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1.1 A representative example of how to use anisotropy dimensions to
construct an exotic nanoparticle is summarized above. A square and
triangle are transformed using the scale, aspect ratio, patchiness, and
a�ne anisotropy dimensions. The two transformed building blocks
are transformed through composition into an exotic nanoparticle. . 2

2.1 Reconfigurability dimensions of colloidal molecules are described above.
The building blocks have a rich design space that can be accessed and
toggled during the assembly process. The first three parameters: lock
number, bond length, and the size ratio directly control the geome-
try of the cluster, while the particle confinement and lock mobility
control the configurations the cluster can access. . . . . . . . . . . 11

2.2 Model lock-and-key colloidal molecule with interactions is shown.
The model lock-and-key building block is shown for two-lock building
blocks with lock and key diameters DL =1.3 and DK =1.0, respec-
tively (a). The bond length between the lock and key is shown to
be dLK =0.3. The reconfigurability of the building block is shown
for four states. (b) The interactions between the building blocks can
be broken down as pair interactions between two locks, two keys,
and lock-key. The depletion attraction between the pair interacting
colloids changes for di↵erent building block geometry. . . . . . . . . 14
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2.3 Phase diagram for NL=3 particle showing stability regions as a func-
tion of size ratio (DL where DK=1), and bond distance (�). A rep-
resentative slice of the phase diagram is shown above along with all
crystal structures observed. For each crystal, the inset highlights the
configuration of the molecular colloids (white). We show the vertex
configurations of the lock (black) and keys (yellow). A representative
snapshot of each crystal structure is shown. The crystalline structures
observed for NL=3 are the triangular degenerate crystalline with a
hexagonal lock tiling, and a disordered key lattice (L3

HKDH) (b), a
random triangle, square lock tiling with disordered keys at DL=1.7,
� =0.2 (L3

ATSKD.) (c).the Archimedean elongated triangular lock
tiling (33, 42) with a binary rhombus key tiling keys at DL=1.8, �
=0.05 (L3

ETKR) (d), a (3.4.5.4, (3.4.52)2 ) lock tiling with an alter-
nating rhombus key tiling keys at DL=1.3, � =0.05 (L3

PTSKR) (e), an
elongated hexagon, square, triangle lock tiling with a binary rhombus
key tiling at DL =1.6,� =0.25 (L3

EHKR) (f). . . . . . . . . . . . . . 20

2.4 The geometric phase space for NL=2 molecular colloid is shown
above. For each crystal, the inset highlights the configuration of
the molecular colloids (white). We show the vertex configurations
of the lock (black) and keys (green). A representative snapshot is
shown of each crystal structure. We show a cross-section at fixed
density (�=.7) as a function of the geometric parameters size ratio
(DL where DK=1) and bond distance (↵). The crystal structures for
NL=2 are a hexagonal lock tiling and a substitutionally disordered
kagome key tiling (L2

HKK), (b) a sheared Archimedean elongated
triangular lock tiling (33, 42) and a rhombic key tiling at DL=1.2, ↵
=0.5 (L2

ETKR) (c), a hexagonal lock tiling and a disordered key tiling
(L2

HKD), (d) and (32.42.3, (33, 42)3) triangle square tiling at DL=1.5,
↵ =0.45 (L2

TSKD) (e). . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 We highlight the crystal structures at low ↵ for the NL=2 molecular
colloid above. The crystal structures forNL=2 are atDL=1.2, ↵ =0.5
(L2

ATSKD) (a), a binary rhombic lock tiling with a binary rhombic key
tiling (L2

RTKR) at DL=1.2, ↵ =0.4 (b), an elongated hexagon triangle
square lock tiling with a binary rhombic key tiling at DL=1.2, ↵ =0.5
and �=.3 (L2

EHSKR) (c)an elongated hexagon chain triangle tiling at
DL=1.3, ↵ =0.3 (L2

EHCKR) ,(d) and a shield square triangle tiling at
DL=1.7, ↵ =0.05 and (L2

SSTKD) (e). . . . . . . . . . . . . . . . . . 25
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2.6 The geometric phase space of the clusters is summarized as phase
diagrams of DL and � for (a) one- (and (c) four-lock particles. Each
phase diagram is a slice of phase space at constant density. In the
one-lock cluster (a) we show a large frustrated/glassy (Dis) assem-
bly that with increasing overlap transforms into a partially ordered
hcp phase (L1

HKD). (h) Four-lock clusters assemble into rhombic lat-
tice (L4

ETKR) from a small Dis phase via rhombic partially ordered
phase (L4

DKR). Geometrically inaccessible regions arise for NL=4
and are shown as red diagonals. Representative snapshots for the
two observed crystalline phases in the phase diagrams are shown.
Additionally, we show the spacing and symmetry of the phases with
the di↵raction pattern for each structure. In the one-lock case (a) we
show the L1

HKD crystal structure for DL=1.8, � =0.5(b). In the four
lock case (d), we show the and L4

ETKR crystal structure at DL=1.6,
� =0.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 We highlight the e↵ect of reconfigurability on the stability of crys-
talline structures for the NL = 2 building block. An HCP shape
matching order parameter �6 is used as a function of bond length
dLK for di↵erent lock-key sizes (DL). Each curve is obtained by av-
eraging across several independent runs. Error bars are smaller than
the marker size. We compare the order parameter behavior for (a)
locks that are able to move around the key and for (b) rigid building
blocks fixed in a linear trimer geometry. (c) We show representative
shapshot of a good assembler with order parameter �6 = 0.97 and
dLK=.75 and DL=1.33. (d) Also, a representative snapshot for a
poor assembler is shown with order parameter �6 = 0.83 and dLK=1.
and DL=1.33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Assembled tetragonal monolayer from four-lock clusters with quasi-
3D confinement. The cluster geometry is DL = 1.33 and dLK = 0.75.
The clusters form an ABC stacked layer with the locks forming a
square lattice on the top and bottom layers (a), while the keys form
a hexagonal lattice. We allow the monolayer of locks to freely rotate
in the z-direction (b). The 2-D di↵raction image shows the four-fold
square symmetry of the locks and the six-fold hexagonal symmetry
of the keys while looking down (001) plane (c). . . . . . . . . . . . 33
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2.9 The e↵ect of confinement on 2-lock and 1-lock clusters is summarized
above. Representative snapshots of crystal structures under quasi-3D
confinement are shown above (a,b). The inset for quasi-3D confine-
ment show both lock and keys in the right half, only locks in the top
left, and only keys in the bottom left. We show the di↵raction pat-
tern for each representative snapshots. For the one-lock case, the 2
quasi-3D crystal structure L1

TKS is shown for DL=1.7, � =0.5(a). For
the two-lock case, the quasi-3D crystal structure L2

HHKD is shown
for DL=1.5, � =0.5(b). . . . . . . . . . . . . . . . . . . . . . . . . 35

2.10 Schematic of quasi-3D partially ordered crystal-crystal transforma-
tion using molecular colloids reconfigurability dimensions and rep-
resentative snapshots of the transformation are shown above. Tun-
ing the size ratio or bond length of the tetrahedrally coordinated
molecular colloid act as geometric knobs that distort the assembly
of a crystalline structure.(a-c) By transforming the cluster geometry
from dLK = 0.75 to dLK = 0.80 at DL = 1.33, we can transform the
crystal structure from an ABC stacked layer of with four fold sym-
metric locks, and six fold symmetric keys (e) (See Figure 6) into a
system where locks preserve their four fold order, but the keys are
disordered(d). By changing the size ratio from DL = 1.33 to DL =
1.18(f), we can reproduce the same crystal structure transformation
above, but through a di↵erent mechanism. . . . . . . . . . . . . . . 37

2.11 The e↵ect of reconfigurability, bond length, and size ratio on molecu-
lar colloids is summarized above. Representative building blocks for
a range of size ratio and bond length are shown for 2-lock building
block. Two di↵erent planes of reconfigurability highlight the new
crystalline structures that emerge, and the e↵ect of reconfigurabil-
ity on stability regions. Crystalline structures (red), plastic crystals
(yellow), and disorder (green) form. State points (purple and black
dots) are chosen from the high reconfigurability layer to highlight
how switchable multifunctional nanoparticles are designed. An inset
highlights the switchable dimensions of the extended reconfigurability
diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 The eleven space filling Archimedian tilings. Regular tilings: (a)
square (44), (b) triangular (36), (c) hexagonal (63). Semi-regular
tilings: (d) truncated hexagonal (3.122), (e) truncated square (4.82),(f)
rhombitrihexagonal (3.4.6.4), (g) snub square (32.4.3.4), (h) trihexag-
onal (or kagome) (3.6.3.6), (i) snub hexagonal tiling (34.6), (j) elon-
gated triangular (33.42), and(k) truncated trihexagonal (4.6.12) tilings
which comprise the entire family of Archimedean tilings. . . . . . . 44
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3.2 Representative snapshots of experimental assemblies of the triangu-
lar (36), square(44), and hexagonal(63) ATs. The experimental AT
observed are (a) a Au (63) AT Sau and Murphy (2005), (b) a zeolite
ZSM-2 (63) AT Lee et al. (2006), (c) a In2S3 (63) AT Park et al.
(2006), (d) a Cu2�xSe (63) AT Shen et al. (2012a), (e) a ��NaY F4

(63) AT Ye et al. (2010), (f) a NaY F4 : Yb/Er (63) AT Ye et al.
(2010), (g) a NaY F4: Yb/Ce/Ho (63) AT Ye et al. (2010), (h) a (44)
� � NaY F4 AT Ye et al. (2010), (i) a NaY F4 : Yb/Er (44) AT Ye
et al. (2010), (j) a T iO2 (44) AT Chen et al. (2007b) (k) a Au (44)
AT55, (l) LaF3 (36) AT Sau and Murphy (2005), (m) and a Cu2�xSe
(36) AT. Shen et al. (2012a) . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Flow diagram representing the design process for the ATs. The paths
show how to self-assemble the ATs. Hard interactions are for assem-
blies that coincide with their densest packings in single component
systems. Shape specific patches are for mixtures with lines of alter-
nating building blocks. Mixtures with complex bond networks need
edge specific patches. The two rightmost columns show the state-of-
the-art in particle synthesis and self-assembly for each corresponding
AT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 We show representative snapshots of simulations for the (36), (44),(63),(3.122).
ATs self-assembled with excluded volume interactions only. Each as-
sembled Archimedean tiling is accompanied by an inset showing the
polygonal particle, a di↵raction pattern of the snapshots, and a com-
pressed close-up. We show that a triangles self-assemble the (36)
tiling at a packing fraction equal to 0.90 (a), a squares self-assemble
the (44) tiling at a packing fraction 0.94 (b), hexagons self-assemble
the (63) tiling at a packing fraction 0.93 (c) and dodecagons self-
assemble the (3.122) tiling at packing fraction 0.85 (d). . . . . . . . 52

3.5 E↵ective free energy di↵erence between di↵erent configurations of
hard triangles as a function of density is shown above. We show
the free energy di↵erence as a function of the misalignment factor
f. The blue line shows the free energy gain by aligning the edges of
the triangles. We show the free energy increases for densities equal
to 0.5(a), 0.6(b), 0.7(c), and 0.8(d). The free energy gain is 1.2kBT ,
1.2kBT ,1.5kBT , and 1.8kBT at packing fraction values of 0.5 , 0.6 ,
0.7 and 0.8, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 53
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3.6 . E↵ect of shape on the e↵ective free energy di↵erence at fixed den-
sity. The blue line overlaid on top of the triangles shows the free
energy gain by aligning the edges of the shapes. We show the free
energy di↵erence as a function of the misalignment factor f. The free
energy gain for edge-edge alignment is 2.5kBT for triangles, 1.1kBT
for square, 0.6kBT for hexagons, and 0.2kBT for dodecagons. . . . 55

3.7 Hard vs. symmetrically attractive octagons. (a) Hard octagons
(upper-right inset) assemble into a hexagonal crystal structure. (b)
Symmetric attractive octagons (upper-right inset) form the defect-
free (4.82) AT where the squares are treated as pores. Both snap-
shots are accompanied by a di↵raction pattern showing long-range
order. (c) Truncated square tiling formed from octagons and squares
with symmetric attractive interactions in a 1:2 mixture ratio. Excess
squares formed the (44) square tiling upon further annealing. . . . 57

3.8 Representative snapshots of the design process for the (32.4.3.4),
(3.4.6.4), and (3.6.3.6) ATs. Insets show the design rules and a
di↵raction pattern. A red halo implies a weakly attractive inter-
action, while a green halo implies a strong attractive interaction.
Left column panels shows symmetrically-attractive mixtures of (a)
square-triangle, (c) square-hexagon and (e) triangle-hexagon mix-
tures. Right column panels correspond to the mixtures in the left
column with shape-specific patches that readily self-assembles (b)
the (32.4.3.4), (d) (3.4.6.4), and (f) (3.6.3.6) ATs . . . . . . . . . . 60

3.9 Representative snapshots for the design process of the (33.42), (34.6)
and (4.6.12) Archimedean tilings. Each panel is accompanied by
an inset showing the design rules for assembly and a di↵raction
pattern confirming long-range order or coexistence. The mixture
ratio for each assembly corresponds to that of the target AT. A
red halo around a polygon implies a weaker attractive interaction,
while a green halo implies a stronger attraction. Left column panels
show shape-specific attractive triangle-square, hexagon-square and
triangle-hexagon mixtures that self-assemble the (a) (32.4.3.4), (c)
(3.4.6.4) and (e) (3.6.3.6) ATs. Residual triangles form the (36) AT
in (e). Right column panels show shape-specific attractive triangle-
square, hexagon-square and triangle-hexagon mixtures that self-assemble
the (b) (33.42) tiling, (d) (4.6.12) and (f) (34.6) ATs, respectively. . 62

3.10 Simulation results summary. The first column shows the polygons
necessary for the assembly of ATs under the design rules proposed.
The remaining columns indicate the configurations observed with the
di↵erent interaction sets.. . . . . . . . . . . . . . . . . . . . . . . . . 65
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4.1 Examples of shape transformations for nanoplates. The first column
corresponds to the classification of experimentally-observed shape
transformations. These shape transformations correspond to faceting,
pinching, elongation, and truncation. The second column depicts the
e↵ect of the transformation on particle shape. Experimental exam-
ples of the shape transformation are shown in the third column. The
faceting shape transformation is shown for silver nanoplates.Yang
et al. (2007) The pinch transformation is shown for the growth of
a silver triangular nanoplates on a nanorod.Tsuji et al. (2010) The
elongation transformation is shown for uranimum oxide hydroxide
hexagonal nanoplates. Pradhan et al. (2011) The truncation trans-
formation is shown for hexagonal and triangular nanoplates.Chu et al.
(2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Model patchy nanoplates are shown with interactions, and a deforma-
tion mechanism. The interactions between the nanoplates is edge to
edge(a). The deformation process alters the shape of the nanoplates
continuously and reversibly(b). . . . . . . . . . . . . . . . . . . . . 71

4.3 The self-assembly of faceted naonparticles is shown above. The faceting
transformation is summarized by a geometric axis showing the regu-
lar polygons (a). Red Xs imply a frustrated assembly, while a colored
regular polygon denotes assembly Each snapshot is a representative
assembly of the nanoplates. The assemblies for the regular n-gon
family are the (36) Archimedean tiling for the regular triangle (b) ,
the (44) Archimedean tiling for the regular square (c) , a frustrated
assembly for the regular pentagon (d) , the (63) Archimedean tiling
for the regular hexagon (e), a frustrated assembly for the regular
nonagon(f), the (4.82) Archimedean tiling for the regular nonagon(g),
a frustrated assembly for the regular nonagon(h), a sheared rhombic
tiling for the regular decagon (i), a sheared (32.3.4.3) Archimedean
tiling for the regular undecagon (j) , the (3.123) Archimedean tiling
for the regular dodecagon (k) , and a sheared (32.3.4.3) Archimedean
tiling for the regular hendecagon (l). . . . . . . . . . . . . . . . . . 74
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4.4 The e↵ect of the pinch transformation on the assembly of polygo-
nal nanoplates is summarized above. A geometric phase diagram of
faceting and pinching anisotropy dimensions is shown above (a). The
building blocks for each geometric phase point are shown in the ge-
ometric phase diagram (a). Representative snapshots of all crystal
structures observed by applying the pinch transformation are shown
for the regular polygons between the regular triangle, and the regular
hendecagon. The regular n-gons at ⇠=0.5 are shown with the sym-
bols and crystal structures observed in Fig 4.3. The assemblies for the
pinched n-gon family are a shortened kite assembly with pmg symme-
try for ⇠=0.0 and N=4 (b), a lengthened kite assembly with pmg sym-
metry for ⇠=0.0 and N=4 (c), the pentagonal cairo tiling for ⇠=0.25
and N=4(d), a trapezoidal assembly with for ⇠=0.0 and N=5(e), a
shifted prismatic pentagon tiling for ⇠=0.0 and N=6(f), a lengthened
hexagon with alternating rows in a triangular tiling for ⇠=1.0 and
N=6(g), a shortened heptagon dodecagonal quasicrystal for ⇠=0.25
and N=7(h), a lengthened heptagon (32.4.3.4) Archimedean tiling for
⇠=0.75 and N=7(i), a lengthened nonagon triangular tiling for ⇠=0.75
and N=9(j), a lengthened decagon triangular tiling for ⇠=0.75 and
N=10(m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 The e↵ect of the elongation transformation on the assembly of polyg-
onal nanoplates is summarized above. A geometric diagram be-
tween the faceting and elongation anisotropy dimensions shows the
crystalline phases observed (a). The building blocks for each geo-
metric state point are shown in the geometric phase diagram (a).
Representative snapshots for all crystal structures observed for elon-
gated polygons are shown above. The regular n-gons at ⇠=0.5 are
shown with the symbols and crystal structures observed in Fig 4.3.
The assemblies for the elongated n-gons are an elongated rectan-
gle crystal structure at ⇠=0.25 and N=4(b), a shortened hexagon
with a porous rhombile crystal structure at ⇠=0.25 and N=6(c), a
shortened hexagon with an aperiodic rhombus tiling at ⇠=0.0 and
N=6(d), an elongated hexagon with stretched (63) Archimedean tiling
at ⇠=0.75 and N=8 (e), an elongated octagon with stretched (4.82)
Archimedean tiling at ⇠=0.75 and N=8(f), a shortened octagonal
triangular crystal structure at ⇠=0.75 and N=8(g) , an elongated
decagonal triangular crystal structure at ⇠=0.75 and N=10(h), a
shortened decagon with a porous alternating triangular crystal struc-
ture at ⇠=0.75 and N=10(i), an elongated dodecagon with a stretched
(3.122) Archimedean tiling at ⇠=0.75 and N=12(j), a shortened do-
decagon with a rotationally degenerate triangular lattice at ⇠=0.25
and N=12(k). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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4.6 The e↵ect of the truncation transformation on the assembly of polyg-
onal nanoplates is summarized above. A geometric diagram between
the faceting and truncation anisotropy dimensions shows the crys-
talline phases observed (a). The building blocks for each geometric
state point are shown on the geometric phase diagram (a). Repre-
sentative snapshots for all crystal structures observed for truncated
polygons are shown above. The regular n-gons at ⇠=0.0 are shown
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CHAPTER I

Introduction

Anisotropy dimensions Glotzer and Solomon (2007) are the chosen paradigm to

understand the e↵ect of di↵erent chemical transformations on self-assembly. Anisotropy

dimensions are a set of geometric and energetic transformations that can be used to

categorize and understand nanomaterials. Glotzer and Solomon (2007) The system-

atic investigation of anisotropy dimensions presupposes the ability of chemists to

control and transform nanoparticle shape and surface chemistry. Nanoparticle shape

control Tao et al. (2008) is used to synthesize bulk quantities of specific geometries,

such as nanoellipses Liu et al. (2012a), nanopolyhedra Damasceno et al. (2012a), and

patchy particles Glotzer (2004). The incredible shape control capable by chemists

motivates the need to understand the e↵ect of shape on self-assembly systemati-

cally so as to engineer, categorize, and understand nanoparticles. Nanomatrial shape

transformations transform a building block’s geometry, such as from a cube to a tetra-

hedron.Fan et al. (2008) These shape transformations can occur via external stimuli,

such as photodecomposition Jin et al. (2001). The surface chemistry and shape of

the nanomaterial e↵ect the bulk properties of the material by controlling the types

of crystal structures observed as a result of self-assembly. Self-assembly is when a

disordered system of nano components forms an ordered pattern via the minimiza-

tion of free energy without an external driving force. Whitesides and Grzybowski
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Figure 1.1: A representative example of how to use anisotropy dimensions to con-
struct an exotic nanoparticle is summarized above. A square and trian-
gle are transformed using the scale, aspect ratio, patchiness, and a�ne
anisotropy dimensions. The two transformed building blocks are trans-
formed through composition into an exotic nanoparticle.

(2002) Computer simulations were used to model the e↵ect of each anisotropy dimen-

sions on self-assembly. Self-assembly experiements were performed using molecular

dynamics and monte carlo simulations to uncover the equilbrium configurations of

these nanomaterials. Metropolis and Ulam (1949); Alder and Wainwright (1959)

Although anisotropy dimensions provide a conceptual framework to categorize dif-

ferent nanoparticles, the anisotropy dimensions of a nanoparticle are not a predictive

tool. Anisotropy dimensions do not provide insight into their e↵ect on self-assembly.

It is clear that arbitrary nanoparticles can be designed from simple precursors with a

collection of transformation. (See Figure 1.1) This design of an exotic nanoparticles
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can be decomposed into a collection of transformations upon di↵erent anisotropy di-

mensions. (See Figure 1.1) A nanodisk and nanosquare through the scaling, aspect

ratio, patchiness, a�ne, and composition transformation can be used to form an ex-

otic nanoparticle. (See Figure 1.1) Each anisotropy dimension used to synthesize this

exotic nanoparticle has a chemical shape control counterpart. The scaling transfor-

mation, or size control, can be controlled by altering ligand concentration.Teranishi

and Miyake (1998) The aspect ratio transformation in inorganic nanoparticles can be

controlled by the ratio of metal salts to seeds.Jana et al. (2001) Patchiness can be

functionalized on anisotropic nanomaterials by the controlled growth of nanoparticle

edges with di↵erent crystallographic facets.Ye et al. (2013c) General a�ne transfor-

mations can be controlled via overgrowth processes. Tsuji et al. (2010) The compo-

sition trasformation can be controlled by oriented attachment.Liu et al. (2012b) The

grand challenge is to systematically understand the e↵ect of each transformtion on

self-assembly so that reverse engineering of nanoparticles becomes an exact science.

1.1 Shape Control of Nanomaterials

The facile synthesis of anisotropic nanomaterials by wet synthetic procedures is

one of the major revolutions in nanomaterials. The ability to synthesize large quan-

tities of nanomaterials is necessary to scale up these exciting materials for industry.

Anisotropic nanomaterials have a long hisotry. Single crystals of semiconductor wires

were demonstrated in the 1960s via Vapor Liquid Solid mechanism Wagner and El-

lis (1964). However, a facile scalable synthesis procedure for metallic nanorods was

only demonstrated recently.Murphy et al. (2006) The formation of these faceted nano-

materials proceeds in two steps. The first step in the reaction pathway from metal

precursors to metallic nanomaterials is a burst of nucleation that forms seeds with

distinct internal crystallographic structures. Xia et al. (2009b) Generally, the internal

crystallographic structure will be single crystal, singly twinned, multiply twinned, or
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a plate with stacking faults. Iijima and Ichihashi (1986); Ajayan and Marks (1988);

Nikoobakht and El-Sayed (2003); Hofmeister et al. (2002) The second step involves

the directed growth of crystallographic facets. By altering the growth rate via sur-

face ligands of di↵erent crystallographic facets, faceted nanoparticles ranging from

cuboctahedron to triangular nanoplates can be synthesized.

Selective capping agents, and seeded growth alter the shape evolution from nanocrys-

talline seed to the nanoparticle. The chemisorption of capping agents onto specific

crystallographic facets slows the growth rate of specific facets and alters the shape

of the end product. The adsorption of H2 gas on a spherical nanocrystal can cause

the transformation of Pt spherical nanocrystal into a a nanocube.Harris (1986) The

surface capping agent can arise from the decomposition of metal salts such as in ad-

sorped CO. Joshi et al. (2006) The addition of PVP to the decompsition reaction

of Ag salts preferentially binds to the < 100 > facets stabilizing Ag nanocubes.Sun

and Xia (2002) Multiple capping agents can be added to cooperatively form di↵erent

nanocrystalline shapes. By mixing ratio the CTAB capping agent with bromide seeds,

the shape of the gold can be altered from rectangular, square, to tetrapodal.Sau and

Murphy (2007) Seeded growth of Ag on nanocubes can transform nanocubes into

nanoctahedra via overgrowth. Tao et al. (2006) Heteroepitaxial growth of Pd on cu-

bic Pt can transform the e↵ective core-shell nanoparticle shape from a nanocube to

an octahedron.Habas et al. (2007) The use of capping agents and seeds provides the

synthetic tools needs to control the shape of nanoparticles.

1.2 Shape Transformations in Nanomaterials

Radiation is a powerful tool to deform the e↵ective shape of a nanoparticle. Silica

colloids with a 14 MeV Au ion beam transformed the spherical colloids into ellip-

soids.Van Dillen et al. (2001) Photoreduction of silver can transform silver nanodisks

to nanotriangles reversibly. Lee et al. (2009) There are strong indications that light-
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driven shape transformations in Ag nanoparticles follow an Arrhenius light-mediated

2D coalesence process.Lee et al. (2013) The length of silver nanorods can be con-

trolled by the wavelength of light where the surface plasmon resonance of Ag spherical

seeds causes anisotropic growth.Zhang et al. (2011a) At larger length scales, sheets

of assembled CdTe nanoparticles will transform into helical ribbons with controllable

pitch. Srivastava et al. (2010) Electron irradiation fransform CdS nanorods with

Au tips into spherical core-shell Cd/AuS with an intermediate Cd/AuS rectangular

prism.van Huis et al. (2011) The use of radiation can lead to shape transformations

that elongated, truncate, distort, or twist anisostropic nanoparticles.

Active materials are means of obtaining shape transformations. Uniform polymer

deformations can be engineered to form switchable high density nanogap structures

with tunable optical properties.Ross et al. (2011) Polymeric vesicles made from block

copolymers can undergo a shape transformation from tubules to spheres in the pres-

ence of cross-linkers.van Oers et al. (2013) Magnetic stirring of polystyrene in an

organic solvent leads to the shape transformation between a sphere and a disk.Liu

and Wang (2012) Polymeric nanoparticles can be used in targeted drug delivery for

cancer by undergoing a hydrophobic to hydrophillic transition that swells the poly-

meric cage and releases the drug contents.Griset et al. (2009) Ellipsoidal P4VP/PS

can be reversibly transformed to spherical P4VP/PS via swelling caused by solvent

annealing.Deng et al. (2013) Surface tension driven assembly of folded polyhedra made

from metallic plates open opportunities to synthesize highly assymetric polyhedra that

would be di�cult to synthesisze from wet chemical means.Leong et al. (2007b) Poly-

merization of silicon oil emulstions of 3-methacryloxypropyl trimethoxysilane(TPM)

produces buckled colloids that can provide lock-key binding mechanism. Sacanna

et al. (2010) The use of materials that can alter their shape or configuration dynam-

ically open up the possibility of dynamic multifunctional matter.
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1.3 Self-Assembly of Nanomaterials

Patchy colloids Glotzer (2004); Zhang et al. (2005b) are colloids with discrete at-

tractive interaction sites that allow colloids to be rationally designed from the bottom

up. The self-assembly of patchy colloids provides a means of crystallizing interesting

crystal structures. Beyond the structural diversity of patchy particles, patchy particles

form reversible gels Sciortino and Zaccarelli (2011), and crystal structures with tun-

able optical propertiesMcConnell et al. (2010). Recent advances in chemistry Du and

O’Reilly (2011); Chen et al. (2011) show that a self-assembly paradigm has formed by

the careful design of the size, location, and distribution of patches. The Arcihmedean

tiling have been sythesized by placing patches on spherical particles.Antlanger et al.

(2011) Janus colloids have been shown to assemble the Kagome lattice.Chen et al.

(2011) By altering the opening angle of the patches, the self-assembly changes from

chains to porous squares.Chen et al. (2012a) Reversible hydrophobic patches made

with host-guest supramolecular chemistry assembles reversible networks whose fractal

dimension can be tuned.Hermans et al. (2009) Patchy colloids provide a conceptual

and experimental framework for the self-assembly of nanomaterials.

The self-assembly of faceted nanoparticles provides a means of forming crystal

structures that would be hard to achieve with patchy colloids. Uniform polyedral sil-

ver nanopolyhedra self-assemblies form the densest known packing crystal structure

of cubes truncated cubes and octahedra.Henzie et al. (2011) 2D self-assembly of col-

loidal concave octapods show the that by tuning the pod/diameter length ratio that

rhombic crystal structures and hexagonal rotator phases form.Qi et al. (2012) Sim-

ulations of a family of hard polyhedra show the assembly of rotator crystals, plastic

crystals, and quasicrystals.Damasceno et al. (2012a) Binary mixtures of convex and

concave nanoplates highlights how shape complementary can guide self-assembly.Paik

and Murray (2013) Without shape complementarity, binary mixtures of convex poly-

hedra were found to phase seperate except when the order disorder transition pressure
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was close. Khadilkar et al. (2013) The competition between shape and ligand medi-

ated enthalpic patches can lead to interesting phase behavior. The phase behavior

of nanocubes, which can be tuned by ligand concentration, contains rhombohedral

and simple cubic crystal structure. Zhang et al. (2011c) The competition between

shape and enthalpic interactions in nanoplates has been shown to stabilize nontrivial

alternating patterns.Ye et al. (2013b)

1.4 Properties of Nanomaterials

The optical catalytic magnetic and electrical properties of nanomaterials can de-

pend greatly on the shape of the building blocks. The anisotropic plastic deformation

of silica colloids via irradiation has been shown to tune the optical properties of assem-

blies. Velikov et al. (2002) The shape of a Pt nanoparticle can a↵ect its catalytic prop-

erties by altering the onset temperature of 2-propapnol oxidation reaction. Mostafa

et al. (2010) Catalytic cycling decreases the sharpness of facets in colloidal transition

metal nanocatalysts and decreases catalytic performance.Narayanan and El-Sayed

(2005) A comparision between spherical and cubic magnetic � � Fe2O3 assemblies

shows that the blocking temperature is lower for cubic assemblies. Salazar-Alvarez

et al. (2008) The shape of CdSe a↵ects the charge seperation and transport dynamics

of bulk heterojunction nanoparticle solar cells.Dayal et al. (2010) The selection of

shape is key to carefully tuning the material properties of nanoparticle assemblies.

The adsorption, electrical, antibacterial, and mechanical properties of nanomate-

rials can depend greatly on the surfactants used for nanoparticle stability. For intra-

venous biomedical applications, nanoparticle coatings need to be modified to inhibit

removal from the bloodstream by phagocytosis. Gref et al. (2000) The interactions

between surface ligands and the lipid bilayer of cells is critical to applications such

as drug/gene delivery. Verma and Stellacci (2010) The metal insulator transition in

nanoparticles is controlled by the length of the polymer surfactant chain. In silver
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quantum dots monolayers, the metal insulator transition occurs around 5 Å sepera-

tion distance.Collier et al. (1997) The magnetic coercivity of MnFe2O4 nanoparti-

cles is strongly altered by the coordination of the surface ligands. Vestal and Zhang

(2003) Ligands can hinder the antibacterial properties of silver nanoparticles by lim-

iting bioavailability and toxicity of silver ions.Xiu et al. (2011) The length of the

ligands significantly e↵ects the elastic moduli and hardness of assembled nanocrys-

talline structures.Tam et al. (2010) Surface ligands can e↵ect absorption, electronic,

antibacterial and mechanical properties of nanomaterials.

1.5 Contributions

The main body of the thesis is divided into three parts. The first part is on the

self-assembly of colloidal molecules, which highlights how reconfigurability anisotropic

colloidal molecules can self-assemble crystalline structures with no experimental ana-

logue. The second part is on the work self-assembly of Archimedean tilings, which

quanitifies and explains the degree of interaction selectivity needed to self-assemble

each Archimedean tiling. The last part is on the e↵ect of shape transformations

on self-assembly and explores the e↵ect of shape on the self-assembly of irregular

nanoplates.
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CHAPTER II

Self-assembly and reconfigurability of colloidal

molecules

2.1 Abstract

The lock-and-key colloidal particles of Sacanna et. al. Sacanna et al. (2010) are

novel dynamic building blocks consisting of a central spherical colloidal particle (key)

attached to a finite number of dimpled colloidal particles (locks) via depletion inter-

actions strong enough to bind the particles together but weak enough that the locks

are free to rotate around the key. This rotation imbues a mechanical reconfigurability

to these colloidal molecules. Here we use molecular simulation to predict that these

lock-and-key building blocks can self-assemble into a wide array of complex crystalline

structures that are tunable via a set of reconfigurability dimensions: the number of

locks per building block, bond length, size ratio, confinement, and lock mobility. We

demonstrate that, with reconfigurability, ordered structures such as random triangle

square tilings assemble, despite being kinetically inaccessible with non-reconfigurable

but similar building blocks.
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2.2 Introduction

The use of anisotropic colloidal particles in the self-assembly of crystalline mate-

rials with non-trivial structure has grown tremendously with the development of new

synthesis techniques that o↵er unprecedented control over colloidal geometry and in-

teractions. Sacanna et al. (2010) These advances have opened many new directions for

the self-assembly of functional materials made from colloidal molecules, bio-inspired

aggregates and hierarchical assemblies. Li et al. (2009a); Mitragotri and Lahann

(2009); Miszta et al. (2011) Colloidal molecules with valence and specific directional

binding allow the synthesis of low coordination building blocks that are common in

small molecular systems. Wang et al. (2012) Using lock and key colloidal synthesis,

colloidal atoms can be built from the bottom up, allowing for the development of

materials with tunable and multifunctional properties. Sacanna et al. (2010) Self-

assembly of colloidal polymers into lock and key colloids has been shown to depend

sensitively on the colloidal indentation size of the locks. Ashton et al. (2013) Colloidal

molecules have been used to create antireflective materials Koo et al. (2004), plas-

mon sensors Cheng et al. (2011), or as the building blocks for a 3D photonic crystal.

Liddell and Summers (2003)

The rational design of functional materials allows individually designed attributes

to be programmed prior to assembly. Glotzer and Solomon (2007); van Blaaderen

(2006) Although self-assembly has proven to be a worthy candidate to organize these

complex building blocks, competitive structures can become kinetically trapped, in-

hibiting desirable, stable crystalline structures. Solomon et al. (2010)

Shape change at the building block level can facilitate the self-assembly of kinet-

ically hindered configurations. Nguyen et al. (2011) In a similar manner to driven

systems, where emergent behavior is readily seen McCandlish et al. (2012); Nguyen

et al. (2012); Marchetti (2012), reconfigurable colloidal building blocks with an intrin-

sic dynamism may also exhibit emergent phases that are not available to the static
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Figure 2.1: Reconfigurability dimensions of colloidal molecules are described above.
The building blocks have a rich design space that can be accessed and
toggled during the assembly process. The first three parameters: lock
number, bond length, and the size ratio directly control the geometry of
the cluster, while the particle confinement and lock mobility control the
configurations the cluster can access.

building block. Shape change in lock and key colloids can occur via external stimuli

Motornov et al. (2007) or by changing the sample. The changes in shape or interaction

can further lead to significantly di↵erent macroscopic properties such as mechanical

and rheological properties. Kohlstedt and Glotzer (2013) Building block shape re-

configuration plays a key part in achieving programmable building blocks with the

ability to assemble complex hierarchical structures. Klavins (2007); Nguyen et al.

(2011) Beyond the progress that has been made using mixtures of charged spherical

colloids, hard shapes and patchy particles to stabilize atomic crystals Dong et al.

(2010); Leunissen et al. (2005) and quasicrystalline structures Talapin et al. (2009),
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reconfigurability in colloidal molecules adds a new design dimension for colloids.

In this study, we predict that lock-and-key colloidal particles like those described

in Sacanna et al. (2010), are able to self-assemble into non-trivial ordered structures

depending on the building block geometry and boundary conditions. These building

blocks are intrinsically reconfigurable because the locks can rotate freely around the

keys. The paper is organized as follows. In section 2.3, we introduce the model

and simulation methods. In section 2.4, we organize our results into subsections of

increasing complexity. The assembled structures are organized into geometric phase

diagrams of reconfigurable colloidal molecules. In section 2.5, we provide a discussion

and outlook. The results presented here serve as proofs of concept that reconfigurable

colloids are promising candidates for engineering reconfigurable nanostructures from

the bottom up, and thus, motivate further experimental exploration of this unique

family of building blocks

2.3 Model

We classify the lock-and-key colloids by five reconfigurabilty dimensions: Number

of locks (NL), lock-key bond length (dLK), lock-key size ratio (DL/DK), building

block confinement (2D-, quasi3D-, and 3D-), and building block lock mobility (�r).

These reconfigurability dimensions are summarized in Figure 2.1.

We use the following model to represent the lock-and-key building blocks (Fig.

2.1a). Each building block consists of NL locks of diameter DL connected by a central

key of diameter DK . We consider only building blocks with one key connected to NL

identical locks. We fix DK=1 for all simulations and report the size ratio as simply

DL. Thus, DK is the unit of length in our simulations. . The bond distance � is

related to dLK by 2� = 1 + DL � 2dLK , Because the depletion attraction strength

between the dimpled locks and the key is on the order of 10kBT Sacanna et al. (2010),

it is reasonable to assume that the locks permanently attach to the key, and thus we
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constrain the centre-to-centre distance between the lock and the key throughout our

simulations.

In all simulations, we assume that the depletion mediated binding of locks to keys

has already occurred, and focus our attention on the assembly of the resulting building

blocks. The interaction between the locks and keys is modeled by an excluded volume

interaction due to the double-layer repulsion between the charged colloids and a short-

range attraction due to depletion interactions between intra- and inter-building block

volume overlaps Sacanna et al. (2010). The excluded volume electrostatic repulsion

(Ue) is modeled by the Yukawa potential, integrated over the surface of the spherical

colloid in the Derjaguin limit Derjaguin (1934), and shifted to the colloid surface

where Z is an energetic constant based on the strength of the double-layer repulsion,

 is the inverse screening length of the solvent, and Di is the sum of the radii of the

pair of interacting colloids.

Ue = ⇣ exp�(r�Di/2) (2.1)

The lock-lock, lock-key and key-key repulsion strengths are chosen to be consistent

with experimental zeta potential conditions.Sacanna et al. (2010) We summarize the

interaction parameters in the Appendix.

The depletion interaction (Ud) between two spherical surfaces is modeled by:

Ud = �4✏

✓
�

r � �

◆↵

(2.2)

with ✏ the strength of the interaction, � the interaction shift distance to the surface of

the colloid, � the range of interaction (Fig. 2.2b), and ↵ the steepness of the well. The

lock-lock, lock-key and key-key attraction strengths between di↵erent building blocks

are chosen to match that of the depletion strengths listed in Sacanna et al. (2010),

so that the net attraction energy is consistent with experiments, e.g. on the order of
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Figure 2.2: Model lock-and-key colloidal molecule with interactions is shown. The
model lock-and-key building block is shown for two-lock building blocks
with lock and key diameters DL =1.3 and DK =1.0, respectively (a).
The bond length between the lock and key is shown to be dLK =0.3.
The reconfigurability of the building block is shown for four states. (b)
The interactions between the building blocks can be broken down as pair
interactions between two locks, two keys, and lock-key. The depletion at-
traction between the pair interacting colloids changes for di↵erent building
block geometry.

14



1.0-2.0kBT , which is considerably smaller than the lock-key depletion attraction.

For convenience, we express all quantities in dimensionless form, namely the dis-

tance r = r̄/�K , time ⌧ = t̄
p
D2

KmK/kBT , pressure P = P̄D3
K/kBT , and energy

U = Ū/kBT . . The mass of the beads is set to be mK = mL = 1 and the bonded

locks are able to freely rotate with respect to each other as shown in Figure 2.2a.

We consider the bond to be of zero mass and do not include lubrication forces in the

lock cavity. We constrain the bond distance using a constrained molecular dynamics

(MD) procedure similar to the SHAKE algorithm. Ryckaert et al. (1977)

We use hard interactions to investigate the role of shape. Hard interactions are

purely repulsive excluded volume interactions, which allow us to isolate the role of

entropy in the stabilization of observed crystal structures. The hard interaction model

enforces excluded volume interactions between lock-lock, and key-key interactions. It

is assumed that the bond between the lock-key is permanent, which is reasonable given

the 10kBT bond strength Sacanna et al. (2010), but permits a hinge-like motion.

2.3.1 Simulation Methods

We run both MD simulations in the NVT ensemble using a Langevin thermostat

and NPT Monte Carlo simulations to assemble all the phases presented here. We

construct the model building blocks and create a bond topology network to keep

track of each lock-key bond. Periodic boundary conditions are used in the x-y plane.

A typical run includes 106 time steps of athermal conditions for the building blocks to

randomize the positions and orientations. Equilibration runs were achieved in 1-2*107

time steps.

For e�ciency, Metropolis Monte Carlo simulation methods were utilized to gener-

ate the phase diagrams, while MD was used to check that each phase was kinetically

achievable. The MC simulations include a pivot move to model the reconfigurability

of the lock-key colloids. The reconfigurability move randomly samples a disk or sphere
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of radius dLK with a probability equal to standard rotation and translation moves.

Again, the MC systems are initialized in athermal conditions, i.e. all interactions

are purely repulsive, leading to a well-thermalized distribution of building blocks. In

the NPT simulations, the box is gradually compressed or rescaled until crystalliza-

tion is observed. To relieve defects, the box might be slightly expanded in a short

time period, and then re-compressed. During the dilute simulations, we generate

the condensed phase by rescaling the box until the packing density reaches 0.1-0.5

to facilitate the aggregation of the particles, then T is lowered into the coexistence

region.

The simulated systems size varied from 500 to 9000 building blocks or 1000 to

45000 particles. Larger simulations were used to confirm that finite size e↵ects do

not a↵ect the equilibrium structure. For certain cases, we performed independent

simulation runs to ascertain that the resulting structures are reproducible, and not

kinetically trapped states. The MD simulations were performed using HOOMD-

Blue, our general-purpose open-source code optimized for graphics processing units

Anderson et al. (2008); Anderson and Glotzer (2013), and LAMMPS Plimpton (1995).

The Monte Carlo simulations were performed with in-house code.

2.4 Results

We present the representative results obtained from the range of the parameters

that are readily accessible by the experimental conditions presented in Sacanna et al.

(2010). The independent and combined e↵ects of each of the five reconfigurability

dimensions on the formation of the self-assembled structures are shown with an em-

phasis on assemblies with unique tilings and degeneracies. Because of the enormous

parameter space, we choose to fix one parameter while varying the other in certain

cases as indicated in the below subsections.
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2.4.1 Geometric Phase Diagrams of Lock and Key Colloids Confined to

a Plane

The assembled structures are organized into phase diagrams plotted as functions

of NL, DL, and dLK . Cross-sections of the phase diagram highlight essential features

of the assembly of di↵erent colloidal molecules. We highlight the results for the

NL=1,2,3, and 4 colloidal molecules. We introduce a naming convention LN
CKC where

N = NL, K the key sublattice, L the lock sublattice, and C is a shorthand for the

crystalline sublattice.

We find that the lock-key distance is an important parameter in the crystallization

of di↵erent crystal structures. The lock-key bond distance is defined as the amount of

bond distance � or nonadditivityDijkstra (1998) between the lock-key particles. As �

increases, the deviation from regular additive colloidal spheres increases as well. We

find that as the nonadditivity increases between the lock-key particles the ability for

the system to order increases. (Figs 2.3,2.4) Furthermore, as the size ratio between the

lock and key increases, the range of ordered structures increases. This phenomenon

can be explained by the decreasing influence of the excluded volume of the key particle

as the lock-key distance and size ratio increases. The excluded volume of the building

block assembly takes on the shape of the combined excluded volume of the locks,

which can readily self-assemble some of the crystal structures depicted in the phase

diagram.

Another important factor in the stabilization of the assembled structures with

small lock-key bond distance is the rotational free volume. We define the rotational

free volume as the amount of free volume available for lock reconfigurability and use

it as a simple model to describe steric hindrances to self-assembly at high volume

fractions. Rotational free volume a↵ects the self-assembly properties in a similar way

to polydispersity. High polydispersity is known to act as a crystallization barrier for

hard spheres.Phan et al. (1998) Similarly, high rotational free volume allows recon-
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figurability to stabilize mixtures of shapes, which can inhibit crystallization. The

continuum of shapes becomes incommensurate with any Bravais lattice and acts as a

steric barrier to self-assembly. We find this phenomenon explains the large areas of

disorder at small bond distance. (Figs. 2.3, 2.4) We find that the range of stability of

reconfigurable colloidal molecules is much smaller then for rigid colloidal molecules.

(Fig. 2.5) Crystal structures can form at smaller bond distances, but it implies that

the configuration of the colloidal molecule has a large free energy gain. (Figs. 2.3,2.4)

At low lock-key distance, disordered aggregates compete with the crystal struc-

tures. These disordered aggregates (Dis) in Fig 2.3, 2.4, 2.5 have di↵erent character-

istics depending on their location in the geometric phase diagram. General spherical

codes Phillips et al. (2012) explain how the disordered aggregates local coordination

changes with DL and ↵.

2⇡ = NL arcsin
RL

RL +RK � ↵
+ (S �NL) arcsin

RL

RL +RK

(2.3)

Equation 2.3 describes how the local coordination of lock and key colloids changes

with anisotropy dimensions. Equation 2.3 is a function of the number of locks NL,

radius of the key RK and the radius of the lock RL. The local coordination S is a

highly nonlinear function of the size ratio and bond distance. The above equation

is a simple geometric heuristic describing how aggregates of lock and key colloids

change with geometric parameters. The nature of short-range order Sheng et al.

(2006) in disordered aggregates could be elucidated by lock and key colloids. After

this discussion, these disordered aggregates are grouped as one phase in the geometric

phase diagrams.
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2.4.1.1 Crystal Structures for the NL=3 Colloidal Molecule

The colloidal molecule with NL=3 self-assembles into five di↵erent crystal struc-

tures. Shown in Figure 2.3a is the geometric phase diagram between DL and � at fixed

density and temperature. The cross-section is representative of the crystal structures

observed in the larger DL vs � vs kBT vs ! phase diagram. The phase diagram shows

five di↵erent crystalline structures, which are L3
HKDH , L3

ETKR, L3
PTSKR, L3

EHKR,

and L3
ATSKR (Fig. 2.3b-f). Notably, the disordered quasicrystal L3

ATSKR is reminis-

cent of the dodecagonal triangle square quasicrystals, and the L3
PTSKR and L3

EHKR

crystal structures are observed, to our knowledge, for the first time. The latter two

structures, as characterized below, have the complexity of alloys but are assembled

with surprisingly simple design rules.

At larger bond distances (� > 0.3), the NL=3 molecular colloid self-assembles the

L3
HKDH crystal structure. (Fig. 2.3b) In the L3

HKDH crystal structure, the locks

form a hexagonal sublattice and the keys form a frustrated sublattice. By increasing

the � between lock and key, the e↵ective excluded volume of the key decreases, and

triangular trimers are free to self-assemble without steric hindrance. The assembly of

the L3
HKDH is not unexpected since hard trimers form an aperiodic hexagonal crystal.

Kowalik and Wojciechowski (2005) The aperiodicity of the locks is due to the keys

being at the center of the molecule. Aperiodic crystals of hard trimers have negative

Poisson ratios Kowalik and Wojciechowski (2005), implying that minor changes in

the geometry of the molecular colloid such as changing the bond distance from �=0.3

to �=0.25 at DL =1.7 (Fig. 2.3) could have a dramatic e↵ect on the mechanical

properties of assemblies.

At large bond distance (� > 0.3) and small size ratio (DL=1.2) the NL=3 colloidal

molecule self-assembles the L3
ETKR crystal structure. (Fig. 2.3d) The elongated

triangular (ET) lock tiling in the L3
ETKR crystal structure occurs in di↵erent alloys

as a cross-section of TlI O’Kee↵e and Hyde (1980), which is used to improve the
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Figure 2.3: Phase diagram for NL=3 particle showing stability regions as a function
of size ratio (DL where DK=1), and bond distance (�). A representative
slice of the phase diagram is shown above along with all crystal struc-
tures observed. For each crystal, the inset highlights the configuration of
the molecular colloids (white). We show the vertex configurations of the
lock (black) and keys (yellow). A representative snapshot of each crystal
structure is shown. The crystalline structures observed for NL=3 are the
triangular degenerate crystalline with a hexagonal lock tiling, and a disor-
dered key lattice (L3

HKDH) (b), a random triangle, square lock tiling with
disordered keys at DL=1.7, � =0.2 (L3

ATSKD.) (c).the Archimedean elon-
gated triangular lock tiling (33, 42) with a binary rhombus key tiling keys
at DL=1.8, � =0.05 (L3

ETKR) (d), a (3.4.5.4, (3.4.52)2 ) lock tiling with
an alternating rhombus key tiling keys at DL=1.3, � =0.05 (L3

PTSKR) (e),
an elongated hexagon, square, triangle lock tiling with a binary rhombus
key tiling at DL =1.6,� =0.25 (L3

EHKR) (f).
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performance of mercury lamps. REILING (1964) The ET Archimedean tiling is

observed in the binary nanoparticle superlattices of Au and Fe colloids. Talapin et al.

(2009) The ubiquity of the ET tilings in soft and hard matter systems makes their

discovery in molecular colloids less surprising. The key sublattice lies on the projected

Tl sublattice with systematic vacancies, and the lock sublattice lies on the I sublattice.

The lock sublattice for the L3
ETKR crystal structure is the same as L4

ETKR, crystal

structure (Fig. 2.6), but the key sub lattice of L3
ETKR has fewer systematic defects

than L4
ETKR.

At intermediate size ratio DL=1.4 and low bond distance (� < 0.05), the NL=3

colloidal molecule self-assembles the L3
PTSKR crystal structure (Fig. 2.3e). The

L3
PTSKR crystal structure has a (3.4.5.4, (3.4.52)2) lock sublattice and a rhombic key

sublattice. The (3.4.5.4, (3.4.52)2) tiling is characteristic of a cross-section of the

UV O5 crystal structure Dickens et al. (1992); the key sublattice lies on the projected

uranium atomic positions, the lock sublattice lies on the oxygen atomic positions,

and the V atoms are vacant. Dickens et al. (1992) Mixed oxides of uranium with

transition metals (V, Ti) can be used as intercalation compounds for small cations.

Dickens et al. (1993) The L3
PTSKR crystal structure has a structure similar to known

intercalation materials (UV O5), which implies that layers of this colloidal crystal

could be useful for energy storage materials, but a more through study would need to

be done on the thermodynamics and kinetics of di↵usion of ions through the material.

At large size ratio DL >1.3, and intermediate bond distance � = 0.15�0.3, a ran-

dom triangle square lock sublattice and a disordered key sublattice form (L3
ATSKD).

(Fig. 2.3c) Random triangle square tilings occur in disordered dodecagonal quasicrys-

tals, such as Ta1.6Te.34. Krumeich et al. (1998) Unlike in normal triangle square

dodecagonal quasicrystals, the disordered dodecagonal quasicrystals have a square

triangle ratio that has a small deviation from the perfect square triangle ratio of the

perfect quasicrystal. Krumeich et al. (1998); Stampfli (1986) Since dodecagonal qua-
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sicrystals and certain classes of hyperuniform disordered points sets have complete

photonic band gaps Florescu et al. (2009); Zachary and Torquato (2009), disordered

dodecagonal quasicrystals are expected to have interesting photonic properties.

At small bond distance (0.05 < � < 0.2) and intermediate size ratio DL=1.4 and

lower kBT , the NL=3 colloidal molecule self-assembles the L3
EHKR crystal structure.

(Fig. 2.3f) The L3
EHKR crystal structure has an elongated hexagon square triangle

(3.4.6.4, 32.4.6, 33.4.6) lock sublattice, and rhombic key sublattice (L3
EHKR). The

lock sublattice is related to the Archimedean rhombitrihexagonal tiling (3.4.6.4) by

elongating the hexagon along its apothem. Elongated hexagons occur in projections

of complex metal alloys, such As Ti-Al-Mn-Pd Heggen et al. (2010) along the [010]

direction and have been predicted to occur in binary hard sphere systems using ge-

netic algorithms. Filion and Dijkstra (2009) To our knowledge, the crystal structure

L3
EHKR has analogues in complex metal alloys, but no known material systems re-

produce this crystal structure exactly.

2.4.1.2 Crystal Structures for the NL=2 Colloidal Molecule

The lock-and-key colloids withNL=2 self-assemble into nine di↵erent crystal struc-

tures. We show a geometric phase diagram for the size ratio (DL with DK=1) and

bond distance �, at fixed density � and temperature. (Fig. 2.4a) Two of the nine

crystal structures are unexpected random crystals and several are characteristic of

complex metal alloys. All of these crystal structures are accessible by tuning the

bond distance and size ratio of the NL=2 colloidal molecule. (Figs. 2.4,2.5)

At both high and intermediate values of lock-key bond distance (� = 0.3�0.5), the

NL=2 colloidal molecule forms the L2
HKK crystal. (Fig. 2.4b) In the L2

HKK crystal

structure, the locks form a triangular sublattice and the keys lie on a fractionally

filled kagome sublattice (see Kohlstedt and Glotzer (2013) for more detail of the

kagome phase). The fractionally filled degenerate kagome key sublattice (L2
HKK) has
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been observed in frustrated spin systems Rüegg and Fiete (2011) and colloids with

highly directional interactions. Chen et al. (2011) The assembly of the L2
HKK is not

surprising since the center of mass, which is where the keys lie, of hard dimers are

known to lie on the Kagome lattice.Wojciechowski (1992) The aperiodic crystal of

dimers is known to have a negative Poisson ratio.Kowalik and Wojciechowski (2005)

At high bond distance �=.45 and DL = 1.2, the NL=2 colloidal molecule forms the

L2
ETKR crystal structure. (Fig. 2.4b) The locks form a sheared Archimedean elon-

gated triangular (33.42) sublattice, and the keys form a rhombic sublattice (L2
ETKR).

(Fig. 2.4b) The sheared Archimedean tiling is an intermediate tiling between the elon-

gated triangular (33.42) and the triangular (36) tiling. By increasing the size ratio to

DL = 1.3, we can transform the L2
ETKR into the triangular L2

HKK . It is interesting

to note that this transformation, with respect to the lock sublattice, corresponds ap-

proximately to the transformation between rutile and monoclinic zirconia.O’Kee↵e

and Hyde (1980)

At high bond distance (� = 0.45) and high size ratio (DL=1.8), the NL=2 col-

loidal molecule forms the L2
HKD crystal structure. (Fig. 2.4d) In the L2

HKD crystal

structure, the locks form a triangular sublattice, and the keys are disordered. The

proximity of the L2
HKD and L2

HKK crystal structures on the phase diagram motivates

the altering of the bond distance (from �=0.45 to �=0.4 at DL =1.7) (Fig. 2.3) to

switch between assemblies of a partially ordered crystal (L2
HKD) to a perfect crystal

(L2
HKK).

At high bond distance (� = 0.4�0.45) and high size ratio (DL=1.5-1.8), the NL=2

colloidal molecule forms the L2
TSKR crystal structure. (Fig. 2.4e). In the L2

TSKR

crystal structure, the locks form a (32.42.3, (33, 42)3) triangle square lock sublattice

and a rhombic key sublattice. The lock sublattice is a 4-uniform tiling, meaning it is

an edge-edge tiling made of regular polygons with four di↵erent vertex configurations.

To our knowledge, the crystal structure observed has no known material equivalent.

23



0. 0.1 0.2 0.3 0.4 0.5δ

1.8

1.2

1.4

1.6

DL

a) b) L
H
K
K

2

L
H
K
D

2

L
H
K
K

2

Dis

L
ET
K
R

2

L
RT
K
R

2

c) L
ET
K
R

2
L
H
K
D

2d) e) L
TS
K
D

2

L
ATS
K
D

2

L
RT
K
R

2

L
EHS
K
R

2

L
SST
K
D

2

L
EHC

K
R

2

Figure 2.4: The geometric phase space for NL=2 molecular colloid is shown above.
For each crystal, the inset highlights the configuration of the molecular
colloids (white). We show the vertex configurations of the lock (black)
and keys (green). A representative snapshot is shown of each crystal
structure. We show a cross-section at fixed density (�=.7) as a function of
the geometric parameters size ratio (DL where DK=1) and bond distance
(↵). The crystal structures for NL=2 are a hexagonal lock tiling and
a substitutionally disordered kagome key tiling (L2

HKK), (b) a sheared
Archimedean elongated triangular lock tiling (33, 42) and a rhombic key
tiling at DL=1.2, ↵ =0.5 (L2

ETKR) (c), a hexagonal lock tiling and a
disordered key tiling (L2

HKD), (d) and (32.42.3, (33, 42)3) triangle square
tiling at DL=1.5, ↵ =0.45 (L2

TSKD) (e).
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At intermediate bond distance (� = 0.2 � 0.4) , the NL=2 colloidal molecules

form the L2
ATSKD crystal structure. (Fig. 2.5a) The L2

ATSKD crystal structure has a

random triangle square lock sublattice and a disordered key sublattice. The random

triangle square tiling L2
ATSKD is similar to theL3

ATSKD except that the density of the

keys is much higher due to the lock number. The triangle square ratios in the disor-

dered quasicrystals are di↵erent between L2
ATSKD and L3

ATSKD due to the lock num-

ber. It is interesting that both L2
ATSKD and L3

ATSKD reside on the geometric phase

diagram between disorder and a hexagonal crystal L3
HKDH and L2

HKK(Figs 2.3,2.4).

The random crystal structure arises from the geometry of the particle (smaller ↵)

and the reconfigurability from the increased rotational free volume destabilizing the

hexagonal crystal.

At small size ratio (DL = 1.2), the L2
RTKR crystal structure forms (Fig. 2.5b)

with the locks occupying a triangle rhomb sublattice and keys a rhombic sublattice.

To our knowledge, neither the L2
TSKR and L2

RTKR crystal structures observed have

known material equivalents.

The disordered region of the phase diagram competes with the L2
EHSKR crystal

structure. The L2
EHSKR crystal structure has an elongated hexagon square triangle

lock sublattice and a rhombic key sublattice (L2
EHSKR). (Fig. 2.5c) The L2

EHSKR is

related to the 2-uniform (3.6.3.6, (32.62)2), or the �-W net O’Kee↵e and Hyde (1980),

by elongating the hexagon along the shared apothem between neighboring hexagons.

The �-W net, which exists in the Cr3Si crystal structure, was found in experiments

of oppositely charge colloids.Hynninen et al. (2006)

The disordered region of the phase diagram also competes with the L2
EHCKR crys-

tal structure. (Fig. 2.5d) The L2
EHCKR crystal structure has an elongated hexagon

triangle lock sublattice and a rhombic key sublattice. The tiling is related to the

�-W net, and the elongation occurs along the hexagon apothem in the direction of

the triangle. It is interesting to note that two di↵erent elongated hexagonal crystals
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L2
EHCKR and L2

EHSKR are proximal on the phase diagram. By increasing the size

ratio to DL = 1.3, we can transform the L2
EHSKR into the triangular L2

EHCKR. The

implication is that two crystal structures characteristic of complex metal alloys can

be toggled by a simple geometric parameter.

At small bond distance (� = 0.0) and high size ratio, the NL=2 colloidal molecule

forms the L2
SSTKD crystal structure. (Fig. 2.5e) In the L2

SSTKD crystal structure, the

lock forms a random shield triangle square sublattice, and the locks are disordered. A

dodecagonal quasicrystal, the shield tiling Grünbaum and Shephard , closely related

to the aperiodic shield triangle square lock sublattice, is potentially applicable to

photonic band gap materials. Man et al. (2005)

2.4.1.3 Crystal Structures for the NL=1,4 Colloidal Molecule

Figure 2.6 shows the geometric phase diagrams obtained for lock-and-key building

blocks of NL = 1,4 confined in 2D. The phase diagrams depicted in Figure 2.6 show

the crystal structures found as one varies DL and the bond distance �, which is related

to dLK by 2� = 1 +DL � 2dLK , for each lock in the building block.

Far from DL = 1 and at large bond distance (� ⇡0.40) a frustrated hexagonal

phase, (L1
HKD), that is similar to frustrated dipoles confined to a triangular lattice

Greedan (2001), forms for the NL = 1 building block (Figs. 2.6a, 2.6b). In the L1
HKD

phase, the locks form a frustrated hexagonal sublattice, and the keys are disordered.

In the limit of complete bond distance, where the key particle completely overlaps the

lock particle, the frustration diminishes, and a hexagonal lattice emerges (� �0.5).

Thus, the single lock acts as a steric hindrance to the assembly of a hexagonal lattice.

For the NL =4 colloidal molecule, the Archimedean elongated triangular tiling is

observed at large �. At � ⇡ 0.15, a crystal structure (L4
ETKR) forms with the locks

on an Archimedean elongated triangular (33.42) sublattice and the keys on a rhombic

sublattice (Fig. 2.6d). The L4
ETKR structure is entropically stabilized by the shape
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cluster (a) we show a large frustrated/glassy (Dis) assembly that with
increasing overlap transforms into a partially ordered hcp phase (L1
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(h) Four-lock clusters assemble into rhombic lattice (L4

ETKR) from a small
Dis phase via rhombic partially ordered phase (L4

DKR). Geometrically
inaccessible regions arise for NL=4 and are shown as red diagonals. Rep-
resentative snapshots for the two observed crystalline phases in the phase
diagrams are shown. Additionally, we show the spacing and symmetry
of the phases with the di↵raction pattern for each structure. In the one-
lock case (a) we show the L1

HKD crystal structure for DL=1.8, � =0.5(b).
In the four lock case (d), we show the and L4

ETKR crystal structure at
DL=1.6, � =0.15.
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of the building block.

2.4.2 Reconfigurability and Assembly

The lock mobility �r determines the shape-shifting rate of the lock-key assemblies.

By increasing the lock mobility, building blocks sample a continuum of shapes at a

faster rate. We explore how hinge-like reconfigurability in the NL = 2 building block

a↵ects the stability of a partially ordered crystal structure (L2
HKD) as a function of

bond length and size ratio. We find that, as a function of bond length, the stabil-

ity region for the L2
HKD crystal structure is smaller for the reconfigurable building

block than the rigid building block. This variable stability region controlled by recon-

figurability opens opportunities for finely controlled rate-dependent crystal-disorder

transformations.

Lock mobility �r changes the stability range of the crystal structures. For a

given size ratio DL, increasing the bond length � causes the rotational free volume

to increase. We focus on the two-lock building blocks as a representative case. We

choose a well-ordered L2
HKD structure for a given value of DL as the reference crystal

structure and calculate a shape-matching order parameter with respect to assembled

equilibrium crystal structures as a function of building block geometric parameters

(DL, �). Because the locks lie on a hexagonal lattice in the L2
HKD crystal structure,

it is natural to use the six-neighbour bond order parameter �6 as our shape matching

criterion. Keys et al. (2011) The order parameter �6 is unity if the crystal structure

is a perfect hexagonal lattice. For both building blocks, the stability region (the

geometric state points such that �6 > 0.95 highlighted in grey) is determined by the

locks ability to e�ciently nest for a given DL. For both building blocks, the cuto↵

for good assemblers (�6 > 0.95) is shifted to higher values of � as the size ratio DL

increases.(Fig. 2.6a,b) Outside of this stability range, the lock mobility stabilizes an

amorphous solid (Dis).
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structures for the NL = 2 building block. An HCP shape matching or-
der parameter �6 is used as a function of bond length dLK for di↵erent
lock-key sizes (DL). Each curve is obtained by averaging across several
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order parameter �6 = 0.97 and dLK=.75 and DL=1.33. (d) Also, a rep-
resentative snapshot for a poor assembler is shown with order parameter
�6 = 0.83 and dLK=1. and DL=1.33
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For the reconfigurable building block, the rotational free volume of the locks al-

lows the lock mobility to cause additional packing frustration between lock and keys.

By comparing the reconfigurable building block to the rigid building block, we can

understand the role that lock mobility plays in the stabilization of the L2
HKD. Be-

cause the building blocks adopt a linear shape in a L2
HKD phase (Fig. 2.3d), we use

rigid linear particles for the rigid case. Figure 2.7 shows the �6 order parameter for

reconfigurable and rigid particles as a function of DL and �. Comparing the �6 order

parameter in Figure 2.4b with that in Figure 2.4a, we observe a similar behaviour,

i.e. there is an optimal range of � for each value of size ratio DL in which the locks

form an ordered L2
HKD structure. For the rigid building blocks, the optimal range

is broadened towards higher values of dLK for a given value of DL. For example,

the rigid DL=1.3 building block assembles into a L2
HKD structure for � > 0.2. The

reconfigurable building blocks can retain the L2
HKD structure only up to � = 0.4.

(Fig. 2.7a,b) The broadened stability range of rigid particles suggests that lock mo-

bility promotes local packing frustration and steric barriers for assemblies at high

density and pressure. Small kinks in the yield are expected since the rotational free

volume changes with geometric parameters, which subtly a↵ects the crystalline yield.

The majority of the kinks arise in the stability region of the L2
HKD crystal structure,

highlighting how certain geometric state points have favourable kinetics. One can

imagine using the lock mobility, or toggling the bond distance between the locks and

key, to directly reconfigure between crystalline and disordered states to change the

mechanical properties of the assembly.

2.4.3 Lock and Key Colloids in quasi-3D

We extend the spatial confinement from 2-D to quasi-3D, where the keys are still

confined in the x-y plane, but now the locks are able to rotate out of the plane. The

quasi-3D confinement reproduces the experimental conditions where the particles can
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move within a thin film or on a substrate without di↵using normal to the surface.

In order for the out of plane rotations to be unconstrained, the periodic boundary

conditions are only applied to x- and y-directions.

By changing the confinement characteristics from 2D to quasi-3D, we show how

frustrated crystal structures in 2D can order in quasi-3D. In quasi-3D, the crystal

structures can either resemble the crystal structures observed in 2D (Fig. 2.8), or

take on characteristics that are fundamentally di↵erent. (Figs. 2.8,2.9) We then

focus on the cases where the assembled structures are fundamentally di↵erent from

2D assembly.

In 2D, there are regions of the geometric phase diagram that are disallowed for

NL = 3 and NL = 4. (Fig. 2.4,2.5,2.6) Considering these geometric state points

in quasi-3D would demonstrate how altering the confinement characteristics a↵ects

the assembled structures. For instance, the NL = 4 building blocks can locally relax

into tetrahedral coordination. The results for NL = 4 outside the permitted 2-D

geometrical confinement with DL = 1.33 and dLK = 0.75 are shown in Figure 2.6.

This geometry provides us with a model tetrahedron, as the locks cannot all become

coplanar. We observe an interesting ABC stacking where three layers emerge with

a key layer sandwiched between two lock layers. The top and bottom lock layers

form a square lattice S o↵set from each so that the top layer is in the interstitials

of the bottom layer. The middle layer of keys then lies on a hexagonal lattice H

shown in Figure 2.8a (blue and orange, respectively). The monolayer is shown from

perspective in Figure 2.5b to show the o↵set lock layers (L4
HKS). The structure is

similar to the zinc blende structure seen in binary alloys. Barrett and Massalski

(1966) The long-range nature of the lattice is revealed by the 2D di↵raction image

taken along (001) plane as shown in Figure 2.8c. Regions of phase space inaccessible in

2D due to geometric constraints can form crystalline structures such as tetrahedrally

coordinated monolayers.
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Figure 2.8: Assembled tetragonal monolayer from four-lock clusters with quasi-3D
confinement. The cluster geometry is DL = 1.33 and dLK = 0.75. The
clusters form an ABC stacked layer with the locks forming a square lattice
on the top and bottom layers (a), while the keys form a hexagonal lattice.
We allow the monolayer of locks to freely rotate in the z-direction (b). The
2-D di↵raction image shows the four-fold square symmetry of the locks
and the six-fold hexagonal symmetry of the keys while looking down (001)
plane (c).
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In regions that are shared in both 2D and quasi-3D, we take a collection of ge-

ometric state points (Table A2) from the NL = 1 phase diagram (Fig. 2.7a) and

change the confinement from 2-D to quasi-3D. We find that the NL = 1 building

block in 2D can self-assemble a frustrated hexagonal crystal structure (L1
HKD) and

a disordered phase. (Fig. 2.4a). We observe a crystalline monolayer isostructural

to PbO in the region of frustrated Hp region.( L1
TKS). The PbO crystal structure

consists of three layers of lock and keys. (Fig. 2.8a) The building blocks align into

two rows with antiparallel orientation. The top and bottom layer of locks form a

square lattice, while the key middle layer forms a square lattice with di↵erent lattice

spacing (Fig. 2.9b). By changing the confinement characteristics of NL = 1, we can

switch between a L1
TKS crystal and a frustrated L1

HKD phase. (Fig. 2.9a,b) The

NL = 1 building block is representative of a building block that is sensitive to the

confinement characteristics of the assembly.

For the NL = 2 building block, confinement does not dramatically change the

crystal structure. At geometric state points where the L2
HKK and L2

HKD are stable

(Table S2), changing the confinement stabilizes a L2
HHKD crystal structure. L2

HHKD

crystal structure contains two hexagonal layers with a disordered key layer in between.

(Fig. 2.9a) The L2
HHKD crystal structure resembles the lock L2

HKD crystal structure

in that both crystal structures have locks arranged with hexagonal order and keys

that are disordered. (Fig. 2.5d, 2.9b) Spatial confinement in shared regions of the

geometric phase diagram can lead to transitions where the both crystal structures are

similar (L2
HKD-L2

HHKD), or whose structurally characteristics are unrelated (L1
HKD-

L1
TKS).

2.4.4 Reconfigurable Crystals

Binary nanoparticle superlattices Talapin et al. (2009); Shevchenko et al. (2006)

(BNSL) are promising materials for their electronic Urban et al. (2007) magnetic
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Figure 2.9: The e↵ect of confinement on 2-lock and 1-lock clusters is summarized
above. Representative snapshots of crystal structures under quasi-3D
confinement are shown above (a,b). The inset for quasi-3D confinement
show both lock and keys in the right half, only locks in the top left, and
only keys in the bottom left. We show the di↵raction pattern for each
representative snapshots. For the one-lock case, the 2 quasi-3D crystal
structure L1

TKS is shown for DL=1.7, � =0.5(a). For the two-lock case,
the quasi-3D crystal structure L2

HHKD is shown for DL=1.5, � =0.5(b).
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Cheon et al. (2006) and fluorescence Shevchenko et al. (2008) properties. We expand

upon previous work on BNSL by reporting the self-assembly of a switchable BNSL

(SBNSL), which toggles between a binary mixture and a partially ordered crystal with

alternating layers of order and disorder. Changing the e↵ective bond length or the

size ratio of the reconfigurable molecular molecules toggles the SBNSL structures. Al-

though DNA has been used to switch between two di↵erent BNSL Maye et al. (2010),

we show that through shape change via reconfigurability dimensions we can toggle

between a BNSL and a partially ordered binary nanoparticle crystal. Through shape

change, the tetrahedral coordination of a BNSL becomes frustrated, which leads to the

stabilization of partially ordered structures. The ability to design molecular switches

with dual material properties, such as surface plasmon resonance, Podsiadlo et al.

(2010) opens up a great opportunity for the development of multifunctional nanoma-

terials. Colloidal molecules that stabilize BNSL with crystal-crystal transformations

could be used in photonic, optical, and sensor applications.

Switchable binary nanoparticle superlattices use the reconfigurability dimensions

of the lock-and-key colloidal molecules to influence the thermodynamic equilibrium

structure. We investigated the e↵ect of the bond length and size ratio on the tetrahe-

drally coordinated NL = 4 case to understand how this coordination can be distorted

by shape change to stabilize partially ordered structures in the presence of spatial con-

finement, i.e. in quasi-3D. In principle, the distortion of the quasi-3D tetrahedrally

coordinated building block is similar to the high packing fraction crystal transitions

(L2
HKD ! L2

HKK) where a sublattice disorders by changing the size ratio and bond

distance (Fig. 2.4) Indeed, the changes in the bond length or size ratio to give rise

to structural transformations (Fig. 2.10a-c) The base radius ratio and bond length

leave the locks rigid and inhibit the excluded volume of the key from a↵ecting the

assembly of colloids. By transforming the size ratio, or bond length, we alter the

relative importance of the excluded volume of the key in comparison to the lock and

36



a) b) c)

d) e) f )

Bond Length Size Ratio

Figure 2.10: Schematic of quasi-3D partially ordered crystal-crystal transformation
using molecular colloids reconfigurability dimensions and representative
snapshots of the transformation are shown above. Tuning the size ratio
or bond length of the tetrahedrally coordinated molecular colloid act as
geometric knobs that distort the assembly of a crystalline structure.(a-c)
By transforming the cluster geometry from dLK = 0.75 to dLK = 0.80 at
DL = 1.33, we can transform the crystal structure from an ABC stacked
layer of with four fold symmetric locks, and six fold symmetric keys (e)
(See Figure 6) into a system where locks preserve their four fold order,
but the keys are disordered(d). By changing the size ratio from DL

= 1.33 to DL = 1.18(f), we can reproduce the same crystal structure
transformation above, but through a di↵erent mechanism.
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stabilize di↵erent structures. The transformations distort the tetrahedral coordina-

tion of the locks and keys, facilitating two possible crystal-crystal transformations.

The first crystal structure transformation converts a hexagonal monolayer sublattice

of locks with a square monolayer sublattice of keys (L4
HKS) to a hexagonal mono-

layer sublattice of locks with a disordered sublattice of keys (L4
HKD). (Fig. 2.10d-e).

The proximity of the two state points lends itself to switchable materials due to the

small change (7%) in bond length needed to activate the transition. The second

transformation converts the L4
HKS structure with DL = 1.33 and dLK = 0.75 into a

L4
HKD structure with DL = 1.18, but with a di↵erent lattice spacing from the above

crystal-crystal transformation. (Fig. 2.10e-f) These tetrahedral geometric transfor-

mations provide a simple mechanism to selectively disorder a single monolayer within

a crystal structure. . These order-disorder transitions are significant because they

involve only the key sublattice. Although the key sublattice transformation is signifi-

cant, reentrant behavior Bubeck et al. (1999) is not observed since the building block

transformation implies a connection between two di↵erent material systems.

2.4.5 Conclusions

The results shown here suggest that reconfigurable lock-and- key colloidal building

blocks have a rich phase space containing structures not seen previously in colloidal

crystals. We demonstrate how the combined use of anisotropic and dynamic colloids

allow for the design of nontrivial crystal structures such as aperiodic crystals, mixed

shaped tiles, and non-compact porous assemblies.

Importantly, we have described possible phases of a recently proposed new class

of colloidal molecules Wang et al. (2012) with reconfigurability dimensions that can

be toggled on demand such as number of locks NL, bond length dLK , size ratio

DL/DK , reconfigurability rate, and spatial confinement. These dimensions allow for

control over particle coordination, nonadditivity and geometric isomerization, and
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Figure 2.11: The e↵ect of reconfigurability, bond length, and size ratio on molecu-
lar colloids is summarized above. Representative building blocks for a
range of size ratio and bond length are shown for 2-lock building block.
Two di↵erent planes of reconfigurability highlight the new crystalline
structures that emerge, and the e↵ect of reconfigurability on stability
regions. Crystalline structures (red), plastic crystals (yellow), and disor-
der (green) form. State points (purple and black dots) are chosen from
the high reconfigurability layer to highlight how switchable multifunc-
tional nanoparticles are designed. An inset highlights the switchable
dimensions of the extended reconfigurability diagram.
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lead to many exciting, unexpected, and potentially functional, structures. Addition-

ally, design paths for switchable materials, due to the proximity of photonically active

geometric state points such as L2
ATSKD (Fig. 2.3, 2.4,2.5,2.6), highlight how recon-

figurability dimensions such as bond distance or size ratio could be toggled to create

colloidal materials with switchable properties. (Fig. 2.11) Responsive thin films

such as these could have desirable photonic properties. Hatton et al. (2010); Zhang

et al. (2011b) By altering the confinement of the assemblies, reconfigurable binary

nanoparticle superlattices can be assembled. Reconfigurability dimensions provide a

framework for the emergence of new crystalline structures, and the rational design of

multifunctional colloidal materials.

Finally, even with the systematic study of several reconfigurability dimensions

presented here, there remain large tracts of phase space to explore. Switching be-

tween two-dimensional and three-dimensional building blocks looks to be a promising

direction for the design of omnidirectional optically active materials. . Explorations

in 3D assembly could release packing frustrations observed in 2D. The incorpora-

tion of higher degrees of shape anisotropy into the lock-and-key building blocks has

the potential to generate novel materials and unlock new reconfigurability dimen-

sions. Next-generation building blocks could include the use of ellipsoidal keys with

matching locks, patchy keys that allow for tighter control of the coordination of the

building blocks, and even the incorporation of colloidal locks that have shape-shifting

properties.
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CHAPTER III

Self-assembly of Archimedean Tilings with

entropically Patchy Polygons

3.1 Abstract

Considerable progress in the synthesis of anisotropic patchy nanoplates (nanoplatelets)

promises a rich variety of highly-ordered two-dimensional superlattices. Recent ex-

periments of superlattices assembled from nanoplates confirm the accessibility of

exotic phases and motivate the need for a better understanding of the underlying

self-assembly mechanisms. Here, we present experimentally accessible, rational de-

sign rules for the self-assembly of the Archimedean tilings from polygonal nanoplates.

The Archimedean tilings represent a model set of target patterns that (i) contain

both simple and complex patterns; (ii) are comprised of simple regular shapes; and

(iii) contain patterns with potentially interesting materials properties. Via Monte

Carlo simulations, we propose a set of design rules with general applicability to one-

and two-component systems of polygons. These design rules, specified by increasing

levels of patchiness, correspond to a reduced set of anisotropy dimensions for robust

self-assembly of the Archimedean tilings. We show for which tilings entropic patches

alone is su�cient for assembly, and when short-range enthalpic interactions are re-

quired. For the latter, we show how patchy these interactions should be for optimal
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yield. This study provides a minimal set of guidelines for the design of anisostropic

patchy particles that can self-assemble all 11 Archimedean tilings.

3.2 Introduction

Tessellations comprised of regular polygons that completely tile the two-dimensional

Euclidean plane have been studied since ancient times due to their mathematics and

visually attractive symmetries.Grünbaum and Shephard Johannes Kepler identified

11 plane-filling tilings known as the Archimedian tilings (ATs),Kepler (1942) which

can be divided into two groups, namely regular (Figure 3.1a-c) and semi-regular

tilings (Figure 3.1d-k) made from regular polygons. The regular tilings are charac-

terized by the ability to map flags (tuples of mutually incident vertices, edges and

tiles) via tiling-related group symmetry actions (flag-transitivity), while the remaining

semi-regular tilings are expanded with a more relaxed symmetry in mapping vertex

pairs to each other by an acting group symmetry pertaining to the tiling (vertex-

transitivity).Grünbaum and Shephard

Various materials on multiple length-scales are known to form the ATs, which

exhibit striking photonic Ueda et al. (2007) and di↵usive properties. Basnarkov and

Urumov (2006) The (4.6.12) and (32.4.3.4) ATs possess complete photonic band gaps.

Ueda et al. (2007) Regular and semi-regular tilings are commonly observed in bulk

solids, polymeric assemblies, and nanomaterials. Archimedean crystalline nets such

as in Al203 (63) and CuAl2 (32.4.3.4) describe the coordination polyhedra in various

crystals of complex alloys.O’Kee↵e and Hyde (1980) The more complex semi-regular

tilings have been observed in the bulk structure of metallic alloys McMahon et al.

(2000) and supramolecular interfacial tessellations.Schlickum et al. (2008); Tahara

et al. (2006) Manifestations of regular and semi-regular tilings have been observed in

liquid crystal Chen et al. (2005) (T-shaped molecules) and polymer systems Takano

et al. (2005) (ABC star branched polymers), and in systems of patchy nanocrystals.
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Talapin et al. (2009) The self-assembly of polystyrene spheres in the presence of

a decagonal quasicrystalline substrate has been shown to self-assemble the (33.42)

and (36) ATs. Mikhael et al. (2008) Patchy triblock Janus colloids self-assemble the

(3.6.3.6) AT. Chen et al. (2011) Most of those results represent the ATs in a vertex-to-

vertex representation where particle centers are placed at the vertices of the polygons

in the tiling. The diversity of nanoscopic and microscopic components that assemble

ATs motivates a need to understand the minimal design rules needed for the assembly

of these tilings, in particular from readily accessible 2D nanoplates.

Anisotropic 2D nanoplates are known to have interesting electronic Ithurria et al.

(2011), catalytic Kavan et al. (2011), and optical Lu et al. (2006) properties, and have

been shown to successfully form exotic superlattices via a subtle balance between

shape-induced entropic patchiness van Anders et al. (2013c) and ligand-induced en-

thalpic patchiness.Ye et al. (2013c); Al-Saidi et al. (2012) 2D assemblies of nanoplates

could be used in thin film electronics.Ando et al. (2007) Also, 2D assemblies of per-

voskites nanoparticles, such as PbTiO3 nanoplates,Chao et al. (2013) have interesting

ferroelectric and storage properties.Kim et al. (2010) Given their polygonal shape,

faceted nanoplates could potentially self-assemble the ATs. Although assemblies of

ATs from polygonal nanoplates have been reported in experiments, Sau and Murphy

(2005); Lee et al. (2006); Park et al. (2006); Li et al. (2010); Ye et al. (2010); Shen

et al. (2012b); Sun and Xia (2002); Chen et al. (2007b); Paik et al. (2011); Zhang

et al. (2005a) they are restricted to the regular ATs (those comprised of a single type

of tile) (Figure 3.2). Because faceted nanoplates can exploit both entropic and en-

thalpic patchy interactions, they represent a viable approach that could reduce the

complexity of the design rules for self-assembly of elusive irregular and porous tilings,

when compared to the vertex-to-vertex approach.

Numerical simulations have also predicted the self-assembly of the Archimedian

tilings. For spherical particles, simulations of patchy particlesAntlanger et al. (2011);
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Figure 3.1: The eleven space filling Archimedian tilings. Regular tilings: (a) square
(44), (b) triangular (36), (c) hexagonal (63). Semi-regular tilings: (d)
truncated hexagonal (3.122), (e) truncated square (4.82),(f) rhombi-
trihexagonal (3.4.6.4), (g) snub square (32.4.3.4), (h) trihexagonal (or
kagome) (3.6.3.6), (i) snub hexagonal tiling (34.6), (j) elongated triangu-
lar (33.42), and(k) truncated trihexagonal (4.6.12) tilings which comprise
the entire family of Archimedean tilings.
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Figure 3.2: Representative snapshots of experimental assemblies of the triangular
(36), square(44), and hexagonal(63) ATs. The experimental AT observed
are (a) a Au (63) AT Sau and Murphy (2005), (b) a zeolite ZSM-2 (63) AT
Lee et al. (2006), (c) a In2S3 (63) AT Park et al. (2006), (d) a Cu2�xSe
(63) AT Shen et al. (2012a), (e) a � � NaY F4 (63) AT Ye et al. (2010),
(f) a NaY F4 : Yb/Er (63) AT Ye et al. (2010), (g) a NaY F4: Yb/Ce/Ho
(63) AT Ye et al. (2010), (h) a (44) ��NaY F4 AT Ye et al. (2010), (i) a
NaY F4 : Yb/Er (44) AT Ye et al. (2010), (j) a T iO2 (44) AT Chen et al.
(2007b) (k) a Au (44) AT55, (l) LaF3 (36) AT Sau and Murphy (2005),
(m) and a Cu2�xSe (36) AT. Shen et al. (2012a)
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Pawar and Kretzschmar (2010) reported the self-assembly of all ATs except for the

(3.6.3.6) AT. Ditethered nanospheres Iacovella and Glotzer (2009) formed the (4.82)

and (63) ATs. Lock and key colloids Sacanna et al. (2010) and hard polyhedra

Haji-Akbari et al. (2009); Damasceno et al. (2012a) formed the (32.4.3.4) and (63)

ATs, respectively. Despite these studies, numerical simulations have neglected the

commonly synthesized polygonal nanoplates as a means of AT self-assembly.

A variety of design strategies can be used to improve the self-assembly proper-

ties of a nanomaterial. Self-assembly pathway engineering has been used to optimize

the assembly properties of patchy particles.Jankowski and Glotzer (2012) The inverse

optimization of interaction potentials has been shown to improve the assembly prop-

erties of soft matter systems Torquato (2009). Crystal symmetry can be exploited

in the inverse engineering algorithms of target crystal structures. Cohn and Kumar

(2009) A linear stability analysis using dynamical system theory has been shown to

be good predictors of ground state patterns.VON BRECHT et al. (2012) Early time

correlation and response functions have been shown to be a good predictor of the

yield of a crystalline structure in self-assembly.

Here, we report the minimal set of interactions needed to self-assemble experi-

mentally accessible ATs from regular polygons, mimicking nanoplates assembled into

crystalline monolayers (Figure 3.2). We show through Monte Carlo simulations the

self-assembly of these tilings by exploiting entropic and enthalpic interactions encoded

in the shape of the polygons. We arrive at a design strategy for patchy polygon par-

ticles that is accessible to current experimental techniques, and present the minimal

set of design rules for each AT. We report that four ATs, namely the (63), (36),

(44), and (3.122) tilings, can be assembled solely with hard interactions, highlighting

the role of directional entropic forces Damasceno et al. (2012a); van Anders et al.

(2013a) that arise from the particle shape. We quantify the strength of these en-

tropic patches van Anders et al. (2013a) by calculating the potential of mean force
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and torque using free energy calculations. van Anders et al. (2013a) Symmetric en-

thalpic patches ((4.82)), shape specific patches ((32.4.3.4), (3.4.6.4), (3.6.3.6)), and

edge specific patches ((33.42), (34.6), (4.6.12)) are needed to self-assemble the remain-

ing crystalline structures. Beyond the ATs, the design rules presented provide general

insight into the design of complex crystal structures using anisotropic building blocks.

3.3 Model

Each nanoplate is modeled as a hard convex regular polygon with a finite number

of edges N = 3, 4, 6, 8 and 12. In the first model -that of least complexity- no

additional interactions are included. Initially, we find those ATs ((33), (44), (63),

(3.122)) that can be assembled by entropic forces alone. In all cases, shape anisotropy

gives rise to entropic patchiness that emerges upon crowding and is density dependent.

van Anders et al. (2013a)

For the remaining ATs, we introduce a short-range attractive edge-to-edge inter-

action potential. The interaction potential is divided into parallel, perpendicular and

angular components (Figure 3.3b). The parallel component represents the amount of

parallel contact between interacting edges. The perpendicular component models the

commonly-observed attractive van der Waals force between ligand-capped nanocrys-

tals. Schapotschnikow et al. (2008); de Vries (2006); Kaushik and Clancy (2012)

This component is dependent on the distance between centers of edges and is ap-

proximated by a parabolic well. The angular component penalizes any misalignment

between neighboring nanoplates representing steric forces between ligand shells. A

halo drawn around the building block represents the interaction range of the edge-edge

pair potential (Figure 2.3a). Di↵erent colors represent di↵erent interaction strengths

between edges. These enthalpic patches act as reversible, directional, sticky bonds

that compete or combine with entropic patches. The justification of such a short-

range potential in a nanoplate system is based on the presence of adsorbed ligands
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(e.g. oleic acid molecules).Ye et al. (2013c,a)

The complexity of the edge-to-edge interactions is determined by the targeted AT.

We found that we need three enthalpic models of increasing complexity for the as-

sembly of the remaining ATs: symmetric, shape-specific and edge-specific. The first

enthalpic model treats the pairwise interaction between polygons as patches of equal

strength distributed over all edges. The second enthalpic model (shape-specific),

which is a modification of the previous model, tunes the interaction strength between

patches of dissimilar polygons for those ATs comprised of binary tile mixtures. The

third enthalpic model (edge-specific) further increases the interaction complexity and

determines the interaction strength based on the type of edges even for similarly

shaped particles. To quantify the interaction asymmetry between di↵erent edges,

we introduce the parameter �. The � values reported are the minimum asymmetry

needed to assemble the target ATs. For each AT tiling, we find a favorable thermo-

dynamic state point for self-assembly of the building block.

3.4 Methods

Nanoplates are represented as hard polygons, and simulated using an NPT MC al-

gorithm. The pressure was slowly increased over time. Overlap checks were performed

using the GJK algorithm.Gilbert et al. (1988) NVT simulations were performed for

simulation runs with attractive short-range forces. The number of particles was var-

ied between 900 to 2000 to ascertain the absence of finite size e↵ects. We equilibrated

each simulation for 107 time steps and also gathered statistics for 107 timesteps using

established Monte Carlo methods.Ye et al. (2013c)

We computed the tendency for particles to align entropically via the entropic po-

tential of mean force and torque.van Anders et al. (2013a) We considered a pair of

polygons in a sea of other polygons, and denote nearby relative positions and orien-

tations of the pair by �⇠1 and �⇠2. The free energy di↵erence for the sea particles
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between these two states is given by the logarithm of the ratio of the number of mi-

crostates available to the sea when the pair is in the configuration �⇠1 to the number

of microstates when it is in the configuration �⇠2, which we denote by ⌦(�⇠1) and

⌦(2) respectively. To evaluate this ratio we note that some microstates in ⌦(�⇠1) will

also be in ⌦(�⇠2). The number of such states will be proportional to the probability

that a randomly selected state in ⌦(�⇠1) is also in ⌦(�⇠2). To determine this prob-

ability we fix a pair of tiles at �⇠1, and compute the probability that a trial move to

�⇠2 is accepted p(�⇠1 ! �⇠2). We also determine the probability p(�⇠2 ! �⇠1) of

the reverse move from �⇠2 to �⇠1. In addition we must also take into account the

di↵erence in infinitesimal volumes available to the pair at a given relative position

and orientation. The PMFT di↵erence is then given by

exp��(F12(�⇠1)�F12(�⇠2)) =
J(�⇠1)p(�⇠1 ! �⇠2)

J(�⇠2)p(�⇠2 ! �⇠1)
(3.1)

3.5 Results

We present our findings in four categories based on the four types of interac-

tion sets needed to assemble the Archimedean tilings: (i) entropic, (ii) symmetric,

(iii) shape-specific and (iv) edge-specific enthalpic interactions. All ATs can be self-

assembled with these four interaction approaches. The results are summarized in

Figures 3.4 and 3.10.

3.5.1 Entropic Interactions

Directional entropic forces arising from shape entropy, or a drive to local dense

packing, are an entropic strategy to self-assemble the Archimedean tilings. van Anders

et al. (2013a) In our studies, by changing the number of vertices of the building block,
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Shape specific patches are for mixtures with lines of alternating building
blocks. Mixtures with complex bond networks need edge specific patches.
The two rightmost columns show the state-of-the-art in particle synthesis
and self-assembly for each corresponding AT.
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regular polygons are shown to self-assemble four of the ATs. Regular triangles and

squares form the (36) and (44) ATs (Fig. 3.4a,b).

Regular triangles and squares form the (36) and (44) ATs, respectively (Figure

3.5a,b). Insets show the regular polygon building block and a close-up of the as-

sembly. The accompanying di↵raction patterns show sharp peaks in hexagonal and

square reciprocal lattices for triangles and squares, respectively, as a manifestation

of long-range order. The small number of defects highlights the robustness of the

assembly of both regular triangular and square tilings. However, there exists a col-

lection of crystalline structures that di↵er from the triangle and square ATs solely

by a shift vector along the lattice axes. Although at infinite pressure all of these

tilings belong to a thermodynamically stable degenerate set with equal probability

for self-assembly, we observe that at finite pressures the (36) and (44) ATs are the

equilibrium configurations. Previous work has also shown that the equilibrium struc-

tures of hard triangles and squares at high packing fractions are the (36) and (44)

ATs, respectively.Wojciechowski and Frenkel (2004); Zhao et al. (2011, 2012) Hard

hexagons readily form the (63) AT (Figure 3.5c) at finite pressures. This is the unique

infinite pressure (maximum density) crystal structure for the regular hexagon due to

shape constraints.

All of the ATs are, by definition, space filling. However, by treating some tile

types as pores, it is possible to assemble some multi-tile ATs with a single nanoplate

shape. An example of this is the (3.122) AT, which is comprised of dodecagons and

triangles. We find that regular dodecagons easily self assemble into the truncated

hexagonal Archimedean tiling at finite pressures without explicit triangle tiles; that

is, treating the triangles as pores in the tiling (Figure 3.5d). Notably, this assembly

is also the infinite pressure crystal for hard dodecagons.Duparcmeur (1995)

To summarize the results thus far, for each of the four (regular) ATs just discussed,

entropy alone is su�cient to obtain the tiling via thermodynamic self-assembly. This
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Figure 3.4: We show representative snapshots of simulations for the (36),
(44),(63),(3.122). ATs self-assembled with excluded volume interactions
only. Each assembled Archimedean tiling is accompanied by an inset
showing the polygonal particle, a di↵raction pattern of the snapshots,
and a compressed close-up. We show that a triangles self-assemble the
(36) tiling at a packing fraction equal to 0.90 (a), a squares self-assemble
the (44) tiling at a packing fraction 0.94 (b), hexagons self-assemble the
(63) tiling at a packing fraction 0.93 (c) and dodecagons self-assemble the
(3.122) tiling at packing fraction 0.85 (d).
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Figure 3.5: E↵ective free energy di↵erence between di↵erent configurations of hard
triangles as a function of density is shown above. We show the free energy
di↵erence as a function of the misalignment factor f. The blue line shows
the free energy gain by aligning the edges of the triangles. We show
the free energy increases for densities equal to 0.5(a), 0.6(b), 0.7(c), and
0.8(d). The free energy gain is 1.2kBT , 1.2kBT ,1.5kBT , and 1.8kBT at
packing fraction values of 0.5 , 0.6 , 0.7 and 0.8, respectively.
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