional form is given by 
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where   rij
0  is the equilibrium distance between atom i and atom j.  and  for the same 

atomic species, i = j, we use published parameters for C, H, N and parameterize Cu-Cu 

interaction. For the parameters between different species, i ≠ j, a 6th order mixing rule is 

applied, 
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For non-bonding interactions, a cutoff distance of around 10 ~ 15 Å is selected and it is 

assumed to be a sharp cutoff.9 

2.3 Force field parameterization procedure 

We determined the force field parameters for the CuPc molecule, shown in Fig. 

2.1, using a method similar to that pioneered by Maple15 and subsequently adopted by 

Sun9, 10 and Bunte8 in their quest to establish COMPASS force field parameters for a 

series of organic molecules. Empirical adjustments are also performed to achieve better 

results.  
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Figure 2.1 Copper phthalocyanine molecular structure 

The valence bond parameters and charge bond increments are derived by least 

squares fitting the force field to the energy surface of a single CuPc molecule obtained by 

means of density functional theory (DFT) calculations using the B3LYP/6-311G(d,p) 

basis set. The optimized equilibrium structure of the CuPc molecule and the 

corresponding energy surface are obtained using the Gaussian 09 suite of quantum 

chemistry code, with the default convergence criteria in all cases. To fit the force field to 

DFT calculation results, we first compute atomic partial charges in the CuPc molecule 

using DFT calculation. These partial charges are then converted to charge bond 

increments, with some adjustments to maximize agreement between the two calculation 

methods for the entire molecule. The atomic partial charge for the copper atom is 

calculated to be +0.876 electronic charge units, which suggests that the bonding between 

copper and nitrogen is mostly covalent in nature and the functional form in Hybrid-
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COMPASS force field is appropriate in this case. The valence bonding parameters are 

obtained by multivariate optimization of up to 10 force field parameters simultaneously, 

until the deviations between the energy surfaces for the CuPc molecule obtained from 

DFT calculations and MD simulations are minimized. Once the valence parameters are 

obtained, MD simulations are performed to optimize non-bonding interaction parameters 

and to validate the force field via its ability to reproduce other properties of CuPc based 

materials.  MD simulations were carried out using LAMMPS simulation package.  All 

the parameters needed to define the potential functions used in this work are listed in 

Table 2.1. 

2.4 Simulation procedure Details 

To validate the force field, we first study the intra-molecular properties by 

comparing the energy-minimized equilibrium structure of a single CuPc molecule 

resulting from MD simulations to the optimized equilibrium structure obtained from DFT 

calculation, as well as from experimental observations. Then CuPc crystal structures are 

studied to validate non-bonding parameters of the force field. Depending on temperature, 

CuPc can exhibit α-, β-, γ-, δ-, ε-, R-, π-, and X-forms. Among these eight polymorphs of 

crystalline CuPc , only the β-form has good thermal stability and all other forms convert 

to β-form when heated above 473 K.16  Thus we perform MD simulations on CuPc 

crystals both at room temperature (300 K) and at elevated temperature (500K) in order to 

validate the α- and β-forms of crystalline CuPc structures corresponding to these 

temperatures. Both constant volume (NVT) simulation and constant pressure (NPT) 

simulations, with time integration based on Nose-Hoover style non-Hamiltonian 
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equations of motion, are performed using a time step of 1fs.  Both conditions give 

identical system properties. Amorphous CuPc structure is also generated according to 

following procedures: CuPc molecules are loosely placed in space with intermolecular 

distance of 20 Å which is larger than the cutoff radius of the potential. The system is first 

equilibrated under NPT ensemble at 700K then cooled slowly to 300K for amorphous 

structure. Finally we calculate the vibrational density of states from MD simulation 

results and compare to the experimental IR/Raman spectra as well as the normal modes 

study of CuPc molecule. 

2.5 Results and Discussion 

2.5.1 Intra-Molecular Properties 

 A schematic of the CuPc molecule is shown in Fig. 2.1. In principle, atoms N33 

and N37 represent two different types of nitrogen. However, for the purpose of keeping 

the Hybrid-COMPASS force field as simple as possible, we treat them the same, except 

for their coordination numbers.  This latter attribute sufficiently differentiates the two 

types of nitrogen, so that the structure and dynamical properties of the molecule are 

reproduced with sufficient accuracy, as illustrated below.  Energy minimization is 

performed on isolated a CuPc molecule.  All 68 bond lengths and 116 bond angles are 

compared with the values obtained from DFT calculations. Fig. 2.2(a) and (b) show the 

correlation between MD and DFT results. For the bond lengths, the data range from 1.0 Å 

to 2.0 Å. The maximum absolute deviation is 3.2%, the average deviation is 0.68% and 

the root mean squares (rms) deviation is 1.8%.  For the bond angles, the data range from 
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90o to 135o. The maximum absolute deviation is 1.6%, the average deviation is -0.13%, 

and the rms deviation is 1.0%. 

(a)  
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(b)  

Figure 2.2 Comparison of (a) bond lengths and (b) bond angles calculated using our force 

field with experimental data. The maximum absolute percentage deviation (max), average 

percentage deviation (ave), and root mean squares (rms) percentage deviation are listed. 

 The detailed comparison between the bond lengths and angles obtained using MD 

simulations based on this force field, DFT calculations, and experiments is provided in 

Table 2.2 and Table 2.3. The atom labeling here is consistent with the labeling in Fig. 2.1. 

The dihedral angle of CuPc molecule is 180o in all three cases. Compared to experimental 

data, we find the bond length of C1-N33 to be 2.9% larger in MD simulation results, 

which is within the acceptable error range for these simulations. It is interesting to note 

that the C1-N33 type of bond (1.36 Å) is slightly shorter than C1-N37 type of bond (1.37 
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Å), which is in agreement with experimental observations and DFT calculations.17 C. J. 

Brown proposed two possible explanations for this trend:17 On one hand, this could be 

the result of the copper atom more strongly attracting the N37 atom; on the other hand the 

five-membered isoindole ring may have some influence on N37 atom by diverting some 

of π electrons away from N37 atom and thus cause the C-N bond to be longer.  Since in 

our force field, N33 and N37 are treated the same, their interactions with neighboring 

carbons are identical, and hence, the influence of the copper atom appears to be sufficient 

to induce the difference in bond lengths.  In general, the force field based calculation 

results of the bond lengths and bond angles are in excellent agreement with both 

experimental and DFT calculated values. 

2.5.2 Vibrational Density of States 

 To further validate the force field, the vibrational density of states (VDOS), D(w), 

is calculated by Fourier transform of the velocity autocorrelation function (VACF), 

according to 

   

D ω( ) = Re
v j t( )·v j 0( )

v j 0( ) 2 eiωt dt
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  (2.10) 

where ω is the frequency and vj(t) is the velocity of atom j at time t.  Correlation with the 

velocity at time zero is assessed by computing the vector dot product, and the angular 

brackets indicate both the time and ensemble average of this quantity. 

 The calculated VDOS is then compared with the spectrum of normal mode 

frequencies obtained from DFT B3LYP/6-311G(d,p) calculations, as well as the 
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experimentally observed in Raman scattering and IR absorption spectra of CuPc.18 The 

values are listed in Table 2.4. The standard deviation between normal mode frequencies 

due to interactions based on the force field and experimentally measured peak 

frequencies is 15.24 cm-1, and the maximum deviation is 82 cm-1. Both are considered 

acceptable for force field calculations.  For the CuPc molecule all the normal mode 

frequencies below 1700 cm-1 are strongly correlated19 and each normal mode involves 

motion along more than one direction in the internal coordinate system.18 It is very 

difficult to obtain accurate vibrational spectra for such a complicated molecule, and 

previous efforts in calculating normal mode frequencies for CuPc molecule resulted in 

errors as large as 10%.19 Accordingly, calculations based on our force field yield much 

better accuracy. 

2.5.3 Crystalline Structure 

 The CuPc crystalline structure is obtained using constant pressure MD simulation 

of a 5 by 5 by 5 supercell, allowing for a more stringent test of structural stability. Fig. 

2.3(a) and (b) show the supercell for α- and β-form of crystalline CuPc, respectively. The 

Parrinello-Rahman pressure control method, in which all cell parameters are relaxed, is 

used in these simulations.  Unit cell parameters from simulations are averaged over the 

supercell and several oscillatory periods of the lowest-frequency cell shape fluctuations. 

Values so obtained for both the α- and β-form are listed, alongside experimental data, in 

Table 2.5 and Table 2.6. The maximum deviation between simulation-based and 

experimental values is 6.25%. The deviation in cell parameters for the α-form appears to 

be larger than that for the β-form of CuPc. This can be attributed to the relatively weak 
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van der Waals interactions between CuPc molecules, which are nevertheless responsible 

for the crystalline configurations these molecules assume.  Consequently, the unit cell 

parameters of weakly bonded CuPc are very sensitive to the simulated environment. For 

CuPc, the α-form is metastable at ambient conditions, and easily transforms to the more 

stable β-form at elevated temperature. It is therefore to be expected that α-CuPc is 

characterized by shallow or even multiple local energy minima, and that precise location 

of these minima very delicately responds to potential parameter adjustments.  As can be 

seen in Table 2.7, the calculated densities of both α- and β-CuPc crystals are in good 

agreement with experimental observations. Overall, we find the structural characteristics 

derived from MD simulations of this newly optimized force field to be very acceptable 

for such weakly bonded crystals. 

(a)  
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(b) 

 

Figure 2.3 Unit cell structures of: (a) α-CuPc and (b) β-CuPc crystals 

2.5.4 Thermal Conductivity of CuPc 

 At the molecular scale, materials are subject to small statistical temperature 

fluctuations, the spatio-temporal evolution of which is governed by instantaneous heat 

fluxes.  The thermal conductivity of such a system can be calculated from the heat current 

autocorrelation function (HCACF) according to the Green-Kubo formalism:20 

   
k = 1

VkBT
J(τ )·J(0)

0

∞

∫ dτ
, 

(2.11) 

where   

� 

 
J (τ)  is the instantaneous heat current and the HCACF,   

� 

 
J (0)
 
J (τ) , is again time 

and ensemble averaged.  V is the volume of the simulated system, and T is the mean 

temperature during the MD simulation. The instantaneous heat current is calculated as 
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, 

(2.12) 

where the summation is over all the atoms, and Ej is the total energy of atom j. 

 Both the crystalline β -form and amorphous structures of CuPc are created and 

relaxed at 300K and ambient pressure using NPT conditions using MD simulation. In 

Fig. 2.4, We plot the volume of the system vs. temperature during the cooling process to 

make amorphous CuPc structure. The glass transition temperature Tg in our simulation is 

about 518 K which is slightly higher than actual Tg of 513 K. The accurate Tg obtained by 

MD simulation validates the amorphous CuPc structure in simulation. X-ray diffraction 

(XRD) analysis on both crystalline and amorphous CuPc structures further validates the 

correctness of the structures used. The XRD patterns for both structures are calculated 

using the CrystalDiffract software and are shown in Fig. 2.5(a). The wavelength used in 

the calculation is 1.54 Å. In experiments, crystalline and amorphous CuPc films were 

deposited on silicon (100) substrates under different deposition temperature, 20 and -60 

degree Celsius respectively. Their X-ray diffraction (XRD) spectra were obtained by 

Rigaku rotating anode X-ray diffractometer. The experimentally measured XRD for β-

crystalline and amorphous CuPc are shown in Fig. 2.5(b). 
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Figure 2.4 Plot of system volume vs. temperature for amorphous CuPc 

  

(a) 
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Figure 2.5 XRD patterns for crystalline and amorphous CuPc: (a) calculated based on a 

structure relaxed in MD simulations, and (b) experimental data. Experiments completed 

by Y. Jin 

 In experiments, the broadening of the peak at 7˚ indicates the measured sample 

displays chain ordering in one or two crystalline directions, but has not developed well-

formed three-dimensional crystallites. Using FWHM of the 7˚ peak and Scherrer equation, 

we estimate the mean size of the crystalline domains to be around 312 Å. This is in 

agreement with estimated domain size of 20-50 nm from TEM image in Fig. 2.6. 

(b) 
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Figure 2.6 Transmission Electron Microscropy (TEM) image of β-CuPc sample. Domain 

size is estimated to be 20-50 nm. TEM image of CuPc was taken on a JEOL 2010F 

Analytical Electron Microscope at 200 kV. 50 nm of CuPc was vacuum thermal 

evaporated onto thin holey carbon film coated Copper grid (Cu-400HN) from Pacific 

Grid-Tech, then imaged by TEM to show the domain size. Image taken by Y. Jin 
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 Given that the unit cell coordinates of our simulated structure remain within close 

agreement to those reported from experimental characterization, we conclude that the 9˚ 

peak we see in simulations but is absent in our experimental XRD, is too weak to be 

detected as a result of the small crystallite size. The relaxed structures are used in MD 

simulation to calculate thermal conductivities of CuPc in the NVE ensemble. A typical 

HCACF is plotted vs. time in Fig. 2.7(a) and (b). The rapid oscillations are due to optical 

phonons in CuPc. 

(a)   
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(b)  

Figure 2.7 Heat current autocorrelation functions for (a) crystalline CuPc, (b) amorphous 

CuPc, shown up to 50 ps, beyond which the noise levels remain constant. 

 

(a) 
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Figure 2.8 Thermal conductivity of crystalline and amorphous CuPc for (a) small and (b) 

large systems. 

 We also studied the impact of size effect and cutoff distance of force field on the 

calculation of thermal conductivity. The sets of both crystalline and amorphous structures 

are simulated for this study: small systems contain 250 CuPc molecules and large 

systems contain 2000 CuPc molecules. Cutoff distance of 10 and 15 Å are applied to the 

two sets of structures respectively.  

 The running integrals of the HCACF of the two sets of crystalline and amorphous 

CuPc are plotted in Fig. 2.8. In order to have good statistics on the HCACF, long 

simulation time is needed so that the average value of HCACF becomes stable. In our 

simulations, the run time for the Green-Kubo calculation is set to be 1 ns simulation time 

and the correlation time is 70 ps. These settings will give us enough run time averages of 

(b) 
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the auto-correlation function calculated. We found that using cutoff distance of 15 Å 

would result better consistency for both small and large systems investigated. It is 

therefore that we choose to use 15 Å as our cutoff distance in our thermal conductivity 

calculations so that the size of the system will not have much impact on calculation 

results. The thermal conductivity reaches a value of ~1.1 W/m-K for crystalline and 0.65 

W/m-K for amorphous CuPc. Note that the thermal conductivity coefficient, evaluated 

according to eq. (2.11) is the limit of the Fourier transform of the HCACF at zero 

frequency.  Hence, analyzing the complete Fourier spectrum of the HCACF can provide 

additional insights into the thermal conduction mechanisms.  Fundamentally, the 

functional form of a HCACF can be expressed as a linear combination of damped 

harmonic oscillators terms, each representing a particular phonon mode in the structure. 

Such a model was first proposed by McGaughey and Kaviany,21, 22 who differentiated 

between short range acoustic, long range acoustic and optical phonons. Adopting this 

formalism, the attenuation and oscillatory features of the HCACF are satisfactorily 

described by 

   
J(t) ⋅ J(0) = Ar ,ke

−t τ r ,k

k
∑ + Bo ,ie

−t τ o ,i cos ω o ,it( )
i
∑ , (2.13) 

and an exact fit to the HCACF determined in simulations can be achieved by using the 

appropriate number of terms in the summation, and by choosing the various decay time 

constants, tm, oscillatory frequencies, wm, and mode intensities, Am and Bm, correctly.  The 

subscripts m = r and o refer to purely relaxational and oscillatory modes, respectively, 

where the purely relaxational modes could formally also be viewed as zero-frequency 

modes.  In practice, determining these parameters is aided by taking the numerical 
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Fourier transform of the HCACF derived from simulations, which yields spectra such as 

shown in Fig. 2.9. 

 

Figure 2.9 Heat current autocorrelation spectrum for β-crystalline and amorphous CuPc. 

 The spectral peak heights, their positions on the frequency scale, and their full 

widths at half maximum (FWHM), provide relatively easy access to the quantities Am, 

Bm, wm, and tm (= FWHM/p).  To this end, consider the analytical Fourier transform of 

expression (2.13), 

   
g(ω ) = Re J t( )·J 0( ) e− jωt dt

0

∞

∫
⎡

⎣
⎢

⎤

⎦
⎥ = Ar ,k

τ r ,k

1+ω 2τ r ,k
2

k
∑ + Bo ,i Re

τ o ,i 1+ jωτ o ,i( )
1+ jωτ o ,i( )2

+ω o ,i
2 τ o ,i

2
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⎣
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⎢

⎤
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∑ , (2.14) 
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which yields the expression for the line shape to be fit to the spectra resulting simulations 

(Fig. 2.8).  Once the values for Am, Bm, wm, and tm. are known, we can evaluate g(ω) 

consider the zero-frequency limit to recover the definition of the thermal conductivity 

according to the Green-Kubo formalism of eq. (2.11), 

  
k = 1

kBVT2 Ar ,kτ r ,k
k
∑ + Bo ,i

τ o ,i

1+ω o ,i
2 τ o ,i

2
i
∑

⎛

⎝⎜
⎞

⎠⎟
= kr + ko . (2.15) 

where kr represents all aperiodic contributions to heat propagation and ko all processes 

that rely on acoustic or optical phonons for the transport of energy.  When calculating the 

spectra for both crystalline and amorphous CuPc shown in Fig. 2.9, we apply a Savitzky-

Golay smoothing filter and assume time reversal symmetry for the HCACF, which yields 

only real components for the spectra.  We then fit the peaks in the spectrum using 

Lorentzian function to determine time constants τm, peak positions wm,, and peak 

intensities Bm.   

 Note that eq. (2.15) corresponds to eq. (2.14) evaluated at w = 0, and scaled by 

  1 kBVT( ) .  Accordingly, every vibrational mode in the heat current spectrum contributes 

to the overall thermal conductivity to an extent that depends on the corresponding peak 

position, wo,i.  The amount each mode contributes decreases approximately as   1 ω o ,i
2 , as is 

illustrated in the inset in Fig. 2.10 (a).  This schematic shows two spectral peaks that 

exhibit a Lorentzian line shape, as expected based on eq. (2.14), located in close enough 

proximity to the abscissa origin that the wings of these peaks intersect with the ordinate 

at a finite magnitude.  The value of this intersection represents the contribution to the 
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thermal conductivity.  Evidently, the higher the mode frequency, the lower the 

contribution to the thermal conductivity.   

 Figs. 2.10 (a) and (b) show the peak fitting results in the 0-10 THz frequency 

range, which includes acoustic phonon and low-lying optical phonon modes.  The 

calculated time constants and their corresponding peak frequencies are listed in Table 9.  

The small time constants make for narrow peaks, i.e., they decay rapidly from the peak 

centers and contribute little to the intercept with the ordinate at ω = 0.  We calculated that 

all oscillatory modes contribute about 15% in crystalline and 11% in amorphous CuPc to 

the total thermal conductivity, which accounts for a small fraction of the difference 

between the thermal conductivities in crystalline and amorphous CuPc.  The amorphous 

structure has fever and less intense oscillatory heat current modes.  However, the 

majority of the difference comes from purely relaxational contributions to the 

conductivity, kr.  From Figs. 2.10(a) and (b), it is clear that the zero-frequency spectral 

intensity for crystalline CuPc is much stronger than for amorphous CuPc.  According to 

the model expressed by eqs. (2.14) and (2.15), zero-frequency modes correspond to a 

continuously dissipative propagation of energy, i.e., there no momentary reversal of heat 

flow.  It accounts for the amount of energy passed to adjacent molecular groups during 

each oscillatory period.  Evidently, this mechanism is facilitated by the regularity of a 

defect-free periodic structure.  In β-CuPc the time constant associated with this process is 

7.60 ps, one of the slowest mode decays observed in our simulations.  This suggests that 

the majority of the diffuse heat flux is carried by acoustic phonons between about 65 

GHz and the Brillouin zone limit.  Conversely, the randomness in the amorphous 

structure strongly suppresses this diffuse heat conduction. 
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(a)   

(b)  

Figure 2.10 Mode analysis of the heat current auto-correlation spectrum for (a) β–

crystalline and (b) amorphous CuPc using Lorentzian functional fits.  Inset in (a): 

illustration of how individual modes contribute to the thermal conductivity (intercepts at 

zero frequency).  The low-frequency region of both spectra is magnified along the 

frequency and intensity axes to better reveal these intercepts. 
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 Thermal conductivities of both crystalline and amorphous CuPc were measured 

experimentally by Jin23 and are listed along with the values derived from our simulations 

in Table 2.8. While the calculated thermal conductivity for the amorphous phase is 

somewhat larger than the experimentally measured value, that for crystalline CuPc is 

significantly higher in simulations than in experiment.  These discrepancies can be 

attributed to the differences in sample preparation between experiments and simulations, 

inaccuracies in the interaction model, or a combination of both.  The time allowed for 

structural relaxation in amorphous materials is much shorter in simulations than in 

experiments.  To compensate for this lack of relaxation, amorphous structures in 

simulations are prepared at elevated temperatures, compared to cryogenic temperatures in 

experiments.  Conversely, in simulations we construct perfect crystals straightforwardly, 

while materials obtained under experimental growth conditions consist of nano-

crystalline domains with highly disordered domain boundaries.  In fact, the experimental 

sample we have available for comparison consists of nano-crystalline domains with an 

average size of roughly 30 nm, separated by strongly disordered regions that cause strong 

phonon scattering.  It is known that in polycrystalline Si the thermal conductivity can be 

reduced by orders of magnitude upon reduction of the grain size.24  Given that in CuPc 

crystal, the phonon mean free path is about 14 nm, i.e., well within the estimated domain 

size, we can express the overall thermal conductivity using Matthiessen’s rule as 

1
ktotal

=
χX
kX

+
χA
kA

 (2.16) 

where the subscripts X and A refer to well developed crystalline domains and amorphous 

regions in between, respectively.  The factors χi reflect the relative weight of the 
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conduction mechanisms, which essentially differ in their mean free paths.  Accordingly, 

the experimentally determined thermal conductivity could be explained by attributing to 

about 55% of heat flow through amorphous and 45% through crystalline regions.  This 

estimate is based the ratio between thermal conductivities in perfect crystalline and 

amorphous structures derived from simulations.  In a one-dimensional geometry, this 

ratio would correspond to the volume fractions of crystalline domains and amorphous 

domain boundaries.  However, assuming that all crystalline domains are encased in 

amorphous regions and thus separated from each other, thermal diffusion is naturally 

three-dimensional in such complex structures, and simple models easily overestimate the 

effect of amorphous phase. 

2.6 Conclusion 

 The Hybrid-COMPASS force field has been expanded to accurately simulate 

CuPc isolated molecules, as well as crystalline and amorphous condensed phases. The 

structure of the isolated CuPc molecule is in good agreement with experimental 

observations. The MD simulations also predict α- and β-form CuPc crystal structures at 

different temperatures with reasonable accuracy when compared with experimental 

measurements.  The vibrational density of states calculated from MD simulation also 

agrees well with both experimental and theoretical studies of normal mode frequencies of 

CuPc molecule.  Based on this new force field, we analyzed the thermal conduction 

mechanisms in amorphous and crystalline CuPc using the Green-Kubo formalism.  

Comparing with experimental measurements we observe reasonable agreement for 

amorphous samples, and we conclude that the crystalline samples consist of nano-
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domains isolated from each other by significant amounts of amorphous domain 

boundaries, possibly exceeding half the sample volume. 



 57 

2.7 References 

1 F.H. Moser and A.L. Thomas, ‘The phthalocyanines,’ (CRC Press, Boca Raton, Fla., 1983). 

2 A. Vartanyan, ‘Poluprovodnikovye Svoistva Organicheskikh Krasitelei.1. Ftalotsianiny,’ Zh 
Fiz Khim+ 22, 769 (1948). 

3 G.G. Fedoruk, D.I. Sagaidak, A.V. Misevich, and A.E. Pochtenny, ‘Electrical and gas sensing 
properties of copper phthalocyanine polymer composites,’ Sensor Actuat B-chem 48, 351 
(1998). 

4 T. Reinot, W.H. Kim, J.M. Hayes, and G.J. Small, ‘New standard for high-temperature 
persistent-hole-burning molecular materials: Aluminum phthalocyanine tetrasulphonate in 
buffered hyperquenched glassy films of water,’ J Opt Soc Am B 14, 602 (1997). 

5 H. Hoppe and N.S. Sariciftci, ‘Organic solar cells: An overview,’ J. Mater. Res. 19, 1924 
(2004). 

6 S.X. Yin, C. Wang, B. Xu, and C.L. Bai, ‘Studies of CuPc adsorption on graphite surface and 
alkane adlayer,’ J. Phys. Chem. B 106, 9044 (2002). 

7 S.A. Chen and J. Ma, ‘The influence of orientations and external electric field on charge 
carrier mobilities in CuPc and F16CuPc films on highly ordered pyrolytic graphite and 
octane-1-thiol terminated Au(111) substrates,’ Phys Chem Chem Phys 12, 12177 (2010). 

8 S.W. Bunte and H. Sun, ‘Molecular modeling of energetic materials: The parameterization 
and validation of nitrate esters in the COMPASS force field,’ J. Phys. Chem. B 104, 2477 
(2000). 

9 H. Sun, ‘COMPASS: An ab initio force-field optimized for condensed-phase applications - 
Overview with details on alkane and benzene compounds,’ J. Phys. Chem. B 102, 7338 
(1998). 

10 H. Sun, P. Ren, and J.R. Fried, ‘The COMPASS force field: parameterization and validation 
for phosphazenes,’ Comput Theor Polym S 8, 229 (1998). 

11 N.L. Allinger, K.S. Chen, and J.H. Lii, ‘An improved force field (MM4) for saturated 
hydrocarbons,’ J. Comput. Chem. 17, 642 (1996). 

12 M.J. Hwang, T.P. Stockfisch, and A.T. Hagler, ‘Derivation and Characterization of a Class-II 
Force-field, CFF93, for the Alkyl Functional-Group and Alkane Molecules,’ J. Am. Chem. 
Soc. 116, 2515 (1994). 

13 T.A. Halgren, ‘Merck molecular force field.1. Basis, form, scope, parameterization, and 
performance of MMFF94,’ J. Comput. Chem. 17, 490 (1996). 

14 T.C. Ionescu, F. Qi, C. McCabe, A. Striolo, J. Kieffer, and P.T. Cummings, ‘Evaluation of 
force fields for molecular simulation of polyhedral oligomeric silsesquioxanes,’ J. Phys. 
Chem. B 110, 2502 (2006). 



 58 

15 J.R. Maple, U. Dinur, and A.T. Hagler, ‘Derivation of Force-fields for Molecular Mechanics 
and Dynamics From Abinitio Energy Surfaces,’ P Natl Acad Sci Usa 85, 5350 (1988). 

16 D.C. Xia, W.C. Li, X. Wang, S.K. Yu, C.X. Fan, C.Y. Ma, C.H. Cheng, Z.Q. Fan, G.T. Du, 
F.D. Cong, and X.G. Du, ‘Preparation of copper phthalocyanine, crystals using solvothermal 
synthesis,’ Chem Res Chinese U 24, 407 (2008). 

17 C.J. Brown, ‘Crystal Structure of Beta-copper Phthalocyanine,’ J Chem Soc A 2488 (1968). 

18 D.C. Li, Z.H. Peng, L.Z. Deng, W.F. Shen, and Y.H. Zhou, ‘Theoretical studies on molecular 
structure and vibrational spectra of copper phthalocyanine,’ Vib Spectrosc 39, 191 (2005). 

19 R. Aroca, Z.Q. Zeng, and J. Mink, ‘Vibrational Assignment of Totally Symmetric Modes in 
Phthalocyanine Molecules,’ J. Phys. Chem. Solids 51, 135 (1990). 

20 R. Kubo, M. Yokota, and S. Nakajima, ‘Statistical-mechanical Theory of Irreversible 
Processes 2. Response to Thermal Disturbance,’ J. Phys. Soc. Jpn. 12, 1203 (1957). 

21 A.J.H. McGaughey and M. Kaviany, ‘Thermal conductivity decomposition and analysis 
using molecular dynamics simulations. Part I. Lennard-Jones argon,’ Int. J. Heat Mass 
Transfer 47, 1783 (2004). 

22 A.J.H. McGaughey and M. Kaviany, ‘Thermal conductivity decomposition and analysis 
using molecular dynamics simulations: Part II. Complex silica structures,’ Int. J. Heat Mass 
Transfer 47, 1799 (2004). 

23 Y. Jin, A. Yadav, K. Sun, H. Sun, K.P. Pipe, and M. Shtein, ‘Thermal boundary resistance of 
copper phthalocyanine-metal interface,’ Appl. Phys. Lett. 98, ARTN 093305 (2011). 

24 Z. Wang, J.E. Alaniz, W. Jang, J.E. Garay, and C. Dames, ‘Thermal conductivity of 
nanocrystalline silicon: Importance of grain size and frequency-dependent mean free paths,’ 
Nano letters 11, 2206 (2011). 

25 H. Heinz, R.A. Vaia, B.L. Farmer, and R.R. Naik, ‘Accurate Simulation of Surfaces and 
Interfaces of Face-Centered Cubic Metals Using 12-6 and 9-6 Lennard-Jones Potentials,’ J. 
Phys. Chem. C 112, 17281 (2008). 

26 A.A.M. Farag, ‘Optical absorption studies of copper phthalocyanine thin films,’ Opt Laser 
Technol 39, 728 (2007). 

27 M. Ashida, N. Uyeda, and E. Suito, ‘Unit Cell Metastable-form Constants of Various 
Phthalocyanines,’ B Chem Soc Jpn 39, 2616 (1966). 

 



 59 

Table 2-1 Hybrid-COMPSS force field parameters for CuPc 

Quartic Bond 

i j b0 (Å) k2 (kCal/mol·Å-2) k3 (kCal/mol·Å-3) k4 (kCal/mol·Å-4) 

C N 1.3750 325.3433 -204.4082 466.3989 

C Ca 1.4170 470.8361 -627.6179 1327.6345 

C Ha 1.0982 372.8251 -803.4526 894.3173 

Cu N 1.9540 245.0000 -88.9193 -55.4174 

Quartic Angle 

i j k θ0 (°) 

H2 

(kCal/mol·deg-

2) 

H3 

(kCal/mol·deg-

3) 

H4 

(kCal/mol·deg-

4) 

C C N 122.8550 74.2474 -50.0000 0.0000 

N C N 127.6575 90.5230 -20.8010 -18.0000 

C C Ca 118.9000 61.0226 -34.9931 0.0000 

C N C 115.5720 48.2320 -5.7980 -9.9660 

C C Ha 117.9400 35.1558 -12.4682 0.0000 

C N Cu 125.8850 49.8203 -13.4750 5.8570 

N Cu N 90.0000 59.5741 -35.2545 16.0517 
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Torsion 

i j k l V1 (kCal/mol) V2 (kCal/mol) V3 (kCal/mol) 

N C C C 3.1952 11.2745 -1.4456 

C C N C 0.0000 1.0000 0.0000 

N C N C 0.0000 1.0000 0.0000 

C C N Cu 1.8405 5.4779 3.1407 

N C N Cu -3.9545 4.8864 10.0000 

C C C Ca 8.3667 1.2000 0.0000 

C C C Ha 0.0000 3.9661 0.0000 

H C C Ha 0.0000 2.3500 0.0000 

C N Cu N -6.9564 17.7309 -5.0508 

Nonbond (LJ9-6) 

i ε0 (kCal/mol) r0 (Å) i ε0 (kCal/mol) r0 (Å) 

Ca 0.068 3.915 N 0.120 3.400 

Ha 0.023 2.878 Cub 3.840 2.661 
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Bond Increments 

i j Bond Increments (e-) 

Cu N 0.2191 

C C9 0.0000 

C H25 -0.1268 

C N 0.2448 
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Table 2-2 Bond lengths of the CuPc molecule 

Bond lengths (Å) Experiment 17 
B3LYP/6-

311G(d,p) 
Hybrid COMPASS 

Percentage 

Deviation 

C1-C9 1.453 1.457 1.411 -2.9% 

C1-N33 1.328 1.325 1.367 2.9% 

C1-N37 1.366 1.375 1.377 0.8% 

C9-C13 1.400 1.406 1.396 -0.3% 

C9-C20 1.391 1.396 1.410 1.4% 

C19-C20 1.391 1.394 1.422 2.2% 

C18-C19 1.413 1.409 1.427 1.0% 

C20-H44  1.087 1.098 1.0% 

N37-Cu57 1.940 1.954 1.958 0.9% 
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Table 2-3 Bond angles of CuPc molecule 

Bond angles (°) Experiment 17 
B3LYP/6-

311G(d,p) 

Hybrid 

COMPASS 

Percentage 

Deviation 

Cu57-N37-C1 126.350 125.891 126.148 -0.2% 

C1-N37-C5 107.300 108.228 107.703 0.4% 

N33-C1-N37 127.550 127.651 129.768 1.7% 

N33-C1-C9 122.700 122.855 121.153 1.3% 

N37-C1-C9 109.750 109.490 109.079 -0.6% 

C1-C9-C13 106.600 106.399 107.069 0.4% 

C20-C9-C13 121.050 121.210 121.820 0.6% 

C9-C20-C19 117.950 117.606 117.390 -0.5% 

C20-C19-C18 120.975 121.190 120.790 -0.2% 

C19-C20-H44  120.702 120.239 -0.4% 
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Table 2-4 Vibrational Frequencies of the CuPc Molecule 

no. Symmetry 
Experiment (cm-

1)18, 19, 26 

B3LYP/6-311G(d,p) 

(cm-1)18 

Hybrid COMPASS 

(cm-1) 
Difference (cm-1) 

1 12A1g 1590 1580.1 1595 5 

2 11A1g 1528 1511.1 1562 34 

3 9A1g 1431 1421 1449 18 

4 8A1g 1341 1335.7 1367 26 

5 6A1g 1140 1115.8 1107 -33 

6 5A1g 1037 998.7 1042 5 

7 4A1g 831 825.4 813.8 -17.2 

8 3A1g 678 668.7 732.4 54.4 

9 2A1g 588 580.6 602.2 14.2 

10 1A1g 236 250.5 244.1 8.1 
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Table 2-5 Unit cell parameters for α-CuPc 

 Experiment19 Hybrid COMPASS 

a (Å) 25.92 26.22 

b (Å) 3.79 4.03 

c (Å) 23.92 23.39 

α (°) 90 88.15 

β (°) 90.4 89.50 

γ (°) 90 90.09 

 

Table 2-6 Unit cell parameters for β-CuPc 

 Experiment17 Hybrid COMPASS 

a (Å) 19.407 19.46 

b (Å) 4.79 4.98 

c (Å) 14.628 14.51 

α (°) 90 90.01 

β (°) 120.56 121.83 

γ (°) 90 89.99 
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Table 2-7 Densities of CuPc crystals 

 α-form β-form 

Molecule/unit cell 4 2 

Unit cell volume (Å3) 2451.55 1201.70 

Density (g/cm3) (calc.) 1.56 1.59 

Density (g/cm3) (found) 17,27 1.62 1.63 

 

Table 2-8 Thermal conductivities from MD simualtions and experiments 

Thermal conductivity MD (W/mK) Experiment (W/mK) 

amorphous CuPc 0.65 ± 0.2 0.32 

crystalline CuPc 1.1 ± 0.2 0.39 
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Table 2-9 Peak location and time constants in HCACF spectrum 

β-CuPc amorphous CuPc 

Peak Location (THz) τ (ps) Peak Location (THz) τ (ps) 

0 7.60 2.08 2.17 

2.06 1.84 2.84 0.99 

2.57 5.72 3.64 1.08 

2.88 3.32 4.69 4.52 

3.99 2.76 7.22 2.21 

4.60 2.20 8.20 5.41 

5.13 11.5 8.47 3.91 

5.69 11.9 8.90 2.17 

6.31 6.24   

6.71 1.40   
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Chapter 3 Molecular Dynamics Study of Interface 

Bonding and Thermal Boundary Conductance at 

Copper Phthalocyanine Metal Interfaces 

Synopsis 

 We use classical molecular dynamics (MD) simulations to carry out a systematic 

study of the nanoscale processes that govern the thermal boundary conductance at copper 

phthalocyanine (CuPc)/metal interfaces. Non-equilibrium MD simulations (NEMD) are 

performed on metal–CuPc–metal junctions to study thermal energy transport across the 

interfaces through the Müller-Plathe method. By varying the density and modulus of the 

structurally congruent system, interfaces with matched acoustic impedance, speed of 

sound are constructed. Heat transfer simulation results show that the traditional acoustic 

mismatch model (AMM) does not predict correct results.  The interfacial bonding 

strength is controlled directly in the MD simulation by scaling the interaction parameters 

for the materials juxtaposed at the interface. The thermal boundary conductance is closely 

related to the interfacial bonding strength. By comparing the MD calculation results with 

the experimental measurements, the work of adhesion between CuPc and metal substrates 

is estimated to be 0.046 ± 0.014 J/m2 for CuPc/Ag, 0.095 ± 0.004 J/m2 for CuPc/Ag, and 

0.439 ± 0.1 J/m2 for CuPc/Al interfaces. These findings confirm the experimental 
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observation of very weak bonding between CuPc and Au or Ag and strong bonding at the 

CuPc/Al interface.  Phonon spectral analysis shows that the majority of heat transfer 

between CuPc and Au is accomplished via anharmonic coupling, which appears to be 

facilitated by strongly adhesive interfacial bonding. 

3.1 Introduction 

 With their unique properties and wide range of applications, molecular organic 

semiconductors have attracted increasing attention. Strong optical absorption, ultra-

efficient light emission, room-temperature operation, and long-lived excitons are just a 

few of the attractive properties that molecular organic semiconductors can offer. 

Furthermore van der Waals bonding among molecules in the condensed phase enables the 

non-epitaxial deposition of device-quality thin films on large area substrates, potentially 

facilitating the scale-up of the next generation of large-area lighting, photovoltaic, and 

electronic devices. Organic-inorganic interfaces are ubiquitous in these applications and 

closely related to many crucial thermally activated processes such as charge transport and 

exciton dissociation or recombination.1-5 However, the thermal transport properties of 

such organic-inorganic interfaces remain poorly understood. Studying the mechanisms 

for phonon transport across such interfaces can help us better understand and control the 

energy transport in devices. In this work, we use molecular dynamics simulations to 

investigate the effect of interfacial bonding strength on the thermal transport across 

interfaces between organic and inorganic materials. 

 When energy is transported across the interface of dissimilar materials, there is a 

resistance to the heat flow at the interface that leads to a temperature discontinuity ΔT at 
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the interface.6,7 Such resistance is referred to as Kapitza resistance or thermal boundary 

resistance (TBR). The thermal boundary conductance (TBC) is defined as the inverse of 

TBR: G = 1/R = q/ΔT, where q is the heat flux (W/m2) across the interface.8 The primary 

thermal energy carriers in semiconductors and dielectric materials are acoustic phonons. 

Consequently, the TBC of dissimilar dielectric materials is often reduced due to phonon 

scattering caused by the discontinuity in mechanical properties at the interface. There 

have been two primary theoretical models developed to estimate TBC of interfaces: the 

acoustic mismatch model (AMM) and the diffuse mismatch model.(DMM)8 However, 

both models assume very strong bonding at the interface, typically in excess of the 

relatively weak van der Waals interactions that prevail at organic-inorganic interfaces. 

Moreover, anharmonic processes are not considered in either model, and both fail to 

accurately predict the TBC values for many systems. In particular, in experiments the 

TBC of metal-organic interfaces9-11 are measured to be an order of magnitude lower than 

that of the majority of metal-inorganic dielectric interfaces,12 while the models predict a 

smaller difference.13 

 Lattice-dynamics calculations have been utilized to numerically determine TBC 

by considering purely harmonic oscillations and elastic scattering only.14-17 Molecular 

dynamics (MD) simulations are a better method to understand and investigate realistic 

transport between dissimilar materials because it accounts for anharmonic processes in 

simulations and it allows for systematic control over the interfacial structure and 

definition, which is difficult to do experimentally. Prior work has been done to 

investigate the thermal transport in many systems numerically. Lattice dynamics 

calculations by Stoner et al.18 and Young et al.17 showed that the phonon transmission 
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coefficient is strongly affected by the spring constant linking the two materials. Using 

MD simulations, Stevens19 showed a linear dependence of TBC on temperature, and that 

interface mixing would improve the thermal transport across solid-solid interfaces. 

Torii20 determined that weakening the interaction between solid and liquid would 

decrease the TBC (increase the TBR) at interface. Work by Ong and Pop21 revealed a 

nearly linear dependence of the TBC on the strength of the interface interaction for 

weakly bonded carbon nanotubes and SiO2. Recently, Shen22 investigated the effect of 

hydrostatic pressure on TBC of simple fcc metal system using MD simulations and found 

that the interfacial stiffness increases linearly with pressure for weakly bonded interface, 

and consequently TBC first increases proportionally to interfacial stiffness before 

saturating at high values, while for strongly bonded interface, TBC was almost 

independent of pressure increase. 

 Motivated by the fact that interfacial bonding strength appears to play an 

important role in TBC at interfaces, we use MD simulations to systematically investigate 

the role that interfacial bonding strength across CuPc-metal interfaces has on its TBC. 

We compare the predictions of the AMM model to experimental observation, and 

conduct a parametric study of interfacial bonding strength to identify the dominant TBC 

mechanism. The remainder of this chapter is organized as follows: MD simulations 

details are described Section 3.2, simulation results are presented and discussed in 

Section 3.3 and conclusions are presented in Section 3.4. 
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3.2 Molecular dynamics simulation details 

 The materials system we prepared for this study is composed of fcc metal lattice 

and α-crystalline copper phthalocyanine (CuPc). The CuPc crystal is comprised of 3 × 25 

× 3 unit cells. The COMPASS force field is used to describe interactions in CuPc and the 

9-6 Lennard Jones (LJ) potential23 is used for the metal substrates. The interaction 

between CuPc and metal substrate is modeled using mixing rules for the COMPASS 

force field. In this paper, all van der Waals interactions are modeled with the 9-6 Lennard 

Jones (LJ) potential: 
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where εij is the depth of the potential well and rij
0 represents the spacing between atom i 

and atom j where the potential is minimum. The simplicity of this potential allows us to 

tune the elastic modulus of the simulated material by simply scaling the parameter εij. 

The metal substrate and crystlline β-CuPc are first equilibrated at room temperature. The 

CuPc crystal is then sandwiched between two metal slabs and the whole structure is 

duplicated in the sandwiched dimension, creating one more pair of layers to allow 
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placement of a heat source in one and a heat sink in other metal slab so generated. The 

schematic of the system is shown in Figure 3.1. 

 

Figure 3.1 Schematic setup for CuPc-metal junction 

 For this study, we adopt the non-equilibrium molecular dynamics (NEMD) 

simulation24 to calculate the TBC at the CuPc-metal interfaces. For direct measurement in 

MD simulation, the structure is numerically coupled to a heat source and a heat sink as 

shown in Figure 3.1. When the heat flux across the CuPc-metal interfaces reaches stead-

state, the resulting temperature discontinuity at the CuPc-metal interface is gauged to 

obtain the TBC. Ideally, the temperature change should be sharp and localized at the 

interface to allow for the unequivocal identification of a quantity ΔT. From our 
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simulation results, however, it can be seen that the temperature change is gradually 

accelerated upon approaching the interface plane, especially in the organic region. The 

following procedures are implemented to calculate ΔT at the interface in a consistent way 

(shown in Figure 3.2): (i) the temperature profile for the CuPc region of the system is fit 

by a tangent function; (ii) the minimum derivative of the tangent curve is calculated and a 

straight line with that same slope is extrapolated from the inflection point to the material 

interfaces; (iii) for the metallic region, a linear regression is used to describe the 

temperature profile across the metal slab; (iv) ΔT is then determined as the difference 

between the two points of intersection with the interfacial plane of the geometric 

constructs pertaining to each layer. After computing the magnitude of the steady-state 

heat flux, we can estimate the TBC. 
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Figure 3.2 Procedures to calculate ΔT at the interface: minimum slope is extrapolated to 

the interface to determine ΔT 

3.3 Results and discussion 

3.3.1 TBC at CuPc-metal interfaces with fixed bonding strength 

 The traditional theory of acoustic mismatch model (AMM) states that TBC is 

directly related to the phonon transmission coefficient, τb, at the interface, which 

combines the mechanical impedance of the adjacent materials, 

� 

τb =
4Z1Z2
Z1 + Z2( )2

 (3.4) 
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where Zi. is the mechanical impedance of material i, and is defined as the product of 

density and the speed of sound.  Rewriting equation, the mechanical impedance can be 

expressed as 

� 

Z = ρ⋅ up = ρ⋅ E   (3.5) 

where ρ is the density and E is the elastic modulus of the material. In MD simulations, 

both ρ and E can be controlled straightforwardly. In this study, we controlled the density 

of the metal substrate by scaling the mass of the atoms in the substrate.  Fundamentally, 

the elastic modulus of a material is proportional to the second derivative of the interaction 

energy.25 The second derivative of eq. (3.1) is still proportional to ε, and hence, the elastic 

modulus is simply adjusted by varying the interaction potential well depth.  This causes 

the potential well curvature and consequently the mechanical stiffness of the metal to 

change.  Accordingly, we start with the potential for FCC Au, and change the substrate to 

lighter and softer metal. Even though these new atoms with scaled mass may not be 

realized in the laboratory, in MD simulation they provide a powerful method to uncover 

the governing principles of materials behavior.  In particular, we can tune the material’s 

acoustic impedance.  Note that gold and silver have an FCC structure with almost 

identical unit cell parameters, but they have different atomic mass and the elastic 

modulus of silver is about half that of gold.  Hence, to convert a gold to silver, 

computationally, one only needs to change the atomic mass and interaction potential well 

depth, while keeping the lattice parameters unchanged.  In Figure 3.3, we therefore show 

two sets of data of the thermal boundary conductance between an FCC lattices with 4.08 

Å unit cell size and CuPc. In both cases we vary the atomic weight between 2 and 197 
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amu, but one set of data (squares) is calculated using force field parameters that yield the 

elastic modulus of gold, and the other set (circles) is calculated using a force field with 

half the potential well depth, i.e., mimicking the elastic response of silver. The solid and 

dashed lines in Figure 3.3 represent the best fit of the data using the AMM model. In all 

these simulations, the bonding strength at the interface is kept the same for all systems. 

 

Figure 3.3 TBC for systems with scaled gold atomic mass 

 From the graph we can see that, if we neutralize the influence of interfacial 

bonding strength and only consider the effect of impedance mismatch, AMM can explain 

MD simulation results fairly well.  Based on experiments, CuPc is reported to have an 

elastic modulus of 9.6 GPa while the bulk elastic modulus for Au is 180 GPa. The density 

of CuPc is 1.6 g/cm3 and it is 19.3 g/cm3 for Au. The huge mismatch in both density and 
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elastic modulus explains why for the Au-CuPc interface the AMM model predicts a low 

TBC. Figure 3.3 also shows a maximum for TBC where the impedance of substrate 

matches impedance of CuPc. Further decrease of the substrate density results in an 

increased impedance mismatch and decreased TBC. In our simulations, we generated a 

second set of data with a bulk modulus of ~100 GPa, keeping the same interfacial 

interaction strength and varying the atomic weight over the same range as for the first set.  

This second set encompasses a system representative of silver for M = 107.8682 g/mol.  

We then compare TBC at CuPc/Ag(111) and CuPc/Au(111) interfaces, assuming the two 

interfaces have the same interfacial bonding strength.  MD simulation results, as well as 

the AMM model predict a larger TBC for the CuPc/Ag than for the CuPc/Au interface. In 

experiments, however, Y. Jin et al.10 report the opposite, a lower TBC for CuPc/Ag 

interface than for the CuPc/Au interface (Table 3.1).  These authors also report a 

distinctly higher work of adhesion for the CuPc/Ag interface than for the CuPc/Au 

interface, based on peel-off tests.  This suggests that for weakly bonded systems, the 

acoustic impedance may not be the key factor that controls TBC, but that perhaps the 

interfacial bonding strength may play an important role. 

3.3.2 TBC at a congruent interface between metals with tunable properties 

 Note that the AMM model does not take structural mismatch at the interface into 

consideration.  Hence, to further investigate the validity of the AMM model, we eliminate 

incongruencies at the interface by starting with a defect-free single crystal structure and 

dividing it into two segments.  The atoms in each segment are assigned masses and 

interaction potential well depths so as to achieve four different materials pairings, based 
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on their densities and elastic constants.  This can be done straightforwardly in MD 

simulations.  In all cases do the paired materials retain identical equilibrium structures 

and lattice constants, and the interface between the segments is not identifiable based on 

structural characteristics alone.  We constructed and compared the thermal transport 

properties of four different pairings: (1) the masses and interaction potentials in both 

compartments are identical, i.e., in effect, the structure consists of only one material and 

serves as a reference configuration; (2) the masses and interaction well depths are 

arbitrarily mismatched, i.e., neither the product nor the ratio of the elastic constant and 

density are matched; (3) while the elastic constants and masses of atoms in either 

compartment are different, their products are equal, i.e., the acoustic impedances of the 

two adjacent materials are matched; (4) again masses and elastic constants differ between 

compartments, but now their ratios are equal, i.e., the velocity of sound is the same in 

both materials.  We use EAM potential for Au in these studies as it is well parameterized 

to simulate key properties of metals.26 

 We then subjected the structures so generated to the Müller-Plathe non-

equilibrium MD simulations to determine the thermal conductance at the structurally 

invisible interfaces of these systems.  The results are summarized in Figure 3.4, which 

shows the steady state temperature profiles across the materials bi-layers. Sharp 

discontinuities in the temperature profiles demarcate the interfaces, and the larger drop in 

temperature at the interface, the smaller the thermal boundary conductance.  As expected, 

when the materials properties are identical, there is no interface and there is no 

temperature discontinuity.  Similarly, when the densities and elastic constants are 

arbitrarily mismatched, a pronounced discontinuity in temperature at the interfaces is 
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apparent.  Surprisingly, when the acoustic impedances of the adjoining materials are 

matched the temperature jump at the interface is still clearly identifiable and much larger 

than when matching the sound velocities.  Hence, it seems that, even after clearing the 

materials system of structural mismatches at the interface, the AMM model does not 

grasp the essence of thermal transport across interfaces.  Instead, focusing on the 

propagation speeds of elastic deformations, and possibly phonon dispersion behavior or 

spectral features, may be more opportune.  In the next section we address the question of 

whether coupling between acoustic spectral modes across the interface are important for 

transferring energy from one phase to the other. 

 

Figure 3.4 Temperature profiles for 4 different pairings of the structurally congruent 

interfaces 
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3.3.3 Phonon mode coupling across the interface 

 In the real world, the density and modulus of materials cannot be easily adjusted 

at will and therefore it is difficult to have materials with matched acoustic impedance or 

speed of sound.  For the weakly boned CuPc/metal systems, such mismatches between 

the two materials are large.  The VDOS for metal and CuPc differs tremendously as is 

shown in Fig. 3.5. 

 

Figure 3.5 VDOS of Au and CuPc 

 The VDOS peaks of metal do not overlap with those of CuPc very well, 

especially in the acoustic region which dominants phonon transport in these materials.  

Here we examine how specific phonon mode is transported through the CuPc/Au 
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interface.  We disturb one atomic plane oriented parallel to the interface by moving all 

the atoms in that layer 0.5 Å towards the interface and releasing it.  We then compare 

atomic trajectories to those of a simulation of the same system with no initial 

perturbation, and record the difference in coordinates and velocities for each atom as a 

function of time.  The Fourier transform of these differential trajectories yields the 

vibrational spectrum of the additional phonon modes introduced by the initial 

perturbation.  Spectra are calculated for both Au and CuPc, and shown Fig. 3.6 at 0.25 ps, 

0.5 ps, and 1.0 ps after introducing the perturbation.  Almost immediately after the 

additional thermal energy introduced by the perturbation arrives at the Au-CuPc 

interface, vibrational modes in CuPc are excited that are quite different in frequency from 

those in Au (Fig. 3.6a).  This indicates that phonon modes arriving from Au couple to 

modes in CuPc without requiring a strong match in frequency.  This point is illustrated 

more clearly by simultaneously examining the product of the two spectra, which 

identifies the overlap of spectral features, and is shown in the lower part of each graph.  

Accordingly, while the principal overlap between the two spectra occurs at about 40 cm–1 

and 120 cm–1, the intensity of peaks above 260 cm–1 grows immediately and more rapidly 

than that of the peaks in the spectral overlap regime.  As time progresses, the vibrational 

spectra associated with the differential motion originating from the perturbation gradually 

develop all spectral features of the regular VDOS of both phases (see Fig. 3.5), reflecting 

the fact that the additional perturbation energy is dissipated by spreading onto all 

available vibrational excitations.  During this process, the magnitude of the product of 

spectra in the overlap regime momentarily rises, but this is more likely due to the 

redistribution of energy among the modes associated with CuPc vibrations (e.g., decay of 
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higher-frequency excitations) than due to direct coupling between modes in Au and 

CuPc. 

These observations indicate that the majority of the heat transfer between these dissimilar 

materials is achieved through anharmonic coupling between their respective 

characteristic modes.  In other words, a mismatch between the vibrational properties of 

the two adjacent materials is not necessarily a strong impediment for heat transfer, 

whereas strongly adhesive bonding at the interface is likely to facilitate anharmoninc 

coupling. 

(a)  
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(b)  

(c)  

Figure 3.6 Vibrational density of states spectra attributed to the differential trajectories 

upon displacing a single Au plane for the Au and CuPc layers (upper pane), and the 
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product of these spectra (lower pane) at different times after the initial perturbation: (a) 

0.25 ps, (b) 0.5 ps, (c) 1 ps. 

3.3.4 Calculation of work of adhesion at CuPc-metal interfaces 

 As pointed out earlier, experimental observations reveal a correlation betweenzz 

interfacial bonding strength and TBC for these weakly coupled interfaces.  In MD 

simulations, the bonding strength can be easily tuned by scaling the factor ε in equation 

(3.1).  This allows us to conduct a parametric study of the effect of interfacial adhesion 

on the heat transfer properties of the interface.  The work of adhesion at the interface is 

calculated as the difference between the total energies of a metal and a CuPc slab in 

contact with each other, and the sum of the energies of the two slabs separated so as to 

expose the corresponding two free surfaces.  The adjoining slab system with the 

CuPc/metal junction is first relaxed at room temperature with periodic boundary 

conditions applied in all dimensions.  The total energy of the system is minimized under 

these conditions to obtain Ep.  The two slabs are then separated at the CuPc/metal 

interface by a distance beyond the range of the force field, leaving two free surfaces, one 

with CuPc and the other with metal atoms.  The total energy of the system with free 

surfaces is again minimized to yield Es.  The work of adhesion at the interface is then 

calculated as W = Es – Ep. The calculated work of adhesion is plotted versus the 

magnitude of ε in Figure 3.7 for different CuPc/metal interfaces.  In this graph, the ratio 

of 1 corresponds to the ε calculated from mixing rules of the force field and it can be seen 

that there’s a linear relationship between the work of adhesion and ε.  Thus the bonding 

strength of the two materials can be controlled via the ε parameter.  Using this approach, 
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we calculated the work of adhesion for interfaces between CuPc and three fcc metals with 

(111) surface: Al, Au, Ag. 
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Figure 3.7 Work of adhesion versus ε for CuPc-Ag,Au,Al, ε0 corresponds to the potential 

well depth between different atom species calculated from mixing rules(Eqn. 3.2-3.3) 

3.3.5  Effect of interfacial bonding strength on the TBC 

 We calculated the TBC for the same interfacial systems..  The metallic phases in 

all systems have the same crystal structure and closely matched lattice constants, i.e., 

4.05 ± 0.04 Å, which allows us to make a rigorous comparison between their heat 

transport behaviors.  For these weakly bonded systems, we find a clear log-linear 

relationship between the work of adhesion and TBC of CuPc-metal interfaces, as shown 

in Figure 3.8.   
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Figure 3.8 Thermal boundary conductance versus work of adhesion for CuPc/Ag, 

CuPc/Au, and CuPc/Al interfaces 

 Accordingly, the TBC decreases as the interfacial bonding becomes weaker, 

which is in agreement with the experimental peel-off test observations.10  Superimposed 

on the results from simulations in these figures are the experimentally measured TBC for 

these materials pairings.27 The intersections of these TBC levels with the best fit lines 

allow us to estimate the work of adhesion between CuPc and these three metals.  The 

results are summarized in Table 3.2.  The free surface energy of CuPc28 is reported to be 

0.035 J/m2. The work of adhesion for one material is the work needed to create a free 

surface in the material. Thus the work of adhesion for CuPc is: WCuPc = 2·γ = 0.07 J/m2, 

which is larger than the work of adhesion for CuPc-Ag and comparable with CuPc-Au 

interfaces. This indicates that the bonding strength between CuPc and gold/silver 
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substrate is very weak. The experimental peel-off test results confirm the weak bonding 

between CuPc and Au or Ag: over 90% of the film breaks at the CuPc/metal interface in 

the silver/metal/CuPc/ITO structure. On the other hand, Al shows strong bonding with 

CuPc and in experiment, less than 1% peel-off is observed. In Figure 3.9, the estimated 

work of adhesion calculated from MD simulations is plotted versus the fraction of CuPc, 

in terms of contact area, that cleanly peeled off the surface for different CuPc/metal 

systems.  A strong correlation is observed in this plot: higher work of adhesion or 

stronger interfacial bonding strength result in a lower fraction of the substrate surface 

completely freed of CuPc, albeit more CuPc/metal systems may need to be explored to 

rigorously confirm such a correlation between work of adhesion and peel off percentage. 

 

Figure 3.9 Estimated work of adhesion using MD vs. peel off percentage in experiments 

 Linear behavior in lin-log representation of the TCB vs. work of adhesion data in 

Fig. 3.8 means that plotted vs. a linear work of adhesion axis, the TCB tend to saturate 
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towards high work of adhesion values.  This indicates that for interfaces with strong 

bonding, all the existing transmission modes are supported and further increments in 

bonding strength does not enhance the transport rates. 

3.4 Conclusion 

 We investigated the effect of interfacial bonding strength on the thermal boundary 

conductance across CuPc-metal interfaces using nonequilibrium MD simulations. We 

control the interfacial bonding strength by changing the potential well depth parameter, ε, 

in the 9-6 Lennard-Jones potential for Van der Waals interactions. 

 When we fixed the interfacial bonding strength and only controlled the density 

and elastic modulus of the metal substrate in CuPc-metal systems, MD calculations of 

TBC predicted the same trend as the AMM results. However, eliminating the effect of 

interfacial bonding strength would result in false predictions both from MD and AMM 

calculations: CuPc-Ag would have a larger TBC than CuPc-Au interface while in 

experiment, the opposite trend was observed. This clearly indicated that interfacial 

bonding strength should be the dominant factor on the TBC at CuPc-metal interfaces. 

Interfacial bonding strength was controlled for different CuPc-metal (Ag, Au, Al) 

systems and TBC with different bonding strength was calculated from MD simulations. 

For weak bonding, a clear log-linear relationship was observed between work of adhesion 

and TBC at CuPc-metal interfaces. For strong bonding, TBC values saturated as 

expected. The work of adhesion for different CuPc-metal systems in experiment were 

also estimated from MD simulations: CuPc-Ag ~ 0.046 J/m2, CuPc-Au ~ 0.095 J/m2, 

CuPc-Al ~ 0.439 J/m2, which agreed with peel-off experiment results very well. From 
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this we demonstrated strong correlation between interfacial bonding strength and TBC at 

weakly bonded organic-inorganic interfaces. 
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Table 3-1 Experimental TBC results for CuPc/Ag and CuPc/Au interfaces 

 Ag Au 

Exp. Elastic modulus (GPa) 100 180 

Lattice Constant (Å)  4.09 4.08 

Atomic Weight (g/mol) 107.8682 196.97 

Exp. TBC (108 W/m2K) 1.3 ± 0.3 1.9 ± 0.4 

 

Table 3-2 Estimated work of adhesion for CuPc-metal interfaces 

 
Work of Adhesion 

(J/m2) 

exp. TBC 

(108 W/m2K) 

CuPc-Ag 0.046 ± 0.014 1.3 ± 0.3 

CuPc-Au  0.095 ± 0.04 1.9 ± 0.4 

CuPc-Al 0.439 ± 0.100 5.0 ± 0.3 
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Chapter 4 Active Control of Thermal Transport 

using PVDF Thin Films – An MD Simulation 

Prediction 

Synopsis 

 Molecular organics have become materials of considerable interest for electronic 

devices, due to their low manufacturing cost.  Thermal management is a crucial factor in 

microelectronics because of the high power density associated with miniaturization.  In 

this chapter, we discuss how the thermal transport properties of poly(vinylidene 

difluoride) (PVDF) thin films depend on the magnitude and direction of externally 

applied electric fields, as revealed molecular dynamics (MD) simulations.  Accordingly, 

the thermal conductivity of PVDF thin films increases with the strength of the applied 

electric field.  Our simulations predict a 33% conductivity boost at 80% of the breakdown 

field strength.  A poled PVDF film possesses a remnant conductivity enhancement that 

can be removed by an opposing electric field. Finally, the applied electric field raises the 

adhesive force to the substrate and thereby increases the interfacial thermal boundary 

conductance by a factor of up to 6.  We elucidate the observed behaviors based on the 

comparison of the phonon spectra of PVDF structures exhibiting various degrees of 

polarization. 
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4.1 Introduction 

 Due to the ever-smaller feature sizes of integrated circuits, thermal management 

has become a bottleneck issue in device performance.  This particularly true when heat 

dissipation must occur at heterojunctions dissimilar materials, involving disordered 

molecular organics.  Thermal conductivity and the ability to control it in such materials 

systems has therefore been the subject of extensive investigations.1-4  In earlier chapters 

we established that the interfacial adhesion is the dominant factor governing thermal 

conductance at weakly bonded CuPc/metal interfaces.2  Similarly, Hu and coworkers 

reported that, to improve thermal transport across the interface between single-crystalline 

silicon and carbon nanotubes (CNT), it is more important to tailor the interfacial bond 

strength than to balance the elastic moduli of adjoining materials via MD simulations.1  

Stevens et al. studied thermal transport in metals using MD simulations, using a Lennard-

Jones (L-J) potential to describe atomic interactions, and found that inelastic phonon 

scattering, which traditional theories like acoustic mismatch model (AMM) and diffuse 

mismatch model (DMM) tend to ignore, has a high impact on interfacial conductance.  

Increasing the temperature of the L-J metal system would increase the thermal 

conductance linearly.  Adding defects at the interface or introducing interfacial mixing 

creates scattering sites and is accompanied by a reduction in the thermal boundary 

conductance.4  However, these studies focus on passive thermal transport, exploring 

measures to tune thermal transport properties only during device fabrication, but they do 

not examine the potential for active control of thermal transport in organic materials.  

With regard to the latter prospect, Shen et al. predict, based on MD simulations, that 
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applying pressure to metal junctions can improve thermal transport in weakly bonded 

interfaces.3  This effect subsides in more strongly bonded interfaces, and in most actual 

devices, it would be impractical to control thermal transport using high pressures.  For 

example, pressure can significantly affect the morphology and other properties of organic 

materials, and has the potential to permanently damage devices. 

 In this chapter, we investigate how thermal transport properties of organic 

polymers depend on externally applied electric fields.  Although many types of 

electroactive polymeric materials are available, poly(vinylidene difluoride) (PVDF) is of 

particular interest because of its strong piezo- and pyroelectric response, high breakdown 

voltage, low cost, and graceful failure nature.5  There are three common phases for 

PVDF, a, b and g.  The α-phase consists of a series non-polar antiparallel chains and has 

a chain conformation of approximately TGTG (trans-gauche-trans-gauche).6,7  b-PVDF 

has a planar TTTT (all trans) chain conformation.6,7  The γ-phase has a TTTGTTTG’ 

chain conformation.8  Among these three phases, the β-phase exhibits the largest 

spontaneous polarization per unit cell and thus exhibits superior ferroelectric and 

piezoelectric properties.9  It is therefore important to maximize β-phase in PVDF films.  

Many efforts have been exerted in fabricating PVDF films with high percentage of β-

phase for electronic applications.  PVDF films are commonly produced via deposition 

from solution.  Using DMF (dimethylformamide) as a solvent has been reported to 

generate significant amounts of polar β-phase in the resulting film.  However, the β-phase 

is only stable at temperatures below 50o C, and these films are too porous to be used in 

device applications.9,10  Dense β-phase PVDF films can be obtained by spin coating a 

PVDF/DMF solution with addition of Mg(NO3)2·6H2O, and drying at 100°C.9,10  It is 
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also possible to convert the other PVDF phases into β-phase once a film has been 

deposited.  For example, mechanically stretching a PVDF film tends to orient the 

molecular bonds.  The most practical way to achieve strong piezoelectric coefficients is 

via poling, i.e., orienting molecules by applying electrical fields in excess of 10 MV/m.  

Poling can be carried out while the film is under tension or while it is heated.  Salimi et 

al. showed that a maximum β-phase concentration can be achieved at 90 °C upon 

stretching a film made of α- PVDF film.11,12  In contrast to such elaborate experimental 

procedures for achieving high-quality β-phase PVDF films, MD simulations offer a rather 

more expedient means for controlling the degree and type of crystallinity in structural 

models of dense PVDF thin films.  For this investigation we took advantage of this fact in 

order to explore the possibility of using electric fields to actively control thermal 

transport properties in PVDF films, to identify the underlying mechanisms, and to assess 

the magnitude of the effect one may expect in experimental systems. 

 This chapter is organized as follows: in section 2 we describe the molecular 

dynamics simulation details, in section 3 we discuss the limit of electric fields that is 

estimated from Stark-Garton model to be used in MD simulations. Simulation results are 

given and discussed in Section 4 and a summary of work and conclusions are presented 

in Section 5. 

4.2 Molecular dynamics simulation details 

 In our study, we simulate PVDF chains with eight –[CF2–CH2]– repeat units, and 

two terminal CH3 units.  The simulation system consists of 250 such PVDF molecules.  

The dimension of the simulation box is 40 × 40 × 120 Å, which we verified to be 
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sufficiently large to avoid system size effects due to periodic boundary conditions.  The 

COMPASS force field is used to describe inter- and intra-molecular interactions of 

PVDF.  At the outset of our investigation, a specific force field for PVDF was not 

available in the literature.  For instance, Zeng et al. studied elastic properties of PVDF 

using MD simulation features in commercially available Materials Studio but no details 

are provided about the force field.13  Polarization switching phenomena of PVDF was 

studied by Bystrov using HyperChem package, giving no potential details either.14  

However, PVDF chains have a similar molecular structure as alkanes, except that on 

every second carbon hydrogen is replaced by fluorine. We therefore adapted the 

COMPASS force field parameters for alkanes to simulate PVDF,15 essentially by 

changing the mass, size, and partial charge of fluorine atoms.  Since we expect that the 

behaviors under scrutiny are principally governed by electrostatic interactions, we 

focused on optimizing the partial charges associated with each species.  Partial charges 

were derived from DFT calculations using Gaussian 09 simulation package with the 

B3LYP/6-311G(d,p) basis set. The Muliken charge identification scheme is used and the 

calibrated partial charges for each labeled atom are shown in Fig. 4.1.  Note how the 

partial charges of carbon coordinated by hydrogen and fluorine alternate between 

negative and positive values.  Also, near the end groups, the partial charges of species 

deviate from those in the central segment of the polymer chain, but reach a steady value 

about four repeat units away from the chain ends.   
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Figure 4.1 PVDF polymer chain in the β-conformation, showing a terminal hydrogen on 

the left and side (pink) and four CH2–CF2 repeat units (carbon in black, fluorine in 

green).  Atoms are labeled with the partial charges determined using DFT calculations.  

Note that chain termination affects these charges.  Repeat units are shown until charges 

stabilize. 

 Our systems are created using the following procedure: the PVDF molecules are 

placed loosely in space and equilibrated under NPT conditions at 600 K and zero 

pressure, which is significantly above the melting temperature of the system and provides 

for significant structural mobility.  During this thermalizing phase we optionally apply 
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electric fields of different strength (i.e., from 0 to 1 V/Å) to the system so as to create 

structures with different levels of ordering.  Once the system reaches equilibrium at high 

temperature, it is quenched to 100 K at a cooling rate of 25 K/ps, while the electric field 

is maintained.  A temperature well below the glass transition of PVDF was chosen to 

prevent thermally induced structural relaxation even in the high-temperature segments of 

the specimens, once thermal gradients are imposed to calculate thermal conductance data 

as described below. 

4.3 Force field validation 

 The purpose of this investigation is to establish whether electric fields applied to 

electro-active polymers have an effect on their thermal transport behavior.  We therefore 

verify the degree of realism with which the COMPASS force field that we use to simulate 

PVDF allows us to reproduce the structural response of the material to imposed electrical 

fields.  As with many force fields, computational expediency is achieved by simplifying 

underlying physical models.  For example, in the COMPASS force field fixed point 

charges are assigned to each atom.  Neither charge transfer nor local polarization of the 

charge distribution is accounted for in this interaction model.  Therefore, a larger electric 

field may be needed in our MD simulation to achieve the same charge polarization as in 

experiments.  In other words, in our simulations dipoles form entirely at the expense of 

bond deformation, and the interaction model may underestimate the charge polarizability 

of PVDF.  Case in point, in their MD simulations, Ma et al. applied electric fields of 2 

V/Å to self-assembled monolayers (SAM) to study electric field induced conformational 

transitions and frictional performance of SAM films.16  However, realistically a field of 



 104 

this magnitude exceeds the breakdown voltage for most materials.  Indeed, Zhou et al. 

report the breakdown voltage for PVDF is 700 – 800 MV/m at room temperature.17   

 For our investigation it would be most appropriate to consider the effects of 

applied electric fields not exceeding the breakdown field strength of the simulated 

structure.  While this field strength cannot easily be determined via direct non-

equilibrium MD simulations of the process in question, we can derive a good estimate of 

the breakdown voltage based on the knowledge of the elastic modulus of the material.  To 

this end, we employ the widely used Stark-Garton electromechanical breakdown 

model,18-21 which allows us to estimate the breakdown voltage for our simulated PVDF 

structures based on the calculated elastic properties..  This model is derived from the 

balance between mechanical stress due to the elastic response of the material and the field 

induced Maxwell stress.  Assuming that the electric field exerts a compressive force on a 

PVDF film of initial thickness d0, equivalent to a biaxial planar stress in the 

perpendicular directions, the film is contracting to a thickness ld0.  The force balance is 

expressed by 

  
Y lnλ−1( )N

= 1
2
εE2 , (4.1) 

where Y is the Young’s modulus of PVDF, ε is the product of the dielectric permittivity 

of vacuum and the relative permittivity of PVDF, i.e.,   ε = ε0ε r , and E is the electric field 

strength resulting from the voltage V applied across the film thickness, i.e.,   E =V λd0 .  N 

is the exponent that accounts for the non-linearity in the elastic response of the material.  

As the voltage is increased, the force on the film rises and its thickness decreases, which 
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in turn enhances the applied field strength.  This self-reinforcing effect by the applied 

voltage leads to an instability, at the maximum voltage the material can sustain, or 

breakdown voltage.  We can determine this breakdown voltage as the maximum in the 

relationship 

  

1
2
ε V

d0λ
⎛
⎝⎜

⎞
⎠⎟

2

= Y lnλ−1( )N
⇒V = 2Y

ε
d0λ lnλ−1( )N 2

. (4.2) 

 Taking the derivative of this expression with respect to l, and equating it to zero 

yields   lnλc
−1( ) = N 2 ⇔λc = e−N 2 , and for the breakdown voltage 

  
Vc =

2Y
ε

d0
N
2

⎛
⎝⎜

⎞
⎠⎟

N 2

e−N 2 . (4.3) 

 The factor N depends on the material.  We chose N = 1 for this calibration, as it 

causes the strongest deviation from linear elasticity and smallest breakdown voltage for a 

given elastic modulus of the material.  It therefore provides the most conservative 

estimate for the predicted effect.  According to eq. (4.3), the breakdown voltage is 

proportional to the square root of the Young’s modulus, which is predominantly 

determined by the curvature of the interaction potential and the polymer network 

topology.  Hence, we next determine the Young’s modulus of our simulated PVDF 

structure using a simulated tensile test experiment.  At the strain rate that is reasonably 

achievable in simulations, i.e., 109 s-1, and at 100 K, the Young’s modulus of our 

simulated PVDF is 20 GPa.  Experimentally reported elastic moduli range between 2.9 

GPa for the isothermal modulus22 to 16 GPa for the adiabatic modulus, measured using 

Brillouin light scattering.23 The modulus derived from MD simulations should be 
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compared to the adiabatic modulus, and the value we obtained is therefore quite 

reasonable for the intended purpose, especially considering that our force field was 

derived from that for alkane chain molecules by optimizing only species size and charge 

distribution. 

 Nevertheless, in order to provide for convenient comparisons between the effects 

observed in our simulation and those that may be expected in experiments, we normalize 

the applied electric field in terms of the electromechanical breakdown field strength, Ec, 

for the simulated structure.  In other words, if we observe a change in the thermal 

transport properties of PVDF as a result of applying an electric field of strength ES in our 

simulations, we expect to see the same change in an experimental system upon applying a 

field of strength   EX = ES Ec ,X Ec ,S( ) , where the subscripts X and S denote experimental and 

simulation values, respectively. 
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Figure 4.2 Stress strain curve from tensile test simulation of PVDF 

 Fig. 4.2. shows the initial close to linear elastic region of the stress-strain 

relationship obtained from the tensile test simulation, which served to compute the elastic 

modulus from the slope in the low-strain region. Using the Young’s modulus so obtained, 

we calculate a breakdown field strength of Ec = 1.22 V/Å in our PVDF model system, 

based on Stark-Garton model.  With value in mind, in our simulations described in the 

following, we applied electric fields with strengths between 0 and 1 V/Å, i.e., up to 82% 

of the breakdown field strength. 
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Figure 4.3 Comparison between the stress-strain relationship resulting from the tensile 

test simulations, the Stark-Garton model, and the film deformation resulting from an 

applied electric field. 

 In Fig. 4.3 we compare the complete data set of the stress-strain relationship 

obtained from the tensile test simulations with the Stark-Garton model.  To this end the 

tensile strain resulting from the applied stress was converted to a compressive 

perpendicular strain using a literature Poisson’s ratio value of 0.34.  The curve does not 

represent a best fit because the stress applied in simulations is uniaxial, as opposed to 

biaxial as the model assumes.  We felt that this deviation from the model conditions was 

too severe to attempt extracting parameter values from a best fit.  Instead we present the 
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graph in order to illustrate the above discussion and provide a qualitative measure for the 

reasonableness of using this model in the present context.  The graph also includes 

deformation data obtained by applying electric fields to the PVDF structures in our 

simulations, as discussed below.  The left- and right-hand side scales are matched based 

on the breakdown voltage determined using the Stark-Garton model. 

4.4 Results and discussion 

4.4.1 Glass transition of PVDF constrained by electric fields 

 The poling at high temperature and maintaining a strong electric field during 

cooling of the PVDF structures appears to have an effect on the glass transition behavior 

of this system.  Fig. 4.4 shows the volume-temperature dependence of PVDF 

configurations cooled at the same rate but with different strength electric fields applied.  

With no field applied, we observe the two regimes typical for a glass-forming material, 

i.e., that of a supercooled liquid where volume changes involve structural rearrangements 

as well as anharmonic contributions to the bond distance, and the glassy regime, which is 

dominated by only the latter. The glass transition region for the simulated PVDF extends 

between 300 and 400 K, compared to the experimentally determined Tg of 260 K.  This 

discrepancy can be attributed to the very much higher quench rates in simulations than in 

experiments, a known shortcoming of MD simulations. Upon applying an electric field 

we observe an intermediate regime between glass and supercooled liquid, which becomes 

more pronounced, the stronger the field. The intermediate regime is essentially apparent 
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by a more extensive, on the temperature axis, glass transition region, characterized by a 

deviation towards larger volumes relative to the bracketing linear regimes. 

 Note that upon applying the field at high temperature, the liquid phase is already 

compacted, more so, the higher field.  This is reflective of packing and partial ordering, 

i.e., alignment of dipoles.  Hence, in the glass formation process a part of the structural 

reorganization that would normally take place upon lowering the temperature and thereby 

removing entropic contributions to the free energy of the liquid, has been forcefully 

removed by the applied field, thus shifting the onset of the glassy behavior towards 

higher temperature, perhaps due to the formation of glass-like domains.  Surprisingly, 

however, structural relaxation does continue to take place, albeit to a lesser extent in 

terms of the absolute volume change, down to temperatures close to that for a system 

cooled with no field applied, i.e., approximately 300 K.  This indeed points towards 

structural heterogeneity, i.e., the transition between structurally distinct states, present in 

spatially adjacent domains, as an aspect of glass formation – especially, since we 

anticipate partial ordering to result from the application of a strong electric field.  

Thermal conductivity calculations show a possible positive correlation between the glass 

transition temperature and the thermal conductivity, i.e., the higher Tg, the higher the 

thermal conductivity.  However, more data are needed to fully establish such a 

correlation, which is beyond the scope of this thesis. 
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Figure 4.4 Glass transition behavior of PVDF polymeric configurations subject to 

different applied electric fields during cooling, as apparent from their volume-

temperature relationships: (a) E = 0, (b) E = 0.01 V/Å, (c) E = 0.1 V/Å, and (d) E = 1 

V/Å. 
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4.4.2 Behavior of PVDF thin films poled at high temperature 

 Industry practice implies that, in order to achieve decent electro-active responses 

in PVDF, intensification of β-phase via poling at high temperature is required.  We 

therefore first focused on generating and characterizing poled PVDF structures.  In this 

study, a number of different PVDF systems were prepared by applying electric fields 

ranging from 10–5 to 1 V/Å while annealing at 600 K and during cooling.  In all cases do 

we observe the formation of a net dipole moment, and after removing the applied field, a 

remnant dipole moment in the PVDF structures.  These dipole moments, induced and 

residual, are roughly commensurate with the applied field for a given quenched structure.  

Even the changes in thermal conductivity approximately track the field magnitude.  

However, for fields smaller than about one percent of the breakdown field strength 

fluctuations in dipole moments and thermal conductivities between PVDF structures 

quenched from different, independently relaxed starting configurations are larger than the 

changes as a function of field strength for a single structure.  At these small field 

strengths, structural irregularities, despite the attempt to induce order, seem to overwhelm 

the induced property changes.  For the rest of this discussion we therefore focus on 

results obtained using field strengths of 0.01 V/Å and above. Four different field 

strengths are explored here: 0.01, 0.1, 0.5, and 1 V/Å. 

 After each system reaches a steady state at low temperature, the thermal 

conductivity calculation is performed while the electric field is still applied.  The electric 

fields are then removed, the polarization of the structure is allowed to relax until steady 

state is reached again, and the thermal conductivities are calculated once more. Fig. 4.5 
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shows the comparison of thermal conductivities for systems in the presence and absence 

of the electric field. 

 

Figure 4.5 Thermal conductivities of poled PVDF layers with and without applied 

electric field 

 As Fig. 4.5 reveals, applying electric fields with strengths lower than about 0.1 

V/Å has no significant influence on thermal conductivity.  Above 0.1 V/Å field strength, 

we observe a clear increase in thermal conductivity of PVDF.  Accordingly, a structure 

poled at 82% of the breakdown voltage, and with the field applied, exhibits a close to 

40% increase in thermal conductivity compared to the unconstrained material.  Once the 

field is removed, the conductivity remains enhanced by still about 20%.  Under these 

conditions the systems possesses a residual dipole moment of 0.8 e·Å per CH2-CF2 repeat 

unit.  Apparently, both the direct polarizing influence of the applied field and the 
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molecular order created during the high temperature poling positively affect the thermal 

conductivity. 

 Fig. 4.6 shows the evolution of the net dipole moment vs time for the PVDF layer 

that had been polarized under a field of 0.5 V/Å, starting at the instant when the electric 

field is released from the system.  We estimate the effective relaxation time constant in 

our simulations to be between 10 and 100 ps, depending on temperature.  The inset of 

Fig. 4.6 shows the initial stage of the dipole moment relaxation for structures poled under 

1 V/Å quenched to different temperatures.  Accordingly, the lower this temperature, the 

stronger the residual dipole moment of the structure, which reveals the thermally 

activated nature of this process.  At high temperatures the effective relaxation time is 

actually longer than at low temperatures, because thermally energy to activate slower 

processes has become available, leading to a higher degree of relaxation. 
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Figure 4.6 Net dipole moment vs time after release of electric field 

 Conversely, applying an electric field to a poled structure at the low temperature 

to which it was quenched, in a different direction than the one in which it was originally 

poled, gradually rotates its residual dipole moment into the direction of the new field.  

This process, which is illustrated in Fig. 4.7 requires field strengths comparable to those 

used for the high-temperature poling, but takes vastly longer time.  In fact, to reach the 

saturation level for the dipole moment reorientation was beyond the scope of this study, 
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but the observed behavior is consistent with the concept that applied electric fields act to 

overcome activation barriers for structural reorganization. 

 

 

Figure 4.7 System dipole moment after re-polarization in both its original polarized 

direction (y) and new direction (x) with field strengths of: 0.01 V/Å in (a) and (b); 0.1 

V/Å in (c) and (d) 
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4.4.3 Behavior of disordered PVDF thin films 

 The fact that significant field induced structural polarization can be achieved at 

temperatures as low as 100 K in our simulations suggests that the preparatory high-

temperature poling of the PVDF films may not be necessary in order to control the 

thermal transport properties of this material through electric fields.  We therefore 

generate PVDF films without imposing an electric field while the system was thermalized 

at 600 K, resulting in a disordered PVDF layer with no preferential molecular orientation 

or ordering.  The net dipole moment in any direction is zero within procedural 

fluctuations.  After the disordered PVDF layer was quenched to 100 K, electric fields 

with strengths of 0.0001, 0.001, 0.01, 0.1, 0.5, and 1 V/Å are applied to the disordered 

system in direction perpendicular to the film plane.  Fig. 4.8 shows the net dipole moment 

and thickness of the disordered and poled systems in that same direction as a function of 

the applied field strength. 

 Consistent with our earlier findings for poled configurations, field strengths below 

10% of the breakdown threshold have little effect on the induced dipole moment or film 

thickness.  The applied electric field appears to be too weak to overcome the activation 

barrier required for PVDF molecules to reorient.  Although we observe a film thickness 

reduction of about 7% between applying a field of 10–4 times the critical value an no field 

applied, after that the film thickness remains essentially constant up to one tenth of the 

breakdown field magnitude.  When the applied electric field strength exceeds 0.1 V/Å, 

the thickness of the PVDF film decreases and the dipole moment per CH2-CF2 repeat unit 

increases rapidly.  These results indicate that the PVDF molecules reorient in direction of 
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the applied electric field, forming an ordered PVDF layer.  The stronger the electric field 

strength, the higher level of ordering, as reflected in the higher per unit volume dipole 

moment. 

-500

0

500

1000

1500

2000

90

95

100

105

110

115

120

125

130

0 10-5 0.0001 0.001 0.01 0.1 1

Net Dipole Moment

Thickness of PVDF Layer

N
et

 D
ip

ol
e 

M
om

en
t (

e·
Å)

Thickness of PVD
F Layer (Å)

Normalized Field Strength (E/Ec)  

Figure 4.8 Net dipole moment in the direction of applied electric field and thickness of 

PVDF layer as a function of applied field strength 

 Thermal conductivity calculations are then performed on both the disordered 

PVDF films and those subject to applied electric fields using the Müller-Plathe 

algorithm24. The results are presented in Fig. 4.9.  We again observe a significant in 
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thermal conductivity with the magnitude of the applied electric field.  The relative change 

in conductivity is about 34% for the highest field strength, almost as much as for the 

poled structures.  Given the influence of random structural defects, this conductivity 

enhancement may indeed be quite comparable to that achieved in poled PVDF. 

 

Figure 4.9 Müller-Plathe thermal conductivity calculation results for PVDF layers with 

different applied electric field strengths 

4.4.4 Vibrational density of states (VDOS) 

 To better understand the reason for the increase in thermal conductivity for PVDF 

with applied electric field, we computed the vibrational density of states (VDOS), D(w), 

for systems with and without applied electric field.  D(w), is calculated via Fourier 

transform of the velocity autocorrelation function (VACF), according to 
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where ω is the frequency and vj(t) is the velocity of atom j at time t.  The angular brackets 

indicate both the time and ensemble average of this quantity.  Fig. 4.10(a) shows the 

VDOS calculation results for both the random system and poled system under 1 V/Å field 

strength. 

(a)  
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(b)  

Figure 4.10 Comparison of phonon DOS for (a) PVDF layers prepared without electric 

field and subject a field of 1 V/Å, (b) PVDF layers poled at 1 V/Å and the same system 

with field released. 

 For a number of spectral features in the VDOS we observe a noticeable shift 

towards higher frequencies upon applying the electric field is applied to the disordered 

system, especially in the low-frequency regime (below 500 cm–1), where acoustic phonon 

modes are located.  Higher frequency in acoustic vibrational modes translates into a 

higher sound velocity, and enhances the phonon contribution to the thermal conductivity.  

The highest-frequency peak, typically associated with vibrational modes involving the 

motion of nearest neighbors, and therefore directly reflects the stiffness of interatomic 

bonds, splits upon applying the field.  This indicates that the distortion of the molecular 
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structure caused by the external electric field pushes the configuration into a region of 

energy landscape that exhibits sharper curvature.  All the ways that the applied field 

affects the VDOS spectrum supports the notion that bonding in the PVDF structure 

becomes stiffer under the influence of a strong electric field, and this essentially raises 

the phonon contribution to the thermal conductivity.  Our finding is consistent with that 

of Shen et al., who report increased thermal conductance due to stiffer bonds.3 Fig. 

4.10(b), compares the VDOS spectrum of the system poled at high temperature and 

quenched with the field applied to that of the same system after the field has been 

released. When releasing the field, the VDOS spectral features shift towards the lower 

frequency, but not as far as to coincide with the unpoled configuration.  This partial 

decrease in structural stiffness is consistent with the decrease in thermal conductivity, 

observed in Fig. 4.5.  The highest-frequency peak still retains the split peak feature, first 

observed in the poled system, and attributed to local bonding structures.  This indicates 

that even after releasing the field, some interatomic bonds remain in a constrained 

configuration, which accounts for the strong residual dipole moment in the system.  The 

electric field resulting from this dipole moment may therefore be considered as 

responsible for the residual enhancement of the thermal conductivity. 

4.4.5 Thermal transport across the PVDF-gold interface 

 In our previous chapters, we have demonstrated that the interfacial adhesive 

strength dominates thermal boundary conductance across interfaces between weakly 

bonded dissimilar materials, such as are formed when organic materials are deposited 

onto inorganic ones.2  Electrostatic forces acting across such an interface can enhance the 
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adhesive strength.  In this section we describe the possibility of controlling thermal 

boundary conductance (TBC) across an interface between metal and the polarizable 

PVDF polymer, via an applied electric field.  To this end we sandwich a system of 250 

PVDF chains, described earlier, in between gold slabs in the fashion of a Au-PVDF-Au-

PVDF periodic structure.  The PVDF molecules are melted and thermalized at 600 K to 

randomize the structure, before it is cooled to 100 K.  After reaching steady state the 

PVDF layer is then placed in contact with the gold slabs on top and bottom.  In this case, 

the electric field is applied to the system by charging the gold atoms, positively in one 

slab and negatively in the next, which is why the simulation box contains two gold and 

PVDF layers.  The atomic charge is set to be ±0.01 electron unit charges.  The dimension 

of the simulated system is 40 by 40 by 270 Å and periodic boundary condition are 

applied in all three dimensions.  The system is essentially a parallel capacitor with PVDF 

as the dielectric material.  The effective electric field across the PVDF layer, and 

interfaces, is calculated to be 0.7 V/Å or 0.57 Ec.  Thermal transport properties are again 

determined using the Müller-Plathe method.24  In this procedure, one metal layer contains 

a heat source and the other a sink.  Kinetic energy is artificially transferred from the heat 

sink to the heat source and the energy flows back from source to sink layer by heat 

conduction.  Over time this results in a steady-state temperature gradient and thermal 

transport coefficients can be calculated from temperature profile and heat flux magnitude.  

Fig. 4.11 shows a comparison of the thermal transport calculation results for a charged 

system and a neutral system. 
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(a)  

(b)  

Figure 4.11 Temperature profile for PVDF junctions (a) with charged gold substrate (b) 

neutral gold substrate 
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 The steady-state temperature profile reveals two pieces of information; they can 

be derived from the temperature gradient across the PVDF layers and the temperature 

discontinuities, ∆T, at the interfaces.  The calculated heat flux divided by the average 

slope in the temperature profile in PVDF yields the thermal conductivity of this material.  

Similarly, the heat flux divided by ∆T corresponds to the TBC of the interface. From our 

simulations we see that the charged system shows distinctly different characteristics than 

the neutral system.  ΔΤ at the PVDF-gold interface is reduced significantly when the 

metal is charged, i.e., when an electric field acts on the interface, reflecting a higher TBC.  

Under the influence of this field, PVDF molecules polarize and reorient, drawing on 

average hydrogen and carbon atoms with partial positive charges closer to the negatively 

charged gold substrate, and vice versa, fluorine and carbon atoms with partial negative 

charges closer to the positively charged gold substrate.  The resulting Coulomb 

interactions between metal and polymer, superimpose onto the weak van der Waals 

bonding interactions, and strengthen the adhesion.  As a result, the TBC at the interface 

increases from 1.51±0.05 GW/m2K to 9.81±5.13 GW/m2K.  Meanwhile, due to the 

stiffening effect of electric field, the thermal conductivity of PVDF layer is increased 

from 0.267 W/mK to 0.396 W/mK as expected.  Therefore the net effective thermal 

transport of the bilayer system with charged substrates is 0.349 W/mK as compared to 

0.186 W/mK for the neutral system.  This gain in effective thermal conductivity can be 

even more amplified by reducing the PVDF layer thickness. 
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4.5 Summary and Conclusion 

 Using non-equilibrium molecular dynamics simulations, we have studied how 

PVDF films respond to externally applied electric fields of different strengths in terms of 

their thermal transport properties.  We found that a weak electric field (< 0.1 Ec) has little 

impact on the thermal conductivity of PVDF layers because it does not offer enough 

energy to overcome energy barrier for structural rearrangements that lead to significant 

polarization of the polymer. For PVDF films poled under strong electric field, the net 

dipole moment in the system increases with increasing applied electric field, indicating 

that PVDF molecules reorient to align with the applied field.  Under the influence of 

strong electric fields thermal transport properties improve significantly, which can be 

attributed to two mechanisms: (i) charge polarization in the structure causes the 

interatomic bonds to stiffen, which raises the phonon contribution to the thermal 

conductivity; (ii) the adhesive strength at the interfaces between PVDF and a charge 

metallic substrate is enhanced due to the additional Coulomb interactions between the 

substrate and the polarized PVDF molecules, which results in an increase of the thermal 

boundary conductance.  Our simulations provide proof of concept that by applying 

electric fields one can control the thermal transport properties in materials systems 

containing electro-active polymer. 
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Chapter 5  Summary and outlook 

5.1 Summary 

In this work, we used computational methods to understand the heat transfer process 

at interface of dissimilar materials, developed a new full atomistic force field that 

successfully predicts properties of CuPc material, identified most significant factor 

influencing heat transfer at CuPc-metal interfaces, and presented a new method to 

actively control thermal transport properties of PVDF piezoelectric polymers. 

In Chapter 2, The Hybrid-COMPASS force field has been expanded to accurately 

simulate CuPc isolated molecules, as well as crystalline and amorphous condensed 

phases. The structure of the isolated CuPc molecule is in good agreement with 

experimental observations. The MD simulations also predict α- and β-form CuPc 

crystal structures at different temperatures with reasonable accuracy when compared with 

experimental measurements.  The vibrational density of states calculated from MD 

simulation also agrees well with both experimental and theoretical studies of normal 

mode frequencies of CuPc molecule.  Based on this new force field, we analyzed the 

thermal conduction mechanisms in amorphous and crystalline CuPc using the Green-

Kubo formalism.  Comparing with experimental measurements we observe reasonable 

agreement for amorphous samples, and we conclude that the crystalline samples consist 
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of nano-domains isolated from each other by significant amounts of amorphous domain 

boundaries, possibly exceeding half the sample volume. 

 In Chapter 3, metal systems were first explored to analyze the effect of different 

properties such as density, elastic modulus, acoustic impedance, and velocity of sound 

etc. The systems were structurally congruent and virtual interfaces were created by the 

mismatch of various properties. It is found that the thermal boundary resistance still 

exists even when the acoustic impedance is matched, while diminishes when the velocity 

of sound is matched. This contradicts predictions from AMM and shows that AMM is not 

complete in predicting thermal boundary resistance. For the CuPc-metal interface, we 

first fixed the interfacial bonding strength and only controlled the density and elastic 

modulus of the metal substrate in CuPc-metal systems, MD calculations of TBC 

predicted the same trend as the AMM results. However, eliminating the effect of 

interfacial bonding strength would result in false predictions both from MD and AMM 

calculations: CuPc-Ag would have a larger TBC than CuPc-Au interface while in 

experiment, the opposite trend was observed. This clearly indicated that interfacial 

bonding strength should be the dominant factor on the TBC at CuPc-metal interfaces. 

Interfacial bonding strength was controlled for different CuPc-metal (Ag, Au, Al) 

systems and TBC with different bonding strength was calculated from MD simulations. 

For weak bonding, a clear log-linear relationship was observed between work of adhesion 

and TBC at CuPc-metal interfaces. For strong bonding, TBC values saturated as 

expected. The work of adhesion for different CuPc-metal systems in experiment were 

also estimated from MD simulations: CuPc-Ag ~ 0.046 J/m2, CuPc-Au ~ 0.095 J/m2, 

CuPc-Al ~ 0.439 J/m2, which agreed with peel-off experiment results very well. From 
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this we demonstrated strong correlation between interfacial bonding strength and TBC at 

weakly bonded organic-inorganic interfaces. 

In Chapter 4, thermal transport properties of piezoelectric polymer PVDF are studies. 

Using non-equilibrium molecular dynamics simulations, we have studied how PVDF 

films response to externally applied electric fields with different strengths. We found that 

a weak electric field (< 0.1 Ec) has little impact on the thermal conductivity of PVDF 

layers because it does not offer enough energy to overcome energy barrier between 

different configurations. For PVDF films poled under strong electric field, we found the 

net dipole moment in the system increases with increasing applied electric field 

indicating PVDF molecules are better aligned to the field direction under stronger field. 

Thermal conductivity calculation results show that the conductivity increases with the 

increasing electric field. Phonon DOS calculations show that applying strong electric 

field would enhance intermolecular bonding. This would make the PVDF film stiffer and 

thus thermal conductivity is increased. Upon releasing the electric field from the poled 

films, we observed a decrease in net dipole moment due to the temperature effect. We 

also found strong remnant dipole moment in the films as expected from 

experiments.{Eberle et al., 1996, #69072} Such decrease in net dipole moment and local 

electric field leads to a decrease in thermal conductivity. The change in thermal 

conductivity for PVDF films shows promising future for active control of thermal 

conductivity in many applications involving organic materials. 
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Overall, this thesis provides useful insights to both passive and active control to heat 

transfer at materials’ interfaces and offers new directions for the development of thermal 

management in many applications. 

5.2 Future work and outlook 

The computational power of simulation allows detailed control of every property of 

the material and offers solutions to isolating single factors from complex problems. 

However, such power does not overshadow the importance of experiments and even 

sophisticated MD modeling cannot replace experiments, which are the benchmarks for 

every theoretical prediction. 

One possible extension of this work would be the experimental validation of the 

predictions made in Chapter 4 on the active control of thermal transport properties of 

PVDF. Since the time steps in MD simulations do not reflect the true relaxation time 

needed in actual experiments, it is necessary to study the response time for the active 

control of thermal transport with external electric field control. Also in MD simulation, 

the atomic partial charges are fixed and do not polarize properly with the applied electric 

field. Therefore, further detailed analysis of the polarization response of PVDF to applied 

electric field strength is needed in experiments. With these supplemental experiment 

researches, the study of active control of thermal transport properties of PVDF using 

electric field is then complete. And the era of active control of heat transfer even in the 

nano-scale devices shall come to reality. 
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Appendix A  MATLAB code for multivariable 

optimization 

Refer Fig. 2.1 for atom labeling 
 
% Load necessary data files 
load data.mat; 
load C_coords.mat; 
load N_coords.mat; 
 
%read dx dy dz from file 
%x = data(:,1);  
%y = data(:,2); 
%z = data(:,3); 
d = data(:,1:3); 
E = data(:,4); 
E0= -3307.54079603; 
delE = (E-E0)*23.06; 
 
%surrounding N,C coords 
%row: 1-8 --> N33-N40 
%row: 9-24 -> C1-C16 
for i = 1:8, 
    n(i,:) = C_coords(i,:); 
end 
for i = 1:16, 
    c(i,:) = N_coords(i,:); 
end 
 
b0 = 1.954; 
bcn = 1.375;    %bond length of C-N(connecting Cu) 
ang0 = 125.8855/180.000*pi();   %Equilibrium angle of C-N-Cu 
ang1 = pi()/2;                  %Equilibrium angle of 4 N-Cu-N 
 
%for each random walk out of f configurations 
 
for f = 1:1000, 
          
% Calculate 4 surrounding Cu-N bond lengths 
% 1-4 corresponds to N37 - N40 
    for i = 1:4, 
        y(f,i) = sqrt(dot((d(f,:)-n(i+4,:)),(d(f,:)-n(i+4,:))));       
    end 
 
% Calculate 12 surrounding angles 
% 1-8 --> C-N-Cu 
% 9-12 -> N-Cu-N 
    for i = 1:4, 
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        y(f,i+4) = acos(dot((c(i,:)-n(i+4,:)),(d(f,:)-
n(i+4,:)))/(bcn*y(f,i))); 
        y(f,i+8) = acos(dot((c(i+4,:)-n(i+4,:)),(d(f,:)-
n(i+4,:)))/(bcn*y(f,i))); 
    end 
  
    y(f,13) = acos(dot((n(5,:)-d(f,:)),(n(6,:)-
d(f,:)))/(y(f,1)*y(f,2)));      %N37-Cu-N38 
    y(f,14) = acos(dot((n(7,:)-d(f,:)),(n(8,:)-
d(f,:)))/(y(f,3)*y(f,4)));     %N39-Cu-N40 
    y(f,15) = acos(dot((n(5,:)-d(f,:)),(n(7,:)-
d(f,:)))/(y(f,1)*y(f,3)));     %N37-Cu-N39 
    y(f,16) = acos(dot((n(6,:)-d(f,:)),(n(8,:)-
d(f,:)))/(y(f,2)*y(f,4)));     %N38-Cu-N40 
 
     
% Calculate 32 surrounding dihedrals y(17) - y(48) 
% Cu57-N37-C1-C9, Cu57-N38-C2-C10, Cu57-N39-C3-C11, Cu57-N40-C4-C12 
    for i = 1:4, 
        v_AB = n(i+4,:)-d(f,:); 
        v_BC = c(i,:)-n(i+4,:); 
        v_CD = c(i+8,:)-c(i,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,16+i) = acos(dot(n_ABC,n_BCD)); 
 
    end 
                     
% Cu57-N37-C5-C13, Cu57-N38-C6-C14, Cu57-N39-C7-C15, Cu57-N40-C8-C16 
    for i = 1:4, 
        v_AB = n(i+4,:)-d(f,:); 
        v_BC = c(i+4,:)-n(i+4,:); 
        v_CD = c(i+12,:)-c(i+4,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,20+i) = acos(dot(n_ABC,n_BCD)); 
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    end 
     
% Cu57-N37-C5-N35, Cu57-N37-C1-N33 
    for i = 1:2, 
        v_AB = n(5,:)-d(f,:); 
        v_BC = c(4*i-3,:)-n(5,:); 
        v_CD = n(2*i-1,:)-c(4*i-3,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,24+i) = acos(dot(n_ABC,n_BCD)); 
 
    end 
     
% Cu57-N38-C2-N34, Cu57-N38-C6-N33 
    for i = 1:2, 
        v_AB = n(6,:)-d(f,:); 
        v_BC = c(4*i-2,:)-n(6,:); 
        v_CD = n(3-i,:)-c(4*i-2,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,26+i) = acos(dot(n_ABC,n_BCD)); 
 
    end 
     
% Cu57-N39-C3-N35, Cu57-N39-C7-N36 
    for i = 1:2, 
        v_AB = n(7,:)-d(f,:); 
        v_BC = c(4*i-1,:)-n(7,:); 
        v_CD = n(2+i,:)-c(4*i-1,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
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        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,28+i) = acos(dot(n_ABC,n_BCD)); 
 
    end 
 
% Cu57-N40-C4-N36, Cu57-N40-C8-N34 
    for i = 1:2, 
        v_AB = n(8,:)-d(f,:); 
        v_BC = c(4*i,:)-n(8,:); 
        v_CD = n(6-2*i,:)-c(4*i,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,30+i) = acos(dot(n_ABC,n_BCD)); 
 
    end 
     
% N38-Cu57-N37-C1, N39-Cu57-N37-C1 
    for i = 1:2, 
        v_AB = d(f,:)-n(i+5,:); 
        v_BC = n(5,:)-d(f,:); 
        v_CD = c(1,:)-n(5,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,32+i) = acos(dot(n_ABC,n_BCD)); 
 
    end 
 
% N38-Cu57-N37-C5, N39-Cu57-N37-C5 
    for i = 1:2, 
        v_AB = d(f,:)-n(i+5,:); 
        v_BC = n(5,:)-d(f,:); 
        v_CD = c(5,:)-n(5,:); 
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        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,34+i) = acos(dot(n_ABC,n_BCD)); 
 
    end 
 
% N37-Cu57-N38-C2, N40-Cu57-N38-C2 
    for i = 1:2, 
        v_AB = d(f,:)-n(3*i+2,:); 
        v_BC = n(6,:)-d(f,:); 
        v_CD = c(2,:)-n(6,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,36+i) = acos(dot(n_ABC,n_BCD)); 
 
    end 
 
% N37-Cu57-N38-C6, N40-Cu57-N38-C6 
    for i = 1:2, 
        v_AB = d(f,:)-n(3*i+2,:); 
        v_BC = n(6,:)-d(f,:); 
        v_CD = c(6,:)-n(6,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,38+i) = acos(dot(n_ABC,n_BCD)); 
 
    end 
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% N37-Cu57-N39-C3, N40-Cu57-N39-C3 
    for i = 1:2, 
        v_AB = d(f,:)-n(3*i+2,:); 
        v_BC = n(7,:)-d(f,:); 
        v_CD = c(3,:)-n(7,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,40+i) = acos(dot(n_ABC,n_BCD)); 
 
    end 
 
% N37-Cu57-N39-C7, N40-Cu57-N39-C7 
    for i = 1:2, 
        v_AB = d(f,:)-n(3*i+2,:); 
        v_BC = n(7,:)-d(f,:); 
        v_CD = c(7,:)-n(7,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,42+i) = acos(dot(n_ABC,n_BCD)); 
 
    end 
 
% N38-Cu57-N40-C4, N39-Cu57-N40-C4 
    for i = 1:2, 
        v_AB = d(f,:)-n(i+5,:); 
        v_BC = n(8,:)-d(f,:); 
        v_CD = c(4,:)-n(8,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
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        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,44+i) = acos(dot(n_ABC,n_BCD)); 
 
    end 
 
% N38-Cu57-N40-C8, N39-Cu57-N40-C8 
    for i = 1:2, 
        v_AB = d(f,:)-n(i+5,:); 
        v_BC = n(8,:)-d(f,:); 
        v_CD = c(8,:)-n(8,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        y(f,46+i) = acos(dot(n_ABC,n_BCD)); 
 
    end 
 
%Calculate 4 impropers: Cu57-N37-C1-C5, Cu57-N38-C2-C6, Cu57-N39-C3-C7, 
%Cu57-N40-C4-C8 
    for i = 1:4, 
        %Calculate 3 torsional angles 
        v_AB = n(i+4,:)-d(f,:); 
        v_BC = c(i,:)-n(i+4,:); 
        v_CD = c(i+4,:)-c(i,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        kai(1) = acos(dot(n_ABC,n_BCD)); 
        %second angle C-N-Cu-C' 
        v_AB = n(i+4,:)-c(i,:); 
        v_BC = c(i+4,:)-n(i+4,:); 
        v_CD = d(f,:)-c(i+4,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
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        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        kai(2) = acos(dot(n_ABC,n_BCD)); 
        %third angle 
        v_AB = n(i+4,:)-c(i+4,:); 
        v_BC = d(f,:)-n(i+4,:); 
        v_CD = c(i,:)-d(f,:); 
         
        length_AB = sqrt(dot(v_AB,v_AB)); 
        length_BC = sqrt(dot(v_BC,v_BC)); 
        length_CD = sqrt(dot(v_CD,v_CD)); 
         
        sin_ABC = sin(acos(dot(-v_AB,v_BC)/(length_AB*length_BC))); 
        sin_BCD = sin(acos(dot(-v_BC,v_CD)/(length_BC*length_CD))); 
         
        n_ABC = cross(v_AB,v_BC)/(length_AB*length_BC*sin_ABC); 
        n_BCD = cross(v_BC,v_CD)/(length_BC*length_CD*sin_BCD); 
         
        kai(3) = acos(dot(n_ABC,n_BCD)); 
         
        %average 3 angles 
        y(f,48+i) = 1/3*(kai(1)+kai(2)+kai(3)); 
    end     
     
end 
 
% Starting guess of Coefs 
x0 = [  245,    -90,    -50, ...        Cu-N bond 
        60,     -35,    15, ...         angle C-N-Cu 
        60,     -35,    15, ...         angle N-Cu-N 
        0,      1,      0, ...          dih of Cu-N-C-C 
        0,      1,      0, ...          dih of Cu-N-C-N 
        -7,     18,     -5, ...         dih of N-Cu-N-C 
        5, ...                          improper Cu-N-C-C 
        20, ...                         Ebb of N-Cu-N 
        10, ...                         Eba of C-N-Cu 
        20,     10, ...                 Eba of N-Cu-N 
        0,      0,      0, ...          Embt of N-Cu-N-C 
        0,      0,      0, ...          Eebt of Cu-N-C-C 
        0,      0,      0, ...          Eebt of Cu-N-C-N 
        0,      0,      0, ...          Eebt of N-Cu-N-C 
        0,      0,      0, ...          Eat of Cu-N-C-C 
        0,      0,      0, ...          Eat of Cu-N-C-N 
        0,      0,      0, ...          Eat of N-Cu-N-C 
        0];                             %Eaa of Cu-N-C-C 
 
ub = [ 2000,   2000,   2000, ...        Cu-N bond 
       100,     100,   100, ...         angle C-N-Cu 
       100,     100,   100, ...         angle N-Cu-N 
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       10,     10,     10, ...          dih of Cu-N-C-C 
       10,     10,     10, ...          dih of Cu-N-C-N 
       20,     30,     10, ...          dih of N-Cu-N-C 
       20, ...                          improper Cu-N-C-C 
       100, ...                         Ebb of N-Cu-N 
       100, ...                         Eba of C-N-Cu 
       100,     50, ...                 Eba of N-Cu-N 
       30,     30,     30, ...          Embt of N-Cu-N-C 
       10,     10,     10, ...          Eebt of Cu-N-C-C 
       10,     10,     10, ...          Eebt of Cu-N-C-N 
       10,     10,     10, ...          Eebt of N-Cu-N-C 
       10,     10,     10, ...          Eat of Cu-N-C-C 
       10,     10,     10, ...          Eat of Cu-N-C-N 
       10,     10,     10, ...          Eat of N-Cu-N-C 
       10];                             %Eaa of Cu-N-C-C 
 
lb = -ub; 
    
 
options = optimset('TolX',1e-15,'TolFun',1e-15,'MaxFunEvals',1000000); 
 
[x,~,resnorm] = lsqcurvefit(@Fitting,x0,y,delE,lb,ub,options); 

 

 

%%%%%%%%%%%%%%%%%% Cu_coef %%%%%%%%%%%%%%%%%%% 
function P = Fitting(x,y) 
% potential takes Cu coordinates and calculated bond, angle, dihedral 
% values to calculate the energy of the molecule. x are coefficient 
% vectors containing 18 elements. y contains bonds, angles, dihedrals 
 
b0 = 1.954; 
ang0 = 125.8855/180.000*pi();   %Equilibrium angle of C-N-Cu 
ang1 = pi()/2;                  %Equilibrium angle of 4 N-Cu-N 
 
 
% Expression of the function P contains 3 parts: bonding, angle, 
dihedral 
%P =   sum((x(1)*(y(:,1:4)-b0).^2+x(2)*(y(:,1:4)-b0).^3+x(3)*(y(:,1:4)-
b0).^4),2)...                                 % x(1-3)    Cu-N Bonding 
energy 
P =   sum((245*(y(:,1:4)-b0).^2-88.9193*(y(:,1:4)-b0).^3-
55.4174*(y(:,1:4)-b0).^4),2)...                                 % x(1-
3)    Cu-N Bonding energy 
    + sum((x(4)*(y(:,5:12)-ang0).^2+x(5)*(y(:,5:12)-
ang0).^3+x(6)*(y(:,5:12)-ang0).^4),2)...                        % x(4-
6)    angle of C-N-Cu 
    + sum((x(7)*(y(:,13:16)-ang1).^2+x(8)*(y(:,13:16)-
ang1).^3+x(9)*(y(:,13:16)-ang1).^4),2)...                     % x(7-9)    
angle of N-Cu-N 
    + sum((x(10)*(1-cos(y(:,17:24)))+x(11)*(1-
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cos(2*y(:,17:24)))+x(12)*(1-cos(3*y(:,17:24)))),2)...                 % 
x(10-12)    dih of Cu-N-C-C 
    + sum((x(13)*(1-cos(y(:,25:32)))+x(14)*(1-
cos(2*y(:,25:32)))+x(15)*(1-cos(3*y(:,25:32)))),2)...                 % 
x(13-15)    dih of Cu-N-C-N 
    + sum((x(16)*(1-cos(y(:,33:48)))+x(17)*(1-
cos(2*y(:,33:48)))+x(18)*(1-cos(3*y(:,33:48)))),2)...                 % 
x(16-18)    dih of N-Cu-N-C 
    + sum((x(19)*(y(:,49:52)).^2),2)...                                                                             
% x(19)    improper of Cu-N-C-C 
    + sum((x(20)*((y(:,13)-b0).*(y(:,14)-b0)+(y(:,13)-b0).*(y(:,15)-
b0)+(y(:,13)-b0).*(y(:,16)-b0)... 
    + (y(:,14)-b0).*(y(:,15)-b0)+(y(:,14)-b0).*(y(:,16)-b0)+(y(:,15)-
b0).*(y(:,16)-b0))),2)...                      % x(20)    Ebb of N-Cu-N 
    + sum((x(21)*((y(:,1:4)-b0).*(y(:,5:8)-ang0)+(y(:,1:4)-
b0).*(y(:,9:12)-ang0))),2)...                            % x(21)    Eba 
of C-N-Cu 
    + sum((x(22)*(y(:,1)-b0).*(y(:,13)-ang0)+x(23)*(y(:,2)-
b0).*(y(:,13)-ang0)),2)...                               % x(22-23)    
Eba of N-Cu-N 
    + sum((x(22)*(y(:,3)-b0).*(y(:,14)-ang0)+x(23)*(y(:,4)-
b0).*(y(:,14)-ang0)),2)...                               % x(22-23)    
Eba of N-Cu-N 
    + sum((x(22)*(y(:,1)-b0).*(y(:,15)-ang0)+x(23)*(y(:,3)-
b0).*(y(:,15)-ang0)),2)...                               % x(22-23)    
Eba of N-Cu-N 
    + sum((x(22)*(y(:,2)-b0).*(y(:,16)-ang0)+x(23)*(y(:,4)-
b0).*(y(:,16)-ang0)),2)...                               % x(22-23)    
Eba of N-Cu-N 
    + sum((y(:,1)-b0).*(x(24)*(1-cos(y(:,33)))+x(25)*(1-
cos(2*y(:,33)))+x(26)*(1-cos(3*y(:,33)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,1)-b0).*(x(24)*(1-cos(y(:,34)))+x(25)*(1-
cos(2*y(:,34)))+x(26)*(1-cos(3*y(:,34)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,1)-b0).*(x(24)*(1-cos(y(:,35)))+x(25)*(1-
cos(2*y(:,35)))+x(26)*(1-cos(3*y(:,35)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,1)-b0).*(x(24)*(1-cos(y(:,36)))+x(25)*(1-
cos(2*y(:,36)))+x(26)*(1-cos(3*y(:,36)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,2)-b0).*(x(24)*(1-cos(y(:,37)))+x(25)*(1-
cos(2*y(:,37)))+x(26)*(1-cos(3*y(:,37)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,2)-b0).*(x(24)*(1-cos(y(:,38)))+x(25)*(1-
cos(2*y(:,38)))+x(26)*(1-cos(3*y(:,38)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,2)-b0).*(x(24)*(1-cos(y(:,39)))+x(25)*(1-
cos(2*y(:,39)))+x(26)*(1-cos(3*y(:,39)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,2)-b0).*(x(24)*(1-cos(y(:,40)))+x(25)*(1-
cos(2*y(:,40)))+x(26)*(1-cos(3*y(:,40)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,3)-b0).*(x(24)*(1-cos(y(:,41)))+x(25)*(1-



 143 

cos(2*y(:,41)))+x(26)*(1-cos(3*y(:,41)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,3)-b0).*(x(24)*(1-cos(y(:,42)))+x(25)*(1-
cos(2*y(:,42)))+x(26)*(1-cos(3*y(:,42)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,3)-b0).*(x(24)*(1-cos(y(:,43)))+x(25)*(1-
cos(2*y(:,43)))+x(26)*(1-cos(3*y(:,43)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,3)-b0).*(x(24)*(1-cos(y(:,44)))+x(25)*(1-
cos(2*y(:,44)))+x(26)*(1-cos(3*y(:,44)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,4)-b0).*(x(24)*(1-cos(y(:,45)))+x(25)*(1-
cos(2*y(:,45)))+x(26)*(1-cos(3*y(:,45)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,4)-b0).*(x(24)*(1-cos(y(:,46)))+x(25)*(1-
cos(2*y(:,46)))+x(26)*(1-cos(3*y(:,46)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,4)-b0).*(x(24)*(1-cos(y(:,47)))+x(25)*(1-
cos(2*y(:,47)))+x(26)*(1-cos(3*y(:,47)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,4)-b0).*(x(24)*(1-cos(y(:,48)))+x(25)*(1-
cos(2*y(:,48)))+x(26)*(1-cos(3*y(:,48)))),2)...             % x(24-26)    
Embt of N-Cu-N-C 
    + sum((y(:,1:4)-b0).*(x(27)*(1-cos(y(:,17:20)))+x(28)*(1-
cos(2*y(:,17:20)))+x(29)*(1-cos(3*y(:,17:20)))),2)...  % x(27-29)    
Eebt of Cu-N-C-C 
    + sum((y(:,1:4)-b0).*(x(27)*(1-cos(y(:,21:24)))+x(28)*(1-
cos(2*y(:,21:24)))+x(29)*(1-cos(3*y(:,21:24)))),2)...  % x(27-29)    
Eebt of Cu-N-C-C 
    + sum((y(:,1)-b0).*(x(30)*(1-cos(y(:,25)))+x(31)*(1-
cos(2*y(:,25)))+x(32)*(1-cos(3*y(:,25)))),2)...             % x(30-32)    
Eebt of Cu-N-C-N 
    + sum((y(:,1)-b0).*(x(30)*(1-cos(y(:,26)))+x(31)*(1-
cos(2*y(:,26)))+x(32)*(1-cos(3*y(:,26)))),2)...             % x(30-32)    
Eebt of Cu-N-C-N 
    + sum((y(:,2)-b0).*(x(30)*(1-cos(y(:,27)))+x(31)*(1-
cos(2*y(:,27)))+x(32)*(1-cos(3*y(:,27)))),2)...             % x(30-32)    
Eebt of Cu-N-C-N 
    + sum((y(:,2)-b0).*(x(30)*(1-cos(y(:,28)))+x(31)*(1-
cos(2*y(:,28)))+x(32)*(1-cos(3*y(:,28)))),2)...             % x(30-32)    
Eebt of Cu-N-C-N 
    + sum((y(:,3)-b0).*(x(30)*(1-cos(y(:,29)))+x(31)*(1-
cos(2*y(:,29)))+x(32)*(1-cos(3*y(:,29)))),2)...             % x(30-32)    
Eebt of Cu-N-C-N 
    + sum((y(:,3)-b0).*(x(30)*(1-cos(y(:,30)))+x(31)*(1-
cos(2*y(:,30)))+x(32)*(1-cos(3*y(:,30)))),2)...             % x(30-32)    
Eebt of Cu-N-C-N 
    + sum((y(:,4)-b0).*(x(30)*(1-cos(y(:,31)))+x(31)*(1-
cos(2*y(:,31)))+x(32)*(1-cos(3*y(:,31)))),2)...             % x(30-32)    
Eebt of Cu-N-C-N 
    + sum((y(:,4)-b0).*(x(30)*(1-cos(y(:,32)))+x(31)*(1-
cos(2*y(:,32)))+x(32)*(1-cos(3*y(:,32)))),2)...             % x(30-32)    
Eebt of Cu-N-C-N 
    + sum((y(:,2)-b0).*(x(33)*(1-cos(y(:,33)))+x(34)*(1-
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cos(2*y(:,33)))+x(35)*(1-cos(3*y(:,33)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,3)-b0).*(x(33)*(1-cos(y(:,34)))+x(34)*(1-
cos(2*y(:,34)))+x(35)*(1-cos(3*y(:,34)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,2)-b0).*(x(33)*(1-cos(y(:,35)))+x(34)*(1-
cos(2*y(:,35)))+x(35)*(1-cos(3*y(:,35)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,3)-b0).*(x(33)*(1-cos(y(:,36)))+x(34)*(1-
cos(2*y(:,36)))+x(35)*(1-cos(3*y(:,36)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,1)-b0).*(x(33)*(1-cos(y(:,37)))+x(34)*(1-
cos(2*y(:,37)))+x(35)*(1-cos(3*y(:,37)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,4)-b0).*(x(33)*(1-cos(y(:,38)))+x(34)*(1-
cos(2*y(:,38)))+x(35)*(1-cos(3*y(:,38)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,1)-b0).*(x(33)*(1-cos(y(:,39)))+x(34)*(1-
cos(2*y(:,39)))+x(35)*(1-cos(3*y(:,39)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,4)-b0).*(x(33)*(1-cos(y(:,40)))+x(34)*(1-
cos(2*y(:,40)))+x(35)*(1-cos(3*y(:,40)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,1)-b0).*(x(33)*(1-cos(y(:,41)))+x(34)*(1-
cos(2*y(:,41)))+x(35)*(1-cos(3*y(:,41)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,4)-b0).*(x(33)*(1-cos(y(:,42)))+x(34)*(1-
cos(2*y(:,42)))+x(35)*(1-cos(3*y(:,42)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,1)-b0).*(x(33)*(1-cos(y(:,43)))+x(34)*(1-
cos(2*y(:,43)))+x(35)*(1-cos(3*y(:,43)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,4)-b0).*(x(33)*(1-cos(y(:,44)))+x(34)*(1-
cos(2*y(:,44)))+x(35)*(1-cos(3*y(:,44)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,2)-b0).*(x(33)*(1-cos(y(:,45)))+x(34)*(1-
cos(2*y(:,45)))+x(35)*(1-cos(3*y(:,45)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,3)-b0).*(x(33)*(1-cos(y(:,46)))+x(34)*(1-
cos(2*y(:,46)))+x(35)*(1-cos(3*y(:,46)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,2)-b0).*(x(33)*(1-cos(y(:,47)))+x(34)*(1-
cos(2*y(:,47)))+x(35)*(1-cos(3*y(:,47)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,3)-b0).*(x(33)*(1-cos(y(:,48)))+x(34)*(1-
cos(2*y(:,48)))+x(35)*(1-cos(3*y(:,48)))),2)...             % x(33-35)    
Eebt of N-Cu-N-C 
    + sum((y(:,5:8)-ang0).*(x(36)*(1-cos(y(:,17:20)))+x(37)*(1-
cos(2*y(:,17:20)))+x(38)*(1-cos(3*y(:,17:20)))),2)...    % x(36-38)    
Eat of Cu-N-C-C 
    + sum((y(:,9:12)-ang0).*(x(36)*(1-cos(y(:,21:24)))+x(37)*(1-
cos(2*y(:,21:24)))+x(38)*(1-cos(3*y(:,21:24)))),2)...   % x(36-38)    
Eat of Cu-N-C-C 
    + sum((y(:,5)-ang0).*(x(39)*(1-cos(y(:,25)))+x(40)*(1-
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cos(2*y(:,25)))+x(41)*(1-cos(3*y(:,25)))),2)...           % x(39-41)    
Eat of Cu-N-C-N 
    + sum((y(:,9)-ang0).*(x(39)*(1-cos(y(:,26)))+x(40)*(1-
cos(2*y(:,26)))+x(41)*(1-cos(3*y(:,26)))),2)...           % x(39-41)    
Eat of Cu-N-C-N 
    + sum((y(:,6)-ang0).*(x(39)*(1-cos(y(:,27)))+x(40)*(1-
cos(2*y(:,27)))+x(41)*(1-cos(3*y(:,27)))),2)...           % x(39-41)    
Eat of Cu-N-C-N 
    + sum((y(:,10)-ang0).*(x(39)*(1-cos(y(:,28)))+x(40)*(1-
cos(2*y(:,28)))+x(41)*(1-cos(3*y(:,28)))),2)...          % x(39-41)    
Eat of Cu-N-C-N 
    + sum((y(:,7)-ang0).*(x(39)*(1-cos(y(:,29)))+x(40)*(1-
cos(2*y(:,29)))+x(41)*(1-cos(3*y(:,29)))),2)...           % x(39-41)    
Eat of Cu-N-C-N 
    + sum((y(:,11)-ang0).*(x(39)*(1-cos(y(:,30)))+x(40)*(1-
cos(2*y(:,30)))+x(41)*(1-cos(3*y(:,30)))),2)...          % x(39-41)    
Eat of Cu-N-C-N 
    + sum((y(:,8)-ang0).*(x(39)*(1-cos(y(:,31)))+x(40)*(1-
cos(2*y(:,31)))+x(41)*(1-cos(3*y(:,31)))),2)...           % x(39-41)    
Eat of Cu-N-C-N 
    + sum((y(:,12)-ang0).*(x(39)*(1-cos(y(:,32)))+x(40)*(1-
cos(2*y(:,32)))+x(41)*(1-cos(3*y(:,32)))),2)...          % x(39-41)    
Eat of Cu-N-C-N 
    + sum((y(:,13)-ang1).*(x(42)*(1-cos(y(:,33)))+x(43)*(1-
cos(2*y(:,33)))+x(44)*(1-cos(3*y(:,33)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,15)-ang1).*(x(42)*(1-cos(y(:,34)))+x(43)*(1-
cos(2*y(:,34)))+x(44)*(1-cos(3*y(:,34)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,13)-ang1).*(x(42)*(1-cos(y(:,35)))+x(43)*(1-
cos(2*y(:,35)))+x(44)*(1-cos(3*y(:,35)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,15)-ang1).*(x(42)*(1-cos(y(:,36)))+x(43)*(1-
cos(2*y(:,36)))+x(44)*(1-cos(3*y(:,36)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,13)-ang1).*(x(42)*(1-cos(y(:,37)))+x(43)*(1-
cos(2*y(:,37)))+x(44)*(1-cos(3*y(:,37)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,16)-ang1).*(x(42)*(1-cos(y(:,38)))+x(43)*(1-
cos(2*y(:,38)))+x(44)*(1-cos(3*y(:,38)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,13)-ang1).*(x(42)*(1-cos(y(:,39)))+x(43)*(1-
cos(2*y(:,39)))+x(44)*(1-cos(3*y(:,39)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,16)-ang1).*(x(42)*(1-cos(y(:,40)))+x(43)*(1-
cos(2*y(:,40)))+x(44)*(1-cos(3*y(:,40)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,15)-ang1).*(x(42)*(1-cos(y(:,41)))+x(43)*(1-
cos(2*y(:,41)))+x(44)*(1-cos(3*y(:,41)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,14)-ang1).*(x(42)*(1-cos(y(:,42)))+x(43)*(1-
cos(2*y(:,42)))+x(44)*(1-cos(3*y(:,42)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,15)-ang1).*(x(42)*(1-cos(y(:,43)))+x(43)*(1-
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cos(2*y(:,43)))+x(44)*(1-cos(3*y(:,43)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,14)-ang1).*(x(42)*(1-cos(y(:,44)))+x(43)*(1-
cos(2*y(:,44)))+x(44)*(1-cos(3*y(:,44)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,16)-ang1).*(x(42)*(1-cos(y(:,45)))+x(43)*(1-
cos(2*y(:,45)))+x(44)*(1-cos(3*y(:,45)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,14)-ang1).*(x(42)*(1-cos(y(:,46)))+x(43)*(1-
cos(2*y(:,46)))+x(44)*(1-cos(3*y(:,46)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,16)-ang1).*(x(42)*(1-cos(y(:,47)))+x(43)*(1-
cos(2*y(:,47)))+x(44)*(1-cos(3*y(:,47)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((y(:,14)-ang1).*(x(42)*(1-cos(y(:,48)))+x(43)*(1-
cos(2*y(:,48)))+x(44)*(1-cos(3*y(:,48)))),2)...          % x(42-44)    
Eat of N-Cu-N-C 
    + sum((x(45)*(y(:,5:8)-ang0).*(y(:,9:12)-ang0)),2);                                                             
% x(45)    Eaa of Cu-N-C-C 
 
 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Appendix B Source code for LAMMPS extensions 

B1 compute style: dipole 

Syntax: 

compute ID group-ID dipole  
• ID, group-ID are documented in compute command on LAMMPS website 
• dipole = style name of this compute command 
 

Examples: 

compute 1 all dipole 
compute myDipole mobile dipole  
 

Description: 

Define a computation that calculates the net dipole moment of a group of atoms.  

This compute will output a global vector of length 4. First 3 elements of the vector will 
be the net dipole moment in x, y, and z direction. The fourth element will be the net 
positive charge of the atoms in the group. 

The number of atoms contributing to the temperature is assumed to be constant for the 
duration of the run; use the dynamic option of the compute_modify command if this is 
not the case. 

 Header file: 

/* --------------------------------------------------------------
-------- 
 Lammps compute to calculate net dipole moment 
 Author: Chen Shao, MSE, University of Michigan 
 ----------------------------------------------------------------
--------- */ 
 
#ifdef COMPUTE_CLASS 
 
ComputeStyle(dipole,ComputeDipole) 
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#else 
 
#ifndef LMP_COMPUTE_DIPOLE_H 
#define LMP_COMPUTE_DIPOLE_H 
 
#include "compute.h" 
 
namespace LAMMPS_NS { 
 
class ComputeDipole : public Compute { 
 public: 
  ComputeDipole(class LAMMPS *, int, char **); 
  virtual ~ComputeDipole(); 
  void init(); 
  void compute_vector(); 
 
}; 
 
} 
 
#endif 
#endif 
 
/* ERROR/WARNING messages: 
 
E: Illegal ... command 
 
Self-explanatory.  Check the input script syntax and compare to 
the 
documentation for the command.  You can use -echo screen as a 
command-line option when running LAMMPS to see the offending 
line. 
 
*/ 

 

cpp file: 

/* --------------------------------------------------------------
-------- 
 Lammps compute to calculate net dipole moment 
 Author: Chen Shao, MSE, University of Michigan 
 ----------------------------------------------------------------
--------- */ 
 
#include "mpi.h" 
#include "compute_dipole.h" 
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#include "atom.h" 
#include "update.h" 
#include "force.h" 
#include "domain.h" 
#include "group.h" 
#include "error.h" 
 
using namespace LAMMPS_NS; 
 
/* --------------------------------------------------------------
-------- */ 
 
ComputeDipole::ComputeDipole(LAMMPS *lmp, int narg, char **arg) : 
Compute(lmp, narg, arg) 
{ 
 if (narg != 3) error->all(FLERR,"Illegal compute dipole 
command"); 
  
 vector_flag = 1; 
 size_vector = 4; 
 extvector = 1; 
  
 vector = new double[4]; 
} 
 
/* --------------------------------------------------------------
-------- */ 
 
ComputeDipole::~ComputeDipole() 
{ 
 delete [] vector; 
} 
 
/* --------------------------------------------------------------
-------- */ 
 
void ComputeDipole::init() 
{ 
  
} 
 
/* --------------------------------------------------------------
-------- */ 
 
void ComputeDipole::compute_vector() 
{ 
 invoked_vector = update->ntimestep; 
  
 double **x= atom->x; 
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 double *q = atom->q; 
 int *mask = atom->mask; 
 int *type = atom->type; 
 int nlocal = atom->nlocal; 
 double netq = 0.0; 
  
 double D[3]; 
  
 int i,j; 
  
 for (i = 0; i < 3; i++) D[i] = 0.0; 
  
/* 
 for (i = 0; i < nlocal; i++) { 
  if (mask[i] & groupbit) { 
   if (q[i] > 0) netq += q[i]; 
  } 
 } 
*/ 
  
 // simulation box bounds 
 double *boxlo = domain->boxlo; 
 double *boxhi = domain->boxhi; 
  
 for (i = 0; i < nlocal; i++) { 
  int xbox = (atom->image[i] & IMGMASK) - IMGMAX; 
  int ybox = (atom->image[i] >> IMGBITS & IMGMASK) - IMGMAX; 
  int zbox = (atom->image[i] >> IMG2BITS) - IMGMAX; 
   
  if (mask[i] & groupbit) { 
   if (q[i] > 0) netq += q[i]; 
   D[0] += q[i]*(x[i][0] + xbox*(boxhi[0]-boxlo[0])); 
   D[1] += q[i]*(x[i][1] + ybox*(boxhi[1]-boxlo[1])); 
   D[2] += q[i]*(x[i][2] + zbox*(boxhi[2]-boxlo[2])); 
  } 
 } 
 
 double data[4] = {D[0],D[1],D[2],netq}; 
 MPI_Allreduce(data,vector,4,MPI_DOUBLE,MPI_SUM,world); 
} 
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B2 fix style: vacf 

Syntax: 

fix ID group-ID vacf correlation-length filename  
• ID, group-ID are documented in fix command 
• vacf = style name of this compute command 
• correlation-length = time length of the correlation function 
• filename = file where vacf results will be outputed 
 

Examples: 

fix 1 all vacf 1024 log.vacf 
fix 1 mobile vacf 20000 myVacf  
 

Description: 

Define a fix that calculates the velocity autocorrelation function (VACF) of a group of 
atoms. This fix will calculate the average of the correlation function over all the atoms in 
the group and over all time steps. 

This fix will sample every timestep to calculate VACF. During the simulation, this fix 
will generate a global vector of length correlation-length to store the calculation results. 
When simulation is finished, this fix will output the final result into the file specified. 
Take a discrete Fourier transform on the calculated velocity autocorrelaiton function will 
result in a power spectrum of the system, which is essentially the vibrational density of 
states. 

The number of atoms contributing to the temperature is assumed to be constant for the 
duration of the run; use the dynamic option of the compute_modify command if this is 
not the case. 

Output info: 

This fix will output the calculation results at the end of the fix. If the specied file is 
already existed, new file will overwrite the old file. 

 

Header file: 
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/* --------------------------------------------------------------
-------- 
 Lammps fix to calculate velocity auto-correlation function 
 Author: Chen Shao, MSE, University of Michigan 
 ----------------------------------------------------------------
--------- */ 
 
#ifdef FIX_CLASS 
 
FixStyle(vacf,FixVacf) 
 
#else 
 
#ifndef LMP_FIX_VACF_H 
#define LMP_FIX_VACF_H 
 
#include "stdio.h" 
#include "fix.h" 
 
namespace LAMMPS_NS { 
  
 class FixVacf : public Fix { 
 public: 
  FixVacf(class LAMMPS *, int, char **); 
  ~FixVacf(); 
  int setmask(); 
  void init(); 
  void setup(int); 
  void end_of_step(); 
  void reset_timestep(bigint); 
   
 private: 
  int me,nvalues; 
  int nrepeat,nfreq,irepeat; 
  bigint nvalid; 
  int *which,*argindex,*value2index,*offcol; 
  char **ids; 
  FILE *fp; 
  int nrows; 
  long filepos; 
   
  double *result; 
  double ***data; 
   
   
  int firstindex;      // index in values ring of earliest 
time sample 
  int startstep; 
  int nlocal; 
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  int *count; 
       
  void accumulate(); 
  bigint nextvalid(); 
 }; 
  
} 
 
#endif 
#endif 
 
/* ERROR/WARNING messages: 
  
 E: Illegal ... command 
  
 Self-explanatory.  Check the input script syntax and compare to 
the 
 documentation for the command.  You can use -echo screen as a 
 command-line option when running LAMMPS to see the offending 
line. 
  
 E: Cannot open fix ave/correlate file %s 
  
 The specified file cannot be opened.  Check that the path and 
name are 
 correct. 
  
 E: Compute ID for fix ave/correlate does not exist 
  
 Self-explanatory. 
  
 E: Fix ave/correlate compute does not calculate a scalar 
  
 Self-explanatory. 
  
 E: Fix ave/correlate compute does not calculate a vector 
  
 Self-explanatory. 
  
 E: Fix ave/correlate compute vector is accessed out-of-range 
  
 The index for the vector is out of bounds. 
  
 E: Fix ID for fix ave/correlate does not exist 
  
 Self-explanatory. 
  
 E: Fix ave/correlate fix does not calculate a scalar 
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 Self-explanatory. 
  
 E: Fix ave/correlate fix does not calculate a vector 
  
 Self-explanatory. 
  
 E: Fix ave/correlate fix vector is accessed out-of-range 
  
 The index for the vector is out of bounds. 
  
 E: Fix for fix ave/correlate not computed at compatible time 
  
 Fixes generate their values on specific timesteps.  Fix 
ave/correlate 
 is requesting a value on a non-allowed timestep. 
  
 E: Variable name for fix ave/correlate does not exist 
  
 Self-explanatory. 
  
 E: Fix ave/correlate variable is not equal-style variable 
  
 Self-explanatory. 
  
 E: Fix ave/correlate missed timestep 
  
 You cannot reset the timestep to a value beyond where the fix 
 expects to next perform averaging. 
  
 */ 

 

cpp file: 

/* --------------------------------------------------------------
-------- 
Lammps fix to calculate velocity auto-correlation function 
 Author: Chen Shao, MSE, University of Michigan 
-----------------------------------------------------------------
-------- */ 
 
#include "stdlib.h" 
#include "string.h" 
#include "fix_vacf.h" 
#include "update.h" 
#include "modify.h" 
#include "compute.h" 
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#include "input.h" 
#include "variable.h" 
#include "memory.h" 
#include "error.h" 
#include "atom.h" 
 
using namespace LAMMPS_NS; 
using namespace FixConst; 
 
#define INVOKED_SCALAR 1 
#define INVOKED_VECTOR 2 
#define INVOKED_ARRAY 4 
 
/* --------------------------------------------------------------
-------- */ 
 
FixVacf::FixVacf(LAMMPS * lmp, int narg, char **arg): 
Fix (lmp, narg, arg) 
{ 
 if (narg < 5) error->all(FLERR,"Illegal fix vacf command"); 
  
 MPI_Comm_rank(world,&me); 
  
 nevery = 1; //atoi(arg[3]); 
 nrepeat = atoi(arg[3]); 
 nfreq = atoi(arg[3]); 
  
 global_freq = nfreq; 
  
 int iarg = 4; 
  
 // we will use atomic velocities as input 
 which = argindex = value2index = offcol = NULL; 
 ids = NULL; 
 int maxvalues = nvalues = 0; 
  
 // setup and error check 
 // for fix inputs, check that fix frequency is acceptable 
 if (nevery <= 0 || nrepeat <= 0 || nfreq <= 0) 
  error->all(FLERR,"Illegal fix vacf command"); 
 if (nfreq % nevery || (nrepeat-1)*nevery >= nfreq) 
  error->all(FLERR,"Illegal fix vacf command"); 
  
 // print file comment lines 
 fp = fopen(arg[iarg],"w+"); 
 if (fp && me == 0) { 
  fprintf(fp,"# Velocity autocorrelation data\n"); 
  fprintf(fp,"# Correlation-Timestep Count VACF\n"); 
  //filepos = ftell(fp); 
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 } 
  
  
 firstindex = 0; 
 startstep = 0; 
  
 // this fix produces a global intensive vector 
 extvector = 1; 
 size_vector = nrepeat + 1; 
 
 // Allocate memory 
 nlocal = atom->nlocal; 
 result = NULL; 
 count = NULL; 
 data = NULL; 
 memory->create(result,nrepeat+1,"vacf:result"); 
 memory->create(count,nrepeat+1,"vacf:count"); 
 memory->create(data,nrepeat+1,nlocal,3,"vacf:data"); 
  
   
 //vacf_result = new double[nrepeat + 1]; 
 //vacf_count = new int[nrepeat + 1]; 
 /**  
  // Allocate memory 
  int i,j; 
   
  data = new double**[nrepeat + 1]; 
  for (i = 0; i < nrepeat + 1; ++i) { 
  data[i] = new double*[nlocal]; 
   
  for (j = 0; j < nlocal; ++j) 
  data[i][j] = new double[3]; 
  } 
  **/ 
  
 // initialization 
 for (int i=0; i<nrepeat+1; i++) { 
  for (int j=0; j<nlocal; j++) { 
   for (int k=0; k<3; k++) { 
    data[i][j][k] = 0.0; 
   } 
  } 
 } 
  
 for (int i = 0; i < nrepeat + 1; i++) { 
  result[i] = 0.0; 
  count[i] = 0; 
 } 
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 // nvalid = next step on which end_of_step does something 
 // add nvalid to all computes that store invocation times 
 // since don't know a priori which are invoked by this fix 
 // once in end_of_step() can set timestep for ones actually 
invoked 
  
 nvalid = nextvalid(); 
 modify->addstep_compute_all(nvalid); 
  
} 
 
/* --------------------------------------------------------------
-------- */ 
 
FixVacf::~FixVacf() 
{ 
 if (fp && me == 0) { 
  bigint ntimestep = update->ntimestep; 
  fprintf(fp,BIGINT_FORMAT "\n",ntimestep); 
  for (int i = 0; i < nrepeat+1; i++) { 
   fprintf(fp,"%d %g",i,result[i]/count[i]); 
   //fprintf(fp," %g %g 
%g",data[i][1][0],data[i][1][1],data[i][1][2]); 
   fprintf(fp,"\n"); 
  } 
  fflush(fp); 
  fclose(fp); 
 } 
  
 memory->destroy(result); 
 memory->destroy(count); 
 memory->destroy(data); 
 /** 
  for (int i = 0; i < nrepeat; i++) { 
  for (int j=0; j<nlocal; j++) 
  delete [] vacf_data[i][j]; 
  delete [] vacf_data[i]; 
  } 
  delete [] vacf_result; 
  delete [] vacf_count; 
  **/ 
 //if (fp && me == 0) fclose(fp); 
} 
 
/* --------------------------------------------------------------
-------- */ 
 
int FixVacf::setmask() 
{ 
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 int mask = 0; 
 mask |= END_OF_STEP; 
 return mask; 
} 
 
/* --------------------------------------------------------------
-------- */ 
 
void FixVacf::init() 
{ 
  
} 
 
/* --------------------------------------------------------------
-------- 
 only does something if nvalid = current timestep 
 ----------------------------------------------------------------
--------- */ 
 
void FixVacf::setup(int vflag) 
{ 
 end_of_step(); 
} 
 
/* --------------------------------------------------------------
-------- */ 
 
void FixVacf::end_of_step() 
{ 
 // output result to file 
 bigint ntimestep = update->ntimestep; 
 double **tmp = atom->v; 
  
 int i, j, k; 
 if (firstindex <= nrepeat) { 
  // copy atom velocities into data 
  for (i=0; i<nlocal; i++) { 
   for (j=0; j<3; j++) { 
    data[firstindex][i][j] = tmp[i][j]; 
   } 
  } 
  firstindex++; 
 } else { 
  //fprintf(fp," %g %g 
%g",data[0][1][0],data[0][1][1],data[0][1][2]); 
  // update stored velocities 
  for (i=0; i<nrepeat; i++) { 
   for (j=0; j<nlocal; j++) { 
    for (k=0; k<3; k++) { 
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     data[i][j][k] = data[i+1][j][k]; 
    } 
   } 
  } 
   
  for (i=0; i<nlocal; i++) { 
   for (j=0; j<3; j++) { 
    data[nrepeat][i][j] = tmp[i][j]; 
   } 
  } 
   
  // calculate all vacf 
  accumulate(); 
  firstindex++; 
 } 
  
 //delete []tmp; 
 /** 
 if (fp && me == 0) { 
  fprintf(fp,BIGINT_FORMAT "\n",ntimestep); 
  for (i = 0; i < nrepeat+1; i++) { 
   fprintf(fp,"%d %g",i,result[i]/count[i]); 
   //fprintf(fp," %g %g 
%g",data[i][1][0],data[i][1][1],data[i][1][2]); 
   fprintf(fp,"\n"); 
  } 
  fflush(fp); 
 } 
 **/ 
} 
 
/* --------------------------------------------------------------
-------- 
 accumulate correlation data using more recently added values 
 ----------------------------------------------------------------
--------- */ 
 
void FixVacf::accumulate() 
{ 
 int i,j,k; 
 double tmp; 
 for (k = 0; k < nrepeat+1; k++) { 
  count[k]++; 
  tmp = 0.0; 
  for (i=0; i<nlocal; i++) { 
   for (j=0; j<3; j++) { 
    tmp += data[0][i][j]*data[0+k][i][j]; 
   } 
  } 
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  result[k] += tmp/nlocal; 
 } 
} 
 
/* --------------------------------------------------------------
-------- 
 calculate nvalid = next step on which end_of_step does something 
 can be this timestep if multiple of nfreq and nrepeat = 1 
 else backup from next multiple of nfreq 
 startstep is lower bound on nfreq multiple 
 ----------------------------------------------------------------
--------- */ 
 
bigint FixVacf::nextvalid() 
{ 
 bigint nvalid = (update->ntimestep/nfreq)*nfreq + nfreq; 
 while (nvalid < startstep) nvalid += nfreq; 
 if (nvalid-nfreq == update->ntimestep && nrepeat == 1) 
  nvalid = update->ntimestep; 
 else 
  nvalid -= (nrepeat-1)*nevery; 
 if (nvalid < update->ntimestep) nvalid += nfreq; 
 return nvalid; 
} 
 
/* --------------------------------------------------------------
-------- */ 
 
void FixVacf::reset_timestep(bigint ntimestep) 
{ 
 if (ntimestep > nvalid) error->all(FLERR,"Fix vacf missed 
timestep"); 
} 

 


