Cascade Hydrogenation of Carbon Dioxide to Methanol

by

Chelsea Ariane Huff

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in the University of Michigan 2014

Doctoral Committee:

Professor Melanie S. Sanford, Chair Professor Adam J. Matzger Assistant Professor Nathaniel K. Szymczak Professor Levi T. Thompson © Chelsea A. Huff 2014

ACKNOWLEDGEMENTS

I am so fortunate to have been educated by such talented individuals while being a student at the University of Michigan. Melanie, you have been a constant source of encouragement for me. You have the unique ability to recognize each of your student's strengths and weaknesses, and you use that knowledge to inspire us to grow, truly bringing out the best in everyone that you mentor. I came to Michigan terrified of public speaking, but your unwavering belief in me has instilled me with the confidence I need to be successful not only in my career, but in life as well. Beyond this, having the chance to learn from your example on how to solve problems, present, write, and work with others has been an invaluable experience for me. I am so grateful for the past five years, and I know I could not have received a better education anywhere else. It's obvious that you care very much about all of your students, and I know that so much of your time goes towards helping us. So, I want to thank you, Melanie, for working so hard for all of us. You are a remarkable role model and truly exceptional at everything you do.

I would also like to thank my dissertation committee for their support, guidance, and time. Professor Matzger, thank you for letting me rotate in your group and bug you with questions about my research or job search every time I saw you in the hallway. You are always entertaining to talk to. Professor Szymczak, thank you for all of your helpful suggestions over the years. Professor Thompson, I appreciate all of your input on our collaboration—learning to think about chemistry from an engineer's perspective was very beneficial for me. I'd also like to thank Eugenio Alvarado for always taking the time to explain the details of the various NMR spectroscopy experiments that I ran. Jeff Kampf incredibly fast at solving X-ray crystal structures for me, and I want to thank him for all of his hard work. Roy Wentz spent many hours making all sorts of glass contraptions for my project that made my life much easier over the past five years, so I want to thank him for always being so friendly and willing to help me. I am also grateful to Tracy

Stevenson, Chris Peters, Laurie MacDonald, and Jon Boyd for their hard work in keeping the Chemistry building and the department running smoothly. The administrative staff has also helped me with various problems over the years, especially Margarita Bekiares, so I thank them for their help.

It has been a pleasure to work with everyone in the Sanford Lab. Marion, you were a mentor to me when I really needed guidance during my first years at Michigan. You helped me tremendously with setting up a challenging project and writing drafts for fellowship applications, candidacy documents, papers, etc. I am so grateful that you took an interest in mentoring me, and more than that, becoming one of my closest friends. Your continued encouragement and support even after you moved off to become a big professor means so much to me, so thank you for everything. Sharon, even though our research projects couldn't have been more different, I came to you time and again to discuss whatever problem I was having, and you always took the time to figure it out with me. You are one of the most logical and intelligent people that I have ever met thank you for being an example of the kind of scientist I want to strive to be. Some of the best memories I have in Ann Arbor are from when we were just sitting in lab talking (or competing in nonexistent baking competitions), and I am grateful to be your friend. Deeps, I'm so thankful we somehow managed to overlap in the Sanford lab. You are one of the most genuinely kind, understanding, and funny people I know. You always make time for me when I need your help, and you are by far the best neighbor I have ever had :) Norman, even though you were constantly telling me puns, it was fun working with you on the same project this past year. You are a born problem solver and are always so generous with your time. I value your hard work, insights, and friendship, and I look forward to seeing all you will accomplish. Thomas, thank you for your input on my project and for always being cheerful in lab. Danielle and Yuan, it was a lot of fun working with both of you! I'd also like to acknowledge Brannon, Nick Deprez, Tom, Andrew, and Kara for being so welcoming and helpful to me when I first joined the group, as well as Kate, Anna, Tiffiny, Laura, Pablo, Naoko, and Amanda for always being there to talk to. I'd like to give additional thanks to Doug, BJ, and Jeff, as well as Dipa and Nomaan for editing thesis chapters. Lastly I want to thank a couple non-Sanfordians who have also been very instrumental in my progress—Jeff, I can't count the

number of times you have helped me over the past eight years. I don't think I would have passed thit brain class without you. You are loyal and generous, and I'm lucky to call you my friend. Thank you for always being there and for making me laugh. Sameer, thank you for always having time to talk about science and gossip with me. Let me know when you plan to move into the basement. Nathan, I think I still owe you a car for your fellowship services.

Prior to coming to Michigan, I was fortunate to have talented mentors who were instrumental in my scientific growth. Professor Zhang, working in your lab was such a positive early experience for me, and I have to thank you for giving me that opportunity and for inspiring me to further pursue chemistry as a career. Kimberly, I think I must have asked you at least one thousand questions while you were helping me figure out what I was doing in the lab. So thank you for being so patient and for being such a great teacher. Professor Veige, you always encouraged me to think independently, and I learned a lot of organometallic chemistry while working in your group. Thank you for letting me work in your lab and for not kicking me out after I flooded it. Matt, thank you being the best lab TA and for always believing in me and pushing me to be the best scientist I could be.

Finally, none of this would be possible without the love, concern, patience, and support of my family—my brother, Chad, and especially my parents, Carla and Dave. I know that I could not have come this far without the both of you. Mom, thank you for believing in me and for doing whatever you could to help me be successful. Dad, you were always a role model of remarkable work ethic and enthusiasm for solving problems. Thank you for instilling that attitude in me. Joe, you are always there for me when I need you and you have made our time in Ann Arbor a happy one. Thank you for being a part of my life and for always encouraging me to try new things.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	ii
LIST OF SCHEMES	ix
LIST OF FIGURES	xi
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS	XV
ABSTRACT	xvii
CHAPTER 1. Introduction	1
1.1 CO ₂ Mitigation: A Challenge for the Twenty-First Century	1
1.2 Routes Toward Reducing CO ₂ Emissions	2
1.2.1 Renewable Energy Economy	2
1.2.2 CO ₂ Sequestration and Storage	
1.3 Hydrogenation of CO ₂ to CH ₃ OH	5
1.3.1 Potential for Industrial Synthesis	5
1.3.2 Alternative Approach: Homogeneous Catalysis	5
1.4 Potential Impact of CO ₂ Conversion to CH ₃ OH and Other Chemicals	6
1.5 References	7
CHAPTER 2. Cascade Homogeneous Hydrogenation of Carbon Methanol	Dioxide to
2.1 Introduction	11
2.1 muouueuon	11

2.2 Multi-Catalyst Cascade System Design	12
2.3 Optimization of Individual Steps	13
2.3.1 Steps i/ii: Cascade CO ₂ Hydrogenation/Esterification	13
2.3.2 Step iii: Ester Hydrogenation	15
2.4 Experimental Design and Detection	17
2.5 Cascade Conversion of CO ₂ Hydrogenation to CH ₃ OH	18
2.5.1 One Pot CO ₂ Conversion to CH ₃ OH	18
2.5.2 Modified Reactor: Transfer System	19
2.6 Conclusions	20
2.7 Experimental Procedures and Characterization of Data	20
2.8 References	29
CHAPTER 3. Investigation of Side Reactions in the Cascade System	33
3.1 Introduction	33
3.2 Reactivity of Esters, Ketones, and Aldehydes with a Ru Pincer Complex	34
3.2.1 Methyl Formate	34
3.2.2 Other Carbonyl Compounds	36
3.2.3 Reversibility Study for Carbonyl Compound Coupling with 1	40
3.2.4 Implications for the Cascade System	41
3.3 Reactivity of CO ₂ with a Ruthenium Pincer Complex	44
3.3.1 Formation of Kinetic and Thermodynamic Products	44
3.3.2 Reversibility Study for CO ₂ Coupling with 1 at Room Temperature	47
3.3.3 Implications for the Cascade System	48
3.4 Conclusions	51
3.5 Experimental Procedures and Characterization of Data	52
3.6 References	96

CHAPTER 4. Investigation of Ruthenium Pincer Complexes as Carbon Dio	xide
Hydrogenation Catalysts for Application to the Cascade System	98
4.1 Introduction	98
4.2 Ruthenium Pincer Complex as a CO ₂ Hydrogenation Catalyst	99
4.2.1 Stoichiometric Studies	100
4.2.2 Catalytic Trials	102
4.2.3 Mechanistic Studies	103
4.3 Second-Generation Cascade System: Amide Intermediate Pathway	107
4.3.1 Introduction	107
4.3.2 Step iii: DMF Hydrogenation	108
4.3.3 Hydrogenation of DMF in the Presence of CO ₂	109
4.3.4 Step i/ii: CO ₂ Conversion to DMF	111
4.3.5 Cascade Conversion of CO ₂ to CH ₃ OH	112
4.4 Conclusions	113
4.5 Experimental Procedures and Characterization of Data	114
4.6 References	136
CHAPTER 5. Cascade Homogeneous and Heterogeneous Catalysis for	the
Hydrogenation of Carbon Dioxide to Methanol	141
5.1 Introduction	141
5.2 Literature Reported Heterogeneous Catalysts for CO ₂ Hydrogenation to CH ₃ OH.	143
5.3 Tandem Homogeneous and Heterogeneous Catalysis	144
5.3.1 Commercial Heterogeneous Cu Catalysts	145
5.3.2 Mo ₂ C Supported Metal Catalysts	146
5.4 Additional Experiments	148
5.4.1 Influence of Supplemental Cascade Intermediate on CO ₂ Hydrogenation	148

5.5	Potential Deactivation Modes for Mo ₂ C Heterogeneous Catalysts	149
5.6	Conclusions and Outlook	150
5.7	Experimental Procedures and Characterization of Data	151
5.8	References	155

LIST OF SCHEMES

Scheme 2.1. Catalytic Reduction of CO ₂ to CH ₃ OH Using Silanes and Boranes	12
Scheme 2.2. Multi-Step CO ₂ Reduction to CH ₃ OH	12
Scheme 2.3. CO ₂ Hydrogenation to Formic Acid and Formate Salt	13
Scheme 2.4. Cascade Hydrogenation of CO ₂ to CH ₃ OH	13
Scheme 2.5. Experimental Design for the Cascade Hydrogenation of CO ₂ to CH ₃ OH	17
Scheme 2.6. One Pot Cascade CO ₂ Conversion to CH ₃ OH	18
Scheme 2.7. Reaction of C-2 with Sc(OTf) ₃	19
Scheme 2.8. Transfer System for the Cascade Catalytic Hydrogenation of CO ₂	20
Scheme 3.1. Cascade Homogeneous Hydrogenation of CO ₂ to CH ₃ OH	33
Scheme 3.2. Reactivity of Ruthenium PNP Pincer Complex with Aldehydes ³	34
Scheme 3.3. Reversible Reaction of 1 with Methyl Formate	35
Scheme 3.4. Reactivity of 1 with Ethyl Formate, Cyclopentanone, and Benzaldehyde	36
Scheme 3.5. Four Potential Isomeric Products from the Reaction of 1 w	vith
Unsymmetrical Carbonyl Compounds	37
Scheme 3.6. Reactivity of 1 with Benzaldehyde at Varied Temperatures	38
Scheme 3.7. Low Temperature Reaction of 1 with Cyclopentanone	40
Scheme 3.8. Potential Reactivity of 1 under Methyl Formate Hydrogenati	ion
Conditions	42
Scheme 3.9. Hydrogenation of Methyl Formate: Observation of Catalyst Resting State	44
Scheme 3.10. Reactivity of 1 with CO ₂	45
Scheme 3.11. Reversibility Studies on Complex 9	47
Scheme 3.12 . Reversible Formation of 12 from 11 and CO ₂ ⁹	48
Scheme 3.13. Reversibility Studies on Complex 10	48
Scheme 3.14. Observation of Resting State of 1 in the Presence of CO_2 and H_2	50
Scheme 4.1. Cascade Homogeneous Hydrogenation of CO ₂ to Methanol	98

Scheme 4.2. Hydrogenation of CO_2 to Formate (a) Ru Catalyst 1 and (b) Ir Catalyst 3.99
Scheme 4.3. Possible Catalytic Cycle for CO ₂ Hydrogenation to Formate by
Complex 2
Scheme 4.4. Reaction of 2 with CO ₂ and H ₂
Scheme 4.5. Deprotonation of 5 by KO'Bu to Form 2 and HCOOK 102
Scheme 4.6. Possible Catalytic Cycle for CO ₂ Hydrogenation at Complex 6 105
Scheme 4.7. Formation of Anionic Ru Complex 7 by Deprotonation of 6 106
Scheme 4.8. Reaction of 7 with CO ₂ and H ₂
Scheme 4.9. Second-Generation Cascade System for CO ₂ Hydrogenation to CH ₃ OH via
an Amide Intermediate
Scheme 4.10. Formation of 13 through Treatment of 13 with H ₂ /CO ₂ or Formic Acid 111
Scheme 4.11. Putative Reactivity between 13 and K ₂ CO ₃
Scheme 5.1. Cascade System for CO ₂ Conversion to CH ₃ OH142
Scheme 5.2. Cascade Homogeneously and Heterogeneously Catalyzed Conversion of
CO ₂ to CH ₃ OH

LIST OF FIGURES

Figure 1.1. U.S. Energy Consumption Estimates by Source in 2011 1
Figure 1.2. Renewable Electricity Generation Capacity by Energy Source in the U.S.,
2011–2040
Figure 2.1. ¹ H NMR Spectrum of CD ₃ OH Experiment
Figure 2.2. Representative ¹ H NMR Spectrum for CO_2 Hydrogenation to $HCO_2CH_3 \dots 22$
Figure 2.3. ¹ H NMR Spectrum of Product Mixture Resulting from CD ₃ OH
Experiment
Figure 2.4. Representative ¹³ C NMR Spectrum of ¹³ CO ₂ Experiment
Figure 2.5. ¹ H NMR Spectrum of 1: Reaction of C-2 with HOTf
Figure 2.6. Hydride Region of ¹ H NMR Spectrum of 1 from Reaction of C-2 with
HOTf
Figure 2.7. ¹ H NMR spectrum of 1: Reaction of C-2 with B-2
Figure 2.8 . Hydride Region of ¹ H NMR Spectrum of 1 : Reaction of C-2 with B-2 29
Figure 3.1. ORTEP diagram (50% probability level) of the molecular drawing of 4 36
Figure 3.3. ORTEP diagram (50% probability level) of the molecular drawing of 7B-i 39
Figure 3.4. ORTEP diagram (50% probability level) of the molecular drawing of 7B-ii 39
Figure 3.5. Hydrogenation of Methyl Formate: Order Study in Methyl Formate
Figure 3.6 . ¹ H NMR signals for 9 , 9 - ¹³ C, 10 , and 10 - ¹³ C
Figure 3.7. ORTEP diagram (50% probability level) of the molecular drawing of 10 46
Figure 3.8. Hydrogenation of Methyl Formate using 1 in the Presence of CO ₂
Figure 3.9. Reversibility Study for CO ₂ Coupling with 1 at Varied Temperatures 51
Figure 3.10. Comparison of Isotope Envelope for 10- ¹³ C and Reacted Complex60
Figure 3.11. Comparison of Isotope Envelope for 10 and Reacted Complex
Figure 4.1. ORTEP diagram (50% probability level) of the molecular drawing of 5 101

Figure 4.2. Reported Catalysts for Hydrogenation of Carboxylic Acid Derivatives to
Alcohols
Figure 4.3 . ¹ H NMR Spectrum in Anisole- d_8 for the Quantitative Analysis of 5 & 6 116
Figure 4.4 . ¹ H NMR Spectrum of 2 in Anisole- d_8 Formed after Adding KO ^t Bu to 5 117
Figure 4.5. ¹ H NMR Spectrum after Adding CD ₃ OD
Figure 4.6. ¹ H NMR Spectrum for Quantitative Analysis of Formate from High Pressure
Reactions
Figure 4.7. Evaluation of Catalytic Activity of 2 for CO ₂ Hydrogenation to Formate over
Time
Figure 4.8. Evaluation of Catalytic Activity of 5 for CO ₂ Hydrogenation to Formate over
Time
Figure 4.9. Evaluation of Catalytic Activity of 6 for CO ₂ Hydrogenation to Formate over
Time
Figure 4.10. ¹³ C NMR for Quantitative Analysis of CO ₂ Scrambling at 6- ¹³ C 121
Figure 4.11. Representative ¹ H NMR Spectrum for Analysis of CH ₃ OH and DMF in CO ₂
Hydrogenation Experiment
Figure 4.12. ¹ H NMR Spectrum of 13: Reaction of 10 with FA
Figure 4.13. gHSQCAD Spectrum of 13: Reaction of 10 with FA
Figure 4.14. ¹ H NMR Spectrum of 13: Reaction of 10 with H ₂ /CO ₂
Figure 5.1. Homogeneous Catalysts for Application to the Cascade System
Figure 5.2. Potential Homogeneous Ligands and Metal Sources for Application in the
Tandem Homogeneous/Heterogeneously Catalyzed System. R = Alkyl Group 151
Figure 5.3. Representative ¹ H NMR spectrum for CO ₂ Hydrogenation to CH ₃ OH 154

LIST OF TABLES

Table 2.1 . Conversion of CO ₂ to HCO ₂ CH ₃ : Thermal Esterification	. 14
Table 2.2. Conversion of CO2 to HCO2CH3: Acid Catalyzed Esterification	. 15
Table 2.3 . Hydrogenation of HCO_2CH_3 in the Presence of CO_2	. 16
Table 2.4. Hydrogenation of HCO ₂ CH ₃ in the Presence of B-2	. 19
Table 3.1 . K _{eq} for Reaction of 1 with Carbonyl Compounds	. 41
Table 3.2. Summary of Room Temperature Reactions of 1 with Carbonyl Compounds	\$ 53
Table 3.3. Summary of Low Temperature Reactions of 1 with Carbonyl Compounds	. 55
Table 3.4 . Optimization Studies for K_{eq} Determination	. 56
Table 3.5. Product Distribution for CO2 Reversibility Experiment at 9	. 59
Table 3.6. Crystal Data and Structure Refinement for 4	. 91
Table 3.7. Crystal Data and Structure Refinement for 6 (with 1 equiv. cyclopentanon	e in
crystal lattice)	. 92
Table 3.8. Crystal Data and Structure Refinement for 7B-i	. 93
Table 3.9. Crystal Data and Structure Refinement for 7B-ii.	. 94
Table 3.10. Crystal Data and Structure Refinement for 10	. 95
Table 4.1 . Hydrogenation of CO_2 to Formate Catalyzed by 2	103
Table 4.2. Complexes 2, 5, and 6 as Catalysts for CO2 Hydrogenation	104
Table 4.3. Quantification of Reversible Binding of CO_2 at $6^{-13}C$ at Va	ried
Temperatures	106
Table 4.4 . DMF Hydrogenation to CH ₃ OH	109
Table 4.5 . DMF Hydrogenation to CH ₃ OH in the Presence of CO ₂	110
Table 4.6. CO2 Conversion to DMF	112
Table 4.7. CO2 Hydrogenation to CH3OH	113
Table 4.8 . Reactivity of 2 with CO_2 and H_2 at Varied Temperatures	115
Table 4.9. Crystal Data and Structure Refinement for 5	126

Table 5.1. Hydrogenation of CO_2 to CH_3OH with Commercially Available Cu
Catalysts
Table 5.2. Tandem Homogenous and Heterogeneous Catalysis: Commercial Cu
Catalysts
Table 5.3. Tandem Homogenous and CuMo2C Catalysis
Table 5.4. Tandem Homogenous and Heterogeneous Catalysis: Commercial Cu
Catalysts
Table 5.5. Hydrogenation of CO ₂ to CH ₃ OH with CuMo ₂ C: Affect of Cascade
Intermediate
Table 5.6. ICP Analysis for Determination of Mechanism for Heterogeneous Catalys
Deactivation
Table 5.7. BET Analysis of Heterogeneous Catalysts 153
Table 5.8. Concentration of Calibration Standards for ICP Analysis 155

LIST OF ABBREVIATIONS

18-crown-6	1,4,7,10,13,16-hexaoxacyclooctadecane
anisole	methoxybenzene
BET	Brunauer–Emmett–Teller
DMSO	dimethylsulfoxide
DMF	N,N-dimethylformamide
dppe	diphenylphosphinoethane
EF	ethyl formate
EtOH	ethanol
FA	formic acid
HMBC	heteronuclear multiple bond correlation)
HMDSO	hexamethyldisiloxane
HSQC	heteronuclear single quantum coherence spectroscopy
ICP	inductively coupled plasma
$K_{ m eq}$	equilibrium constant
KOtBu	potassium tert-butoxide
НСООМе	HCOOCH ₃ or methyl formate
nacnac	β-diketiminate
NEt ₃	triethylamine
NHMe ₂	dimethylamine
NMR	nuclear magnetic resonance
NOE	Nuclear Overhauser effect
NOESY	Nuclear Overhauser effect spectroscopy
ORTEP	Oak Ridge thermal ellipsoid plot
OAc	acetate or CH ₃ COO

OTf	trifluoromethanesulfonate or CF ₃ SO ₃
ppm	parts per million
PNN	6-(di-tert-butylphosphinomethylene)-2-(N,N-diethylaminomethyl)-1,6-
	dihydropyridine
PNP	2,6-bis(diisopropylphosphinomethylene)pyridine
RPM	rotations per minute
THF	tetrahydrofuran
TON	turnover number
TMS	tetramethylsilane
XRD	X-ray diffraction

ABSTRACT

 CO_2 is an abundant C1 building block that has the potential to be utilized in the synthesis of many commodity chemicals and fuels that are currently derived from fossil feedstocks. Methanol in particular is produced annually on a multimillion metric ton scale, primarily from CO/H_2 at elevated temperatures (240–260 °C). However, because the hydrogenation of CO_2 is entropically unfavorable, the ability to operate at lower reaction temperatures is expected to lead to an overall higher theoretical yield of methanol. Herein we report the use of homogeneous catalysts in tandem for the hydrogenation of CO_2 to CH_3OH at substantially lower temperatures (135 °C).

Chapter 2 details the first system established for the direct homogeneous hydrogenation of carbon dioxide to methanol. A combination of ruthenium and scandium catalysts are employed to undergo the one pot stepwise reduction of CO_2 to formic acid, methyl formate, and finally methanol. Incompatibilities between catalysts and cascade system components are introduced and are further evaluated in detail in later chapters.

Chapter 3 describes potential deactivation pathways involving components of the cascade system with the Ru pincer ester hydrogenation catalyst applied in the cascade system. A new mode of activation of CO_2 and carbonyl compounds (esters, ketones, and aldehdyes) by this Ru pincer complex is discussed. Additionally, the relevance of these organometallic compounds under cascade catalysis conditions is studied.

Chapter 4 explores the idea of using a single catalyst for the cascade conversion of CO_2 to CH_3OH . A Ru pincer complex is tested for the CO_2 conversion to formate salts where the mechanism is investigated and catalytic conditions are established. Furthermore, these conditions are applied to a second-generation cascade system comprised of formate salt and amide intermediates, where the later is reduced to CH_3OH using a single catalyst.

Chapter 5 describes the application of heterogeneous catalysis for low temperature CO_2 conversion to methanol in the ester intermediate cascade system. In order to enhance the rate of the slow step while using heterogeneous catalysts at lower temperatures, homogeneous catalysts are added to the tandem system. Previously reported heterogeneous catalysts are explored, in addition to unprecedented Mo_2C based catalysts.

CHAPTER 1

Introduction

1.1 CO₂ Mitigation: A Challenge for the Twenty-First Century

Global demand for energy is increasing rapidly as a result of population and economic growth. Currently, the majority of energy in the United States is supplied by combustion of coal, crude oil, and natural gas as shown in Figure 1.1.¹ However, a consequence of burning fossil feedstocks for energy is that carbon dioxide (CO₂), the dominant combustion waste product, is emitted into the atmosphere. CO₂ emissions resulting from energy consumption alone (accounting for 70% of all CO₂ emitted)² increased from 2.2 to 5.5 million metric tonnes of CO₂ per year from 1949 in 2011,¹ and the atmospheric CO₂ concentration is currently about 400 ppm (parts per million), which is more than 100 ppm above the maximum values measured over the past 740,000 years.³

Source: U.S. Energy Information Administration (2011)

Figure 1.1. U.S. Energy Consumption Estimates by Source in 2011

One consequence of increased atmospheric concentrations of greenhouse gases (e.g. CO_2 , CH_4) is a rise in the temperature at the Earth's surface due to the global

warming effect. This surface warming has resulted in an increase in the average ocean temperature by 0.74 °C and in the sea level by 17 cm over the past 100 years.⁴ Furthermore, over the past 200 years, or since pre-industrial times, seawater has absorbed approximately half of all anthropogenic CO₂ emissions.⁵ As a result of the reaction between CO₂ and water to form carbonic acid (H₂CO₃), a reduction in seawater acidity by 0.1 pH units has been observed during the 20th century.⁴ Effectively, this continued acidification is expected to severely decrease coral calcification and reef growth.³ With energy-related global CO₂ emissions projected to increase from 31.6 Gt in 2011 to 62 Gt in 2050,² there is urgent need to reduce the concentration of CO₂ in the atmosphere. Developing more efficient ways to use our energy resources will play a role in mitigating CO₂ emissions, but more drastic measures to reduce atmospheric CO₂ on a large scale will be necessary. The leading approaches to achieve this are developing: i) carbonneutral renewable energy technologies and ii) methods for CO₂ sequestration and storage.

1.2 Routes Toward Reducing CO₂ Emissions

1.2.1 Renewable Energy Economy

Of the total energy currently consumed in the U.S. every year, about 9% is produced by renewable energy sources (Figure 1.1). By the year 2040, renewable energy will play a larger role in energy generation, as this value is expected to increase to 13%, coupled with a 4% decrease in petroleum-derived fuel.⁶ Leading examples of renewable energy technologies are solar, wind power, biomass, geothermal energy, and hydropower (Figure 1.2). For U.S. electricity generation specifically, solar generation⁷ capacity is projected to lead to renewable energy growth, increasing by more than 1,000% by the year 2040. Wind capacity⁸ is also expected to play an important role in expanding the renewable energy economy, accounting for 42 gigawatts of the energy capacity.⁶

Figure 1.2. Renewable Electricity Generation Capacity by Energy Source in the U.S., 2011–2040. Preprinted with permission from U.S. Energy Information Association (2013).

Fundamental science is key in establishing technologies for energy production relying on solar energy. However, one challenge in shifting to a fundamentally different energy economy is that users and providers have a set of challenges in implementing the growing assortment of new renewable sources. For example, solar and wind energy are irregular and unpredictable; therefore, heavy reliance on these sources of energy would require a storage method for later use during times of intermittency.⁹ Furthermore, with renewable energy developments comes the complimentary demand for technology to create new energy distribution methods and to integrate new energy sources into existing grids.¹⁰ Progress is being made on all fronts, but the transition to renewable energy economy is expected to be gradual, due to the time required to develop and implement new technologies.

1.2.2 CO₂ Sequestration and Storage

While transitioning over to a renewable energy economy, energy-related CO_2 emissions, in addition to industrial CO_2 emissions (e.g. cement plants), will have to be managed. CO_2 capture from transportation emissions is costly since the atmospheric concentration is relatively low, so for this sector an alternative fuel that is carbon free (i.e. H_2) should be considered. A more practical sector to implement widespread CO_2 capture is electricity-generating power plants, which are responsible for 40% energy-related CO_2

emissions.

Chemical absorption is the most widely used technique for low pressure CO_2 capture, where CO₂-containing gas streams are passed over a liquid (amine or aqueous NaOH and Na₂CO₃ slurries) that forms chemical bonds with CO₂.¹¹ The primary challenge associated with these materials is that heating up to 200 °C is required to break the bonds between CO_2 and the absorbent. Alternatively, solid absorbents like metal organic frameworks¹² typically have weaker interactions with CO₂ and are often treated with pressurized streams of CO₂ to yield effective interactions at the surface of the material. Alternatively, solid absorbents like zeolites¹³ are operational at lower pressures of CO₂, however due to their hydrophilic nature, CO₂ capacity declines in the presence of water, and high regeneration temperatures are required.¹⁴ Overall, CO₂ capture technologies require energy (either in the form of pressure or heating) that reduce the overall efficiency of a process and adds cost, where typical efficiency losses are around 6-12% for the CO₂ capture process.² To this end, to make these processes economically viable on a large scale, technology development for CO₂ sequestration and incentives for reducing CO₂ emissions will be necessary to offset the costs associated with these capture methods.

After CO_2 has been captured, storage of this gas must be considered as well. Cooling and compressing CO_2 for long-term underground storage is a technology that has already been implemented. Injection of liquid CO_2 into reservoirs in order to displace and mobilize oil is a process in Texas and currently consumes approximately 20 million tons/year of CO_2 .¹⁵ However, a series of earthquakes in Texas are thought to be linked to these CO_2 injections into the oil and gas wells.¹⁶ Furthermore, the energy requirements to cool, compress, as well as transfer CO_2 from the site of generation to the storage site, are large. An alternative CO_2 "storage" approach is to retain CO_2 using chemical bonds. CO_2 can be thought of as a carbon building block to synthesize more valuable chemicals.¹⁷ As an abundant and cheap C1 feedstock, exploring synthetic routes toward producing commodity chemicals and fuels on a wide scale could provide an economic driving force to capture CO_2 , as well as solve storage issues. One such potential commodity chemical is CH_3OH , and the feasibility of this process will be discussed in detail herein.

1.3 Hydrogenation of CO₂ to CH₃OH

1.3.1 Potential for Industrial Synthesis

Methanol (CH₃OH) is a commodity chemical with a current annual global demand of 30 million metric tonnes, serving mainly as a chemical feedstock.¹⁸ Predominately synthesized from methane-derived synthesis gas (syngas), or carbon monoxide (CO) and hydrogen (H₂), this reaction (equation 1) requires elevated temperatures between 220– 270 °C and pressures 50–100 bar with a Cu heterogeneous catalyst. The mechanism of this reaction is highly debated in the literature. One putative route is the direct hydrogenation of CO to CH₃OH (equation 1). Alternatively, CO₂ is debated to play an important mechanistic role in this reaction.¹⁹ Cu catalysts used for this reaction also catalyze the water gas shift reaction (equation 2) at these temperatures, where CO and H₂O²⁰ are converted to CO₂ and H₂. Furthermore, the addition of 2–8% CO₂ to the synthesis gas feed has been found to improve the performance of the catalyst.²¹

$$CO + 2H_2 \rightarrow CH_3OH$$
 (1)

$$CO + H_2O \rightarrow CO_2 + H_2 \tag{2}$$

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$
 (3)

There is also precedent for synthesizing CH₃OH from CO₂ and H₂ (equation 2) using similar Cu catalysts. A pilot plant based on this system was built for this reaction using a Cu/Al₂O₃/ZnO/ZrO₂/Ga₂O₃ heterogeneous catalyst at 250 °C, thus demonstrating the viability for this process.²² The primary obstacle in implementing this process is the current operational methanol synthesis method using syngas is more economically attractive compared to that using CO₂ as a starting material.

1.3.2 Alternative Approach: Homogeneous Catalysis

In considering ways to improve the efficiency of the CO₂ hydrogenation to CH₃OH, the thermodynamics of equation 2 were examined. This reaction is entropically disfavored with $\Delta S^{\circ} = -97.8$ calmol⁻¹K⁻¹. Therefore, operating at high temperatures with a negative entropy magnifies a negative T ΔS term, disfavoring the reaction overall, where $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$. This unfavorable effect on the reaction can further be demonstrated

by considering the equilibrium constant at 250 °C where $K_{eq} = 1 \times 10^{-8}$. Therefore, it is desirable to conduct this reaction at lower temperatures in order to achieve an overall higher theoretical yield of methanol. Using reported heterogeneous catalysts, reducing the temperature below 220 °C is kinetically undesirable.

In order to address this challenge, homogeneous catalysis can be considered for this reaction, as these systems often operate at lower temperatures. Additional advantages of homogeneous complexes as catalysts include their versatility and tunability through the use of diverse ancillary ligands as well as the ability to study the mechanism of reactivity on a molecular level. Toward this end, notable advances have been made to reduce CO₂ to CH₃OH at room temperature using homogeneous organocatalysts and metal complexes.²³⁻²⁶ However, these catalytic methods typically require expensive reducing reagents such as hydrosilanes and boron hydrides that produce stoichiometric byproducts. In contrast, we were interested in developing a system using H_2 for this homogeneously catalyzed reaction. This dissertation will explore a cascade approach using homogeneous catalysis for CO₂ hydrogenation to methanol (Chapter 2),²⁷ and will demonstrate a mechanistic understanding of this system (Chapter 3 and 4) $^{28-30}$ where these findings are used to improve the overall cascade system (Chapter 4). Lastly, highlighting the benefits of using both homogeneous and heterogeneous catalysis, a cascade system utilizing both of these types of catalysts for low temperature methanol synthesis is explored (Chapter 5).

1.4 Potential Impact of CO₂ Conversion to CH₃OH and Other Chemicals

In addition to providing an environmentally safe outlet for CO_2 emissions, methanol produced from CO_2 could also function as a carbon neutral liquid fuel. If methanol was synthesized from CO_2 that is captured from the atmosphere and H₂ derived from solar⁷ or wind-driven⁸ water splitting, the overall process would be carbon-neutral.³¹ Methanol is an energy-dense combustible liquid with a high octane number of 100, and is an excellent hydrogen storage material (containing 12.6 wt% H₂). In addition to being used as a transportation fuel, methanol can also be used in fuel cells where applicable low temperature aqueous methanol dehydrogenation catalysts have been reported.³² The current leading industrial process using CO_2 is the synthesis of urea, which consumes 70 million metric tonnes of CO_2 per year.³³ Moving forward, identifying more processes where CO_2 can be implemented as a feedstock, as in the production of CH_3OH , will be important for establishing more routes toward mitigating CO_2 emissions. Importantly, more companies are currently looking to make plastics, plasticizers, additives fuels and other chemicals;³⁴ specifically BASF and Linde are unveiling an industrial process to use CO_2 and CH_4 to synthesize CO and H_2 in 2015.³⁵

1.5 References

1. Environment. Annual Energy Review 2011. U. S. Energy Information Administration, 2011, pp 302.

2. CO₂ capture and storage: A Key Carbon Abatement Option. International Energy Agency, 2008.

3. Hoegh-Guldberg, O.; Mumby, P. J.; Hooten, A. J.; Steneck; R. S.; Greenfield, P.; Gomez, E.; Harvell, C. D.; Sale, P. F.; Edwards, A. J.; Caldeira, K.; Knowlton, N.; Eakin, C. M.; Iglesias-Prieto, R.; Muthiga, N.; Bradbury, R. H.; Dubi, A.; Hatziolos, M. E. Coral Reefs Under Rapid Climate Change and Ocean Acidification. *Science* **2007**, *318*, 1737.

4. IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S. et al., Eds., Cambridge Univ. Press, Cambridge, UK, and New York, 2007.

5. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide. Raven, J. et al., Eds., Royal Society 2005.

6. International Energy Outlook 2013. U.S. Energy Information Administration, 2013.

7. (a) Kudo, A.; Miseki, Y. Heterogeneous Photocatalyst Materials for Splitting Water. *Chem. Soc. Rev.* **2009**, *38*, 253; (b) El Chaar, L.; Iamont, L. A.; El Zein, N. Review of Photovoltaic Technologies. *Renew. Sust. Energ. Rev.* **2011**, *5*, 2165.

8. Zervos, A.; Kjaer, B. "Pure Energy. Wind Energy Scenarios up to 2030," European Wind Energy Association, 2008.

9. Lewis, N. S.; Nocera, D. G. Powering the Planet: Chemical Challenges in Solar Energy Utilization. *P. Natl. Acad. Sci. USA*, **2006**, *103*, 15729.

10. Liserre, M.; Sauter, T.; Hung, J. Y. Future Energy Systems: Integrating Renewable Energy Sources into the Smart Power Grid through Industrial Electronics. March 2010 IEEE Industrial Electronics Magazine, **2010**, *4*, 18.

11. Spigarelli, B. P.; Kawatra, S. K. Opportunities and Challenges in Carbon Dioxide Capture. J. CO₂ Util. 2013, 1, 69.

12. Liu, J.; Thallapally, P. K.; McGrail, B. P.; Brown, D. R.; Liu, J. Progress in Adsorption-Based CO₂ Capture by Metal-Organic Framworks. *Chem. Soc. Rev.* **2012**, *41*, 2308.

13. Bae, T.-H.; Hudson, M. R.; Mason, J. A.; Queen, W. L.; Dutton, J. J.; Sumida, K.; Micklash, K. J.; Kaye, S. S.; Brown, C. M.; Long, J. R. Evaluation of Cation-Exchanged Zeolite Adsorbents for Post-Combustion Carbon Dioxide Capture. *Energy Environ. Sci.* **2013**, *6*, 128.

14. Yu, C.-H.; Huang, C.-H.; Tan, C.-S. A Review of CO₂ Capture by Absorption and Adsorption. *Aerosol Air Qual. Res.*, **2012**, *12*, 745.

15. Lackner, K. S. A Guide to CO₂ Sequestration. Science 2003, 300, 1677.

16. Gan, W.; Frohlich, C. Gas injection may have triggered earthquakes in the Cogdell oil field, Texas. *P. Natl. Acad. Sci. USA*, **2013**, *110*, 18786.

17. Sakakura, T.; Choi, J.-C.; Yasuda, H. Transformation of Carbon Dioxide *Chem. Rev.*, **2007**, *107*, 2365.

18. Methanol Utilisation Technologies. In *Methanol: The Basic Chemical and Energy Feedstock of the Future: Asinger's Vision Today.* Bertau, M.; Offermanns, H.; Plass, L.; Schmidt, F.; Wernicke, H.-J., Eds.; Wiley, 2014, pp. 327.

19. Grabow, L. C.; Mavrikakis, M. Mechanism of Methanol Synthesis on Cu through CO 2and CO Hydrogenation. *ACS Catal.* **2011**, *1*, 365.

20. Industrial grade synthesis gas contains H₂O as an impurity.

21. Lee, S. Methanol Synthesis from Syngas. In *Handbook of Alternative Fuel Technologies*. CRC Press, 2007, pp 297.

22. Ushikoshi, K.; Moria, K.; Watanabe, T.; Takeuchi, M.; Saito, M. A 50 kg/day Class Test Plant for Methanol Synthesis from CO2 and H2. *Stud. Surf. Sci. Catal.* **1998**, *114*, 357.

23. For examples of stoichiometric reduction of CO_2 to CH_3OH mediated by frustrated Lewis base pairs, see: (a) Ashley, A. E.; Thompson, A. L.; O'Hare, D. Non-Metal-Mediated Homogeneous Hydrogenation of CO_2 to CH_3OH . *Angew. Chem., Int. Ed.* **2009**,

48, 9839. (b) Ménard, G.; Stephan, D. W. Room Temperature Reduction of CO₂ to Methanol by Al-Based Frustrated Lewis Pairs and Ammonia Borane. *J. Am. Chem. Soc.* **2010**, *132*, 1796; For a review, see: (c) Stephan, D. W.; Erker, G. Frustrated Lewis Pairs: Metal-Free Hydrogen Activation and More. *Angew. Chem., Int. Ed.* **2010**, *49*, 46.

24. For catalytic reduction of CO_2 to CH_3OH with borane reducing agents, see: (a) Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. An Efficient Nickel Catalyst for the Reduction of Carbon Dioxide with a Borane. *J. Am. Chem. Soc.* **2010**, *132*, 8872. (b) Huang, F.; Zhang, C.; Jiang, J.; Wang, Z.-X.; Guan, H. How Does the Nickel Pincer Complex Catalyze the Conversion of CO_2 to Methanol Derivative? A Computational Mechanistic Study. *Inorg. Chem.* **2011**, *50*, 3816.

25. For catalytic reduction of CO₂ to CH₃OH with silane reducing agents, see: (a) Eisenschmid, T. C.; Eisenberg, R. The Iridium Complex Catalyzed Reduction of Carbon Dioxide to Methoxide by Alkylsilanes. *Organometallics* **1989**, *8*, 1822. (b) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Conversion of Carbon Dioxide into Methanol with Silanes over *N*-Heterocyclic Carbene Catalysts. *Angew. Chem. Int. Ed.* **2009**, *48*, 3322; (c) Huang, F.; Lu, G.; Zhao, L.; Li, H.; Wang, Z.-X. The Catalytic Role of *N*-Heterocyclic Carbene in a Metal-Free Conversion of Carbon Dioxide into Methanol: A Computational Mechanism Study. *J. Am. Chem. Soc.* **2010**, *132*, 12388.

26. For other examples of homogeneous catalytic CO₂ reduction, see: (a) Laitar, D. S.; Müller, P.; Sadighi, J. P. Efficient Homogeneous Catalysis in the Reduction of CO₂ to CO. J. Am. Chem. Soc. **2005**, 127, 17196. (b) Matsuo, T.; Kawaguchi, H. From Carbon Dioxide to Methane: Homogeneous Reduction of Carbon Dioxide with Hydrosilanes Catalyzed by Zirconium-Borane Complexes. J. Am. Chem. Soc. **2006**, 128, 12362. For reviews, see: (c) Riduan, S. N.; Zhang, Y. Recent Developments in Carbon Dioxide Utilization under Mild Conditions. Dalton Trans. **2010**, 39, 3347. (d) Darensbourg, D. J. Chemistry of Carbon Dioxide Relevant to Its Utilization: A Personal Perspective. Inorg. Chem. **2010**, 49, 10765.

27. Excerpts of Chapter 2 reprinted with permission from Huff, C. A.; Sanford, M. S. Cascade Catalysis for the Homogeneous Hydrogenation of CO₂ to Methanol. *J. Am. Chem. Soc.* **2011**, *133*, 18122. Copyright 2011. American Chemical Society.

28. Excerpts of Chapter 3 reprinted with permission from Huff, C. A.; Kampf, J. W.; Sanford, M. S. Role of a Noninnocent Pincer Ligand in the Activation of CO₂ at (PNN)Ru(H)(CO). *Organometallics* **2012**, *31*, 4643. Copyright 2012. American Chemical Society.

29. Huff, C. A.; Kampf, J. W.; Sanford, M. S. Reversible Carbon-Carbon Bond Formation Between Carbonyl Compounds and a Ruthenium Pincer Complex. *Chem. Commun.* **2013**, *49*, 7147. – Reproduced by permission of The Royal Society of Chemistry. <u>http://pubs.rsc.org/en/content/articlelanding/2013/cc/c3cc43517b</u>

30. Excerpts of Chapter 4 reprinted with permission from Huff, C. A.; Sanford, M. S. Catalytic CO₂ Hydrogenation to Formate by a Ruthenium Pincer Complex. *ACS Catal.* **2013**, *3*, 2412. Copyright 2013. American Chemical Society.

31. Olah, G. A.; Goeppert, A.; Prakash, G. K. S. Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. *J. Org. Chem.* **2009**, *74*, 487.

32. Nielsen, M.; Alberico, E.; Baumann, W.; Drexler, H.-J.; Junge, H.; Gladiali, S.; Beller, M. Low-Temperature Aqueous-Phase Methanol Dehydrogenation to Hydrogen and Carbon Dioxide. *Nature* **2013**, *495*, 85.

33. Joó, F. Activation of Carbon Dioxide. In Physical Inorganic Chemistry: Reactions, Processes, and Applications; Wiley-VCH: Weinheim, Germany, 2007; pp 252.

34. Scott, A. Carbon Dioxide-to-Chemical Processes Poised for Commercialization. *Chemical and Engineering News.* **2013**, *91*, 20.

35. Research Cooperation Develops Innovative Technology for Environmentally Sustainable Syngas Production from Carbon Dioxide and Hydrogen. BASF Press Release. July 2, 2013.

CHAPTER 2

Cascade Homogeneous Hydrogenation of Carbon Dioxide to Methanol

2.1 Introduction

Copper derived heterogeneous catalysts are well-known to promote the hydrogenation of CO₂ to CH₃OH at elevated temperatures ranging from 240–260 °C.¹ However, since this reaction is entropically unfavorable ($\Delta S^{\circ} = -97.8$ calmol⁻¹K⁻¹)², it would be desirable to carry out this transformation at lower reaction temperatures. This is expected to lead to an overall higher theoretical yield of CH₃OH.

Homogeneous catalysts typically operate at lower temperatures and are thus expected to realize more favorable reaction conditions. Additional advantages of homogeneous complexes as catalysts include: i) their versatility and tunability through the use of diverse ancillary ligands and ii) the ability to study the mechanism of reactivity on a molecular level. Toward this end, notable advances have been made in the reduction of CO₂ to CH₃OH at room temperature using homogeneous organocatalysts and Ni complexes, yielding turnover numbers (TONs) up to 1,840 (Scheme 2.1).^{3–6} However, these catalytic methods typically require expensive reducing reagents such as hydrosilanes and boron hydrides that produce stoichiometric byproducts (Scheme 2.1, R). In contrast, exploration of the most atom-economical reductant, hydrogen (H₂), for this homogeneously catalyzed reaction has been limited.

Scheme 2.1. Catalytic Reduction of CO₂ to CH₃OH Using Silanes and Boranes

2.2 Multi-Catalyst Cascade System Design

Aiming to design a single homogeneous catalyst to facilitate the multi-step reduction of CO_2 to CH_3OH is a challenging goal such that the catalyst would have to perform numerous different proton and electron transfers throughout the reaction (Scheme 2.2). Instead, our approach was to investigate multiple catalysts for each individual step of the reaction. This would allow for catalyst design and optimization for each individual step in the reaction cascade.

Scheme 2.2. Multi-Step CO₂ Reduction to CH₃OH

$$CO_2 \xrightarrow{2H^+, 2e^-} \bigcup_{H^-}^{O} \xrightarrow{2H^+, 2e^-} \bigcup_{H^2O}^{O} \xrightarrow{H^+, 2e^-} H_2O \xrightarrow{H^+, 2e^-} H_1OH$$

In order to implement this approach, we aimed to first devise a chemical route from CO₂ and H₂ to CH₃OH. As a first step, we envisioned hydrogenating CO₂ to formic acid (FA) using a metal catalyst (Scheme 2.3a). There are many metal catalysts reported for this reaction,^{2,7} but because this reaction is thermodynamically uphill ($\Delta G^{\circ} = 7.8$ kcalmol⁻¹)², a base is required to drive the reaction to completion through the exothermic formation of a formate salt (Scheme 2.3b).² However, subsequent hydrogenation of the formate salt is not well precedented.

Scheme 2.3. CO₂ Hydrogenation to Formic Acid and Formate Salt

In order to address this challenge, we aimed to couple the hydrogenation of CO_2 to FA (Scheme 2.4, step i) with an exothermic esterification reaction catalyzed by **B** (Scheme 2.4, step ii), forming a formate ester. This ester could then be hydrogenated using catalyst **C** and H₂ to generate CH₃OH and the corresponding ester-derived alcohol (ROH, Scheme 2.4, step iii). This three-step reaction cascade should be carried out in one pot such that thermodynamically disfavored FA can be trapped and react further *in situ*. Importantly, this system should enable tuning of the rate and selectivity of each step simply by modifying catalyst **A**, **B**, and **C** independently.

Scheme 2.4. Cascade Hydrogenation of CO₂ to CH₃OH

2.3 Optimization of Individual Steps

2.3.1 Steps i/ii: Cascade CO₂ Hydrogenation/Esterification

There are highly efficient established homogeneous catalysts for the conversion of CO_2 to methyl formate (HCO₂CH₃) (Scheme 2.4, steps i-ii) with TONs up to 13,000.² However, these systems require supercritical CO_2 (130 bar) as the solvent. Using relatively lower pressures of CO_2 in our system would be beneficial for mitigating potential incompatibilities of CO_2 with other components in the cascade system (see Section 2.3.2).

At 10 bar CO₂ and 30 bar H₂, the most active reported catalysts were selected and compared under identical conditions. As shown in Table 2.1, under neutral thermal esterification conditions, catalysts A-1–A-3^{8–10} yielded modest quantities of methyl formate (entries 1–3). The TONs in these systems could be improved by the addition of triethylamine (NEt₃), a base that is commonly used to provide a thermodynamic driving force for CO₂ hydrogenation through the formation of the alkyl ammonium formate salt. Catalysts A-2 and A-3 worked the best under basic conditions, yielding a TON of 21 (entries 5–6). However, ester formation was slow under these thermal conditions, and A-1/NEt₃ and A-3/NEt₃ each afforded only two or three turnovers after 1 h (entries 7–8).

Table 2.1. Conversion of CO₂ to HCO₂CH₃: Thermal Esterification

C0 10	$D_2 + H_2 - bar 30 bar$	$\begin{array}{c} (A) \\ \hline \\ CH_3OH \\ \Delta \text{ or } \Delta/NEt_3 \end{array}$	0 ↓ + H₂O OCH₃
Me Me	PMe ₃ ¹ 3P PMe ₃ ¹ 3P OAc Cl (A-1)	$\begin{array}{c c} Ph_2 & CI & Ph_2 \\ P & I & P \\ P & Ru & P \\ Ph_2 & CI & Ph_2 \\ Ph_2 & CI & Ph_2 \end{array}$ $(A-2)$	Fe(BF ₄) ₂ •6H ₂ O/ PPh ₂ PPh ₂ Ph ₂ P Ph ₂ P (A-3)
	Entry ^a	Catalyst A/Additive	TON
1		A-1/none	3
2		A-2/none	1
-			

3	A-3/none	10
4 ^b	A-1/NEt ₃	18
5 ^b	A-2/NEt ₃	21
6 ^b	A-3/NEt ₃	21
7 ^{b,c}	A-1/NEt ₃	3
8 ^{<i>b,c</i>}	A-3/NEt ₃	2

Conditions: ^a0.0126 mmol of catalyst **A**, 2 mL of CH₃OH, 16 h, 135 °C. ^b0.2 mL NEt₃ was added under otherwise identical conditions. ^c1 h.

It is well known that both Brønsted¹¹ and Lewis acid¹² catalysts can accelerate the esterification of carboxylic acids with alcohols. It follows that such catalysts might also prove advantageous for the formation HCO₂CH₃ from CO₂. A number of esterification

catalysts were tested for compatibly with catalysts for step i, including: $Sc(OTf)_3$, $Y(OTf)_3$, TsOH (*p*-toluenesulfonic), SmCl₃, AlCl₃, ZnO, ionic liquids,¹³ and CuCl₂, where the most successful results re discussed below. As shown in Table 2.2, catalysts **A1–A3** were combined with TsOH (tosylic acid, **B-1**) and $Sc(OTf)_3$ (OTf = trifluoromethylsulfonate, **B-2**). Gratifyingly, the combination of Ru(PMe₃)₄(Cl)(OAc) (**A-1**) and $Sc(OTf)_3$ (**B-2**) provided significantly enhanced TONs relative to the thermal and/or base-promoted reactions (TON = 40 vs 3 and 18, respectively). This **A-1/B-2** cascade reaction was also significantly faster than the NEt₃-promoted esterification, with a TON of 32 after 1 h at 135 °C (entry 7).

Table 2.2. Conversion of CO₂ to HCO₂CH₃: Acid Catalyzed Esterification

CO ₂ + H ₂ — 10 bar 30 bar		+ H ₂ O `OCH ₃
	TsOH Sc(OTf) ₃ (B-1) (B-2)	
Entry ^a	Catalyst A/Additive	TON
1	A-1/B-1	11
2	A-2/B-1	10
3	A-3/B-1	13
4	A-1/B-2	40
5	A-2/B-2	16
6	A-3/B-2	5
7 ^b	A-1/B-2	32

Conditions: a 0.0126 mmol of catalyst **A** and **B**, 2 mL of CH₃OH, 16 h, 135 °C. b 1 h.

2.3.2 Step iii: Ester Hydrogenation

Having identified compatible catalysts for the first two steps of the reaction cascade, we next examined the hydrogenation of methyl formate, which would complete the overall transformation of CH_3OH from CO_2 (step iii, Scheme 2.4). Several homogeneous catalysts had been reported for the hydrogenation of challenging carbonyl containing substrates including amides and alkyl esters, although formate esters had not been examined prior to our study.^{14–16} Thus, Ru complexes **C-1–C-3** (known ester or

amide hydrogenation catalysts) were tested in order to establish if they could catalyze the hydrogenation of HCO_2CH_3 to CH_3OH (Table 2.3). We found that both C-1 and C-2 catalyze the hydrogenation of the methyl formate efficiently at 135 °C (entries 1–2). Notably, Milstein reported similar findings shortly before these results were published.¹⁷

With active formate ester hydrogenation catalysts in hand, the effect of introducing CO_2 into this reaction was studied, as this is a required component of the cascade system. While maintaining an overall pressure of 40 bar, a 5:35 ratio of H₂ to CO_2 resulted in low yields of CH₃OH while using C-1 (Table 2.3, entry 4). We hypothesized that decreasing the partial pressure of CO_2 would allow for improved activity of the catalyst. Indeed, a 30:10 ratio of H₂:CO₂ provided a 97% yield of CH₃OH (entry 6) and this set of conditions was selected for cascade system experiments.

Table 2.3. Hydrogenation of HCO₂CH₃ in the Presence of CO₂

Conditions: ^a 0.01 mmol of catalyst C , 1 mmol HCO ₂ CH ₃ , 1 mL of dioxane								
7 ^b	C-2	30:10	43%	16%				
6	C-1	30:10	97%	97%				
5	C-1	20:20	85%	76%				
4	C-1	5:35	54%	17%				

Conditions: ⁴0.01 mmol of catalyst **C**, 1 mmol HCO₂CH₃, 1 mL of dioxane, 16 h, 135 °C. ^bPressures in bar. ^c1 mmol KO^fBu was added under otherwise identical conditions. ^dKO^fBu reacts directly with HCO₂CH₃, deprotonating the aldehydic H. The products of this reaction are HO^fBu, CO, and KOMe.

2.4 Experimental Design and Detection

Before all components of the system were combined together to synthesize CH₃OH from CO₂ and H₂, experimental design was required so that methanol formed as a product in the reaction could be distinguished from the methanol added as a solvent. Initial evaluations were performed using ethanol (EtOH, Scheme 2.5a) as the solvent so that all CH₃OH detected by ¹H NMR spectroscopy analysis was definitively from CO₂. However, because ethanol is a bulkier alcohol in comparison with methanol, reduced yields in the esterification reaction (step ii) were observed. Therefore, deuterated methanol was explored, where CD₃OH (Scheme 2.5b) was selected instead of CD₃OD since it helped to reduce scrambling of CH₃OH (observed CH₂DOH/D, CHD₂OH/D due to exchange between M–H and CD_3O-D). To that end, using CD_3OH provided a system where CH₃OH could be detected by ¹H NMR spectroscopy, and the optimization reactions were conducted using this system. However, scrambling of the CD₃OH solvent (in some cases up to 50%) was still observed (Figure 2.1). Therefore, the optimized results obtained using the CD₃OH system were confirmed using ¹³CO₂ and ¹³C depleted CH₃OH (Scheme 2.5c). This experiment allows for confirmation that all ¹³CH₃OH detected by ¹³C NMR spectroscopy is derived from ¹³CO₂ and not the ¹²CH₃OH solvent.

Scheme 2.5. Experimental Design for the Cascade Hydrogenation of CO₂ to CH₃OH

Figure 2.1. ¹H NMR Spectrum of CD₃OH Experiment

2.5 Cascade Conversion of CO₂ Hydrogenation to CH₃OH

2.5.1 One Pot CO₂ Conversion to CH₃OH

Before testing all catalysts together in one pot, experimental design was necessary in order to distinguish the methanol formed from CO₂ hydrogenation from the methanol added as a solvent/catalyst. Thus deuterated methanol (CD₃OH) was used as the solvent,¹⁸ which would allow for the quantification of *in situ* produced CH₃OH by ¹H NMR spectroscopy. When combining all components together in one pot to hydrogenate CO₂ to CH₃OH, a TON of 3 was detected (Scheme 2.6). Importantly, there was a substantial amount of methyl formate remaining at the end of the reaction.

Scheme 2.6. One Pot Cascade CO₂ Conversion to CH₃OH

$$\begin{array}{c} CO_{2} + H_{2} & \overbrace{CD_{3}OH}^{A-1} & \overbrace{CD_{3}OH}^{B-2} & \overbrace{C-1}^{O} \\ 10 \text{ bar } 30 \text{ bar } 135 \ ^{\circ}C, 16 \text{ h} \end{array} \xrightarrow{CH_{3}OH} \begin{array}{c} CH_{3}OH + \bigcup_{H^{<}C^{\circ} OCD_{3}}^{O} \\ \hline TON = 3 \end{array}$$

In order to determine why catalyst C-1 was not fully reducing all of the methyl formate, exclusion reactions were carried out to determine what component(s) of the system were hindering C-1. By investigating the hydrogenation of methyl formate using C-1 with and without B-2, it was clear that B-2 and C-1 are incompatible (Table 2.4). We

found that upon treating C-2 with 1 equivalent of B-2 (Sc(OTf)₃), 80% of the protonated triflate complex 1 was formed (Scheme 2.7), along with ~20% of 3 different Ru–H species as observed by ¹H NMR spectroscopy. The identity of this compound was confirmed through independent synthesis of 1 by treatment of C-2 with triflic acid.

Table 2.4. Hydrogenation of HCO₂CH₃ in the Presence of B-2

$\begin{array}{c} O \\ H \\ H \\ \hline C \\ OCH_3 \\ 5 \text{ bar} \end{array} + H_2 \xrightarrow{1 \text{ mol}\% \text{ cat. C-1}} 2 \text{ CH}_3\text{OH}$							
Entry ^a	Additive	Conv. of HCO ₂ CH ₃	Yield of CH ₃ OH				
1	none	>99%	>99%				
2 ^b	B-2	22%	31%				

Conditions: ^a1mmol HCO₂CH₃, 0.0126 mmol **C-1**, 1 mL dioxane, 40 μ L CD₃OH, 135 °C, 16 h. Note: CD₃OH used to solvate **B-2**. ^b0.0126 mmol **B-2**.

2.5.2 Modified Reactor: Transfer System

To overcome the incompatibility between **B-2** and **C-1**, the catalysts were physically separated within the same high-pressure reactor. Catalysts **A-1**, **B-2**, and CH₃OH were placed in a vial inside the vessel, while **C-1** was dispensed into the outer well of the Parr vessel (Scheme 2.8). In this system, the volatile intermediate methyl formate (bp = 32 °C at STP) can travel freely from the inner to the outer vessel, but the low volatility of the catalysts will keep them in their respective vessels. Gratifyingly, using this modified reactor yielded ¹³CH₃OH in 25 turnovers from ¹³CO₂, where ¹³CO₂ and ¹²CH₃OH were used to definitively track the produced methanol from CO₂.¹⁹

Scheme 2.8. Transfer System for the Cascade Catalytic Hydrogenation of CO₂

2.6 Conclusions

In summary, a cascade homogeneous catalytic approach toward the hydrogenation of CO₂ to CH₃OH has been demonstrated.²⁰ This serves as the first example, to our knowledge, of using homogeneous catalysts for the hydrogenation of CO₂ to CH₃OH. This multi-catalyst cascade system offers the unique advantage of allowing for optimization of individual steps of the overall reaction through catalyst design. Furthermore, it also allows for detailed analysis of catalyst incompatibilities and decomposition pathways on a molecular level. Using these aspects of the system to our advantage, we designed and optimized a setup that provides CH₃OH in 25 turnovers from CO₂. Chapters 3 and 4 will further explore more of the incompatibilities in this reaction cascade. Moreover, since this publication a similar cascade system that accesses an ester intermediate has been reported where, under analogous conditions the authors use a ruthenium phosphine complex and an acid catalyst to achieve CH₃OH in up to 86 TONs.²¹

2.7 Experimental Procedures and Characterization of Data

General Procedures

NMR spectra were obtained on a Varian MR 400 MHz (399.96 MHz for ¹H) or a Varian VNMRs 700 MHz (699.93 MHz for ¹H; 176.00 MHz for ¹³C) spectrometer. All high-pressure reactions were carried out using a Parr Model 5000 Multiple Reactor system that includes six 50 mL vessels equipped with flat-gaskets and head mounting valves. The

system was operated with a 4871 process controller and SpecView version 2.5 software. A Swagelok SS Medium-Flow metering valve was used during the collection of volatile products from the pressurized reaction vessels.

Materials and Methods

The ruthenium catalysts A-1^{9b}, A-2^{10b}, C-1¹⁴, C-2^{15b}, and C-3^{16b} were prepared according to literature procedures. Pre-purified hydrogen (99.99%) and dry carbon dioxide (99.8%) were purchased from Metro Welding. Scandium triflate, iron tetrafluoroborate hexahydrate, and tris[2-(diphenylphosphino)ethyl]phosphine were purchased from Sigma Aldrich. Methyl formate and anhydrous dioxane were purchased from Alfa Aesar. Isotopically labeled compounds, including CD₃OH (99.95%), ¹³C depleted CH₃OH (99.95%), ¹³CO₂ (99%), CD₃CN, and C₆D₆ (dried over sodium benzyl ketyl still) were purchased from Cambridge Isotope Laboratories. Methanol was dried over sodium and triethylamine was dried over CaH₂. Methyl formate was dried over calcium sulfate and distilled from phosphorus pentoxide. All experiments were conducted under a nitrogen atmosphere in either a glovebox or using standard Schlenk techniques.

Experimental Details

General Procedure for the Analysis of Volatile Products

After the reaction was complete, the pressure vessel was allowed to cool to room temperature. It was then slowly vented using a metering valve through a dry ice/acetone cooled trap. Once the vessel reached atmospheric pressure, the trap was placed in a LN_2 -cooled bath and connected to a Schlenk line. The entire system was placed under vacuum and the liquid contents of the pressure vessel were then collected in the trap. The trap was disconnected from the Schlenk line and allowed to warm to room temperature. CHCl₃ was added as an NMR standard, the contents of the trap were added to in CD₃CN, and the mixture was analyzed by ¹H and/or ¹³C NMR spectroscopy. Each reported TON represents an average of at least 2 trials.

General Procedure for the Hydrogenation of CO_2 to HCO_2CH_3 (Table 2.1 and Table 2.2) In a N₂-filled glovebox, catalyst **A** (0.0126 mmol) and either NEt₃ (0.2 mL, 1.434 mmol) or catalyst **B-1/B-2** (0.0126 mmol) were dissolved in/added to CH₃OH (2 mL) in the well of a pressure vessel. A micro magnetic stirbar was added and the reactor was sealed and removed from the glovebox. The vessel was then pressurized with 10 bar CO₂, followed immediately within 1 minute with 30 bar H₂. The reaction was heated to 135 °C for 16 h using SpecView software provided by Parr (a temperature of 125 °C was initially entered into the SpecView program to prevent overshooting of 135 °C) and then worked up using the general procedure for the analysis of volatile products above. CHCl₃ (30 µL, 0.3276 mmol) was added as the ¹H NMR standard and the reactions were analyzed by ¹H NMR spectroscopy. The TON corresponding to the yield of HCO₂CH₃ from CO₂ was calculated based on mmol of HCO₂CH₃/mmol catalyst A. See Figure 2.2 for a representative ¹H NMR spectrum.

Figure 2.2. Representative ¹H NMR Spectrum for CO₂ Hydrogenation to HCO₂CH₃

General Procedure for the Hydrogenation of HCO_2CH_3 in the Presence of CO_2 (Table 2.3)

In a N₂-filled glovebox, catalyst C (0.01 mmol), HCO₂CH₃ (60 μ L, 1 mmol), and dioxane (1 mL) were placed into the well of a pressure vessel. A micro magnetic stirbar was added and the reactor was sealed and removed from the glovebox. The vessel was then pressurized with CO₂, followed immediately within 1 minute with H₂. The reaction was heated to 135 °C for 16 h using SpecView software provided by Parr. (A temperature of 125 °C was initially entered into the SpecView program to prevent overshooting of 135 °C.) The reaction was worked up using the general procedure for the analysis of volatile products. CHCl₃ (80 μ L, 0.9938 mmol) was added as a ¹H NMR standard, and the reactions were analyzed by ¹H NMR spectroscopy. The yield of the reaction is based on the mmol of HCO₂CH₃ initially added.

General Procedure for the One Pot Cascade Conversion of CO_2 to CH_3OH in CD_3OH (Scheme 2.6)

In a N₂-filled glovebox, catalysts **A-1** (6.3 mg, 0.0126 mmol), **B-2** (6.2 mg, 0.0126 mmol), and **C-1** (5.6 mg, 0.0126 mmol) were dissolved in CD₃OH (2 mL) in the well of the pressure vessel. A micro magnetic stir bar was added and the reactor was then sealed and removed from the glovebox. The vessel was then pressurized with 10 bar CO₂, followed immediately within 1 minute with 30 bar H₂. The reactor was heated to 135 °C for 16 h using SpecView software provided by Parr. (A temperature of 125 °C was initially entered into the SpecView program to prevent overshooting of 135 °C). CHCl₃ (30 µL, 0.3276 mmol) was added as the ¹H NMR standard and the reactions were analyzed by ¹H NMR spectroscopy. The TON corresponding to the yield of CH₃OH from CO₂ was calculated based on mmol of CH₃OH/mmol catalyst (**A**, **B**, or **C**). The reaction was worked up using the general procedure for the analysis of volatile products above. CHCl₃ (30 µL, 0.3276 mmol) was added as the ¹H NMR standard and the reactions were analyzed by ¹H NMR spectroscopy (Figure 2.3). Notably, a small amount of scrambling of the CD₃OH solvent occurred due to the reversibility of the hydrogenation of the ester at the reaction temperature (see inset of Figure 2.3).

Figure 2.3. ¹H NMR Spectrum of Product Mixture Resulting from CD_3OH Experiment. Experimental details: Wet 1D, relaxation delay set at 25 s, pulse angle = 90°, solvent suppression for dioxane (delta = 13 Hz), 4 scans.

General Procedure for Hydrogenation of ${}^{13}CO_2$ to ${}^{13}CH_3OH$ using the Transfer Method (Scheme 2.8)

In a N₂-filled glovebox, catalysts A-1 (6.3 mg, 0.0126 mmol) and B-2 (6.2 mg, 0.0126 mmol) were dissolved in ¹³C depleted CH₃OH in a 4 mL scintillation vial equipped with a micro magnetic stir bar. This vial was placed into the well of the pressure vessel. Catalyst C-1 (5.6 mg, 0.0126 mmol) was dissolved in 1 mL of dioxane and dispensed into the well of the pressure vessel. The reactor was then sealed and removed from the glovebox. The vessel was pressurized with 10 bar ¹³CO₂, followed immediately within 1 minute with 30 bar H₂. The reactor was heated at 75 °C for 1 h and the temperature was then ramped to 135 °C and held at 135 °C for an additional 15 h. (A temperature of 125 °C was initially entered into the SpecView program to prevent overshooting 135 °C). CHCl₃ (3 mL, 37.27 mmol, which corresponds to 0.4099 mmol ¹³CHCl₃) was added as a ¹³C NMR standard, and the reactions were analyzed by ¹³C NMR spectroscopy. The TON

corresponding to the yield of ${}^{13}CH_3OH$ from ${}^{13}CO_2$ was calculated based on mmol of ${}^{13}CH_3OH$ /mmol catalyst (**A**, **B**, or **C**).

Experimental details for ¹³C NMR experiment for the hydrogenation of ¹³CO₂ to ¹³CH₃OH: Decoupled without NOE, relaxation delay set at 60 s, pulse angle = 30° , 16 scans. A representative ¹³C NMR spectrum is shown in Figure 2.4.

Figure 2.4. Representative ¹³C NMR Spectrum of ¹³CO₂ Experiment

Procedure for the hydrogenation of HCO_2CH_3 in the presence of B-2 (Table 2.4)

Catalyst C-1 (4.4 mg, 0.01 mmol) was dissolved in 1 mL dioxane and B-2 (4.9 mg, 0.01 mmol) was dissolved in 40 μ L of CD₃OH (Note: B-2 is not soluble in dioxane, so CD₃OH was used to solvate it). These solutions were combined in the well of the pressure vessel. Methyl formate was then added (60 μ L, 1 mmol), along with a micro magnetic stirbar. The reactor was sealed and removed from the glovebox and the vessel was pressurized with 5 bar H₂. The reaction was then heated to 135 °C for 16 h using

SpecView software provided by Parr. (A temperature of 125 °C was initially entered into the SpecView program to prevent overshooting 135 °C.) The reaction was worked up using the general procedure for the analysis of volatile products. CHCl₃ (80 μ L, 0.9938 mmol) was added as a ¹H NMR standard and the reactions were analyzed by ¹H NMR spectroscopy.

Procedure for Synthesis and Characterization of Authentic Sample of 1

Upon mixing a solution of **Cat. C-2** (2.5 mg, 5.5 µmol, 1 equiv.) in 0.45 mL dry C₆D₆ with triflic acid (1 µL, 0.011 mmol, 2 equiv.) in a J-Young NMR tube, a color change from dark brown to pale orange was observed. 90% NMR yield for **1** was determined by ¹H NMR spectroscopy (Figure 2.5), where the remaining 10% yield belongs to a second Ru species with a Ru-H shift at –20.09 ppm (J_{HP} = 25.1 Hz) (Figure 2.6).

Diagnostic peaks:

¹H NMR (C₆D₆): δ –20.38 (d, J_{HP} = 27.2 Hz, 1H, Ru-*H*), aromatic peaks ranging from 6.4–6.9 ppm (indicates aromatized backbone).

Figure 2.5. ¹H NMR Spectrum of 1: Reaction of C-2 with HOTf

Figure 2.6. Hydride Region of ¹H NMR Spectrum of 1 from Reaction of C-2 with HOTf

Procedure for Reaction of Cat C-2 with Sc(OTf)₃

Scandium triflate (**B-2**, 3.3 mg, 6.6 μ mol, 1 equiv.) was added to a solution of **Cat. C-2** (3 mg, 6.6 μ mol, 1 equiv.) in 0.45 mL dry C₆D₆ in a J-Young NMR tube. Upon sonicating for 5 minutes a color change from dark brown to greenish yellow to orange was observed. 80% NMR yield for 1 was determined by ¹H NMR spectroscopy (Figure 2.7), where the remaining 20% yield belongs to a number of other Ru-H species as shown in the hydride region of the ¹H NMR spectrum (Figure 2.8).

Figure 2.7. ¹H NMR spectrum of 1: Reaction of C-2 with B-2

Figure 2.8. Hydride Region of ¹H NMR Spectrum of 1: Reaction of C-2 with B-2

2.8 References

1. (a) Ushikoshi, K.; Mori, K.; Watanabe, T.; Takeuchi, M.; Saito, M. A 50 kg/Day Class Test Plant for Methanol Synthesis from CO₂ and H₂. *Stud. Surf. Sci. Catal.* **1998**, *114*, 357. (b) Saito, M. R&D Activities in Japan on Methanol Synthesis from CO₂ and H₂. *Catal. Surv. Jpn.* **1998**, *2*, 175.

2. Jessop, P. G. Homogeneous Hydrogenation of Carbon Dioxide. *The Handbook of Homogeneous Hydrogenation* **2008**, 489.

3. For examples of stoichiometric reduction of CO₂ to CH₃OH mediated by frustrated Lewis base pairs, see: (a) Ashley, A. E.; Thompson, A. L.; O'Hare, D. Non-Metal-Mediated Homogeneous Hydrogenation of CO₂ to CH₃OH. *Angew. Chem., Int. Ed.* **2009**, *48*, 9839. (b) Ménard, G.; Stephan, D. W. Room Temperature Reduction of CO₂ to Methanol by Al-Based Frustrated Lewis Pairs and Ammonia Borane. *J. Am. Chem. Soc.* **2010**, *132*, 1796; For a review, see: (c) Stephan, D. W.; Erker, G. Frustrated Lewis Pairs: Metal-Free Hydrogen Activation and More. *Angew. Chem., Int. Ed.* **2010**, *49*, 46.

4. For catalytic reduction of CO_2 to CH_3OH with borane reducing agents, see: (a) Chakraborty, S.; Zhang, J.; Krause, J. A.; Guan, H. An Efficient Nickel Catalyst for the Reduction of Carbon Dioxide with a Borane. *J. Am. Chem. Soc.* **2010**, *132*, 8872. (b) Huang, F.; Zhang, C.; Jiang, J.; Wang, Z.-X.; Guan, H. How Does the Nickel Pincer Complex Catalyze the Conversion of CO_2 to Methanol Derivative? A Computational Mechanistic Study. *Inorg. Chem.* **2011**, *50*, 3816.

5. For catalytic reduction of CO₂ to CH₃OH with silane reducing agents, see: (a) Eisenschmid, T. C.; Eisenberg, R. The Iridium Complex Catalyzed Reduction of Carbon Dioxide to Methoxide by Alkylsilanes. *Organometallics* **1989**, *8*, 1822. (b) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Conversion of Carbon Dioxide into Methanol with Silanes over *N*-Heterocyclic Carbene Catalysts. *Angew. Chem. Int. Ed.* **2009**, *48*, 3322; (c) Huang, F.; Lu, G.; Zhao, L.; Li, H.; Wang, Z.-X. The Catalytic Role of *N*-Heterocyclic Carbene in a Metal-Free Conversion of Carbon Dioxide into Methanol: A Computational Mechanism Study. *J. Am. Chem. Soc.* **2010**, *132*, 12388.

6. For other examples of homogeneous catalytic CO₂ reduction, see: (a) Laitar, D. S.; Müller, P.; Sadighi, J. P. Efficient Homogeneous Catalysis in the Reduction of CO₂ to CO. J. Am. Chem. Soc. **2005**, 127, 17196. (b) Matsuo, T.; Kawaguchi, H. From Carbon Dioxide to Methane: Homogeneous Reduction of Carbon Dioxide with Hydrosilanes Catalyzed by Zirconium-Borane Complexes. J. Am. Chem. Soc. **2006**, 128, 12362. For reviews, see: (c) Riduan, S. N.; Zhang, Y. Recent Developments in Carbon Dioxide Utilization under Mild Conditions. Dalton Trans. **2010**, 39, 3347. (d) Darensbourg, D. J. Chemistry of Carbon Dioxide Relevant to Its Utilization: A Personal Perspective. Inorg. Chem. **2010**, 49, 10765.

7. (a) Leitner, W. Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO₂. *Angew Chem Int. Ed.* **1995**, *34*, 2207; (b) Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic Hydrogenation of Carbon Dioxide Using Ir(III)-Pincer Complexes. *J. Am. Chem. Soc.* **2009**, *131*, 14168.

8. Catalyst **A-3**: Federsel, C.; et al. A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides. *Angew. Chem., Int. Ed.* **2010**, *49*, 9777.

9. Catalyst A-1: (a) For catalytic results: Munshi, P.; Main, A. D.; Linehan, J. C.; Tai, C.-C.; Jessop, P. G. Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium Trimethylphosphine Complexes: The Accelerating Effect of Certain Alcohols and Amines. *J. Am. Chem. Soc.* 2002, *124*, 7963; (b) For synthetic procedure: Mainz, V. V.; Andersen, R. A. Preparation of RuCH₂PMe₂(PMe₃)₃Cl, Ru(CH₂PMe₂)₂(PMe₃)₂, and Rh₂(CH₂PMe₂)₂(PMe₃)₄ and Their Reactions with Hydrogen. *Organometallics* 1984, *3*, 675.

10. Catalyst A-2: (a) For catalytic results: Kröcher, O.; Köppel, R. A.; Baiker, A. Highly Active Ruthenium Complexes with Bidentate Phosphine Ligands for the Solvent-Free Catalytic Synthesis of *N*, *N*-Dimethylformamide and Methyl Formate. *Chem. Commun.* **1997**, 453; (b) For synthetic procedure: Mason, R.; Meek, D. W.; Scollary, G. R. Polyphosphine Complexes of Ruthenium(II). *Inorg. Chim. Acta*, **1976**, *16*, L11.

11. Otera, J.; Nishikido, J. Esterification, 2nd ed.; 2009.

12. Barrett, A. G. M.; Braddock, D. C. Scandium(III) or Lanthanide(III) Triflates as Recyclable Catalysts for the Direct Acetylation of Alcohols with Acetic Acid. *Chem. Commun.* **1997**, 351.

13. Xiong, W.-M.; Zhu, M.-Z.; Deng, L.; Fu, Y.; Guo, Q.-X. Esterification of Organic Acid in Bio-Oil using Acidic Ionic Liquid Catalysts. *Energ. Fuels* **2009**, *23*, 2278.

14. Catalyst C-1: Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D. Direct Hydrogenation of Amides to Alcohols and Amines under Mild Conditions. *J. Am. Chem. Soc.* 2010, *132*, 16756.

15. Catalyst C-2: (a) For catalytic results: Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Efficient Homogeneous Catalytic Hydrogenation of Esters to Alcohols. *Angew. Chem., Int. Ed.* **2006**, *45*, 1113. (b) For synthetic procedure: Zhang, G.; Leitus, Y.; Milstein, Ben-David, Y.; Milstein, D. Facile Conversion of Alcohols into Esters and Dihydrogen Catalyzed by New Ruthenium Complexes. *J. Am. Chem. Soc.* **2005**, *127*, 10840.

16. Catalyst C-3: (a) For catalytic results: Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Dihydrogen Reduction of Carboxylic Esters to Alcohols under the Catalysis of Homogeneous Ruthenium Complexes: High Efficiency and Unprecedented Chemoselectivity. *Angew. Chem., Int. Ed.* **2007**, *46*, 7473. (b) For synthetic procedure: Abdur-Rashid, K.; Guo, R.; Lough, A. J.; Morris, R. H.; Song, D. Synthesis of Ruthenium Hydride Complexes Containing beta-Aminophosphine Ligands Derived from Amino Acids and their use in the H₂-Hydrogenation of Ketones and Imines. *Adv. Synth. Catal.* **2005**, *347*, 571.

17. Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Efficient Hydrogenation of Organic Carbonates, Carbamates, and Formates Indicates Alternative Routes to Methanol Based on CO₂ and CO. *Nat. Chem.* **2011**, *3*, 609.

18. CD₃OD was first employed but due to free D+ in the system, Ru-D was formed, yielding the deutero formate ester (DCOCD₃) in \sim 10% yield. This is an issue when using ¹H NMR to determine yields, thus CD₃OH was implemented to prevent this reaction from proceeding.

19. When using deuterated methanol for this reaction, a small amount of scrambling of the CD₃OH solvent occurred due to the reversibility of the ester hydrogenation at the reaction temperature. Thus ¹³CO₂ and ¹²CH₃OH were in order to get a more accurate yield for the CO₂ hydrogenation reaction.

20. Excerpts of Chapter 2 reprinted with permission from Huff, C. A.; Sanford, M. S. Cascade Catalysis for the Homogeneous Hydrogenation of CO₂ to Methanol. *J. Am. Chem. Soc.* **2011**, *133*, 18122. Copyright 2011. American Chemical Society.

21. Wesselbaum, S.; Stein, vom, T.; Klankermayer, J.; Leitner, W. Hydrogenation of Carbon Dioxide to Methanol by using a Homogeneous Ruthenium–Phosphine Catalyst. *Angew. Chem., Int. Ed.* **2012**, *51*, 7499.

CHAPTER 3

Investigation of Side Reactions in the Cascade System

3.1 Introduction

As described in detail in Chapter 2, I developed a cascade catalytic sequence for converting CO₂ and H₂ to CH₃OH.¹ This cascade system is comprised of three steps, each of which requires a different homogeneous catalyst (Scheme 3.1). In the first step, CO₂ is hydrogenated to formic acid (FA) using a ruthenium catalyst. Subsequently, FA undergoes a scandium-catalyzed esterification reaction with CH₃OH to form methyl formate (step ii). This ester is then reduced with H₂ and (PNN)Ru(H)(CO) (**1**, PNN = 6-(di*-tert*-butylphosphinomethylene)-2-(*N*,*N*-diethylaminomethyl)-1,6-dihydropyridine)² to form two equivalents of CH₃OH (step iii). Overall, this system provides CH₃OH in up to 25 TONs.

While this system was the first demonstration of using homogeneous catalysis to achieve the hydrogenation of CO_2 to CH_3OH , it is necessary to further improve the efficiency and thus the utility of this reaction. As a means to realize this objective, experiments were designed to uncover potential decomposition/inhibition pathways of

the employed catalysts. Specifically, these studies focus on undesired side reactions of **1** with other components of the cascade system.

3.2 Reactivity of Esters, Ketones, and Aldehydes with a Ru Pincer Complex

3.2.1 Methyl Formate

While exploring **1** as a methyl formate hydrogenation catalyst for its application in the cascade CO₂ hydrogenation system (Scheme 3.1, step iii), an unexpected color change from red/brown to yellow was observed upon mixing Ru complex **1** and methyl formate. This led us to hypothesize that a reaction occurs between these two compounds. Consistent with this finding, Milstein et al. recently reported the stoichiometric reaction of aldehydes with a related Ru PNP pincer complex, **2**, at -50 °C (Scheme 3.2).³ The resulting adduct, **3**, was characterized as a single stereoisomer and was determined to be unstable at room temperature.

Scheme 3.2. Reactivity of Ruthenium PNP Pincer Complex with Aldehydes³

Our studies revealed that the treatment of **1** with 2.5 equivalents of methyl formate in C₆D₆ at 25 °C results in complete conversion to a new Ru species with a Ru–H doublet at -15.25 ppm, as determined through ¹H NMR spectroscopic analysis (Scheme 3.3a). The newly formed Ru species was determined to be a Ru-methyl formate adduct (**4**), which is believed to form through the reaction of methyl formate with **1-Taut**. Characteristic features of **4**, such as the C–C bond between the carbonyl carbon of methyl formate and the nitrogen arm of the pincer ligand were confirmed through ¹H and ¹³C HSQC (heteronuclear single quantum coherence spectroscopy) and HMBC (heteronuclear multiple-bond correlation) 2D NMR spectroscopic studies that verified the proximity between the methylene protons on the arm of the *N*-side of the ligand and the proton of methyl formate. Furthermore, NOESY (nuclear overhauser effect spectroscopy) NMR spectroscopic analysis showed cross-peaks between the protons in the *tert*-

butylphosphine and methoxy group, as well as between the diethylamine substituent with the proton of methyl formate, consistent with the stereoisomer depicted in Scheme 3.3. An X-ray crystal structure was also obtained by crystallizing **4** from a solution of **1** in methyl formate and pentane (Figure 3.1). This structure further confirmed the stereoisomer shown in Scheme 3.3. An analytically pure sample of **4** was obtained in 94% yield through slow evaporation of the volatiles from a solution of **1** in methyl formate. Moreover, removal of the volatiles from this reaction mixture resulted in complete regeneration of complex **1**, suggesting that the reaction is reversible (Scheme 3.3b).

Scheme 3.3. Reversible Reaction of 1 with Methyl Formate

Figure 3.1. ORTEP diagram (50% probability level) of the molecular drawing of **4.** All H atoms (other than Ru–H and H–COOMe) have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Ru1–O2 = 2.2022(9), C2–C3 = 1.5678(17), O2–C2 = 1.3409(15), Ru1–H1 = 1.526(19); Ru1–O2–C2 = 112.65(7), O2–C2–C3 = 112.50(10).

3.2.2 Other Carbonyl Compounds

A survey of different carbonyl compounds revealed that other formate esters (*e.g.*, ethyl formate), as well as aldehydes and ketones (*e.g.*, benzaldehyde and cyclopentanone), exhibit similar reactivity with **1** (Scheme 3.4). Products **5**-7 were isolated in 65-88% yield and the structure of **6** was further characterized through X-ray crystallography (Figure 3.2). Like methyl formate, in most cases the coupling of the carbonyl compound to **1** was reversible (excluding benzaldehyde).

Scheme 3.4. Reactivity of 1 with Ethyl Formate, Cyclopentanone, and Benzaldehyde

Conditions: (PNN)Ru(H)(CO) (1, 5 mg, 0.011 mmol), 1-11 equiv. carbonyl compound, 0.5 mL C_6D_6 , rt, 30 min; ^aMixture of diastereomers **7B-i** and **7B-ii** (see Scheme **3.6** for details).

Figure 3.2. ORTEP diagram (50% probability level) of the molecular drawing of **6**. All H atoms (other than Ru–H) have been omitted for clarity. Selected bond lengths (Å) and

angles (deg): Ru1–O2 = 2.1991(9), C2–C7 = 1.5816(17), O2–C2 = 1.3867(14), Ru1–H1 = 1.534(19); Ru1–O2–C2 = 113.59(7), O2–C2–C7 = 109.79(9).

With most of the carbonyl compounds discussed thus far, a single isomeric product was detected at room temperature. This is particularly remarkable since the reaction of 1 with unsymmetrical carbonyl compounds could, in principle, lead to four products (Scheme 3.5). These include two pairs of regioisomers, where reactivity could occur on either the "*P*-side" (**A**) or the "*N*-side" (**B**) of the ligand. Furthermore, the *P*-side and *N*-side regioisomers could be comprised of a set of diastereomers, which will be referred to as **A-ii/A-ii** and **B-i/B-ii**, respectively.

Scheme 3.5. Four Potential Isomeric Products from the Reaction of 1 with Unsymmetrical Carbonyl Compounds

Despite this potential complexity, products 4-6 were formed as >95% of the isomer reported in Scheme 3.3 and Scheme 3.4 under the standard conditions (30 min, rt). However, benzaldehyde proved to be an exception, where a more complex product mixture was observed. The reaction of 1 with benzaldehyde under these conditions yielded 7 as a mixture of the two isomeric products **7B-i** and **7B-ii** in a 85:15 ratio. To further probe the reactivity of 1 with benzaldehyde, lower reaction temperatures were employed to allow for characterization of any kinetically favored isomers by NMR spectroscopy.

Reacting 1 and benzaldehyde at -50 °C for five minutes in toluene- d_8 yielded the *P*-side complex **7A-i** as a single diastereomer with a diagnostic Ru-H shift at -15.35 ppm

(Scheme 3.6). As the mixture was warmed to room temperature and was allowed to equilibrate for five minutes, complete conversion of **7A-i** to a combination of the two *N*-side diastereomers **7B-i**:**7B-ii** (90:10) was observed, with Ru–H shifts at -14.84 and -15.16 ppm, respectively. Allowing this mixture to further equilibrate at room temperature for 24 hours resulted in a 15:85 ratio of **7B-i**:**7B-ii**. All isomers of **7** that were detected were fully characterized by NMR spectroscopy using HSQC and HMBC 2D NMR spectroscopic to verify if *N*-side or *P*-side regioisomers had formed, and NOESY NMR spectroscopic analysis to distinguish between diastereomers. Additionally, X-ray crystal structures of **7B-i** (Figure 3.3) and **7B-ii** (Figure 3.4) were obtained.

The *N*-side diastereomers are likely more thermodynamically stable than the observed *P*-side regioisomer as a result of the reduced sterics in the binding pocket. The NEt₂ group on the arm of the ligand is less sterically encumbering relative to the P^tBu_2 group, thus providing more stable *N*-side adducts. Notably, the C–C bond length between the benzaldehyde carbonyl carbon and the arm of the ligand for **7B-i** is 0.03 Å longer than **7B-ii** (C-2/C-9 and C-2/C-3, respectively). This likely is a reflection of the higher energy of **7B-i**.

Scheme 3.6. Reactivity of 1 with Benzaldehyde at Varied Temperatures

Figure 3.3. ORTEP diagram (50% probability level) of the molecular drawing of **7B-i.** All H atoms (other than Ru–H and H–COPh) have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Ru1–O2 = 2.2293(16), C2–C9 = 1.588(3), O2–C2 = 1.374(3), Ru1–H1 = 1.58(3); Ru1–O2–C2 = 111.60(13), O2–C2–C9 = 110.71(18).

Figure 3.4. ORTEP diagram (50% probability level) of the molecular drawing of **7B-ii.** All H atoms (other than Ru–H and H–COPh) have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Ru1–O2 = 2.2315(13), C2–C3 = 1.558(3), O2–C3 = 1.377(2), Ru1–H1 = 1.51(2); Ru1–O2–C3 = 112.27(11), O2–C3–C2 = 110.08(15).

Similarly, when 1 was reacted with 12 equivalents of symmetrical carbonyl compound cyclopentanone at -40 °C, the *P*-side product **6A** was detected and fully characterized by NMR spectroscopy (Scheme 3.7). Upon warming to room temperature, complete conversion to the *N*-side isomer **6B** was observed. Benzaldehyde and cyclopentanone both demonstrate the potential isomeric complexity of the reaction of 1 with symmetrical and unsymmetrical carbonyl compounds.⁴

Scheme 3.7. Low Temperature Reaction of 1 with Cyclopentanone

3.2.3 Reversibility Study for Carbonyl Compound Coupling with 1

In most cases, the reaction of 1 with carbonyl compounds was completely reversible. Thus we sought more quantitative data to evaluate the propensity for carbonyl compound coupling at 1. Equilibrium constants (K_{ea}) for the reactions of 1 with varied carbonyl substrates were determined via ¹H NMR integration (Table 3.1). K_{eq} appears to be particularly sensitive to the steric properties of the carbonyl substrate. For example, K_{eq} decreases from 2.7 x 10² to 1.5 x 10² upon moving from methyl to ethyl formate, likely reflecting the increased size of the ethyl substituent. Electronic effects also play an important role in this equilibrium. For example, aldehydes are similar in size to formate esters but have a significantly more electrophilic carbonyl carbon. This results in a large value of K_{eq} for the reaction of 1 with benzaldehyde ($K_{eq} > 10^3$ at room temperature). Ketones are also more electrophilic than formate esters, but the carbonyl carbon is more sterically encumbered. With these substrates, steric factors appear to dominate the binding equilibrium. For example, K_{eq} for cyclopentanone is 5.0 x 10¹, while acetone (which has freely rotating the alkyl groups) has K_{eq} of $< 10^{-2}$ at room temperature. Similarly, no reaction of 1 with up to 20 equivalents of methyl acetate or N,Ndimethylformamide was observed, indicating that K_{eq} for these substrates is $< 10^{-3}$.

Table 3.1. Keq for Reaction of 1 with Carbonyl Compounds

$ \begin{array}{c} H \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	² >P'Bu ₂ + ¹ ~CO R ²)	$\begin{array}{c} O \\ \parallel \\ C \\ R' \end{array} \xrightarrow{\boldsymbol{K}_{ec}} \\ \boldsymbol{K}_{ec} \\ K$	1.5 h	$ \begin{array}{c} H \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
	Carbonyl Compound	Major Product	K _{eq}	
	H OMe	4	2.7 x 10 ²	
	H OEt	5	1.5 x 10 ²	
		6	5.0 x 10 ¹	
	O H → Ph	7B ^a	> 10 ³	
	0 L	not det. ^b	< 10 ⁻²	
	O U OMe	not det. ^b	< 10 ⁻³	
	H NMe ₂	not det. ^b	< 10 ⁻³	

(a) Mixture of diastereomers **7B-i** and **7B-i**. ^{*b*}not det. = products were not determined.

3.2.4 Implications for the Cascade System

Complex 1 catalyzes the hydrogenation of methyl formate (step iii of the cascade system, Scheme 3.1) via a metal-ligand bifunctional mechanism wherein H_2 is split by 1 to form Ru dihydride intermediate, 8 (Scheme 3.8a). Importantly, formation of the Ru methyl formate adduct (4) could inhibit hydrogenation catalysis as shown in Scheme 3.8b. In order to determine the extent of this inhibition, more in depth studies were carried out on the hydrogenation of methyl formate including: i) an order study in methyl formate; ii) determination of the catalyst resting state under the catalytic reaction conditions.

Scheme 3.8. Potential Reactivity of 1 under Methyl Formate Hydrogenation Conditions

Order Study in Methyl Formate under Hydrogenation Conditions with 1

The order in methyl formate was measured to discern if substrate inhibition (*e.g.* formation of **4**) occurs during the hydrogenation of methyl formate to methanol. Under standard hydrogenation conditions, a J young NMR tube was charged with toluene- d_8 , **1**, H₂, and methyl formate and was heated at 105 °C over a two hour time period. A reaction profile was obtained during initial consumption of methyl formate (20-25% conversion) using ¹H NMR spectroscopy (Figure 3.5). Importantly, the rate of methyl formate conversion was measured for two different reactions where the initial concentration of methyl formate was 0.091 M and 0.18 M, 50 and 100 equivalents of methyl formate relative to **1**, respectively. If methyl formate were inhibiting the reaction, higher concentrations of methyl formate would be expected to slow the rate of hydrogenation. As shown in Figure 3.5, the concentration of methyl formate was plotted against time, and the slope of both lines (proportional to the rate) is identical. This indicates that the initial rate is not changing as a function of [HCOOMe], suggesting that the reaction is zero order in methyl formate under these conditions. Based on these data, the formation of **4** does not appear to inhibit ester hydrogenation catalysis.

Figure 3.5. Hydrogenation of Methyl Formate: Order Study in Methyl Formate.

Determination of Catalyst Resting State for the Hydrogenation of Methyl Formate

To further test if **4** is forming during the catalytic hydrogenation of methyl formate, the catalyst resting state during the catalytic reaction was determined. Toluene- d_8 , **1**, H₂, and 10 equivalents of methyl formate were added to a J-young tube and an initial ¹H NMR spectrum was acquired. As shown in Scheme 3.9a the major Ru species at room temperature was **4**.⁵ The reaction was then heated at 70 °C for 30 minutes during which time a 13% yield of methanol was obtained. While at this temperature, **8** was observed as the single Ru species (Scheme 3.9b), indicating that **4** is not present in significant quantities during catalysis.

Scheme 3.9. Hydrogenation of Methyl Formate: Observation of Catalyst Resting State

3.3 Reactivity of CO₂ with a Ruthenium Pincer Complex

3.3.1 Formation of Kinetic and Thermodynamic Products

Another component of the cascade system that could also directly react with Ru pincer complex **1** is CO₂. The most similar transformation found in the literature involves a β -diketiminate (nacnac) Sc complex.⁶ This complex reacts with CO₂ to generate a Sc–O bond along with a C–C bond between CO₂ and the central carbon of the nacnac ligand. Moreover, ¹³C labeling experiments show that CO₂ capture is reversible in this system.

Subjecting a C_6D_6 solution of **1** to 1 bar of CO_2 at room temperature resulted in an instantaneous color change from brown to yellow/orange, accompanied by a downfield shift of the ruthenium hydride ¹H NMR resonance from -26.45 ppm to -16.84 ppm. When the reaction mixture was allowed to stand overnight (or was heated to 70 °C for 15 min), this new species (**9**) underwent complete conversion to a second product (**10**) with a Ru–H resonance at -16.18 ppm and was isolated in 87% yield (Scheme 3.10). 2D NMR spectroscopic experiments were carried out to fully characterize both complexes **9** and **10**, where the HMBC NMR spectroscopic experiment in particular provided information

on the proximity of the C–H on the arm of the ligand (adjacent to CO_2) to either P^tBu₂ or NEt₂, which was instrumental in verifying if the *P*-side or *N*-side isomer had formed.

Additional support for the structural assignments of **9** and **10** was obtained by carrying out this sequence using ${}^{13}CO_2$. As shown in Figure 3.6, ¹H NMR spectroscopic analysis of the products of this reaction (**9**- ${}^{13}C$ and **10**- ${}^{13}C$) showed ¹H- ${}^{13}C$ coupling for H_A, which appears at 4.66 and 4.59 ppm, for **9**- ${}^{13}C$ and **10**- ${}^{13}C$ respectively. The observed two bond ¹H- ${}^{13}C$ coupling constants are 4.2 Hz for **9**- ${}^{13}C$ and 2.8 Hz for **10**- ${}^{13}C$.

Figure 3.6. ¹H NMR signals for 9, 9-¹³C, 10, and 10-¹³C

The structure of complex **10** was further confirmed by X-ray crystallography. X-ray quality crystals were obtained by slow crystallization from a tetrahydrofuran (THF) solution of **10** at 25 °C under 1 bar of CO₂ (Figure 3.7). The C–C distance for the bond formed between the pincer ligand and CO₂ (C2–C3 = 1.545 Å) is in the range of that observed for other ruthenium carboxylate complexes.⁷ The constrained geometry of the metallacycle in **10** results in some bond angle distortion. For example, the N2–Ru1–O2 angle of 74.7° deviates significantly from the expected 90° for an ideal octahedral complex.

Figure 3.7. ORTEP diagram (50% probability level) of the molecular drawing of **10**. The packing solvent THF as well as all H atoms (other than the Ru–H) have been omitted for clarity. Selected bond lengths (Å) and angles (deg.): Ru1–H1 = 1.50(3), Ru1–N1 = 2.0902(18), Ru1–N2 = 2.2327(17), Ru1–O2 = 2.2524(15), Ru1–C1 = 1.834(2), Ru1–P1 = 2.2649(5), C2–C3 = 1.545(3), O2–C2 = 1.274(3), O3–C2 = 1.233(3), H1–Ru1–O2 =

163.6(11), N1–Ru1–C1 = 176.77(8), P1–Ru1–N2 = 159.02(5), N1–Ru1–O2 = 81.41(6), N2–Ru1–O2 = 74.72(6), C8–C3–C2 = 104.85(17).

3.3.2 Reversibility Study for CO₂ Coupling with 1 at Room Temperature

The facile conversion of **9** to **10** suggests that CO_2 activation is reversible for complex **9** (potentially followed by tautomerization of **1** to **1-Taut** (Scheme 3.10) and subsequent activation of CO_2 at **1-Taut** to generate **10**).⁸ To further probe the reversibility of CO_2 activation, the solvent/ CO_2 was removed from a C_6D_6 solution of complex **9** under vacuum, and the resulting residue was then redissolved in C_6D_6 under 1 bar of N_2 . As shown in Scheme 3.11a, this procedure resulted in the formation of a 29% **1**, 17% **9**, and 45% **10** as determined by ¹H NMR spectroscopic analysis. In a second, independent experiment, a C_6D_6 solution of **9** was subjected to 1 bar of ¹³CO₂ for 1 hour at room temperature. This resulted in 26% ¹³C incorporation into **9** (Scheme 3.10b). Both of these experiments provide further evidence in support of the reversibility of C–C bond formation in **9**. Notably, shortly after this work was published, Milstein and coworkers reported similar findings with an analogous Ru PNP complex (**11**), where upon treatment with 1 bar CO_2 , full conversion to CO_2 coupled product **12** was observed. Upon subjection to reduced pressure, the CO_2 coupling at **12** was reversible and **11** was recovered.⁹

Scheme 3.11. Reversibility Studies on Complex 9

Scheme 3.12. Reversible Formation of 12 from 11 and CO_2^9

In marked contrast, at room temperature, complex **10** was stable to vacuum, and a solution of **10** under 1 bar of N₂ showed no reaction after 24 hours (Scheme 3.13a). Furthermore, complex **10** did not react with ¹³CO₂ over 16 hours (Scheme 3.13b), and in an independent experiment **10-**¹³C underwent <5% ¹²CO₂ incorporation over 10 days in solution at room temperature. Collectively, these data indicate that at room temperature CO₂ activation is reversible at **9** but irreversible at complex **10**, likely a result of increased sterics on the *P*-side of the ligand relative to the *N*-side.

Scheme 3.13. Reversibility Studies on Complex 10

3.3.3 Implications for the Cascade System

The coupling of CO_2 with 1 at room temperature has been thoroughly studied; however, reactivity at elevated temperatures (analogous to required conditions for the cascade system) had not yet been evaluated. The formation of 10 during catalysis, would in theory, lower the amount of active hydrogenation catalyst, RuH_2 (8, Scheme 3.8) present in solution. In order to determine if CO_2 coupling with 1 is an issue in the cascade system, a number of experiments were conducted under catalytic reaction conditions to determine the: i) extent of CO_2 inhibition for hydrogenation of methyl formate; ii) catalyst resting state; and iii) reversibility of the formation of **10** at elevated temperatures.

Hydrogenation of Methyl Formate in the Presence of CO₂

The 1-catalyzed hydrogenation of methyl formate was carried out in the presence of CO₂ to determine the extent of CO₂ inhibition. CO₂ concentration was systematically varied from 0-25% of the total gas composition, and the effect on the yield was evaluated. As shown in Figure 3.8, charging the reactor with 40 bar H₂, yielded full conversion of methyl formate to methanol. However, upon adding a 35:5 mixture of H₂:CO₂, the yield decreased to 91%. This effect was further demonstrated by increasing the CO₂ content to a 30:10 mixture of H₂:CO₂, where the yield of methanol was less than 25%.

Figure 3.8. Hydrogenation of Methyl Formate using 1 in the Presence of CO₂

Reactivity of 1 under CO₂ Hydrogenation Conditions

Further studies were required to assess if the formation of **10** is responsible for reduced yields in the hydrogenation of methyl formate (Figure 3.8). Methoxybenzene- d_8 (anisole- d_8), **1**, and 1 bar of a mixture of H₂:CO₂ (4:1) were added to a J-young tube.

Heating this mixture at 120 °C in the NMR spectrometer for 15 minutes, showed the formation of **10** in greater than 95% yield (Scheme 3.14).

Scheme 3.14. Observation of Resting State of 1 in the Presence of CO₂ and H₂

To gain a better understanding of the stability of **10** in the cascade hydrogenation system, a reversibility study was conducted at elevated temperatures similar to those utilized in the cascade system. A ¹³C labeled sample of **10** was subjected to CO_2 in anisole and was heated at 70 – 120 °C for 4 hours (Figure 3.9). After this time, the quantity of **10-¹³C** was determined by quantitative ¹³C NMR spectroscopic analysis in anisole. At 70 °C, minimal exchange was observed; however, increasing the temperature to 100 and 120 °C, significant ¹³C incorporation was detected.

These experiments demonstrate that sufficiently high temperatures (>120 °C) are required to render the formation of **10** reversible. Importantly, the overall objective for the homogeneously catalyzed cascade system is to operate at low reaction temperatures; however, reducing the temperature below 120 °C is expected to reduce the rate of ester hydrogenation when using **1** (Scheme 3.1, step iii). Consequently, the temperature range is restricted to higher temperatures (>120 °C) when using **1** in the cascade system.

Figure 3.9. Reversibility Study for CO₂ Coupling with 1 at Varied Temperatures

3.4 Conclusions

In summary, a new mode of CO_2 ,¹⁰ ester, ketone, and aldehyde¹¹ coupling with a Ru pincer complex was identified. The work described above shows that the reactivity of **1** with carbonyl compounds is more complex than was previously appreciated. While prior work focused primarily on **1** as a catalyst for the hydrogenation of C=O derivatives, it was found that **1** reacts with carbonyl compounds even in the absence of H₂. Furthermore, these reactions lead to numerous isomeric products that eventually equilibrate to a single major isomer. Additionally, at room temperature the reaction of **1** with esters and ketones is generally reversible. In contrast, benzaldehyde and CO₂ both react irreversibly.

This study also revealed that coupling between **1** and carbonyl compounds and CO_2 competes with H_2 addition. Specifically, the formation Ru-CO₂ adduct (**10**) and not the Ru-HCOOCH₃ adduct (**4**) was found to be a likely cause for reduced yields of methanol in the hydrogenation of methyl formate, a key step in the conversion of CO₂ to methanol. Furthermore, it was shown that with this ligand set, sufficiently high temperatures enable reversible coupling of CO₂ at **1**.

3.5 Experimental Procedures and Characterization of Data

General Procedures

NMR spectra were obtained on a Varian VNMRs 500 MHz (499.90 MHz for ¹H; 125.70 MHz for ¹³C) or a Varian VNMRs 700 MHz (699.93 MHz for ¹H; 176.00 MHz for ¹³C) spectrometer. Chemical shifts were referenced to an internal standard (tetramethylsilane or hexamethyldisiloxane for ¹H and ¹³C; H₃PO₄ for ³¹P).) or to residual solvent peaks (¹H, ¹³C; C₆D₆: ¹H: 7.16 ppm, ¹³C: 128.05 ppm; CD₂Cl₂: ¹H: 5.32 ppm, ¹³C: 53.84 ppm). NMR signals were assigned based on the following 2D experiments: ¹H/¹H COSY, ¹H/¹³C HMQC, ¹H/¹³C HMBC, and ¹H/¹H NOESY. Abbreviations used in the NMR data: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Elemental analysis was carried out at Atlantic Microlab in Norcross, GA. IR spectra were recorded on a Perkin-Elmer Spectrum BX FT-IR spectrometer using KBr pellets. High-resolution mass spectral data were obtained on an Agilent Q-TOF mass spectrometer in positive electrospray ionization mode. X-ray crystallographic data was collected on a Bruker SMART APEX-I CCD-based X-ray diffractometer.

Materials and Methods

All experiments were conducted under an oxygen-free atmosphere in either a glovebox or using Schlenk line technique, and all liquids were degassed using three freeze-pump-thaw cycles. (PNN)Ru(H)(CO) (1) was prepared according to a literature procedure.¹² Dry carbon dioxide (99.8%), ultra high purity hydrogen (99.999%), and a mix tank of 80% H₂/20% CO₂ were purchased from Metro Welding and ¹³CO₂ (99% ¹³C) was purchased from Cambridge Isotope Laboratories. Methyl formate (Alfa Aesar) and ethyl formate (Acros) were purified by distillation from P₂O₅. Acetone (Fisher) was dried over CaSO₄. Benzaldehyde (Sigma Aldrich, 99.5%), acetaldehyde (Fluka, anhydrous >99.5%), and *N,N*-dimethylformamide (Alfa Aesar, 99.8%) were used without further purification. Cyclopentanone (Fisher) and methyl acetate (Aldrich) were dried over 4 Å sieves. Anisole (Aldrich) and anisole-*d*₈ were dried over sodium metal and degassed before use. Benzene-*d*₆, and toluene-*d*₈ were purchased from Cambridge Isotopes Laboratories and dried using benzophenone/ketyl stills. CD₂Cl₂ was dried by distillation from CaSO₄. Hexamethyldisiloxane (HMDSO) was purchased from Sigma Aldrich and dried over 4 Å molecular sieves.

I. Reactivity Summary for Esters, Amides, Ketones, and Aldehydes with 1

A. Formation of Ru-Carbonyl Compound Adducts at Room Temperature for NMR Analysis (Scheme 3.3 and Scheme 3.4)

In an N₂ atmosphere dry box, (PNN)Ru(H)(CO) (1) (5 mg, 0.011 mmol) was dissolved in 0.5 mL C₆D₆ and added to a J-young NMR tube. The carbonyl compound was then added, resulting in a color change from dark red/brown to yellow over 30 min. The product of the reaction was determined by NMR analysis.

Table 3.2. Summary of Room Temperature Reactions of 1 with Carbonyl Compounds

Entry	Carbonyl Compound	Equiv. Added	Time (h)	Major Pdt.	Conver. of 1	lsolated Yield ^a
1	Methyl Formate	2.5	0.5	4	100%	94%
2	Ethyl Formate	4	0.5	5	100%	83%
3	Methyl Acetate	20	1	N/A	0%	NR
4	N,N-Dimethylformamide	20	1	N/A	0%	NR
5	Acetone	20	1	b	13%	N/A
6	Cyclopentanone	11	0.5	6B	100%	65%
7	Acetaldehyde	1	0.1	b	100%	N/A
8	Benzaldehyde	1	0.1	7B-i	100%	88%
9	Benzaldehyde	1	24	7B-ii	100%	88%

^aNote: Where yields not given, the product was either not formed (NR) or was not characterized (N/A). ^bMultiple Ru-H species formed. ^cYield reflects a mixture of diastereomers, **7B-i** and **7B-ii**.

B. Isolation of Ru Carbonyl Compound Adducts (4, 5, 6 and 7B-i/ii) for Elemental Analysis and IR Characterization

<u>Complex 4</u>: In a N₂ atmosphere dry box, complex 1 (15 mg, 0.033 mmol) was dissolved in 0.2 mL of methyl formate. Over a period of 10 min at room temperature, a yellow crystalline material precipitated from solution. The remaining solvent was decanted, and the solid was dried *in vacuo*. Complex 4 was obtained as a yellow crystalline solid (16.3 mg, 94% yield). Anal. Calcd. for $C_{22}H_{39}N_2O_3PRu$: C, 51.65; H, 7.68; N, 5.4. Found: C, 51.45, H, 7.70; N, 5.42. NMR and IR characterization data are discussed in detail below.
<u>Complex 5</u>: In an N₂ atmosphere dry box, complex 1 (15 mg, 0.033 mmol) was dissolved in 0.3 mL of pentane. Ethyl formate (5 μ L, 0.062 mmol, 1.9 equiv) was then added. Over a period of 5-10 min at room temperature a yellow crystalline material precipitated from solution. The remaining solvent was decanted, and the solid was washed with pentane (2 x 0.1 mL). The solid was then dried *in vacuo*. Complex **5** was obtained as a yellow crystalline solid (14.4 mg, 83% yield). Anal. Calcd. for C₂₃H₄₁N₂O₃PRu: C, 52.56; H, 7.86; N, 5.33. Found: C, 52.37, H, 7.94; N, 5.17. NMR and IR characterization data are discussed in detail below.

<u>Complex 6</u>: In an N₂ atmosphere dry box, complex 1 (15 mg, 0.033 mmol) was dissolved in 0.3 mL of pentane. Cyclopentanone (3 μ L, 0.034 mmol, 1.0 equiv) was then added. Over a period of 5-10 min at room temperature a yellow crystalline material precipitated from solution. The remaining solvent was decanted, and the solid was washed with pentane (2 x 0.1 mL). The solid was then dried *in vacuo*. Complex **6** was obtained as a yellow crystalline solid (15.0 mg, 65% yield). Anal. Calcd. for C₂₅H₄₃N₂O₂PRu: C, 56.06; H, 8.09; N, 5.23. Found: C, 56.43, H, 8.22; N, 4.75. NMR and IR characterization data are discussed in detail below.

<u>Complexes 7B-i/ii</u>: In an N₂ atmosphere dry box, complex 1 (15 mg, 0.033 mmol) was dissolved in 0.3 mL of pentane. Benzaldehyde (3.5 μ L, 0.034 mmol, 1.0 equiv) was then added. Over a period of 5-10 min at room temperature a yellow crystalline material precipitated from solution. The remaining solvent was decanted, and the solid was washed with pentane (2 x 0.1 mL). The solid was then dried *in vacuo*. Complex **6** was obtained as a yellow crystalline solid (16.3 mg, 88% yield, approx. 7 : 3 mixture of **7B-I : ii**). Anal. Calcd. for C₂₇H₄₁N₂O₂PRu (*mixture of isomers*): C, 58.15; H, 7.41; N, 5.02. Found: C, 58.26, H, 7.37; N, 4.94. NMR and IR characterization data are discussed in detail below.

C. Formation of Ru-Carbonyl Compound Adducts at Low Temperature for NMR Analysis (Scheme 3.6 and Scheme 3.7)

In an N₂-atmosphere dry box, complex **1** (5 mg, 0.066 mmol) was dissolved in 0.3 mL of toluene- d_8 and added to a J-Young NMR tube. The tube was placed in an LN₂ cooled cold well for 15 min. The carbonyl compound was then dissolved in 0.2 mL of toluene- d_8 , and this solution was added to the NMR tube before returning it to the cold well for an additional 15 min. The tube was removed from the dry box and placed into a -78 °C bath before inserting into precooled NMR instrument. A summary of low temperature experiments is shown in Table 3.3.

Table 3.3. Summary of Low Temperature Reactions of 1 with Carbonyl Compounds

Entry	Carbonyl Equiv. Time T Compound Added (h)		Temp (°C)	Conver. of 1	Major Pdt.	
1	Methyl Formate	2.5	0.2	-70	0%	NR
2	Methyl Formate	2.5	13	-40	46%	not det. ^a
3	Cyclopentanone	12	1	-40	100%	6A
4	Benzaldehyde	1.5	0.08	-50	100%	7A-i

^{*a*}1.7 : 1 : 3.2 ratio of undetermined species : 3 : 1 detected. We were unable to fully characterize the undetermined species; however, we speculate that it is the other *N*-side diastereomer of **4** (analogous to **7B-i**) with a Ru-H resonance at – 15.48 ppm, based on the br s at 4.18 ppm (presumably *CH*N peak), the s at 4.70 ppm (presumably *CH*O peak), and other diagnostic resonances in the ¹H NMR.

D. Procedure for Equilibrium Constant Determination (Table 3.1)

In a N₂-atmosphere dry box, (PNN)Ru(H)(CO) (1, 0.5 mL of a 0.011 M solution in C₆D₆, 2.5 mg, 0.00554 mmol) and carbonyl compound (see table below; 1–5 equiv. added to allow for partial conversion of 1) were combined in a J-young NMR tube. The tube then sat at room temperature for 1.5 h to allow the reaction to reach equilibrium. ¹H NMR spectroscopic analysis provided the ratios of 1, free carbonyl compound and Ru-carbonyl product (**4–6**) formed.

Entry	Carbonyl Compound	Equiv. Added	Time (h)	Major Pdt.	Average <i>K</i> _{eq}
1	Methyl Formate	1	1	4	$2.7 \times 10^2 \pm 0.4$
2	Methyl Formate	2	1.5	4	$3.0 \times 10^2 \pm 0.06$
3	Methyl Formate	2	2	4	$3.1 \times 10^2 \pm 0.2$
4	Ethyl Formate	2	1.5	5	1.5 x 10 ² ± 0.02
5	Cyclopentanone	5	1.5	6	$5.0 \times 10^1 \pm 0.2$
6	Cyclopentanone	5	4	6	5.0 x 10 ¹ ± 0.1

Table 3.4. Optimization Studies for K_{eq} Determination

Note: For methyl and ethyl formate, a Ru-H peak at -4.74 ppm (3% relative to total Ru) forms after 2 h

E. Reaction Rate and Resting State Studies

A. Order Study in Methyl Formate (Figure 3.5)

In an N₂-atmosphere dry box, complex **1** (100 μ L of an 8.2 mM solution in toluene-*d*₈, 0.37 mg, 0.00082 mmol), HCO₂CH₃ (100 μ L of a 0.41 or 0.91 M solution in toluene-*d*₈, 0.041 or 0.082 mmol, 50 or 100 equiv.), tetramethylsilane (internal standard, 90 μ L of a 0.23 mM solution in toluene-*d*₈, 0.143 μ mol) and 220 μ L of toluene-*d*₈ were added to a J-Young NMR tube. The samples were next subjected to 3 freeze pump thaw cycles before charging with 1 bar H₂. The tube was then placed into a preheated NMR spectrometer at 105 °C. After allowing sample to equilibrate in the spectrometer for 10 minutes, a ¹H NMR spectrum was acquired at room temperature after 0.25, 0.5, 1, and 2 hours where the conversion of methyl formate to methanol was quantified. NMR experimental details: ¹³C decoupled, 25 s relaxation delay, 2 scans acquired.

B. Hydrogenation of Methyl Formate: Observation of Catalyst Resting State (Scheme 3.9)

In an N₂-atmosphere dry box, complex **1** (2.5 mg, 0.0055 mmol), HCO₂CH₃ (3.5 μ L, 0.55 mmol, 10 equiv.), tetramethylsilane (internal standard, 1.9 μ L, 0.14 mmol, 2.5 equiv.), and 0.5 mL of toluene-*d*₈ were added to a J-Young NMR tube. The sample was next subjected to 3 freeze pump thaw cycles before charging with 1 bar H₂. An initial ¹H NMR spectrum was acquired (note: <5% **1** was observed in this spectrum), the tube was ejected while the spectrometer reached 70 °C, and the tube was then placed into a preheated NMR spectrometer at 70 °C. After allowing sample to equilibrate in the

spectrometer for 10 minutes, a ¹H NMR spectrum was acquired after 30 minutes yielding 13% CH₃OH. NMR experimental details: ¹³C decoupled, 25 s relaxation delay, 2 scans acquired.

II. Reactivity Summary for CO₂ and 1

A. Synthesis of Ru CO₂ Adducts (9, 9-¹³C, 10, and 10-¹³C, Scheme 3.10 and Figure 3.6) <u>Complex 9</u>: In an N₂-atmosphere dry box, (PNN)Ru(H)(CO) (1) (0.4 mL of a 5.5 mM solution in C₆D₆, 1 mg, 0.0022 mmol) and HMDSO (internal standard, 20 μ L of a 15 mM solution of in C₆D₆, 0.00030 mmol) were combined in a J-young NMR tube. The tube was attached to a Schlenk line, and the N₂ atmosphere above the solvent was quickly removed under vacuum and then immediately replaced with CO₂. The tube was shaken, which resulted in an instantaneous color change from dark brown/red to orange. ¹H NMR spectroscopic analysis after 5 min at rt showed that 9 was formed in 91% yield (average of three experimental runs).

<u>Complex 9-13C</u>: In an N₂-atmosphere dry box, (PNN)Ru(H)(CO) (1) (9 mg, 0.020 mmol) and 0.4 mL C₆D₆ were added to a J-young NMR tube. The tube was attached to a Schlenk line, and the N₂ atmosphere above the solvent was quickly removed under vacuum and then immediately replaced with 13 CO₂. The tube was shaken, which resulted in an immediate color change from dark brown/red to orange.

<u>Complex 10</u>: In an N₂-atmosphere dry box, (PNN)Ru(H)(CO) (1) (50 mg, 0.11 mmol) was dissolved in benzene (4 mL) in a 25 mL Schenk flask. The flask was attached to a Schlenk line, and the N₂ atmosphere above the solvent was quickly removed under vacuum and then immediately replaced with 1 atm of CO₂. The reaction mixture was stirred at 70 °C for 15 min, during which time a yellow precipitate began to form. The reaction was cooled to room temperature and then concentrated under vacuum to ~0.5 mL of benzene. Pentane (5 mL) was added to precipitate the product as a yellow solid. The solid was collected on a fritted filter, washed with pentane (2 x 3 mL), and dried under vacuum to afford **10** as a yellow solid (48 mg, 87% yield). X-ray quality crystals

(yellow needles) of **5** were formed via slow crystallization under an atmosphere of CO_2 in THF at room temperature.

<u>Complex 10-¹³C</u>: In an N₂-atmosphere dry box, (PNN)Ru(H)(CO) (1) (9 mg, 0.020 mmol) and 0.4 mL C₆D₆ were added to a J-young NMR tube. The tube was attached to a Schlenk line, and the N₂ atmosphere above the solvent was quickly removed under vacuum and then immediately replaced with ¹³CO₂. The tube was shaken, which resulted in an immediate color change from dark brown/red to orange. The sample was then heated to 70 °C in the NMR probe for 5 minutes.

B. CO₂ Reversibility Studies on 9: Procedure for Removal of CO₂ (Scheme 3.11)

In an N₂-atmosphere dry box, (PNN)Ru(H)(CO) (1) (0.4 mL of a 5.5 mM solution in C₆D₆, 1 mg, 0.0022 mmol) was added to a J-young NMR tube. The tube was attached to a Schlenk line, and the N₂ atmosphere above the solvent was quickly removed under vacuum and then immediately replaced with CO₂. The tube was shaken, which resulted in an immediate color change from dark brown/red to orange. ¹H NMR spectroscopic analysis after 5 min at rt showed full conversion of 1 to complex 4. The sample was frozen in LN₂, and benzene/CO₂ were removed under vacuum via sublimation. The contents of the NMR tube were then redissolved in C₆D₆ (0.4 mL) and HMDSO (0.0003 mmol, 20 μ L of a 15 mM solution in C₆D₆) was added as a standard. The reaction was immediately analyzed by ¹H NMR spectroscopy (after <10 min), which showed the presence of 1, 9, and 10 in a 1.7 : 1 : 2.6 ratio (Yield: 29% 1, 17% 9, 45% 10).

C. CO₂ Reversibility Studies on 9: Procedure for Treatment with ¹³CO₂ (Scheme 3.11)

In an N₂-atmosphere dry box, (PNN)Ru(H)(CO) (1) (0.2 mL of an 11 mM solution in C_6D_6 , 1 mg, 0.0022 mmol), THF (0.137 mmol, based on 1.1% natural abundance of ¹³C this corresponds to 0.0015 mmol ¹³C₄H₈O, 50 µL of an 2.7 M solution in C_6D_6) and C_6D_6 (0.2 mL) were combined in a J-young NMR tube. The tube was attached to a Schlenk line, and the N₂ atmosphere above the solvent was quickly removed under vacuum and then immediately replaced with CO₂. An immediate color change from dark brown/red to orange was observed after shaking the tube. ¹H NMR spectroscopic analysis after 5 min

at room temperature showed full conversion of **1** to complex **9**. The tube was then reattached to a Schlenk line and the CO_2 atmosphere above the solvent was quickly removed under vacuum and then immediately replaced with ${}^{13}CO_2$. The tube was shaken vigorously, and then the reaction was monitored as a function of time. The yields of each product are shown in the table below.

Entry	Time (h)	9/9- ¹³ C:10/10- ¹³ C (det. by ¹ H NMR)	%9- ¹³ C (det. by ¹³ C NMR)	%10- ¹³ C (det. by ¹³ C NMR)
1	0.2	3 : 1	23%	<1%
2	1	3:2	26%	<5%
3	3	1 : 2	14%	10%
4	5	1:3	<5%	24%
5	24	Only 10	<1%	40%

Table 3.5. Product Distribution for CO₂ Reversibility Experiment at 9

¹³C NMR experimental details: Decoupled, no NOE, 30 s relaxation delay, 30° pulse angle, 30 scans collected.

D. Reversibility Studies on 10 (Scheme 3.13)

Complex **10** (1.3 mg, 0.0026 mmol) was dissolved in CD_2Cl_2 (0.15 mL) in a J-young NMR tube under an N₂ atmosphere. The sample was then allowed to stand for 24 h and was analyzed by ¹H NMR spectroscopy. No reaction was observed.

E. Reversibility Studies on 10: Procedure for Reaction of 10 with $^{13}CO_2$ (Scheme 3.13)

In an N₂-atmosphere dry box, **10** (1.3 mg, 0.0026 mmol) and 200 μ L CD₂Cl₂ were added to a thick walled J-young NMR tube. The tube was attached to a Schlenk line, and the N₂ atmosphere above the solvent was quickly removed under vacuum, and then immediately replaced with ¹³CO₂. The tube was shaken vigorously and the reaction was monitored by ¹³C NMR spectroscopy as a function of time. No **10-¹³C** was detected after 16 h. ¹³C NMR experiment details: decoupled, no NOE, 30 s relaxation delay, 30° pulse angle, 16 scans acquired.

F. Reversibility Studies on 10: Procedure for Reaction of $10^{-13}C$ with CO_2 a. Room Temperature Study (Scheme 3.13)

Complex 10^{-13} C (1.5 mg, 0.0030 mmol) was dissolved in CD₂Cl₂ (0.15 mL) in a J-young NMR tube. The tube was attached to a Schlenk line, and the N₂ atmosphere above the solvent was quickly removed under vacuum and then immediately replaced with CO₂. The tube was shaken vigorously, and the reaction was allowed to stand at room temperature for 10 days. The solvent was removed under vacuum and the resulting yellow solid was analyzed by positive electrospray ionization mass spectroscopy. The isotope envelope was compared to that of authentic samples of 10 and 10^{-13} C (Figure 3.10 and Figure 3.11 below). These data indicate <5% incorporation of ¹²CO₂.

Figure 3.10. Comparison of Isotope Envelope for 10-¹³C and Reacted Complex

Figure 3.11. Comparison of Isotope Envelope for 10 and Reacted Complex

b. Variable Temperature Study (Figure 3.9)

Complex 10^{-13} C (1.8 mg, 0.0036 mmol) was dissolved in anisole (0.45 mL, solvent and internal standard) in a J-young NMR tube. An initial ¹³C NMR was acquired to determine the initial ratio of ¹³CO₂ in 10^{-13} C relative to the internal standard, which is the 1.1% natural abundance of ¹³C in anisole (specifically, the quaternary carbon of anisole was used). The tube was attached to a Schlenk line, and the N₂ atmosphere above the solvent was quickly removed under vacuum and then immediately replaced with CO₂. The tube was shaken vigorously, and the reaction heated at the specified temperature for 4 hours. After this time, the tube was cooled to room temperature and a ¹³C NMR spectrum was acquired to determine the amount of 10^{-13} C remaining. NMR experimental details: decoupled, no NOE, 0.1 s relaxation delay, 100 scans acquired.

G. Observation of Catalyst Resting State for **1** in the Presence of CO_2 and H_2 (Scheme 3.14)

In a N₂-atmosphere dry box, complex **1** (2 mg, 0.0044 mmol), hexamethyldisiloxane (internal standard, 1 μ L, 4.7 μ mol, 0.11 equiv.), and 0.45 mL of anisole-*d*₈ were added to a J-Young NMR tube. The N₂ atmosphere above the solvent was quickly removed under vacuum and then immediately replaced with 1 bar of pre-mixed 4:1 H₂:CO₂. An initial ¹H NMR spectrum was acquired to determine the relative ratio between Ru (summation of all diagnostic Ru-H peaks used, as they are all far upfield away from other peaks) and the internal standard. The tube was then placed into a preheated NMR spectrometer at 120 °C and was allowed to react for 15 min. The ¹H NMR spectrum showed **10** to be the major product in 95% yield (minor product in <5% yield was the Ru-formate species to be discussed in the next chapter). NMR experimental details: ¹³C decoupled, 10 s relaxation delay, 4 scans acquired.

³¹P{¹H} NMR (C_6D_6): 119.34 (s).

¹H NMR (C₆D₆): -15.25 (d, $J_{HP} = 28.2$ Hz, 1H, Ru-*H*), 0.84 (t, $J_{HH} = 7.2$ Hz, 3H, NCH₂C*H*₃), 0.89 (t, $J_{HH} = 6.9$ Hz, 3H, NCH₂C*H*₃), 1.25 (d, $J_{HP} = 13.2$ Hz, 9H, PC(C*H*₃)₃), 1.28 (d, $J_{HP} = 13.0$ Hz, 9H, PC(C*H*₃)₃), 2.20 (dqd, $J_{HH} = 13.6$ Hz, $J_{HH} = 6.9$ Hz, $J_{HP} = 3.2$ Hz, 1H, NC*H*HCH₃), 2.37 (dq, $J_{HH} = 13.6$ Hz, $J_{HH} = 6.9$ Hz, 1H, NC*H*HCH₃), 2.88 (dd, $J_{HH} = 16.4$ Hz, $J_{HP} = 7.3$ Hz, 1H, C*H*HP), 2.93 (dd, $J_{HH} = 16.4$ Hz, $J_{HP} = 9.9$ Hz, 1H, C*H*HP), 3.46 (s, OC*H*₃), 3.52 (dq, $J_{HH} = 14.4$ Hz, $J_{HH} = 7.2$ Hz, 1H, NC*H*HCH₃), 3.57 (m, 1H, NC*H*HCH₃), 3.94 (t, $J_{HH/HP} = 2.7$ Hz, 1H, C*H*N), 6.01 (d, $J_{HH} = 2.7$ Hz, 1H, C*H*O), 6.53 (d, $J_{HH} = 7.5$ Hz, 1H, Py-*H***4**), 6.92 (d, $J_{HH} = 7.7$ Hz, 1H, Py-*H***2**), 6.95 (t, $J_{HH} = 7.6$ Hz, 1H, Py-*H***3**).

¹³C{¹H} NMR (C₆D₆): 8.02 (s, NCH₂*C*H₃), 11.15 (s, NCH₂*C*H₃), 29.44 (d, $J_{CP} = 4.6$ Hz, PC(*C*H₃)₃), 30.34 (d, $J_{CP} = 2.3$ Hz, PC(*C*H₃)₃), 34.26 (d, $J_{CP} = 22.8$ Hz, P*C*(CH₃)₃), 37.01 (d, $J_{CP} = 20.6$ Hz, *C*H₂P), 37.63 (d, $J_{CP} = 11.9$ Hz, P*C*(CH₃)₃), 46.82 (s, N*C*H₂CH₃), 49.34 (s, N*C*H₂CH₃), 53.10 (s, O*C*H₃), 76.65 (s, *C*HN), 102.85 (s, *C*HO), 118.39 (d, $J_{CP} = 8.7$ Hz, Py-*C4*), 122.19 (s, Py-*C2*), 135.49 (s, Py-*C3*), 159.93 (d, $J_{CP} = 3.9$ Hz, Py-*C5*), 160.36 (s, Py-*C1*), 209.14 (m, Ru-*C*O).

Peaks corresponding to free methyl formate in spectra:

¹H NMR (C_6D_6): 3.16 (s, 1H, OC H_3), 7.49 (s, 1H, HCO). ¹³C{¹H} NMR (C_6D_6): 50.03 (s, OCH₃), 160.72 (s, C=O). IR (KBr pellet, cm⁻¹): 1982 (Ru-H), 1891 (CO).

 $^{31}P{^{1}H} NMR (C_6D_6): 119.42 (s).$

¹H NMR (C₆D₆): -15.20 (d, $J_{HP} = 28.1$ Hz, 1H, Ru-*H*), 0.85 (t, $J_{HH} = 7.0$ Hz, 3H, NCH₂C*H*₃), 0.89 (t, $J_{HH} = 6.9$ Hz, 3H, NCH₂C*H*₃), 1.09 (t, $J_{HH} = 7.1$ Hz, 3H, OCH₂C*H*₃), 1.23 (d, $J_{HP} = 13.2$ Hz, 9H, PC(C*H*₃)₃), 1.28 (d, $J_{HP} = 12.9$ Hz, 9H, PC(C*H*₃)₃), 2.22 (dqd, $J_{HH} = 13.4$ Hz, $J_{HH} = 6.9$ Hz, $J_{HP} = 2.2$ Hz, 1H, NC*H*HCH₃), 2.39 (dq, $J_{HH} = 13.4$ Hz, $J_{HH} = 6.9$ Hz, $J_{HP} = 2.2$ Hz, 1H, NC*H*HCH₃), 2.39 (dq, $J_{HH} = 13.4$ Hz, $J_{HH} = 6.9$ Hz, 1H, NC*H*HCH₃), 2.89 (dd, $J_{HH} = 16.4$ Hz, $J_{HP} = 7.4$ Hz, 1H, C*H*HP), 2.93 (dd, $J_{HH} = 16.4$ Hz, $J_{HP} = 10.2$ Hz, 1H, C*H*HP), 3.52 (dq, $J_{HH} = 14.5$ Hz, $J_{HH} = 7.0$ Hz, 1H, NC*H*HCH₃), 3.59 (m, 2H, overlapping peaks: NC*H*HCH₃ and OC*H*HCH₃), 3.93 (t, $J_{HH/HP} = 2.5$ Hz, 1H, C*H*N), 4.08 (dq, $J_{HH} = 8.7$ Hz, $J_{HH} = 7.1$ Hz, 1H, OC*H*HCH₃), 6.12 (d, $J_{HH} = 2.7$ Hz, 1H, C*H*O), 6.56 (d, $J_{HH} = 7.6$ Hz, 1H, Py-*H4*), 6.94 (d, $J_{HH} = 7.8$ Hz, 1H, Py-*H2*), 6.98 (t, $J_{HH} = 7.7$ Hz, 1H, Py-*H3*).

¹³C{¹H} NMR (C₆D₆): 7.97 (s, NCH₂CH₃), 11.12 (s, NCH₂CH₃), 15.99 (s, OCH₂CH₃), 29.39 (d, $J_{CP} = 4.6$ Hz, PC(CH₃)₃), 30.28 (d, $J_{CP} = 2.4$ Hz, PC(CH₃)₃), 34.17 (d, $J_{CP} = 22.8$ Hz, PC(CH₃)₃), 36.96 (d, $J_{CP} = 20.2$ Hz, CH₂P), 37.58 (d, $J_{CP} = 11.8$ Hz, PC(CH₃)₃), 46.75 (d, $J_{CP} = 1.3$ Hz, NCH₂CH₃), 49.27 (s, NCH₂CH₃), 59.90 (s, OCH₂CH₃), 76.93 (s, CHN), 101.37 (s, CHO), 118.15 (d, $J_{CP} = 8.7$ Hz, Py-C4), 122.16 (s, Py-C2), 135.05 (s, Py-C3), 159.70 (d, $J_{CP} = 4.2$ Hz, Py-C5), 160.53 (d, $J_{CP} = 1.4$ Hz, Py-C1), 209.27 (dd, $J_{PC/HC} = 15.2$ Hz, $J_{PC/HC} = 7.2$ Hz Ru-CO).

Peaks corresponding to free ethyl formate in spectra:

¹H NMR (C₆D₆): 0.83 (t, $J_{HH} = 7.2$ Hz, 3H, OCH₂CH₃), 3.81 (q, $J_{HH} = 7.2$ Hz, 2H, OCH₂), 7.56 (s, 1H, **H**CO). ¹³C{¹H} NMR (C₆D₆): 13.95 (s, OCH₂CH₃), 59.37 (s, OCH₂), 160.30 (s, **C**=O).

IR (KBr pellet, cm⁻¹): 1998 (Ru-H), 1885 (CO).

Spectra for complex 6A collected at -40 °C

 ${}^{31}P{}^{1}H$ NMR (toluene- d_8): 109.07 (s).

¹H NMR (toluene- d_8): -15.51 (d, $J_{HP} = 26.8$ Hz, 1H, Ru-H), 0.81 (br t, $J_{HH} = 6.9$ Hz, 3H, NCH₂C H_3), 1.00 (br t, $J_{HH} = 6.5$ Hz, 3H, NCH₂C H_3), 1.17 (d, $J_{HP} = 12.6$ Hz, 9H, PC(C H_3)₃), 1.25 (d, overlapping with excess cyclopentanone, 9H, PC(C H_3)₃), 2.19 (m, 1H, NCHHCH₃), 2.28 (m, 2H, OCCH₂C H_2), 2.40 (m, 1H, NCHHCH₃), 2.47 (dq, $J_{HH} = 7.4$ Hz, 1H, OCCHH), 2.54 (dq, $J_{HH} = 7.3$ Hz, 1H, OCCHH), 2.61 (dd, $J_{HH} = 16.6$ Hz, $J_{HH} = 7.2$ Hz, 1H, OCCHH), 2.84 (dd, $J_{HH} = 9.6$ Hz, $J_{HH} = 16.6$ Hz, 1H, OCCHH), 2.95–2.98 (m, 3H, overlapping peaks: OCCH₂C H_2 and NCHH), 3.45–3.56 (m, 2H, NC H_2 CH₃), 4.87 (d, $J_{HP} = 6.7$ Hz, 1H, CHP), 5.09 (d, $J_{HH} = 13.6$ Hz, 1H, CHHN), 6.22 (d, $J_{HH} = 7.7$ Hz, 1H, Py-H2), 6.43 (d, $J_{HH} = 7.6$ Hz, 1H, Py-H4), 6.76 (t, $J_{HH} = 7.6$ Hz, 1H, Py-H3).

¹³C{¹H} NMR (toluene- d_8): 8.49 (s, NCH₂CH₃), 10.85 (s, NCH₂CH₃), 24.08 (s, OCCH₂CH₂), 29.29 (br s, PC(CH₃)₃), 30.28 (br s, PC(CH₃)₃), 30.74 (s, OCCH₂CH₂), 34.40 (d, $J_{CP} = 24.4$ Hz, PC(CH₃)₃), 37.13 (d, $J_{CP} = 21.3$ Hz, PC(CH₃)₃), 37.12 (s, OCCH₂), 38.72 (s, OCCH₂), 50.69 (s, NCH₂CH₃), 52.98 (s, NCH₂CH₃), 63.90 (s, CH₂N), 85.96 (s, CHP), 118.85 (s, Py-C2), 119.48 (d, $J_{CP} = 9.3$ Hz, Py-C4), 135.98 (s, Py-C3), 160.87 (s, Py-C1), 161.33 (d, $J_{CP} = 3.9$ Hz, Py-C5), 172.19 (s, OCC), 210.11 (d, $J_{CP} = 16.5$ Hz, Ru-CO).

Peaks corresponding to free cyclopentanone in spectra:

¹H NMR (toluene- d_8): 1.22 (m, 4H, OCCH₂CH₂), 1.62 (m, 4H, OCCH₂).

¹³C{¹H} NMR (toluene- d_8): 23.16 (s, OCCH₂CH₂), 37.87 (s, OCH₂), 217.40 (s, C=O).

 $^{31}P{^{1}H} NMR (C_6D_6): 119.49 (s).$

¹H NMR (C₆D₆): -14.83 (d, $J_{HP} = 28.9$ Hz, 1H, Ru-H), 0.02 (dd, $J_{HH} = 11.0$ Hz, $J_{HH} = 6.1$ Hz, 1H, OCC H_2), 0.78 (ddd, $J_{HH} = 23.3$ Hz, $J_{HH} = 11.4$ Hz, $J_{HH} = 7.3$, Hz, 1H, OCC H_2), 0.95 (br t, $J_{HH} = 5.9$ Hz, 3H, NCH₂C H_3), 1.01 (br t, $J_{HH} = 6.3$ Hz, 3H, NCH₂C H_3), 1.26 (d, $J_{HP} = 13.0$ Hz, 9H, PC(C H_3)₃), 1.27 (d, $J_{HP} = 13.1$ Hz, 9H, PC(C H_3)₃), 1.51 (m, 1H, OCCH₂C H_2), 1.62 (m, 1H, OCCH₂C H_2), 1.94 (m, 1H, OCCH₂), 2.09 (m, 1H, OCCH₂C H_2), 2.29 (m, 2H, overlapping peaks: NCHHCH₃ and OCC H_2 C H_2), 2.33 (dqd, $J_{HH} = 14.1$ Hz, $J_{HH} = 7.1$ Hz, $J_{HH} = 2.9$ Hz, 1H, OCC H_2), 2.54 (br m, 1H, NCHHCH₃), 2.88 (dd, $J_{HH} = 16.9$ Hz, $J_{HP} = 7.1$ Hz, 1H, CHHP), 3.00 (dd, $J_{HH} = 16.9$ Hz, $J_{HP} = 9.6$ Hz, 1H, CHHP), 3.61 (d, $J_{HP} = 3.6$ Hz, 1H, CHN), 3.76 (br s, 1H, NCHHCH₃), 3.88 (br s, 1H, NCHHCH₃), 6.59 (d, $J_{HH} = 7.7$ Hz, 1H, overlapping peaks: Py-H2 and Py-H4), 6.96 (t, $J_{HH} = 7.8$ Hz, 1H, Py-H3).

¹³C{¹H} NMR (C₆D₆): 9.99 (s, NCH₂CH₃), 11.06 (s, NCH₂CH₃), 23.15 (s, OCCH₂CH₂), 25.39 (s, OCCH₂CH₂), 29.70 (d, $J_{CP} = 4.9$ Hz, PC(CH₃)₃), 30.54 (d, $J_{CP} = 2.8$ Hz, PC(CH₃)₃), 34.54 (d, $J_{CP} = 23.6$ Hz, PC(CH₃)₃), 37.05 (d, $J_{CP} = 19.9$ Hz, CH₂P), 37.99 (d, $J_{CP} = 10.4$ Hz, PC(CH₃)₃), 44.08 (s, OCCH₂), 44.17 (s, OCCH₂), 47.96 (s, NCH₂CH₃), 49.98 (s, NCH₂CH₃), 81.75 (s, CHN), 84.94 (s, OCC), 118.40 (d, $J_{CP} = 8.7$ Hz, Py-C4), 119.98 (s, Py-C2), 135.31 (s, Py-C3), 160.65 (d, $J_{CP} = 4.7$ Hz, Py-C5), 163.38 (s, Py-C1), 209.73 (m, Ru-CO).

Peaks corresponding to free cyclopentanone in spectra:

¹H NMR (C_6D_6): 1.31 (m, 4H, OCCH₂CH₂), 1.71 (m, 4H, OCCH₂). ¹³C{¹H} NMR (C_6D_6): 23.15 (s, OCCH₂CH₂), 37.94 (s, OCH₂), 217.27 (s, C=O). IR (KBr pellet, cm⁻¹): 1995 (Ru-H), 1882 (CO).

Spectra for complex 7A-i collected at -50 °C ³¹P{¹H} NMR (toluene- d_8): 127.71 (s).

¹H NMR (toluene- d_8): -15.35 (d, $J_{HP} = 16.7$ Hz, 1H, Ru-H), 0.46 (br t, $J_{HH} = 6.7$ Hz, 3H, NCH₂C H_3), 0.93 (br s, 9H, PC(C H_3)₃), 1.29 (d, $J_{HP} = 11.8$ Hz, 3H, PC(C H_3)(CH₃)₂), 1.39 (d, $J_{HP} = 7.0$ Hz, 3H, PC(C H_3)(CH₃)₂), 1.46 (br t, $J_{HH} = 6.8$ Hz, 3H, NCH₂C H_3), 1.80 (br s, 1H, NCHHCH₃), 2.20 (d, $J_{HP} = 15.9$ Hz, 3H, PC(C H_3)(CH₃)₂), 2.95 (d, $J_{HH} = 11.0$ Hz, 1H, NCHHPy), 2.97 (m, 1H, NCHHCH₃), 3.30 (dq, $J_{HH} = 13.8$ Hz, $J_{HH} = 6.7$ Hz, 1H, NCHHCH₃), 3.40 (d, $J_{HH} = 11.0$ Hz, 1H, NCHHPy), 3.60 (dq, $J_{HH} = 13.8$ Hz, $J_{HH} = 6.7$ Hz, 1H, NCHHCH₃), 3.80 (d, $J_{HH} = 7.0$ Hz, 1H, CHP), 5.90 (d, $J_{HH} = 7.7$ Hz, 1H, Py-H4), 6.15 (d, $J_{HH} = 7.5$ Hz, 1H, Py-H2), 6.18 (s, 1H, CHO), 6.48 (t, $J_{HH} = 7.9$ Hz, 1H, Py-H3), 6.99–7.08 (m, overlapping with benzaldehyde and residual toluene, 5H, Ph- $H_{ortholmetalpara}$).

¹³C{¹H} NMR (toluene- d_8): 7.37 (s, NCH₂CH₃), 13.00 (s, NCH₂CH₃), 25.07 (s, PC(CH₃)(CH₃)₂), 29.73 (br s, PC(CH₃)₃), 32.08 (s, PC(CH₃)(CH₃)₂), 35.33 (d, $J_{CP} = 8.9$ Hz, PC(CH₃)(CH₃)₂), 35.60 (d, $J_{CP} = 13.6$ Hz, PC(CH₃)₃), 35.84 (d, $J_{CP} = 16.5$ Hz, PC(CH₃)₃), 46.83 (s, NCH₂CH₃), 55.61 (s, NCH₂CH₃), 63.32 (d, $J_{CP} = 14.2$ Hz, CHP), 66.08 (s, NCH₂Py), 80.09 (s, CHO), 116.66 (s, Py-C2), 122.19 (d, $J_{CP} = 4.7$ Hz, Py-C4), 126.28 (br s, C_{Ph} -ortho/meta), 127.02 (br s, C_{Ph} -ortho/meta), 134.66 (s, Py-C3), 136.41 (s, C_{Ph} -para), 151.43 (d, $J_{CP} = 5.2$ Hz, H(OC)C) 156.29 (s, Py-C1), 161.21 (d, $J_{CP} = 3.3$ Hz, Py-C5), 211.21 (d, $J_{CP} = 14.8$ Hz, Ru-CO).

Peaks corresponding to free benzaldehyde in spectra:

¹H NMR (toluene- d_8): 7.06 (td, $J_{HH} = 7.6$ Hz, $J_{HH} = 1.4$ Hz, 2H, Ph- H_{meta}), 7.14 (tt, $J_{HH} = 7.5$ Hz, $J_{HH} = 1.3$ Hz, 1H, Ph- H_{para}), 7.52 (dd, $J_{HH} = 7.9$ Hz, $J_{HH} = 1.3$ Hz, 2H, Ph- H_{ortho}), 9.65 (s, 1H, HCO).

¹³C{¹H} NMR (toluene- d_8): 128.86 (s, C_{Ph} -meta), 129.56 (s, C_{Ph} -ortho), 133.89 (s, C_{Ph} -para), 137.04 (s, HCOC), 191.17 (s, C=O).

Spectra for complex 7B-i collected at -5 °C

 $^{31}P{^{1}H} NMR$ (toluene- d_8): 120.39 (s).

¹H NMR (toluene- d_8): -14.84 (d, $J_{HP} = 28.1$ Hz, 1H, Ru-H), 0.26 (br t, $J_{HH} = 7.1$ Hz, 3H, NCH₂C H_3), 0.98 (br t, $J_{HH} = 6.6$ Hz, 3H, NCH₂C H_3), 1.22 (br d, $J_{HP} = 11.5$ Hz, 9H, PC(C H_3)₃), 1.26 (d, $J_{HP} = 13.0$ Hz, 9H, PC(C H_3)₃), 2.20 (br s, 2H, NC H_2 CH₃), 2.82 (dd, $J_{HH} = 16.2$ Hz, $J_{HP} = 6.9$ Hz, 1H, CHHP), 2.89 (dd, $J_{HH} = 16.2$ Hz, $J_{HH} = 9.9$ Hz, 1H, CHHP), 3.35 (br m, 1H, NCHHCH₃), 3.76 (br s, 1H, NCHHCH₃), 4.07 (d, $J_{HH} = 1.8$ Hz, 1H, CHN), 4.70 (s, 1H, CHO), 6.52 (d, $J_{HH} = 7.7$ Hz, 1H, Py-H4), 6.61 (d, $J_{HH} = 7.7$ Hz, 1H, Py-H2), 6.96 (t, $J_{HH} = 7.8$ Hz, 1H, Py-H3), 6.95–7.18 (m, overlapping with benzaldehyde and residual toluene, 3H, Ph- H_{meta} and Ph- H_{para}), 7.94 (d, $J_{HH} = 7.6$ Hz, 2H, Ph- H_{ortho}).

¹³C{¹H} NMR (toluene- d_8): 6.93 (s, NCH₂CH₃), 12.10 (s, NCH₂CH₃), 29.06 (br s, PC(CH₃)₃), 30.27 (br s, PC(CH₃)₃), 34.17 (d, $J_{CP} = 22.8$ Hz, PC(CH₃)₃), 36.87 (d, $J_{CP} = 19.8$ Hz, CH₂P), 37.53 (d, $J_{CP} = 11.8$ Hz, PC(CH₃)₃), 46.55 (s, NCH₂CH₃), 49.82 (s, NCH₂CH₃), 79.85 (s, overlapping peaks: CHN and CHO), 116.84 (s, Py-C2), 118.36 (d, $J_{CP} = 8.9$ Hz, Py-C4), 127.11 (s, C_{Ph} -ortho/meta), 128.16 (s, Py-C3), 129.53 (s, C_{Ph} -ortho/meta), 133.76 (s, C_{Ph} -para), 151.39 (s, H(CO)C), 161.10 (d, $J_{CP} = 4.4$ Hz, Py-C1), 165.63 (s, Py-C5), 209.02 (d, $J_{CP} = 15.4$ Hz, Ru-CO).

Peaks corresponding to free benzaldehyde in spectra:

¹H NMR (toluene- d_8): 7.06 (td, $J_{HH} = 7.6$ Hz, $J_{HH} = 1.4$ Hz, 2H, Ph- H_{meta}), 7.14 (tt, $J_{HH} = 7.5$ Hz, $J_{HH} = 1.3$ Hz, 1H, Ph- H_{para}), 7.52 (dd, $J_{HH} = 7.9$ Hz, $J_{HH} = 1.3$ Hz, 2H, Ph- H_{ortho}), 9.65 (s, 1H, HCO).

¹³C{¹H} NMR (toluene- d_8): 128.86 (s, C_{Ph} -meta), 129.56 (s, C_{Ph} -ortho), 133.89 (s, C_{Ph} -para), 137.04 (s, HCOC), 191.17 (s, C=O).

IR data for mixture of 7B-i and 7B-ii:

IR (KBr pellet, cm⁻¹): 1991 (Ru-H), 1882 (CO).

³¹P{¹H} NMR (toluene- d_8): 118.19 (s).

¹H NMR (toluene- d_8): -15.16 (d, $J_{HP} = 29.2$ Hz, 1H, Ru-H), 0.89 (t, $J_{HH} = 7.2$ Hz, 3H, NCH₂C H_3), 1.08 (t, $J_{HH} = 7.0$ Hz, 3H, NCH₂C H_3), 1.28 (d, $J_{HP} = 12.8$ Hz, 9H, PC(C H_3)₃), 1.37 (d, $J_{HP} = 13.2$ Hz, 9H, PC(C H_3)₃), 2.30 (m, 2H, NC H_2 CH₃), 2.89 (dd, $J_{HH} = 16.6$ Hz, $J_{HP} = 7.2$ Hz, 1H, CHHP), 2.96 (dd, $J_{HH} = 16.6$ Hz, $J_{HP} = 9.8$ Hz, 1H, CHHP), 3.61 (dq, $J_{HH} = 14.4$ Hz, $J_{HH} = 7.2$ Hz, 1H, NCHHCH₃), 3.93 (br s, 1H, NCHHCH₃), 4.01 (t, $J_{HH/HP} = 2.3$ Hz, 1H, CHN), 6.07 (d, $J_{HH} = 7.7$ Hz, 1H, Py-H2), 6.08 (br s, 1H, CHO), 6.53 (d, $J_{HH} = 7.7$ Hz, 1H, Py-H4), 6.67 (t, $J_{HH} = 7.7$ Hz, 1H, Py-H3), 6.99–7.19 (m, overlapping with benzaldehyde, **6B**-*i*, and residual toluene, 5H, PhH-_{ortho/meta/para}).

¹³C{¹H} NMR (toluene- d_8): 7.49 (s, NCH₂CH₃), 12.44 (s, NCH₂CH₃), 29.99 (d, $J_{CP} = 5.0$ Hz, PC(CH_3)₃), 30.39 (d, $J_{CP} = 2.8$ Hz, PC(CH_3)₃), 34.60 (d, $J_{CP} = 24.3$ Hz, PC(CH_3)₃), 37.10 (d, $J_{CP} = 19.0$ Hz, CH_2 P), 37.84 (d, $J_{CP} = 10.3$ Hz, PC(CH_3)₃), 46.90 (s, N CH_2 CH₃), 50.22 (s, N CH_2 CH₃), 77.81 (s, CHO), 80.54 (s, CHN), 118.52 (d, $J_{CP} = 8.6$ Hz, Py-C4), 121.01 (s, Py-C2), 125.21 (s, C_{Ph} -ortho/meta), 127.21 (s, C_{Ph} -ortho/meta), 134.75 (s, Py-C3), 137.09 (s, C_{Ph} -para), 150.17 (s, H(CO)C), 159.64 (s, Py-C1), 159.36 (d, $J_{CP} = 4.8$ Hz, Py-C5), 209.14 (d, $J_{CP} = 16.0$ Hz, Ru-CO).

Peaks corresponding to free benzaldehyde in spectra:

¹H NMR (toluene- d_8): 7.06 (td, $J_{HH} = 7.6$ Hz, $J_{HH} = 1.4$ Hz, 2H, Ph- H_{meta}), 7.14 (tt, $J_{HH} = 7.5$ Hz, $J_{HH} = 1.3$ Hz, 1H, Ph- H_{para}), 7.52 (dd, $J_{HH} = 7.9$ Hz, $J_{HH} = 1.3$ Hz, 2H, Ph- H_{ortho}), 9.65 (s, 1H, HCO).

¹³C{¹H} NMR (toluene- d_8): 128.86 (s, C_{Ph} -meta), 129.56 (s, C_{Ph} -ortho), 133.89 (s, C_{Ph} -para), 137.04 (s, HCOC), 191.17 (s, C=O).

IR data for mixture of 7B-i and 7B-ii:

IR (KBr pellet, cm⁻¹): 1991 (Ru-H), 1882 (CO).

³¹P{¹H} NMR (C₆D₆): 126.88 (d, $J_{PH} = 13.8$ Hz).

¹H NMR (C₆D₆): -16.84 (d, $J_{HP} = 16.7$ Hz, 1H, Ru-*H*), 0.64 (t, $J_{HH} = 7.1$ Hz, 3H, N(CH₂C*H*₃)₂), 0.92 (d, $J_{HP} = 12.6$ Hz, 9H, P(C(C*H*₃)₃)₂), 1.09 (t, $J_{HH} = 7.0$ Hz, 3H, N(CH₂C*H*₃)₂), 1.62 (d, $J_{HP} = 13.1$ Hz, 9H, P(C(C*H*₃)₃)₂), 1.70 (m, 1H, N(C*H*HCH₃)₂), 2.12 (dq, $J_{HH} = 7.2$ Hz, $J_{HH} = 14.0$ Hz, 1H, N(C*H*HCH₃)₂), 3.10–3.15 (multiple peaks, 2H, N(C*H*HCH₃)₂, C*H*HN), 3.27 (dq, $J_{HH} = 7.1$ Hz, $J_{HH} = 13.9$ Hz, 1H, N(C*H*HCH₃)₂), 3.64 (d, $J_{HH} = 14.0$ Hz, 1H, C*H*HN), 4.66 (d, $J_{HP} = 7.5$ Hz, 1H, C*H*P), 6.39 (d, $J_{HH} = 7.6$ Hz, 1H, *H2*), 6.98 (d, $J_{HH} = 7.8$ Hz, 1H, *H4*), 7.03 (t app, $J_{HH} = 7.6$ Hz, $J_{HH} = 7.7$ Hz, 1H, *H3*).

¹³C{¹H}NMR (C₆D₆): 8.57 (s, N(CH₂CH₃)₂), 11.82 (s, N(CH₂CH₃)₂), 29.50 (d, $J_{CP} = 3.52$ Hz, P(C(CH₃)₃)₂), 30.50 (d, $J_{CP} = 3.76$ Hz, P(C(CH₃)₃)₂), 36.68 (d, $J_{CP} = 15.0$ Hz, P(C(CH₃)₃)₂), 36.87 (d, $J_{CP} = 14.7$ Hz, P(C(CH₃)₃)₂), 48.21 (s, N(CH₂CH₃)₂), 55.40 (s, N(CH₂CH₃)₂), 63.46 (d, $J_{CP} = 9.7$ Hz, CHP), 66.21 (s, CH₂N), 117.86 (s, C2), 119.44 (d, $J_{CP} = 7.8$ Hz, C4), 138.11 (s, C3), 158.29 (s, C1), 161.65 (s, C5), 170.81 (d, $J_{CH} = 5.2$ Hz, CO₂), 209.70 (dd, J = 5.9, 7.5 Hz, Ru-CO).

Diagnostic NMR Resonances for Complex 9-¹³**C**:

³¹P{¹H} NMR (C₆D₆): 127.01 (dd, $J_{PC} = 4.7$ Hz, $J_{HP} = 14.9$ Hz).

¹H NMR (C_6D_6): 4.66 (dd, $J_{HC} = 4.2$ Hz, $J_{HP} = 7.3$ Hz, 1H, C**H**P).

¹³C{¹H}NMR (C₆D₆): 63.56 (dd, J_{CC} = 38.3 Hz, J_{CP} = 9.1 Hz, *C*HP), 170.88 (d, J_{CP} = 4.3 Hz, *C*O₂).

³¹P{¹H} NMR (C₆D₆): 119.4 (d, $J_{PH} = 26.6$ Hz).

¹H NMR (C₆D₆): -16.18 (d, $J_{HP} = 28.8$ Hz, 1H, Ru-*H*), 0.78 (t, $J_{HH} = 7.1$ Hz, 3H, N(CH₂C*H*₃)₂), 0.92 (t, $J_{HH} = 7.1$ Hz, 3H, N(CH₂C*H*₃)₂), 1.04 (d, $J_{HP} = 13.1$ Hz, 9H, P(C(C*H*₃)₃)₂), 1.19 (d, $J_{HP} = 13.3$ Hz, 9H, P(C(C*H*₃)₃)₂), 2.17 (m, 1H, N(C*H*HCH₃)₂), 2.29 (dq, $J_{HH} = 7.1$ Hz, $J_{HH} = 11.8$ Hz, 1H, N(C*H*HCH₃)₂), 2.78 (dd, $J_{HH} = 16.5$ Hz, $J_{HP} = 7.4$ Hz, 1H, C*H*HP), 2.92 (dd, $J_{HH} = 16.5$ Hz, $J_{HP} = 10.2$ Hz, 1H, C*H*HP), 3.34 (dq, $J_{HH} = 7.1$ Hz, $J_{HH} = 11.8$ Hz, 1H, N(C*H*HCH₃)₂), 3.37 (dq, $J_{HH} = 7.1$ Hz, $J_{HH} = 11.8$ Hz, 1H, N(C*H*HCH₃)₂), 3.70 (dq, $J_{HH} = 7.8$ Hz, 1H, *H*2), 7.05 (d, $J_{HH} = 7.8$ Hz, 1H, *H*4), 7.12 (app. t, $J_{HH} = 7.8$ Hz, 1H, *H*3).

¹³C{¹H}NMR (C₆D₆): 9.13 (s, N(CH₂CH₃)₂), 10.71 (s, N(CH₂CH₃)₂), 29.40 (d, $J_{CP} = 4.3$ Hz, P(C(CH₃)₃)₂), 30.32 (d, $J_{CP} = 10.9$ Hz, P(C(CH₃)₃)₂), 34.52 (d, $J_{CP} = 22.8$ Hz, P(C(CH₃)₃)₂), 37.14 (d, $J_{CP} = 20.4$ Hz, CH₂P), 37.68 (d, $J_{CP} = 12.0$ Hz, P(C(CH₃)₃)₂), 48.47 (s, N(CH₂CH₃)₂), 49.18 (s, N(CH₂CH₃)₂), 80.71 (s, CHN), 119.55 (br s, C2), 119.97 (d, $J_{CP} = 27.0$ Hz, C4), 137.78 (d, $J_{CP} = 29.3$ Hz, C3), 159.10 (s, C1), 161.70 (s, C5), 169.42 (br s, CO₂), 207.96 (dd, J = 6.6, 9.3 Hz, Ru-CO).

³¹P{¹H} NMR (CD₂Cl₂): 118.36 (d, $J_{PH} = 26.6$ Hz).

¹H NMR (CD₂Cl₂): -16.67 (d, $J_{HP} = 29.4$ Hz, 1H, Ru-H), 1.06 (d, $J_{HP} = 13.3$ Hz, 9H, P(C(C H_3)₃)₂), 1.09 (t, $J_{HH} = 7.1$ Hz, 3H, N(CH₂C H_3)₂), 1.23 (t, $J_{HH} = 7.1$ Hz, 3H, N(CH₂C H_3)₂), 1.34 (d, $J_{HP} = 13.5$ Hz, 9H, P(C(C H_3)₃)₂), 2.57 (m, 2H, N(CHHCH₃)₂), 3.24 (dq, $J_{HH} = 7.0$ Hz, $J_{HH} = 11.6$ Hz, 1H, N(CHHCH₃)₂), 3.31 (dd, $J_{HH} = 16.6$ Hz, $J_{HP} =$ 7.5 Hz, 1H, CHHP), 3.36 (dq, $J_{HH} = 7.1$ Hz, $J_{HH} = 11.8$ Hz, 1H, N(CHHCH₃)₂), 3.48 (dd, $J_{HH} = 16.8$ Hz, $J_{HP} = 10.3$ Hz, 1H, CHHP), 4.54 (d, $J_{HP} = 2.6$ Hz, 1H, CHN), 7.37 (d, $J_{HH} =$ 7.9 Hz, 1H, H4), 7.47 (d, $J_{HH} = 7.7$ Hz, 1H, H2), 7.74 (app t, $J_{HH} = 7.8$ Hz, 1H, H3).

¹³C{¹H}NMR (CD₂Cl₂): 9.65 (s, N(CH₂CH₃)₂), 10.53 (s, N(CH₂CH₃)₂), 29.23 (d, $J_{CP} = 4.7$ Hz, P(C(CH₃)₃)₂), 30.27 (d, $J_{CP} = 2.8$ Hz, P(C(CH₃)₃)₂), 34.77 (d, $J_{CP} = 23.7$ Hz, P(C(CH₃)₃)₂), 37.25 (d, $J_{CP} = 20.6$ Hz, CH₂P), 37.45 (d, $J_{CP} = 12.9$ Hz, P(C(CH₃)₃)₂), 48.36 (s, N(CH₂CH₃)₂), 49.21 (s, N(CH₂CH₃)₂), 79.76 (s, CHN), 120.40 (s, C2), 120.54 (d, $J_{CP} = 8.3$ Hz, C4), 138.67 (s, C3), 158.02 (s, C1), 162.18 (d, $J_{CP} = 4.0$ Hz, C5), 171.21 s, CO₂), 207.82 (dd, J = 7.9 Hz, 14.9 Hz Ru-CO).

IR (KBr pellet, cm⁻¹): 2036 (ν (Ru-H)), 1893 (ν (CO)), 1647 (ν (O¹²CO));

Anal. Calcd. for C₂₁H₃₅N₂O₃PRu•0.5 C₄H₈O: C, 51.96; H, 7.39; N, 5.27. Found: C, 52.21, H, 7.51; N, 5.28. (*Note X-ray structure shows 0.5 equiv of THF per 1 equiv 5*).

Diagnostic NMR Resonances:

¹H NMR (C₆D₆): 4.59 (t app, $J_{\text{HC/HP}} = 2.8$ Hz, 1H, CHN); ¹³C{¹H}NMR (C₆D₆): 80.71 (d, $J_{\text{CC}} = 47.7$ Hz, CHCO₂).

IV. NMR SPECTRA

¹H-¹H gCOSY NMR spectrum of 4 (C₆D₆)

¹H-¹³C gHSQC NMR spectrum of 4 (C₆D₆)

¹H-¹³C gHMBC NMR spectrum of 4 (C₆D₆)

¹H-¹H NOESY NMR spectrum of 4 (C₆D₆)

¹H-¹H gCOSY NMR spectrum of 5 (C₆D₆)

¹H-¹³C gHSQC NMR spectrum of 5 (C₆D₆)

¹H-¹³C gHMBC NMR spectrum of 5 (C₆D₆)

¹H-¹H gCOSY NMR spectrum of 6A (toluene-*d*₈, -40°C)

¹H-¹³C gHSQC NMR spectrum of 6A (toluene-*d*₈, -40°C)

¹H-¹³C gHMBC NMR spectrum of 6A (toluene-*d*₈, -40°C)

¹H-¹³C gHSQC NMR spectrum of 6B (toluene-*d*₈)

¹H-¹³C gHMBC NMR spectrum of 6B (toluene-*d*₈)

¹H-¹H gCOSY NMR spectrum of 7A-i (toluene-*d*₈, -50 °C)

¹H-¹³C gHSQC NMR spectrum of 7A-i (toluene-*d*₈, -50 °C)

¹H-¹³C gHMBC NMR spectrum of 7A-i (toluene-*d*₈, -50 °C)

¹H-¹H NOESY NMR spectrum of 7A-i (toluene-*d*₈, -50 °C)

¹H-¹H gCOSY NMR spectrum of 7B-i (toluene-*d*₈, -5 °C)

¹H-¹³C gHSQC NMR spectrum of 7B-i (toluene-*d*₈, -5 °C)

¹H-¹³C gHMBC NMR spectrum of 7B-i (toluene-*d*₈, -5 °C)

¹H-¹H NOESY NMR spectrum of 7B-i (toluene-*d*₈, -5 °C)

¹H-¹H gCOSY NMR spectrum of 7B-ii (toluene-*d*₈)

¹H-¹H NOESY NMR spectrum of 7B-ii (toluene-*d*₈)

¹³H{³¹P} NMR spectrum of 9 (C₆D₆)

¹H-¹H COSY NMR spectrum of 9 (C₆D₆)

¹H-¹³C HSQC NMR spectrum of 9 (C₆D₆)

¹H-¹³C CIGAR NMR spectrum of 9 (C₆D₆)

¹H-³¹P HMBC NMR spectrum of 9 (C₆D₆)

¹³H{³¹P} NMR spectrum of 10 (C₆D₆)

¹H-¹H COSY NMR spectrum of 10 (C₆D₆)

¹H-¹³C HSQC spectrum of 10 (C₆D₆)

¹H-¹³C HMBC spectrum of 10 (C₆D₆)

¹H-³¹P HMBC spectrum of 10 (C₆D₆)

V. X-Ray Crystallography Experimental Data

In an N₂ atmosphere dry box, X-ray quality crystals of **4**, **6**, **7B-i**, and **7B-ii** were grown by dissolving **1** in a small amount of carbonyl compound that was then layered with pentane and cooled to -33 °C. Yellow needles of **10** were grown from a tetrahydrofuran solution of the compound at 25 °C. The crystals were mounted on a Bruker SMART APEX-I CCD-based X-ray diffractometer equipped with a low-temperature device and fine focus Mo-target X-ray tube (l = 0.71073 A) operated at 1500 W power (50 kV, 30 mA). The X-ray intensities were measured at 85(1) K; the detector was placed at a distance 5.070 cm from the crystal. Analysis of the data showed negligible decay during data collection; the data were processed with SADABS and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 2008/4) software package. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in a mix of idealized and refined positions.

Crystal Data and Structure Refinement for 4

Yellow blocks of **4** were grown from a pentane/methyl formate solution at -35 °C. A total of 3000 frames were collected with a scan width of 0.5° in w and 0.45° in phi with an exposure time of 10 s/frame. The final cell constants (Table 3.6) were based on the xyz centroids of 1989 reflections above 10s(I). Disordered lattice solvates, presumably methyl were treated as contributing to diffuse scatter by the SQUEEZE subroutine of the PLATON program suite.

Empirical formula	$C_{22}H_{39}N_2O_3PRu$		
Formula weight	571.64		
Temperature	85(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2 ₁ /c		
Unit cell dimensions	a = 17.9131(16) Å, a = 90°		
	$b = 10.7282(10) \text{ Å}, b = 112.6070(10)^{\circ}$		
	$c = 15.6284(14) \text{ Å}, g = 90^{\circ}$		
Volume	2772.6(4) Å ³		
Z	4		
Calculated density	1.369 mg/mm ³		
Absorption coefficient	0.657 mm ⁻¹		
F(000)	1200		
Crystal size	$0.26 \text{ x} 0.25 \text{ x} 0.25 \text{ mm}^3$		
Theta range for data collection	2.26 to 28.34°		
Limiting indices	-23≤h≤23, -14≤k≤14, -20≤l≤20		
Reflections collected	73076		
Independent reflections	6912 [R(int) = 0.0478]		
Completeness to theta	28.34 (99.9 %)		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.8530 and 0.8477		
Refinement method	Full-matrix least-squares on F ²		

Table 3.6. Crystal Data and Structure Refinement for 4

Data / restraints / parameters	6912 / 0 / 275
Goodness-of-fit on F ²	1.049
Final R indices [I>2s(I)]	$R_1 = 0.0215, wR_2 = 0.0552$
R indices (all data)	$R_1 = 0.0233, wR_2 = 0.0560$
Largest diff. peak and hole	0.674 and -0.347 e A^{-3}

Crystal Data and Structure Refinement for 6

Yellow plates of **6** were grown from a pentane/cyclopentanone solution at -35 °C. A total of 4095 frames were collected with a scan width of 0.5° in w and 0.45° in phi with an exposure time of 20 s/frame. The final cell constants (Table 3.7) were based on the xyz centroids of 9915 reflections above 10s(I). The cyclopentanone solvate is disordered over two orientations.

Table 3.7. Crystal Data and Structure Refinement for 6 (with 1 equiv. cyclopentanone in crystal lattice)

Empirical formula	$C_{30}H_{51}N_2O_3PRu$			
Formula weight	619.77			
Temperature	85(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2 ₁ /c			
Unit cell dimensions	a = 18.7853(6) Å, a = 90°			
	b = 11.0118(3) Å, b = 102.4380(1)°			
	c = 15.0703(4) Å, g = 90°			
Volume	3044.27(15) Å ³			
Z	4			
Calculated density	1.352 mg/mm ³			
Absorption coefficient	0.600 mm ⁻¹			
F(000)	1312			
Crystal size	$0.24 \text{ x} 0.22 \text{ x} 0.18 \text{ mm}^3$			
Theta range for data collection	2.16 to 29.62°			
Limiting indices	-26≤h≤26, -15≤k≤15, -20≤l≤20			

Reflections collected	120048			
Independent reflections	8551 [R(int) = 0.0437]			
Completeness to theta	29.62 (99.8 %)			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.8997 and 0.8695			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	8551 / 13 / 400			
Goodness-of-fit on F ²	1.010			
Final R indices [I>2s(I)]	$R_1 = 0.0235, wR_2 = 0.0630$			
R indices (all data)	$R_1 = 0.0267, wR_2 = 0.0660$			
Largest diff. peak and hole	1.063 and $-0.295 \text{ e } \text{A}^{-3}$			

Crystal data and structure refinement for 7B-i

Yellow needles of **7B-i** were grown from a pentane/benzaldehyde solution at -35 °C. A total of 2053 frames were collected with a scan width of 0.5° in w and 0.45° in phi with an exposure time of 90 s/frame. The final cell constants (Table 3.8) were based on the xyz centroids of 9969 reflections above 10s(I).

Empirical formula	$C_{27}H_{41}N_2O_2PRu$			
Formula weight	557.66			
Temperature	85(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2 ₁ /c			
Unit cell dimensions	a = 16.0967(8) Å, a = 90°			
	b = 10.6978(5) Å, b = 108.5780°			
	$c = 16.1908(8) \text{ Å}, g = 90^{\circ}$			
Volume	2642.8(2) Å ³			
Z	4			
Calculated density	1.402 mg/mm ³			
Absorption coefficient	0.680 mm ⁻¹			
F(000)	1168			

Table 3.8. Crystal Data and Structure Refinement for 7B-i

Crystal size	$0.19 \text{ x } 0.05 \text{ x } 0.02 \text{ mm}^3$		
Theta range for data collection	2.32 to 27.32°		
Limiting indices	$-20 \le h \le 20, -13 \le k \le 13, -20 \le l \le 20$		
Reflections collected	39378		
Independent reflections	5945 [R(int) = 0.0533]		
Completeness to theta	27.32 (99.9 %)		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9865 and 0.8817		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5945 / 0 / 310		
Goodness-of-fit on F ²	1.017		
Final R indices [I>2s(I)]	$R_1 = 0.0301, wR_2 = 0.0660$		
R indices (all data)	$R_1 = 0.0476, wR_2 = 0.0729$		
Largest diff. peak and hole	0.857 and -0.324 e A^{-3}		

Crystal data and structure refinement for 7B-ii

Yellow needles of **7B-ii** were grown from a pentane/benzaldehyde solution at 23 °C. A total of 4095 frames were collected with a scan width of 0.5° in w and 0.45° in phi with an exposure time of 15 s/frame. The final cell constants (Table 3.9) were based on the xyz centroids of 9951 reflections above 10s(I).

Table 3.9. Crystal Data and Structure Refinement for 7B-ii

Empirical formula	$C_{27}H_{41}N_2O_2PRu$
Formula weight	557.66
Temperature	85(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
Unit cell dimensions	a = 11.3568(3) Å, a = 90°
	$b = 14.7861(4) \text{ Å}, b = 90^{\circ}$
	c = 15.7682(4) Å, g = 90°
Volume	2647.84(12) Å ³
Z	4

Calculated density	1.399 mg/mm ³		
Absorption coefficient	0.678 mm ⁻¹		
F(000)	1168		
Crystal size	$0.23 \text{ x} 0.06 \text{ x} 0.06 \text{ mm}^3$		
Theta range for data collection	1.89 to 29.61°		
Limiting indices	$-15 \le h \le 15, -20 \le k \le 20, -21 \le l \le 21$		
Reflections collected	100960		
Independent reflections	7441 [R(int) = 0.0653]		
Completeness to theta	29.61 (100 %)		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9604 and 0.8596		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	7441 / 0 / 310		
Goodness-of-fit on F ²	1.068		
Final R indices [I>2s(I)]	$R_1 = 0.0236, wR_2 = 0.0535$		
R indices (all data)	$R_1 = 0.0266, wR_2 = 0.0553$		
Largest diff. peak and hole	0.645 and -0.233 e A^{-3}		

Crystal data and structure refinement for 10

Yellow needles of **10** were grown from a pentane/benzaldehyde solution at 23 °C. A total of 4095 frames were collected with a scan width of 0.5° in w and 0.45° in phi with an exposure time of 15 s/frame. The final cell constants (Table 3.10) were based on the xyz centroids of 9951 reflections above 10s(I).

Empirical formula	$C_{23}H_{39}N_2O_{3.5}PRu$
Formula weight	531.60
Temperature	85(2) K
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	P ₋₁
Unit cell dimensions	$a = 8.04430(10) \text{ Å}, a = 97.741(7)^{\circ}$
	b = 10.6437(2) Å, b = 91.333(6)°

Table 3.10. Crystal Data and Structure Refinement for 10

	$c = 14.8659(10) \text{ Å}, g = 91.741(7)^{\circ}$		
Volume	1249.74(9) Å ³		
Z	2		
Calculated density	1.413 mg/mm ³		
Absorption coefficient	5.903 mm ⁻¹		
F(000)	556		
Crystal size	0.17 x 0.09 x 0.05 mm ³		
Theta range for data collection	4.84 to 68.24°		
Limiting indices	-9≤h≤9, -12≤k≤12, -17≤l≤17		
Reflections collected	32697		
Independent reflections	4491 [R(int) = 0.0583]		
Completeness to theta	68.24 (98.3 %)		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7568 and 0.4336		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4991 / 40 / 302		
Goodness-of-fit on F ²	1.086		
Final R indices [I>2s(I)]	$R_1 = 0.0295, wR_2 = 0.0809$		
R indices (all data)	$R_1 = 0.0302, wR_2 = 0.0816$		
Largest diff. peak and hole	0.618 and -0.791 e A^{-3}		

3.6 References

1. Huff, C. A.; Sanford, M. S. Cascade Catalysis for the Homogeneous Hydrogenation of CO₂ to Methanol. *J. Am. Chem. Soc.* **2011**, *133*, 18122.

2. For catalytic results: Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Efficient Homogeneous Catalytic Hydrogenation of Esters to Alcohols. *Angew. Chem., Int. Ed.* **2006**, *45*, 1113. (b) For synthetic procedure: Zhang, G.; Leitus, Y.; Milstein, Ben-David, Y.; Milstein, D. Facile Conversion of Alcohols into Esters and Dihydrogen Catalyzed by New Ruthenium Complexes. J. Am. Chem. Soc. **2005**, *127*, 10840.

3. Montag, M.; Zhang, J.; Milstein, D. Aldehyde Binding through Reversible C-C Coupling with the Pincer Ligand. J. Am. Chem. Soc. **2012** 134 10325.

4. Low temperature studies on the reactivity of methyl formate with 1 were ambiguous and full characterization by low temperature NMR spectroscopy was not possible; however, it appears that regioisomer pair 4A-i:4A-ii are both formed at -40 °C.

5. Less than 5% **1** was also observed at room temperature.

6. LeBlanc, F. A.; Berkefeld, A.; Piers, W. E.; Parvez, M. Reactivity of Scandium β-Diketiminate Alkyl Complexes with Carbon Dioxide. *Organometallics* **2012**, *31*, 810.

7. (a) Severin, K.; Sünkel, K.; Beck, W. Synthesis, Stereochemistry and Reactions of Ruthenium(II) and Osmium(II) Complexes with α -Amino Carboxylates. *Chem. Ber.* **1994**, *127*, 615. (b) Kumar, P.; Singh, A. K.; Saxena, J. K.; Pandey, D. S. Synthesis and Characterization of Ruthenium(II) Polypyridyl Complexes Containing a-Amino Acids and its DNA Binding Behavior. *J. Organomet. Chem.* **2009**, *694*, 3570.

8. Other intermediates are possible on the pathway from 9 to 10. These could include an O-bound CO_2 complex and/or a zero-valent Ru complex.

9. Vogt, M.; Gargir, M.; Iron, M. A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. A New Mode of Activation of CO₂ by Metal-Ligand Cooperation with Reversible C-C and M-O Bond Formation at Ambient Temperature. *Chem. Eur. J.* **2012**, *18*, 9194.

10. Huff, C. A.; Kampf, J. W.; Sanford, M. S. Reversible Carbon-Carbon Bond Formation Between Carbonyl Compounds and a Ruthenium Pincer Complex. *Chem. Commun.* **2013**, *49*, 7147. – Reproduced by permission of The Royal Society of Chemistry. <u>http://pubs.rsc.org/en/content/articlelanding/2013/cc/c3cc43517b</u>

11. Excerpts of Chapter 3 reprinted with permission from Huff, C. A.; Kampf, J. W.; Sanford, M. S. Role of a Noninnocent Pincer Ligand in the Activation of CO₂ at (PNN)Ru(H)(CO). *Organometallics* **2012**, *31*, 4643. Copyright 2012. American Chemical Society.

12. Zhang, G.; Leitus, Y.; Milstein, Ben-David, Y.; Milstein, D. Facile Conversion of Alcohols into Esters and Dihydrogen Catalyzed by New Ruthenium Complexes. J. Am. Chem. Soc. 2005, 127, 10840.

CHAPTER 4

Investigation of Ruthenium Pincer Complexes as Carbon Dioxide Hydrogenation Catalysts for Application to the Cascade System

4.1 Introduction

We have accomplished the development of a system for the catalytic reduction of carbon dioxide (CO₂) to methanol (CH₃OH) by a cascade sequence (see Chapter 2 for more details)¹ that begins with the conversion of CO₂ to formic acid (FA, Scheme 4.1, step i). This step is followed by Lewis-acid-catalyzed esterification to provide methyl formate (step ii), with subsequent methyl formate hydrogenation to liberate two equivalents of CH₃OH (step iii). The metal complexes utilized in this system were Ru complex 1² for CO₂ hydrogenation step i, in concert with Milstein's Ru pincer complex Ru(PNN)(CO)(H) (2, PNN = $6-(\text{di-$ *tert*-butylphosphinomethylene)-2-(*N*,*N*-diethylaminomethyl)-1,6-dihydropyridine)³ as the catalyst for ester hydrogenation (step iii). The use of two different catalysts for these steps was necessary because neither one was individually effective for the entire cascade.

In an ideal system, a single catalyst would be used to promote each step in the reaction cascade in order to lower overall catalyst loading. However, when initially investigating homogeneous catalysts for this system, there were no known catalysts that could be implemented for multiple steps in the cascade. Revisiting the literature, there are many reported systems of the homogeneous hydrogenation of CO₂ to formic acid^{4a-c} and formate salts,^{4d-j} but far fewer for hydrogenation of esters.⁵ Two of the most active homogeneous CO₂ hydrogenation catalysts reported to date are complex 1² and Ir(PNP)(H)₃ (PNP = 2,6-bis(diisopropylphosphinomethylene)pyridine) pincer catalyst **3** (Scheme 4.2).⁶ Both complexes provide formate from CO₂ in yields representing >10⁴ catalytic turnovers and with turnover frequencies in excess of 10⁴ h⁻¹. Noting that catalyst **3** closely resembles complex **2** in that they are both M–H complexes with a phosphino pyridine based pincer ligand, there is potential for **2** to serve as a CO₂ hydrogenation catalyst were carried out. Additionally, a single metal complex was explored for the cascade conversion of CO₂ to methanol.

4.2 Ruthenium Pincer Complex as a CO₂ Hydrogenation Catalyst

By analogy to iridium catalyst $\mathbf{3}$,⁶ a possible catalytic cycle for reducing CO₂ to formate at complex **2** (Scheme 4.3) would involve (i) heterolytic cleavage of H₂ to form ruthenium dihydride **4**, (ii) insertion of CO₂ to generate formate complex **5**, and (iii)

deprotonation of the pincer ligand of **5** with concomitant release of formate to complete the catalytic cycle.^{7,8} Step i of this cycle is well precedented, and has been studied in detail by Milstein and coworkers.³ In contrast, the feasibility of steps ii and iii has not yet been established for this ruthenium system.

Scheme 4.3. Possible Catalytic Cycle for CO₂ Hydrogenation to Formate by Complex 2

4.2.1 Stoichiometric Studies

We began our investigation by treating a solution of **2** in anisole- d_8 with a 4 : 1 mixture of H₂ and CO₂ (Scheme 4.4). This resulted in the conversion of **2** to formate complex **5** in 88% NMR yield after 24 hours at room temperature, as indicated by a Ru-H shift at -16.28 ppm ($J_{HP} = 27.9 \text{ Hz}$).⁹ This result established the feasibility of step ii of the catalytic cycle proposed in Scheme 4.3. Furthermore, the identity of **5** was confirmed by independent synthesis, and this complex was characterized using standard one- and two-dimensional NMR spectroscopic techniques as well as X-ray crystallography (Figure 4.1).¹⁰ The CO₂ adduct **6** (formed by the direct reaction of **2** with CO₂, step ia of Scheme 4.3)¹¹⁻¹³ was detected as a minor side product in this reaction (12% yield, *vide infra* for further discussion).

Scheme 4.4. Reaction of 2 with CO₂ and H₂

Figure 4.1. ORTEP diagram (50% probability level) of the molecular drawing of **5**. The packing solvent (benzene) as well as all H atoms (other than the Ru–H and H–COO) have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Ru1–H1 = 1.45(3), Ru1–N1 = 2.0983(18), Ru1–N2 = 2.2535(18), Ru1–O2 = 2.2497(16), Ru1–C1 = 1.834(2), Ru1–P1 = 2.2626(5), O2–C2 = 1.203(3), O3–C2 = 1.283(3); H1–Ru1–O2 = 169.2(10); P1–Ru1–N2 = 158.83(5); N1–Ru1–O2 = 82.67(7), N2–Ru1–O2 = 83.88(6).

We next sought to identify conditions for promoting the final step (iii) of the proposed catalytic cycle. Based on precedent by Nozaki with Ir catalyst 3,⁶ we hypothesized that a strong base could deprotonate the pincer ligand of 5 and induce formate release. Indeed, the treatment of a solution of 5 in anisole- d_8 with 1 equivalent of potassium *tert*-butoxide (KO^tBu) resulted in quantitative formation of 2 and potassium formate as determined by ¹H NMR spectroscopic analysis (Scheme 4.5).

Scheme 4.5. Deprotonation of 5 by KO^tBu to Form 2 and HCOOK

4.2.2 Catalytic Trials

The results in Scheme 4.4 and Scheme 4.5 demonstrate the feasibility of all three individual steps of the proposed **2**-catalyzed hydrogenation of CO₂ to formate. In order to combine these steps to achieve catalysis, **2** was initially treated with 10 bar CO₂ and 30 bar H₂ in the presence of 1200 equivalents of KO'Bu in anisole at room temperature, conditions analogous to those of the stoichiometric reactions conducted above (Table 4.1, entry 1). The TON for this reaction was determined based on the yield of formate after 4 hours as a preliminary estimate of catalyst reactivity. Catalysis was sluggish under these initial conditions, and only 7 turnovers were observed after 4 hours (max possible TON = 1.2×10^3 based on equivalents of base). However, raising the temperature to 120 °C resulted in a dramatic improvement in the performance of catalyst **2**, as it afforded 2.7 x 10^3 turnovers under otherwise analogous conditions (entry 2). We next replaced the nonpolar solvent anisole with diglyme, reasoning that it would better solubilize KO'Bu.¹⁴ Gratifyingly, this resulted in a 3-fold improvement in TON (to 8.0 x 10^2) over the same period of time (entry 3).

A variety of different bases were next evaluated for the reaction in diglyme. K_2CO_3 , KOH, K_3PO_4 , and KHCO_3 were all effective in promoting this transformation, with TONs ranging from 5.1 x 10^2 to 1.1 x 10^3 (entries 4–7).¹⁵ The best base for this reaction was K_2CO_3 , yielding a TON of 1.1 x 10^3 and a TOF of 1.6 x 10^3 h⁻¹.¹⁶. These data stand in contrast to Nozaki's results with Ir pincer complex **3**. In that system, moving from KOH to a weaker base like K_3PO_4 resulted in a significant decrease in the TON (>7-fold).⁶ The diversity of bases effective in the reaction of **2** suggests that deprotonation of intermediate **5** may be more facile than deprotonation of the analogous Ir formate intermediate. Notably, however, the neutral amine base NEt₃, which has been

frequently employed in CO₂ hydrogenation reactions, $^{2,4d-h,17}$ resulted in <5 turnovers in this system (entry 8).

. u	2 (0.554 μmol)		O O	
30 bar	Base (1200 equiv) 4 h		HO HBase	
Solvent	Temp (°C)	Base	TON Formate	
anisole	25	KO ^t Bu	7.0 x 10 ⁰	
anisole	120	KO ^t Bu	2.7 x 10 ²	
diglyme	120	KO ^t Bu	8.0 x 10 ²	
diglyme	120	K ₂ CO ₃	1.1 x 10 ³	
diglyme	120	KOH	5.1 x 10 ²	
diglyme	120	K_3PO_4	9.0 x 10 ²	
diglyme	120	KHCO ₃	5.5 x 10 ²	
diglyme	120	NEt ₃	<5	
diglyme	120	K ₂ CO ₃	6.6 x 10 ²	
diglyme	120	K ₂ CO ₃	1.4 x 10 ³	
diglyme	100	K ₂ CO ₃	9.0 x 10 ³	
diglyme	120	K ₂ CO ₃	2.3 x 10 ⁴	
	H ₂ 30 bar Solvent anisole anisole diglyme diglyme diglyme diglyme diglyme diglyme diglyme diglyme diglyme	2 (0.554 Base (120) 30 bar Solvent Temp (°C) anisole 25 anisole 120 diglyme 120	2 (0.554 μmol) H₂ Base (1200 equiv) 4 h 30 bar Parage Solvent Temp (°C) Base anisole 25 KO ^t Bu anisole 120 KO ^t Bu diglyme 120 KO ^t Bu diglyme 120 KO ^t Bu diglyme 120 KOtBu diglyme 120 KQH diglyme 120 KGO diglyme 120 KGO diglyme 120 K2CO3 diglyme 120 K2CO3	

Table 4.1. Hydrogenation of CO₂ to Formate Catalyzed by 2

^a Conditions: CO₂ (10 bar), H₂ (30 bar), **2** (0.554 μ mol, 1 equiv), base (0.6648 mmol, 1200 equiv), solvent (2 mL), 4 h. ^b With 100,000 equiv K₂CO₃, 5 mL diglyme. ^c 24 h. ^d 48 h.

Because the best results were obtained using K_2CO_3 as the base (entry 4), the effect of increasing the equivalents of K_2CO_3 was next examined, which would correspondingly increase the theoretical maximum TON of **3**. The use of 1.0 x 10⁵ equivalents of K_2CO_3 at 120 °C provided 6.6 x 10² turnovers after 4 h (entry 9) and 1.4 x 10³ turnovers after 24 h. Notably, based on the stoichiometry of K_2CO_3 , the maximum possible turnovers is 2.0 x 10⁵.¹⁶ Furthermore, increasing the temperature to 200 °C provided 9.0 x 10³ and 2.3 x 10⁵ turnovers after 4 and 48 hours, respectively, with a TOF of 2.2 x 10³ h⁻¹ at this temperature.¹⁸

4.2.3 Mechanistic Studies

As discussed above, we originally envisioned the catalytic cycle in Scheme 4.3 as a plausible pathway for this transformation. If this mechanism is operative, formate complex **5** should display similar catalytic activity as **2**. Indeed, under otherwise identical conditions, this catalyst provided comparable TON after 4 hours (compare Table 4.1, entry 4 and Table 4.2, entry 1).

CO ₂ I0 bar	+ H ₂ 30 bar	[F K2	[Ru] (0.554 μmol) K ₂ CO ₃ (1200 equiv) diglyme, 4 h		
	Entry ^a	[Ru]	Temp (°C)	TON Formate	
	1	5	120	1.0 x 10 ³	
	2	6	120	1.1 x 10 ³	
	3	6	70	<5	
	4	2	70	3.4 x 10 ²	
	5	5	70	4.3 x 10 ²	
ê	^a Condition	s: CO ₂	(10 bar); H ₂	(30 bar); R	u

Table 4.2. Complexes 2, 5, and 6 as Catalysts for CO₂ Hydrogenation

^a Conditions: CO_2 (10 bar); H_2 (30 bar); Ru catalyst **2**, **5**, or **6** (0.554 μ mol, 1 equiv), K₂CO₃ (0.6648 mmol, 1200 equiv), diglyme (2 mL), 4 h.

The mechanism as drawn in Scheme 4.3 implicates Ru-CO₂ complex **6** as an offcycle side product. Previous studies from our group showed that the formation of **6** is irreversible at room temperature,¹¹ suggesting it may serve as a catalyst deactivation pathway. To test this possibility, we also examined the reactivity of **6** as a catalyst for CO₂ hydrogenation under our standard reaction conditions. Unexpectedly, we found that this Ru–CO₂ adduct afforded a TON of formate comparable to that of **2** and **5** after 4 hours at 120 °C (Scheme 4.3, entry 2).

The observed catalytic activity of **6** can be explained by at least two mechanistic possibilities. A first is that CO_2 binding at **6** (step ia of Scheme 4.3) could be reversible at the elevated temperatures used for catalysis. This would enable the regeneration of **3**, which could then participate in CO_2 hydrogenation. Alternatively, **6** could potentially be capable of directly catalyzing CO_2 hydrogenation. As outlined in Scheme 4.6, a possible mechanism for this latter transformation could involve deprotonation of **6** to generate the unsaturated complex **7** (step i), followed by H₂ heterolysis (step ii), CO_2 insertion (step iii), and base-promoted product release (step iv).¹⁹

Scheme 4.6. Possible Catalytic Cycle for CO₂ Hydrogenation at Complex 6

To test the first possibility (reversible formation of **2** from **6** at elevated temperatures), a ¹³CO₂-labeled sample of **6** was treated with 1 bar of ¹²CO₂ at 120 °C. After 4 hours, >98% exchange was observed, indicating essentially complete reversibility under our standard catalysis conditions (Table 4.3, entry 1). Notably, the extent of exchange decreased sharply with temperature. At 100 °C, <45% exchange was observed after 4 h, and minimal (3%) exchange was detected after 4 h at 70 °C (entries 2–3). To probe the relevance of this reversibility to CO₂ hydrogenation catalysis, the **6**-catalyzed hydrogenation of CO₂ to formate at 70 °C was examined (slow exchange conditions). As shown in Table 4.2, entry 3, less than 5 turnovers were observed after 4 hours. In contrast, **2** and **5** provided 3.4 x 10² and 4.3 x 10² turnovers under these conditions at 70 °C (entries 4–5). The efficiency of **6** as a catalyst for hydrogenation at higher temperatures (fast exchange conditions), but not at lower temperatures (slow exchange conditions), suggests that the reversible binding of CO₂ is likely relevant to catalysis by **6** at elevated temperatures.

Table 4.3. Quantification of Reversible Binding of CO_2 at 6-¹³C at Varied Temperatures

^a Conditions: CO₂ (1 bar), **6-¹³C** (1.8 mg, 3.63 μmol), anisole (0.45 mL), 4 h.

Importantly, the reversible formation of **2** from **6** under the conditions for catalysis does not rule out the possibility of direct CO_2 hydrogenation at **6** (catalytic cycle shown in Scheme 4.6). To explore this latter possibility, we first examined the stoichiometric reaction of **6** with 1 equivalent of KO^{*t*}Bu in dimethylsulfoxide (DMSO) at 25 °C. After 5 min, a color change from yellow to bright orange was observed, accompanied by the complete conversion of **6** to a new Ru–H species, **7** (Scheme 4.7). This complex proved challenging to isolate in high purity,²⁰ as it is extremely moisture sensitive; however, an *in situ*-generated sample of **7** was fully characterized by ¹H and ¹³C NMR spectroscopy.

Scheme 4.7. Formation of Anionic Ru Complex 7 by Deprotonation of 6

To probe whether 7 can participate in steps ii and iii of the catalytic cycle proposed in Scheme 4.6, a sample of 7^{20} was heated in DMSO- d_6 in the presence of 1 bar of a 4 : 1 mixture of H₂ : CO₂ at 120 °C for 1 hour in the absence of exogenous base (Scheme 4.8). Under these conditions, 15% yield of HCOOK was detected.²¹ This result

suggests that the **6**-catalyzed hydrogenation of CO_2 (Scheme 4.6) is a potentially viable route to formate, albeit a likely minor pathway relative to that depicted in Scheme 4.3.

Scheme 4.8. Reaction of 7 with CO₂ and H₂

4.3 Second-Generation Cascade System: Amide Intermediate Pathway

4.3.1 Introduction

As discussed above, complex **2** is an effective catalyst for CO_2 hydrogenation to formate salt (Table 4.1)— an analogous reaction to step i (CO₂ conversion to free formic acid) in the cascade system for CO₂ conversion to CH₃OH (Scheme 4.1). Importantly, this finding could allow for complex **2** to serve as a single catalyst for both steps i and iii of the cascade system, thus reducing the total Ru catalyst loading required. However, a significant challenge toward accomplishing this goal is that the cascade system operates under Lewis acidic conditions (use of Sc(OTf)₃ for step ii), whereas stoichiometric base is required for **2**-catalyzed CO₂ hydrogenation (Table 4.1). In order to merge these two sets of reaction conditions, a modified cascade system that operates under basic conditions was developed.

In this second-generation cascade system, shown in Scheme 4.9, step i is the same as in the first-generation system (Scheme 4.1), where CO_2 is converted to FA. However, instead of being coupled with a Lewis-acid catalyzed esterification reaction, an amidation reaction is instead implemented. Using the Brønsted base dimethylamine (NHMe₂) provides *N*,*N*-dimethylformamide (DMF) as a cascade intermediate in step ii, which is hydrogenated to CH₃OH and NHMe₂ in the final step. Importantly, there is literature precedent for performing step ii in high yields without a catalyst.²² Furthermore, under basic conditions, a single catalyst (i.e. complex **2**) could be used for both steps i and iii.

Scheme 4.9. Second-Generation Cascade System for CO₂ Hydrogenation to CH₃OH via an Amide Intermediate

4.3.2 Step iii: DMF Hydrogenation

The overall objective in achieving the second-generation cascade system is to identify a single catalyst for both steps i and iii; therefore, catalyst activity for the more challenging step, hydrogenation of DMF, was first investigated. Following these studies, successful catalysts were then evaluated for CO_2 hydrogenation. In contrast to the many reported CO_2 hydrogenation catalysts,⁴ analogous complexes for catalytic amide hydrogenation have remained elusive until recently.^{23,24,25}

Complexes shown in Figure 4.2 include reported catalysts for the hydrogenation of carboxylic acid derivatives and carbamates to alcohols. Among these, $10^{23,26}$ and 12^{24} have been demonstrated as amide hydrogenation catalysts, whereas 2^{3b} and 11^{27} have been employed for ester hydrogenation catalysis. Amides, compared with esters, have a less electrophilic carbonyl carbon, and are thus generally a more challenging substrate to reduce;²⁸ however, since 2 and 11 are both highly effective ester hydrogenation catalysts (TON > 4000), they were still selected for initial evaluation.

Figure 4.2. Reported Catalysts for Hydrogenation of Carboxylic Acid Derivatives to Alcohols

As shown in Table 4.4, known amide hydrogenation catalyst, 10, as well as reported ester hydrogenation catalysts 2 and 11, are all highly active catalysts for the

hydrogenation of DMF to CH₃OH (entries 1–3). Full conversion was achieved (or nearly 100 TONs) at 135 °C at 50 bar H₂ after 19 hours. However, catalyst **12**, which was originally reported for hydrogenation of secondary and tertiary alkyl amides,²⁴ yielded low activity for this tertiary formamide (entry 4).²⁹

Table 4.4. DMF H	ydrogenation to	CH ₃ OH
------------------	-----------------	--------------------

0 H ^{⊥⊥} NM	Ru (0. 50 e ₂ THF, 1	005 mmol) bar H ₂ 35 °C, 19 h	CH ₃ OH + NHMe ₂
Entry ^a	Catalyst	Conv. of DMF	Yield of CH ₃ OH
1	2	>99%	>99%
2	10	>99%	>99%
3	11	>99%	>99%
4	12	<5%	<5%

 $[^]a$ Conditions: DMF (0.5 mmol, 1 equiv.), H_2 (50 bar); Ru catalyst **2**, **10**, **11**, or **12** (0.005 mmol, 1 mol%), THF (1 mL), 19 h.

4.3.3 Hydrogenation of DMF in the Presence of CO₂

CO₂, a component of the cascade system (Scheme 4.9), was previously demonstrated to inhibit **2**-catalyzed ester hydrogenation.¹ Based on this finding, the effect of CO₂ on the hydrogenation of DMF was evaluated. Using 50 bar H₂ and just 1 bar CO₂, complex **2** provided <5% CH₃OH (Table 4.5, entry 1). However, complexes **10** and **11** provided higher yields of CH₃OH ranging from 20–40% yield (entries 2–3). Interestingly, complexes **2** and **10** are similar in structure with a difference of just eight wavenumbers for carbonyl stretch values for each complex (**2**: $v_{CO} = 1899 \text{ cm}^{-1}$; **10**: $v_{CO} = 1907 \text{ cm}^{-1}$), but provided strikingly varied catalytic activity for this reaction. Furthermore, the yield of CH₃OH could be increased to 65% by addition of an alkali metal base, K₂CO₃ (Table 4.5, entry 4). Therefore, a closer examination of the origin of the difference in reactivity between **2** and **10**, as well as the effect K₂CO₃ has on CO₂ hydrogenation conditions, was considered.

Ru (0.005 mmol) 50 bar H ₂ , 1 bar CO			→ CH ₃ OH + NHMe ₂		
		1, 155 0, 1911			
Entry ^a	Catalyst	Modified Conditions	Conv. of DMF	Yield of CH ₃ OH	
1	2		<5%	<5%	
2	10		60%	40%	
3	11		30%	20%	
4 ^{<i>b</i>}	10	K ₂ CO ₃	75%	65%	

Table 4.5. DMF Hydrogenation to CH₃OH in the Presence of CO₂

^{*a*} Conditions: DMF (0.5 mmol, 1 equiv.), H_2 (50 bar), CO_2 (1 bar); Ru catalyst **2**, **10**, or **11** (0.005 mmol, 1 mol%), THF (1 mL), 19 h; ^{*b*}K₂CO₃ (0.5 mmol, 1 equiv.) added.

As mentioned previously in Chapter 3, treatment of 2 with 1 bar of a mixture of CO₂ and H₂ at 120 °C for 15 minutes affords the Ru-CO₂ adduct 6 as the major product. Importantly, analogous to the cascade system via an ester intermediate, the formation of 6 could be responsible for low turnovers in the 2-catalyzed hydrogenation of DMF (Table 4.5, entry 8). In contrast to the reaction with 2, a similar experiment with 10 did not lead to a CO₂-catalyst adduct. Upon adding 1 bar of a mixture of CO₂ and H₂ to a solution of 10 in toluene- d_8 , an initial ¹H NMR spectrum was acquired at room temperature revealing consumption of starting material, which has a diagnostic Ru-H doublet at -25.79 ppm, and the appearance of two new Ru-H species (Ru-H peaks: -15.76 ppm, br d; -16.52 ppm³⁰, br s), where all peaks in this spectrum were broad. The tube was then heated to 45 °C in the NMR spectrometer, and cooled back to room temperature,³¹ wherein a single Ru-H species remained with a doublet at -15.76 ppm ($J_{HP} = 25.2$ Hz) (Scheme 4.10a). This species was determined to be 13 (putative CO_2 hydrogenation intermediate analogous to 5-see Scheme 4.3 for representative catalytic cycle) and its identity was confirmed through comparison with an authentic sample of 13, prepared through treatment of 10 with formic acid (Scheme 4.10b).³² The identity of 13 was further confirmed through conducting an HSQC 2D NMR spectroscopy experiment, which demonstrated that the singlet at 8.97 ppm is bound to a carbon with a shift at 172.58 ppm, in the range where HCOO is expected.

The absence of CO_2 coupling product on the *N*-side of **10** (Scheme 4.10a) can be attributed to the inability of CO_2 to bind due to the bipyridine substitution of the ligand. Most notably, the absence of CO_2 coupling with complex **10** could be the reason for higher catalyst turnover in the hydrogenation of DMF with this complex under CO_2 atmosphere in comparison with **2** (Table 4.5, entries 1 and 2). Furthermore, increased TON for the **10**-catalyzed hydrogenation of DMF in the presence of K_2CO_3 (Table 4.5, entry 4) is likely due to the base-promoted liberation of formate from complex **13** (Scheme 4.11).

Scheme 4.11. Putative Reactivity between 13 and K₂CO₃

4.3.4 Step i/ii: CO₂ Conversion to DMF

Complexes previously reported for step i were first considered for the conversion of CO₂ to DMF. Complex **1** (Table 4.6) has been demonstrated to yield a TON of up to 420,000 for CO₂ conversion to DMF using NHMe₂ under supercritical CO₂ conditions (130 bar CO₂, 80 bar H₂).^{22a} Using significantly lower pressures of 1 bar CO₂ and 50 bar H₂ with 1600 equivalents of NHMe₂ relative to catalyst provided a TON of 35 after 1 hour at 135 °C (Table 4.6, entry 1). Moreover, reducing the temperature to 70 °C resulted in an improved TON of 45 after 30 minutes and 140 after 1 hour. As the overall goal for the second-generation cascade system was to identify a single catalyst for the conversion of CO₂ to CH₃OH via an amide intermediate, catalysts efficient at DMF hydrogenation were evaluated. As discussed above, **10** serves as an effective catalyst for conversion of DMF to CH_3OH in the presence of CO_2 . Next we investigated whether complex **10** could catalyze the conversion of CO_2 to DMF, the first step of the proposed cascade (Scheme 4.9). As shown in entry 5, a TON of 90 was achieved after 1 hour at 70 °C. Interestingly, other Ru complexes **2** and **11** (known primarily for hydrogenation of carboxylic acid derivative) also afforded DMF with a TON of 110 and 80, respectively under these optimal conditions (entries 4 and 6). These data demonstrate that under amidation conditions, CO_2 can be converted to DMF with a variety of Ru phosphine complexes.

CO ₂ 1 bar	+ H ₂ – 50 bar	$H_{2} \xrightarrow{\text{Ru} (0.0059 \text{ mmol})}{1600 \text{ equiv. NHMe}_{2}} \xrightarrow{\text{O}} H \xrightarrow{\text{O}} \text{NMe}_{2}$ THF, 70 °C, 1 h			+ H ₂ O	PMe ₃ Me ₃ P │ PMe ₃ Me ₃ P │ OAc Cl (1)
		Entry ^a	Catalyst	Modified Conditions	TON DMF	
		1	1	135 ℃	35	
		2	1	30 min.	45	
		3	1		140	
		4	2		110	
		5	10		90	
		6	11		80	

Table 4.6. CO₂ Conversion to DMF

^{*a*} Conditions: H_2 (50 bar), CO_2 (1 bar); Ru catalyst **1**, **2**, **10**, or **11** (0.0059 mmol), NHMe₂ (9.2 mmol, 1600 equiv., added as a solution in THF), 19 h.

4.3.5 Cascade Conversion of CO₂ to CH₃OH

With established conditions for steps i/ii and step iii with Ru complex **10**, all components of the system were combined. The following conditions were selected based on studies described above: 50 bar H₂, 1 bar CO₂, 1600 equivalents of NHMe₂, and a temperature scheme of 70 °C for 1 hour prior to ramping the temperature to 135 °C for 18 hours. A combination of complex **1** (serving as catalyst for step i) and **10** (serving as catalyst for step iii) yielded a TON of 100 for DMF and CH₃OH in less than a turnover (Table 4.7, entry 1). Upon adding 100 equivalents of K₂CO₃, the yield of CH₃OH was improved to TON = 24. Furthermore, removing catalyst **1** from the system and solely

using **10** for both steps i and iii yielded a TON of 15, thus satisfying the goal to identify a single catalyst for the second-generation cascade system

CO ₂ + 1 bar	⊦ H ₂ 50 bar	$ \frac{\text{Ru} (0.0059 \text{ mmol})}{1600 \text{ equiv. NHMe}_2} \xrightarrow{\text{O}} \text{CH}_3\text{OH} + \underset{\text{H}}{\overset{\text{O}}{\longrightarrow} \text{NMe}_2} $ 1h at 70 °C $\xrightarrow{\text{-18}}$ h at 135 °C				
	Entry ^a	Catalyst(s)	Modified Conditions	TON CH ₃ OH	TON DMF	-
	1	1 and 8		<1	100	-
	2 ^b	1 and 8	K ₂ CO ₃	25	65	
	3 ^{<i>b</i>}	8	K ₂ CO ₃	15	100	

Table 4.7. CO₂ Hydrogenation to CH₃OH

^a Conditions: H₂ (50 bar), CO₂ (1 bar); Ru catalyst **1** and/or **8** (0.0059 mmol, 1 mol%), NHMe₂ (9.2 mmol, 1600 equiv., added as a solution in THF), 19 h. b K₂CO₃ (0.5 mmol, 100 equiv. relative to Ru) added.

4.4 Conclusions

In summary, Ru(PNN)(CO)(H) (2), a known ester hydrogenation catalyst, was demonstrated to also catalyze the hydrogenation of CO₂ to formate in the presence of a base. The transformation is proposed to proceed through a mechanism involving (i) heterolytic cleavage of H₂ at **2** to form a Ru–dihydride species, (ii) CO₂ insertion to generate a Ru–formate complex, and (iii) base-promoted release of formate. The feasibility of each of these proposed mechanistic steps has been demonstrated through stoichiometric studies of organometallic intermediates.³³

These findings were applied to a second-generation cascade CO_2 hydrogenation to methanol system, wherein an amide intermediate was accessed. Through capitalizing on our newfound CO_2 hydrogenation conditions using a Ru pincer complex that is also capable of catalyzing amide hydrogenation, as well as employing a modified pincer ligand structure to further optimize the reaction, cascade system incompatibilities outlined in Chapters 2 and 3 were overcome. Additionally, this system demonstrated the feasibility of using a single catalyst that provides a TON of 15 for methanol using just 1 bar CO_2 . Investigations are currently underway to further optimize this system.

4.5 Experimental Procedures and Characterization of Data

General Procedures

NMR spectra were obtained on a Varian VNMRs 500 MHz (500 MHz for ¹H; 126 MHz for ¹³C; 202 MHz for ³¹P) or a Varian VNMRs 700 MHz spectrometer (700 MHz for ¹H; 176 MHz for ¹³C, 283 MHz for ³¹P). Elemental analysis was carried out at Atlantic Microlab lab in Norcross, GA. IR spectra were recorded on a Perkin-Elmer Spectrum BX FT-IR spectrometer using KBr pellets. All high-pressure reactions were carried out using a Parr Model 5000 Multiple Reactor system that includes six 50 mL vessels equipped with flat-gaskets and head mounting valves. The system was operated by a 4871 process controller and SpecView version 2.5 software. Chemical shifts are reported in parts per million and are referenced to an internal standard, HMDSO (hexamethyldisiloxane; δ in anisole-*d*₈ = 0.11 ppm) relative to TMS. When needed, NMR assignments were performed with the help of ¹H/¹H COSY, ¹H/¹³C HMQC, and ¹H/¹³C HMBC experiments. Abbreviations used in the NMR experiments: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. ¹³C NMR experiments were all proton decoupled, except for the upfield proton associated with Ru–H.

Materials and Methods

 1^{34} , $2^{3b}_{,,1}$, $6^{11}_{,1}$, $6^{-13}C^{11}_{,1}$, $10^{23a}_{,2}$, and $Ru(PPh_3)_4H_2^{35}$ were prepared according to the corresponding literature procedures. Carbonylchlorohydrido[bis(2ruthenium(II) (diphenylphosphinoethyl)amino] or Ru-MACHO (11) and 2-(diphenylphosphino)ethylamine were purchased from Strem. Research grade carbon dioxide (99.999%), ultra high purity hydrogen (99.999%), and a mix tank of 80% H₂/20% CO₂ were purchased from Metro Welding. All experiments were conducted under an oxygen-free atmosphere in either a glovebox or on a Schlenk line. All solid bases were ground with a mortar and pestle before use. Anisole- d_8 (CDN Isotopes) was dried over sodium metal and degassed. D₂O and CD₃OD were purchased from Cambridge Isotope Laboratories and used as is. 2-Methoxyethyl ether (diglyme, Acros, 99+%), N,N-dimethylformamide (Alfa Aesar, 99.8%), 1,3,5-trimethoxybenzene (Acros), dimethyl sulfoxide (Aldrich, 99.9+%), KO^tBu (Alfa Aesar), 18-crown-6 (Acros), K₂CO₃

(Fisher, anhydrous powder), KHCO₃ (Acros), K₃PO₄ (Aldrich, 98+%), and KOH (Fisher) were used without further purification. Anisole (Aldrich) was dried over sodium metal and degassed before use, triethylamine (Acros) was dried over calcium hydride and degassed before use, HMDSO (hexamethyldisiloxane, Fluka) was dried over 4 Å sieves and degassed before use, and THF (tetrahydrofuran) was purified using an Innovative Technologies (IT) solvent purification system consisting of a copper catalyst, activated alumina, and molecular sieves. Dimethylamine (Aldrich, anhydrous >99%) and was condensed in dry THF using standard schlenk line technique to yield a 4.6 M solution. DMSO- d_6 (dimethylsulfoxide) was purchased from Cambridge Isotopes and used as is.

I. Stoichiometric and Catalytic Evaluation of 2-Catalyzed CO₂ Hydrogenation to Formate

A. Reaction of 2 or 7 with CO_2 and H_2 (Scheme 4.4 and Scheme 4.8)

In an N₂-atmosphere dry box, **2** or **7** (3.32 μ mol), HMDSO (internal standard, 10 μ L of a 0.753 M solution in anisole- d_8 , 7.53 μ mol), and 0.45 mL of anisole- d_8 were added to a Jyoung tube. An initial ¹H NMR spectrum was acquired in order to obtain the integral ratio of the Ru complex to HMDSO. The solution was frozen in LN₂, the N₂ atmosphere was removed, the tube was sealed while the solution thawed, and 1 bar H₂/CO₂ (4:1) was then introduced. The tube was then shaken before heating in an oil bath for the specified time and temperature (see Table 4.8 for variable temperature studies with 2). Products **5** and **6** were detected and quantified by ¹H NMR spectroscopy as depicted in Figure 4.3.

Table 4.8. Reactivity of 2 with CO₂ and H₂ at Varied Temperatures

^a Reaction time: 24 h.

Figure 4.3. ¹H NMR Spectrum in Anisole- d_8 for the Quantitative Analysis of 5 & 6

B. Reaction of 5 with KOtBu (Scheme 4.5)

In an N₂-atmosphere dry box, **5** (1.8 mg, 3.62 μ mol), HMDSO (internal standard, 10 μ L of a 0.753 M solution in anisole-*d*₈, 7.53 μ mol), and 0.45 mL of anisole-*d*₈ were added to a J-young tube. An initial ¹H NMR spectrum was acquired in order to obtain the initial integral ratio of **5** to HMDSO. The tube was then brought back into the dry box and 1 equiv. KO^tBu (0.4 mg, 3.62 μ mol, 1 equiv) was added. Upon sonicating the tube for 1 min., the solution changed from pale yellow to dark red brown. A ¹H NMR was then acquired to determine the yield of **3** (Figure 4.4). The tube was then brought back into the dry box that was formed. The tube was then sonicated for 5 min. and a final ¹H NMR was acquired to determine the yield of 5 min. and a final ¹H NMR was acquired to determine the yield of 5 min. and a final ¹H NMR was acquired to determine the yield of 5 min. and a final ¹H NMR was acquired to determine the yield of 5 min. and a final ¹H NMR was acquired to determine the yield of 5 min. and a final ¹H NMR was acquired to determine the yield of 5 min. and a final ¹H NMR was acquired to determine the yield of potassium formate (Figure 4.5).

Figure 4.4. ¹H NMR Spectrum of 2 in Anisole- d_8 Formed after Adding KO^tBu to 5

Figure 4.5. ¹H NMR Spectrum after Adding CD₃OD

C. Catalytic CO₂ Hydrogenation Studies (Table 4.1 and Table 4.2)

In an N₂-atmosphere dry box, Ru catalyst (0.25 mL of a 2.2 μ M solution, 0.554 μ mol) was added to a 30 mL glass liner containing base (0.664 mmol, 1200 equiv) and a Teflon octagon magnetic stirbar (5/16 x 1/2 in.). An additional 1.75 mL of solvent was then added to the liner. Before inserting the liner into the well of the pressure vessel, 1.2 mL of solvent was added to the well of the pressure vessel. The vessel was then sealed and removed from the dry box where it was then pressurized with 10 bar CO₂ followed immediately by 30 bar H₂. The reaction was then heated at 120 °C (using Specview

software, initial set temperature = 90 °C; this was done to prevent over-shooting the desired temperature) for 4 hours at a stir rate of 800 RPM, and was then allowed to cool to room temperature before venting to atmospheric pressure. The volatiles inside the glass liner were then removed under high vacuum, and 2 mL of D₂O, 50 μ L of 12 M HCl, and DMF (internal standard, 40 uL, 0.519 mmol) were added sequentially to the residue. The solution was then analyzed by ¹H NMR spectroscopy (see Figure 4.6 for a sample spectrum, and Figure 4.7**Figure 4.8**–Figure 4.9 for time studies using catalysts **2**, **5**, and **6**). All data points are based off 3–5 trials per data point.

Figure 4.6. ¹H NMR Spectrum for Quantitative Analysis of Formate from High Pressure Reactions

Figure 4.7. Evaluation of Catalytic Activity of **2** for CO₂ Hydrogenation to Formate over Time. Conditions: CO₂ (10 bar), H₂ (30 bar), 0.554 μ mol **2**, 0.6648 mmol K₂CO₃ (1200 equiv), 2 mL diglyme, 120 °C.

Figure 4.8. Evaluation of Catalytic Activity of **5** for CO_2 Hydrogenation to Formate over Time. Conditions: CO_2 (10 bar), H_2 (30 bar), 0.554 µmol **5**, 0.6648 mmol K₂CO₃ (1200 equiv), 2 mL diglyme, 120 °C.

Figure 4.9. Evaluation of Catalytic Activity of **6** for CO₂ Hydrogenation to Formate over Time . Conditions: CO₂ (10 bar), H₂ (30 bar), 0.554 μ mol **6**, 0.6648 mmol K₂CO₃ (1200 equiv), 2 mL diglyme, 120 °C.

D. Procedure for Reversibility Studies of $6^{-13}C$ with CO_2 (Table 4.3)

In an N₂-atmosphere dry box, $6^{-13}C$ (1.8 mg, 3.63 µmol) and 0.45 mL of anisole were added to a J-young tube. A ¹³C NMR spectrum was acquired in order to obtain the initial integral ratio of $6^{-13}C$ to anisole. The solution was then frozen in LN₂, the N₂ atmosphere was removed, the tube was sealed while the solution thawed, and 1 bar CO₂ was introduced. The tube was then shaken before heating in an oil bath for 4 hours at the specified temperature (Figure 4.5). A final ¹³C NMR spectrum was acquired and the amount of ¹³CO₂ that exchanged for CO₂ was measured by comparing the initial ratio of $6^{-13}C$: anisole to the final ratio (see Figure 4.10 for an example spectrum).

Figure 4.10. ¹³C NMR for Quantitative Analysis of CO₂ Scrambling at **6**-¹³C. ¹³C NMR parameters: decoupled without NOE, 3 second acquisition time, 0.1 second relaxation delay, 100 scans.

II. Synthesis and Characterization of 5 and 7

A. Synthesis and Characterization of Complex 5

In an N₂-atmosphere dry box, (PNN)RuH(CO) (**2**, 20 mg, 0.044 mmol) was dissolved in 2 mL THF and added to a 4 mL scintillation vial. Upon the addition of formic acid (50 μ L of a 1.1 M solution in THF, 0.053 mmol), there was an immediate color change from a dark red/brown solution to a pale yellow suspension. The suspension was then filtered on a glass frit, the residue was triterated and sonicated with pentanes (5 mL x 2), and finally dried in vacuo to afford **5** as a pale yellow powder (22 mg, 95% yield). X-ray quality crystals (yellow needles) were formed at room temperature by dissolving 5 in a minimal amount of CH₂Cl₂ and layering this solution with benzene (see Table 4.9 for details).

³¹P{¹H} NMR (CD₂Cl₂): δ 109.4 (s).

¹H NMR (CD₂Cl₂): δ -16.53 (d, $J_{HP} = 27.8$ Hz, 1H, Ru-*H*), 1.10 (t, $J_{HH} = 7.3$ Hz, 3H, NCH₂C*H*₃), 1.15 (t, $J_{HH} = 6.9$ Hz, 3H, NCH₂C*H*₃), 1.18 (d, $J_{HP} = 13.2$ Hz, 9H, PC(C*H*₃)₃), 1.29 (d, $J_{HP} = 13.3$ Hz, 9H, PC(C*H*₃)₃), 2.75 (q, $J_{HH} = 5.4$ Hz, 2H, NC*H*₂CH₃), 3.11 (dq, $J_{HH} = 7.0$ Hz, $J_{HH} = 11.7$ Hz, 1H, NC*H*HCH₃), 2.84 (dd, $J_{HH} = 16.9$ Hz, $J_{PH} = 8.4$ Hz, 1H, C*H*HP), 3.27 (dq, $J_{HH} = 7.0$ Hz, $J_{HH} = 11.7$ Hz, 1H, NC*H*HCH₃), 3.51 (dd, $J_{HH} = 16.9$ Hz, $J_{HP} = 9.9$ Hz, 1H, C*H*HP), 3.76 (dd, $J_{HH} = 14.5$ Hz, $J_{HP} = 2.6$ Hz, 1H, NC*H*HC), 4.59 (d, $J_{HH} = 14.5$ Hz, 1H, NC*H*HC), 7.20 (d, $J_{HH} = 7.6$ Hz, 1H, Py-*H2*), 7.35 (d, $J_{HH} = 7.7$ Hz, 1H, Py-*H4*), 7.67 (t, $J_{HH} = 7.7$ Hz, 1H, Py-*H3*), 8.69 (s, 1H, *H*COO).

¹³C{¹H} NMR (CD₂Cl₂): δ 8.34 (s, NCH₂CH₃), 11.29 (s, NCH₂CH₃), 29.15 (d, $J_{CP} = 4.3$ Hz, PC(CH₃)₃), 30.28 (d, $J_{CP} = 2.9$ Hz, PC(CH₃)₃), 35.20 (d, $J_{CP} = 24.5$ Hz, PC(CH₃)₃), 37.16 (d, $J_{CP} = 12.7$ Hz, PC(CH₃)₃), 37.70 (d, $J_{CP} = 20.6$ Hz, CH₂P), 50.24 (s, NCH₂CH₃), 54.18 (s, NCH₂CH₃), 64.58 (s, CH₂N), 119.94 (s, C2), 120.82 (d, $J_{CP} = 9.4$ Hz, C4), 137.71 (s, C3), 160.71 (d, $J_{CP} = 2.0$ Hz, C1), 161.98 (d, $J_{CP} = 4.6$ Hz, C5), 170.56 (s, HCOO), 208.65 (dd, $J_{PC/HC} = 6.9$ Hz, $J_{PC/HC} = 14.5$ Hz Ru-CO).

IR (KBr pellet, cm⁻¹): 2021 (v (Ru-H)), 1900 (v(CO)), 1610 (v (HCOO)).

Anal. Calcd. for C₂₁H₃₈N₂O₃PRu•0.25 C₄H₈O (*Note ¹H NMR shows 0.25 equiv THF per equiv 5*): C, 51.15; H, 7.80; N, 5.42. Found: C, 51.55, H, 7.51; N, 5.12.

³¹P NMR Spectrum of 5 (CD₂Cl₂)

¹H NMR Spectrum of 5 (CD₂Cl₂)

¹³C NMR Spectrum of 5 (CD₂Cl₂)

¹H-¹H gCOSY Spectrum of 5 (CD₂Cl₂)

¹H-¹³C gHSQC Spectrum of 5 (CD₂Cl₂)

¹H-¹³C gHMBC Spectrum of 5 (CD₂Cl₂)

B. X-ray Structure Determination for 5

Yellow needles of **5** were grown from a dichloromethane/benzene solution of the compound at 22 °C. The crystal was mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-focus rotating anode (l = 1.54187 A) operated at 1.2 kW power (40 kV, 30 mA). The X-ray intensities were measured with the detector placed at a distance 42.00 mm from the crystal. The exposure time was 1 s for the low angle images and 4 s for high angle. The integration of the data yielded a total of 33673 reflections to a maximum 2q value of 136.48°, of which 4619 were independent and 4570 were greater than 2s(I). The final cell constants (Table 4.9) were based on the xyz centroids of 22271 reflections above 10s(I). Analysis of the data showed negligible decay during data collection; the data were processed with CrystalClear 2.0 and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 2008/4) software package.

Empirical formula	$C_{21}H_{37}N_2O_3PRu(C_6H_6)0.5$
Formula weight	536.62
Temperature	85(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	C 2/c
Unit cell dimensions	a = 32.0382(6) Å, a = 90°
	b = 11.1091(2) Å, b = 118.402°
	c = 16.1622(11) Å, g = 90°
Volume	5060.0(4) Å ³
Z	8
Calculated density	1.409 mg/mm ³
Absorption coefficient	5.822 mm ⁻¹
F(000)	2248

Table 4.9. Crystal Data and Structure Refinement for 5

Crystal size	$0.16 \ge 0.16 \ge 0.02 \text{ mm}^3$
Theta range for data collection	3.14 to 68.24°
Limiting indices	-38≤h≤38, -13≤k≤13, -19≤l≤19
Reflections collected	33673
Independent reflections	4619 [R(int) = 0.0513]
Completeness to theta	68.24 (99.8 %)
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.891 and 0.552
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4619 / 53 / 316
Goodness-of-fit on F ²	1.041
Final R indices [I>2s(I)]	$R_1 = 0.0283, wR_2 = 0.0757$
R indices (all data)	$R_1 = 0.0286, wR_2 = 0.0759$
Largest diff. peak and hole	$0.647 \text{ and } -0.900 \text{ e A}^{-3}$

C. Synthesis and Characterization of Complex 7

In an N₂-atmosphere dry box, RuH(PNN-CO₂)(CO) (**6**, 40 mg, 0.08 mmol) was dissolved in 0.5 mL DMSO and added to a 4 mL schlenk tube equipped with a Teflon stir bar. Upon the addition of KO^tBu (9 mg, 0.08 mmol, 1 equiv), there was an immediate color change from pale yellow to bright orange. The reaction was allowed to stir for 5 min. at room temperature before the volatiles were removed in vacuo and the residue was triterated with benzene (2 x 1 mL) to afford 7 as a bright orange powder (44 mg, 89% yield, 1.6 equiv DMSO per molecule of 7).

 $^{31}P{^{1}H} NMR (DMSO-d_6): d 105.58 (s).$

¹H NMR (DMSO-*d₆*): d -18.24 (d, $J_{HP} = 31.2$ Hz, 1H, Ru-*H*), 0.95 (t, $J_{HH} = 7.2$ Hz, 3H, N(CH₂C*H*₃), 1.15 (t, $J_{HH} = 7.2$ Hz, 3H, NCH₂C*H*₃), 1.10 (d, $J_{HP} = 12.3$ Hz, 9H, PC(C*H*₃)₃), 1.16 (d, $J_{HP} = 12.6$ Hz, 9H, PC(C*H*₃)₃), 2.57 (dq, *overlapping with DMSO*, 1H, NC*H*HCH₃), 2.62 (dq, $J_{HH} = 13.5$ Hz, $J_{HH} = 6.5$ Hz, 1H, NC*H*HCH₃), 2.81 (dq, $J_{HH} = 12.9$ Hz, $J_{HH} = 6.7$ Hz, 1H, NC*H*HCH₃), 3.00 (dq, $J_{HH} = 14.5$ Hz, $J_{HH} = 7.0$ Hz, 1H, NC*H*HCH₃), 3.08 (d, $J_{HP} = 1.9$ Hz, 1H, C*H*P/CDP*), 3.65 (br s, 1H, NC*H*CO₂), 5.40 (d, $J_{HH} = 6.3$ Hz, 1H, Py-*H*2), 5.89 (d, $J_{HH} = 8.9$ Hz, 1H, Py-*H*4), 6.34 (t, $J_{HH} = 6.3$ Hz, 1H, Py-*H*3).

¹³C{¹H}NMR (DMSO-*d*₆): d 9.27 (s, NCH₂*C*H₃), 9.62 (s, NCH₂*C*H₃), 29.68 (d, $J_{CP} = 5.6$ Hz, PC(*C*H₃)₃), 30.33 (d, $J_{CP} = 2.9$ Hz, PC(*C*H₃)₃), 34.20 (d, $J_{CP} = 32.9$ Hz, P*C*(CH₃)₃), 37.73 (d, $J_{CP} = 13.6$ Hz, P*C*(CH₃)₃), 46.33 (s, N*C*H₂CH₃), 47.20 (s, N*C*H₂CH₃), 62.51 (m, *C*HP/CDP*), 78.27 (s, *C*HNCO₂), 96.38 (s, *C*2), 109.85 (d, $J_{CP} = 16.1$ Hz, *C*4), 130.82 (s, *C*3), 153.60 (d, $J_{CP} = 1.8$ Hz, *C*1), 165.83 (d, $J_{CP} = 16.7$ Hz, *C*5), 171.94 (s, *C*O₂), 209.08 (d, $J_{CP} = 14.7$ Hz, Ru-CO).

*Note: The C*H*P H is exchanging with D from DMSO- d_6 (full conversion of CHP to CDP in 2 hours at room temperature). This results in a lower peak intensity for C*H*P in the ¹H NMR spectrum, a multiplet for CHP/CDP in the ¹³C NMR spectrum, and reduced or no cross peak for correlations involving C*H*P in the 2D spectra. Scrambled DMSO can also be seen in the spectra.

³¹PNMR Spectrum of 7 in DMSO- d_6

¹HNMR Spectrum of 7 in DMSO- d_6

$^{13}\mathrm{C}\,\mathrm{NMR}$ Spectrum of 7 in DMSO- d_6

¹H-¹³C gHMBC Spectrum of 7 in DMSO-*d*₆

¹H-¹³C gHSQC Spectrum of 7 in DMSO-*d*₆

III. Experimental Details for Amide Intermediate Cascade System

A. Procedure for Hydrogenation of CO_2 to CH_3OH (Table 4.6 and Table 4.7)

In an N₂-atmosphere dry box, Ru catalyst (0.0059 mmol, 1 mol%) was dissolved in 2 mL of a solution of NHMe₂ in THF (4.6 M, 9.2 mmol, 1600 equiv. relative to Ru), and was added to the metal well of the pressure vessel along with a Teflon octagon magnetic stirbar ($5/16 \ge 1/2$ in.). The vessel was sealed and removed from the dry box, where it was then pressurized with 1 bar CO₂ followed immediately by 50 bar H₂. The reaction was heated at 70 °C for 1 hour before it was ramped to 135 °C for 18 hours (using Specview software, initial set temperature = 38 °C and 92 °C respectively; this was done to prevent over-shooting the desired temperature) at a stir rate of 800 RPM, and then was allowed to cool to room temperature. The vessel was slowly vented using a metering valve through a LN_2 -cooled trap. Once the vessel reached atmospheric pressure, the trap was connected to a Schlenk line and the entire system was placed under vacuum, and the liquid contents of the pressure vessel were collected in the trap. The trap was disconnected from the Schlenk line, and allowed to warm to room temperature. 1,3,5trimethoxybenzene (0.178 mmol, 300 μ L of 0.6 M solution in DMSO-d₆) was added as an internal ¹H NMR standard, and the contents of the trap were rinsed with DMSO- d_6 . 50 μ L of this solution was then added to an NMR tube, diluted with DMSO- d_6 , and acidified to a pH of 2. The mixture was analyzed by ¹H NMR spectroscopy (see Figure 4.11).

Figure 4.11. Representative ¹H NMR Spectrum for Analysis of CH₃OH and DMF in CO₂ Hydrogenation Experiment. NMR experimental details: 10 s relaxation delay, 4 scans acquired, solvent suppression of THF solvent peaks and NH₂Me₂Cl.

E. Procedure for Reactivity of 10 with CO_2 and H_2

I. Synthesis and Characterization of Authentic Sample of 13

Upon mixing a solution of **10** (2 mg, 4.5 μ mol, 1 equiv.) in 0.45 mL toluene-*d*₈ with FA (1 μ L, 0.025 mmol, 6 equiv.) in a J-Young NMR tube, a color change from green/black to red/orange was observed, and red solid precipitated out. An initial ¹H NMR spectrum was acquired at room temperature revealing two Ru-H species (Ru–H peaks: –15.77 ppm, br d; –16.52 ppm, br s) where all of the peaks were broad. The NMR spectrometer was then warmed up to 80 °C for 5 minutes. Upon cooling back to room temperature, a dark brown precipitate had formed and no FA remained in the spectrum. Instead, H₂ was observed, indicating that decomposition of FA to CO₂ and H₂ had occurred.³² As shown in Figure 4.14, peaks indicative of complex **13** are shown in the ¹H NMR spectrum and the gHSQCAD spectrum (Figure 4.13). Note: see Chapter 3 for details on experimental details and analysis for experiment with **2**.

Diagnostic peaks:

¹H NMR (toluene-*d*₈): δ -15.76 (d, J_{HP} = 25.2 Hz, 1H, Ru-*H*), 8.97 (br s, 1H, *H*COO), 9.16 (br s, 1H, bipyridine-*H*).

¹³C NMR (toluene-*d*₈): δ 158.76 (s, bipyridine-*C*), 172.58 (s, H*C*OO).

Figure 4.12. ¹H NMR Spectrum of 13: Reaction of 10 with FA

Figure 4.13. gHSQCAD Spectrum of **13**: Reaction of **10** with FA. Experimental details: Band selected: 140-180 ppm, $J_{CH} = 220$ Hz.

II. Reaction of 10 with CO_2 and H_2

In an N₂-atmosphere dry box, **10** (2.5 mg, 5.6 μ mol) and 0.45 mL of toluene-*d*₈ were added to a J-young tube. The solution was frozen in LN₂, the N₂ atmosphere was removed, the tube was sealed while the solution thawed, and 1 bar H₂/CO₂ (4:1) was then introduced. An initial ¹H NMR spectrum was acquired at room temperature revealing two Ru-H species (Ru–H peaks: –15.76 ppm, br d; –16.52 ppm, br s) where all of the peaks were broad. The tube was then heated to 45 °C in the NMR instrument and cooled back down to room temperature where a dark brown dark precipitate had formed. The complex that remained in solution is shown in Figure 4.14 in a ¹H NMR spectrum.

4.6 References

1. Huff, C. A.; Sanford, M. S. Cascade Catalysis for the Homogeneous Hydrogenation of CO₂ to Methanol. *J. Am. Chem. Soc.* **2011**, *133*, 18122.

2. Munshi, P.; Main, A. D.; Linehan, J. C.; Tai, C.-C.; Jessop, P. G. Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium Trimethylphosphine Complexes: The Accelerating Effect of Certain Alcohols and Amines. J. Am. Chem. Soc. **2002**, *124*, 7963.

3. For catalytic results: Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Efficient Homogeneous Catalytic Hydrogenation of Esters to Alcohols. *Angew. Chem., Int. Ed.* **2006**, *45*, 1113; (b) For synthetic procedure: Zhang, G.; Leitus, Y.; Milstein, Ben-David, Y.; Milstein, D. Facile Conversion of Alcohols into Esters and Dihydrogen Catalyzed by New Ruthenium Complexes. J. Am. Chem. Soc. **2005**, *127*, 10840.

4. CO₂ hydrogenation to formic acid and/or formate salt: (a) Schaub, T.; Paciello, R. A. A Process for the Synthesis of Formic Acid by CO₂ Hydrogenation: Thermodynamic Aspects and the Role of CO. *Angew. Chem. Int. Ed.* **2011**, *50*, 7278; (b) Wesselbaum, S.; Hintermair, U.; Leitner, W. Continuous-Flow Hydrogenation of Carbon Dioxide to Pure Formic Acid using an Integrated scCO₂ Process with Immobilized Catalyst and Base. *Angew. Chem. Int. Ed.* **2012**, *51*, 8585; (c) Zhang, Z.; Xie, Y.; Li, W.; Hu, S.; Song, J.; Jiang, T.; Han, B. Hydrogenation of Carbon Dioxide is Promoted by a Task-Specific

Ionic Liquid. Angew. Chem. Int. Ed. 2008, 47, 1127; (d) Leitner, W. Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO. Angew. Chem. Int. Ed. 1995, 34, 2207; (e) Jessop, P. G.; Ikariya, T.; Noyori, R. Homogeneous Hydrogenation of Carbon Dioxide. Chem. Rev. 1995, 95, 259; (f) Jessop, P. G. Homogeneous Hydrogenation of Carbon Dioxide. In Handbook of Homogeneous Hydrogenation; Wiley-VCH: Weinheim, Germany, 2007; p 489; (g) Jessop, P. G.; Joo, F.; Tai, C.-C. Recent Advances in the Homogeneous Hydrogenation of Carbon Dioxide. Chem. Rev. 2004, 248, 2425; (h) Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent Advances in Catalytic Hydrogenation of Carbon Dioxide. Chem. Soc. Rev. 2011, 40, 3703; (i) Jeletic, M. S.; Mock, M. T.; Appel, A. M.; Linehan, J. C. A Cobalt-Based Catalyst for the Hydrogenation of CO₂ under Ambient Conditions. J. Am. Chem. Soc. Article, 2013, 135, 11533; (j) Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Low-Pressure Hydrogenation of Carbon Dioxide Catalyzed by an Iron Pincer Complex Exhibiting Noble Metal Activity. Angew. Chem. Int. Ed. 2011, 50, 9948.

5. Werkmeister, S.; Junge, K.; Beller, M. Catalytic Hydrogenation of Carboxylic Acid Esters, Amides, and Nitriles with Homogeneous Catalyisis. *Org. Process Res. Dev.* **2014**, *18*, 289.

6. Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic Hydrogenation of Carbon Dioxide using Ir(III)-Pincer Complexes. J. Am. Chem. Soc. **2009**, 131, 14168.

7. Computational studies on similar systems suggest that the most likely mechanism involves Ru bound to a tridentate pincer ligand (instead of featuring hemilabity of the pincer ligand). See also ref 8.

8. (a) For a computational study on CO_2 hydrogenation with **1** see: Li, J.; Yoshizawa, K. Catalytic Hydrogenation of Carbon Dioxide with a Highly Active Hydride on Ir(III)-Pincer Complex: Mechanism for CO_2 Insertion and Nature of Metal-Hydride Bond. *Bull. Chem. Soc. Jpn.* **2011**, *84*, 1039; (b) For a computational study on hydrogenation of dimethyl carbonate with **2** see: Yang, X. *ACS Catal.* **2012**, *2*, 964.

9. In Chapter 3 (Scheme 3.14) **2** was treated with H_2 and CO_2 at 120 °C, whereby a reverse in selectivity for **5**:6 was observed with <5% yield of **5** and 95% yield of **6**. These data demonstrate that temperature plays an important role in the product distribution for this transformation.

10. For analagous FePNP complex see: Zell, T.; Butschke, B.; Ben-David, Y.; Milstein, D. Efficient Hydrogen Liberation from Formic Acid Catalyzed by a Well-Defined Iron Pincer Complex under Mild Conditions. *Chem. Eur. J.* **2013**, *19*, 8068.

11. For details on the synthesis and characterization of **6**: Huff, C. A.; Kampf, J. W.; Sanford, M. S. Role of a Noninnocent Pincer Ligand in the Activation of CO_2 at (PNN)Ru(H)(CO). *Organometallics* **2012**, *31*, 4643.

12. For binding of CO₂ at a related RuPNP complex see: Vogt, M.; Gargir, M.; Iron, M. A.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. A New Mode of Activation of CO₂ by Metal-Ligand Cooperation with Reversible C-C and M-O Bond Formation at Ambient Temperature. *Chem. Eur. J.* **2012**, *18*, 9194.

13. For binding of other carbonyl compounds at **2** see: Huff, C. A.; Kampf, J. W.; Sanford, M. S. Reversible Carbon-Carbon Bond Formation between Carbonyl Comppounds and a Ruthenium Pincer Complex. *Chem. Commun.* **2013**, *49*, 7147.

14. Szmant, H. H. Organic Building Blocks of the Chemical Industry; Wiley: New York, 1989, p. 222.

15. Control reactions were performed to probe the direct hydrogenation of K_2CO_3 and KHCO₃ to HCOOK (*in the absence* of CO₂) catalyzed by **2**. It was determined that a TON of <5 for K_2CO_3 and 65 for KHCO₃ could be detected under the standard conditions "a" described in **Table 4.1**.

16. This value assumes that both K_2CO_3 and KHCO₃ can act as bases in the reaction.

17. (a) Federsel, C.; Ziebart, C.; Jackstell, R.; Baumann, W.; Beller, M. Catalytic Hydrogenation of Carbon Dioxide and Bicarbonates with a Well-Defined Cobalt Dihydrogen Complex. *Chem. Eur. J.* **2012**, *18*, 72; (b) Federsel, C.; Boddien, A.; Jackstell, R.; Jennerjahn, R.; Dyson, P. J.; Scopelliti, R.; Laurenczy, G.; Beller, M. A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides. *Angew. Chem. Int. Ed.* **2010**, *49*, 9777; (c) Ziebart, C.; Federsel, C.; Anbarasan, P.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Beller, M. Well-Defined Iron Catalyst for Improved Hydrogenation of Carbon Dioxide and Bicarbonates. *J. Am. Chem. Soc.* **2012**, *134*, 20701.

18. In all cases, the TOF was calculated using the number of turnovers of formate detected at \sim 35% conversion. The time required to reach \sim 35% conversion varied with the catalyst and conditions. Importantly, 35% conversion represents 35% of the maximum observed conversion rather than 35% of the maximum possible conversion.

19. Alternative structures for **8** and **9** involve dissociation of the hemilabile NEt_2 arm, where the anionic oxygen tethered to the ligand could then coordinate to the Ru metal center. However, we cannot determine which structure is the preferred one given our data.

20. The product was isolated in 89% yield, but the isolated material contained $\sim 10\%$ of starting material **6** (presumably generated by protonation).

21. The low yield is thought to be due to the water sensitivity of 7.

22. (a) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. Homogeneous Catalysis in Supercritical Fluids: Hydrogenation of Supercritical Carbon Dioxide to Formic Acid, Alkyl Formates, and Formamides. *J. Am. Chem. Soc.* **1996**, *118*, 344; (b) Kröcher, O.: Köppel, R. A.; and Baiker, A. Highly Active Ruthenium Complexes with Bidentate Phosphine Ligands for the Solvent-Free Catalytic Synthesis of *N*,*N*-Dimethylformamide and Methyl Formate. *Chem. Commun.* **1997**, 453.

23. (a) For complex **10**: Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D. Direct Hydrogenation of Amides to Alcohols and Amines under Mild Conditions. *J. Am. Chem. Soc.* **2010**, *132*, 16756; (b) for analogue of **10**: Barrios-Francisco, R.; Balaraman, E.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J. W.; Milstein, D. PNN Ruthenium Pincer Complexes Based on Phosphinated 2,2'-Dipyridinemethane and 2,2'-Oxobispyridine. Metal-Ligand Cooperation in Cyclometalation and Catalysis. *Organometallics* **2013**, *32*, 2973.

24. For **12**: John, J. M.; Bergens, S. H. A Highly Active Catalyst for the Hydrogenation of Amides to Alcohols and Amines. *Angew. Chem. Int. Ed.* **2011**, *50*, 10377.

25. Núñez Magro, A. A.; Eastham, G. R.; Cole-Hamilton, D. J. The Synthesis of Amines by the Homogeneous Hydrogenation of Secondary and Primary Amides. *Chem. Commun.* **2007**, 3154.

26. Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Efficient Hydrogenation of Organic Carbonates, Carbamates and Formates Indicates Alternative Routes to Methanol Based on CO₂ and CO. *Nature Chemistry* **2011**, *3*, 609.

27. For catalytic results with **11**: Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.; Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Catalytic Hydrogenation of Esters. Development of an Efficient Catalyst and Processes for Synthesising (R)-1,2-Propanediol and 2-(l-Menthoxy)ethanol. *Org. Process Res. Dev.* **2012**, *16*, 166.

28. (a) Dub, P. A.; Ikariya, T. Catalytic Reductive Transformations of Carboxylic and Carbonic Acid Derivatives Using Molecular Hydrogen. *ACS Catal.* **2012**, *2*, 1718. (b) Greenberg, A.; Chiu, Y.-Y.; Johnson, J. L.; Liebman, J. F. The Resonance Energy of Amides, the Structure of Aziridinone, and Its Relationship to Other Strained Lactams. *Structural Chemistry* **1991**, *2*, 117.

29. An additional difference in reaction conditions between Table 4.4 and the reported procedure is that 4 mol% of strong base $KN[(SiCH_3)_3Si]_2NK$ was required for appreciable turnover.

30. This peak likely corresponds to Ru-CO₂ adduct on the P-side of 10. ¹H NMR spectrum of 10 treated with CO₂ in THF- d_8 provided a spectrum with broad peaks, and a broad s at -16.83 ppm.

31. Peaks in ¹H NMR spectrum at 45 °C were very broad.

32. At the end of the reaction (after heating to 80 °C), no FA was observed in the spectrum, and instead H₂ was present. This indicates that **10** acts as a catalyst to facilitate the decomposition of FA into H₂ and CO₂. See the following for a review on similar reports of catalytic decomposition of FA: Loges, B.; Boddien, A.; Gärtner, F.; Junge, H.; Beller, M. Catalytic Generation of Hydrogen from Formic Acid and its Derivatives: Useful Hydrogen Storage Materials. *Top. Catal.* **2010**, *53*, 902.

33. Excerpts of Chapter 4 reprinted with permission from Huff, C. A.; Sanford, M. S. Catalytic CO₂ Hydrogenation to Formate by a Ruthenium Pincer Complex. *ACS Catal.* **2013**, *3*, 2412. Copyright 2013. American Chemical Society.

34. Mainz, V. V.; Andersen, R. A. Preparation of $RuCH_2PMe_2(PMe_3)_3Cl$, $Ru(CH_2PMe_2)_2(PMe_3)_2$, and $Rh_2(CH_2PMe_2)_2(PMe_3)_4$ and Their Reactions with Hydrogen. *Organometallics* **1984**, *3*, 675

35. Young, R.; Wilkinson, G. 85. Dihydrotetrakis(triphenylphosphine)-Ruthenium(II) *Inorg. Synth.* **1990**, *28*, 337.

CHAPTER 5

Cascade Homogeneous and Heterogeneous Catalysis for the Hydrogenation of Carbon Dioxide to Methanol

5.1 Introduction

Anthropogenic CO_2 emissions have begun to offset the natural carbon cycle and are a significant contributing factor to global warming and climate change.¹ For this reason, mitigating CO_2 emissions is an important challenge to be faced in coming decades as the global population continues to grow. One approach to reducing atmospheric CO_2 concentrations is to use abundantly available CO_2 as a C1 building block to synthesize more valuable commodity chemicals. An example of a desirable target commodity chemical is methanol, which has a current global demand of 30 million metric tonnes and serves as an important chemical feedstock,² as well as a potential gasoline replacement.³ Methanol is currently produced from methane-derived synthesis gas (syngas), or CO and H₂, from which the synthesis (equation 1) requires elevated temperatures (220–270 °C) and pressures (50–100 bar) with a Cu/Al₂O₃/ZnO heterogeneous catalyst.⁴ However, there is also precedent for synthesizing CH₃OH from CO₂ and H₂ (equation 2) using similar Cu catalysts. A pilot plant scale operation for CO₂ hydrogenation to CH₃OH was established using the heterogeneous catalyst Cu/Al₂O₃/ZnO/ZrO₂/Ga₂O₃ at 250 °C, thus demonstrating the viability for this process.⁵

$$CO + 2H_2 \rightarrow CH_3OH$$
 (1)

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$
 (2)

Examining the thermodynamics of equation 2, reveals that this reaction is entropically disfavored with $\Delta S^{\circ} = -97.8$ calmol⁻¹K⁻¹. Operating at high temperatures with

a negative entropy of a reaction magnifies a negative T Δ S term, thus disfavoring the overall reaction, where $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$ and $\Delta G^{\circ} = 0$ at 47 °C. This negative affect on the reaction can further be demonstrated by considering the equilibrium constant at 250 °C where $K_{eq} = 1 \times 10^{-8}$. Therefore, it is desirable to conduct this reaction at lower temperatures in order to achieve an overall higher theoretical yield of methanol. However, reducing the reaction temperature below 220 °C is kinetically undesirable when using reported heterogeneous catalysts and results in low reaction rates.⁴

In order to address this challenge, we implemented homogeneous catalysis for this reaction, where this system operates at lower reaction temperatures. The cascade system shown in Scheme 5.1 is the first example demonstrating homogeneously catalyzed hydrogenation of CO₂ to CH₃OH. Multiple homogeneous catalysts are employed, where a combination of **A-1**, **B-1**, and **C-1** were most successful operating at 135 °C.⁶ The first step entails conversion of CO₂ to formic acid (FA) using catalyst **A** (step i). This step is followed by an exothermic esterification reaction catalyzed by **B** (step ii), forming a formate ester. The ester is hydrogenated using catalyst **C** and H₂ to CH₃OH and the corresponding ester-derived alcohol (ROH, step iii). Using this system, a TON (turnover number) of 25 was obtained for CH₃OH.

Scheme 5.1. Cascade System for CO₂ Conversion to CH₃OH

Employing homogeneous catalysts for this reaction provided a route to low temperature CH₃OH synthesis; however, a major challenge for this cascade system was catalyst and reaction component incompatibilities (e.g. C-1 with CO₂).⁷ In an attempt to address this incompatibility, heterogeneous catalysts were considered for substitution into the cascade system. The primary limitation for using heterogeneous catalysts at low temperatures is the rate of the reaction is substantially reduced. To overcome sluggish reaction rates: i) the rate-determining step was identified for the heterogeneous catalyst, ii) a homogeneous catalyst capable of performing the rate determining step at low temperatures was selected; and iii) the homogeneous and heterogeneous catalysts were combined to perform catalysis in tandem (Scheme 5.2). Using this approach, a variety of homogeneous and heterogeneous catalysts were tested together in this cascade system. Furthermore, an added benefit of this approach is that new chemical pathways otherwise not feasible using solely homogeneous catalysts are now available. For example, direct hydrogenation of FA to formaldehyde (Scheme 5.1 step iib) using homogeneous catalysts is not known; however, this reactivity has been demonstrated at heterogeneous Cu surfaces.8 Hydrogenation of formaldehyde to CH3OH (step iiib) would complete the cycle, where both homogeneous and heterogeneous systems are precedented for the transformation.

Scheme 5.2. Cascade Homogeneously and Heterogeneously Catalyzed Conversion of CO₂ to CH₃OH

$$CO_{2} + H_{2} \xrightarrow{\text{Homo}} Hetero$$

$$ROH \xrightarrow{\text{ROH}} CH_{3}OH + H \xrightarrow{\text{O}} OH$$

$$Low Temperature$$

5.2 Literature Reported Heterogeneous Catalysts for CO₂ Hydrogenation to CH₃OH

Commercially available heterogeneous Cu catalysts reported for CO_2 and formate ester hydrogenation were evaluated for the cascade conversion of CO_2 to CH_3OH at 135 °C, using ethanol (EtOH) as solvent, 10 bar CO_2 , and 30 bar H_2 . This work was conducted in collaboration with Yuan Chen, a graduate student in UM Chemical Engineering. Yuan prepared all of the heterogeneous catalysts for these studies. Prior to use, the commercial heterogeneous materials were reduced from Cu–O to Cu⁹ through treatment with H₂ at elevated temperatures (between 200–210 °C). Furthermore, in order to calculate the turnover number (TON) when using a heterogeneous catalyst, a value representing the number of active sites for each catalyst was required. These values were estimated for each catalyst using CO or N₂O uptake studies.¹⁰

As shown in Table 5.1, $Cu/Al_2O_3/ZnO$ (Cu/Al/ZnO), an analogous material to that used industrially to produce CH₃OH from syngas, yielded a TON of just 2 for the conversion of CO₂ to CH₃OH at 135 °C (entry 1). This is likely due to reduced kinetics at this lower temperature. Cu₂Cr₂O₄ has been demonstrated as a hydrogenation catalyst for formate esters¹¹ and CO₂¹² and was shown to yield 33 turnovers for CH₃OH and 24 turnovers of ethyl formate (EF) under the reaction conditions (entry 2). To test if steps iib and iiib (Figure 5.1) were operative, EtOH was removed from the system and dioxane was instead used as the reaction solvent. Under these conditions, a TON of just 8 was obtained (entry 3), indicating that ethyl formate is likely an important intermediate in this system.

Table 5.1. Hydrogenation of CO₂ to CH₃OH with Commercially Available Cu Catalysts

$CO_2 + H_2 \xrightarrow{Cu Cat. (0.0126 \text{ mmol})} CH_3OH + H \cup OE$					
10 ba	r 30 bar	, 105 0, 10			OLI
Entry ^a	Catalyst	Active Sites ^b (mmol/g)	Modified Conditions	TON CH ₃ OH	TON EF
1	33 wt% Cu/Al/ZnO	0.133		2	5
2 ^{<i>c</i>}	36 wt% Cu ₂ Cr ₂ O ₄	0.053		33	24
3	36 wt% $Cu_2Cr_2O_4$	0.053	dioxane	8	n/a

^a Conditions: CO₂ (10 bar), H₂ (30 bar), **Cu catalyst** (0.0126 mmol active sites), EtOH (1.5 mL), 135 °C, 16 h; ^bActive sites per volume of weight of material approximated through surface CO adsorption studies; ^cDioxane (1.5 mL) was used instead of EtOH.

5.3 Tandem Homogeneous and Heterogeneous Catalysis

Homogeneous catalysts shown in Figure 5.1 were previously tested as catalysts for the homogeneously catalyzed cascade hydrogenation system (Figure 5.1). Ru and Fe complexes/systems A-1–A-3 have been reported to catalyze the conversion of CO_2 to FA

and formate esters (step i and step i/ii),¹³ **B-1** and **B-2** are both effective at catalyzing the conversion of FA to EF (step ii)¹⁴, and **C-1** and **C-2** have been demonstrated as catalysts for both step i¹⁵ and step iii¹⁶. A variety of combinations of these homogeneous catalysts were tested herein with different heterogeneous catalysts in the cascade CO_2 hydrogenation system. Again, the heterogeneous catalysts were prepared by Yuan Chen in UM Chemical Engineering.

Figure 5.1. Homogeneous Catalysts for Application to the Cascade System

5.3.1 Commercial Heterogeneous Cu Catalysts

Cu/Al/ZnO performed poorly for hydrogenation of CO₂ to CH₃OH, yielding just 4 turnovers for CH₃OH under the standard reaction conditions (Table 5.1, entry 1). Thus homogeneous catalysts were introduced to determine if a synergistic effect could be obtained. Hypothesizing that the slow step for this catalyst is formation of EF, **A-1** was introduced into the reaction conditions. Production of EF significantly increased (Table 5.2, entry 1, TON = 55 vs TON = 5 in Table 5.1, entry 1) when including this CO₂ hydrogenation catalyst; however, conversion to CH₃OH was still low. To address this, ester hydrogenation catalyst **C-1** was added along with **A-1**; however, this resulted in a decrease in the amount of EF formed in the reaction and yielded no increase in CH₃OH generation (entry 2). The combination of **C-1** and **Cu/Al/ZnO** provided the highest TON for CH₃OH at 6; however, catalyst incompatibility does still seem to be an issue, as demonstrated by reduced turnover for EF (entry 3). **Cu₂Cr₂O₄** was also tested with **A-1** (entry 4) and C-1 (entry 5), but in both cases reduced yields of CH_3OH and EF were observed compared with the unaided heterogeneous catalyst.

<u> </u>	Homo. (Cu Ca	Cat. (0.0126 mmol) t. (0.0126 mmol)		, O	
002 -	EtO	H, 135 °C, 16 h	СПЗОН	тн∕то	Ξt
10 bar	30 bar				
Entry ^a	Homogeneous Catalyst(s)	Heterogeneous Catalyst	TON CH₃OH	TON EF	
1	A-1	33 wt% Cu/Al/ZnO	<1	55	
2	A-1/C-1	33 wt% Cu/Al/ZnO	<1	16	
3	C-1	33 wt% Cu/Al/ZnO	6	25	
4	A-1	36 wt% Cu ₂ Cr ₂ O ₄	<1	32	
5 ^b	C-1	36 wt% Cu ₂ Cr ₂ O ₄	2	39	

Table 5.2. Tandem Homogenous and Heterogeneous Catalysis: Commercial Cu Catalysts

^{*a*} Conditions: CO₂ (10 bar), H₂ (30 bar), **Cu catalyst** (0.0126 mmol active sites), **A-1**, **B-1**, and/or **C-1** (0.0126 mmol), EtOH (1.5 mL), 135 °C, 16 h. ^{*b*}A separate batch of $Cu_2Cr_2O_4$ was used for this entry.

5.3.2 Mo₂C Supported Metal Catalysts

Commercial Cu supported heterogeneous catalysts do show activity at lower temperatures (135 °C); however, they are prone to deactivation by components of homogeneous systems. Therefore, we aimed to identify heterogeneous catalysts that would be less prone to deactivation. Molybdenum carbide supported catalysts have been demonstrated to be catalytically active for hydrogenolysis reactions,¹⁷ and furthermore have been reported to be more tolerant of catalyst poisons like H₂S when compared with the Al₂O₃ supported analogue in the Ni catalyzed hydrogenation of arenes.¹⁸

CuMo₂C was prepared and evaluated for CO₂ conversion to CH₃OH.¹⁹ A turnover number²⁰ of 13 was observed for CH₃OH and 6 for EF under our standard conditions at 135 °C (Table 5.3, entry 1). A variety of different homogeneous catalysts and systems for step i were tested (entries 2–4), where **A-1** resulted in an increase in yield for CH₃OH with a TON = 16, accompanied by an increased turnover of EF (entry 2). It was previously demonstrated that combining **A-1** with **B-1** or **B-2** under similar conditions provided significant quantities of formate ester;⁶ however, when tested in this system, reduced turnovers were observed (entries 5 and 7). In particular, **B-1** (Sc(OTf)₃)

significantly reduced catalytic activity. To address potential Cu deactivation by Sc, a solid supported $Sc(OTf)_3$ was tested. While the deactivation was reduced, the overall yield did not improve (entry 6). C-1 and C-2 yielded similar activity to that of the CuMo₂C alone (entries 8 and 9). Overall, moderate improvement in TON was observed when combining A-1 with CuMo₂C. Promisingly, minimal deactivation of the heterogeneous catalyst was observed when treating CuMo₂C with a number of homogeneous catalysts.

CO ₂ 10 bar	4 H ₂ 30 bar	imol) mmol) > CH ₃ (h	CH + H		
	Entry ^a	Homogeneous Catalyst(s)	TON CH₃OH	TON EF	
	1		13	6	
	2	A-1	16	13	
	3	A-2	4	2	
	4	A-3	3	2	
	5	A-1 / B-1	4	11	
	6 ^{<i>b</i>}	A-1 / B-1 Polymer	10	14	
	7 <i>°</i>	B-2	12	7	
	8	C-1	12	8	
	9	C-2	13	6	

Table 5.3 . Ta	ndem Homogenoi	is and CuMo ₂	C Ca	atalysis
-----------------------	----------------	--------------------------	------	----------

^a Conditions: CO_2 (10 bar), H_2 (30 bar), **Cu catalyst** (0.0126 mmol active sites), **A**, **B**, and/or **C** (0.0126 mmol), EtOH (1.5 mL), 135 °C, 16 h. ^b0.5-1.5 mmol/g Sc(OTf)₃ on 30-60 mesh; ^c115 equiv. **B-2**.

It has been reported that native Mo₂C itself is reactive, where carbides can spontaneously oxidize in the presence of O_2 ,²¹ so as a control study the catalytic activity of **Mo₂C** was tested for this reaction. Interestingly, the Mo₂C native support was highly active under the reaction conditions, yielding a TON = 31 for CH₃OH (Table 5.4, entry 1). However, upon adding **A-1** to improve generation of EF, substantial catalyst poisoning was observed (entry 2). Upon testing other metal supported Mo₂C catalysts, Pd supported Mo₂C¹⁹ was found to yield similar activity to **Mo₂C** (entry 3). Further compatibility tests with a variety of homogeneous catalysts, aimed at promoting steps i and iii of the cascade system, still gave rise to catalyst poisoning (entries 4–7), albeit to a lesser degree than what was observed with Mo_2C . The most successful combination of catalysts was $PdMo_2C$ with A-1 (entry 4) or with C-1 (entry 6), providing TONs of 21 and 22 for CH₃OH, respectively.

<u> </u>	0				
10 h	$_{2} + \Pi_{2} - $	EtOH, 135 °C, 16 h		⁺ H ^{//}	DEt
0.01	ar 30 bar				
Entry ^a	Homogeneous Catalyst(s)	Heterogeneous Catalyst	Modified Conditions	TON CH ₃ OH	TON EF
1		Mo ₂ C (untreated)		31	8
2	A-1	Mo ₂ C (untreated)		7	9
3 ^b		6 wt% PdMo ₂ C		31	7
4	A-1	6 wt% PdMo ₂ C		21	9
5	A-2	6 wt% PdMo ₂ C		9	4
6	C-1	6 wt% PdMo ₂ C		22	10
7	C-2	6 wt% PdMo ₂ C		18	10

Table 5.4. Tandem Homogenous and Heterogeneous Catalysis: Commercial Cu Catalysts

^a Conditions: CO₂ (10 bar), H₂ (30 bar), **Mo₂C** or **PdMo₂C** (0.01 mmol active sites), **A** or **C** (0.01 mmol), EtOH (1.5 mL), 135 °C, 16 h.

5.4 Additional Experiments

5.4.1 Influence of Supplemental Cascade Intermediate on CO₂ Hydrogenation

Promising data was obtained when combining a homogeneous catalyst for step i with a heterogeneous function as a catalyst for steps ii and iii (e.g. Table 5.2, entry 3 and Table 5.3, entry 2). To obtain a better understanding of the influence that significantly increased rates of FA or EF production would have on the reaction, a study was conducted where these cascade intermediates (FA and EF) were added to a heterogeneously catalyzed reaction. With **CuMo₂C** as the catalyst, 100 equivalents of FA was added at the onset of the reaction, and a TON of 32 for CH₃OH and 14 for EF was observed (Table 5.5, entry 1). Importantly, the equilibrium for the reaction of catalyst with FA lies far towards CO₂; thus as expected as approximately 60% of the FA added underwent decarboxylation to form CO₂ and H₂.²² Further testing the influence of adding EF at the onset of the reaction, provided 83 turnovers for CH₃OH and 27 turnovers for EF (entry 2). Likewise, this experiment was repeated with Mo₂C and similar results were

obtained (entry 3, TON = 92 for CH₃OH). These results indicate that formation of EF during cascade catalysis largely influences the yield of CH₃OH, and that if more EF could be produced at a faster rate under catalytic conditions, the potential yield of CH₃OH is high.

Table 5.5. Hydrogenation of CO₂ to CH₃OH with **CuMo₂C**: Affect of Cascade Intermediate

<u> </u>	. ц	Het. Cat. (0.0126 mmol) cascade intermediate (1.26 mmol)			0	
10 bar	+ п ₂ 30 ba	EtOH, 13	EtOH, 135 °C, 16 h		H + H	OE
	Entry ^a	Heterogeneous Catalyst	Cascade Intermediate	TON CH ₃ OH	TON EF	
	1	6 wt% CuMo ₂ C	FA	32	14	
	2	6 wt% CuMo ₂ C	EF	83	27 ^b	
	3	Mo ₂ C (untreated)	EF	92	12 ^b	

^a Conditions: CO_2 (10 bar), H_2 (30 bar), $CuMo_2C$ (42 mg, 0.0126 mmol), EtOH (1.5 mL), FA or EF (1.26 mmol, 100 equiv. relative to CuMo₂C), 135 °C, 16 h; ^bRepresents summation of EF produced in the reaction and recovered EF.

5.5 Potential Deactivation Modes for Mo₂C Heterogeneous Catalysts

The primary limitation to combining homogeneous and heterogeneous catalysis for the CO_2 hydrogenation to CH_3OH , is catalyst incompatibility. In order to understand potential deactivation pathways, the heterogeneous catalyst was collected and examined after the tandem homogeneously/heterogenously catalyzed reaction was complete. Through ICP (inductively coupled plasma) analysis of the atomic composition of the material, insight into modes of deactivation at the heterogeneous active sites could be evaluated.

After washing the residue recovered from the Mo_2C and A-1 catalyzed reaction (Table 5.4, entry 2) with THF (tetrahydrofuran), to remove any residual homogeneous catalyst, ICP analysis was conducted. As shown in Table 5.6, 7 µmol of P and 1 µmol Ru were deposited on the heterogeneous catalyst surface during the reaction (entry 1). Considering that the Mo_2C catalyst used in this reaction contains 10 µmol of active sites, 70% of these sites are potentially poisoned by the homogeneous PMe₃ ligand. Similarly, the combination of PdMo₂C with A-1 (Table 5.4, entry 4) yielded significant P adsorption (entry 2, 6 μ mol P), but demonstrated less deposition of Ru compared with **Mo₂C**. We anticipated that the binding of P to the heterogeneous surface would be reduced using C-1 since the tridentate pincer ligand is expected to be less prone to dissociation from the Ru metal center compared with monodentate PMe₃ ligands. Furthermore, the *tert*-butyl substitution provides a bulkier and less nucleophilic P. Indeed, upon combining PdMo₂C with C-1 (Table 5.4, entry 6), just 1 μ mol P was adsorbed to the surface; however, 1 μ mol Ru still deposited on the catalyst surface (entry 3). Based on the data inferred from ICP analysis, it appears that both phosphines and Ru could be the source of deactivation of Mo₂C and metal supported Mo₂C heterogeneous catalysts, although P poisoning can be attenuated through the use of bulky multidentate phosphine ligands. Further studies will be required to deconvolute the specific deactivation roles of each Ru and P.

Table 5.6. ICP Analysis for Determination of Mechanism for Heterogeneous Catalyst

 Deactivation

C	Mo	Homo. Cat. (0.01 m ₂ C or PdMo ₂ C (0.01	mol) mmol)		. 0	
10	$O_2 + H_2 - $ bar 30 bar	EtOH, 135 °C, 16	h	СН3ОН	+ н Д	`OEt
Entry ^a	Homogeneous Catalyst	Heterogeneous Catalyst	%Ru	µmol Ru	%P	µmol P
1	A-1	Mo ₂ C (untreated)	12	1	17	7
2	A-1	6 wt% PdMo ₂ C	4	<1	14	6

^a Conditions: CO₂ (10 bar), H₂ (30 bar), **Mo₂C** or **PdMo₂C** (0.01 mmol active sites), **A-1** or **C-1** (0.01 mmol), EtOH (1.5 mL), 135 °C, 16 h. Note: Percentages of P and Ru are calculated relative to the amount of Mo detected and are represented as a fraction of the total atom added at the onset of the reaction.

5.6 Conclusions and Outlook

The feasibility of combining homogeneous and heterogeneous catalysts together for low-temperature cascade hydrogenation of CO_2 to CH_3OH was demonstrated. Commercially available Cu catalysts like $Cu/Al_2O_3/ZnO$ and $Cu_2Cr_2O_4$ were shown to be more prone to poisoning by homogeneous catalysts compared with metal supported XMo_2C catalysts (X = Cu or Pd). Overall, catalyst incompatibilities between homogeneous and heterogeneous components of the system remain the primary limitation to this system.

Moving forward, evaluating poisoning of heterogeneous catalysts by homogeneous ligands and metals will provide a better understanding of the general tolerance of the heterogeneous catalyst toward homogeneous systems and reduce superfluous catalyst synthesis. Some ligands and metals that are of particular interest, due to their frequent use in hydrogenation catalysis, are shown in Figure 5.2. Additionally, increasing ethyl formate production in the cascade system was demonstrated to greatly increase the TON for CH₃OH. Therefore, other homogeneous and heterogeneous catalysts for steps i and ii will be considered.

Ru, Ir, Rh, Fe sources

Figure 5.2. Potential Homogeneous Ligands and Metal Sources for Application in the Tandem Homogeneous/Heterogeneously Catalyzed System. R = Alkyl Group

5.7 Experimental Procedures and Characterization of Data

General Procedures

NMR spectra were obtained on a Varian VNMRs 500 MHz (499.90 MHz for ¹H; 125.70 MHz for ¹³C) spectrometer. Chemical shifts were referenced to an internal standard (tetramethylsilane for ¹H). All high-pressure reactions were carried out using a Parr Model 5000 Multiple Reactor system that includes six 50 mL vessels equipped with flat-gaskets and head mounting valves. The system was operated with a 4871 process controller and SpecView version 2.5 software. A Swagelok SS Medium-Flow metering valve was used during the collection of volatile products from the pressurized reaction vessels. ICP-OES data was obtained on a Perkin-Elmer Optima 2000 DV or a Varian 710-ES analyzer with Winlab software. A quartz flow-through reactor with a mass flow controller was used to reduce and synthesize heterogeneous materials. X-ray diffraction (XRD, Miniflex 600) was utilized to determine the phases of the reduced catalysts. Surface areas (BET) were measured using N₂ physisorption equipped with Micromeritics ASAP 2010 analyzer.

Materials and Methods

All experiments were conducted under an oxygen-free atmosphere in either a glovebox or using Schlenk line technique, and all liquids were degassed using three freeze-pump-thaw cycles. $Ru(PMe_3)_4(OAc)Cl (A-1)_2^{23} Ru(dppe)_2Cl_2 (A-2)_2^{24} (PNN)Ru(H)(CO) (C-1)_2^{25}$ Mo_2C ,¹⁹ Cu Mo_2C ,¹⁹ and Pd Mo_2C ¹⁹ were prepared according to a literature procedure. All the heterogeneous samples were used stored and transferred in an oxygen/moisture free environment after the pretreatment and were degassed (< 5 mm Hg) at elevated temperature for 4 hours (Cu-based commercial catalysts at 200 °C and Mo₂C-based catalysts at 350 °C) prior to the BET measurements. Dry carbon dioxide (99.8%) and ultra high purity hydrogen (99.999%) were purchased from Metro Welding. Ethyl formate (Acros) was purified by distillation from P₂O₅. Scandium triflate, iron tetrafluoroborate hexahydrate, and tris[2-(diphenylphosphino)ethyl]phosphine, and scandium triflate polymer-bound were purchased from Sigma Aldrich and used as is. Ethanol (VWR) was dried over magnesium turnings and triethylamine (Acros) was dried over CaH₂. DMSO-d₆ (Cambridge Isotopes Laboratories), N,N-dimethylformamide (Alfa Aesar, 99.8%), formic acid (Aldrich), anhydrous dioxane (Acros, 99%), and Carbonylchlorohydrido[bis(2-(diphenylphosphinoethyl)amino]ruthenium(II) or Ru-MACHO (C-2) (Strem) were used as is. CuO/Cr₂CuO₄ (62-64% Cr₂CuO₄, 22-24% CuO, 6% BaO, 0-4% Graphite, 1% CrO₃, 1% Cr₂O₃) was purchased from Strem and CuO/Al₂O₃/ZnO ("Megamax 700" 33 wt% Cu as determined by ICP analysis) was purchased from Süd-Chemie. ICP standards were purchased from the following vendors: Mo, Pd (GFS Chemicals), Ru (Fisher Scientific), Y (Ricca Chemicals), and P (Aldrich).

Experimental Details

I. Preparation and Characterization of Heterogeneous Catalysts

A. Reduction of Commercial Heterogeneous Cu Catalysts using H₂

CuO/Cr₂CuO₄ or CuO/Al₂O₃/ZnO were acquired commercially as pellets and were crushed and sieved to a particle size range of 125-250 μ m. 200 grams of powder was supported in a tubular quartz reactor with catalysts loaded on a quartz wool bed and placed in a vertical furnace. The powder was exposed to 4% H₂ in N₂ flowing at 50

mL/min where the temperature was ramped from 25 °C to 200 °C for Cu/Al₂O₃/ZnO and 210 °C for CuO/Cr₂CuO₄ at a rate of 4 °C/min. Once at 200 °C or 210 °C, the temperature was held for 4 hours. XRD (X-ray diffraction) analysis was used to verify that the CuO was completely reduced to metallic Cu. BET (Brunauer-Emmett-Teller) measurements were acquired to obtain surface area measurements and ICP analysis was conducted to determine the Cu composition (Note: these experiments were performed by Yuan Chen).

Entry ^a	Heterogeneous Catalyst	BET Surface Area (m ² /g)	Cu Composition (wt%)
1	Cu/Al/ZnO	59.6	32.6
2	Cu ₂ Cr ₂ O ₄	46.2	35.7
3	CuMo ₂ C	135.1	5.8
4	Mo ₂ C	150.8	<1

 Table 5.7. BET Analysis of Heterogeneous Catalysts

II. CO₂ Hydrogenation

A. Procedure for CO₂ Hydrogenation to CH₃OH

In an N₂-atmosphere dry box, a solution of homogeneous catalyst(s) (0.01 mmol, 1 equiv.) in 1.5 mL EtOH was added to a 30 mL glass liner containing heterogeneous catalyst (0.01 mmol, 1 equiv.) and a Teflon octagon magnetic stirbar (5/16 x 1/2 in.). Before inserting the liner into the well of the pressure vessel, 1.5 mL of EtOH was added to the well of the pressure vessel. The vessel was sealed and removed from the dry box, where it was pressurized with 10 bar CO₂ followed immediately by 30 bar H₂. The reaction was then heated at 135 °C (using Specview software, initial set temperature = 92 °C; this was done to prevent over-shooting the desired temperature) for 16 hours at a stir rate of 800 RPM (rotations per minute), and was then allowed to cool to room temperature. It was next slowly vented using a metering valve through a LN₂-cooled trap. Once the vessel reached atmospheric pressure, the trap was connected to a Schlenk line and the entire system was placed under vacuum, and the liquid contents of the pressure vessel were then collected in the trap. The trap was disconnected from the Schlenk line, and allowed to warm to room temperature. DMF (0.519 mmol, 40 µL, 52 equiv.) was added as an internal ¹H NMR standard and the contents of the trap were rinsed with DMSO- d_6 . 50 µL of this solution was then added to an NMR tube, and diluted with

DMSO- d_6 . The mixture was analyzed by ¹H NMR spectroscopy (see Figure 5.3). The error associated with these reactions is on the order of +/-5 TONs when using the same batch of heterogeneous catalyst and +/- 3 TONs between batches of heterogeneous catalyst.

Figure 5.3. Representative ¹H NMR spectrum for CO_2 Hydrogenation to CH_3OH . NMR experimental details: 10 s relaxation delay, 4 scans acquired, solvent suppression of EtOH solvent peaks.

B. ICP Analysis On Heterogeneous Catalysts

<u>ICP Sample Preparation</u>: The work-up described in section A above was performed on the tandem homogeneously/heterogeneously catalyzed reaction, where during the last step before disconnecting the trap from the schlenk line, the pressure vessel was filled with N_2 . The vessel was then opened in air and the solid residue remaining in the glass liner was quickly transferred to a 4 mL vial and immediately pumped into a N_2 atmosphere dry box. Once inside the dry box, the solid was washed with dry THF (3 x 3 mL) to remove any homogeneous catalyst from the residue. The material was removed from the glovebox and allowed to dry in air before approximately 4 mg of the solid material was digested with 1.5 mL of a 3:1 HCl:HNO₃ solution. An ytterium ICP standard (1 ppm) was added to the solution.

<u>Calibration Curve</u>: Varying concentrations of standard solutions of Y (internal standard), Mo, Ru, Pd, and P atoms were analyzed in order to generate calibration curves using the selected atomic spectral lines listed for each atom shown in Table 5.8. Note: the P spectral line at 213.617 nm is close to a spectral Mo line at 213.620 nm. In order to quantify any resulting interference, a 250 ppm sample of Mo (similar concentration to experimental samples that were analyzed) was analyzed for P. A concentration of 0.085 ppm for P was determined for this sample and the spectral interference may attribute 1– 4% error in the P yield calculation in the experimental samples.

	Concentration of Analyte (ppm)				
Calibration Sample	Y (371.029 nm)	Mo (202.031 nm)	Ru (240.272 nm)	Pd (340.458 nm)	P (213.617 nm)
Blank	1				
А	1	200	1	1	1
В	1	250	5	5	5
С	1	300	10	10	10

 Table 5.8. Concentration of Calibration Standards for ICP Analysis

<u>Determination of Atomic Concentrations</u>: Using the calibration curve, the concentration of each atom in the experimental sample could be determined. Assuming all Mo that was initially added was recovered at the end of the reaction, the molar ratio of Mo to Ru or P was quantified. Furthermore, the moles of Ru and P calculated can be compared with the initial moles of Ru and P added in the reaction in order to determine the percentage of each atom that adsorbed to the heterogeneous surface.

5.8 References

1. Prentice, I. C. The Carbon Cycle and Atmospheric Carbon Dioxide. In *Climate Change* 2001: The Scientific Basis. Cambridge University Press, 2001, pp. 183.

2. Methanol Utilisation Technologies. In *Methanol: The Basic Chemical and Energy Feedstock of the Future: Asinger's Vision Today.* Bertau, M.; Offermanns, H.; Plass, L.; Schmidt, F.; Wernicke, H.-J., Eds.; Wiley, 2014, pp. 327.

3. Olah, G. A.; Goeppert, A.; Prakash, G. K. S. Beyond Oil and Gas: The Methanol Economy. Weinheim: Wiley, 2006; pp 193.

4. Lee, S. Methanol Synthesis from Syngas. In *Handbook of Alternative Fuel Technologies*. CRC Press, 2007, pp 297.

5. Ushikoshi, K.; Moria, K.; Watanabe, T.; Takeuchi, M.; Saito, M. A 50 kg/day Class Test Plant for Methanol Synthesis from CO₂ and H₂. *Stud. Surf. Sci. Catal.* **1998**, *114*, 357.

6. Huff, C. A.; Sanford, M. S. Cascade Catalysis for the Homogeneous Hydrogenation of CO₂ to Methanol. *J. Am. Chem. Soc.* **2011**, *133*, 18122.

7. Huff, C. A.; Kampf, J. W.; Sanford, M. S. Role of a Noninnocent Pincer Ligand in the Activation of CO₂ at (PNN)Ru(H)(CO). *Organometallics* **2012**, *31*, 4643.

8. Weigel, J.; Koeppel, R. A.; Baiker, A.; Wokaun, A. Surface Species in CO and CO₂ Hydrogenation over Copper/Zirconia: On the Methanol Synthesis Mechanism. *Langmuir* **1996**, *12*, 5319.

9. Cu supported heterogeneous catalysts sold as Cu-O not reduced Cu. Cu–O is stable toward O₂, and thus safer and more stable to store and distribute.

10. For experiments determining the active sites for Cu heterogeneous material using CO or N₂O uptake experiments: (a) Cu/Al/ZnO: Schaidle, J. A.; Lausche, A. C.; Thompson, L. T. Effects of Sulfur on Mo₂C and Pt/Mo₂C Catalysts: Water Gas Shift Reaction. *J. Catal.* **2010**, *272*, 235; (b) Cu₂Cr₂O₄: Gormley, R. J.; Rao, V. U. S.; Soong, Y. Methyl Formate Hydrogenolysis for Low-Temperature Methanol Synthesis. *Appl. Catal. A-Gen.* **1992**, *87*, 81.

11. Evans, J. W.; Casey, P. S.; Wainwright, M. S.; Trimm, D. L.; Cant, N. W. Hydrogenolysis of Alkyl Formates over a Copper Chromite Catalyst. *Appl. Catal.* **1983**, 7, 31.

12. Ma, L.; Tran, T.; Wainwright, M. S. Methanol Synthesis from CO_2 using Skeletal Copper Catalyst Containing Co-Precipitated Cr_2O_3 and ZnO. *Top. in Catal.* **2003**, *22*, 295.

13. For catalytic results for step i: (a) **A-1**: Munshi, P.; Main, A. D.; Linehan, J. C.; Tai, C.-C.; Jessop, P. G. Hydrogenation of Carbon Dioxide Catalyzed by Ruthenium Trimethylphosphine Complexes: The Accelerating Effect of Certain Alcohols and Amines. *J. Am. Chem. Soc.* **2002**, *124*, 7963; (b) **A-2**: Kröcher, O.; Köppel, R. A.; Baiker,

A. Highly Active Ruthenium Complexes with Bidentate Phosphine Ligands for the Solvent-Free Catalytic Synthesis of *N*, *N*-Dimethylformamide and Methyl Formate. *Chem. Commun.* **1997**, 453; (c) **A-3**: Federsel, C.; et al. A Well-Defined Iron Catalyst for the Reduction of Bicarbonates and Carbon Dioxide to Formates, Alkyl Formates, and Formamides. *Angew. Chem., Int. Ed.* **2010**, *49*, 9777.

14. (a) **B-1**: Barrett, A. G. M.; Braddock, D. C. Scandium(III) or Lanthanide(III) Triflates as Recyclable Catalysts for the Direct Acetylation of Alcohols with Acetic Acid. *Chem. Commun.* **1997**, 351; (b) **B-2**: Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. Homogeneous Catalysis in Supercritical Fluids: Hydrogenation of Supercritical Carbon Dioxide to Formic Acid, Alkyl Formates, and Formamides. *J. Am. Chem. Soc.* **1996**, *118*, 344.

15. For catalytic results for step i: (a) C-1: Huff, C. A.; Sanford, M. S. Catalytic CO₂ Hydrogenation to Formate by a Ruthenium Pincer Complex. *ACS Catal.* **2013**, *3*, 2412; (b) C-2: see Chapter 4.3 of this dissertation.

16. For catalytic results for step iii: (a) C-1: Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Efficient Homogeneous Catalytic Hydrogenation of Esters to Alcohols. *Angew. Chem., Int. Ed.* 2006, 45, 1113; (b) C-2: Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.; Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Catalytic Hydrogenation of Esters. Development of an Efficient Catalyst and Processes for Synthesising (R)-1,2-Propanediol and 2-(1-Menthoxy)ethanol. *Org. Process Res. Dev.* 2012, *16*, 166.

17. Lee, J. S.; Locatelli, S.; Oyama, S. T.; Boudart, M. Molybdenum Carbide Catalysts 3. Turnover Rates for the Hydrogenolysis of *n*-Butane. *J. Catal.* **1990**, *125*, 157.

18. Frauwallner, M.-L.; López-Linares, Lara-Romero, J.; Scott, C. E.; Vieman, A.; Hernández, E.; Pereira-Almao, P. Toluene Hydrogenation at Low Temperature using a Molybdenum Carbide Catalyst. *Appl. Catal. A-Gen.* **2011**, *394*, 62.

19. For preparation of Mo₂C, CuMo₂C, and PdMo₂C see: Schaidle, J. A.; Schweitzer, N. M.; Ajenifujah, O. T.; Thompson, L. T. On the Preparation of Molybdenum Carbide-Supported Metal Catalysts. *J. Catal.* **2012**, *289*, 210.

20. Note: number active sites used for CuMo₂C and PdMo₂C were approximated by using experimental value determined for $Mo_2C = 0.3 \text{ mmol/g}$. See ref 10a.

21. Schweitzer, N. M.; Schaidle, J. A.; Ezekoye, O. K.; Pan, X.; Linic, S.; Thompson, L. T. High Activity Carbide Supported Catalysts for Water Gas Shift. *J. Am. Chem. Soc.* **2011**, *133*, 2378.

22. This value was estimated based on there being no FA was observed at the end of the reaction.

23. Synthesis of A-1: Mainz, V. V.; Andersen, R. A. Preparation of $RuCH_2PMe_2(PMe_3)_3Cl$, $Ru(CH_2PMe_2)_2(PMe_3)_2$, and $Rh_2(CH_2PMe_2)_2(PMe_3)_4$ and Their Reactions with Hydrogen. *Organometallics* **1984**, *3*, 675.

24. Synthesis of A-2: Mason, R.; Meek, D. W.; Scollary, G. R. Polyphosphine Complexes of Ruthenium(II). *Inorg. Chim. Acta*, **1976**, *16*, L11.

25. Synthesis of C-1: Zhang, G.; Leitus, Y.; Milstein, Ben-David, Y.; Milstein, D. Facile Conversion of Alcohols into Esters and Dihydrogen Catalyzed by New Ruthenium Complexes. J. Am. Chem. Soc. 2005, 127, 10840.