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ABSTRACT 

Nitride-based light emitting diodes (LEDs) and lasers are in high demand due to 

their numerous applications in solid state lighting, optical data storage, full color mobile 

projectors, heads-up displays, and other medical and military applications. Current state-

of-the-art quantum well (QW) based devices suffer from large polarization field, In 

clustering effects, and large threading dislocation density resulting in strong band 

bending and associated carrier leakage, large efficiency droop at high injections in LEDs 

and large threshold current densities in lasers. The objective of this doctoral research was 

to develop the optimum growth conditions of self-assembled InGaN/GaN quantum dots 

(QDs) through optical and structural characterization, and to utilize them in the 

demonstration and characterization of high performance visible InGaN/GaN LEDs and 

lasers.   

Self-assembled InGaN/GaN QDs were grown in a plasma-assisted molecular 

beam epitaxy (MBE) system via strain relaxation and therefore have reduced density of 

dislocations, smaller polarization field, and large electron-hole wavefunction overlap, 

resulting in higher radiative efficiencies and shorter radiative lifetimes. The growth 

conditions for the QDs were optimized through extensive structural and optical 

characterization to achieve high dot density (~3-8 x 1010 cm-2), reduced radiative 

lifetimes (~0.6 ns and ~1.5 ns for blue and green QDs), high radiative efficiencies (~60% 

and ~40% for blue and green QDs, respectively), and no S-shaped peak emission shift 

with temperature typically associated with In clustering effects. The QD LED 
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heterostructure design, growth and processing were optimized to demonstrate devices 

with low leakage current, low turn-on voltage (3.5 V), low series resistance (< 10 Ω) and 

low efficiency droop (< 20%). Small signal modulation measurements were carried out in 

QW and QD based high speed LEDs to derive differential carrier lifetimes at various 

injection levels, which helps in the understanding of the recombination dynamics of 

carriers in the active region. A study of the use of InGaN/GaN QDs as dislocation filters 

was also investigated with the objective of growing active regions with lower defect 

densities.  

 Growth conditions for the laser cladding (AlGaN) and waveguide (InGaN) layers 

grown by PA-MBE were optimized to obtain epitaxial layers of high crystalline quality 

which were used to demonstrate some of the first nitride QD lasers. Ridge waveguide 

blue-emitting (=418 nm) QD lasers demonstrated significantly lower threshold current 

densities ~930 A/cm2 and a small peak emission shift of 4.8 nm with injection. From 

cavity length dependent light-current measurements a high differential gain of 2x10-16 

cm2 was derived. Longer wavelength (=478 nm) QD lasers were also characterized. The 

first nitride-based red lasers were demonstrated incorporating In0.4Ga0.6N/GaN QDs as 

the active region and InAlN layers as cladding layers. The red lasers were characterized 

by a threshold current density of ~2.5 kA/cm2 and a peak emission shift of only 11.6 nm. 

Additionally, InGaN-dot-in-GaN nanowire heterostructures were grown by MBE 

on silicon substrates and optically characterized. The nanowires have a high aspect ratio 

and filter the dislocations through their sidewalls, resulting in high radiative efficiencies. 

The dynamics of spin polarized carriers in this relatively defect free nitride environment 

was studied for the first time by optical injection and detection of spin polarized carriers 

in InGaN dots in GaN nanowires. 



1 
 

 

 

 

Chapter I 

Introduction 

 

1.1      Solid State Lighting: Background and Motivation 

          Edison’s incandescent light bulb is one of the most important inventions in human 

history. It revolutionized indoor lighting, and fundamentally changed the way people live 

their lives by enabling vision easily across any space at any time.  Vision, one of the 

most basic senses of the human body for the beauty it registers and its role in 

coordinating daily tasks, is sensitive to the range of the electromagnetic spectrum 

spanning from 390-700nm. The light produced by Edison’s light bulb contained both the 

desirable visible light as well as wasteful infrared components. An incandescent lamp 

produces light by heating a filament (infrared emission) to a high temperature by passing 

electric current through it until it glows, resulting in very poor efficiencies. Fluorescent 

lamps reduce the energy lost as invisible IR light by concentrating light production in the 

visible spectrum. However, the parasitic energy losses during light production from 

mercury discharge are significant and additionally, the mercury remnant after-use is a 

toxic waste. The use of solid state semiconductors in the form of light emitting diodes 

(LEDs) further reduces parasitic energy losses during light production by converting 

electricity directly into light in the visible wavelengths through the radiative 

recombination of electron hole pairs. Nitride based LEDs emit in the visible spectrum as 
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they are direct and wide band-gap semiconductors. Fig. 1.1 shows some of the recent 

measured efficiencies of nitride and phosphide LEDs at various wavelengths. While 

(Al,Ga)InP-based LEDs can emit in the red wavelengths, it is impossible to cover the 

visible spectrum with this material as seen from Fig. 1.1. The (In)GaN LEDs, on the 

other hand, can emit across the whole visible spectrum by varying In composition in the 

InGaN active region. The traditional problem of  the “green gap” (Fig. 1.1) arises 

because the radiative efficiencies of green emitting InGaN active region reduces 

drastically with higher In incorporation and there is an absence of any other material 

system to provide high efficiency blue or green wavelength emission. The challenges 

Fig. 1.1. Measured external quantum efficiencies for state-of-the-art LEDs emitting 
in the visible spectrum [1]. 
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involved in getting longer wavelength emission from the nitrides and the approach used 

in this thesis is discussed later. Solid state lighting is the most energy efficient technique 

and has revolutionized lighting over the last decade. Its research and development has 

been relentlessly pursued and it has been replacing the conventional lighting in all 

spheres of human life at a steady pace. The efficacy of a light source is measured in 

lumens/watt (lm/W). Lumens is the measure of the amount of light output taking into 

account the sensitivity of human eye to various wavelengths and the efficacy is this 

amount of light output per injected electrical power. Fig. 1.2 describes how the usage of 

an LED can be extremely energy efficient compared to conventional light sources.  

          An LED is a semiconductor light source where the injected electrons and holes 

recombine within the device to give out light or photons. The first practical visible-

spectrum (red) LED was developed in 1962 by Nick Holonyak Jr. [3]. Different material 

systems have been utilized for generating different light emission in the visible regime. 

The first visible LEDs were realized by using Gallium Arsenide Phosphide (GaAsP) on 

GaAs substrates in the 1960s. The further development includes green-emitting gallium 

Fig. 1.2. Energy efficiency of a solid state nitride LED compared to incandescent and 
compact fluorescent lamps [2]. 
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phosphide (GaP) LEDs and yellow-emitting silicon carbide (SiC) LEDs, although they 

are very inefficient. High efficiency LEDs appeared when gallium aluminum arsenide 

phosphide (GaAlAsP) and aluminum indium gallium phosphide (AlInGaP) were used 

for making red and yellow LEDs in 1990s. Blue-emitting LEDs were a must to produce 

white light for visible applications. The first high-brightness blue LED was demonstrated 

by Shuji Nakamura of Nichia Corporation in 1995 and was based on indium gallium 

nitride (InGaN) [4]. This was an extremely promising development because of its 

potential in providing high efficiency blue emission and also the  possibility of providing 

longer visible wavelength emission including green and red by incorporating a higher In 

composition in the InGaN active region since (In)GaN is a direct, wide bandgap 

semiconductor. Its development was built on critical developments in GaN nucleation on 

sapphire substrates [5, 6] and the demonstration of p-type doping of GaN [7, 8]. Since 

then, blue LEDs have been combined with yellow phosphors to produce white light [9] 

used for solid state lighting. LEDs also find use in colored decorative lighting, portable 

Fig. 1.3. Applications of nitride-based visible LEDs. 
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light sources and displays as shown in Fig. 1.3. 

          One of the other important applications of nitrides in visible light sources is in 

visible lasers. The first blue-emitting InGaN lasers were demonstrated by Nakamura et. 

al. [10] in 1996. It became increasingly difficult to obtain lasing at longer wavelengths. 

The problems associated with higher In incorporation for obtaining longer wavelengths 

will be discussed later in subsequent chapters. It was only as recent as March 2009 that 

the first InGaN/GaN quantum well (QW) based green-emitting laser was demonstrated 

[11]. Although the initial progress was slow, the recent demonstration of blue and green 

lasers have seen their applications increase in wide areas including optical data storage, 

pico-projectors, astronomy, military dazzlers, medical prostatectomy and heads-up 

displays used in automobiles, as shown in Fig. 1.4.  

 

Fig. 1.4. Applications of nitride-based visible lasers. 
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1.2 History of III-Nitride Research and DOE Roadmap 

          Since the demonstration of the first InGaN blue LEDs, there has been enormous 

improvement in the efficacy and production of white light sources. White light sources 

can be achieved in two ways: 1) by mixing different proportions of blue, green and red 

emitting active regions in LEDs to tune the white light emission; and 2) coating a high 

brightness blue LED with a yellow phosphor to produce white light [8]. The persistent 

problem of the “green-gap” has promoted the adoption and steady pursuit of the second 

approach using phosphors to generate white light. Fig. 1.5 shows the exponential rise in 

nitride LED revenue, powered by the ever-increasing demands for solid state lighting. 

The nitride LED industry is at a threshold where it is facing serious challenges in its 

drive to replace all the existing conventional lighting sources and ushering in a lighting 

revolution not seen since the advent of Edison’s incandescent lamps.  

 

Fig. 1.5. Packaged nitride LED revenue. 
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The research in the nitride material system dates back to as early as 1969. The initial 

research in the 1970s and 1980s focused on studying the optical properties of the 

material but the inability to grow a thick single crystal GaN epitaxial layer with a flat 

surface free of cracks remained a major roadblock in making practical devices out of 

them. During this period, the lack of good epitaxial growth techniques coupled with 

issues of p-type doping in GaN due to high residual background doping impeded 

practical applications of the material system. It was not until the late 1980s that high 

crystalline quality GaN growth techniques were developed on readily available 

mismatched substrates including sapphire and SiC through the use of low temperature 

AlN buffer layers in chemical vapor deposition (CVD) chambers. The first 

demonstration of p-type doping in GaN using high incorporation of Mg subsequently led 

to the first demonstration of high brightness InGaN/GaN blue LEDs in 1989 by Amano 

et. al. and Nakamura et. al. [12], then working at Nichia Corp., in 1993 reported InGaN 

blue LEDs with recorded external quantum efficiency (EQE) of 0.18% and an external 

output power of 42 μW at 20 mA forward current. Continuous and relentless research 

resulted in the introduction of the AlGaN electron blocking layer (EBL) in 1993 

followed by the utilization of InGaN QW active region instead of double heterostructure 

which resulted in demonstration of high output power (1.5 mW) blue LEDs [13]. This 

ensured high power and efficiencies despite the use of mismatched substrates such as 

sapphire having large propagating dislocation densities of 108 – 1010 cm-2. Steady 

improvement in the LED heterostructure design, epitaxy, processing and optimization of 

the chip design using a “flip chip” design [14] has led to an enormous increase in the 

output power to > 150 mW/mm2 and EQEs as high as 45% in blue LEDs in recent times 
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[15]. While companies like Phillips and Nichia have championed the use of 

GaN/sapphire for their LED technology, Cree has progressed with GaN/SiC technology 

and Soraa has recently started developing GaN/GaN substrates for their commercial 

LEDs. Longer wavelength emission is much more challenging as will be discussed in 

subsequent chapters, although recent commercial green LEDs have been demonstrated 

with output power as high as 37 mW/mm2 [15]. As shown in Fig. 1.6, the Department of 

Energy (DOE) roadmap predicts a white LED source output goal of >

 

200 lumens/watt within the next decade. The 70-120 lumens/watt of light output 

produced by current white LED sources is already higher than that produced by high 

intensity discharge (HID) and linear fluorescent lamps (LFL), and the DOE further 

recognizes the potential of this technology in saving both costs and carbon emissions. 

Fig. 1.6. DOE goal for solid state LEDs as compared to high intensity discharge 
(HID) and linear fluorescent lamps (LFL). 
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The DOE has been investing enormous amount of money to realize the full potential of 

the LED technology. Similar large scale research efforts have seen the successful 

commercialization and improvement of blue lasers since 1995 and green emitting InGaN 

lasers since 2009. 

 

1.3 Challenges Facing III-Nitride Research 

1.3.1 Availability of substrate for gallium nitride growth 

          The GaN industry needs to further improve the efficacy of the devices and get a 

high yield on a large size wafer to reduce costs, reach the DOE goal and make this 

alternative solid state lighting affordable for mass applications. The best substrate for 

growth of LEDs or lasers should be GaN. However, traditional crystal growth techniques 

used in Si and GaAs are not applicable for bulk GaN crystal growth. From its phase 

diagram, GaN only melts above 2500 °C at a pressure higher than 4.5 GPa while at low 

pressures, it decomposes into Ga and N2 before melting.  

       Substrate         Lattice mismatch to GaN (%)       Thermal conductivity (Wm-1K-1) 

         GaN                                         0                                              130 

       6H SiC              3.4                     490 

      Sapphire                   13                    7.5            

       Silicon                   17                   3.59         

Table 1.1. Different substrates used for nitride LED and laser epitaxy. 

 

          As a result, large GaN crystals are typically grown on foreign substrates including 

sapphire, SiC or Si. However, the large lattice mismatch that the foreign substrates have 

from GaN, as shown in Table 1, results in the creation of a large dislocation density (108 
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– 1010 cm-2). Such a high defect density degrades the GaN LED and laser performances 

significantly through the creation of non-radiative recombination centers in the lines and 

parallel paths for electron hole transport resulting in heating of the devices and large 

leakage. Red-emitting GaAs based devices would not even have any significant radiative 

recombination with such high defect densities, but the unique properties of nitrides still 

make them very favorable for making solid state lighting sources on substrates with such 

high dislocation densities. This makes the design, growth and demonstration of high 

performing LEDs and lasers on these substrates very challenging. 

1.3.2 Efficiency droop in blue and green light emitting diodes 

 

          One of the biggest problems plaguing the solid state lighting industry is the huge 

drop in efficiency of LEDs at elevated current injections which are required for high 

brightness applications, a phenomenon termed as “efficiency droop”. Fig. 1.7 shows the 

Fig. 1.7. Efficiency droop observed in state-of-the-art c-plane quantum well 
LEDs.
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efficiency droop observed in state-of-the-art c-plane quantum well LEDs at high current 

densities. The QW LEDs were processed and characterized along with quantum dot (QD) 

LEDs whose results will be discussed later. The problem is particularly severe for green-

emitting QW LEDs where the peak efficiencies are much lower than those seen in blue-

emitting devices and the resulting efficiency at high injections after droop reaches very 

low values limiting practical applications. There has been a widespread research into the 

origin of the “droop” phenomena and into proposing solutions to alleviate it. It has been 

attributed to several mechanisms including the non-radiative Auger recombination [16], 

electron leakage from the QW active region [17], device self-heating [18] and exciton 

dissociation [19]. It was in 2008 that Krames et. al. [20] working at Phillips Lumileds 

first proposed Auger recombination as the main reason behind the observed efficiency 

droop. The results were substantiated by several other groups in the following years 

including lifetime measurements by Drager et. al. [21] and large signal modulation turn-

on delay measurements on laser diodes by Bhattacharya et. al. [22]. Others [23, 24] put 

the blame of efficiency droop on leakage of electrons beyond the electron blocking layer. 

Efficiency droop was shown to be independent of ambient temperature ruling out device 

self-heating as a possible reason [25] while exciton dissociation resulting in droop 

behavior has not been demonstrated through experimental techniques. Several proposed 

mechanisms for “efficiency droop” essentially originate from the large polarization field 

in wurtzite structured III-nitride based semiconductors. 

1.3.3 Large lasing threshold and longer wavelength lasing in (In)GaN lasers 

         The first InGaN-based laser diodes (LDs) were demonstrated by Nichia Corp. on c-

plane GaN in 1995, emitting at 400 nm. Since then there has been relentless research and 
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development to increase the lasing wavelength to longer wavelengths including green by 

groups in Corning, Nichia Corp., Osram, Rohm, Samsung, Sharp, Sony, Soraa, 

Sumitomo, and at the University of California Santa Barbara (UCSB). It was only as 

recent as 2009 that first green-emitting LDs (λ=500 nm) were demonstrated [26]. 

However, one of the biggest challenges the community is facing is to keep the threshold 

current density low especially for longer wavelength lasing, as shown in Fig. 1.8. There 

are several reasons responsible for increasingly high threshold current density with 

increasing wavelengths. 

          Lasing at longer wavelengths can only be attained by incorporating increasingly 

higher In composition in the QWs. This is challenging, because of the lower growth 

temperature required. Additionally, larger strain, polarization field and clustering results 

from increased In incorporation in the QWs. Secondly, the rough surface morphology due 

Fig. 1.8. Threshold current density for CW lasing at longer wavelengths by several 
groups [Modified from 27]. 
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to growth kinetics [28] and In alloy composition fluctuation in the InGaN QW active 

region [29] causes progressively broader spontaneous emission spectrum with increasing 

wavelengths due to the higher In incorporation. This broadening reduces the peak optical 

gain required to overcome the losses in the laser cavity. The third, and perhaps the 

biggest challenge, is to reduce the large piezoelectric polarization field in the active 

region especially at longer wavelengths which cause electron leakage and poor optical 

gain due to the quantum confined Stark effect (QCSE) [30]. 

1.3.4 Issues with p-doping 

          As was outlined in section 1.2, the progress in the field of nitrides was extremely 

slow during the 1970s and 80s mainly due to the inability in growing p-doping of GaN. 

This was mainly because of high n-type background doping of GaN during its crystal 

growth in MOCVD related to oxygen impurity incorporation and N-vacancies. Much of 

the initial progress in GaN crystal growth was done using CVD, and the interstitial 

incorporation of hydrogen in the crystal during MOCVD growth of GaN prevented 

activation of the most suitable acceptor dopant Mg by forming a Mg-H complex. A post-

thermal annealing technique to achieve CVD grown p-GaN was discovered by Nakamura 

et. al. [31] in 1992 which paved the way for the demonstration of the first GaN LEDs and 

lasers. High levels of p-doping was still not easily attainable using CVD mostly because 

of the high activation energy and consequently, poor doping efficiencies of Mg. 

Molecular beam epitaxy (MBE) growth of highly p-doped GaN (2x1018 cm-3) was 

demonstrated by Bhattacharya et. al. [32] at a low substrate temperature under N2-rich 

conditions preventing the formation of nitrogen vacancies and in the absence of hydrogen 

under high vacuum yielding very high p-doping levels in GaN. 
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1.3.5 Large polarization field and associated problems 

GaN is a polar crystal and has a wurtzite shape with alternating planes of Ga and N 

atoms, as shown in Fig. 1.9. Because of the high electronegativity of the N atoms, the 

wurtzite structure is more polar (or asymmetric) compared with other conventional 

semiconductors like GaAs. This creates a very large spontaneous polarization field in the 

nitrides. The polarization charges accumulate at the heterointerfaces especially at the 

AlGaN/GaN interface and can lead to a spontaneous polarization field as high as 2 

MV/cm [33]. Many designs of high electron mobility transistors are based on such charge 

accumulation.  

 

          The other type of polarization, the piezoelectric polarization, plays a more 

significant role in InGaN/GaN LEDs and lasers as the spontaneous polatization is low for 

InGaN/GaN heterostructures. This field is caused by the displacement of the anion sub-

Fig. 1.9. Polar wurtzite crystal structure of GaN. 



15 
 

lattice and the cation sub-lattice due to the large strain developed at the heterointerface 

because of the coherent strain resulting from the growth of lattice mismatched layers.          

The biggest problems from the large polarization fields are the associated band bending 

as shown in Fig. 1.10 (a) for a conventional InGaN/GaN QW LED with AlGaN electron 

blocking layer (EBL). The large field in the InGaN QW region (shaded) causes the bands 

to bend in a way such that potential barrier to electron leakage on the p-side is reduced 

causing very high leakage thereby assisting in Auger recombination and contributing to 

Fig. 1.10(a) Simulated band diagram of a typical InGaN/GaN multi quantum well 
(QW) LED with (solid line) and without (dashed line) polarization field; (b) Electron 

hole wavefunction separation in c-plane InGaN/GaN QW due to polarization field [33]. 
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droop. Secondly, the AlGaN EBL is pulled down reducing its electron blocking effect. 

Additionally, a large triangular potential barrier is formed on the valence band which 

causes non-uniform injection of holes across the multiple well layers with the first few 

QWs from the p-side getting filled first before subsequent QWs receive any hole carriers. 

The most harmful effect of this polarization field in InGaN QWs is possibly the 

separation of electron-hole wavefunctions resulting in poor radiative efficiencies, as 

shown in Fig. 1.10 (b). The situation aggravates with higher In composition indicated by 

very poor peak radiative efficiencies of green-emitting InGaN/GaN QWs. This large 

polarization field in the InGaN/GaN QWs is screened at high carrier densities resulting in 

flat bands causing blue-shift of the emission peak. This effect is called quantum confined 

Stark effect (QCSE) and is responsible for huge shift in peak emission wavelengths (~20 

– 30 nm) for QW LEDs and lasers. 

          There have been efforts to reduce the polarization field by using lattice-matched 

InGaN/InAlGaN quantum wells [34], by replacing the strained InGaN/GaN wells with a 

double heterostructure design [35], by growing the device heterostructures on non-polar 

and semi-polar substrates, or by applying external tensile stress on the substrates [36]. 

InGaN QW LEDs and lasers emitting in the blue and green wavelengths grown on non-

polar or semi-polar GaN substrates have been demonstrated. The results are promising as 

they show reduced droops in LEDs and lasing at longer wavelengths. However, these 

devices suffer from low peak efficiencies in LEDs and high lasing threshold in the lasers 

[37-39]. Bhattacharya et. al. has pioneered the use of quantum dots as the gain material to 

reduce the polarization field as discussed subsequently. 
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1.4 Our Approach: Use of Quantum Dots 

          The challenges faced by the nitride research community are enormous and many of 

them can be solved by reducing the polarization field present in the active region. Several 

alternative techniques to reduce polarization field have been widely researched as has 

been outlined in section 1.3.5. Our approach in this dissertation research centers on using 

self-assembled InGaN/GaN quantum dots (QDs) as the active region. The self-assembled 

InGaN/GaN QDs form when sufficiently strained InGaN layers undergo 2D-3D strain 

relaxation via the Stranski-Krastonow growth mode. The strain relaxation in the active 

region results in reduced piezoelectric polarization field in the QDs resulting in strong 

electron-hole wavefunction overlap. This leads to a large radiative recombination rate, 

and high radiative efficiencies. All other problems associated with large polarization field 

in the wells can be drastically reduced by using such dots in the active region. 

Furthermore, the spatial localization of carriers also prevents them from reaching the 

existing defect centers which can act as centers of non-radiative recombination. The 

longer wavelength dots are more easily attainable because of the lower inherent strain in 

the active region during growth. These superior optical properties of QDs can be realized 

by controlling their growth and structural properties as will be discussed in details in 

chapter II. Bhattacharya et. al. have led the research efforts in realization of QD-based 

nitride LEDs and lasers although there have been several other groups who did early 

research on the properties of QDs and QD-based LEDs [40-42].  

          The use of quantum dots assumes more significance in terms of solving some of 

the most pressing issues facing the development of nitride lasers. The InGaN QWs on c-

plane and semi- or non-polar GaN suffer from large threshold density which needs to be 
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lowered as it is critical in determining the power conversion efficiency. The use of dots in 

the active region provides both higher gain and differential gain due to their altered 

density of states which is expected to reduce threshold current density and produce large 

output power at relatively low current densities. Bhattacharya et. al. [43] and others [44] 

have demonstrated In(Ga)As/Ga(Al)As QD lasers with wide tunability of output 

wavelength, ultra-low threshold current, large modulation bandwidth and near-zero chirp 

and linewidth enhancement factors [43]. The superior properties of the nitride QDs would 

be even more important because of their role in mitigating the large polarization field 

inherent in InGaN/GaN QW devices as discussed above.  

          The purpose of the present research was to realize the advantages of QDs in the 

visible LEDs and lasers through detailed and careful control of the QD properties by 

growth using MBE. An extensive study of the growth and properties of the QDs and QD-

based devices were performed and discussed in details. The QDs can prevent the 

propagation of dislocations through them and can act as filters. The properties of such 

QD filters were extensively studied through material and device characterizations. 

Additionally, fundamental properties of InGaN/GaN dots in GaN nanowire on Si having 

similar dimensions as self-assembled dots were explored.  

 

1.5 Dissertation Overview 

          This dissertation focuses on the development of optimum growth conditions 

through close control and in-situ monitoring of self-assembled InGaN/GaN QDs grown 

by MBE. The optimized QDs were then used as the active region for realizing LEDs and 
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lasers with superior optical properties compared with state-of-the-art QW devices. Some 

of the most challenging issues facing the nitride industry including droop, low 

efficiencies especially in longer wavelengths, high threshold density in lasers and large 

peak emission shift were addressed using QD-based devices. The role of QDs in 

dislocation reduction inherent in GaN on sapphire substrates used for state-of-the-art 

LED growth was demonstrated. Additionally, InGaN/GaN dots in GaN nanowires were 

grown and characterized having similar dimensions as self-assembled InGaN/GaN QDs. 

The properties of spin polarized carriers were measured in the dots-in-nanowires to 

determine their potential use in realizing spin-based devices. 

          Chapter II discusses growth optimization of the self-assembled InGaN/GaN QDs 

with high radiative efficiencies, low polarization field indicated by low QCSE, and small 

radiative recombination lifetimes in Veeco Gen II and Gen 930 plasma assisted MBE 

systems. The QDs were characterized by detailed transmission electron microscopy 

(TEM), atomic force microscopy (AFM), temperature dependent photoluminescence (PL) 

and time resolved PL measurements to determine their optical and structural 

characteristics. 

          The use of QDs as the active region in LEDs is reported in chapter III. The QD 

LEDs are optimized through improvements in the device design, QD LED heterostructure 

growth and improvement in device processing techniques to realize high performing 

blue- and green-emitting LEDs. Current-voltage (I-V) and light-output (L-I) 

measurements were performed on such devices. Additionally, differential carrier lifetime 

measurements were performed on high-speed QD LEDs and equivalent state-of-the-art 



20 
 

QW LEDs to compare the recombination dynamics of carriers in the active region under 

varying injection levels.  

          The role of QDs in reducing propagating dislocations originating from lattice 

mismatched GaN nucleation has been explored through material and device 

characterization in chapter IV. Bhattacharya et. al. were the first to report the properties 

of QDs in reducing the dislocation densities in the arsenide material system [45]. 

Significant improvements in the I-V and L-I characteristics were obtained for green-

emitting LEDs on GaN/sapphire templates using InGaN QDs as dislocation filter.         

          Chapter V discusses the issues faced in realizing some of the first nitride QD-based 

lasers emitting in the blue and longer wavelengths. The challenges involved in growing 

high crystalline quality strained InGaN waveguide, AlGaN cladding, and well-controlled 

InGaN QD layers are studied through extensive material characterization. Detailed 

optical output characteristics of the nitride QD lasers have been measured and are 

reported in this chapter. 

          GaN nanowires can be grown relatively defect-free due to their large aspect ratio 

even on largely lattice mismatched Si substrates. The InGaN disk-like insertions in such 

nanowires are of similar dimensions to the self-assembled QDs. In chapter VI, the optical 

properties of the nanowires and InGaN dots in GaN nanowires were characterized 

including the measurement of spin properties of carriers for the first time in quantum 

confined nitride heterostructures under relatively defect free environment. 

          Chapter VII summarizes the work done in this dissertation and suggests some 

exciting future work using nitride QDs. 
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Chapter II 

Growth and Characterization of Self-assembled InGaN/GaN Quantum 

Dots by Plasma-Assisted Molecular Beam Epitaxy 

 

2.1      Introduction 

           The active region plays a significant role in determining the performance of 

optical devices including light emitting diodes (LEDs) and lasers. State-of-the-art nitride 

commercial LEDs and lasers have used InGaN/GaN quantum wells (QW) as the active 

region which provide stronger confinement and a higher radiative recombination rate of 

carriers compared to a double heterostrucure active region [46]. However, the large 

polarization field inherent in the nitrides coupled with the high dislocation density limit 

the performance of these QW devices, as discussed in chapter I. Alternatively, 

InGaN/GaN quantum dots (QDs) have been predicted and experimentally demonstrated 

to have stronger overlap of electron and hole wavefunctions compared to QWs resulting 

in increased radiative recombination and other superior optical properties [47-49]. This is 

because quantum dots form by strain relaxation of the InGaN layer, and therefore have a 

reduced in-built polarization field as compared to quantum wells. Additionally, spatial 

confinement and localization of carriers in QDs prevent their escape to dislocation 

centers present in the InGaN layers that can act as centers of non-radiative 

recombination. InGaN/GaN QDs have been demonstrated using Stranski-Krastonow (S-
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K) growth, the employment of low temperature passivation [50], use of anti-surfactants 

[51] and post-growth fabrication including annealing etc. [52]. The growth of self-

assembled InGaN/GaN QDs in plasma-assisted MBE [49, 53], NH3 MBE [54, 55] and 

MOCVD [56] are by far the most promising method in terms of realizing the improved 

optical and structural properties of QDs. The commercial nitride LEDs and lasers are 

mostly grown in metal organic chemical vapor deposition (MOCVD) reactors and the use 

of molecular beam epitaxy (MBE) has generally lagged behind. In this work, high 

performance QD based LEDs and lasers have been realized by precisely controlling and 

studying the epitaxial growth of constituent layers in high vacuum MBE. This chapter 

focuses on the detailed and systematic growth study of the QD active region and their 

detailed optical and structural characterization ultimately essential for demonstrating 

improvements in LED and laser performances.  

          The Stranski-Krastanow island growth mode for self-assembled InGaN/GaN QD 

formation is achieved when a large lattice mismatch exists between the growing InGaN 

layer and the underlying GaN substrate via the formation of a 2-D island layer called the 

wetting layer. Other growth modes include Frank-van der Merwe (FM) [57] and Volmer-

Weber [58] depending on the lattice mismatch and the interaction strength of the 

impinging adatoms with each other and the surface. The Volmer–Weber (VW) growth 

mode results in a 3-D growth of adatom clusters and islands as a result of adatom-adatom 

interactions being stronger than those of the adatom with the surface. This growth usually 

occurs when there is a large lattice mismatch (larger than that required for S-K growth 

mode). On the other hand, growth proceeds through Frank-van der Merwe (FM) growth 

mode when epilayers are grown lattice matched to substrate, resulting from adatoms 
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attaching preferentially to surface sites forming atomically smooth, fully formed layers. 

This layer-by-layer growth is two-dimensional, indicating that complete films form prior 

to growth of subsequent layers [59, 60]. Stranski–Krastanow growth is an intermediary 

process characterized by both 2D layer and 3D island growth [61].  All the three growth 

modes are shown schematically in Fig. 2.1. 

 

 

         It has been reported that growth of InGaN on GaN by MBE has a 2D – 3D 

Stranski-Krastanov (S-K) growth mode transition above a critical In composition of ~ 12 

% resulting in formation of self-organized InGaN QDs [62]. An extensive growth study 

of blue-emitting self-assembled In0.18Ga0.82N/GaN QDs (λpeak ~ 420nm) on GaN/sapphire 

templates (dislocation density ~ 1x109 cm-2) was performed along with detailed structural 

and optical characterization to obtain superior optical performance of QDs. The 

optimized conditions for the growth of blue In0.18Ga0.82N/GaN QDs were then used to 

derive optimum conditions for green emitting In0.3Ga0.7N/GaN QDs on GaN/sapphire 

templates and visible QD LEDs emitting in both blue and green wavelengths were made 

Fig. 2.1. Schematics of three different growth modes: (a) Frank-van der Merwe 
(FM), (b) Volmer Weber (VM) and (c) Stranski-Krastonow growth modes. 
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as reported in chapter III. The growth conditions were reproduced on GaN free-standing 

substrates having threading dislocation densities ~5x105 cm-2 and their optical properties 

extensively characterized and reported later in this chapter. Structural characterization of 

the QDs for growth optimization was performed using atomic force microscopy (AFM) 

and transmission electron microscopy (TEM) measurements. Temperature dependent and 

time resolved photoluminescence (PL) measurements were performed by exciting the 

samples with the frequency tripled output of a mode-locked Spectra Physics Tsunami 

Ti:Sapphire laser at 267 nm. Optimized InGaN QDs emitting in both the blue and green 

wavelengths were eventually used to grow, fabricate and characterize visible LEDs and 

lasers as reported in subsequent chapters.  

 

2.2       Growth and Characterization of n-doped GaN Buffer 

          The growth of self-assembled InGaN/GaN QDs was carried out in Veeco Gen II 

and Gen 930 plasma-assisted molecular beam epitaxy systems (PA-MBE). The Gen 930 

MBE system used in our lab is shown in Fig. 2.2. Both the Veeco Gen II and Gen 930 RF 

plasma-assisted molecular beam epitaxy (MBE) systems are equipped with standard Ga, 

In, Al, Mg, and Si cells, and an rf UNI-Bulb nitrogen plasma source. All our samples 

were grown on substrates with ~4 μm of Si-doped hydride vapor phase epitaxy grown 

(0001) GaN on top of c-plane sapphire. The threading dislocation density in the 

substrates is ~1 x 109 cm-2. Before growth, the substrates were first cleaned with standard 

solvents (TCE, acetone, IPA) and thermally degassed in two steps of 200 ° C/ 60 min 

followed by 450 ° C/ 60 min to reduce surface contamination. The growth temperature 

was measured by an infrared pyrometer, calibrated by the reflection high energy electron 
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diffraction (RHEED) transition of 7x7 to 1x1 of Si (111) substrates.  

 

The growth of a high quality n-doped GaN film is essential for growth of uniform 

quantum dots with high efficiencies. Typical heterostructures for growth optimization of 

the starting GaN buffer layer and InGaN/GaN QDs used in section 2.3 are shown in Figs. 

2.3(a) and (b), respectively. To find the appropriate III/ V ratio for growth of high quality 

GaN films, 300 nm of Si-doped GaN layers were first grown under different Ga fluxes 

(ΦGa = 2.5 to 5 nm/ min) (Fig. 2.3(a)) while keeping the nitrogen flux fixed at 0.5 sccm 

Fig. 2.2. Veeco Gen 930 Plasma-assisted molecular beam epitaxy (MBE) system in our 
lab. 
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Fig. 2.4. Atomic force microscopy (AFM) images of 300 nm of n-doped GaN layer 
grown on GaN/sapphire template with different Ga fluxes (a), (b) and (c). 

Fig. 2.3. Schematics of typical heterostructures for optimizing (a) underlying GaN 
buffer layer and (b) InGaN/GaN QD growth conditions for optical and structural 

characterization. 
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with an rf power of 300 W at a substrate temperature of 740 ° C for all the epitaxial 

layers. In-situ RHEED characterization and ex-situ atomic forced microscopy (AFM) and 

photoluminescence measurements were used to determine the optimum III/ V ratio. At a  

constant substrate temperature, increase of Ga flux results in a streaky RHEED pattern, 

reduction of crystal defects and smoother surface morphology as seen from AFM 

measurements shown in Fig. 2.4. This is because the growth of nitrides using MBE is 

kinetically driven [63] and requires a presence of metallic bi-layer to reduce the kinetic 

barrier to adatom incorporation in a step-flow 2-D growth mode. Increasing the Ga flux 

Fig. 2.5. Photoluminescence spectra of n-GaN band edge emission corresponding 
to Ga fluxes for which the AFMs are shown in Figs. 2.4 (a), (b) and (c).  
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progressively from ΦGa = 2.5 nm/min to 4 nm/min results in reduction of crystal defects 

as seen in AFM measurements in Figs. 2.4(a) and (b), respectively. This is also 

accompanied by a reduction of Ga-vacancy related yellow luminescence intensity 

compared to GaN band-edge emission as seen in Figs. 2.5(a) and (b), respectively. Figure 

2.5(b) also shows a PL emission with ΦGa = 4 nm/min grown at a lower growth 

temperature Tsub = 720 oC. It can be seen from Figs. 2.4(c) and 2.5(c) that the n-doped 

GaN layer grown with ΦGa = 4.5 nm/min at Tsub = 740 oC has the smoothest morphology 

with surface roughness ~0.5 nm and highest PL intensity with negligible yellow band 

luminescence. A further increase in Ga flux of more than 4.5 nm/min. results in micron-

size metal droplet formation which degrades the growth quality (Fig. 2.6). It should be 

noted that the strong yellow luminescence is stronger than GaN bandedge emission on 

starting (0001)-GaN templates and is completely suppressed after growth of 300 nm of n-

doped GaN at optimum growth conditions which indicate absence of any group III 

vacancies in MBE-grown GaN.    

 

Fig. 2.6. A 10 m x 10 m micrograph of a GaN layer growth with 
metal droplet formation at ΦGa = 5 nm/min. 
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2.3  Growth Optimization of Self-Assembled InGaN/GaN Quantum Dots 

          After growth of 300 nm of Si-doped GaN layer (n ~ 1 x 1019 cm-3) with ΦGa = 4.5 

nm/min during which the RHEED pattern remained bright and streaky, the substrate 

temperature (Tsub) is lowered to 560 - 580 °C for growing strong blue emitting InGaN 

QDs under nitrogen rich conditions (FN2 = 0.7 sccm; rf power 380 W). The indium 

content of the QDs emitting at 420 nm is estimated at ~18 % based on x-ray diffraction 

(XRD) measurement of a relaxed InGaN calibration sample (equivalent pressure ΦGa:ΦIn 

~ 2:1) of same In composition as the QDs. During the QD formation, number of InGaN 

monolayers (MLs) deposited should be larger than the critical thickness for strain 

relaxation to form QDs by S-K growth mechanism. It is found that the RHEED turns 

spotty ~18s after opening the In and Ga shutters for growth of the QDs with InGaN 

growth rate found close to 0.85 Å/s. Fig. 2.7 shows the change in the RHEED pattern 

during InGaN QD growth at (a) t=0s, (b) t=15s and (c) t=20s. This is followed by the 

growth of a 15 nm thick GaN barrier layer at the same temperature. Eight such pairs of 

Fig. 2.7. In-situ RHEED characterization during QD formation showing the RHEED 
pattern changing from streaky (layer-by-layer growth) to spotty (QD or island 

formation) pattern at (a) t = 0s, (b) t = 15s and (c) t = 20s. 
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InGaN QDs and GaN barrier layers are grown and the growth parameters are optimized 

to obtain improved characteristics of multiple QD layers. For AFM characterization, 

samples were grown with the eighth layer of the QDs uncapped, as shown in Fig. 2.3 (b). 

Influence of InGaN deposition thickness (number of monoloayers (MLs) of InGaN 

grown), GaN spacer layer thickness between two QD layers and in-situ N2 interruption 

times on the optical properties of QDs was determined.  

          Low temperature PL spectra on various samples were obtained by mounting the 

samples on liquid He cryostat. The topmost uncapped layers in the QD samples were 

characterized to determine the dimensions and aspect ratio of InGaN QDs using AFM 

measurements. PL decay times of QD samples were studied through a time resolved PL 

measurement performed using a Hamamatsu streak camera with an overall resolution of 

~5 ps. PL decay times are fitted to obtain total carrier lifetimes for the QD samples.  

2.3.1 Optimization of number of InGaN monolayers (MLs) 

          Room temperature photoluminescence (PL) intensity from eight layers of 

In0.18Ga0.82N/ GaN self-assembled quantum dots depend strongly on the number of 

InGaN MLs used to form quantum dots. The difference in in-plane lattice parameters 

between the In0.18Ga0.82N epilayer and the GaN layer is Δa/a = 1.85 %. For this amount of 

strain, the critical thickness for the 2D – 3D growth mode transition is ~4 – 6 MLs [62]. 

Three QD samples were grown with ~9, 12 and 14 MLs of InGaN grown to form a self-

assembled InGaN QD layer. Eight such layers of InGaN/GaN QDs were grown and 

characterized to see the effects of InGaN ML on structural and optical properties of the 

QDs. Highest PL intensity is obtained from the QD sample with 12 MLs of grown InGaN 

as seen in Fig. 2.8 (a). A 1x1 μm2 AFM scan of topmost eighth layer of uncapped InGaN 
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QDs show that the QDs have a base diameter of ~30 nm and height of ~4 nm, with a 

typical dot density of ~5 x 1010 cm-2. For QDs grown with 14 MLs of InGaN, the PL 

intensity from the same number of dot layers (eight) was found to be lower. This is 

possibly due to a larger dot size resulting from increased growth time. Large sized QDs 

result in reduced e-h wavefunction overlap which is confirmed by longer radiative carrier 

lifetimes measured on these samples (Fig. 2.8(b)). Growth of QDs with only 9 MLs of 

InGaN results in formation of incomplete QDs with reduced size (height ~2.25 nm, base 

~ 30 nm) and low aspect ratio resulting in lower PL intensities due to electron 

wavefunctions extending into barrier regions [47]. An optimum number of MLs is 

required to obtain QDs with highest intensities. For blue emission, ~12 MLs of 

In0.18Ga0.82N are optimum to obtain QDs having strong intensities and efficiencies. 

2.3.2 Optimization of N2 growth interruption time for each dot layer 

          After the growth of 12 MLs of the InGaN layer on GaN at 560 oC to form the QDs, 

growth was interrupted and the QD layer was annealed in-situ under the presence of 

Fig. 2.8. Influence of the number of monolayers (MLs) of InGaN deposited to form QDs 
on its (a) PL intensity and peak energy, and (b) lifetimes. 
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nitrogen flux for various times before the growth of GaN barrier. Fig. 2.9(a) shows the 

variation of PL intensities and shifts in peak energies for 15, 30 and 45 s interruption 

times. For increase in interruption time from 15-30 s, an increase in dot density was 

observed due to enhanced adatom surface mobility in presence of nitrogen flux during 

growth interruption. This causes enhanced PL intensity and reduced radiative carrier 

lifetimes in well-formed high density QDs (Fig. 2.9(b)). A further increase in interruption 

time (t > 30 s) showed an increase in average dot size and resulting non-uniformity in dot 

size from AFM measurements. Larger annealing times possibly result in coalescence of 

smaller dots to form bigger dots due to Ostwald ripening [64]. This explains both the 

lowering of the PL intensity and an observed increase in carrier lifetimes. Highest PL 

intensity and lowest carrier lifetime were obtained for in-situ annealing time of 30s as 

shown in Fig. 2.9. An optimum interruption time after QD layer growth enhances the 

optical properties of the QD layers significantly. A continual red-shift in peak PL 

Fig. 2.9. Influence of N2 interruption times after each layer of InGaN QD formation 
on its (a) PL intensity and peak energy, and (b) lifetimes. 
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emission from QD samples is observed with increasing annealing times. This follows 

from the increasing dot size which causes comparatively larger piezoelectric polarization 

field in the dots resulting in red-shift in emission. 

2.3.3 Optimization of GaN barrier layer thickness 

          A sufficient GaN spacer layer thickness in between two layers of InGaN QDs is 

required to relax the tensile strain present in the spacer layer and promote growth of 

uniform uncoupled QDs. If the barrier thickness is too low, the different QD layers may 

exhibit significantly different structural, and hence, optical properties. This would cause 

broadening of PL spectrum and reduced efficiencies. The growth conditions of the GaN 

barrier layers were calibrated at InGaN QD growth conditions. Quantum dot samples 

with 7, 12 and 16 nm of GaN barrier thicknesses were grown and characterized. A 

reduction in the linewidths (full width half maxima (FWHM)) of the room temperature 

PL spectra from 38 to 31 nm was observed with increasing GaN barrier thickness in the 

QD samples as shown in Figs. 2.10(a) and (b). PL intensities show a progressive increase 

with increasing barrier thickness (Fig. 2.10(a)). Reduction of the linewidth and increase 

in PL intensity is due to the formation of more uniform and smaller uncoupled QDs with 

increasing barrier thickness which is also indicated by reduction of carrier lifetimes 

obtained in these samples as seen in Fig. 2.10(b). A blue-shift of peak emission energy 

with increasing spacer or barrier layer thickness indicates that the dots are less vertically 

coupled (Fig. 2.10(c)) and thereby, have decreasingly lower FWHMs. 
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2.4 Optical Characterization of Optimized Blue and Green InGaN/GaN 

Quantum Dots 

          Optimized growth conditions were then used to grow capped eight layers of QDs 

and their optical properties characterized by performing temperature dependent and time-

resolved PL (TRPL) measurements. The radiative efficiency and lifetimes in these dots 

are limited by the threading dislocation density propagating from the GaN/sapphire 

Fig. 2.10. Influence of GaN barrier layer thickness after each layer of InGaN QD 
formation on its (a) PL intensity and peak energy, and (b) lifetimes. 
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templates. To overcome this limitation, optimal growth conditions were used to obtain 

InGaN/GaN QDs emitting in the blue and green wavelengths on GaN substrates with 

dislocation density of 5x105 cm-2 for these optical measurements. High radiative 

efficiencies of ~60% for blue emission and ~38% for green emission were obtained as 

shown later in this section. AFM measurements were carried out on optimized InGaN 

QDs on GaN/sapphire templates and the size distribution of the QDs were fit with scaling 

theory to indicating good epitaxial growth conditions during QD formation. Transmission 

electron microscopy were also performed on such samples. Temperature sensitivity of 

the QDs with different radiative efficiencies was measured for InGaN/GaN QDs grown 

on GaN/sapphire to realize the thermal activation of the dots under different growth 

conditions. 

2.4.1 Temperature dependent and time resolved photoluminescence measurements 

          Temperature dependent photoluminescence (PL) and time-resolved PL (TRPL) 

measurements were performed on both the blue- and green-emitting samples. For 

measurement at low temperatures, the samples were cooled using a liquid He closed-loop 

cryostat and excited by a frequency tripled mode-locked Spectra Physics Tsunami 

Ti:sapphire laser (λ = 267 nm) with a pulse width of 130 fs and repetition rate of 80 

MHz. Sample emission was detected using a spectrometer with 0.03 nm resolution and a 

photon counter. Fig. 2.11(a) shows a plot of the variation of PL intensity with 

temperature for blue-emitting InGaN QDs. The blue-emitting In0.18Ga0.82N/GaN QD (λ = 

420 nm) sample grown on a GaN substrate was found to have a radiative efficiency or 

internal quantum efficiency of ηi=60%, assuming that non-radiative centers are frozen in 

the QDs at 20 K. Similar measurements were performed on green-emitting 
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In0.32Ga0.68N/GaN QDs (λ = 530 nm) and ηi=38% was obtained as shown in Fig. 2.11(b). 

As reported in the literature [53, 65], at low temperatures, injected carriers are confined 

in the localization potential of the quantum dots or in the potentials due to compositional 

fluctuations. The carriers acquire enough thermal energy with increasing temperature to 

overcome the potential barriers and recombine at non-radiative traps in the barrier and 

wetting layer regions. Then the ratio of the saturated peak PL intensity at 30 and 300 K at 

high excitation powers is an approximate measure of the internal quantum efficiency, ηi 

(at room temperature). The thermionic emission of carriers and recombination in other 

layers at elevated temperatures may result in an underestimation of ηi. However, by 

measuring the dots at high excitation where the dots are saturated with carriers, this effect 

was minimized. All our temperature dependent and time-resolved PL measurements were 

carried out at the highest excitation power of ~30 mW with a focused laser spot being 

~50 m diameter. 

Fig. 2.11. Photoluminescence spectra of (a) blue-emitting and (b) green-emitting eight 
layers of InGaN/GaN QDs grown on free-standing GaN bulk substrates under 

different temperatures. 
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          Luminescence decay times of QD samples were measured using a Hamamatsu 

streak camera with an overall resolution of ~5 ps. Measured decay times are analyzed 

with a stretched exponential model to obtain total carrier lifetimes for the QD samples:  
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where β is the stretching parameter which is calculated to be ~0.95 for both blue and 

green emitting QD carrier decay times indicating absence of strong polarization field or 

In composition fluctuations in the InGaN QD region. Most commonly, deviation of β 

from unity is explained by change in lifetime with carrier depopulation due to carrier 

screening of piezoelectric field or a degree of compositional fluctuations in the dots as 

seen in InGaN quantum wells with β~0.5-0.7 [66]. The fitting of the room temperature 

PL decay time from TRPL measurements for blue QDs are shown in Fig. 2.12. Similar 

measurements were performed as a function of temperature to obtain total lifetimes as a 

function of temperature. At room temperature, blue and green QDs were found to have a 

total lifetime of 276 and 555 ps, respectively. Radiative (τr) and non-radiative lifetimes 

(τnr) at all temperatures were obtained using equations:  
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and are shown in Figs. 2.13(a) and (b). For blue-emitting QDs, τr remains nearly constant 

at 461 ps while for green-emitting QDs, it increases with temperature from ~1ns at low 

Fig. 2.13. Total, radiative and non-radiative carrier lifetimes obtained from TRPL and 
time dependent PL measurements for (a) blue and (b) green emitting InGaN/GaN 

quantum dots. 

Fig. 2.12. Room temperature carrier decay times obtained from time-resolved PL 
measurements and fit with stretched exponential model for blue emitting 

InGaN/GaN QDs. 
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temperatures to 1.46 ns at room temperature. For both the samples, the radiative and total 

lifetimes are at least an order of magnitude lower than equivalent quantum wells [67] 

which match well with theoretical calculations [47] and indicate stronger confinement in 

QDs resulting in better e-h wavefunction overlap. Non-radiative centers are thermally 

activated, and as such, non-radiative lifetimes decrease and become comparable to 

radiative liftimes with increasing temperatures. It should be noted that while for blue dots 

τnr is larger than τr at room temperature, green dots have lower τnr as a consequence of a 

lower ηi. The carrier lifetimes were also measured using a high excitation power of the 

injection laser where efficiency gets saturated and is independent of In clustering effects 

or large polarization fields. 

2.4.2 Thermal activation energy for InGaN/GaN radiative recombination 

          Photoluminescence intensities from QD samples are expected to exhibit lower 

sensitivity to temperature due to their discrete density of states resulting in stronger 

confinement of carriers preventing their escape to non-radiative centers. This would 

provide higher efficiencies from QD samples. The ratio of integrated PL intensities at 

300 K and 10 K provide an efficiency value of ~44 % for our QD samples grown on 

GaN/sapphire template. Fig. 2.14 shows the Arrhenius plot of the integrated PL intensity 

to determine the activation energies associated with QD structures. The solid line is a fit 

to the measured PL intensities using the formula 

ܫ                                  ൌ ሾ1ܥ ൅ ቀି݁ܣ
ாభ
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where I is the integrated PL intensity, and E1 and E2 are the two activation energies 

reflecting the behavior of PL intensity change at two different temperature regimes T > 
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200 K and T<100 K. For T<100 K, an activation energy E1~20 meV was found. At 

higher temperatures, E2 ~140 meV was obtained which is significantly higher compared 

to the values reported for quantum well samples. This activation energy is indicative of 

the energy required for the carriers to escape confinement from the QDs to undergo non-

radiative recombination. The ground state energies of In0.18Ga0.82N QDs have been 

calculated using a simple band energy calculation for an equivalent QW structure using a 

finite barrier model and including the spontaneous polarization field. Bhattacharya et. al. 

have shown that In0.27Ga0.73N green QDs have a reduced polarization field of ~ 70kV/cm 

[49]. Taking into account the calculated In0.18Ga0.82N band-gap of 2.743 eV, an ΔEC : 

ΔEV ~ 60 : 40, and involving heavy-hole ground state calculations, emission energy was  

calculated to be ~2.85 eV which is close to the PL emission peak of 2.95 eV. The first 

electron ground state for a QW with a dimension of 4 nm was found to be ~100 meV 

resulting in a barrier height of ~ 275 meV. However, lower activation energy for the QD 

Fig. 2.14. Thermal activation of blue emitting QD photoluminescence grown on 
GaN/sapphire templates. Sample A: radiative efficiency 44%; Sample B: Radiative 

efficiency 18%. 
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samples (140 meV) compared to their barrier height (~275 meV) indicates that the 

excitons in the QDs are not completely isolated [40]. There is an efficient coupling 

between the excited states of the adjacent dots thereby reducing the barrier required for 

the carriers to escape and undergo non-radiative recombination. This is also responsible 

for reducing the radiative efficiencies of the QDs. 

2.4.3 Temperature dependent photoluminescence shift: absence of S-shaped 

behavior 

         

The peak PL emission energies are plotted in Fig. 2.15 for both blue and green emitting 

InGaN/GaN QDs. Interestingly, and quite contrary to the S-shaped behavior observed in 

InGaN/GaN quantum wells [68, 69], the peak emission shift with temperatures indicate a 

close match with Varshni relation [70]. The temperature dependent band-gap shift from 

the Varshni equation is given by: 

௚ሺܶሻܧ                                      ൌ ௚ሺ0ሻܧ െ
ఈ்మ

்ାఉ
                                               (Equation 2.5) 

Fig. 2.15. PL peak energy shift with temperature for (a) blue and (b) green 
emitting InGaN/GaN QDs fit with Varshni equation. 
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where α and β parameters are used for fitting the curve for blue and green InGaN 

quantum dots measured and shown in Fig. 2.15. The absence of S-shaped behavior for 

QD PL peak emission energy shift indicates little or no Indium composition fluctuation 

present in the InGaN/GaN QDs region. It should be noted that the experimental data for 

the blue QDs (=408 nm) does not fit that well with the Varshni fit (Fig. 2.15(a)). This is 

probably because the blue QDs with very short wavelengths have low In composition and 

thereby, difficult to form resulting in poor dot formation and a deviation from Varshni 

relation. 

 

2.5 Structural Characterization of InGaN/GaN Quantum Dots 

          Atomic force microscopy (AFM) and transmission electron microscopy (TEM) 

were performed on several samples to better understand the distribution of QD height 

across the sample, the distribution of In atoms in the QDs and to show that the QDs were 

grown by elastic relaxation of highly compressively strained InGaN layers on GaN 

substrates through the formation of a wetting layer as expected from S-K growth 

mechanism. 

2.5.1 Atomic force microscopy (AFM) and scaling theory 

          The QD height distribution in the uppermost uncapped QD layer was obtained 

using AFM measurements for optimized blue and green emitting InGaN/GaN QDs. The 

AFM measurements were done with a Veeco Nanoman AFM facility using tapping mode 

microscopy. Typical AFM measurements are shown in Fig. 2.16. From Fig. 2.16 (a), the 

typical QD height and base width for blue InGaN/GaN QDs are ~3 nm and ~30 nm, 

respectively. The QD height and base width for green emitting InGaN/GaN QDs are ~5 
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nm and ~45 nm respectively as can be seen in Fig. 2.16(b). 

  

 Also, for both sets of QDs, the size distribution of the grown quantum dots 

follows the scaling distribution, which is given approximately by the form [71]: 

   
௜݂ሺݑሻ ൌ ௜݁ି௜௔೔௨ݑ௜ܥ
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ೌ೔	                             (Equation 2.6) 

where Ci and ai are constants which satisfy the sum rules for fi(u), i is defined as one less 

than the critical dot cluster size, and u is the normalized size.  

The distribution of quantum dot heights is analyzed for the blue and green dots as 

shown in Figs. 2.17(a) and (b), respectively. Both the blue and green dot heights fit well 

with the scaling functions, indicating good epitaxial growth of both sets of quantum dots. 

The dots are of an average height of <s>~3 nm for the blue dots and an average height of 

<s>~4 nm for the green dots. The differences in the dot sizes arise from changes in the 

substrate temperature that the dots were grown at, and from the ratio of gallium to indium 

flux during the quantum dot growth. The blue and green dots were grown at substrate 

temperatures of 565oC and 542oC, respectively. Furthermore, the blue dots were grown at 

Fig. 2.16. Atomic force microscopy (AFM) measurements of a (a) blue and (b) 
green emitting InGaN/GaN QDs. 
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equivalent group III pressures of ΦGa: ΦIn = 2:1 while the green dots were grown at a flux 

ratio of ΦGa: ΦIn = 3:2. The temperature and pressure differences give rise to an increase 

in ‘i' parameter from i=3 in the blue dots to i=5 in the green dots, indicating critical 

cluster sizes of 4 atoms and 6 atoms, respectively [71].  As expected, the green quantum 

dots are larger than the blue dots. Additionally, from the normalized distributions, it is 

evident that the larger green dots are more uniform in size. 

  

2.5.2 Transmission electron microscopy of InGaN/GaN quantum dots 

          Transmission electron microscopy (TEM) measurements were performed on green 

emitting InGaN/GaN QDs grown on GaN substrates for ease of sample preparation. Two 

pieces of the QD heterostructures were bonded together with MBond 600 to protect the 

QD surface and was mechanically thinned to ~50 m. The sample was put onto a carbon 

coated transmission electron microscopy (TEM) grid and further polished to ~500nm 

Fig. 2.17. QD height distribution of (a) blue and (b) green emitting InGaN/GaN 
QDs obtained from AFM measurements and fit with scaling theory showing good 

epitaxial growth of dots. 
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using ion beam milling with Ga ions. The cross-sectional QD heterostructure was imaged 

using a JEOL 2100F high resolution scanning TEM. Fig. 2.18(a) shows seven pairs of 

InGaN QDs indicating no evidence of basal plane dislocations. While the first layer is 

relatively smooth, some degree of interface roughening and faceting are observed in 

subsequent layers. The propagation of a dislocation originating from the substrate 

underneath is seen in the bright field TEM image shown in Fig. 2.18(b). A high 

resolution TEM of a single InGaN QD shows relatively uniform In composition in the 

Fig. 2.18. (a)Transmission electron microscope (TEM) image of seven layers of 
red--emitting InGaN/GaN QDs, (b) bright field TEM indicating how dislocations 
can propagate through the dots, and (c) high resolution TEM of a single QD. 
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dots with no In clustering. 

 2.6 Summary 

          The role of the active region in optical devices predominantly determines the 

performances of the devices. InGaN/GaN quantum dots were optimized by changing 

various growth parameters and optically characterizing such variations to draw 

correlations which can be repeated for different wavelengths in MBE growth to achieve 

high radiative efficiency QDs. Other optical and structural characterizations were 

performed on such QDs, and especially the ones performed on optimized QDs indicated 

a close to single exponential carrier decay times, low radiative lifetimes (~1.5ns for green 

QDs), high radiative efficiency (~40% for green QDs), absence of S-shaped behavior in 

PL peak emission shift, excellent match to scaling theory and crystallinity of the 

structures from TEM measurements. The optimized QDs were incorporated in device 

heterostructures and their performances characterized as discussed in subsequent 

chapters. 
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Chapter III 

InGaN/GaN Quantum Dot Light Emitting Diodes 

 

3.1      Introduction 

          There has been a vsat amount of research and development into nitride-based light 

emitting diodes (LEDs) due to their applications in solid state lighting. As discussed in 

chapter 1, there are numerous challenges facing current state-of-the-art commercial 

InGaN/GaN quantum well (QW) LEDs including low peak efficiencies, “efficiency 

droop” at high injections and large peak emission shift due to quantum confined Stark 

effect (QCSE) [72]. The “efficiency droop” has been mostly attributed to Auger 

recombination [16, 22] and carrier leakage from quantum wells [17], enhanced by the 

large polarization field in the quantum wells especially for large In composition for green 

emission. This polarization field is also responsible for reduced electron-hole 

wavefunction overlap resulting in poor peak efficiencies. Additionally, the screening of 

the polarization field with increasing injection results in a strong QCSE and 

consequently, a large blueshift in the peak emission wavelength (~20-30 nm) [72] in QW 

LEDs. 

          The advantages of using quantum dots (QDs) in the active region, over quantum 

wells, arise from the reduction of the polarization field in the dot layers due to the strain 

relaxation during the QD formation (by the S-K growth mode) and spatial confinement of 
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carriers in the dots as discussed in detail in chapter II. The InGaN/GaN quantum dots 

emitting in both blue and green wavelengths were characterized by nearly mono-

exponential carrier decay times, low radiative carrier lifetimes resulting in high radiative 

efficiencies, absence of “S-shaped” behavior in temperature dependent peak emission 

shift indicating no In clustering and structural uniformity of the QDs as also seen from 

atomic force microscopy (AFM) and transmission electron microscopy (TEM) imaging 

in the previous chapter. This chapter discusses the growth and process optimization of 

LEDs incorporating the optimized blue- and green-emitting InGaN/GaN QDs in the 

active region. The performance of these devices are characterized by current-voltage (I-

V), light output-current (L-I), and efficiency measurements. Additionally, high speed QD 

LEDs and state-of-the-art QW LEDs are fabricated and characterized by differential 

carrier lifetime measurements to understand the recombination dynamics of carriers in 

different LED heterostructures under various injection levels. 

 

3.2      Growth of InGaN/GaN Quantum Dot Light Emitting Diode 

Heterostructure 

          Heterostructures for blue- and green-emitting InGaN/GaN quantum dot (QD) light 

emitting diodes (LEDs) were grown in Veeco Gen II and Gen 930 plasma-assisted 

molecular beam epitaxy (MBE) system. The QD LED heterostructures were grown on n-

GaN/sapphire template and one such typical heterostructure schematic is shown in Fig. 

3.1. As outlined in section 2.2, after cleaning the n-GaN/sapphire templates and 

degassing in two steps, 300 nm of Si-doped GaN (n ~ 5x1018 cm-3) was grown at a 

nitrogen flux fixed at 0.5 sccm with a rf power of 300 W and a Ga flux ΦGa = 4.5 
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nm/min. During the growth of the n-GaN layer, substrate temperature was maintained at 

Tsub = 740 0C calibrated with a pyrometer for Si (7x7) to (1x1) transition. Growth was 

initiated only after the background chamber pressure stabilized following the striking of 

plasma. The RHEED pattern remained bright and streaky through the growth of this 

layer. This was followed by an increase of N2 plasma flow rate and power to 0.7 sccm 

and 380 W, respectively before the growth of InGaN/GaN self-assmbled QDs which 

form under N2-rich conditions. Five pairs of the optimized InGaN/GaN QDs, as reported 

in chapter 2, were then used to form the active region. The QD growth conditions were 

changed by varying the composition of the dots by varying the In:Ga fluxes and substrate 

temperatures to obtain emission across various wavelengths. Typically, blue emitting 

QDs are grown at ~Tsub=565 oC and ΦIn: ΦGa = 2:1. Longer wavelength green emissions 

are generally obtained by lowering the growth temperatures to ~Tsub=545 oC and by 

increasing In flux to ΦIn:  ΦGa = 3:2. Other growth parameters including III/V ratio, 

number of MLs required to form the QDs, N2 interruption times, and GaN spacer layer 

thicknesses were optimized to get strong optical emissions.  

Fig. 3.1. Schematic of InGaN/GaN quantum dot LED heterostructure grown on 
GaN-templated c-plane sapphire substrates.  
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          Five layers of capped InGaN/GaN QDs were followed by stabilization of the 

plasma back at 0.5 sccm and 300 W for growth of successive layers.  A thin 5 nm layer 

of GaN layer was grown at Tsub=740 oC which further aids in recreating a smooth surface 

morphology and an accompanied streaky RHEED pattern before the growth of p-doped 

layers. A heavily Mg-doped (p ~8x1017 cm-3) Al0.15Ga0.85N 13 nm electron blocking layer 

(EBL) was grown at Tsub=740 oC to improve LED performance by preventing electron 

leakage at high injections [73]. The Al composition, AlGaN thickness and the growth 

temperature were optimized to obtain lower turn-on and series resistance in the devices, 

as will be shown later. AlGaN growth conditions are reported to be of a better crystalline 

and electrical quality when grown at high temperatures [74] as Al has a very high 

sticking coefficient and a lower growth temperature creates a bad surface morphology 

due to excess Al incorporation in the layer. The AlGaN layer was grown at Tsub=770 oC 

in the MBE with ΦAl: ΦGa = 1:6 with the corresponding AFM image, photoluminescence 

(PL) and X-ray diffraction (XRD) data shown in Fig. 3.2. As seen from the figure, clear 

XRD peaks corresponding to the AlGaN and GaN epilayers were observed from the 

XRD measurement. The room temperature PL of the AlGaN calibrating layer showed a 

strong band edge emission (Fig. 3.2(b)) indicating absence of any optically active defects 

present in the material. The surface morphology was slightly spotty (Fig. 3.2(c)) which 

resulted from the large thickness (150 nm) of the highly strained AlGaN layer grown. 

This is not of concern in the LEDs as a thickness of only 15 nm AlGaN is required for 

the EBL and the surface morphology remained very smooth for Al0.15Ga0.85N layers with 

such small thicknesses as observed from RHEED.  
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          The final Mg-doped p-GaN layer was grown 150 nm thick followed by a 5 nm 

thick p+-GaN region for improved ohmic contact formation. As discussed in chapter 1, 

growth of p-doped GaN layers by metal organic chemical vapor deposition (MOCVD) 

was finally achieved after lengthy research by post-thermal annealing method [31] to get 

rid of the Mg-H complex formed. However, the doping efficiency of the Mg atoms was 

still substantially low (~1-3%) as they have high activation energy of ~170 meV. The 

Fig. 3.2(a) X-ray diffraction (XRD) showing composition of AlGaN, (b) room 
temperature photoluminescence showing AlGaN and GaN band-edge emissions, and 

(c) a 5m x 5 m atomic force microscopy (AFM) image of 150 nm Al0.15Ga0.85N layer 
on GaN/sapphire template for electron blocking layer. 
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possibility of Mg-doped p-GaN growth at lower Tsub=710 o and absence of hydrogen in a 

high vacuum MBE chamber has created better p-doping in MBE-grown layers. For 

sufficient Mg incorporation, the layers had to be grown under Ga-rich (ΦGa=5nm/min) 

conditions to maintain continuously smooth surface morphologies during heavy Mg 

incorporation which can easily roughen the surface in the absence of a metallic bilayer 

during growth [75]. The p-doping levels for such growth conditions were measured to be 

~8x1017 cm-3 from Hall measurements. Small proportion of In (In0.01GaN) was also 

introduced during the p-GaN growth which acts as a surfactant preventing the 

roughening of the surface morphology. 

 

3.3  Fabrication and Characterization of Quantum Dot LEDs 

3.3.1 Fabrication of a typical LED 

          A typical fabricated LED heterostructure schematic is shown in Fig. 3.3(a). Figure 

3.3(b) shows a micrograph of a fabricated LED. Contact photolithography (MJB 3 

aligner) was used to make all the patterns of the LED structure. The first step involved 

making a p-contact mesa for current injection. A 300 m x 300 m mesa pattern was first 

created by etching out the remaining p-GaN and active region upto n-GaN. Generally, 

after calibrating the etch rates in reactive ion etch tool (LAM 9400), 350 nm of 

heterostructure thickness was etched out. Care was taken to clean the residue after the 

RIE etching using O2 plasma in a plasma asher. The second step involved metallization 

for the p-contacts. A thin layer of native gallium oxide can prevent good ohmic contact 

formation. After developing a 280 m x 280 m opening on top of the mesa, the native 

oxide was removed by dipping the sample in HCl:H2O (1:1) for 10 minutes before 
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quickly loading it into an e-Beam evaporator chamber. A thin 5 nm Ni/ 5 nm Au current 

spreading layer was selectively deposited using metal lift-off. This was followed by 

annealing of the p-contacts at 550 oC for 5 min in a N2/O2 1:1 environment in a rapid 

thermal annealing (RTA) tool to create a Ni-O layer at the interface providing good 

ohmic contacts to p-GaN. The final step in the LED fabrication involved depositing a 

thick 25 nm Ti/ 300 nm Au metal serving as an n-contact around the mesa and as a p-

contact probe on top of the current spreading thin layer as shown in Fig. 3.3(b). 

Fig. 3.3(a) Schematic of a fabricated QD LED heterostructure and (b) photo 
micrograph of fabricated LEDs from top. 



54 
 

 

3.3.2 Fabrication of High Speed LEDs 

 

High speed LEDs were fabricated to measure the differential carrier lifetimes in QD and 

QW based LEDs and to help understand carrier dynamics under various injection levels. 

Details about differential carrier lifetime measurements are presented in the next section. 

Figure 3.4 shows (a) a schematic and (b) a photo micrograph of a fabricated high speed 

Fig. 3.4(a) Schematic and (b) micrograph of a fabricated high-speed QD LED 
heterostructure for measurement using G-S-G probe. 
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device. High-speed LEDs were fabricated by projection lithography [GSA Auto Stepper] 

techniques. For realization of high speed LEDs and accurate measurement of differential 

lifetimes, a current confining aperture with a diameter 114 µm was patterned by 

inductively coupled plasma etching down to the Al0.15Ga0.85N electron blocking layer. 

Five nm/ 5 nm of Ni/ Au was deposited on top of this current confining aperture followed 

by 5 min annealing in a N2/ O2 environment at 550º C to form transparent ohmic contact 

to p-GaN as discussed in previous section. A second mesa with a diameter 228 µm was 

realized by etching down to the n-GaN layer to facilitate the deposition of the n-ohmic 

contact for the LEDs. This restricts the current flow path to the 114 µm mesa and 

prevents carriers from flowing through the rough sidewalls of the active region caused by 

plasma dry etching. The current confining aperture, thereby, helps in reducing the 

capacitance [76] and carrier leakage affecting the IQE of the device. SiOx passivation and 

subsequent interconnect metal deposition ensures that the p- and n-ohmic contacts are at 

the same height and can be probed by a high speed ground-source-ground (G-S-G) probe 

for measurements. 

 

3.4 Output Characteristics of Quantum Dot LEDs 

3.4.1 Current-voltage characteristics 

          The grown and fabricated QD LEDs were characterized for their output 

characteristics. The current-voltage (I-V) characteristics were plotted for QD LEDs with 

optimized growth and fabrication conditions and are shown in Fig. 3.5(a). A clear 

improvement in terms of reduced turn-on voltage and lower series resistance was 

observed with improved growth conditions in the EBL as described in Table 3.1. The 
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thickness, Al composition x, and the growth temperature Tsub were varied in the AlxGa1-

xN EBL to obtain device performance with lowest turn-on voltage and smallest series 

resistance. The EBL was designed to prevent the leakage of electrons at higher injections 

so that they are mostly confined in the active region QDs and undergo radiative 

recombination. However, due to the strong polarization field and associated band 

bending, EBL can act as barrier to uniform hole injection in the LEDs [33]. This can be 

avoided by having strong p-doping in the EBL and designing an optimum thickness and 

Al composition for the AlGaN EBL. A very low turn-on voltage of ~ 3.5V and series 

resistance < 10Ω is obtained for a 13 nm Al0.15Ga0.85N EBL. In a typical device of size 

7.8x10-4 cm2, a current of 100 mA can be supplied at <6.5V to obtain bright emission as 

shown in Figs. 3.5(b) and (c) for blue and green QD LEDs, respectively. 

 

Device 
name 

AlGaN 
thickness 

(nm) 

Al 
composition

Growth 
temperature 

Tsub (oC) 

Turn-on 
voltage 
Von (V) 

Diode series 
resistance R () 

LED I 18 0.17 770 10 High 
LED II 13 0.15 753 3.3 12 
LED III 12 0.17 753 4.5 14 
LED IV 13 0.15 770 3.8 12 

 

 

3.4.2 Electroluminescence of quantum dot LED 

          The optimized QD LED output was collected by a broad area optical fiber and fed 

to an Ocean-Optics 2000+ spectrometer calibrated for measuring visible wavelengths. 

The emitting blue and green QD LEDs are shown in Figs. 3.5(b) and (c), respectively. 

Table 3.1. Description of the samples used to optimize the EBL layer for lowest turn-
on voltage and series resistance. 
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The electroluminescence (EL) spectra of the blue and green QD LEDs at 100 A/cm2 are 

plotted in Figs. 3.6(a) and (b), respectively. The spectra of the blue and green QD LEDs 

were measured as a function of injection current and the peak emission shift is plotted in 

the inset to the respective figures. A peak shift of only 3.8 nm corresponds to a built-in 

polarization field of ~70 kV/cm. Similar measurements for green QD LEDs yield an 

emission shift of 5.7 nm corresponding to a polarization field of 95 kV/cm [49]. The 

polarization fields calculated from the injection dependent EL shift in QD LEDs are 

Fig. 3.5(a) Current-voltage characteristics for different EBL layers in QD blue LEDs. 
Micrographs of (b) blue and (c) green QD LEDs under 100 A/cm2 injection. 
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significantly smaller in comparison with those measured in QW LEDs grown on c-plane 

GaN [77, 78]. It should also be noted that the EL emission has a single peak of emission 

indicating uniformity of the active region under uniform injection of carriers. 

  

Fig. 3.6. Electroluminescence of (a) blue and (b) green QD LEDs. The 
injection dependent peak emission shift is shown in the inset for the respective 

LEDs. 
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3.4.3 Efficiency characteristics of quantum dot LEDs           

 

          The light output intensity as a function of injected current (L-I) from blue and 

green QD LEDs were measured by a Si-Ge detector. The L-I characteristics were used to 

Fig. 3.7. Efficiency characteristics indicating low efficiency droop and peaking of 
efficiencies at low current densities for (a) blue- and (b) green-emitting QD LEDs.  
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obtain relative efficiency as a function of current by dividing the light output by current 

to obtain the efficiency. The efficiency curves for blue and green QD LEDs are plotted in 

Figs. 3.7(a) and (b), respectively. The efficiencies peak at much lower current densities 

compared to the devices made earlier. The y-axis on the plots is adjusted to reflect the 

radiative efficiencies or internal quantum efficiencies measured on equivalent QDs from 

temperature dependent PL measurements. The blue QD LEDs have a peak efficiency at 

30 A/cm2 and an efficiency droop of 22%, while the green QD LEDs have efficiencies 

peaking at 35 A/cm2 with a measured droop of only 25% when measured between 35 

A/cm2 and 150 A/cm2. As stated earlier in chapter I and the introduction to this chapter, 

the efficiency droop is a major problem facing commercial QW LEDs and has been 

attributed largely to Auger recombination and electron leakage [16, 17, 22], aided by a 

large polarization field present in the active region. The use of QDs in the active region 

helps in having reduced polarization field, thereby lowering leakage of electrons and 

reducing non-radiative Auger recombination at high carrier injections. This helps in 

attaining lower droop observed in these LEDs without any additional design variations. 

Additionally, differential carrier lifetime measurements were performed on the high 

speed QD LEDs and the results compared to QW LEDs. It is a wonderful technique to 

understand the various recombination mechanisms dominating the carrier dynamics at 

various injection levels. The processing of the devices have been detailed in section 3.2.2 

and the fabricated device heterostructure and micrograph shown in Fig. 3.4. The 

following section details the measurement and the analysis of the results obtained.  
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3.5 Differential Carrier Lifetime Measurements of Quantum Dot and Quantum 

Well LEDs 

3.5.1 Introduction 

Efficiency droop limits the practical application of current nitride based visible 

LEDs and is a subject of intense research. The efficiency droop, which typically occurs at 

a maximum current densities of ~40 A/cm2 for state-of-the-art c-plane QW LEDs 

emitting at 415 nm and at ~10 A/cm2 for 445 nm [79, 80], has been widely attributed to 

Auger recombination [16, 22], carrier delocalization [79, 81] and carrier leakage from the 

quantum well active region [17]. The performance characteristics of green InGaN/GaN 

quantum dot (QD) LEDs had been recently reported by our group [49, 82]. The onset of 

droop in these devices occurs at higher current densities (~ 220 A/cm2) and the 

percentage droop was lower compared to QW LEDs. The advantages of using QDs in the 

active region of LEDs are reduced polarization field, lower density of structural defects 

and stronger e-h wave function overlap [47-49]. Differential carrier lifetime 

measurements [80, 83] on high-speed blue-emitting QD LEDs were carried out and the 

measured data analyzed and compared to those of blue QW LEDs.  Analysis of the 

measured data helped understand and elucidate the important radiative and non-radiative 

processes and efficiency characteristics in the two kinds of LEDs. The Auger 

recombination coefficient in the quantum dots is calculated to be C0= 2.1x10-31 cm6s-1, 

which is an order of magnitude smaller than the value of the coefficient in the quantum 

wells. There is also an evidence of a carrier capture bottleneck in the quantum dots, 

possibly arising from the presence of a wetting layer.  
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3.5.2 Heterostructure design and measurement 

The quantum dot LED heterostructure was grown by MBE containing 5 periods 

of In0.18Ga0.82N/GaN quantum dots and a 13 nm p-doped Al0.15Ga0.85N blocking layer 

similar to a typical LED heterostructure mentioned in section 3.1 and 3.3 before and also 

shown in Fig. 3.4. It should be noted that the LED heterostructure was grown on c-plane 

GaN-on-SiC substrate for this particular experiment. GaN-on-SiC has lower lattice 

mismatch of only 3.4% compared to a lattice mismatch of 13.8% for GaN-on-Sapphire. 

This results in the GaN-on-SiC having a lower density of dislocations ~5-8x108 cm-2. The 

details of the growth are the same as those on GaN-on-Sapphire as mentioned in Chapter 

2 and previous sections of chapter 3. Device heterostructures for QW LEDs were grown 

by metal-organic chemical vapor deposition (MOCVD) on c-plane SiC substrate with the 

multi-quantum well (MQW) active region consisting of five In0.21Ga0.79N (2.32 nm)/GaN 

(20 nm) wells.  The peak of the measured photoluminescence spectrum for this 

heterostructure occurs at 450 nm. High-speed LEDs were fabricated by conventional dry 

etching, metallization and lithography techniques and mentioned in section 3.2.3 in 

details. SiOx passivation and subsequent interconnect metal deposition ensures that the p- 

and n-ohmic contacts can be probed by a high speed ground-signal-ground (G-S-G) 

probe for measurements.  

 Room-temperature current-voltage (I-V) and light-current (L-I) characteristics of 

the high speed QD LED are shown in Fig. 3.8(a). Electroluminescence (EL) 

measurements made on a QD LED at 98 A/cm2 show a strong blue emission at 420 nm as 

shown in the inset to Fig. 3.8(a). The variation of external quantum efficiency (ηext) with 
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injected current density was obtained from the slope of the L-I curve and is plotted in 

Fig. 3.8(b). The peak internal quantum efficiency (ηint,peak) was obtained from 

temperature dependent photoluminescence measurements at different optical excitation 

powers and the ratio ηext,peak/ηint,peak is multiplied by ηext to obtain an estimate of the 

variation of ηint with current density, assuming that the extraction efficiency is 

Fig. 3.8(a) Measured current-voltage and light-current characteristics at T = 300K for 
quantum dot LED. Inset shows electroluminescence spectrum at 300 K, (b) measured 

internal quantum efficiency of quantum dot LED. The solid curve indicates a fit to 
the data using the A-B-C model.  
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independent of current density. From the plot, it may be noted that the IQE of the QD 

LED peaks at a large current density of ~168 A/cm2 and then decreases at a slow rate 

with increasing current, similar to previous observations [49].  

For differential carrier lifetime measurements, the LEDs were operated under 

varying current bias superimposed with a small AC signal (Vmax = 250 mV) using a high 

speed G-S-G probe. The phase delay between the light output and the input electrical 

signal was used to obtain differential lifetimes, τ, and this data was analyzed to obtain the 

evolution of radiative and non-radiative lifetimes with injected carrier densities in the 

active region. The measurements were repeated for various frequencies to reduce the 

measurement noise.  

3.5.3 Results and discussion 

The measured differential lifetimes for QW and QD LEDs are plotted against 

current density J in Figs. 3.9(a) and (b), respectively. It should be noted that τ is smaller 

by an order of magnitude in the QD LED over the entire range of carrier injection, 

compared to those in the QW LED, as predicted from theoretical calculations [47]. The 

total recombination rate R is obtained from the injected current density J and active 

region thickness d by the relation R=J/(qd). The active region thickness in the QW LED 

is the sum of the width of the 5 quantum wells. For QD LEDs, it is calculated by taking 

into account the fill factor (82%) given by a dot density of ~8x1010 cm-2 and an effective 

base diameter of ~36 nm obtained from an atomic force microscopy (AFM) image of 

uncapped InGaN/ GaN quantum dots, after accounting for some overlap between the 

dots. The carrier density undergoing recombination in the active region at a particular 

injection level is derived from the differential lifetime measurements by the relation 
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. The number of carriers that overflow through the active region, or escape

 

from the wells/dots without suffering recombination were not taken into account in this 

analysis. The calculation flow is depicted in Fig. 3.10. The radiative and non-radiative 

lifetimes as function of carrier (current) density are determined from the measured 

Fig. 3.9. Measured differential lifetime τ and calculated radiative and non-
radiative lifetimes, τr and τnr, respectively, as a function of injection current 

density in (a) quantum dot LED, and (b) quantum well LED.  
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variation of τ and ηint, taking into account the dynamic change of the lifetimes with 

carrier density. The calculated lifetimes τr and τnr are also plotted in Fig. 3.9(a) and (b) 

for QW and QD LEDs, respectively. Carrier leakage, if any, does not play any significant 

role in the analysis of lifetimes and comparison of the recombination processes in our 

present study. This is because differential lifetimes that are measured are analyzed 

independent of carrier densities to obtain the radiative and non-radiative lifetimes. Also, 

significant leakage would lead to a super-cubic dependence of current, and subsequently 

IQE, on carriers, however, such is not observed in the measured data. 

It is evident from Fig. 3.9 that the trend of τ versus J is qualitatively similar at low 

Fig. 3.10. Calculation flow for measuring differential carrier lifetime and 
analysis of radiative lifetimes, and A, B, C parameters.  
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current densities, but is very different at higher injection levels. For the QD LED, τ 

exhibits a saturating behavior, while there is a sharp decrease with injection for the QW 

LED. To better understand these trends, it is necessary to examine the current density 

dependence of τnr and τr. The behavior of τnr is first analyzed. An undesirable feature 

common to both QW and QD LED is that τnr becomes smaller than τr at high injection 

levels, where real devices are operated. The variation of τnr with injection shows 

qualitatively similar behavior for both QW and QD LEDs. At low injection levels τnr 

increases with n in both devices, which is generally attributed to the saturation of defect-

related deep levels (traps) [84]. However, at higher injection levels τnr decreases at a 

faster rate with injection in the QW device which, as reported earlier [80], is also true for 

double heterostructure devices [83]. To gain a better understanding of these trends the 

parameters describing radiative and non-radiative recombination, namely a=Rnr/n, 

b=Rr/n2 and c=Rnr/n3 were also evaluated. The variation of a, b and c with n for the QW 

LED is very similar to the trends reported and discussed by David et. al. [80]. The 

variation of b and c with n for the QD LED is also calculated. A fitting equation of C = 

C0/(1+n/Neff) is used to derive the Auger recombination coefficient. A reasonable fit to 

the variation of ‘c’ with carrier density is obtained by using A = 1.65x107 s-1, C0 = 

2.3x10-31 cm6s-1 and Neff = 1.3x1018 cm-3. The value of C0 = 5x10-30 cm6s-1 obtained for 

the QW LED compares well with measurements reported earlier [22, 33]. A smaller 

Auger recombination coefficient for quantum dots compared to that for quantum wells 

(whose width is comparable to dot height), by more than an order of magnitude, is 

attributed to stronger carrier confinement and fewer available discrete states for the 

Auger process [80, 83, 85, 86]. The reduced efficiency droop measured in QD LEDs, as 
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observed in this study and earlier ones [49, 82], can be directly related to a smaller rate of 

Auger recombination in QDs. The steeper decrease in non-radiative lifetime τnr in the 

QW LED is also believed due to a higher rate of Auger recombination.  

There are distinct differences in the variation of τr with J for QW and QD LEDs. 

First, the value of τr is considerably lower in the QD LED. At low injection the values of 

τr are 6 ns and 35.5 ns in the QD and QW LEDs, respectively. The numbers almost 

exactly match theoretically calculated values [48, 49] and confirm the smaller 

piezoelectric field in the dots. In the QW LED, τr increases very slightly with injection at 

low injection levels. This behavior has been attributed to delocalization of carriers from 

clusters to the quantum wells, where electrons and holes are separated by the 

piezoelectric polarization field, resulting in a longer radiative lifetime [67]. With increase 

of injection, the polarization field is reduced by carrier screening and τr decreases as 

observed in Fig. 3.9. On the other hand, τr increases steadily with J in the QD LED and 

suggests a capture bottleneck. The existence of such a bottleneck is well-known in 

In(Ga)As/GaAs self-organized quantum dots [87,88] and is a direct manifestation of the 

higher density of the two-dimensional wetting layer states compared to the number of 

available states in the dots [89]. Injected carriers occupy the wetting layer states and the 

relaxation time to the dot states can be very large, which in turn will increase the 

radiative recombination lifetime. A wetting layer is also formed during the self-organized 

growth of InGaN/GaN QDs and from in-situ reflection high energy electron diffraction 

(RHEED) observations during growth we estimate the thickness of this layer to be ~ 0.3-

0.4 nm. The possibility of a capture bottleneck arising from a higher barrier to uniform 

hole injection due to the piezoelectric field can be ruled out, since such a barrier of larger 
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height also exists in the QW LED. The fitting was done using the relation 

b=B0/(1+n/Neff) and a value of B0 = 4.35x10-11 cm3s-1. The fitting does improve when 

higher order terms, to take into account a capture bottleneck, are included. We obtain 

values of A, B0 and C0 equal to 1.65x107 s-1, 4.35x10-11 cm3s-1 and 2.3x10-31 cm6s-1, 

respectively. 

 

3.6 Summary 

          The growth and fabrication of QD LEDs were improved by optimizing the p-

AlGaN EBL layer and improvement in processing of the devices to demonstrate 

improved output characteristics including efficiency peaking at lower current densities 

~30 A/cm2 with a reduced droop of only ~22% and low peak emission shift with 

injections corresponding to a low polarization field of ~80 kV/cm apart from good 

current-voltage characteristics. Differential carrier lifetime measurements were 

performed on blue emitting QD LEDs, and the measurements were compared to an 

equivalent QW LEDs to help understand the carrier dynamics responsible for different 

efficiency droop behavior and efficiency peaking current densities in both QW and QD 

devices. It is concluded that Auger recombination is possibly responsible for the high 

efficiency droop observed in QW LEDs while the value of Auger recombination 

coefficient was orders of magnitude lower in QD LEDs resulting in lower droop 

behavior.  
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Chapter IV 

Self-Assembled InGaN/GaN Quantum Dots as Dislocation Filters 

 

4.1      Introduction 

          The solid state lighting industry has been continually trying to improve the 

performance and yield of the light emitting diodes (LEDs) through improved epitaxy, 

device design and advancements in device processing and packaging. Epitaxy of the LED 

heterostructures has been a major roadblock in meeting the efficiency, yield and cost 

goals. As discussed in previous chapters, state-of-the-art quantum well (QW) LEDs 

suffer from low peak efficiencies and a large efficiency droop due to the large 

polarization field and a high dislocation density resulting from epitaxy on mismatched 

substrates. The incorporation of higher composition In to obtain longer green wavelength 

emission in InGaN/GaN QWs suffers from In clustering effects contributing to non-

homogeneous emission and poor efficiencies [90]. Additionally, the high defect density 

of the available substrates for GaN crystal growth limits the performances of the LEDs. 

Sapphire is the current material of choice due to its affordability and the development of 

the growth technology in producing large single crystal GaN/sapphire wafers for 

commercial epitaxy of InGaN LEDs. However, the GaN-to-sapphire lattice mismatch is 

very high (13.8%) as shown in Table 1.1 and the resultant defect dislocation density in 

commercial state-of-the-art GaN/sapphire templates is ~1 x 109 cm-2. This high threading 
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dislocation density degrades the device performance significantly. 

          This chapter proposes the use of self-assembled InGaN/GaN QDs as dislocation 

filter for reducing the defect density in the substrate before the epitaxy of LED 

heterostructures. Bhattacharya et. al. were the first to report the properties of QDs in 

reducing dislocation density in the arsenide material system [91]. In the present study, we 

demonstrate a reduction of the propagating threading dislocation density by use of an 

InGaN/GaN QD dislocation filter grown by plasma-assisted molecular beam epitaxy 

(PA-MBE). The composition of In in the InGaN/GaN quantum dots and the number of 

QD layers in the dislocation filter are optimized with calibrated etch pit dislocation 

density (EPD) measurements and theoretical calculations of dislocation propagation. 

Subsequent PA-MBE grown layers, including doped GaN and InGaN/GaN quantum 

dots, on top of the QD filter have been characterized. Multilayer GaN/AlN QDs [92, 93] 

have also been investigated to compare their dislocation filtering characteristics with 

those of the optimized InGaN/GaN QD filter. The dislocation filters have been 

incorporated in green-emitting QD LED heterostructures and the properties of these 

devices were compared with LEDs grown without any dislocation filter.  

 

4.2 Design, Growth and Characterization of InGaN/GaN Quantum Dot Dislocation 

Filter 

          The molecular beam epitaxial (MBE) growth of InGaN/GaN QDs was optimized 

through calibrated etch pit dislocation (EPD) measurement and with the aid of theoretical 

calculations to obtain maximum dislocation filtering on GaN/sapphire templates. These 

are discussed in details in this section. 
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4.2.1 Growth of InGaN/GaN quantum dot dislocation filter 

          The heterostructures for etch pit dislocation (EPD) measurement shown in Fig. 4.1 

were grown on c-plane n-GaN-on-sapphire templates with a typical dislocation density of 

~8x108 cm-2. The threading dislocation densities were calculated by careful and detailed 

calibration of EPD measurements on the templates and MBE grown GaN layers grown 

on such templates with and without quantum dot (QD) dislocation filters. As discussed in 

previous chapters, the growth temperature was measured by an infrared pyrometer, 

calibrated by the reflection high energy electron diffraction (RHEED) pattern transition 

from 7x7 to 1x1 on Si (111) substrates. An underlying n-doped (5x1018 cm-3) GaN buffer

 layer was first grown on c-plane n-GaN/sapphire templates for all samples. This layer 

was grown at 740oC at a flux of ΦGa = 4.5 nm/min, during which the RHEED pattern 

Fig. 4.1. Heterostructure schematics for etch pit dislocation measurements with: (a) 
no QD dislocation filter, (b) InxGa1-xN/GaN QD dislocation filters having 3 and 5 

QD layers, and (c) dislocation filter having 3 GaN/AlN QD layers grown on 
relaxed AlN.  
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remained bright and streaky. A heterostructure consisting of 700 nm of n-GaN buffer 

layer grown on the template without any QD dislocation filter, used as a control sample, 

is shown in Fig. 4.1(a). The heterostructures for determining the dislocation filtering 

effect of varying quantum dot composition and number of layers are shown in Figs. 1(b) 

and (c). The heterostructure shown in Fig. 1(b) has an underlying 400 nm of n-GaN 

buffer layer followed by the InGaN/GaN dislocation filtering quantum dots, 50 nm of 

low temperature GaN grown at the QD growth temperature of 565 oC, and a final 375 nm 

n-doped GaN layer grown at 740oC in which the dislocation density is measured. The QD 

layers were grown under N2 rich conditions at a substrate temperature of 565 oC. Figure 

1(c) shows a heterostructure grown with GaN/AlN QD filter under conditions reported 

earlier [93] and have demonstrated dislocation filtering properties [92].  

4.2.2 Etch pit dislocation measurement 

          Defect-selective etching is a well-known technique for determining the dislocation 

density in GaN-based systems [94-96]. There are several methods of obtaining etch pits 

from selective etching of defects, however, they suffer from inconsistencies and 

anomalies [96]. In the experiments done here, etch pit dislocation densities were 

carefully measured on GaN/sapphire templates and calibrated with TEM measurements 

reported earlier [97] for MBE grown layers. The defects were selectively etched with a 

eutectic mixture of molten bases (NaOH, KOH and MgO – 53.6%, 37.3% and 9.1% by 

weight, respectively) at 450 oC. The control sample with 700 nm of n-GaN grown on a 

GaN/sapphire template without any QD filter has a threading dislocation density of 5x108 

cm-2, calculated from the AFM image shown in Fig. 4.2(a). A dislocation filtering effect 

is observed in the sample with five layers of In0.32Ga0.68N/GaN QDs. The dislocations 
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merge to form larger pits, which cause an effective reduction of the total dislocation 

density to ~3x108 cm-2. The sample with the 5-period In0.2Ga0.8N/GaN QD filter having 

fewer etch pits and a dislocation density of ~2.7x108 cm-2, which further reduced with 

three periods of dot layers (Fig. 4.2(b)) to a dislocation density of ~9.8x107 cm-2. 

          After optimization of the growth of GaN/AlN quantum dots on relaxed AlN buffer 

layers [93], an n-GaN layer grown on top of the optimized GaN/AlN QD filter was used 

to determine the etch pit density by AFM imaging (Fig. 4.2(c)). It was found that the 

GaN/AlN QD filter was less effective than the InGaN/GaN QD filter in reducing the 

Fig. 4.2. Atomic force microscopy (AFM) images of the GaN surfaces after etch pit 
dislocation (EPD) treatment on (a) control sample without dislocation filter, (b) 

sample with 3 layers of In0.2Ga0.8N/ GaN QD dislocation filter, and (c) sample with 3 
layers of GaN/AlN QD dislocation filter. 
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dislocation density, possibly because they were grown over a relaxed AlN layer which 

may contain more dislocations than the state-of-the-art commercial GaN/sapphire 

templates used in our study. The results from AFM measurements of the samples after 

EPD experiments are summarized in Table 4.1. It should be noted that several AFM 

measurements were performed on each sample to reduce measurement error in estimation 

of dislocation density. 

4.2.3 Theoretical calculation 

         From energy minimization considerations, it has been shown that for misfit ≥2%, 

the island growth mode is preferred [98]. In general the islands are coherently strained, 

but may also be partially relaxed. In particular, with continuing growth of larger islands, 

Sample type Quantum dots 
Number 
of layers 

Average dislocation 
density (cm-2) 

GaN with no QD filter N/A N/A 5.0±0.5x108 

GaN on InxGa1-xN/GaN 
QD filter 

In0.32Ga0.68N/GaN 5 3.1±0.4x108 
In0.2Ga0.8N/GaN 5 2.7±0.6x108 
In0.2Ga0.8N/GaN 3 9.8±0.5x107 

GaN on GaN/AlN QD 
filter 

GaN/AlN 3 3.5±0.5x108 

 

 the coherency degrades beyond a critical size with the generation of misfit dislocations. 

Figure 4.3(a) is a transmission electron microscopy (TEM) image of a sample with seven 

layers of In0.2Ga0.8N QDs showing how dislocations may propagate or get annihilated at 

the quantum dot layers, depending on composition and size of the dots. It can be seen 

from Fig. 4.2(b) that three layers of lower composition In0.2Ga0.8N QDs work as a good 

Table 4.1. Description of the samples used for etch pit dislocation density 
measurements. 
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dislocation filter. A larger number of dot layers increases the mismatch strain, which may 

lead to the generation of new misfit dislocations in the uppermost QD layers. The 

bending of dislocations with In(Ga)As/GaAs quantum dot multilayers has been 

previously modeled by Bhattacharya et. al. [99]. According to this model dislocation 

bending will occur when the strain energy released by the generation of a misfit 

dislocation is equal to or greater than the dislocation self energy. The bent misfit 

dislocation glides underneath the islands. Figure 4.3(b) shows the calculated bending area 

Fig. 4.3(a) Dark field transmission electron microscopy image showing annihilation 
and propagation of dislocation through QD dislocation filter and (b) calculated bending 

ratio of threading dislocation as a function of dot base width. 
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ratio of In0.2Ga0.8N QDs as a function of the QD base width. The bending area ratio of a 

single QD is defined as the bending area divided by the area of the QD base. From this 

figure, it is apparent that for In0.2Ga0.8N/GaN QDs with a base width of ~30nm the 

bending ratio is ~30%, which is similar to the dislocation density reduction seen for the 

sample shown in Fig. 4.2(b). Further increase of the In composition in the dots or 

increasing the number of dot layers possibly leads to the generation of new misfit 

dislocations, which is seen in the other samples. Alternatively, for a dot composition of 

less than 20% In, sufficient mismatch strain for island formation may not be generated.  

4.2.4 Deep level traps in n+-p GaN junctions on quantum dot dislocation filter 

          In order to investigate the effect of the QD dislocation filter on the characteristics 

of deep level traps in the material grown on top of it, transient capacitance measurements 

were made on suitable junction diodes. Measurements were made on two samples. In 

Sample I, 600 nm of Si-doped n-GaN was grown on a GaN-on-sapphire template with a 

doping concentration of n ~9.2x1018 cm-3, followed by 400 nm of Mg-doped p-GaN with 

a doping level of p ~5x1017 cm-3. Sample II is identical to sample I except the n+-p GaN 

junction diode was grown on top of the optimized multilayer In0.2Ga0.8N QD dislocation 

filter. The diodes were mounted in a closed-loop He cryostat and the capacitance 

transients due to deep level emission were measured by a Boonton 1 MHz capacitance 

meter. The transient data was analyzed to determine the trap activation energy and 

capture cross-section in accordance with the equation:  

1 ߬ൗ ൌ ௧௛ݒߪ ௖ܰሺ௩ሻ݁݌ݔሺെ∆ܧ/݇ܶሻ																																										ሺ1ሻ 

where τ is the trap emission time constant, vth is the thermal velocity, Nc(v) is the density 

of states in the conduction (valence) band, and ∆E and σ are the trap activation energy 
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and capture cross-section, respectively. It is being assumed that ∆E and σ are not 

thermally activated. The trap concentration NT 

was estimated from the change ∆C in the n+-p diode capacitance during the trap filling 

cycle of the applied bias. Due to the doping asymmetry of the grown junctions, the deep 

Fig. 4.4(a) Arrhenius plot of the emission time constant versus reciprocal temperature 
for (a) electron traps and (b) hole traps measured in n+-p GaN diodes grown without a 

dislocation filter. 
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levels in the lightly doped p-GaN layer were probed by the capacitance measurements. 

  The background doping in this layer was accurately determined by capacitance-voltage 

measurements. Both minority carrier (electron) and majority carrier (hole) traps were 

characterized with suitable biasing sequences. The characteristics of the traps in the 

control diode (Sample I) and the diode grown on the dislocation filter (Sample II) are 

summarized in Table 4.2. The dominant electron traps have activation energies ∆E = 

0.24, 0.461, and 0.674 eV and the hole traps are characterized by ∆E = 0.387 and 0.595 

eV as shown in Figs. 4.4(a) and (b), respectively. In examining the trap densities it is 

evident that there is a general reduction in all trap densities, as much as by a factor of 3, 

by the incorporation of the QD dislocation filter. Similar observations have been reported 

on using a SiN filter on GaN template [100]. The reduction in trap density is, in general, 

in agreement with the reduction in dislocation density due to the incorporation of the 

filter. Edge and screw dislocations are known to contribute to the formation of traps and 

the localization of carriers. It seems, therefore, that the traps identified here are directly 

or indirectly related to the dislocations in the material. 

 

4.3  Optical Properties of Green-Emitting Quantum Dot active Region on 

Dislocation Filter 

          Temperature dependent and time resolved photoluminescence (TRPL) 

measurements were performed on green-emitting QD samples without (sample A) and 

with (sample B) optimized dislocation filter incorporated in the GaN buffer layer 

underneath. The samples were mounted in a closed loop He cryostat and excited non-

resonantly by a frequency tripled and pulsed 80 MHz mode-locked Ti:Sapphire laser 
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(h=4.66 eV). The luminescence was analyzed by a monochromator (resolution ~ 0.03 

nm) and focused on to a single photon detector (measured system response time ~ 50 ps).  

Growth of green-emitting In0.35Ga0.65N/GaN QD layers in the active region was 

optimized [49, 101] to have strong room temperature photoluminescence (PL), as shown 

in Fig. 4.5(a). The variation of the peak energy of the PL spectra of sample B with 

Fig. 4.5(a) Photoluminescence spectrum of the In0.35Ga0.65N/GaN QDs grown on QD 
dislocation filters and (b) temperature dependence of the peak emission energy 

showing a good fit with the Varshni equation. 
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temperature is plotted in Fig. 4.5(b). The trend closely follows the Varshni equation [70]. 

Furthermore, no “S-shaped” behavior was observed in the data. The similarity of the 

trend of these data with those measured on InGaN/GaN QDs without any dislocation 

filter [102] suggests that the incorporation of the QD filter does not give rise to any 

compositional non-uniformity or clustering effects.  

          

From temperature dependent PL measurements, the five layers of In0.35Ga0.65N/GaN QD 

layers grown without (Sample A) and with (Sample B) In0.2Ga0.8N/GaN QD filter yield 

an internal quantum efficiency (IQE) of ~26% and 40.5%, respectively, assuming all 

non-radiative centers are frozen at low temperatures (Fig. 4.6(a)). It should be noted that 

the efficiencies were measured as a function of injection excitation density and were 

compared for high excitation densities where the efficiency gets saturated and is 

independent of In clustering effects or high polarization fields. The improved efficiency 

of the quantum dots in sample B is believed to be a direct consequence of the reduced 

dislocation density and consequent reduction of the density of non-radiative centers, such 

as the deep levels described earlier. 

GaN n+-p 
diodes 

Electron traps Hole traps 

∆E 
(eV) 

σ (cm2) NT (cm-3) ∆E (eV) σ (cm2) NT (cm-3) 

Device I w/o 
dislocation 

filter 

0.24 5.154x10-16 2.11x1015 0.387 5.08x10-17 3.62x1016

0.461 2.242x10-16 5.12x1015 0.595 1.136x10-16 6.25x1016

0.674 1.22x10-15 4.63x1015     
Device II 

with 
dislocation 

filter 

0.236 3.86x10-16 9.23x1014 0.392 6.34x10-17 1.68x1016

0.464 2.52x10-16 2.92x1015 0.591 1x10-16 3.72x1016

0.67 1.08x10-15 2.07x1015     

Table 4.2 Characteristics of deep levels in GaN obtained from transient capacitance 
measurements. 
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 Carrier recombination dynamics were obtained for both the samples at room 

temperature from TRPL measurements. The luminescence decay transients are shown in 

Fig. 4.6(b). The total carrier recombination time for sample A and sample B are 

estimated to be 464 ps and 550 ps, respectively. The increase in recombination lifetime in 

sample B reflects an increase in the non-radiative lifetime in the QDs, resulting in an 

increase of the internal quantum efficiency. Additionally, the lifetimes show a single 

exponential decay even when grown on top of QD dislocation filter indicating absence of 

any In clustering effect due to the dislocation filter underneath. 

Fig. 4.6(a) Excitation dependence of quantum efficiency in In0.35Ga0.65N/GaN QD 
samples grown without (sample A) and with (sample B) dislocation filter. The solid 

lines are joins of the data points and (b) luminescence decay transients measured 
for samples A and B. The solid lines are obtained from the rate equations. 
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4.4 Output Characteristics of Green-emitting QD LEDs on QD Dislocation Filter

          The LED heterostructure, shown schematically in Fig. 4.7, has five periods of 

green-emitting In0.35Ga0.65N/GaN QDs grown at a substrate temperature of 530 oC under 

N2 rich conditions at an equivalent pressure of ΦGa: ΦIn ~ 1:1 and at a quantum dot 

growth rate of 0.5 Å/s. The LEDs were grown with no dislocation filter (device A), the 

optimized InGaN/GaN dislocation filter as shown in Fig. 4.7 (device B), and with the 

optimized GaN/AlN QD dislocation filter (device C). The active region was grown on n-

GaN above the dislocation filter and followed by a 13 nm thick Al0.15Ga0.85N electron

 blocking layer grown at 750oC and a final p-doped GaN layer (p~7x1017 cm-3) for 

injection of holes. Mesa-shaped LEDs of dimension 400 m x 400 m were fabricated 

using standard photolithography, reactive ion etching (RIE), and contact metallization 

techniques as discussed in section 3.3.1. An AFM image of an uncapped layer of 

In0.35Ga0.65N/GaN QDs is shown in the inset to this figure with the dots having an 

Fig. 4.7. A typical green-emitting InGaN/GaN QD LED heterostructure with QD 
dislocation filter and an AFM image of the green-emitting dots shown alongside. 
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average height of ~3nm and base width of ~30nm.  

          The three green-emitting QD LEDs were characterized by current-voltage (I-V) 

and light-current (L-I) measurements under pulsed bias with a 5% pulse width and 1 ms 

period. The measured electroluminescence (EL) spectrum at a current density of 

100A/cm2 is shown in Fig. 4.8(a) for Device B having the strongest luminescence with 

peak at 525 nm. The micrograph of an active device is shown in the inset. The variation 

of the peak emission energy with injection current is shown in Fig. 4.8(b). The total peak 

emission blue shift of 6.2 nm corresponds to a polarization field of ~88 kV/cm, which is 

much smaller than values of 2-3 MV/cm measured in equivalent quantum well-based 

devices [77, 78]. The polarization field is also in agreement with values for InGaN/GaN 

quantum dots reported earlier. Figure 4.9(a) shows the measured I-V characteristics of all 

the three devices. It is evident that the LED grown on GaN/AlN dislocation filter (Device 

C) has a very high leakage current below the turn-on voltage while Device B with an 

optimized InGaN/GaN dislocation filter has the smallest leakage current. Additionally, 

Device B exhibits a sharp increase in forward current beyond the turn-on voltage, which 

Fig. 4.8 A typical green-emitting InGaN/GaN QD LED heterostructure with QD 
dislocation filter and an AFM image of the green-emitting dots shown alongside. 
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results in higher currents at low forward voltages compared to the LEDs without 

dislocation filters. The turn-on voltage is ~3.5 V with a series resistance of less than 10 Ω 

for this device.  

 Light-current measurement data from the three LEDs A, B and C are shown in 

Fig. 4.9(b). Device B was found to have a significantly higher light output at similar 

current densities compared to devices A and C which have higher dislocation densities in 

the active region. The data is also in agreement with the observed trends of radiative 

efficiency and deep level trap density. Threading dislocations have been reported to play 

Fig. 4.9 Measured current-voltage characteristics(a), light-current characteristics(b), 
and external quantum efficiency as a function of injection current density(c) for 
green-emitting QD light emitting diodes with and without QD dislocation filters. 
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a key role in the formation of compositional inhomogeneity and the formation of non-

radiative recombination centers in the active region. This situation gets particularly 

aggravated during the high temperature growth of the subsequent p-GaN layer when the 

InGaN material near threading dislocations can get decomposed and form more non-

radiative centers [103, 104]. Figure 4.9(c) shows the external quantum efficiencies (EQE) 

measured for the different LEDs. It should be noted that the measured EQE is in arbitrary 

units and the relative values in the three devices are of importance here. The peak 

efficiency of device B is substantially higher than those of devices A and C. The 

injection current density at peak efficiency are Jmax = 65 A/cm2, 27 A/cm2 and 75 A/cm2 

for devices A, B and C, respectively. A large radiative recombination rate of carriers at 

low current densities indicates reduced Shockley-Read-Hall (SRH) recombination. At 

high current densities (~ 200 A/cm2) the efficiency of device B remains much higher than 

those of devices A and C. The efficiency droop calculated for device B is ~22.6% 

between injection current densities of 27 A/cm2 and 192 A/cm2, which is lower than 

those measured in green-emitting state-of-the-art c-plane quantum well LEDs. 

       

4.5 Summary 

          In conclusion, 3 layers of self-assembled In0.2Ga0.8N/GaN QD layers have been 

optimized and used as a dislocation filter to obtain significant reduction in dislocation 

density to ~9.8x107 cm-2 from calibrated etch pit dislocation measurement. The 

optimized QD dislocation filter lead to fewer traps in GaN n+-p junctions, and improved 

the optical properties of the green-emitting (λ=525 nm) QDs showing improved IQE 

(~40%) and longer carrier lifetimes. Finally, green-emitting QD LEDs were grown on 
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dislocation filter and their electrical and optical properties characterized and compared to 

QD LEDs without filter. The LEDs on filter have a higher light output with efficiency 

peaking at a low current density of 27 A/cm2. This technique could be used to obtain 

better performances from LEDs grown on mismatched substrates including GaN-on-

sapphire or GaN-on-silicon.  
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Chapter V 

InGaN/GaN Quantum Dot Lasers 

 

5.1      Introduction 

          Visible solid state lasers find many large scale applications in various fields 

including in blue-ray disc readers, medical prostatectomy, military dazzlers, pico-

projectors and heads-up displays in automobiles [105, 106]. Diode-pumped solid state 

lasers have been used to emit blue and green light and can be energy efficient. Thereby, 

there has been large scale research to develop commercial blue and green emitting 

InGaN/GaN lasers. State-of-the-art commercial nitride based lasers incorporate 

InGaN/GaN quantum wells (QW) in the active region [10, 11, 77, 107-109]. As 

discussed in earlier chapters, these quantum wells have a strong inherent polarization 

field, and the associated band bending causes poor electron-hole wavefunction overlap, 

poor radiative efficiencies, blueshift of peak emission with current density due to the 

quantum confined Stark effect (QCSE) and a high leakage of carriers in devices 

incorporating such QWs in the active region. Additionally, the incorporation of more In, 

necessary to obtain longer (green) wavelength emission in InGaN/GaN QWs, leads to In 

clustering effects contributing to non-homogeneous emission and poor radiative 

efficiencies. A critical parameter in the operation of a junction laser is the threshold 

current, which in turn determines the overall power conversion efficiency. The threshold 
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current in addition to the dynamic characteristics of a laser are ultimately determined by 

the differential gain, dg/dn, and hence it is important to optimize this paramter as well. 

The current state-of-the-art InGaN/GaN QW lasers suffer from a very high threshold 

current density of lasing as was discussed in chapter 1. Recently, laser diodes have been 

demonstrated on the non-polar GaN planes (most often the m-plane) which have reduced 

polarization field as compared with c-plane QW laser structures [11, 110]. However, 

difficulty in incorporating higher composition of In in the InGaN/GaN QWs can impede 

the growth and performance of lasers grown on these substrates [111, 112]. Alternatively, 

the use of quantum dots in the active region of  visible lasers grown on polar c-GaN 

promises improved performance due to increased carrier confinement, smaller 

piezoelectric field, smaller quantum confined Stark effect (QCSE) and blue shift of the 

emission peak, reduced carrier recombination lifetimes and a smaller rate of 

recombination at dislocations and defects [47-49]. Additionally, the growth of such lasers 

have been carried out by plasma-assisted molecular beam epitaxy (MBE) which has 

lagged behind the growth and demonstration of nitride visible devices using Metal 

Organic Chemical Vapor Deposition (MOCVD). Bhattacharya et. al. have successfully 

demonstrated QD lasers grown by MBE emitting in the blue [101, 113, 115, 116] and 

green [114] wavelengths.  

          This chapter discusses the growth calibration for optimizing the various layers in 

the laser heterostructure including the full laser heterostructure, their fabrication in ridge 

geometry waveguide devices and finally, the results obtained from extensive 

characterization of their optical properties. The challenges and design constraints in 

obtaining a nitride QD laser are also discussed when possible. The characteristics of blue 
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and red-emitting QD lasers are described. 

 

5.2 Design and Growth of InGaN/GaN Quantum Dot Laser Heterostructures 

          The laser heterostructure, as shown in Fig. 5.1(a), were grown by a plasma-assisted 

Veeco Gen II molecular beam epitaxy (PA-MBE) system equipped with standard Ga, In, 

Fig. 5.1(a) Schematic of InGaN/GaN quantum dot laser heterostructure grown on a n-
GaN bulk substrate with corresponding Mg flux used for each layer mentioned, (b) 

schematic of gain + feedback mechanism for laser operation, and (c) simulated 
transverse optical mode profiles for two different combinations of InGaN 

waveguide/AlGaN cladding layers. The dashed lines indicate the waveguide region. 
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Al, Si, and Mg effusion cells, and a UNI-bulb nitrogen plasma source as described 

previously. However, unlike the growth characteristics and optimization of the 

InGaN/GaN QDs and QD LED growth, the samples for QD lasers were grown on c-plane 

of n-GaN bulk substrates having a low defect density of ~5x106 cm-2. Five hundred 

nanometers of molybdenum was also deposited on the backside of the samples to assist 

in the calibration of the growth temperature using radiative heating. The growth 

temperature of each layer was measured by an infrared pyrometer as outlined in previous 

chapters.  

          Any semiconductor laser structure needs a population inverted gain medium and a 

feedback mechanism for maintaining sufficient number of photons to cause stimulated 

emission and to sustain lasing (Fig. 5.1(b)). The gain medium for our devices is a series 

of InGaN/GaN QD layers which due to their reduced density of states can be inverted 

easier (with less current injection) than a InGaN/GaN QW active region or a bulk double 

heterostructure active region [117]. Consequently, the differential gain of QD lasers was 

found to be higher than equivalent QW devices from cavity length dependent current-

output (L-I) measurements performed on the lasers which matches very well with 

simulated values. This gain medium helps in demonstrating of lasers with reduced 

threshold current density, and other superior optical properties as discussed in the 

subsequent sections. The feedback mechanism required for lasing is the cavity 

confinement of photons and the requirements are similar to QW lasers. The longitudinal 

confinement is obtained by cleaving along the m-plane to create facet mirrors, followed 

by dielectric distributed Bragg reflector (DBR) mirror deposition discussed in details in 

section 5.3. The transverse and lateral confinement of photons is accomplished by using a 
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low refractive index cladding outside the high refractive index waveguide core (index 

guiding). The optical mode along the transverse (growth) direction is confined with 

AlGaN. Simulations were performed using transfer matrix method to determine the 

optical mode confinement for various compositions of InGaN waveguide and AlGaN 

cladding (Fig. 5.1(c)). Higher In composition in InGaN waveguide, and higher 

composition Al in AlGaN create a larger refractive index mismatch and confine the 

optical modes better (larger optical confinement factor) as shown in Fig. 5.1(c). 

However, using these materials leads to additional strain and the formation of defects 

which lead to non-radiative recombination and electrical leakage path degrading laser 

performance significantly. Thereby, the design constraint for the nitride material system 

becomes very tight and efforts are made to grow as large a composition of InGaN and 

AlGaN possible without creating defects. This requires extensive calibration of these 

layers, followed by characterization of QDs on top of the strained AlGaN cladding and 

InGaN waveguide layers. These growth calibrations are covered in this section followed 

by the discussion of the full laser growth. 

5.2.1 Growth of AlGaN cladding layer 

 The c-plane n-GaN bulk substrates were first cleaned using standard solvents, and 

then thermally degassed in two steps at 200 °C (60 min) followed by 450 °C (60 min) to 

reduce surface contamination. After cleaning, a 500 nm thick, n-doped (5x1018 cm-3) 

GaN buffer layer was grown at 740 oC, at a flux of ΦGa = 4.5 nm/min during which the 

RHEED pattern remained bright and streaky. PL shows strong band edge emission with 

no defect bands in the GaN spectrum. Following the growth of the buffer layer, samples 

with 700 nm of n-doped AlGaN (n~5x1018 cm-3) with different Al compositions were 
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grown and their structural and optical properties characterized to determine the optimum 

growth conditions for the highest composition AlGaN that can be grown without 

relaxation or creation of defects and associated trap levels. Figure 5.2(a) shows a typical 

heterostructure that was grown on GaN/Sapphire templates and eventually on GaN bulk 

substrates for growth optimization. The AlGaN layer was grown at the same substrate 

temperature (Tsub = 740 oC) as the buffer GaN to reduce growth interruption at the 

interface which were found to create pit formation from defects as seen from atomic 

force microscopy (AFM) measurements. Growth of AlGaN was carried out at a flux ratio 

of Al:Ga (1:9) similar to the required composition of AlGaN layer under metal-rich 

Fig. 5.2(a) Schematic of heterostructure for AlGaN cladding layer calibration. A 
5m x 5m AFM image showing the surface morphology of 700 nm 

Al0.098Ga0.902N layer and (b) XRD data of Al0.098Ga0.902N grown on GaN. 
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conditions. A higher composition Al0.098Ga0.902N layer grown on GaN bulk substrate, as 

shown in Fig. 5.2(a) were found to have excellent X-Ray Diffraction (XRD) spectra 

indicating very narrow linewidths for the GaN and AlGaN layers (Fig. 5.2(b)). However, 

the AFM measurements for the same layer (inset to Fig. 5.2(a)) showed termination of 

the growth with formation of pits possibly from defect creation during the strained 

AlGaN layer growth. A lower composition of Al0.07Ga0.93N layer was grown and 

optimized to show improved AFM characteristics (smoother surface) without formation 

of pits as shown in Figs. 5.3(a). Additionally, photoluminescence (PL) measurements 

were performed to confirm the absence of any optically active trap levels in the AlGaN 

layer (Fig. 5.3(b)). The properties of the XRD spectra remained similar with lowered Al 

composition but the improved AFM coupled with the good PL properties demonstrated 

that it was well calibrated for incorporation in the laser heterostructure as cladding layer. 

 

Fig. 5.3(a) A 5m x 5m AFM image showing the surface morphology of 700 
nm Al0.07Ga0.93N layer and (b) PL of Al0.07Ga0.93N grown on GaN. 
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5.2.2 Growth of InGaN waveguide layer on top of AlGaN cladding layer 

          

After growth of a 500 nm thick buffer layer and a 700 nm n-Al0.07Ga0.93N cladding layer, 

a 150 nm thin layer of undoped InGaN was grown with a typical heterostrucutre shown 

in Fig. 5.4(a). It should be noted that this layer was calibrated on GaN/sapphire template. 

To get reasonable In incorporation in the layers and due to the high vapor pressure of In, 

InGaN layers were grown at a lower Tsub = 590oC for In0.02Ga0.98N layers. However, the 

growth temperature was much higher than that for InGaN QD layer to get a lower 

composition InGaN without the initiation of 2D-3D transitions from the accumulation of 

strain. Figs. 5.4(b) and (c) show AFM images of the surface morphology of two samples 

grown with different composition In0.05Ga0.95N and In0.02Ga0.98N layers respectively on 

top of Al0.07Ga0.93N cladding layer. The surface morphology became bad and had a poor 

Fig. 5.4(a) Schematic of a typical heterostructure for InGaN waveguide layer 
calibration. A 5m x 5m AFM image showing the surface morphology of 

different In composition (b) In0.05Ga0.95N and (c) In0.02Ga0.98N waveguide layers. 
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crystalline quality when the In composition was high as seen from Fig. 5.4(b). Thereby, a 

lower In composition In0.02Ga0.98N with smoother morphology (Fig. 5.4(c)) was used for 

the laser heterostructure even though the optical mode was poorly confined. It should 

also be noted that the InGaN layer in the actual laser heterostructure was also kept 

undoped to reduce losses due to free carrier absorption in the waveguide layer. 

5.2.3 The laser heterostructure 

 

    

A schematic of a typical laser heterostructure is shown in Fig. 5.1(a) with green-emitting 

Fig. 5.5(a) Schematic of a typical half laser heterostructure for calibration of the 
AlGaN cladding, InGaN waveguide and topmost QD layers. (b) A 1m x 1m AFM 

image of the blue In0.22Ga0.78N/GaN QDs, (c) room temperature PL of the blue 
In0.22Ga0.78N/GaN QDs, and (d) XRD of the half laser heterostructure showing very 

good fit with dynamical diffraction theory. 
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In0.3Ga0.7N/GaN QDs in the active region. The heterostructure for blue lasers is similar 

except that the active region has the optimized blue-emitting In0.18Ga0.82N/GaN QDs in 

the active region. The laser heterostructures were grown on free-standing GaN substrates 

with a reduced defect density ~5x106 cm-2 by Veeco Gen II and Gen 930 plasma-assisted 

molecular beam epitaxy (MBE) system. As outlined previously, after cleaning the n-GaN 

bulk substrates and degassing in two steps, 500 nm of Si-doped GaN (n ~ 5x1018 cm-3) 

was grown at a nitrogen flux fixed at 0.5 sccm with an RF power of 300 W and a Ga flux 

ΦGa = 4.5 nm/min. During the growth of the n-GaN layer, the substrate temperature was 

maintained at Tsub = 740 oC calibrated with a pyrometer for the Si (111) transition. It is to 

be noted that the growth was initiated only after the background chamber pressure 

stabilized following the striking of plasma as was the case with QD LED growth. The n-

GaN growth layer was followed by the growth of the calibrated 700 nm thick n-

Al0.07Ga0.93N layer at Tsub = 740 oC and at ΦIII = 4.8 nm/min with ΦAl/ΦAl+Ga = 0.1. The 

RHEED pattern remained bright and streaky during the whole growth of this layer as 

well as the buffer GaN layer. The surface morphology during the growth of these layers 

needed close in-situ monitoring through RHEED patterns. If the RHEED pattern starts 

becoming spotty or the long streaky patterns start getting broken, the group III flux is 

increased slightly to maintain metallic bi-layer during AlGaN growth as the growth in 

MBE is kinetically driven [74]. An undoped In0.03Ga0.97N layer is grown on top of the 

cladding layer from the optimized growth conditions derived in section 5.2.3. This was 

followed by an increase in the N2 plasma flow rate and power to 0.7 sccm and 380 W, 

respectively before the growth of InGaN/GaN self-assmbled QDs which form under N-

rich conditions. The optimized growth conditions of the InGaN/GaN QDs, as reported in 
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chapter 2, were then used to form eight pairs of the active region. The QD growth 

conditions were changed by varying the composition of In:Ga fluxes and substrate 

temperatures to obtain emission across various wavelengths. Typically, blue emitting 

QDs were grown at ~Tsub=565 oC and ΦIn:  ΦGa = 2:1. Longer wavelength green 

emissions were generally obtained by lowering the growth temperatures to ~Tsub=545 oC 

and ΦIn:  ΦGa = 3:2. The optimized growth conditions obtained as shown in chapter 2 

were slightly altered to maximize PL intensity from the QD active region grown on top 

of a “half laser structure” containing AlGaN cladding, InGaN waveguide and uncapped 

dots on top. The heterostructure, AFM, PL and XRD of the optimized half laser stucture 

after a series of growth calibrations are shown in Figs. 5.5 (a), (b), (c) and (d) 

respectively. 

          Eight layers of capped InGaN/GaN QDs were followed by stabilization of the 

plasma back at 0.5 sccm and 300 W for growth of successive layers.  A 5 nm thin layer 

of GaN layer was grown at Tsub=740 oC which further aided in recreating a smooth 

surface morphology and an accompanied streaky RHEED pattern before initiating the 

growth of p-doped layers. A heavily Mg-doped (p ~ 8x1017 cm-3) optimized Al0.15Ga0.85N 

13 nm electron blocking layer (EBL) was grown at Tsub=740 oC to improve device 

performance by preventing electron leakage at high injections as outlined in chapter 3. A 

moderately (compensation) doped 150 nm p-In0.03Ga0.07N waveguide (p~1x1017 cm-3) 

was grown followed by a thick 700 nm highly doped p-Al0.07Ga0.93N cladding (p~7x1017 

cm-3) layer. The final Mg-doped p-GaN (p~7x1017 cm-3) layer was grown 150 nm thick 

followed by a 5 nm thick p+-GaN region for improved ohmic contact formation. It should 

be noted that the p-GaN layers were grown with different Mg fluxes at Tsub=710 oC for 
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sufficient Mg incorporation under Ga-rich (ΦGa=5nm/min) conditions in presence of In 

as surfactant to maintain continuously smooth surface morphologies during heavy Mg 

incorporation. 

 

5.3  Fabrication of Ridge Waveguide Quantum Dot Lasers 

5.3.1 Processing of Ridge Geometry Waveguide Heterostructure 

          

 

Fig. 5.6(a) Schematic of a fabricated laser heterostructure showing all the layers and 
(b) an SEM image of the laser heterostructure showing the fabricated laser 

heterostructure along with the cleaved mirror facet. 
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A typical fabricated laser schematic is shown in Fig. 5.6(a). The scanning electron 

microscopy (SEM) image of a fabricated laser heterostructure is also shown in Fig. 

5.6(b). Projection photolithography (GSA Autostepper) was used to make all the patterns 

in the laser heterostructure. The first step involved making an alignment mark  (Ti/Au 

metal deposition) parallel to the m-plane of GaN on c-plane for subsequent alignment of 

the laser bars perpendicular to the m-plane so that cleaved facet mirrors could be formed 

after the fabrication. 2 to 5 µm ridges were etched down to the upper cladding layer-

waveguide heterointerface through reactive ion etching (RIE) (LAM 9400) after a careful 

calibration of the etch rate. This was followed by an etch down to the n-GaN by creating 

a 20 m wide mesa pattern on top of the ridge geometry symmetrically reaching out on 

either sides to maximize the optical confinement factor. Care was taken to clean the 

residue after the RIE etching using O2 plasma ashing. The next step involved 

metallization for ohmic p-contacts. A thin layer of native gallium oxide can prevent good 

ohmic contact formation. After developing an opening slightly smaller than the ridge 

waveguide on top of the mesa, the native oxide was removed by wet chemical etching in 

HCl:H2O (1:1) for 10 minutes before quickly loading in the e-beam evaporator chamber 

to prevent new oxide formation. A 5 nm Ni/ 300 nm Au ohmic p-metal contact was 

deposited through metal lift-off. This was followed by annealing the p-contacts at 550 oC 

in a rapid thermal annealing (RTA) tool to create a Ni-O at the interface providing for 

good ohmic contacts. An 800 nm thick passivating SiOx layer was deposited by plasma 

enhanced chemical vapor deposition (GSI PECVD) across the whole sample. Via 

openings were patterned and etched (using RIE) on top of the p-contact as well on top of 

the n-GaN followed by depositing thick 25 nm Ti/300 nm Au metal serving as n-contact 
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and p-contact interconnect separated from each other by passivating SiOx layer as shown 

in the schematic in Fig. 5.6. 

5.3.2 Cleaved facet mirrors for longitudinal confinement 

          GaN is a mechanically hard and stable semiconductor and cleaving of GaN to ~500 

m to 1mm bars can only be attained after thinning of the substrate. The backside of the 

GaN substrate used for laser growth was etched out and the sample thinned down to ~80 

– 100 m in final thickness. Figure 5.7(a) shows the crystal structure of GaN and the 

favored direction of cleaving along a-plane which is perpendicular to both m-plane and 

the c-plane, the preferred direction of growth. After putting scribe marks aligned parallel 

to the m-plane, cleaved mirror facets as shown in Fig. 5.7(b) were obtained with smooth 

facets by first thinning the sample to ~80 m, followed by cleaving along a-plane. 

However, due to the low refractive index of the GaN, the highest reflectivity that can be 

obtained from cleaved facet is ~18% which is very low, especially compared with GaAs 

based diode lasers (R~32%). An additional multiple layers of calibrated SiO2/TiO2 DBR 

Fig. 5.7(a) Crystal structure of GaN showing the different planes of the crystal along 
c-plane, m-plane and a-plane and (b) an SEM image of the laser heterostructure 

showing the smooth cleaved mirror facet along the a-plane. 
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are deposited on the facets to improve their reflectivity. Five layers were deposited on 

one end of the cavity which provided ~99% reflectivity while the other end had three 

layers deposited with for a reflectivity of ~80% from which side the laser output is 

measured.  

 

5.4 Characteristics of Blue-Emitting InGaN/GaN Quantum Dot Lasers 

          The laser heterostructures were grown with optimized QDs emitting at various 

wavelengths inserted into the active region. Unless otherwise mentioned, all the laser 

heterostructures have similar cladding and waveguide layers except for the QD active 

region which is optimized to emit at different wavelengths. Optical output characteristics 

were measured for QD lasers demonstrating low threshold current density under both 

pulsed and continuous wave operation. QD lasers with GaN cladding layers were also 

made and some of their properties measured and compared to conventional QD lasers. 

Additionally, internal material parameters and differential gain were measured in these 

devices. 

5.4.1 Output-current and spectral characteristics 

          Light-current (L-I) characteristics of blue QD lasers (=418 nm) were 

measured under pulsed (5% duty cycle, 1 µs pulse width) and CW bias at or close to 

room temperature. L-I characteristics for a device with 2 µm ridge width and 1 mm 

cavity length are shown in Figs. 5.8(a) and (b), respectively. The threshold current 

density measured for both pulsed and CW bias are Jth = 930 and 970 A/cm2, respectively. 

These values are significantly lower than those measured in nitride-based quantum well 

visible lasers [118]. The slope efficiency, differential quantum efficiency, ηd, and power 
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conversion (wall plug) efficiency for CW operation are 0.41 W/A, 13.9% and 0.4% at 

1050 A/cm2. Figure 5.9(a) shows the laser emission spectrum (λpeak = 418 nm) in 

comparison with the spontaneous emission (PL) spectrum with In0.18Ga0.82N QDs. Figure 

5.9(b) shows the measured blue shift of the peak laser emission wavelength with 

increasing injection current density. The shift occurs due to the screening of the 

Fig. 5.9(a) Electroluminescence spectra of the laser with the spontaneous 
recombination from PL shown alongside and (b) peak emission wavelength shift 

with increasing injection for the laser. 

Fig. 5.8. Light output versus current (L-I) characteristics of blue-emitting QD lasers 
under (a) 5% pulsed and (b) continuous wave (CW) mode operation. 
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piezoelectric field in the dots by the injected free carriers. The measured blue shift is only 

~4.4 nm, which is an order of magnitude smaller than that measured in comparable 

InGaN/GaN quantum well devices [77, 78]. It may also be noted that there is no change 

of emission wavelength beyond threshold, which is a desirable attribute. A piezoelectric 

field of 80kV/cm in the InGaN QDs is estimated from the measured wavelength shift, 

compared to a value ~ 2.1 MV/cm reported for equivalent InGaN/GaN quantum wells 

[119].  

After optimizing the growth conditions of the InGaN QDs, longer wavelength 

Fig. 5.10(a) Schematic of the laser heterostructure using GaN cladding and a higher In 
composition InGaN waveguide, (b) light output versus current (L-I) characteristics for 
a conventional laser heterostructure (Fig. 5.1(a)) and a GaN-clad laser heterostructure 

(Fig. 5.10(a)), and (c) lasing peak emission for the GaN-clad laser heterostructure. 
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blue (λ=479)-emitting laser heterostructures were also grown on free-standing c-plane 

GaN substrates. In addition to the heterostructure with In0.02Ga0.98N waveguide and 

Al0.07Ga0.93N cladding similar to conventional heterostructure shown in Fig. 5.1(a), 

device heterostructures with In0.08Ga0.92N waveguides and GaN cladding layers were also 

grown as shown in Fig. 5.10(a). The calculated mode confinement factors of the two 

designs are 0.07 (almost same as for heterostructure shown in Fig. 5.1(a)) and 0.064, 

respectively. The device with the GaN cladding is expected to have a lower series 

resistance, and a lower operating voltage [120]. Additionally, the reduced mismatch 

strain is expected to result in more uniform QDs. The InGaN, GaN, and AlGaN layers 

were grown at 590o, 740o, and 760oC, respectively, and the QDs were grown at ~540oC 

for longer wavelength blue emitting dots (λ=479nm). The 13 nm thick p-Al0.15Ga0.85N 

(p=6x1017 cm-3) layer was grown at 750oC. The p- and n-doping levels in the cladding 

layers are ~(7-10)x1017 cm-3. Light-current characteristics for the lasers were measured 

under quasi-CW bias (5% duty cycle, 50 µs pulse width) at room temperature. Data for 

blue-emitting devices with the AlGaN and GaN cladding, with a 2 µm ridge width and 

1.2 mm cavity are shown in Fig. 5.10(b). The threshold current densities are 1.8 and 2.3 

kA/cm2, respectively, for the AlGaN and GaN cladding. These values are significantly 

lower than those reported for nitride based quantum well lasers with similar AlGaN [77] 

and GaN [120] cladding layers. The slope efficiency, differential quantum efficiency, ηd, 

and power conversion (wall plug) efficiency for pulsed operation are 0.11 W/A, 4.3% 

and 0.3% for the blue lasers with GaN cladding, and 0.12 W/A, 4.7%, and 0.3% for the 

blue lasers with AlGaN cladding, respectively. Due to the increased modal gain from the 

increased optical confinement, the lasers with AlGaN cladding have a lower threshold 
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current density in devices with comparable dimensions. Additionally, the reduced optical 

mode overlap with the (doped) cladding results in a reduced cavity loss and higher slope 

efficiency. However, the voltage drop is smaller in the GaN cladded devices resulting in 

similar wall plug efficiencies. The peak emission of lasing is shown in Fig. 5.10(c). 

5.4.2 Measurement of differential gain 

          The threshold current and other dynamic characteristics of a laser are ultimately 

determined by the differential gain, dg/dn, and hence it is important to measure this 

parameter. It is obtained from cavity-length dependent L-I measurements. L-I 

measurements have been made on blue QD lasers (=418 nm) of different cavity lengths 

ranging from 0.6 to 1.6 mm. Figure 5.11(a) shows the variation of ηd
-1 with cavity length. 
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where ηd is the differential quantum efficiency, ϒ is the cavity loss, R1, R2 are the 

reflectvities on the two ends of the longitudinal cavity and ηi is the internal quantum 

efficiency. From analysis of this plot (solid line) using the previous equation, we obtain a 

value of ηi = 68% and cavity loss γ = 11 cm-1. This value of ηi is in reasonably good 

agreement with the value obtained from PL measurements. The variation of the measured 

Jth with inverse cavity length, shown in Fig. 5.11(b), is analyzed using the relation: 
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where Jth
0 is the transparent current density, d is the total thickness of the active (gain) 

region, Γ is the confinement factor and ℓ is the cavity length. Using the measured values 

of ηi, τr and γ, and Γ = 0.03, calculated as the overlap of the waveguide mode power with 

the quantum dot layers with the dot fill factor of 0.44 included, a value of 
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dg/dn = 2x10-16 cm2 is derived. The active region thickness, d, was calculated from an 

effective dot height of 3.5 nm, taking into account hexagonal dot geometry, wetting layer 

thickness and the fill factor. Calculated and measured values of dg/dn in InGaN/GaN and 

InGaN/AlGaN strained and strain-compensated quantum well lasers [121, 122] are an 

order of magnitude lower than the value quoted above for QDs. A value of differential 

gain (dg/dn) of 1.03x10-16 cm-2 is obtained for long wavelength lasers ( ~479 nm). It is 

also instructive to compare dg/dn in the InGaN/GaN QDs with those measured for 

In(Ga)As/GaAs QD lasers, which are usually an order of magnitude higher [123, 124]. 

We believe this is a result of the large carrier effective masses and joint density of states 

in the InGaN/GaN QDs. As a result, the threshold current in InGaN/GaN QD lasers may 

not reach the low values of Jth reported for In(Ga)As/GaAs QD lasers [125].  

5.4.3 Polarization output and near field characteristics 

          The output of the lasers emitting at =418 nm was probed by measuring the 

polarization of the light. Figure 5.12 shows the output intensity polarized in the 

Fig. 5.11(a) Cavity length dependence of inverse differential quantum efficiency 
and (b) variation of threshold current density with inverse cavity length. 
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transverse electric (TE) and transverse magnetic (TM) modes as a function of injection 

current in a 5 µm ridge device with 0.6 mm cavity length. A clear threshold is observed 

for the TE-polarized output. This is because the TE mode has higher gain above 

threshold. Additionally, the TE mode is better confined, resulting in a higher optical 

confinement factor and reduced loss associated with the overlap of the optical mode with 

doped cladding regions.  

          A near field image from a 4 µm wide ridge waveguide laser, with a cavity length 

of 1.2 mm, is shown as a contour plot in Fig. 5.13(a). The measured mode profile in the 

growth (transverse) direction, intersecting the maximum of the mode, is shown in Fig. 

5.13(b), with the mode in the perpendicular (lateral) direction (along the width of the 

ridge) shown in Fig. 5.13(c). In the growth direction, the relatively narrow thickness 

allows for a (nearly) single mode output, while the mode in the transverse direction 

Fig. 5.12. Laser output polarization as a function of injection current density. 
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clearly consists of several higher order modes, as expected in such a relatively wide 

waveguide. An index guided single mode laser will have to be fabricated with a smaller 

ridge width and deeper etch, or by utilizing the buried stripe geometry. 

5.5 Characteristics of Red-Emitting (=630 nm) InGaN/GaN Quantum Dot 

Lasers 

          Lasers emitting in the 600 nm wavelength range are finding large scale 

applications in optical information processing, plastic fiber communication systems, 

Fig. 5.13(a) Contour plot of the near field image of the laser mode. Laser mode profile 
in the transverse (b) and longitudinal (c) directions, as compared with the mode 

profiles simulated by transfer matrix method. 
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optical storage, and full color (RGB) laser displays and projectors [105, 106]. As 

discussed earlier, lasing at longer wavelengths is difficult to achieve using InGaN/GaN 

quantum wells (QWs) in the active region mainly due to the large polarization field and 

In clustering effects which become more significant with high In composition the InGaN 

QW. Additionally, the threshold density of such QW lasers emitting at even green 

wavelengths is generally very large due to reduced electron-hole wavefunction overlap in 

the quantum wells. Lasing beyond green wavelengths has not been achieved from 

heterostructures incorporating InGaN/GaN QW active regions on c-plane or any non-

Fig. 5.14(a) Schematic of red In0.4Ga0.6N/GaN QD laser, (b) spectral output from a 
single facet of the laser under continuous wave bias below and above threshold, and (c) 

light-current characteristics of the laser from a single facet. 
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polar planes of GaN. 

         The first nitride-based red lasers were demonstrated incorporating InGaN/GaN 

quantum dots as the active region on c-plane GaN substrates. The conventional 

heterostructure was modified with the incorporation of lattice matched InAlN as the 

cladding layer to provide stronger optical mode confinement with reduced strain as 

shown in Fig. 5.14(a). The red lasers were characterized by a lasing peak at 630 nm (Fig. 

5.14(b)) with a threshold current density of 2.5 kA/cm2 (Fig. 5.14(c)). The threshold 

current density is even lower than those obtained for green-emitting nitride QW lasers. 

The output slope efficiency and the corresponding wallplug efficiency measured for a 

laser of cavity length equal to 600 μm is 0.05 W/A and 0.4% (measured at 200 mA and 

7.8 V). Additionally, a peak emission shift of only 11.6 nm also confirms the weak 

polarization field present in the InGaN/GaN self-assembled QDs. 

5.6 Summary 

          In conclusion, the characteristics of self-organized In0.18Ga0.82N/GaN QD ridge 

waveguide lasers emitting in the blue (λ = 418 nm) and longer wavelengths 

In0.27Ga0.73N/GaN QD (λ = 479 nm) lasers have been measured. The devices have been 

operated under pulsed and CW bias conditions. A threshold current of 930 A/cm2 is 

measured in a 2 µm ridge laser at 288 K under pulsed bias for the shorter wavelengths. 

The blue shift due to screening of the piezoelectric field in the dots is 4.4 nm. Longer 

wavelength lasers emitting at λ = 479 nm were characterized with different cladding 

layers and threshold current density as low as 1.8 kA/cm2 were recorded. While the 

performance of the lasers, in terms of Jth, efficiencies and dg/dn, are extremely 

encouraging, there is considerable room for improvement before the full potential of 
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using QDs in the active region can be realized. The internal quantum efficiency of the 

blue dots is ηi ~ 60%. While this value is larger than any other reported previously and 

was achieved after optimizing the growth conditions, it has to be increased further to 

improve laser performance. We believe that the main reason for the low value of ηi is the 

large defect density (5x106 cm-2) in our starting GaN substrate. The value of ηi should be 

considerably larger with growth on substrates having a defect density ~ 104 cm-2. 

Concurrently, the value of Jth is expected to be lower and higher output powers can be 

obtained. The first nitride-based red-emitting lasers were demonstrated incorporating 

InGaN/GaN QDs in the active region and InAlN in the cladding region. This is the 

longest emission wavelength achieved with nitride-based heterostructures. The 

preliminary output characteristics at such long wavelengths demonstrate the ability of the 

QDs in producing the best lasers at =630 nm and possibly at even longer wavelengths. 
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Chapter VI 

Optical and Spin Properties of Carriers in InGaN Dots in GaN 

Nanowires Grown on Silicon 

 

6.1      Introduction    

          The lack of a high-quality and low-cost GaN substrate necessitates the nucleation 

of GaN on sapphire (or silicon) which have large lattice mismatches of 13.8% (or 18%) 

resulting in a large dislocation density directly or indirectly affecting device 

performance. Recently, nanowires have been successfully grown by molecular beam 

epitaxy (MBE) [126-128] and metal organic chemical vapor deposition (MOCVD) [129-

131]. In MBE, they grow by Ga self-catalysis mode vertically on (001) and (111) Si 

along the wurtzite c-axis. Structural and optical characterization revealed that the 

nanowires were relatively free of extended defects, stacking faults and twins [130-134] 

because of their large surface-to-volume ratio which provides for strain relaxation. A 

reduced strain distribution in the nanowires also leads to a weaker piezoelectric 

polarization field. InGaN disks of 2 nm thickness were inserted into such relatively 

defect-free GaN nanowires. The typical nanowire diameter in the growth plane was ~30 

nm, so the InGaN insertions were ~2 nm x 30 nm. These are of similar dimensions to that 

of the self-assembled quantum dots (QDs) described earlier. It was seen from the 

measurements and theoretical calculations performed on self-assembled QDs that due to 
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quantum confinement and localization of carriers, along with weak polarization field, 

there is a strong electron-hole wavefunction overlap and superior optical properties [47-

49]. The nanowires, by virtue of having similar dimensions of InGaN insertions 

compared to that of the self-assembled QDs and a large aspect ratio for strain relaxation, 

are also expected to provide superior optical properties over c-plane quantum wells 

(QWs). Additionally, the absence of a high defect density in GaN/sapphire or 

GaN/silicon substrates make the nanowires a highly desirable nitride material system for 

studying the optical properties and characterizing the devices made out of them.  

          This chapter discusses the growth and optical properties of the InGaN dots (or 

disks) in GaN nanowires. The dots emit across the whole visible spectrum. Carrier 

lifetimes were measured in the dots-in-nanowire heterostructures and a recombination 

model for the observed carrier decay times proposed. Additionally, spin properties of 

carriers in quantum confined InGaN dots in relatively defect-free GaN nanowires were 

measured and the fundamental spin scattering mechanism responsible for spin scattering 

in the nitride material system was determined. 

 

6.2 Growth and Characterization of InGaN Dots in GaN Nanowires 

6.2.1 Growth of InGaN/GaN dot-in-nanowire heterostructure 

          In(Ga)N nanowires can be grown on silicon substrates using a Ga self-catalyst 

[125, 136] with lengths up to a few micrometers, diameter varying in the range 30-80 nm 

and aerial densities in the range 108-1011 cm-2.  They grow vertical to the silicon surface 

in the wurtzite crystalline form with the c-axis parallel to the direction of growth. GaN 

nanowires with a density of 1x1011 cm-2 were grown on (001) n-Si substrate with 
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resistivity < 0.001 Ωcm in the MBE system described in previous chapters. The native 

surface oxide on the Si substrate was removed with a 900 °C anneal in the growth 

chamber for an hour after a BHF oxide etch. As was mentioned in previous chapters for 

2-D GaN bulk growth, the 1x1 to 7x7 transition in the RHEED patterns were observed 

for (111) Si to determine the actual temperature on the substrate and calibrate the 

pyrometer. After cleaning the oxide through in-situ annealing, the substrate temperature 

was lowered to 800 °C and a few monolayers of Ga were deposited with a Ga flux of 

1.5x10−7 Torr in the absence of active nitrogen. GaN nanowire growth was initiated at the 

same substrate temperature under N2-rich conditions by introducing the active nitrogen 

species. The growth rate of the nanowires was ~300 nm/h. The Ga flux was maintained at 

1.5x10−7 Torr and the N flow rate held constant at 1 sccm. InGaN and GaN layers were 

grown alternatively to form nanowires containing InGaN/GaN dots (or, disks) in GaN 

nanowire heterostructures. The InGaN quantum dots were grown at constant Ga and In 

fluxes of 1x10−7 Torr and 1.5x10−7 Torr, respectively, while only the growth temperature 

Fig. 6.1(a) High density GaN nanowires grown on (001) Si and (b) HR-TEM image 
showing a GaN nanowire with multiple InGaN/GaN dot-in-nanowire heterostructures. 

The high resolution cross-TEM image shown in the inset depicts a single dot-in-
nanowire [135]. 



116 
 

was varied from 500 to 580 °C for emission across the whole visible spectrum.  

          The structural properties of the nanowires were investigated by scanning electron 

microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM) 

imaging. As shown in Fig. 6.1(a), high density (1x1011 cm−2) GaN nanowires were grown 

with diameters ranging from 10 to 50 nm (in different samples) and they exhibited 

excellent uniformity in length. The TEM image of Fig. 6.1(b) shows a GaN nanowire 

with a dot-in-nanowire heterostructure, where multiple layers of InGaN dots of 2 nm 

thickness were self-aligned along the nanowire growth direction. The image depicts a 

smooth and dislocation-free interface between InGaN and GaN. It is also known from 

selective area diffraction measurements that the nanowires grow in the wurtzite 

crystalline structure with the c-axis parallel to the direction of growth.  

6.2.2 Photoluminescence of GaN nanowires 

 The optical properties of the nanowires were examined by photoluminescence 

(PL) measurements by exciting the samples with a frequency tripled output of a mode-

locked Spectra Physics Tsunami Ti:Sapphire laser emitting at 267 nm and focusing the 

sample emission to a monochromator (with a spectral resolution of 0.03 nm) fit with a 

photomultiplier tube (PMT). The GaN nanowire PL at room temperature was found to be 

free of any deep level yellow bands indicating absence of any defect states related to Ga 

vacancies during crystal growth. Figure 6.2(a) shows a typical room temperature PL from 

a GaN nanowire grown on (111) Si. Clear excitonic peaks were observed from GaN 

nanowires at low temperatures originating from the bulk of the nanowire and the surface 

as shown in Fig. 6.2(b). This further indicates the crystalline quality of the GaN 

nanowires. The lifetimes of these excitonic peaks were measured and are discussed in the 
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next section.  

 

6.2.3 Time-resolved photoluminescence of GaN nanowires and InGaN dots in GaN 

nanowires 

          Time-resolved photoluminescence (TRPL) measurements were performed at 

cryogenic temperatures with unpassivated and passivated nanowires at the peak emission 

Fig. 6.2(a) Room temperature PL of GaN nanowire ensemble showing 
absence of yellow band and (b) PL spectra of a GaN nanowire sample 

measured at 25K showing three sharp bulk related excitons and a broad 
surface-related defect bound exciton. 
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wavelength of the various excitonic transitions. It was found that the PL decay times of 

the three bulk related exciton transitions were almost constant at ~220 +/- 50 ps (Fig. 

6.3(a)). This time constant reflects the intrinsic behavior of the bulk nanowires. On the 

other hand, the decay time constants of the surface related excitons were 572, 407, and 

315 ps for the as-grown, SiNx-passivated and parylene-passivated nanowires (Fig. 

6.3(b)). Due to space-charge related surface depletion [136, 137], electrons and holes 

could be spatially separated, leading to a longer recombination lifetime. With 

passivation, the surface state density and the extent of the depletion region would be 

reduced, thereby enhancing the electron-hole overlap and reducing the lifetime. It seems 

that with parylene passivation, the carrier lifetime approaches that of the free excitons in 

the bulk of the nanowires and surface recombination is reduced to a minimum. The study 

has been published elsewhere [126]. 

          TRPL measurements on InGaN dots in GaN nanowires were performed and the 

carrier lifetimes analyzed. Figure 6.4(a) show the typical carrier decay times obtained for 

Fig. 6.3. PL decay transients obtained from TRPL on as-grown and passivated GaN 
nanowires for (a) bulk excitons which remain unchanged and (b) surface excitons 

which change with passivation. 



119 
 

InGaN dots emitting at 420 nm under resonant excitation. The bi-exponential temporal 

behavior was characterized by an initial fast decay of the PL, more pronounced at higher 

temperatures, followed by a transient with a longer time constant.  The initial fast decay, 

with time constant τ1, was attributed to thermally activated carrier relaxation to 

energetically lower localization minima caused by In composition fluctuation in the QD 

[67, 138].  The transient was not observed for the measurements at 480 nm possibly due 

to a stronger localization of carriers at the lower minima. The subsequent slower transient 

PL signal had a time constant τ2 almost independent of temperature.  It is believed that τ2 

is a measure of the recombination lifetime of carriers in the dots in nanowires. The 

results were modeled as described below. 

          The transient photoluminescence data was analyzed with a three level rate equation 

model in order to understand the carrier dynamics in the InGaN dots-in-nanowires. 

According to the model, near-resonant photoexcitation creates a population of carriers n0 

at a higher energy state, from which the majority of them undergo fast relaxation to the 

ground states of the dots, with a population n1. A fraction of n1 relaxes to deeper lying 

localized states. The carriers in these states, with population n2, undergo efficient 

recombination. The relevant rate equations are: 
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and the different lifetimes are indicated in the inset of Fig. 6.4(b) below. The model 

enables good fits to the measured data of all three samples and at all wavelengths for 
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temperature ranging from 20 –300 K. The values of τ1 and τ2 obtained from analysis of 

the data of Fig. 6.4(a) in the text and are shown in Fig. 6.4 (b). Here 
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The transient data measured in dots-in-nanowires was analyzed according to the model 

described above. The average value of τ2 obtained from the rate equation analysis is ~0.6 

ns, which is in good agreement with previously measured data from similar dots [49]. 

 

 

6.3 Properties of Spin Polarized Carriers in InGaN Dots in GaN Nanowires 

6.3.1 Introduction 

          Spin-related phenomena in semiconductors are investigated to gain fundamental 

understanding of the injection, control, transport and detection of carrier spins.  While 

such phenomena have been widely investigated in Si and GaAs-based materials and 

Fig. 6.4(a) Carrier decay time for InGaN dot in GaN nanowire measured at =420 
nm and at different temperatures and (b) value of τ1 and τ2 obtained from rate 

equation analysis of measured data from (a).  
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heterostructures [139], much less is known of the spin related properties of GaN and 

related compounds [140-142]. What makes these materials attractive for future 

spintronics applications is the weak spin-orbit coupling (SOC) and the associated 

possibility of long spin relaxation times, even at room temperature. The SOC is a strong 

function of the average atomic number of the constituent atoms, and as such, is relatively 

low for GaN. The measurements were performed on InGaN dots in GaN nanowires as the 

increased quantum confinement is expected to enhance spin relaxation times. 

Additionally, the low polarization field and relatively-defect free environment due to the 

large aspect ratio would help in determining the dominant spin scattering mechanism 

independent of defect-related effects. The work reported in the subsequent sections has 

been published by the author elsewhere [143]. 

          Nitride based semiconductors are usually grown in the polar wurtzite crystalline 

form and therefore have inversion asymmetry, which causes a spin splitting of the bands 

via spin-orbit coupling. The spin polarized carriers undergo spin precession about the 

resultant effective magnetic field which is the basis of the D'yakonov-Perel' (DP) spin 

relaxation mechanism [141].  Every momentum scattering event randomizes the effective 

magnetic field direction and thereby the spin relaxation is impeded. It has been shown 

that in GaN, the DP spin relaxation is anisotropic [144], which is a direct consequence of 

the anisotropic SOC in wurtzite structures. Elliot-Yafet (EY) spin scattering mechanism 

is associated with a momentum scattering event that a spin polarized carrier encounters. 

It becomes imperative, therefore, to measure the spin relaxation times in these relatively 

defect-free nitride nanowires to determine the fundamental spin scattering mechanism in 

these systems. The other spin scattering Bir-Aronov-Pikus (BAP) mechanism is generally 
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caused by the fluctuations in electron-hole exchange interaction in p-doped 

semiconductors and is not relevant here. All the experiments that have been performed 

before were conducted with nitride semiconductors grown on highly mismatched 

sapphire or silicon substrates with high defect densities of ~ 108-109 cm-2. In the 

subsequent sections in the chapter, the measured and theoretically analyzed spin 

relaxation times of optically excited spin-polarized carriers in InGaN/ GaN quantum dots 

in GaN nanowires grown on (001) silicon substrates are reported.  It was found that the 

relaxation times vary in the range of 80-140 ps with a weak temperature dependence.  

The results revealed that DP scattering was the dominant spin relaxation mechanism as 

described in details in section 6.3.4. 

6.3.2 Optical injection and detection of spin polarized carriers 

          The schematics of the heterostructure used for measurement of spin polarized 

carriers in InGaN dots in GaN nanowires are shown in Fig. 6.5(a). After the initial 

growth of 400nm of GaN nanowire at 800°C, the growth temperature was lowered to 

580°C and multiple periods of InxGa1-xN (2nm)/GaN (20nm) quantum dots were grown. 

The composition x in the dots was varied in the range 0.12-0.25 in different samples.  

The entire heterostructure was undoped.  Scanning electron microscopy (SEM) and TEM 

imaging indicated that the aerial density is ~1x1011cm-2 and the diameter of the 

individual nanowires were ~30nm.  The quantum disks (or dots) therefore had 

dimensions of ~2nm x 30nm as was mentioned before. 

          The wurtzite structure of GaN leads to a valence bandstructure consisting of the A 

(HH), B (LH) and C (SO) states [145, 146], of which the A and B states are energetically 

very close (separation ~ 15 meV in In0.2Ga0.8N) as shown in Fig. 6.5(b).  The oscillator 
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strength of optical transitions between the conduction band and A and B states of the 

valence band are very comparable (~ 1:0.94) [145] as against GaAs bandstructure where 

it is 3:1.  As a result, photoexcitation with non-resonant circularly polarized light results 

in almost zero spin polarization. 

  

The incident optical excitation for photoluminescence (PL) and time-resolved PL (TRPL) 

measurements was provided by the frequency-doubled output of a pulsed 80MHz mode-

locked Ti:sapphire laser tuned to a wavelength larger than that corresponding to the 

bandgap of GaN and very close to the InGaN peak emission in order to resonantly excite 

Fig. 6.5(a) Schematic of InGaN dots in GaN nanowire heterostructure used for 
spin measurements and (b) anisotropic band diagram of GaN showing very low 

separaction of HH and LH bands [147]. 
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the valence band A states-to-conduction band transition in the InGaN dots.  The 

excitation was incident at 20° to the sample normal and the luminescence was collected 

in the direction normal to the sample and along the c-axis.  The luminescence was 

analyzed by a monochromator (resolution ~0.03 nm) and subsequently focused on to a 

single photon detector (measured system response time ~ 50 ps).  For spin lifetime 

measurements the incident resonant excitation was circularly polarized and this produced 

spin-polarized carriers in the InGaN dots where the light was absorbed.  These carriers 

recombined to produce polarized light, which was resolved into the left- and right-

circularly polarized components. Temperature dependent measurements were performed 

by mounting the sample in a continuous flow liquid He cryostat. The measurement set-up 

Fig. 6.6. Schematics of the measurement set-up for optical injection and detection of 
spin properties. 



125 
 

used is shown in Fig. 6.6. The 80 MHz mode-locked light output of the Ti:sapphire laser 

is linearly polarized (TE). It was converted to circularly polarized light by passing it 

through a quarter-wave plate (λ/4) before exciting the InGaN dots resonantly and fine-

tuning the excitation wavelength till polarized PL emission was observed. Circularly 

polarized light when absorbed by the InGaN dots with increased splitting of the A and B 

states (due to strain) such that only CB-A transitions are possible and CB-B transitions 

are at higher energy than excitation energy, created selective excitation of spin polarized 

carriers. They undergo spin flip through DP and EY spin scattering mechanisms. The 

intensity of luminescence emitted by the recombination of spin polarized carriers with 

unpolarized holes is circularly polarized for a certain spin state of electrons. Thereby a 

measure of the difference in the intensity of right and left circularly polarized emitted 

light gives us a measure of the degree of spin polarization present in the InGaN dots in 

nanowires at that instant of time. The circularly polarized luminescence emitted from the 

sample was detected by converting it back to linearly polarized light using a quarter wave 

plate. The right and left circularly polarized light gave linearly polarized light polarized 

90o apart from each other after passing through the quarter wave plate. Each component 

of the linearly polarized light was then selected using a linear polarizer and their 

intensities measured for PL and TRPL measurements. 

6.3.3 Spin polarization lifetimes of electrons in InGaN dots in GaN nanowires 

          As outlined in the last section, the description of the four samples used in the 

measurements with the In composition x in the dots being 12, 20 and 25% are shown in 

table 6.1 [128].  These are being labeled samples 1, 2, 3 and 4 and the peak of the room 

temperature PL from these samples occurred at 407, 420, 450 and 453nm, respectively. 
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Sample InGaN/GaN dot pairs emission, peak (nm) 
1 8 407 
2 8 420 
3 30 450 
4 8 453 

 

The excitation wavelength was set at 395 nm for selective excitation of CB-HH (A) 

states for sample 1. Polarization dependent photoluminescence spectra of sample 1 at T= 

300 K, are shown in Fig. 6.7(a) and the data exhibit the polarized σ+ and σ - components.  

The inhomogenously broadened linewidth of the luminescence is caused by composition 

variation in the disk-like InxGa1-xN dots. TRPL measurements were made at different 

wavelengths in the temperature range of 20-300 K.  The measured data for sample 2 at 

420 nm are shown in Fig. 6.7(b).  

          The rate of change of polarization calculated from the carrier decay times for the 

two different polarized outputs is plotted in the inset to Fig. 6.7(b).  It is evident that the 

polarization decay time is significantly smaller than the radiative lifetime of the spin 

polarized carriers as described using the model in section 6.2.3.  The percentage degree 

of polarization, defined by P=100 (σ+ - σ-)/(σ+ + σ-) derived from the transient data is 

plotted in the inset.  The polarization at time t=0 was small since the separation of the A 

and B valence band states in the InGaN dots is comparable to the width (in energy) of the 

excitation pulse and, as mentioned before, the probabilities of the optical transitions 

involving these states are comparable in the wurtzite structure.  The spin relaxation time 

τs was obtained from the transient polarization data by fitting the latter with a single e

Table 6.1. Description of the samples used for measurement of spin lifetimes. 
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xponential:  P(t) = P(0) exp (-2t/τs).  The spin lifetimes measured as a function of 

temperature in sample 3 measured at λ=420, 450 and 480 nm are shown in Fig. 6.8(a). 

Similar data comparing the trends in samples 1, 2 and 4, are shown in Fig. 6.8(b).  It is 

evident that spin relaxation times increase with increasing wavelength in the same 

Fig. 6.7(a) Polarization dependent photoluminescence spectra of sample 1 at T = 
300 K under resonant excitation (λ = 395 nm) and (b) spin polarized transient 

photoluminescence at T=240 K for sample 2 measured at λ=420 nm. Inset shows 
the temporal variation of the degree of polarization. 
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sample 3, where the increasing wavelength represents a contribution from regions of 

higher In content in the InGaN dots. A similar trend was seen by directly varying the In 

composition in three different samples. Nagahara et. al. [148] also reported an increase of 

Fig. 6.8. Spin lifetimes as a function of temperature (a) in sample 3 at λ=420, 450 
and 480 nm, (b) in samples 1, 2 and 4 measured at their peak wavelength (λ=407, 
420 and 453 nm, respectively). The dashed lines are the theoretical spin lifetimes 

calculated as described in subsequent section. 
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spin lifetime with the  increase of In composition in InxGa1-xN/ GaN quantum wells. The 

spin relaxation times in the two sets of data varied in the range of 86-100 ps at 300K.  In 

comparison, the relaxation times in (100)-oriented GaAs and InGaAs quantum wells are 

~60 ps and 6 ps, respectively [149, 150].   

6.3.4 Discussion and theoretical analysis 

          Spin relaxation lifetimes were of the order of 80 – 120 ps for all the samples. They 

increased with increasing wavelength and had weak temperature dependence with 

decreasing spin lifetimes at higher temperatures. The theoretical analysis behind such a 

trend is discussed in this section. Also, the extremely weak temperature dependence of τs 

consistently observed in this study is in agreement with the trend observed in In-rich 

quantum dots formed in InGaN/GaN quantum wells [151].  In contrast, spin lifetimes 

measured in InGaN/GaN quantum wells reportedly exhibit a rather strong temperature 

dependence [150]. It has been reported that as a consequence of the anisotropic SOC in 

the wurtzite structure, spin relaxation in GaN (and also InGaN) will be anisotropic, 

having a faster rate for spins pointing along the c-axis compared to spins aligned in the 

perpendicular (in-plane) direction [144]. It is also worth noting that although the InGaN 

dots in the GaN nanowires have diameters ~30 nm, there is evidence of quasi zero-

dimensional behavior in these nanostructures similar to those in self-organized 

InGaN/GaN quantum dots [49, 113, 115, 116], which also have a base of 30-50 nm.  

          The DP and EY spin relaxation lifetimes were calculated for a relatively defect free 

GaN material system and their variations with respect to temperature and wavelength 

calculated to see the effects of the two scattering mechanisms on spin relaxation times 

measured. The EY mechanism describes randomization of a spin direction through 
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momentum changes and the spin relaxation time in confined 2D structures is given by: 
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And, the variation of bandgap energy Eg with In composition x in the InxGa1-xN dots is 

described by [152]: 
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Based on the equations 6.6. and 6.7, the plotted EY spin lifetimes as a function of In 

composition x are calculated and plotted in Fig. 6.9.  It is evident that these times are

 

much larger and of microsecond order due to quantum confinement of the carrier 

momentum [153, 154]. More importantly, the spin relaxation time decreases with In 

composition, which is opposite to the trend observed experimentally in this study and by 

Fig. 6.9. Calculated spin lifetimes limited by Elliot-Yafet scattering in InxGa1-xN 
quantum dots as a function of In composition at 100 and 300 K. 
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others [148, 151]. It was therefore concluded that the EY mechanism is not relevant to 

the InGaN/ GaN dot-in-nanowires being investigated.   

         The DP spin scattering mechanism causes the spin polarized carriers to undergo 

spin precession about an effective magnetic field arising from splitting of the conduction 

band due to SOC. The direction of the effective magnetic field and hence, spin 

precession alters due to momentum scattering. In wurtzite structures, intrinsic inversion 

asymmetry is present and Rashba and cubic Dresselhaus spin-orbit coupling become 

important. The spin lifetimes limited by DP scattering in two-dimensional wurtzite 

structures is given by [155]:  

																									
1
߬஽௉

ൌ
2߬௣
԰ଶ

ଵܫ
଴ܫ
൤ߙଶ்݇

ଶ െ ଷ்݇ߚߙ2
ସ ௩ାଶܫ
௩ାସܫ

൅ ଷߚ
ଶ்݇

଺ ௩ାଷܫ
௩ାଵܫ

൨ 																									6.8 

where I(the energy convolution of the scattering mechanism is given by: 
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and  β  =  1/(kBT)  while the parameter  depends on the relevant carrier scattering 

mechanism [154]. The measured data was analyzed considering impurity  (  =  0)  and 

optical phonon ( 1) scattering. The resultant scattering time is given by: 

																			
1
߬
ൌ

1
߬ఔୀ଴

൅
1

߬జୀଵ
																																																																																										6.10 

It should be noted that both Rashba and Dresselhaus terms are necessary to obtain a 

roughly temperature dependent spin relaxation times. The spin orbit coupling parameters 

are α = αR + β1 where αR is the Rashba parameter. β1,3 are the linear and cubic 

Dresselhaus parameters and Tf is the Fermi temperature, which depends on the In 

composition. Since the linear Dresselhaus and Rashba parameters are indistinguishable 
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Parameter   
Wavelengths 

(nm) 
  

  420 450 480 
Tf (K)   681   

α (eV-nm)   1.64x10-4   
β3 (J.nm3)   4.2x10-4   
m* (x me)   0.18   
τp (ps) 0.99 0.91 0.84 

 

and because our system is essentially strain-free, the influence of the linear Dresselhaus 

term is disregarded and a Rashba parameter of the order of 1.64 x 10-4 eV-nm is 

considered [156-158]. Using the order of magnitude of the different parameters reported 

in the literature [151-159], the calculated spin relaxation times are shown in Figs. 6.8(a) 

and (b) alongside the experimental data. The fitting parameters used for the three 

different wavelengths of sample 3 in Fig. 6.8(a) and for the three samples with different 

In composition shown in Fig. 6.8(b) are given in Tables 6.2 and 6.3, respectively. The 

Parameter   
Wavelengths 

(nm) 
  

  407 420 453 
Tf (K) 992 681 662  

α (eV-nm)   1.64x10-4   
β3 (J.nm3) 3.95x10-4  4.2x10-4 4.2x10-4  
m* (x me)  0.14  0.18 0.18  
τp (ps) 0.97 0.85       0.96 

 

trend in the change of the parameters with change in In concentration used to fit the spin 

lifetime data for the three different samples (Fig. 6.8(b)) is shown in Table 3, while only 

the momentum scattering times is varied to fit the experimental data of sample 3 (Fig. 

6.8(a)) as shown in Table 2. In both cases, the agreement of the calculated data with the 

Table 6.3. Fitting parameters for sample 1, 2 and 4. 

Table 6.2. Fitting parameter for sample 3 at different wavelengths. 
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measured ones, within limits of experimental error, is very good. It is therefore evident 

that spin lifetimes in the InGaN/ GaN dots-in-nanowire are primarily determined by the 

Rashba-induced D’yakonov-Perel’ mechanism. The Elliot-Yafet scattering is absent, 

suggesting that defect-related scattering processes are insignificant. 

 

6.4 Summary 

          In conclusion, TRPL measurements performed on highly resolved PL from GaN 

nanowires indicate that surface passivation with parylene lowers the recombination 

lifetimes of the surface related excitons resulting in improved electron hole wavefunction 

overlap at the surface due to the reduction of surface state density. Additionally, intrinsic 

spin properties of carriers optically injected in InGaN dots in GaN nanowires were 

measured and theoretically analyzed to find the dominant spin scattering mechanism 

inherent in the nitride material system and responsible for spin relaxation. The spin 

lifetimes measured were in the range 80-120 ps, had weak temperature dependence and 

increased with increasing wavelength. D’yakanov-Perel (DP) spin relaxation mechanism 

was found to be the dominant spin scattering mechanism causing spin relaxation in 

relatively defect-free quantum confined nitride structures. 
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Chapter VII 

Conclusion and Suggestions for Future Work 

 

7.1      Summary of the Present Work 

          The present study was focused on the research and development of nitride-based 

light sources which would eventually overcome the challenges and obstacles facing the 

solid state lighting industry and the development of visible lasers. The optical and 

structural properties of the self-assembled InGaN/GaN quantum dots (QDs) grown by 

plasma-assisted molecular beam epitaxy (PA-MBE) were investigated and tuned to make 

light sources demonstrating superior properties compared to current state-of-the-art 

quantum well (QW) based devices.  

           An extensive and systematic growth study has been conducted, as described in 

chapter II, to understand the influence of different growth parameters on the optical and 

structural properties of the self-assembled InGaN/GaN quantum dots (QDs) grown by 

PA-MBE. The QDs with optimized growth conditions exhibited high radiative 

efficiencies of ~60% for blue-emitting QDs (=420 nm) and ~38% for green-emitting 

QDs (=525 nm). The room temperature radiative lifetimes for the optimized blue- and 

green-emitting QDs were found to be ~476 ps and ~1.76 ns, respectively which were 

orders of magnitude lower than those reported for equivalent QWs. The QDs were also 

shown to have minimal In clustering, low polarization field and to have good crystalline 
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quality from various structural and optical characterization experiments. 

          The optimized InGaN QDs were incorporated in the active region of an LED 

heterostructure. The performance of the QD LEDs were improved through optimization 

of the AlGaN electron blocking layer (EBL), the active region, and p-doped GaN region 

by improving growth and processing conditions. QD LEDs were demonstrated with 

efficiencies peaking at low current densities (~40 – 50 A/cm2), having low efficiency 

droop (~25%) and low peak emission shift due to weak quantum confined Stark effect 

(QCSE) discussed in chapter III. 

          One of the major roadblocks facing the solid state lighting industry has been the 

use of highly lattice mismatched substrates including sapphire, SiC or Si for LED 

epitaxy. The high dislocation density (8x108 cm-2) present on state-of-the-art GaN-on-

sapphire templates most commonly used for commercial LEDs can lead to non-radiative 

recombination centers in the active region, provide electrical leakage path during LED 

operation, cause self-heating and ultimately result in significantly degraded device 

performance. In chapter IV, the properties of InGaN/GaN and GaN/AlN QDs were 

explored in dislocation filtering through bending of defects at the base of the QDs. A 

reduction of the defect density to ~9x107 cm-2 was demonstrated by use the of 

InGaN/GaN QDs and the green-emitting QD LEDs grown on reduced defect density 

buffer layers were characterized. The LEDs on dislocation filter showed lower leakage 

currents and much higher peak efficiencies compared to the ones grown on conventional 

GaN/sapphire templates without dislocations. 

          Chapter V details the growth, design and processing challenges faced in some of 

the first demonstrations of QD visible lasers across all wavelengths. A systematic growth 
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study of the InGaN waveguide, AlGaN cladding, and InGaN/GaN QDs on cladding 

layers were performed with detailed material characterization. Electrical characteristics 

of the laser diodes were measured and QD blue lasers lasing at 418 nm and 479 nm were 

demonstrated under continuous wave (CW) operation with very low threshold current 

densities around Jth ~970 A/cm2 for shorter wavelengths and a very low peak emission 

shift of only 4.4 nm. The slope efficiency, differential quantum efficiency and power 

conversion (wall plug) efficiency for pulsed operation were measured at 0.41 W/A, 

13.9%, and 0.4% respectively. A very high differential gain of 2x10-16 cm2 was obtained 

from cavity length dependent current-output measurements on such lasers. Lasers with 

different cladding regions emitting at longer wavelengths (=630 nm) were also 

demonstrated and their effects on output characteristics of the lasers were determined. 

The results obtained are very promising as the potential advantages of using QDs over 

state-of-the-art QWs in the lasers can be clearly observed and the results also provide an 

alternative technology of using MBE growth to obtain lasing. 

          (In)GaN nanowires having areal density of ~1011 cm-2 diameter of ~40 nm were 

grown on silicon substrates. By adding InGaN insertions of 2-3 nm thick, nanostructures 

were obtained with very similar dimensions compared to self-assembled QDs. Chapter 

VI briefly discusses the growth and optical characterization of such InGaN dots in GaN 

nanowires. The properties of spin polarized carriers in InGaN QDs in GaN nanowires 

were measured for the first time in such a relatively defect free environment to study the 

dominant spin relaxation mechanism present in the nitride material system. Spin 

relaxation times as long as ~80-120 ps were measured at room temperature and their 

dependence on increasing In composition and temperature were evaluated. D’yakonov-
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Perel (DP) was found to be the dominant spin relaxation mechanism in quantum 

confined nitride nanostructures from a theoretical fitting. 

 

7.2 Suggestions for the Future Work 

7.2.1 Red-emitting quantum dot LEDs with dislocation filter 

         GaN-based LEDs and lasers emitting in the longer visible wavelengths (red) are 

highly desirable because of the need of red emission in making white light sources 

through red-green-blue mixing as well as many other applications including full-color 

mobile projectors, heads-up displays, optical information processing systems and a host 

of medical applications. The longest wavelength emission currently obtained using 

InGaN/GaN QWs are in the green-yellow wavelengths. Attempts to grow QWs with 

higher In composition results in large numbers of strain associated misfits in the active 

region resulting in all carriers undergoing non-radiative recombination with no visible 

emission in the red region from nitride systems. However, red-emitting In0.4Ga0.6N/GaN 

QD lasers emitting at λ=630 nm has recently been demonstrated as was discussed in 

chapter V. The red-emitting QDs can be grown by a very careful control of the growth 

conditions and have been found to have excellent optical properties. The lasing threshold 

is obtained from the current-output characteristics indicating a very low threshold density 

of ~2.5 kA/cm2. 

          However, the growth of these red QDs with high In composition on GaN/sapphire 

templates (dislocation density ~1x109 cm-2) is more difficult. The defect-related yellow 
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band emission becomes stronger than the red emission from the QDs at room 

temperature. This is possibly due to the In clustering at dislocations during the growth of 

the active region [29]. A LED heterostructure is proposed (Fig. 7.1(a)) with a QD 

dislocation filter optimized in chapter V serving to reduce the threading dislocation 

densities in the starting GaN/sapphire template. Additionally, an In0.05Ga0.95N layer was 

grown for QD nucleation and QD barrier growth as shown in the heterostructure. The 

InGaN barrier layer reduces the strain at the QD/barrier interface preventing the creation 

Fig. 7.1(a) Schematic of a proposed heterostructure for growing red QD LED on 
dislocation filter and (b) PL spectrum of the red-emitting QD grown on dislocation 

filter with InGaN barrier. 
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of any further defects. A 1 m x 1 m atomic force microscopy (AFM) image of an 

uncapped layer of red-emitting QDs is shown alongside the heterostructure in Fig. 7.1(a). 

Strong room temperature photoluminescence (PL) was observed from such QDs and is 

shown in Fig. 7.1(b). An optimization of the composition and thickness of the InGaN QD 

barrier layer could significantly improve the optical properties of the active region and 

the devices. 

7.2.2 Red-green-blue (RGB) white light sources 

          

 

          A heterostructure is proposed, as shown in Fig. 7.2, incorporating vertically 

stacked blue-, green- and red-emitting QD active regions to obtain color tunable 

monolithic white LEDs emitting from the top. Current state-of-the-art white LEDs 

commercialized for solid state lighting use phosphor coatings on blue LED package to 

obtain white emission, which is inefficient and increases the cost of fabrication [8, 9]. 

The performance of these white LEDs can be increased significantly and a wide 

Fig. 7.2. Schematic of a proposed heterostructure for growing white QD LED on 
GaN/sapphire template. 
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tunability of the white color can be obtained by mixing blue, green, and red light in a 

single chip, as proposed. Recently, bulk multi-QW LEDs have been demonstrated 

emitting in the white region [160]. The heterostructure incorporates low composition blue 

InGaN QW underneath the longer wavelength QW region essential for maintaining the 

crystalline quality of the QD active region. However, this structure would cause 

absorption of the shorter wavelength emission at the upper QW and the tunability of the 

white emission is comprised because of the difficulty in obtaining red-emitting InGaN 

QWs. The heretostructure proposed in Fig. 7.2 can avoid such problems with the growth 

of longer wavelength red QDs first as the QDs have reduced strain and In clustering 

Fig. 7.3(a) Schematic of the heterostructure for white dots-in-nanowire LED on 
silicon, (b) electroluminescence spectra and (c) micrograph of an active white 

nanowire LED [127]. 
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effect maintaining the crystalline quality of the active region while providing a tunable 

white emission. Additionally, the number of dot layers for each wavelength region should 

be optimized for getting white light emission. Bhattacharya et. al. has shown similar 

white emitting LEDs on nanowires [127]. The heterostructure and output characteristics 

of a white LED grown with multiple colored active regions in the nanowires is shown in 

Fig. 7.3. A micrograph of the active device is also shown in Fig. 7.3(c).   

7.2.3 High power quantum dot lasers 

         The visible laser applications require them to emit at high output power. A major 

application of high power lasers especially at longer wavelengths are their usage for 

heads-up displays as shown in Fig. 7.4 [161]. Though promising results in terms of low 

threshold current density and low peak emission shift has been demonstrated from QD 

lasers, they suffer from low output power. A flared broad area laser, illustrated 

schematically in Fig. 7.5, should be fabricated consisting of a standard straight broad area 

device with one side which is tapered to large dimensions. This would ensure a very high 

Fig. 7.4. A major application of high power laser is in heads-up display used in 
automobiles. 
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output power from the QD lasers increasing their range of applications. The QD lasers 

demonstrated and reported in this thesis have ridge waveguide geometries which provides 

better modal characteristics (fewer waveguide modes) while a wider laser can produce 

and withstand higher optical powers with multiple modes supported. The tapered 

structure schematically drawn in Fig. 7.5 uses the advantage of both the structures by 

acting as a mode filter in the narrow section while providing for high output power from 

the broad area. Other advantages of this tapered device design will be lower threshold 

density due to the increase in optical confinement and reducing series resistance of the 

forward current operation of the device.  

           To improve on the standard 5 µm ridge with, typically used in our devices, the 

ridge should be tapered to ~30 µm, allowing for greatly increased output power. One 

concern in using these devices would be the inherent loss which is associated with the 

flare of the laser. To minimize the loss associated with the taper, the tapering angle 

should be less than 1o [162]. This would make the tapered region ~700 µm long. The 

design of the lasers in this manner would help in creating QD lasers for high power 

applications. 

 

Fig. 7.5. Proposed overhead schematic of a flared broad area laser for high output 
power. 
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APPENDIX A 

Substrate Preparation Prior to MBE Growth 

The sample must be thoroughly cleaned before introducing into the growth chamber and 

initiating growth. Five hundred nanometers of molybdenum is deposited at the back of 

the sample in order to assist pyrometer calibration of substrate temperature through 

radiative heating. Additional organic and metallic contaminants are present in the sample 

because of this process apart from the presence of native oxide on the top surface. The 

molybdenum deposited sample is carefully cleaned in TCE, hot acetone and isopropanol 

for 10 minutes each followed by DI water rinse. Subsequently, in-situ cleaning of the 

sample is performed involving i) a 1 hour intro-chamber baking at 200 oC for removal of 

moisture and surface contaminants, ii) 1 hour buffer chamber baking at 400 oC for 

outgassing of adsorbed gases and surface contaminants, and iii) keeping the sample under 

high vacuum in growth chamber for 30 minutes prior to growth. 
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APPENDIX B 

 

 

Quantum Dot Ridge Waveguide Laser Processing  

1. Deposition of Alignment Mark 

1.1 Solvent clean: 

Acetone: 10 min on hot plate 

IPA 10 min 

DI water Rinse: 2 min 

1.2 Lithography 

Dehydrate bake: 2 min, 115 °C hotplate 

Resist coating: HMDS, SPR 220-3.0 @ 4.0 krpm, 30 sec 

Pre-bake: 90 sec @ 115 °C on hotplate 

Exposure: 0.34 sec in projection stepper 

Post-bake: 90 sec @ 115 °C 

Resist development: AZ 300 MIF 55 sec;  

DI water rinse 3 min 

1.3 Descum: 

30 sec, 80 W, 250mT, 17% O2 

1.4 Metal Deposition 

Ti/Au 100 Å /300 Å 

1.5 Metal Lift-off 
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2 hours in Acetone 

           

 

 

2. Defining Ridge Geometry 

2.1 Solvent clean: 

Acetone: 10 min on hot plate 

IPA 10 min 

DI water Rinse: 2 min 

2.2 Lithography 

Dehydrate bake: 2 min, 115 °C hotplate 

Resist coating: HMDS, SPR 220-3.0 @ 4.0 krpm, 30 sec 

Pre-bake: 90 sec @ 115 °C on hotplate 

Exposure: 0.34 sec in projection stepper 

Post-bake: 90 sec @ 115 °C 

Resist development: AZ 300 MIF 55 sec;  

DI water rinse 3 min 

2.3 Plasma Etching 

LAM:  
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ICP etching, etching recipe chlorine based. The etching rate is calibrated to be 

4.5-5.5 ns. 

2.4 Resist Removal 

Plasma Asher: 300 sec, 250 W, O2 ~17% 

Acetone: 10 min on hot plate 

IPA: 5 min 

DI water rinse: 2 min 

2.5 Dektak: measure mesa height 

 

                       

 

3. Etching till n-GaN 

3.1 Solvent clean: 

Acetone: 10 min on hot plate 

IPA 10 min 

DI water Rinse: 2 min 

3.2 Lithography 

Dehydrate bake: 2 min, 115 °C hotplate 

Resist coating: HMDS, SPR 220-3.0 @ 4.0 krpm, 30 sec 

Pre-bake: 90 sec @ 115 °C on hotplate 
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Exposure: 0.34 sec in projection stepper 

Post-bake: 90 sec @ 115 °C 

Resist development: AZ 300 MIF 55 sec;  

DI water rinse 3 min 

3.3 Plasma Etching 

LAM:  

ICP etching, etching recipe chlorine based. The etching rate is calibrated to be 

4.5-5.5 ns. 

3.4 Resist Removal 

Plasma Asher: 300 sec, 250 W, O2 ~17% 

Acetone: 10 min on hot plate 

IPA: 5 min 

DI water rinse: 2 min 

3.5 Dektak: measure mesa height 

       

 

4. Deposition of n-contact 

4.1 Lithography 

Dehydrate bake: 2 min, 115 °C hotplate 
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Resist coating: HMDS, SPR 220-3.0 @ 4.0 krpm, 30 sec 

Pre-bake: 90 sec @ 115 °C on hotplate 

Exposure: 0.34 sec in projection stepper 

Post-bake: 90 sec @ 115 °C 

Resist development: AZ 300 MIF 55 sec;  

DI water rinse 3 min 

4.2 Descum: 

30 sec, 80 W, 250mT, 17% O2 

4.3 Oxide removal 

HCl : DI water = 1:1, 1 min to remove native oxide 

DI water rinse: 3 min 

4.4 Metal deposition 

Ti/Au = 25nm/300nm  

4.5 Lift-off 

Overnight in Acetone 

IPA: 10 min 

 DI water: 2 min 

                 

 

5. Passivation 
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SiOx deposion: 1000 nm using GSI PECVD 

        

                           

 

6. Oxide Etch (Formation of Via holes) 

6.1 Lithography 

Dehydrate bake: 2 min, 115 °C hotplate 

Resist coating: HMDS, SPR 220-3.0 @ 4.0 krpm, 30 sec 

Pre-bake: 90 sec @ 115 °C on hotplate 

Exposure: 0.34 sec in projection stepper 

Post-bake: 90 sec @ 115 °C 

Resist development: AZ 300 MIF 55 sec;  

DI water rinse 3 min 

6.2 Plasma Etch 

LAM:  

SF6 : C4F8 : Ar = 8 : 50 : 50  sccm, 10 mT, 300 W  (rate ~ 175 nm/min) 

6.3 Resist Removal 

Plasma Asiher: 300 sec, 250 W, O2 ~17% 

Acetone: 10 min on hot plate 

IPA: 5 min 
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DI water rinse: 2 min 

             

 

7. Deposition of p-contact and Interconnect  

7.1 Lithography 

Dehydrate bake: 2 min, 115 °C hotplate 

Resist coating: HMDS, SPR 220-3.0 @ 4.0 krpm, 30 sec 

Pre-bake: 90 sec @ 115 °C on hotplate 

Exposure: 0.34 sec in projection stepper 

Post-bake: 90 sec @ 115 °C 

Resist development: AZ 300 MIF 55 sec;  

DI water rinse 3 min 

7.2 Descum: 

30 sec, 80 W, 250mT, 17% O2 

7.3 Oxide removal 

HCl : DI water = 1:1, 1 min to remove native oxide 

DI water rinse: 3 min 

7.4 Metal deposition  

Ti/Pt/Au                                       = 200 Å/200 Å/3000 Å  

7.5 Lift-off 
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Overnight in Acetone 

IPA: 10 min 

 DI water: 2 min 

         

 

8. Annealing 

8.1 Rapid thermal annealing: 550 oC, 5 min in N2:O2 (1:1) environment 

 

9. Lapping 

9.1 Mounting the sample on a glass plate with Paraffin wax (135 °C) 

9.2 Lap down sample to ~ 100 μm  

9.3  Solvent clean: 

Xylenes > 30 min @ 105 °C hotplate 

Acetone: 10 min 

IPA : 10 min 

DI water rinse: 2 min 

 

10. Cleaving 

10.1 Scribing: Make 2000 μm long, 400~1200 μm wide, 100 μm deep scribe 

10.2 Press the sample gently with a small roller. 
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