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ABSTRACT

POWER CAPABILITY ESTIMATION ACCOUNTING FOR THERMAL AND
ELECTRICAL CONSTRAINTS OF LITHIUM-ION BATTERIES

by
Youngki Kim

Co-Chairs: Zoran S. Filipi, Anna G. Stefanopoulou

Lithium-ion (Li-ion) batteries have become one of the most critical components in
vehicle electrification due to their high specific power and energy density. The per-
formance and longevity of these batteries rely on constraining their operation such
that voltage and temperature are regulated within prescribed intervals. Enforcement
of constraints on the power capability is a viable solution to protect Li-ion batteries
from overheating as well as over-charge/discharge. Moreover, the ability to estimate
power capability is vital in formulating power management strategies that account for
battery performance limitations while minimizing fuel consumption and emissions.

To estimate power capability accounting for thermal and electrical constraints,
the characterization of thermal and electrical system behavior is required. In the
course of addressing this problem, first, a computationally efficient thermal model
for a cylindrical battery is developed. The solution of the convective heat transfer
problem is approximated by polynomials with identifiable parameters that have phys-
ical meaning. The parameterized thermal model is shown to accurately predict the
measured core and surface temperatures.

The model-based thermal estimation methodology is augmented for cases of un-
known cooling conditions. The proposed method is shown with experimental data to
accurately provide estimates of the core temperature even under faults in the cooling
system.

To jointly account for the thermal and electrical constraints, we utilize time scale
separation, and propose a real-time implementable method to predict power capa-

bility of a Li-ion battery. The parameterized battery thermal model and estimation

xiil



algorithms are integrated into a power management system for a series hybrid elec-
tric vehicle. An algorithm for sequential estimation of coupled model parameters and
states is developed using sensitivity-based parameter grouping. The fully integrated
co-simulation of the battery electro-thermal behavior and the on-line adaptive esti-
mators reveal that the power management system can effectively determine power

flow among hybrid powertrain components without violating operational constraints.
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CHAPTER I

Introduction

1.1 Motivation

Reducing dependence on imported oil and minimizing vehicular emission are
strong motivations to develop a fuel-efficient, clean, and sustainable transportation
system. Figure shows that world crude oil prices have increased considerably
over the past years. This trend occurs mostly due to the fact that oil production
does not grow and reserves are limited while oil demand grows strongly as the global
economy marches towards recovery. The gap between oil supply and demand (Fig.
will be widened without adequate efforts to reduce the dependence of vehicles
on petroleum. While Fig. [1.2(a)[ shows the numbers of light-duty vehicles in the
United States, Fig. presents similar data from a basket of countries. Even
though the number of registered vehicles reached a maximum in 2008 in the U.S.,
Sivak expects an improving economy and a growing population to lead to continua-
tion of overall trend |1]. Limited oil reserves are a critical factor that may aggregate
economic dependence on other oil-supplying countries. Moreover, growing concerns
about tailpipe emissions of both pollutants and greenhouse gases, declared a threat to
public health and the natural environment by the Environmental Protection Agency
(EPA), lead to stringent emissions regulations.

Vehicle electrification, one of the promising technologies for improved fuel econ-
omy, tailpipe emissions, and sustainability, has been extensively studied over the past
decade. The number of electrified vehicles including hybrid electric vehicles (HEVSs),
Plug-in hybrid electric vehicles (PHEVs) and Electric Vehicles (EVs) is expected to
increase rapidly whereas that of petroleum-based vehicles is expected to decrease [5].
To realize vehicle electrification, various different topologies for hybrid electrified ve-
hicles have been explored; e.g. series [69], parallel [10-12], and power split (or

series-parallel) [13H15]. Any of these hybrid electric architectures requires an energy
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Table 1.1: Typical characteristics of battery technologies [16}17]

Technology Specific Energy Energy Density Specific Power Cycle life*

[Wh/kg] [Wh/L] [W/ke] [cycles]

Lead-acid 30-50 60-100 200-400 400-800
Ni-Fe 30-55 60-110 25-110 1200-4000

Ni-Zn 60-65 120-130 150-300 100-300
Ni-MH ~T5 ~240 ~1000 750-1200
Li-ion 100-200 100-600 350-1500 10004000

* Typical cycle life at deep depth of discharge

storage system and Li-ion batteries have become one of the most critical components
over the past decade.

Li-ion batteries have superior performance compared to other battery technologies
for applications requiring high rates, high energy density, and deep discharge as shown
in Table [I.I, Moreover, Li-ion batteries benefit from minimal memory effects and
relatively broad operating temperature ranges [16}/18]. Table [[.2] illustrates that Li-
ion batteries have been widely used in the realization of state-of-art of electrified
vehicles, such as the Tesla Roadster, Chevrolet Volt, Ford CMAX, etc. However, the
Li-ion battery has the drawback that, as shown in Figures[L.3|(a) and (b), its cycle life
is considerably decreased when operating at high or low temperatures. This presents
a problem in automotive applications where high current rates needed for vehicle
acceleration cause internal heating of the battery. The battery capacity and the
available power decrease considerably during operations at high temperatures due
to irreversible chemical reactions [19]. In addition, the performance of the cooling
system can degrade generally due to various reasons such as dust on fan blades and
heat exchanger, partial blockage in pipes, motor/pump ageing, and motor/pump
failure. If cell temperature is not monitored and controlled, a battery can experience
a thermal runaway, with the possible risk of explosion [20}21].

Thus, accurate knowledge of the battery temperature as well as the battery state-
of-charge and voltage should be considered in power management for robust vehicle

operation.



Table 1.2: Li-ion battery cell/pack specification of electrified vehicles

Tvoe Vehicle Positive Size(mm) Voltage(V) Pack Cooling
P Electrode Material /Number /Capacity(Ah) | Capacity(kWh) | Method
Tesla ) 18-65 3.6 I
Roadster LiCo0; /6831 /2.9 o3 Liquid
Tesla . 18-65 3.6 I
Model S LiCoO, /~5000 /2.9 60 Liquid
Daimler . 208-248-11 3.6 Liquid
EV Smart LiMO, /~120 /40 176 /Metal
Nissan . . 290-216-7.1 3.8 .
Leaf LiMnyO4+LiMO, /192 /33.1 24 Air
Mitsubishi R 113.5-171-43.8 3.7 .
ARV LisTiO3 /88 /50 16 Air
Chevrolet LiM11,04 1 LiMO, 162-230-6 3.7 16 Liquid
PHEV Volt /288 /15
Toyota LiMO 148-106-27 3.7 16 Air
PRIUS Plug-In 2 /56 /22 '
Ford . 120-85-12.7 3.5 .
HEV CMAX hybrid LiMOs /76 /5 1.4 Air

M = Co, Ni, Mn
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Figure 1.3: Temperature dependence of cycle life performance of Li-ion batter-
ies: (a) Discharge capacity at different temperatures as a function of cycle number
(LiNig gCog.15Al9.0502/graphite) [22], (b) Discharge curves of a fresh cell from 4.1 to
3.0 V at 1C rate measured at different temperatures (LiFePO,/graphite) 23]



1.2 Battery Models in Literature

The power capability of a battery refers to the constant power that can be drawn
safely from the battery over a finite window of time; information on the power ca-
pability is critical in making control decisions. In applications such as automotive,
aerospace, and robotics, decisions are made by supervisory controllers that manage
power or energy flow [24]. Model-based methods to estimate power capability in
real-time have been addressed in [25H30] wherein algorithms accounting for electrical
and electrochemical constraints such as terminal voltage and battery state-of-charge
(SOC) are developed. It is necessary to include temperature as a constraint in the
estimation of power capability since battery capacity fade can be accelerated by oper-
ation outside battery manufacturers’ recommended temperature ranges. Thus, limits
on the operating temperatures of Li-ion batteries must be enforced so as to ensure
safe and reliable operation.

Temperature regulation can be achieved by using active thermal management sys-
tems or limiting the peak current drawn from the batteries. These strategies increase
the rate of heat rejection or limit the rate of internal heat generation, respectively [31].
Since Li-ion batteries for applications such as laptop computers, satellites and mobile
robots usually have limited cooling, it is critical to control discharge currents so that
operating temperatures do not exceed the maximum permissible value. Traditionally,
thermostatic or proportional-integral-derivative (PID) controllers are used to limit
current or power drawn from the battery when the measured temperature exceeds
the predefined limits. However, calibrating thermostatic thresholds, dead-bands, and
PID gains and integrating them with the overall power allocation strategies in battery
management systems, is a non-trivial problem.

Many approaches have been proposed to predict the electrical and thermal behav-
ior of Li-ion batteries, not only for understanding internal dynamics of the battery
system, but also for developing model-based estimation and control algorithms. In
this section, a literature review of electrical and thermal modeling along with power
capability estimation is presented. First, battery models that capture electrical dy-
namics are explained. A so-called electrochemical model and an equivalent-circuit
model will be described. Thermal modeling which is used to describe the heat gen-
eration in battery systems and the evolution of the temperature distribution within

them will be presented.



1.2.1 Electrochemical Model

Electrochemical models are phenomenological in the sense that they rely on pa-
rameters that cannot be computationally identified from first principles, but must
be characterized experimentally. Fuller et al. were the first to develop a detailed
Li-ion battery cell model based on porous electrode and concentrated solution theo-
ries, Ohm’s law, and intercalation kinetics [32]. This pseudo-two-dimensional (P2D)
model developed by Fuller et al. is useful for understanding the influence of vari-
ous parameters in transport limitations such as intercalation diffusion or electrolyte
conductivity. Ramadass et al. extended the Fuller model by providing simple math-
ematical relations to capture capacity fade, hence enabling the simulation of Li-ion
batteries to study degradation in performance as a consequence of aging [33].

Even though the developed model is capable of predicting the instantaneous dis-
tribution of lithium, as well as the distributions of potential and current in the solid
and liquid phases, computational expense makes the P2D model less attractive in
control applications. To reduce the computational burden, Smith et al. developed a
12th order control-oriented model from a 313th order nonlinear CFD model by ap-
plying a residue grouping-based model reduction [34]. The accuracy of the reduced
order model was validated against the CFD model within 1% for pulse and constant
current profiles at rates up to 50C. Forman et al. used infinite dimensional Pade
approximation and quasi-linearization so that the number of states in the P2D model
were reduced by 98% without significant sacrifice in accuracy [35]. On the other hand,
Ning and Popov applied the single particle (SP) model to Li-ion batteries [36]. The
SP model was originally proposed by Haran et al. for Nickel Metal Hydride batter-
ies |37]. In the SP model approach, the detailed distribution of concentration in the
liquid phase is ignored and the liquid phase potential is simplified. Subramanian et
al. introduced a high-order polynomial approximation to simplify the solid diffusion
dynamics 38|, whereas Di Domenico et al. used the finite difference method (FDM)
with even discretization [39]. Lee et al. explored further simplification by uneven
discretization while utilizing the SP model with FDM for the battery power manage-
ment [40,41]. The SP model requires low computational power, and hence the model
is appropriate for real-time applications. However, assumptions and simplifications
in the SP model restrict it to low-current operation (e.g. <5C). In addition, the

identification of a large number of parameters is not an easy task [42].
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Figure 1.4: An example of the equivalent-circuit model: OCV-R-RC-RC

1.2.2 Equivalent-Circuit Model

Equivalent-circuit models (ECMs), which do not consider fundamental physics,
have been widely used to provide relationships between the input and output bat-
tery systems while balancing model fidelity and complexity [25,26,/43H49]. As seen
from Fig. equivalent-circuit models consist of an open circuit voltage (OCV)
included as a voltage source in the circuit, an ohmic resistance and several pairs of
parallel resistances and capacitances. Prasad and Rahn showed the explicit relation-
ships between resistances and capacitances and electrochemical parameters of a Li-ion
battery [50]. These relationships were derived by investigating the impedance of the
Pade approximated Single Particle model. These virtual components are usually
parameterized as functions of battery SOC and/or temperature using experimental
data. Equivalent-circuit models are computationally efficient, which motivates their
use in the development of real-time model-based SOC, state-of-health (SOH) and
state-of-power (SOP) estimators and power management strategies for HEVs.

Hu et al. compared 12 different equivalent-circuit models of Li-ion batteries
from open literature [25}26,43-49] in terms of accuracy of voltage prediction [51].
Two typical commercial Li-batteries, namely Sony’s LiCoOs/graphite and A123’s
LiFePO,/graphite, were tested by using standard hybrid vehicle drive cycles. The
authors suggested that the inclusion of RC dynamics is critical to improve the volt-
age prediction but increased model complexity does not necessarily lead to reduced
errors.

Therefore, an ECM is used to capture the current-voltage relationship for control-
oriented design in this dissertation. In particular, the model’s order is chosen to meet

the level of accuracy contextually warranted.

e To model the battery as a plant, an OCV-R-RC-RC model is used as parame-



terized in [49].

e To model the battery in development of a state-parameter estimator, an OCV-

R-RC model is used as suggested in [51].

e To model the battery in development of a power management strategy, an OCV-
R model is used similarly to [11,30,52].

1.2.3 Thermal Coupling

The need for an accurate thermal model for Li-ion batteries is significant since the
performance, life, and safety are influenced by their temperature. The generation of
heat associated with internal resistance of the battery is unavoidable and particularly
substantial at high current. In 1985, Bernardi et al. presented a general expression
for battery heat generation using a thermodynamic energy balance on a single cell,
in which they considered the processes relating to electrochemical reactions, phase
changes, and mixing [53]. In a simplified form, the equation by Bernardi et al. has
since been used widely to simulate the thermal response of Li-ion batteries. Thomas
and Newman found that the contribution of heat of mixing to total heat generation
is small, and that the entropy of reaction accounting for reversible heat effect may be
comparable to the Joule heating [54].

Pals and Newman developed a thermal model for both a cell and a cell stack
by applying Bernardi’s energy balance equation [55,56]. Smith and Wang studied
thermal effects on power capability by neglecting reversible heat since irreversible heat
dominates at the high currents (large magnitude) encountered in HEV applications
[57]. Guo et al. developed a simplified thermal-electrochemical model, in which the
SP model was coupled with a simplified energy balance equation [58]. Guo and White
used this model to simulate the electrical and thermal behaviors of a satellite battery
pack [59).

In the aforementioned modeling approaches, the battery cell is assumed to be
isothermal; thus, the spatial temperature distribution within the battery is neglected.
This assumption is acceptable for small batteries operating at low rates. However,
spatial temperature distribution can be significant for large format cells and high
current operation.

To address spatial temperature distribution in a heat transfer problem, Gu and
Wang developed a thermal-electrochemical coupled battery model |[60]. The porous

electrode model was coupled with a lumped thermal model to predict the internal
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temperature distribution, as well as the evolution of average cell temperature. More-
over, temperature-dependent physicochemical properties were introduced to couple
the thermal model with the models of multiphase mass transport and electrochem-
ical kinetics. In a similar vein, Kumaresan et al. applied Gu and Wang’s model
to simulate the behaviors of LiCoO,/meso-carbon micro-beads (MCMB) pouch cells
discharging at different temperatures [61].

Even though physics-based models enable a detailed prediction of the spatial
temperature distribution, they are not easy to be implemented in control applica-
tions because of computational cost. Thus, much effort has been invested into the
development of reduced-order models for prismatic and cylindrical cells with a bal-
ance between accuracy and computational cost. In [62], a one-plus-one-dimensional
(14+1-D) modeling approach was proposed to solve the thermal dynamics in a pris-
matic battery; this model was an an extension of the solution to the 1-D spatial heat
transfer problem. Muratori et al. developed a reduced-order model for a cylindrical
battery to predict battery temperatures at core and surface [63]. For model reduc-
tion, a balanced truncation method was used to approximate the analytical solution
to a heat transfer problem with uniform heat generation in a cylindrical battery.
This reduced-order model was validated against a three-dimensional Finite Element
Method (FEM). However, this approach has a drawback that an extra calculation for
model reduction is required when cooling condition changes. In addition, the states
in the reduced-order system do not carry any physical meaning in the original system.

Park and Jaura developed a two-state thermal model using lumped parameters
such as thermal capacitance and resistance, and incorporated the lumped-parameter
thermal model into an equivalent-circuit battery model [64]. Forgez et al. adopted a
simplified heat generation equation for a lumped-parameter thermal model and exper-
imentally demonstrated a significant difference between core and surface temperatures
in a cylindrical battery cell [65]. Lin et al. developed an adaptive observer to estimate
unmeasurable core temperatures and battery state-of-health via a lumped-parameter
thermal model [66]. This lumped-parameter thermal model is appropriate to design a
battery management system (BMS) since low computational power is required. Nev-
ertheless, the assumption that the heat is generated at the core of the battery cell
may lead to an overestimation of the core temperature.

Therefore, in this dissertation, a new modeling approach is proposed in Chapter
to derive a reduced-order thermal model for a cylindrical battery by applying poly-
nomial approximation to solve the convective heat transfer problem governed by a

partial differential equation.
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1.3 Contributions

The contributions in this dissertation and relevant publications are summarized
as follows.

In Chapter [[I} a computationally efficient thermal model for a cylindrical battery
is developed. For model reduction, the solution of the convective heat transfer prob-
lem is approximated by polynomials. The proposed thermal model with identified
thermal properties is shown to accurately predict the core and surface temperatures
alongside volume-averaged temperature and volume-averaged temperature gradient

of a cylindrical Li-ion battery.

Y. Kim, J. B. Siegel, and A. G. Stefanopoulou, “A computationally efficient
thermal model of cylindrical battery cells for the estimation of radially distributed

temperatures,” in Proceedings of the American Control Conference, (Washing-

ton, DC, USA), pp. 698-703, Jun 17-19, 2013.

In Chapter [[TI} a method to estimate the radial temperature distribution inside
a cylindrical Li-ion battery under unknown cooling conditions is proposed. The pro-
posed method is shown with experimental data to accurately provide estimates of the

core temperature and convection coefficient under uncertain operating conditions.

Y. Kim, S. Mohan, J. B. Siegel, A. G. Stefanopoulou, and Y. Ding, “The
Estimation of Radial Temperature Distribution in Cylindrical Battery Cells un-
der Unknown Cooling Conditions,” IEEE Conference on Decision and Control,
(Firenze, Italy), Dec 10-13, 2013

Y. Kim, S. Mohan, J. B. Siegel, A. G. Stefanopoulou, and Y. Ding, “The
Estimation of Temperature Distribution in Cylindrical Battery Cells under Un-
known Cooling Conditions,” Control Systems Technology, IEEE Transactions

on, accepted with minor revisions

In Chapter [[V], a real-time implementable method is proposed to compute power
capability accounting for thermal and electrical constraints. The proposed method is

based on the time scale separation of the electrical and thermal dynamics.

Y. Kim, S. Mohan, J. B. Siegel, and A. G. Stefanopoulou, “Mazimum Power
Estimation of Lithium-ion Batteries Accounting for Thermal and Electrical
Constraints,” in ASME Dynamic Systems Control Conference, (Palo Alto, CA,
USA), Oct 22-24, 2013
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T. Ersal, Y. Kim, J. Broderick, T. Guo, A. Sadrpour, A. Stefanopoulou, J.
Siegel, D. Tilbury, E. Atkins, H. Peng, J. Jin and G. Ulsoy, “Keeping Ground
Robots on the Move through Better Battery and Mission Management,” ASMFE

Dynamic Systems and Control Magazine, submitted

In Chapter [V], the proposed battery thermal model and estimation algorithms
from the previous chapters are integrated into a power management system for a se-
ries hybrid electric vehicle. An algorithm for sequential estimation of coupled model
parameters and states is developed. For the electrical system, parameter grouping
based on sensitivity is utilized to formulate the state-parameter estimation prob-
lem. The estimated states and parameters of the battery are used to compute the
maximum allowable power of the battery. The results of the model-in-the-loop simu-
lation reveal that the power management system can effectively determine power flow
among hybrid powertrain components without violating operational constraints with

information about battery state-of-charge, internal resistance, and power capability.

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter [II] describes the reduced-order
thermal model for a cylindrical battery. The developed model is used for the design
of an adaptive estimator in Chapter [[II. Chapter [[V] develops a computationally
efficient method to predict the power capability of a Li-ion battery accounting for
thermal and electrical constraints. A procedure to measure the entropy change of a
Li-ion battery and to identify thermal properties is presented. Chapter [V]discusses a
case study — applying the developed battery state-parameter estimation algorithms
to a series hybrid electric vehicle. Finally, Chapter [VIsummarizes the main results of

this dissertation, its original contributions, and possible future research directions.
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CHAPTER 11

Development of a Computationally Efficient
Thermal Model of Cylindrical Battery Cells

2.1 Introduction

This chapter presents a computationally efficient thermal model of a cylindrical
Li-ion battery for real-time applications. Such a model can be used for thermal
management of the battery system in electrified vehicles. The thermal properties are
modeled by volume averaged lumped values under the assumption of a homogeneous
and isotropic volume. A polynomial approximation is then used to estimate the
radial temperature distribution that arises from heat generation inside the cell during
normal operation. Unlike previous control oriented models which use discretization
of the heat equation, this model formulation uses two states to represent the average
value of temperature and its gradient. The model is parameterized and validated
using experimental data from a 2.3 Ah 26650 Lithium-Iron-Phosphate (LiFePO, or
LFP) battery cell.

This chapter is organized as follows. Section presents the convective heat
transfer problem for a cylindrical battery cell. The two-state thermal model using
polynomial approximation is addressed. The frequency responses of the transfer func-
tion of the proposed model are compared to those of the analytical solution and the
numerical solution, showing the accuracy of the proposed model. Then, the lumped
thermal properties of the battery, namely the thermal conductivity, the specific heat
capacity and the convection coefficient are experimentally identified in Section [2.3
Finally, conclusions are drawn in Section [2.4]
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Figure 2.1: (a) Schematic for a A123 26650 cylindrical battery, (b) parabolic temper-
ature profile under uniform heat generation

2.2 Heat Transfer Problem in Cylindrical Batteries

This section considers the radially distributed one dimensional (1-D) thermal be-
havior of a cylindrical battery cell with convective heat transfer boundary condition
as illustrated in Fig. 2.1{(a) [67]. A cylindrical Li-ion battery, a so-called jelly-roll,
is fabricated by rolling a stack of cathode/separator/anode layers. The individual
layered sheets are thin, therefore, lumped parameters are used so that material prop-
erties such as the thermal conductivity k;, density p, and specific heat capacity c, are
assumed to be constant in a homogeneous and isotropic body. For spiral wound cur-
rent collectors with multiple connections to the battery tab, it is reasonable to assume
uniform heat generation along the radial direction as illustrated in Fig. [2.1|(b) [68].
The thermal conductivity is one or two orders of magnitude higher in the axial direc-
tion than in the radial direction [69]. Therefore, the temperature distribution in the
axial direction will be more uniform. The equation that governs the 1-D temperature
distribution T'(r,t) is

aT(r, 1)

0*T(r. t k, OT(r,t i(t
at (T7)+_t (T7)+q<)

or? r or W

— k

(2.1)

PCp
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and boundary conditions (BCs) are given by

oT(r,t) B

(87” ) =0 0, (2.2a)
T (r,t h

o her = 5 (T = Toe(t), (2.2b)

where t represents the time. The radius of the battery is R, ¢ is the heat generation
inside the battery, and V}, is the volume of battery. The ambient temperature for
convection is denoted by T,,. The boundary condition in Eq. represents the
symmetric structure of the battery about the core. The other boundary condition
shown in Eq. indicates convective heat transfer at the battery surface.

In the following subsections, several approaches to solving PDE are pre-
sented. Then, a computationally efficient reduced-order model is developed. Specif-
ically, analytical and numerical solutions can be considered as references to be com-

pared to the proposed method.

2.2.1 Analytical Solution

An analytical solution of PDE ([2.2)) can be obtained by applying a Laplace Trans-
form as suggested in [62]. In the complex domain, the PDE system is converted to

an ODE system under the zero initial conditions as following:

d*O(r,s) 1dO(r,s) s o Q(s)

@ e dr et T T (2.32)
do(r, s) _

dr lr=o 0 (2.3b)
dO(r, s) h

dr  le=r K (O(R, s) — Ou(s)) , (2.3¢)

where s is the frequency variable in the complex domain and the thermal diffusivity
is defined by o = k;/pc,. The variables ©, O, and () are the transformed battery
temperature, ambient temperature, and heat generation rate, respectively.

The homogeneous problem associated with equation ([2.3al) is Bessel’s equation.
The only solution consistent with BC is

Q(s)

@(T, S) = CJO(<T> + m,

(2.4)

where Jy is the 0y, order Bessel function of the first kind. The coefficient C' is
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determined using Eq. (2.3c):

b Qs)
x <Wb§2 + @oo(s)>
%JO(CR) ~CT(CR)

C:

where (? = s/a.
Specifically, transfer functions H?, the frequency responses of the battery at the
core and surface to the inputs of heat generation rate and ambient temperature, are

given by

[ o
Hy  H,

Q(s)
o0 ] 26

where

g i) e () L

HE, = (2.7b)

NRICE
H2al =
h k: Vi
() o ()
k; «@ o
i ()2)
Hy = d a (2.7d)
EO)- i ()
ky « o «

It is noted that these transfer functions are not algebraic but transcendental. There-

(2.7¢)

Q

fore, a model reduction technique is required to extract a finite number of states
to predict thermal behaviors of the battery in time domain. A balanced truncation
method is applied for model reduction in [62] where Muratori et al. showed the ac-
curacy of the model in comparison with results from the numerical method, namely
Finite Element Method. Nevertheless, this model has two drawbacks that make it
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difficult to be used in real-time application: (1) extra calculation for model reduc-
tion is required when cooling condition changes, (2) the states of the reduced-order
model do not have physical meanings. This analytical solution is used to validate the

proposed reduced-order model presented in Section [2.2.3]

2.2.2 Numerical Solution: Finite Difference Method

The PDE ([2.2)) with its initial conditions can be also numerically solved to predict
the temperature distribution in the battery using the finite difference method. By
dividing the radius of the cylindrical battery in N intervals (or, N 41 nodes) with the
incremental size of Ar = R/N, the first and the second partial derivatives in the PDE

at 7y, node can be approximated with the finite difference equations as following:

O, Ty —Tpy

_ 2.
or 20r (2.:82)
T, Ty =T+ T
or2 Ar? ’ (2.8b)

where ¢ € {1,2,..., N — 1}.
By substituting Eq. ([2.8)) into the PDE (2.2), the heat transfer problem at iy,
node can be expressed by

dT;, _ o (21T 4T+ Qi+ )T, o

qt (A2 2 AT

(2.9)

Using symmetric and convective boundary conditions, temperatures at the core
(¢ = 0) and the surface (i = N) are described by

TO :Tl, (210&)
T — ]CtTNfl + hAT’TOO
N ki hAr

(2.10D)

Finally, a set of ordinary differential equations to predict the temperature distri-
bution in the battery is generated using Eqgs. (2.9) and (2.10)) as given by

0 = A0 + Byu (2.11a)
Yn =C0 + Dyu (2.11b)

where 0 = [Ty ... Tn_1]7, u = [§T])" and y,, = [Ty Tx|" are states, inputs and

outputs, respectively.
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System matrices are defined as following:

S g _
-2 2 9 0
2 2
3 5
2 2 = 0
4 4
g 2N ) 2N — 3
2(N — 2) 2(N — 2)
. . 2N —3 2N -1
i 2(N —1) 2(N — 1)
— T
1 ... .. 1
Bu=6| o 2N-1& (2.12b)
I 2(N —1)&
0 ... 0
C, = : (2.12¢)
0 ... 0 &
:O ; .
D, = : (2.12d)
0 .0 & |
o o k; hAr
h e = = ——  and = ———.
where &= 152 & = 0 8 T o aar ST LA

Therefore, transfer functions H", frequency responses of the battery core and its

surface to inputs from the numerical solution, can be obtained by
H"(s) = Cp(sI — A,) ‘B, + D,. (2.13)

where the variable I is the identity matrix.

For a sufficiently large number of discretization NN, it is expected that frequency
responses from the numerical method converge to analytical solutions’

]\}1_{1;0 Hii(s) = H(s), (2.14)
where i, 7 € {1, 2}.

Unlike the reduced-order model obtained from the analytical solution, no extra
calculation are required and the influence of change in parameters can be predicted
since system matrices are computed using physical parameters. Nevertheless, a large
number of states makes this model challenging to be implemented in real-time ap-
plication. These drawbacks can be resolved by the computationally efficient model

proposed in the following section.
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2.2.3 Model Reduction via Polynomial Approximation

With evenly distributed heat generation, the temperature distribution along -
direction of the battery is assumed to satisfy the following polynomial approximation

proposed in [3§]

T(r,t) = a(t) + b(?) <%>2 +d(t) <%>4 , (2.15)

where a(t), b(t), and d(t) are time-varying coefficients. To satisfy the symmetric
boundary condition at the core of the battery, Eq. (2.15)) contains only even powers
of r. Thus, the temperatures at the core and the surface of the battery can be

expressed as

&3
I
S

(t), (2.16a)
= a(t) + b(t) + d(t), (2.16b)

3

where subscripts ¢ and s denote core and surface, respectively.

The volume-averaged temperature T' and temperature gradient 7 are introduced

as follows:
) R
T = 22 /err, (2.17a)
0
2 ’ oTr
Y =— — . 2.1
ol R2/r(8r>dr (2.17b)
0

These volume-averaged values are used as the states unlike existing approaches in
[64], [65], and [66].
By substituting Eq. (2.15)) into Eq. (2.17), T and % can be expressed in terms of

coeflicients as

T(t) =al(t) + 0] + @, (2.18a)

2

By rearranging Eqgs. (2.16) and (2.18]), time-varying coefficients a(t), b(t), and

(2.18D)
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d(t) can be written as

15R _

15R
blt) = — 18T, + 18T + =7, (2.19b)
45R
d(t) = 15T, — 15T — —=7. (2.19¢)

The temperature distribution can be expressed as a function of Ty, T, and 7 using

Eqs. in Eq. (2.15),
15R 5R 2
T(r,t) =47, - 37 = =5 + { 18T, +18T+77} (R)
45R 1
[15T 15T — T*y] (R> . (2.20)

By substituting Eq. (2.20) into the following volume-averaged equations,

R
oT'(r, 1) PT(rt) Kk OT(r,t) q(t)
/ (pcp Y ks 5,2 o v dr =0, (2.21a)
0
R
0 oT (r,t) PT(r,t) Kk, OT(r,t) q(t) B
/E (pCp ot - kt 87"2 - ? or - Vb dr = 0, (221b)

PDE (2.1)) can be converted into two ODEs expressed as

dT 48« 48y 15« o

ab oy fa, oo o L 9.99
i T rEtT R el (2.222)
dy 320, 320« 120«
il 7oV . 9.92
a T R st R 170 (2.22D)

Using boundary condition (2.2b]), the surface temperature T can be rewritten as

24k, i 15k R Rh

s = Tw 2.23
24k, + Rh® ' 48k, + 2Rh 24k, + Rh (2.23)
Finally, a two-state thermal model can be given by the following form:
d
d": — Az + Bu, (2.24a)
y = Cx + Du, (2.24b)
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where x = [T |7, u = [¢ Tx]" and y = [T. Ti]7 are states, inputs and outputs

respectively. System matrices A, B, C, and D are defined as follows:

I A )
_ | R(24k; + Rh) 24k, + Rh
A= —320ah —120c(4k;, + Rh) |° (2.25a)
| R?(24k; + Rh)  R2(24k, + Rh)
[« 48ach
| &y R(24k, + Rh
B | b BRI ERN ), (2.25b)
R?(24k, + Rh)
[ 24k —3Rh  120Rk; + 15R?h
_ | 24k, + Rh 8(24k; + Rh)
¢= 2t4kt 15]%]% ; (2.25¢)
L 24k, + Rh A8k, + 2Rh
i AR
b= . 2l (2.25d)
| 24k, + Rh

This state-space representation is used for the parametrization in Section [2.3|and the

estimation of the core temperature and convection coefficient using Kalman Filters

in Chapter [[TI]

2.2.4 Frequency Domain Analysis

The frequency response functions of the reduced-order model, HP(s) = D+C(s]—
A)7'B, are compared to those of the analytical solution and the finite difference
method with N=30, i.e. Egs. and , respectively. Parameters used to
generate the plots in Fig. are adopted from [62] and are summarized in Table .
The heat transfer coefficient of h=5W/m?/K is chosen since this value is typical of
natural convection condition [70].

Figure shows that the effects of heat generation on the core and the surface
temperatures, denoted by HJ,(s) and HY, (s) respectively, can be accurately predicted
over the whole range of frequency. On the other hand, the responses of the core and
the surface temperatures excited by the ambient temperature, Hi,(s) and Hb,(s), are
nearly identical to the analytical solution for frequencies below 1072 Hz. In general,
the temperature of cooling media does not change rapidly. Thus, the prediction of
temperature distribution using the proposed approach can be considered sufficiently

accurate.
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Table 2.1: Parameters of the battery [62]

Parameter Symbol Value Unit
Density P 1824 kg/m?
Specific heat coeft. p 825 J/kg/K
Thermal conductivity ky 0.488 W/m/K
Convection coeff. h 5 W/m?/K
Radius R 12.93e-3 m
Height L 65.15e-3 m
Volume \Z8 3.4219e-5 m?

2.2.5 Heat Generation Calculation

Heat generation ¢ is the main input to the battery thermal model. It needs to
be accurately calculated from measurement data, such as current and voltage during
operation. From the first law of thermodynamics, the energy balance equation is

written as

dH
= .sur L)V ) 2.2
dt a b (2.26)

where H is the enthalpy, ¢s. is the heat added from surroundings, I, is the current,
and V; is the terminal voltage. The term [,V; denotes the rate of electrical work.

In [53], Bernardi et al. proposed a simplified energy balance equation considering
enthalpy change associated with electrochemical reactions. Under assumptions such
as isothermal body, constant system volume and pressure, and neglecting heat gen-
eration due to enthalpy-of-mixing and phase-change, the energy balance equation is

expressed as

ar . .
Mcp% =G+ Gsur, (2.27a)
WVoe

q:Ib(‘/oc -T oT

) — LV, (2.27b)

where V. represents the open-circuit voltage (OCV). The OCV is a function of the
battery state-of-charge (SOC) and temperature. As shown in Fig , the OCV at
room temperature, i.e. 25°C, is experimentally obtained by averaging the measured

terminal voltages during charging and discharging a battery with C/ 2(E| current rate

LA 1C current corresponds to the magnitude of current that discharges/charges the battery
completely in one hour.
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Figure 2.3: Open Circuit Voltage of a 2.3 Ah 26650 LFP battery approximately
obtained by averaging terminal voltages during charging and discharging a battery
with C/20 rate at room temperature

under a Constant Current Constant Voltage (CCCV) charging protocol. The OCV
is then calculated at the estimated SOC value by integrating measured current with

respect to time as

L,

SOC = 736000,

(2.28)

where C}, is the battery capacity in Ah. The sign convention is such that positive
current denotes battery discharging.

The term IbT% is the reversible heat generation and can be calculated simply
from the entropy of reaction [71]. In this study, this reversible heat generation is

neglected for simplicity. This simplification is warranted since the typical SOC range

Vo
oT

in [65] for this chemistry. In addition, the reversible heat generation would have zero

of HEV operation is narrow in which of the battery is insignificant as shown

mean value when the battery is operating in charge-sustaining mode, typical of HEV

operation; the OCV becomes a function of battery SOC only.
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Figure 2.4: Data set during Urban-Assault Cycle used for parameter ID: (a) current
and voltage, (b) heat generation rate, (¢) ambient temperature

2.3 Parameter Identification

In this section, the value of the lumped parameters in Eq. for a 2.3 Ah
26650 LFP battery by A123 are identified through experimentation using the proposed
model. Figure shows the current, the voltage, the calculated heat generation rate
and the ambient temperature profiles over the Urban-Assault Cycle (UAC) in [66]
that is used for the parametrization. It is noted that this cycle used for simulating
military ground vehicles has significantly high power demands. The parameterized

model is then validated using measurement data over a different HEV driving cycle.

2.3.1 Identifying Thermal Properties

Parameter identification is important for accurately predicting the temperature
distribution inside a battery. Since density is measurable, only three parameters,
namely k;, ¢,, and h are considered for parameter identification, i.e. 8 = [k, ¢,, h]”.

To study the feasibility of accurately estimating the parameters, as a first step,
identifiability analysis is performed. Parameters in a model are structurally identi-
fiable if and only if a unique set of parameters for the model is determined using

perfect noise-free data [72|. In this study, the linearization approach proposed by
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Ben-Zvi 73] is used for its computational efficiency compared to other methods such
as Taylor series expansion [74] and Generating series |75].

The transfer function of the reduced-order model, HP(s), is defined as follows:

HY HY.
HP(s) = [ ;1(3) f(s>] . (2.29)
Hy(s) Hiy(s)
Each transfer function is expressed in the following fractional form:
T.(s) K48 + Kp
HY = = 2.30
n(s) Q(s)  K18%+ Kos+ K3 (2.302)
T(s) KeS + K7
HY (s) = = 2.30b
21(8) Q(S) 1{182 + Kos + 537 ( 30 )
TC<S) /1832 + K9S + K1o
HP ey — 2.30
12(5) Too(s) K182+ Kos+ K3 (2.30c)
T. (S) /451152 —+ K128 + K10
HY . = 2.30d
22(5) Qoo (8) K182 + Kos + K3 (2.30d)
where
K1 = ok R3(hR + 24k,), (2.31a)
Ko = 24Vh,aR(ThR + 20k,), (2.31b)
K3 = 960Vi,a’k:h, (2.31c)
Ky = 3aR*(8k; — hR), (2.31d)
ks = 2400° R(hR + 2k), (2.31e)
Ke = 24ak, R?, (2.31f)
Ky = 480a%k, R, (2.31g)
kg = 4Viakh RY, (2.31h)
kg = — 72VhakhR?, (2.31i)
K10 = 960V, ks, (2.31j)
K11 = Vikih R, (2.31k)
K12 = 168VLakhR?. (2.311)

Define a vector of coefficients, ®, as follows:

B(0) = [11(0) #2(0) -+ - ri12(0)]. (2.32)
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Figure 2.5: Experimental setup for temperature measurement

The rank of the Jacobian of ® with respect to parameter 6 is used to determine
if all the elements of 6 are identifiable. If and only if the Jacobian of ® is full rank,
then all elements of 6 are said to be identifiable. The rank of aq(;_gO) is found be to
three which is the same as dim(#). Therefore, it can be concluded that parameters
of the thermal model are structurally identifiable.

Having established identifiability, experiments similar to are conducted to
identify parameters. An experimental set-up is shown in Fig. 2.5 Measured signals
such as the current, the terminal voltage, the surface and the core temperatures of the
battery along with the ambient temperature are used for the parameter identification.
Thermocouples used for temperature measurements are T-type whose accuracy is the
maximum of 0.5°C or 0.4% according to technical information from the manufacturer,
OMEGA. Specifically, convection coefficient h is controlled by the fan speed based on
Pulse Width Modulation (PWM) control and ambient temperature inside the thermal
chamber.

Let the error between the measured temperatures and model outputs at each time

step k in vector form be
e(k,0) = [Tep(k,0) Tup(k,0)]" — [T (k) Tom(k)]", (2.33)

where subscripts p and m denote model prediction and measurement, respectively.
The battery is allowed to rest at ambient temperature to equilibrate; that is, z(0) =
[T, 0],

Parameters are identified by minimizing the Euclidean norm of the difference
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Table 2.2: Identified thermal properties

Parameter Symbol  Value Reference

Density p 2047* 2118 [76]
Specific heat capacity [on 1109.2 1004.9-1102.6 [65,(66]
Thermal conductivity Ky 0.610 0.488-0.69 [62,/76)
Convection coefficient. h 58.6 65.99 [66]

* calculated using measured mass and volume

between the measured and simulated temperatures as given by

Ny

0* =arg mein; l|e(k, 0)]]2, (2.34)

where Ny is the number of measurement points. The minimization problem is solved
by using the fmincon function in MATLAB. The parameters in Table are used as
initial guesses for the identification.

Table presents the identified thermal properties for the 26650 battery. These
identified values of the parameters are close to the values reported in the literature.
The identified specific heat capacity c, is five percent larger than the mean value
determined in [65] where ¢, was determined by measuring transient responses of the
battery under current pulses at different rates. Forgez et al. in [65] suggested that
the deviation in identified value of ¢, might be caused by measurement uncertainty
in temperature and the temperature dependency of the heat capacity. The identified
thermal conductivity k; is within the range of values presented in literature [62,/76].

Despite using similar experimental data and setup, the identified convection coef-
ficient is 11% smaller than the coefficient calculated by using thermal resistance and
battery surface area in [66]. This difference between our identified value and the one
in [66] may be due to the two different model structures. Lin et al. in [66] considered
two different materials, namely one for the core and the other for the surface, whereas
we assume the battery is a homogeneous and isotropic body. In order to accurately
determine the convection coefficient, the temperature measurements of a pure metal
during thermal relaxation can be used. For instance, the specific heat capacity of
copper at 25°C is known to be 385 J/kg/K. For more detailed description about the
experiment, the interested reader is referred to [77].

Figure [2.6] shows the measured and simulated temperatures at the core and the

29



Temperature C)

1 1 1 L L 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000
(a)

0.5 T T T

Error (°C)

_05 1 L 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (sec)

(b)

Figure 2.6: Comparison between measurement and simulation: (a) core and surface
temperatures, (b) errors

surface of the battery. The error between the measurements and simulated temper-
ature is less than the sensor accuracy of 0.5°C. Using Eq. , the temperature
distribution inside the battery can be predicted as presented in Fig.

Figure [2.7(b)| shows the volume-averaged temperature and its gradient of the
battery respectively. There is no significant difference between the volume-averaged
temperature and the linear average of the core and the surface temperatures, i.e.
(Tu+T.)/2. Existing approaches in [64]/65/78] have the capability of predicting the core
temperature and have shown the efficacy of their proposed methods on the prediction
of temperature inside the battery under consideration in this work. However, the
phenomena may differ in the case of a battery with larger radius [79]. The volume-
averaged temperature gradient is different from the linear temperature gradient, i.e.
(Ts — T.)/R. In particular, the volume-averaged temperature gradient is 1.36 times
greater than linear temperature gradient under the UAC test. Since non-uniform
temperature distribution can lead to accelerated capacity losses of inner core , the
volume-averaged temperature gradient is an important metric to describe severity of

temperature inhomogeneity inside the battery.
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using polynomial approximation, (b) battery temperature (top) and temperature gra-

dient (bottom)
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Figure 2.8: Data set during Escort-convoy Cycle used for model validation: (a) current
and voltage, (b) heat generation rate, (¢) ambient temperature

2.3.2 Model Validation

To validate the performance of the proposed model with the identified parameters,
the battery was tested under a different HEV drive cycle, the Escort Convoy Cycle
(ECC) [66). The current and voltage profiles for this cycle are illustrated in Fig.
2.8l Figure [2.9| shows that there are slight differences between the measured and
simulated temperatures; in particular, the root-mean-square errors (RMSEs) of the
core and the surface temperatures are 0.4°C and 0.3°C, respectively. These differences
may be explained with the assumption of radially uniform heat generation and high
conductivity in the axial direction. Additionally, the entropy change of the LFP
battery is not properly considered in the heat generation formulation , which
might introduce error in the calculation of heat generation rate. Nevertheless, since
the comparison of temperatures shows good agreement and reasonably small RMSEs,
it can be concluded that the proposed model with identified thermal properties is

sufficiently accurate for thermal management during HEV drive cycles.
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Figure 2.9: Comparison between measurement and simulation: (a) core and surface
temperatures, (b) errors

2.4 Conclusion

In this chapter, a radially distributed 1-D thermal modeling approach for a cylin-
drical battery is proposed. Polynomial approximation is applied to obtain a reduced-
order model. Frequency domain analysis shows that the proposed model provides
sufficiently accurate prediction of the core and the surface temperatures with a rea-
sonable assumption that the temperature of cooling media does not change rapidly.

The proposed model is used to identify thermal properties and convective coef-
ficient for a 2.3 Ah 26650 LFP battery using a set of measured data: the current,
the voltage, the core and the surface temperatures along with the ambient temper-
ature over the UAC test. The identified parameters are found to be close to the
values in literature. The proposed thermal model can accurately predict the core
and the surface temperatures along with the volume-averaged temperature and the
volume-averaged temperature gradient of a cylindrical Li-ion battery. Particularly,
the volume-averaged temperature gradient captures the imbalance of temperature

distribution which is useful for controlling battery cooling system.
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CHAPTER III

The Estimation of Temperature Distribution in
Cylindrical Battery Cells under Unknown Cooling

Conditions

3.1 Introduction

The performance of Li-ion batteries is highly affected by operation temperature.
The battery temperature depends on the convection coefficient which in turn is influ-
enced by the flow rate of the cooling system. This flow rate can be actively controlled
by variable speed motors and pumps. However, the performance of the cooling sys-
tem can degrade generally due to various reasons such as dust on fan blades, partial
blockage in pipes, motor/pump ageing, and motor/pump failure. Even though such
degradation or failure can be detected by a fault detection system via pressure and
temperature sensors, the battery management system still needs to identify the con-
vection coefficient in real-time for an accurate estimation of the core temperature.

This chapter presents a model-based approach for estimating the temperature
distribution inside cylindrical batteries under unknown convective cooling conditions.
The reduced order thermal model developed in Chapter [T is used. Two state and
parameter estimation methods, namely a Dual Kalman Filter and a joint Extended
Kalman Filter, are then applied for the identification of the convection coefficient
and the estimation of the temperature distribution within the battery. Experimental
results show that the proposed Kalman Filter-based estimation methods can provide
an accurate prediction of core temperature under unknown cooling conditions.

This chapter is organized as follows: Section presents the reduced order ther-
mal model for a cylindrical battery with convective cooling. The sensitivity of param-
eters on prediction temperature is numerically analyzed in Section[3.3] In Section [3.4]

temperature estimators applying a Dual Kalman filter and a Joint Extended Kalman
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Filter by using the proposed model are developed for estimating the core temper-
ature and identifying the convection coefficient. Section [3.5] presents and discusses

experimental results and conclusions are drawn in Section [3.6]

3.2 Reduced-Order Thermal Model

Two-state thermal model for a cylindrical battery with convective cooling devel-

oped in Chapter [[Iis adopted and reproduced below for convenience:

pri Az + Bu, (3.1a)
y =Cz + Du, (3.1b)
where z = [T )T, u = [§ Tw|" and y = [T. T.]T are states, inputs and outputs

respectively. The states are given by:

R
— 2
T = 7 / rTdr, (3.2a)
0
2 / oT
7= /r (E) dr, (3.2b)
0

where R is the radius of the battery.
System matrices A, B, C, and D are defined as follows:

_ —48ah —15ah
_ | R(24k + Rh) 24k, + Rh
A= —320ah —120a(4k; + Rh) | (3.3a)
R2(24k, + Rh)  R2(24k, + Rh)
[ « 48ach
k:Vi,  R(24k, + Rh
b= to bR R (3.3b)
I R2(24k, + Rh)
" 24k —3Rh  120Rk, + 15R*h
_ | 24k, + Rh 8(24k, + Rh)
¢= 24k, 15 Rk ) (3.3¢)
L 24k, + Rh 48k, + 2Rh
[, ARh
b= . 2Abeh (3.3d)
L 24k + RA
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Table 3.1: Parameters of the battery

Parameter Symbol Value Unit
Density p 2047 kg/m?
Specific heat capacity cp 1109.2 J/kg/K
Thermal conductivity Ky 0.610 W/m/K
Radius R 12.93e-3 m
Volume Wi 3.4219e-5 m?>

where k; and h represent thermal conductivity of the battery and convection co-
efficient, respectively. The thermal diffusivity is defined by a = k¢/pc, where p is
volume-averaged density of the battery. The volume of the battery is denoted by V},.
Parameters of a cylindrical battery under consideration are summarized in Table [3.1]
This state-space representation is used for sensitivity analysis of parameters on
prediction temperature in Section [3.3/and the estimation of the core temperature and
convection coefficient using Kalman Filters such as a Dual Kalman Filter and a Joint
Extended Kalman Filter in Section [3.4]

3.3 Parameter Sensitivity Analysis

Parameters of a model may not be practically identifiable or estimable since in-
formation available in the experimental data is insufficient. Parameter inestimability
is attributed to two reasons: (1) the output predicted by the model is not sensi-
tive to parameter variations, (2) the influence of one parameter on the output is not
distinguishable from the influence of other parameters.

Parameter estimability must be assessed to measure whether or which parameters
among thermal conductivity k:, specific heat capacity c,, and convection coefficient h
are estimable with given noisy data such as current and voltage. Sensitivity analysis
is a good method for this assessment. In particular, two approaches are considered,
namely One-Factor-At-A-Time (OFAT) [80] and the Fisher Information Matrix (FIM)
based approach [81].

First, to investigate the impact of variations in parameters on the performance
of temperature prediction, each parameter is varied from the known value at a time
while holding the other parameters fixed. Current and terminal voltage over the
Urban Assault Cycle (UAC) are used as inputs to the thermal model. Figure

shows that parameters such as thermal conductivity k; and specific heat capacity c,
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Figure 3.1: The effects of parameter variation to temperature prediction at: (a) core,
(b) surface; the convection coefficient has the most significant influence on tempera-
ture prediction.

have more influence on the prediction of core temperature than surface temperature.
This result corresponds to the fact that the generated heat inside the battery cell
is transferred through conduction. On the other hand, the convection coefficient
has the most significant influence on the overall prediction of the core and surface
temperature. In particular, the prediction of surface temperature is most sensitive
to the variation of convection coefficient, which can be explained given the fact that
the convection coefficient is directly related to the following convective boundary
condition,
)| =T - Telt) 34
where T, is ambient temperature.
Despite simplicity to check for the impact of parameter variations to model pre-
diction, the OFAT is not able to assess parameter interactions or correlations. To
account for these effects, the FIM-based method is additionally used to determine

which parameters are estimable using the surface temperature.
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Let a parameter vector be
p = [kic, h]". (3.5)

Sensitivity matrix U for specific time periods (t1,ts,...,tr) is calculated by stacking
the partial derivative of output with respect to parameter dy;/0p; (i = 1,2 and
j=1,2,3) as below

P\ 9%y P2\ Oy ps \ Oy
y(t1) ) Opila \y(t1) ) Opal \y(t1) /) Opslu
P\ 9y P2\ Oy P \ Oy
y(tZ) Op1 It y<t2) Opa It y(tZ) Ops Itz
v | (P 9y P2\ 9y ps \ Oy |, (3.6)
y<t3) apl i3 t3 y(t3) 3p3 ts

y(ts) aps

(ﬁ1>@ (752)@ (153)@
| \y(ty)) Opiley, \w(ty)) Opaley, \y(ty)/) Ops

while solving the following equations along with Eq. (3.1)):

ty

d (6x> 0A 0B +A8_x7 (3.7)

dt \ dp - 8px+ 8pu dp
oy oC oD ox

As suggested in [72], dy;/0p; at time ¢; is normalized using the nominal values of

parameters p and output values y at ¢;. Then, the FIM is computed by
FIM = v'w (3.8)

The FIM and correlation of ¥ provide very useful information about the estimation
problem. The rank of the FIM presents the number of estimable parameters. A highly
ill-conditioned FIM indicates that estimation of all parameter is almost infeasible.
In particular, the largest element of an eigenvector corresponding to the smallest
eigenvalue indicates the least estimable parameter. Moreover, the inverse of FIM
means the covariance of parameter estimates.

Using the same input data, eigenvalues A and eigenvectors I' of the FIM and the

inverse of the FIM for two cases (casel: Ty only, case2: Ty and T.) are computed
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respectively as follows:

(026 0 0

Aewser = | 0 1102 0 |, (3.9a)
0 0  848.52
[59.23 0 0

Acase2 - 0 78.00 0 5 (Sgb)

0 0  1550.28

[0.9559 —0.2934 —0.0136]
[easer = |0.2852 09381 —0.1963 ] , (3.9¢)
10.0704  0.1838  0.9804 |

[—0.9005 0.4059 0.1560 |
Feasez = | 0.3849  0.9109 —0.1487] . (3.9d)
| 0.2025 0.0739  0.9765 |

[3.465 1.006 0.25
FIM_. , = |1.006 0.388 0.091], (3.9¢)
| 0.25 0.091 0.023

[ 0.016 —0.001 —0.003
FIM_ ., = [-0.001 0.013 0.002 | . (3.9f)
| —0.003  0.002  0.001

It is apparent that k; is the most difficult parameter to be estimated, followed by
¢, and h, respectively. The parameter covariance indicates that the estimation of
k; from the surface temperature measurement only is almost infeasible whereas h
is estimable under the same condition. Since the core and surface temperatures
are important information to characterize heat conduction inside the battery, the
estimability of k; and ¢, is dramatically improved with two measurement data as
indicated by parameter covariance. From the FIM-based sensitivity results, it can
be concluded that convection coefficient is estimable from the surface temperature
measurement under realistic operating conditions.

According to Maleki et al., Forgez et al., and Onda et al., the specific heat capacity
and thermal conductivity are weakly dependent on temperature [65,82,83[; therefore,
the assumption of constant parameters can be justified. On the other hand, the con-
vection coefficient is highly dependent on fan speed or fluid velocity as expressed by
empirical correlations provided by Zukauskas [84]. Consequently, the accurate iden-

tification of convection coefficient is important for better prediction of temperature
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inside the battery. This importance as well as the sensitivity analysis justify the on-
line identification of the convection coefficient for better estimation of temperature
as detailed in Section [3.4]

3.4 Estimation of Temperature and Convection Coefficient

As discussed in Section the estimation of temperature inside the battery cell
requires accurate knowledge of the convection coefficient which depends on cooling
condition. To identify the convection coefficient on-line, two estimation methods are
applied for better estimation of temperature distribution inside the battery cell: (1)
a Dual Kalman filter (DKF) [85] and (2) a Joint Extended Kalman Filter (JEKF).
The other thermal parameters such as thermal conductivity and specific heat capacity
are constant since these parameters have less influence on temperature and do not
change significantly over time. In the following sections, the implementation of these

algorithms and their estimation performance are presented.

3.4.1 A Dual Kalman Filter : a combination of Kalman and Extended

Kalman Filters

Assuming the input u(t) is constant over each sampling interval At, a parameter
varying (PV) discrete-time model at time step k can be obtained by using the Euler
Method as

Tt1 = A(@k)l’k + B(Qk)uk + wy, (310&)

Y = C’(Qk)xk + D(Qk)uk + vg, (310b)

9k+1 = Ok + Tk, (310C)

where z;, = [Ty %), v = Tuk, Ox = hi, and u, = [ Toos]?. System matrices

A~ I+ AAt and B = BAt are obtained from matrices where [ is the identity
matrix. Noise signals wy, vx and 7y, are independent, zero-mean, Gaussian processes
of covariance matrices X, >, and ., respectively.

The schematic of a DKF is illustrated in Fig. [3.2] At time step k, the KF estimates
the state using the current model estimate é,;tl, whereas the EKF estimates the
parameter using the current state estimate @} ;. The design of the DKF estimator

is given as the following update processes.
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Figure 3.2: Schematic of a Dual Kalman Filter

Time update for the parameter filter:

G- — g+
O =0p 1,

Py = Pe—fkq + 2.

Time update for the state filter:

A— A /\+ _
T, = Ap 2 + Broiwp—

xT

Measurement update for the state filter:

Kp =P, G [CrPLCim + 5,

P = AP (AL + S

1

B} =@ + K [y = CO)r — DO

+
Pa:,k

Measurement update for the parameter filter:

[I — KCY] Py

—1

N+
O

+
By

[ — Li,CY] Py

41

=07 + Ly [yk — O0;)i; — D(@A;)uk}

\

(3.11a)
(3.11h)

(3.12a)
(3.12b)

(3.13a)
(3.13b)
(3.13¢)

(3.14a)
(3.14Db)
(3.14c¢)



A

X Time Update X, Measurement Update 3}2
State State >
Extended Kalman Filter Extended Kalman Filter

[

Figure 3.3: Schematic of a Joint Extended Kalman Filter

\ 4
\ 4

where superscripts — and + denote the a priori and a posteriori values respectively.

The matrices Ay, CF and CY are calculated according to

Apr = A(ek)‘gk:é;, (3.15a)
Oy,

Cr = : 3.15b

T Oy ep=i7 05 =0y ( )
dyr,

oY = 228 ) 3.15¢

R Ao, wy=i; 0n=0; ( )

The identified states & and parameter 0 , computed from the above DKF algorithm,
are used to estimate the core temperature in the battery from Eqs. (3.10)). It is noted
that since the thermal system is linear, the DKF becomes a Kalman filter (KF) when

the parameter of convection coefficient is known or given.

3.4.2 A Joint Extended Kalman Filter

An alternative approach to estimate states and parameter is applying a Joint
Extended Kalman Filter. States x; and parameter 6 are concatenated into an aug-
mented state vector z,x = [z 0i]7. As illustrated in Fig. , the augmented states
can be simultaneously estimated through an Extended Kalman Filter, the result of
the application of a Kalman Filter to a linearized nonlinear system.

The augmented system can be expressed as follows:

Taptr = Aaap + Bawg + wy, (3.16a)
Yk = Coap + Doy + vy, (3.16b)
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where the augmented system matrices are defined by

A, = [ A@) 0 ] (3.17a)
01

B, = B(O@’“) : (3.17b)

C, = :_C(Hk) 0. (3.17¢)

D, = D(6;). (3.17d)

The augmented system is nonlinear even though Egs. are expressed in a
form of linear state-space representation, which needs ones to apply an Extended
Kalman Filter in the estimator design.

The design of the Joint EKF estimator is given as the following update processes.

Time update for the state filter:

A— o A /\+ —
Ty =Aak-12, 4 1 + Bag—1ug—1 (3.18a)

Py =Aaqp1 P AL+ S (3.18b)

Measurement update for the state filter:

Ky =Py Co T [Co pren T +5,] (3.19a)
Bip =Ty + K [yr — Calty ), — Doty (3.19b)
Pf=[1-KCZ P (3.19¢)

The matrices A, ;_; and Cyy are calculated according to

. DAG ) 0B(0;}_,)
. + oy k=) g PP k1)
Ak = Albe-) 90, +1 * a6, |, (3.20a)
0 1
oCO,) . oD@,

ak = | C6) Ug—1 | (3.20b)

kel 4
00, 90,
Finally, the identified augmented states z,, obtained from the above JEKF algo-
rithm, are used to estimate the core temperature in the battery from Eqs. (3.16)).
In this framework, the statistics of noise signals are defined as before. However, the
noise signal w; and its covariance matrix >, need to be redefined to account for

disturbances affecting the parameter dynamics.
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Figure 3.4: Fan schedule for forced-air convective cooling

3.5 Experimental Results

In this section, the performances of the proposed temperature estimators using the
DKF and the JEKF are compared with that of the baseline KF estimator without
parameter identification. Following an experimental set-up shown in Chapter [I]
we draw a current and measure voltage and temperature at the core and surface
of the battery while controlling ambient temperature in the thermal chamber. The
surface temperature is used for the estimators and the core temperature is measured
to verify the estimation accuracy. The experiment is performed using the Escort-
Convoy Cycle (ECC) to verify the state and parameter estimation. Three different
forced convective cooling conditions (stage I, stage 11, and stage I1I) are demonstrated
by using different PWM signals driving the fan as shown in Fig. 3.4 To investigate
the influence of change in the initial parameter on the temperature estimation, the

parameter is provided to each estimator as following:

e In stage I, the off-line predetermined convection coefficient is provided to the KF
and is used for the DKF and JEKF as initial values: 6 = 6* and 6(0) = 6(0) = 6

e In stage II, the off-line predetermined convection coefficient is provided to the
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Table 3.2: Tuning parameters for the DKF and JEKF

Parameter DKF JEKF
X diag(ﬁf, »312) diagle, 512; 522)
> o? o?
Zr 622 X
P(0) diag(1,1) diag(1,1,0.05)
S(0) 0.05 X
Ioh 0.0005 0.0005
[ 0.007 0.006
KF only: 6 = 6*

e In stage III, two times larger convection coefficient compared to the known value
is provided to the KF: = 26*

where the parameter  denotes a fixed value for the KF. The parameters 6 and 0
represent identified values for the DKF and JEKF, respectively whereas 6* presents
the predetermined parameter value. Other thermal properties such as the thermal
conductivity and the specific heat capacity are assumed constant with values provided
in Table 3.1

It is assumed that the initial temperature distribution inside the battery is uniform
at 30°C and convection coefficient is 56.2W/m?2/K, i.e. #(0) = [30 0] and 6(0) =
56.2, respectively. The covariance matrix for the state 3,, = (12] describes the process
noise where ; > 0 is a parameter for tuning based on the model inaccuracy. The
noise covariance ¥, = o2 is determined from the standard deviation of temperature
signal 0 = 0.05°C. The covariance matrix for the parameter ¥, = 35% influences the
performance of noise filtering and the rate of parameter convergence. Ultimately, the
initial condition of the error covariance matrix and the tuning parameter for the DKF
and JEKF are chosen through repeated simulations as provided in Table It is
noted that the initial conditions and tuning parameters for the DKF and JEKF are
the same as those of the KF.

The results for the parameter and state estimation are shown in Fig. 3.5 and Fig.
respectively. The performances of temperature estimation in terms of the
root-mean-square-error (RMSE) are summarized in Table [3.3] Figure shows that
all closed loop estimators can accurately predict temperature inside the battery as

evidenced by small RMSEs for core temperature estimation, i.e., 0.18°C. As seen from
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Figure 3.5: Comparison of parameter estimation performance among KF, DKF and
JEKF estimators: (a) convection coefficient, (b) errors

Fig. on-line (real-time) identified parameters are close to the off-line determined
value without large deviations. The deviation is small due to two factors: (1) a correct
initial guess for parameter and (2) a relatively small initial parameter covariance.
Consequently, performances of the DKF and JEKF estimators are comparable to that
of KF estimator. As discussed in Section [3.3] thermal properties can vary with respect
to operating temperature. Therefore, it is expected that better performance could be
achieved by using temperature-dependent parameters for thermal conductivity and

specific heat capacity.

Table 3.3: Comparison of temperature estimation among KF, DKF and JEKF: RM-
SEs of the core and surface temperatures

Method KF DKF JEKF

Location Core Surface Core Surface Core Surf.

Stage I 0.18 0.07 0.18 0.07 0.18 0.07
Stage II ~ 0.24 0.08 0.25 0.08 0.25 0.08
Stage III  1.58 0.15 0.45 0.11 0.40 0.11
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Figure illustrates the performance of temperature estimation by the closed-
loop estimators in stage II when there are sudden changes in the cooling condition.
The KF can accurately estimate the core temperature with information about the
change in parameter values. Since the DKF and JEKF are capable of compensating
for inaccuracy in the parameter of the system, the DKF and JEKF provide reasonably
accurate estimates for the core temperature in comparison to the core temperature
predicted by the KF estimator. The RMSEs for core temperature estimation by the
DKF and JEKF are 0.25°C which is very close to the RMSE by the KF, indicating
that the errors during initial time periods before parameters converge to the true
value are insignificant (Fig. |3.5)).

As seen from Fig. the KF estimator overestimates the core temperature when
the incorrect parameter value is used for the convection coefficient. In other words,
the reliable estimation of core temperature with the KF is only possible when accurate
parameter values are available. Thus, it can be concluded that the DKF and JEKF
estimators outperform the KF estimator due to the capability of parameter identifi-
cation. The RMSEs for core temperature estimation in stage III can be substantially
reduced from 1.58°C to 0.45°C and 0.40°C by the DKF and JEKF respectively.

It is worth noting that the DKF and JEKF can be augmented with other existing
battery management strategies to improve the system robustness without cost in-
crease. For instance, to detect partial blockage in a cooling system, typically, a mass
flow or pressure sensor is required. The DKF and JEKF could augment the existing
techniques to provide redundancy during sensor fault. The proposed algorithm en-
ables the identification of the convection coefficient by using sensors which are already
instrumented at the battery. The identified parameter can be also used for monitor-
ing the malfunction or degradation of the cooling system. Under the assumption that
the relationship between the convection coefficient and fan speed or PWM signal is
known, the malfunction of the cooling system can be detected by comparing the iden-
tified parameter with the known value. When the difference between the identified
and predetermined values |é — 0*| is bounded and small, it can be considered that
there is no fault in the cooling system. On the other hand, |é — 0*| > € where € is a
pretuned threshold, could be a sign of cooling fault. In particular, |(6 — 6*)/6*| could

be interpreted as the severity of degradation of the cooling system.
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Figure 3.6: Comparison of state estimation performance among KF, DKF and JEKF
estimators during stage I: (a) core temperature, (b) surface temperature
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3.6 Conclusion

In this chapter, a method to estimate the temperature distribution in cylindri-
cal batteries under unknown cooling condition is proposed. First, a reduced-order
thermal model using a polynomial approximation presented in Chapter [II] is used
to estimate a radial temperature profile. The numerical analysis on parameter sen-
sitivity supports the use of constant parameters for thermal conductivity and heat
capacity and the importance of identifying the convection coefficient on-line. Then,
a Dual Kalman Filter and a Joint Extended Kalman Filter are applied to estimate
the temperature inside the battery and convection coefficient by the cooling fan. The
proposed method requires no knowledge of the convective cooling conditions. The
results show that the proposed DKF and JEKF estimators can provide reasonably
accurate estimates of core temperature and convection coefficient by using current,
voltage, battery surface and ambient temperatures. In addition, faulty operation
of the cooling system could be detected by monitoring the difference between the

identified and off-line predetermined values.
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CHAPTER IV

Power Capability Estimation of Lithium-ion

Batteries Based on Time Scale Separation

4.1 Introduction

Enforcement of constraints on the maximum deliverable power is essential to pro-
tect Li-ion batteries from over-charge/discharge and overheating. This chapter de-
velops an algorithm to address the often overlooked temperature constraint in deter-
mining power capability of battery systems. Knowledge of power capability provides
dynamic constraints on currents and affords an additional control authority on the
temperature of batteries. Power capability is estimated by using a lumped electro-
thermal model for a cylindrical cell that has been validated over a wide range of
operating conditions. Based on the time scale separation, a real-time implementable
method is proposed to determine power capability of a Li-ion battery accounting
for thermal and electrical constraints. Current limits and hence power capability
are determined by a model-inversion technique, termed Algebraic Propagation (AP).
Simulations are performed using realistic depleting currents to demonstrate the effec-
tiveness of the proposed method.

This chapter is organized as follows. Section presents a thermal model] incor-
porating information on entropy change in addition to Joule heating and convection
phenomena. Then, a simple equivalent-circuit electrical model is presented in Section
for the electrical dynamics of the battery. In Section a model-based maximum
power estimation method is proposed to determine the maximum current/power ca-

pability over a fixed horizon considering both thermal and electrical constraints inde-

'In this chapter, a singe-state thermal model is considered based on the investigation of thermal
properties. However, Chapter [V] addresses power capability estimation for a two-state thermal
model.
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Figure 4.1: (a) Schematic for an e-Moli ICR18650J cylindrical battery, (b) parabolic
temperature profile under uniform heat generation

pendently. Simulation results are discussed in Section and conclusions are drawn
in Section

4.2 Battery Thermal Model

A cylindrical Li-ion battery, e-Moli ICR18650J 2.3 Ah, is considered in this study.
This battery is fabricated by rolling a stack of layered thin sheets comprised of a
Lithium Cobalt Oxide (LiCoO,) cathode, a separator, and a graphitic anode in a
manner similar to the schematic in Fig. [4.1{(a). Uniform heat generation along the
radial direction as illustrated in [4.1(b) is assumed, which is a standard assumption
[68,186]. Lumped parameters are used so that material properties such as thermal
conductivity, density and specific heat capacity are assumed to be constant in a
homogeneous and isotropic body. Since the thermal conductivity is one or two orders
of magnitude higher in the axial direction than in the radial direction, the temperature
distribution in the axial direction will be more uniform [69,87]. The Biot numbetﬂ
(Bi) of the battery with natural convection is calculated to be small (Bi <« 0.1),
suggesting that the heat transfer at the surface is much smaller than the internal

heat transfer by conduction. Hence, no significant temperature gradient inside the

2The Biot number is a ratio of heat convected via surroundings to heat conducted in a material:
Bi = hl/k; where | and k; are thickness and thermal conductivity respectively.
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battery is expected.
Under the above assumptions, the energy balance equation in the battery can be

described by one bulk temperature 7" [83]:

M Cp% = (gen + rev T rej (4.1a)
Ggen = Ip Re, (4.1b)
Grev = — ]bT%; (4.1c)
Grej = Ah(T — T), (4.1d)

where M and A, are the mass and area of the Li-ion battery respectively; Ggen, Gref:
and g represent joule heating, entropic heat generation, and heat transfer through
convection, respectively. The variable n is the charge number pertaining to the re-
action (n=1 for a Li-ion battery) and F' is the Faraday constant, 96485.3365 C/mol.
The internal resistance R, lumps ohmic, activation, diffusion polarization resistances.
Heat of mixing is not considered since its contribution to the total heat generation is
small [54]. In the chosen sign convention, a positive current discharges the battery.

The energy balance equation is described in the state space representation:
ir = axy + frru+ yud + 1 (4.2)

where the state and input of the system are xr = T and u = I}, respectively. The

parameters are defined by .

a= — ]j\{;c};’ (4.3a)
B = ]\;[ip%’ (4.3b)
v = ]\];Zp, (4.3¢)
n = A;;z;oo. (4.3d)

This nonlinear thermal dynamic model is used to predict the temporal evolution of

temperature and to formulate a current limiting strategy in Section [4.4]
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Table 4.1: List of publications where the entropy change of Li-ion batteries are pro-
vided

Author Temperature Profile Test Duration
(year) [°C] [hours|
Hong et al. (1998) [89)] 27-30-35-39-50 25
Takano et al. (2002) [R8] 50-10-50 24
Onda et al. (2006) [83] 40-10-20-30-40 33
Viswanathan et al. (2010) [90] 35-25-15-35 Not specified*
Forgez et al. (2010) [65] 26-16-21-36-26 20
Jalkanen et al. (2013) [91] 20-0-10-20-30-40-20 12

* voltage was measured after temperature equalization.

4.2.1 Entropy Change Measurement

The contribution of the entropy change AS to the total heat generation in a
LiCoO,/LiCg battery is significant at low current rates [54,88|. Therefore, it is im-
portant to determine the entropy change of the battery for predicting the temperature
of a battery accurately. The entropy change can be identified by using the change in
the open circuit voltage, V., as a function of temperature according to Eq.

OVoc

AS = np2lee.
S=nFon

(4.4)

Two methods can be considered to measure the entropy change of Li-ion batteries:

1. measuring terminal voltages with very low charge and discharge current rates
such as C/20, C/40 and C/100 at different temperatures

2. measuring terminal voltage without current while changing temperature at dif-
ferent battery SOCs

Battery charge and discharge operations at very high or low temperature may affect
operations at other temperatures. Thus, the second method has been widely used for
the entropy change measurement with considerations of repeatability and/or repro-
ducibility. Table illustrates temperature profiles and test durationﬁ for the second
method in literature [65],83},88-91].

3Initial time periods to fully charge or discharge a battery is not accounted for.
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Figure illustrates the experimental set-up in this study for characterizing
entropy change. The battery is fully charged at a rate of C/20 at 25°C using a Con-
stant Current Constant Voltage (CCCV) protocol with a cutoff current rate of C/100.
The temperature in the thermal chamber is controlled as shown in Fig. . The
zig-zag manner of changing temperature is designed to minimize negative influences
by long thermal excursion at higher or lower temperatures than room temperature
of 25°C. The battery is allowed to rest for three hours at each temperature to equili-
brate. To change the SOC of the battery by 10%, a current at a rate of 1C is applied
to the battery for six minutes at 25°C that is followed by two hours of rest for charge
equilibrium.

Figure shows the entropy change of the LiCoOy/LiCg battery in this study
and compares the values from the literature [83,88,90]. The entropy change of the
battery in this study within the SOC range of 60% to 80% is estimated differently
compared to values in other studies. Clearly some batteries in these studies show an
endothermic behavior while the others display an exothermic process during battery
discharge. In particular, the battery in this study does not have endothermic process,
leading to a higher total heat generation during battery discharge than batteries
in [83,88,190]. Figure also compares measured and predicted open circuit
voltages of the battery at 70% SOC, providing that the measured entropy change of

the battery is reasonably accurate.

4.2.2 Identifying Thermal Properties

To predict the temperature of the battery, thermal parameters, namely heat ca-
pacity ¢, and convection coefficient h are to be identified. Parameter identification
is performed as follows — a current profile such as the one presented in Fig. |4.3(a)
is applied to the battery placed in a temperature controlled chamber, and its surface
temperature, terminal voltage and current are measured as shown in Fig. [4.3|(a)—(c).
The time constant of the thermal system « is approximated from the relaxation data
following the initial constant current phase. Imposing the relation between h and c,
in Eq. as an equality constraint, the parameterization is formulated in the form

of optimization problem by using data collected during discharge operation as follows

min J = [|T(c,) — T (4.5a)

Cp

subject to hA, + aMc, =0, (4.5b)
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Figure 4.3: Measurement data used for thermal parametrization: (a) current, (b)
voltage, (¢) temperature

where T and T' are measured and predicted temperatures, respectively. It is noted
that heat generation is calculated from measurement data such as current and voltage
using Bernardi’s simplified form in [53], as discussed in Chapter [[]

The optimization problem is implemented and solved in MATLAB using the built-
in function fmincon [92]. The heat capacity of SONY 18650 batteries, which have sim-
ilar chemistries to the e-Moli ICR 18650 batteries under consideration, can be found
in open literature [69]. Even though the chemistry and dimension of these batteries
are the same, the values for heat capacity ¢, lie between 836 and 1280 J/kg/K. In this
study, ¢,=1000 J/kg/K is chosen as an initial value to the optimization problem. The
identified parameters ¢, and h are 1248 J/kg/K and 42.9 W/m” /K respectively. As
demonstrated in Fig. (c), the parameterized thermal model can provide accurate

prediction of the temperature during battery operation.

4.2.3 Model Validation

To validate the performance of the parameterized model, the battery was tested
under a different cycle (Fig. [.4[a)). This cycle consists of repeated current pro-
files obtained from a mobile robot during a certain segment of movement provided

in [93]. The corresponding battery SOC is illustrated in Fig. [£.4[b). The battery
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Figure 4.4: Validation of the thermal model using repeated robot operations: (a)
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was discharged from 100% to 10%. Figure |4.4{c) shows comparison among measured
temperature and predicted temperatures with and without considerations of entropic
heat generation. When entropic heat is considered in the calculation of the total heat
generation, the error is bounded within + 0.5°C. As shown early in Fig. 1.2(b)] the
change in entropy of the reaction is smaller at high SOC than at low SOC. Therefore,
as the battery is discharged, the contribution of entropy change becomes very evident.
In particular, the RMSE of the predicted temperatures with and without considera-
tions of entropic heat generation are 0.1°C and 0.6°C, respectively (Fig. [£.2(D)|(d)).
The error between the measurements and predicted temperature with considerations
of entropy change is considerably less than the sensor accuracy of 0.5°C. Thermocou-
ples used for temperature measurements are T-type whose accuracy is the maximum
of 0.5°C or 0.4% according to technical information from the manufacturer, OMEGA.
Consequently, it can be concluded that the parameterized model is sufficiently accu-

rate for the development of battery power management strategies.
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Figure 4.5: An equivalent-circuit model: OCV-R-RC-RC

4.3 Electrical Model

In control applications, an equivalent-circuit model, as illustrated in Fig. [4.5]
is favored owing to its simplicity and has been shown to be reasonably capable of
emulating the dynamics of a battery [49,/51,94]. In this study, the equivalent-circuit

model is used and the electrical system is described by

Iy

) pr— —_———— 4.
SOC 600G, (4.6a)
. 1 1 )
Vi= — Rioi% + afb, i€{1,2}, (4.6b)
2
V; = Voe(SOC) = R, I, — > Vi, (4.6¢)
=1

where C}, represents the estimated capacity of the battery.

Parameters R,, Ry, Ry, C and C5 are identified using pulse tests described in
[49,94]. As these parameters are functions of temperature and SOC, a two dimensional
look-up table is used to schedule the model parameters [49]. Figures [4.6(b) and (c)
present a comparison between measured and simulated battery terminal voltages
using the current profile employed in Fig. [£.3] The electrical submodel is validated
independently using measured temperatures as shown in Fig. [4.6[a). It is observed
that the error in the simulated voltage is less than 5% of the total variation in terminal

voltage.
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4.4 Power Capability Estimation Method

In this section, a computationally simple but effective method to estimate power
capability is described. In estimating power capability, the following factors are con-

sidered
e The thermal and electrical dynamics of a Li-ion battery are intrinsically coupled.

e The internal resistance and the rate of change in the internal resistance decrease
with increasing temperatures (Fig. 4.7).

e For a galvanostatic operation (or a constant current operation), any arbitrary
increase in battery temperatures will cause reduced internal losses, and subse-

quently generate less heat.

e Over a reasonably short horizon, the temperature increase can be assumed to
be bounded and similar arguments can be made for the change in the electrical
quantity, SOC.

The above statements are valid insofar as the temperature of the battery does
not exceed the threshold temperature at which thermal runaway is initiated [49}95].

Since thermal dynamics are much slower than electrical dynamics, it follows that
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Figure 4.8: Simulated SOC and temperature changes under 2C discharge rate for ten
seconds: (a) current, (b) ASOC = SOC — SOC,, (¢) AT =T - T,

over a short horizon, in estimating power capability, considering electrical and thermal
constraints independently yield conservative estimates. As a consequence, the thermal
and electrical constraint problems are addressed separately.

To test the validity of last statement, a simulation study is conducted. The electro-
thermal model is discharged at 2C rate, which is the manufacturer specified limit,
for 10 seconds as illustrated in Fig. [4.8(a). Ambient temperature and convection
coefficient are set to 25°C and 6W/m”/K respectively. Note that two different initial
SOC values are considered since the entropy change of the battery is six times larger
at SOC of 0.2 than at SOC of 1. Figure 4.§(b) and (c) show that the maximum
values of changes in SOC and temperature are 0.0056 and 0.6°C, respectively. In
particular, 0.6°C change in temperature corresponds to 0.2% change in a unit of K.
Therefore, it can be concluded that the assumptions of constant temperature and
SOC are reasonable. This valid argument will benefit us to handle the nonlinearity
in the expression of heat generation rate.

To solve each constraint problem, the Algebraic Propagation (AP) method is
utilized. The AP method, based on iteration and inversion of a dynamic model,
allows ones to estimate the maximal value of input ensuring that no constraints are

violated.
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Consider a linear discrete-time model whose dynamics are described by the fol-

lowing set of difference equations

i1 = Axy, + Bug + G, (4.7a)
yr = Cay, + Duy, + H (4.7b)

where system matrices, which are denoted by A, B, C, D, G and H, are obtained
through linearization and discretization processes around the operating point (x,, u,)
at each sampling time. Following this notation, the linearized system matrices of the
electrical and thermal models are denoted with superscripts or subscripts of £ and T,
respectively. For example, the discrete state transition matrix of the thermal model
is denoted by Ar.

For a constant input u, the state x and output y after N future steps are written

as
N-1 N-1
vren = ANz + Y A'Bu+ Y A'G, (4.8a)
=0 =0

Therefore, at any instant k, the maximum permissible input that does not violate a

constraint ¢ on the output y in N future steps is determined by

N-1 -1 N-1
U= ( > CA'B+ D) (y — CANz), — Y CA'G - H) (4.9)

i=0 =0

Since the power capability is determined by using information on current limits
and terminal voltage as addressed in [25H30], Eq. (4.9) will be used to determine the
maximum current accounting for thermal and electrical constraints in the following

sections.
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Figure 4.9: Performance of current limiting for temperature control during constant
current operation at 25°C' ambient temperature and natural convection (6W/m?*/K):
(a) current, (b) SOC, (c) temperature

4.4.1 Active Thermal Constraints

The thermal dynamics in discrete-time domain with a sampling period At can be

captured by the following equation:

TT k+1 = ATZL'T,k + Vg, (410&)

YTk = TTk; (4.10b)

where Ar = 1+ aAt. The virtual input, v, is defined as

Then, the maximum of the virtual input, T, described by considering the maximum

operating temperature, T, is obtained from the following equation.

N-1 -1
1=0
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When the maximal value of current is less than 2C and the prediction period
is less than 10 seconds, the SOC and temperature of the battery do not change
significantly over the prediction horizon as shown in Section 4.4} Thus, it is reasonable
to assume that the entropy change and internal resistance are constant over the
prediction horizon, that is, B;xz7 jjx = Bexrr and v, ~ vy for j = k, k+1,... k+N.
Moreover, ambient temperature is assumed not to change rapidly and hence to be
constant, i.e. n;, ~ ng for j =k, k+1,..., k+ N. These assumptions make it easy
to handle the nonlinearity in the expression of heat generation rate using a quadratic
term ’ykui and a bilinear term w7 k.

By substituting Eq. into Eq. , the maximum permissible currents
during battery discharge and charge are determined respectively by following equa-

tions

_ — -
Tdch =B+ \/Bk — 4y (n — U/ At)

b,max,k ~ 27]€ y (413&)
— ;)
B — \/ﬁk — Ay (e — D/ Al)
T,ch,
Ly i = 27, ; (4.13b)

where Bk = Brxrk. Superscripts dch and chg present battery discharge and charge,
respectively.

To investigate the efficacy of Eqgs. and in controlling temperature,
a simulation study is conducted. In the simulation, the sampling frequency is set
at 10 Hz with a 100 sample prediction horizon. Figures [4.9(a)—(c) show the current
drawn from the battery, the corresponding SOC and battery temperature profiles. It
is noted that the battery temperature increases up to 87°C without limiting current
rate. On the other hand, the battery temperature remains well around the designated
maximal operating temperature of 45°C when current is limited. Due to temperature-
constrained current, as shown in Fig. |4.9(¢c), the completion time increases from 2133

seconds to 4687 seconds.
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4.4.2 Active Electrical Constraints
The electrical dynamics in discrete-time domain can be expressed as

TE k+1 = AE‘xE,k -+ BEuk, (414&)

Yexr = Crrpx + Dpuy + Hg, (4.14Db)

where the state and output are defined as xp = [SOC V; V,]T and yr = [SOC V]I,
respectively.

System matrices Ag, Bg, Cg, Dg and Hg are calculated by

(1 0 0
Ap=|0 emor 0 |, (4.15a)
0 0 emc
- __At
3GOOCEAz
Bp= | Ri(1—emer) | (4.15b)
RQ 1— 61:‘?27%}2
[ 1 0 0
CE = 8‘/;0 1 —1 5 (4150)
9S0C | 4o,
Dy = [ 0 (4.15d)
E i —Rs 3 .
[ 0
Hy = AV , 4.15
= 1,.(S0C,) — SOC, (4:15¢)
9S0C |40,

where SOC, is the battery SOC at previous sampling time (k — 1) about which the
system is linearized.
By applying Eq. (4.9), the maximum permissible current accounting for electrical

constraints such as SOC and voltage limits, SOC and V, is determined respectively

by using Eqs. (4.16a]) and (4.16b)),

N-1 -1
I]fﬁgsk = (Z CElAzEBE + DE1> (SOC - CElAgCL’E,k - HEI) ) (4.16&)
=0
B N-1 -1
[kf;r‘;x,k = < CEQAZEJBE + DE2> (V - CEQAgl'E,k - HE2> y (416b)
=0
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where subscripts 1 and 2 denote the row indices of system matrices corresponding to

SOC and terminal voltage respectively. The overall maximum permissible current is

determined by comparing Eqs. (4.13) and (4.16]).

4.4.3 Power Capability Estimation

The power capability accounting for all constraints is estimated by the product
of the maximum allowable current and terminal voltage. Maximum discharge and

charge currents accounting for all constraints are calculated with

dch [ 7ESOCmin 7E.Vain 7T.dch
Ty maxe = LTy G 5 oy s Lo max e (4.17a)
chg . E,SOCmax 7F,Vmax 77,chg

Ty inge = max{ Ly o L o I i i - (4.17b)

It is noteworthy that Eqs. (4.17a)) and (4.17b)) can be considered as general solutions

that can be made specific to the load governor/regulator problem by choosing an
appropriate prediction horizon and sampling frequency.
Therefore, the maximum power capability of the battery {P, maxi: Pomink} 18

obtained as follows

_ 7dch dch

By max e = [b,max,k * Vi+ Nk (4.18a)
__ gchg chg

Pb,min,k - Ib,min,k: : Vk—i-le’ (418b)

where the terminal voltage after N future sample steps qu+ Nk is calculated with

[ NAt
Vissnge = Voe (SOCk - W) — I Fls

—NAt

2 — NAt
— Z (e RiCi V;  + Iﬁgﬁax?kRi (1 — e RiGi )) , (4.19a)
i=1

e NAt
chg o b,min,k __ gchg
Vk+N|k - ‘/OC (SOCk - ?)GOOCb ) [b,min,kRS

2

—NAt Chg —NAt
— Z (e FCi Vi + I in o i (1 — e RiGi )) . (4.19b)
i=1

4.5 Simulation Results

In this section, we investigate the performance of the proposed model-based

method to estimate power capability through a battery simulation with a predic-
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Figure 4.10: Performance of power capability estimation method during repeated
operations at 30°C ambient temperature and natural convection (6 W/m?/K): (a)
current, (b) power, (c) voltage, (d) temperature, (e) SOC

tion horizon of 10 seconds and a 10 Hz sampling frequency. Figure M(a) illustrates
repeated discharge duty cycles provided in [93]. Figures [1.10[b)—(e) show the esti-
mated power capabilities and actual power drawn from the battery, corresponding
terminal voltage, battery temperature and SOC profiles, respectively. The ambient
temperature is assumed to be 30°C and natural convection