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ABSTRACT

Power Capability Estimation Accounting for Thermal and
Electrical Constraints of Lithium-ion Batteries

by

Youngki Kim

Co-Chairs: Zoran S. Filipi, Anna G. Stefanopoulou

Lithium-ion (Li-ion) batteries have become one of the most critical components in

vehicle electrification due to their high specific power and energy density. The per-

formance and longevity of these batteries rely on constraining their operation such

that voltage and temperature are regulated within prescribed intervals. Enforcement

of constraints on the power capability is a viable solution to protect Li-ion batteries

from overheating as well as over-charge/discharge. Moreover, the ability to estimate

power capability is vital in formulating power management strategies that account for

battery performance limitations while minimizing fuel consumption and emissions.

To estimate power capability accounting for thermal and electrical constraints,

the characterization of thermal and electrical system behavior is required. In the

course of addressing this problem, first, a computationally efficient thermal model

for a cylindrical battery is developed. The solution of the convective heat transfer

problem is approximated by polynomials with identifiable parameters that have phys-

ical meaning. The parameterized thermal model is shown to accurately predict the

measured core and surface temperatures.

The model-based thermal estimation methodology is augmented for cases of un-

known cooling conditions. The proposed method is shown with experimental data to

accurately provide estimates of the core temperature even under faults in the cooling

system.

To jointly account for the thermal and electrical constraints, we utilize time scale

separation, and propose a real-time implementable method to predict power capa-

bility of a Li-ion battery. The parameterized battery thermal model and estimation

xiii



algorithms are integrated into a power management system for a series hybrid elec-

tric vehicle. An algorithm for sequential estimation of coupled model parameters and

states is developed using sensitivity-based parameter grouping. The fully integrated

co-simulation of the battery electro-thermal behavior and the on-line adaptive esti-

mators reveal that the power management system can effectively determine power

flow among hybrid powertrain components without violating operational constraints.

xiv



CHAPTER I

Introduction

1.1 Motivation

Reducing dependence on imported oil and minimizing vehicular emission are

strong motivations to develop a fuel-efficient, clean, and sustainable transportation

system. Figure 1.1(a) shows that world crude oil prices have increased considerably

over the past years. This trend occurs mostly due to the fact that oil production

does not grow and reserves are limited while oil demand grows strongly as the global

economy marches towards recovery. The gap between oil supply and demand (Fig.

1.1(b)) will be widened without adequate efforts to reduce the dependence of vehicles

on petroleum. While Fig. 1.2(a) shows the numbers of light-duty vehicles in the

United States, Fig. 1.2(b) presents similar data from a basket of countries. Even

though the number of registered vehicles reached a maximum in 2008 in the U.S.,

Sivak expects an improving economy and a growing population to lead to continua-

tion of overall trend [1]. Limited oil reserves are a critical factor that may aggregate

economic dependence on other oil-supplying countries. Moreover, growing concerns

about tailpipe emissions of both pollutants and greenhouse gases, declared a threat to

public health and the natural environment by the Environmental Protection Agency

(EPA), lead to stringent emissions regulations.

Vehicle electrification, one of the promising technologies for improved fuel econ-

omy, tailpipe emissions, and sustainability, has been extensively studied over the past

decade. The number of electrified vehicles including hybrid electric vehicles (HEVs),

Plug-in hybrid electric vehicles (PHEVs) and Electric Vehicles (EVs) is expected to

increase rapidly whereas that of petroleum-based vehicles is expected to decrease [5].

To realize vehicle electrification, various different topologies for hybrid electrified ve-

hicles have been explored; e.g. series [6–9], parallel [10–12], and power split (or

series-parallel) [13–15]. Any of these hybrid electric architectures requires an energy

1
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Figure 1.1: (a) Spot prices for crude oil [2], (b) Petroleum production, import, export,
and consumption in United States [3]
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Figure 1.2: (a) Registered light-duty vehicles in United States from 1984 to 2011 [1],
(b) Increase of world car fleet by decades (EAGLEs: Russia, Turkey, Brazil, Mexico,
China, India, Indonesia, Korea, Taiwan; Nest: Poland, Ukraine, Argentina, Chile,
Colombia, Peru, Bangladesh, Malaysia, Pakistan, Philippines, Thailand, Vietnam,
Egypt, Nigeria, S.Africa; G7: France, Germany, Italy, UK, Canada, USA, Japan;
Other: Spain, Australia, Iran, S.Arabia [4]
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Table 1.1: Typical characteristics of battery technologies [16, 17]

Technology Specific Energy Energy Density Specific Power Cycle life*
[Wh/kg] [Wh/L] [W/kg] [cycles]

Lead-acid 30–50 60–100 200-400 400–800
Ni-Fe 30–55 60–110 25–110 1200–4000
Ni-Zn 60–65 120–130 150–300 100–300
Ni-MH ∼75 ∼240 ∼1000 750–1200
Li-ion 100-200 100–600 350–1500 1000–4000

* Typical cycle life at deep depth of discharge

storage system and Li-ion batteries have become one of the most critical components

over the past decade.

Li-ion batteries have superior performance compared to other battery technologies

for applications requiring high rates, high energy density, and deep discharge as shown

in Table 1.1. Moreover, Li-ion batteries benefit from minimal memory effects and

relatively broad operating temperature ranges [16, 18]. Table 1.2 illustrates that Li-

ion batteries have been widely used in the realization of state-of-art of electrified

vehicles, such as the Tesla Roadster, Chevrolet Volt, Ford CMAX, etc. However, the

Li-ion battery has the drawback that, as shown in Figures 1.3(a) and (b), its cycle life

is considerably decreased when operating at high or low temperatures. This presents

a problem in automotive applications where high current rates needed for vehicle

acceleration cause internal heating of the battery. The battery capacity and the

available power decrease considerably during operations at high temperatures due

to irreversible chemical reactions [19]. In addition, the performance of the cooling

system can degrade generally due to various reasons such as dust on fan blades and

heat exchanger, partial blockage in pipes, motor/pump ageing, and motor/pump

failure. If cell temperature is not monitored and controlled, a battery can experience

a thermal runaway, with the possible risk of explosion [20,21].

Thus, accurate knowledge of the battery temperature as well as the battery state-

of-charge and voltage should be considered in power management for robust vehicle

operation.
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Table 1.2: Li-ion battery cell/pack specification of electrified vehicles

Type Vehicle
Positive Size(mm) Voltage(V) Pack Cooling

Electrode Material /Number /Capacity(Ah) Capacity(kWh) Method

EV

Tesla
LiCoO2

18-65 3.6
53 Liquid

Roadster /6831 /2.9
Tesla

LiCoO2
18-65 3.6

60 Liquid
Model S /∼5000 /2.9
Daimler

LiMO2
208-248-11 3.6

17.6
Liquid

Smart /∼120 /40 /Metal
Nissan

LiMn2O4+LiMO2
290-216-7.1 3.8

24 Air
Leaf /192 /33.1

Mitsubishi
Li2TiO3

113.5-171-43.8 3.7
16 Air

i-MiEV /88 /50

PHEV

Chevrolet
LiMn2O4+LiMO2

162-230-6 3.7
16 Liquid

Volt /288 /15
Toyota

LiMO2
148-106-27 3.7

4.6 Air
PRIUS Plug-In /56 /22

HEV
Ford

LiMO2
120-85-12.7 3.5

1.4 Air
CMAX hybrid /76 /5

M = Co, Ni, Mn
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Figure 1.3: Temperature dependence of cycle life performance of Li-ion batter-
ies: (a) Discharge capacity at different temperatures as a function of cycle number
(LiNi0.8Co0.15Al0.05O2/graphite) [22], (b) Discharge curves of a fresh cell from 4.1 to
3.0 V at 1C rate measured at different temperatures (LiFePO4/graphite) [23]
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1.2 Battery Models in Literature

The power capability of a battery refers to the constant power that can be drawn

safely from the battery over a finite window of time; information on the power ca-

pability is critical in making control decisions. In applications such as automotive,

aerospace, and robotics, decisions are made by supervisory controllers that manage

power or energy flow [24]. Model-based methods to estimate power capability in

real-time have been addressed in [25–30] wherein algorithms accounting for electrical

and electrochemical constraints such as terminal voltage and battery state-of-charge

(SOC) are developed. It is necessary to include temperature as a constraint in the

estimation of power capability since battery capacity fade can be accelerated by oper-

ation outside battery manufacturers’ recommended temperature ranges. Thus, limits

on the operating temperatures of Li-ion batteries must be enforced so as to ensure

safe and reliable operation.

Temperature regulation can be achieved by using active thermal management sys-

tems or limiting the peak current drawn from the batteries. These strategies increase

the rate of heat rejection or limit the rate of internal heat generation, respectively [31].

Since Li-ion batteries for applications such as laptop computers, satellites and mobile

robots usually have limited cooling, it is critical to control discharge currents so that

operating temperatures do not exceed the maximum permissible value. Traditionally,

thermostatic or proportional-integral-derivative (PID) controllers are used to limit

current or power drawn from the battery when the measured temperature exceeds

the predefined limits. However, calibrating thermostatic thresholds, dead-bands, and

PID gains and integrating them with the overall power allocation strategies in battery

management systems, is a non-trivial problem.

Many approaches have been proposed to predict the electrical and thermal behav-

ior of Li-ion batteries, not only for understanding internal dynamics of the battery

system, but also for developing model-based estimation and control algorithms. In

this section, a literature review of electrical and thermal modeling along with power

capability estimation is presented. First, battery models that capture electrical dy-

namics are explained. A so-called electrochemical model and an equivalent-circuit

model will be described. Thermal modeling which is used to describe the heat gen-

eration in battery systems and the evolution of the temperature distribution within

them will be presented.
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1.2.1 Electrochemical Model

Electrochemical models are phenomenological in the sense that they rely on pa-

rameters that cannot be computationally identified from first principles, but must

be characterized experimentally. Fuller et al. were the first to develop a detailed

Li-ion battery cell model based on porous electrode and concentrated solution theo-

ries, Ohm’s law, and intercalation kinetics [32]. This pseudo-two-dimensional (P2D)

model developed by Fuller et al. is useful for understanding the influence of vari-

ous parameters in transport limitations such as intercalation diffusion or electrolyte

conductivity. Ramadass et al. extended the Fuller model by providing simple math-

ematical relations to capture capacity fade, hence enabling the simulation of Li-ion

batteries to study degradation in performance as a consequence of aging [33].

Even though the developed model is capable of predicting the instantaneous dis-

tribution of lithium, as well as the distributions of potential and current in the solid

and liquid phases, computational expense makes the P2D model less attractive in

control applications. To reduce the computational burden, Smith et al. developed a

12th order control-oriented model from a 313th order nonlinear CFD model by ap-

plying a residue grouping-based model reduction [34]. The accuracy of the reduced

order model was validated against the CFD model within 1% for pulse and constant

current profiles at rates up to 50C. Forman et al. used infinite dimensional Páde

approximation and quasi-linearization so that the number of states in the P2D model

were reduced by 98% without significant sacrifice in accuracy [35]. On the other hand,

Ning and Popov applied the single particle (SP) model to Li-ion batteries [36]. The

SP model was originally proposed by Haran et al. for Nickel Metal Hydride batter-

ies [37]. In the SP model approach, the detailed distribution of concentration in the

liquid phase is ignored and the liquid phase potential is simplified. Subramanian et

al. introduced a high-order polynomial approximation to simplify the solid diffusion

dynamics [38], whereas Di Domenico et al. used the finite difference method (FDM)

with even discretization [39]. Lee et al. explored further simplification by uneven

discretization while utilizing the SP model with FDM for the battery power manage-

ment [40,41]. The SP model requires low computational power, and hence the model

is appropriate for real-time applications. However, assumptions and simplifications

in the SP model restrict it to low-current operation (e.g. <5C). In addition, the

identification of a large number of parameters is not an easy task [42].
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Figure 1.4: An example of the equivalent-circuit model: OCV-R-RC-RC

1.2.2 Equivalent-Circuit Model

Equivalent-circuit models (ECMs), which do not consider fundamental physics,

have been widely used to provide relationships between the input and output bat-

tery systems while balancing model fidelity and complexity [25, 26, 43–49]. As seen

from Fig. 1.4, equivalent-circuit models consist of an open circuit voltage (OCV)

included as a voltage source in the circuit, an ohmic resistance and several pairs of

parallel resistances and capacitances. Prasad and Rahn showed the explicit relation-

ships between resistances and capacitances and electrochemical parameters of a Li-ion

battery [50]. These relationships were derived by investigating the impedance of the

Páde approximated Single Particle model. These virtual components are usually

parameterized as functions of battery SOC and/or temperature using experimental

data. Equivalent-circuit models are computationally efficient, which motivates their

use in the development of real-time model-based SOC, state-of-health (SOH) and

state-of-power (SOP) estimators and power management strategies for HEVs.

Hu et al. compared 12 different equivalent-circuit models of Li-ion batteries

from open literature [25, 26, 43–49] in terms of accuracy of voltage prediction [51].

Two typical commercial Li-batteries, namely Sony’s LiCoO2/graphite and A123’s

LiFePO4/graphite, were tested by using standard hybrid vehicle drive cycles. The

authors suggested that the inclusion of RC dynamics is critical to improve the volt-

age prediction but increased model complexity does not necessarily lead to reduced

errors.

Therefore, an ECM is used to capture the current-voltage relationship for control-

oriented design in this dissertation. In particular, the model’s order is chosen to meet

the level of accuracy contextually warranted.

• To model the battery as a plant, an OCV-R-RC-RC model is used as parame-
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terized in [49].

• To model the battery in development of a state-parameter estimator, an OCV-

R-RC model is used as suggested in [51].

• To model the battery in development of a power management strategy, an OCV-

R model is used similarly to [11,30,52].

1.2.3 Thermal Coupling

The need for an accurate thermal model for Li-ion batteries is significant since the

performance, life, and safety are influenced by their temperature. The generation of

heat associated with internal resistance of the battery is unavoidable and particularly

substantial at high current. In 1985, Bernardi et al. presented a general expression

for battery heat generation using a thermodynamic energy balance on a single cell,

in which they considered the processes relating to electrochemical reactions, phase

changes, and mixing [53]. In a simplified form, the equation by Bernardi et al. has

since been used widely to simulate the thermal response of Li-ion batteries. Thomas

and Newman found that the contribution of heat of mixing to total heat generation

is small, and that the entropy of reaction accounting for reversible heat effect may be

comparable to the Joule heating [54].

Pals and Newman developed a thermal model for both a cell and a cell stack

by applying Bernardi’s energy balance equation [55, 56]. Smith and Wang studied

thermal effects on power capability by neglecting reversible heat since irreversible heat

dominates at the high currents (large magnitude) encountered in HEV applications

[57]. Guo et al. developed a simplified thermal-electrochemical model, in which the

SP model was coupled with a simplified energy balance equation [58]. Guo and White

used this model to simulate the electrical and thermal behaviors of a satellite battery

pack [59].

In the aforementioned modeling approaches, the battery cell is assumed to be

isothermal; thus, the spatial temperature distribution within the battery is neglected.

This assumption is acceptable for small batteries operating at low rates. However,

spatial temperature distribution can be significant for large format cells and high

current operation.

To address spatial temperature distribution in a heat transfer problem, Gu and

Wang developed a thermal-electrochemical coupled battery model [60]. The porous

electrode model was coupled with a lumped thermal model to predict the internal

10



temperature distribution, as well as the evolution of average cell temperature. More-

over, temperature-dependent physicochemical properties were introduced to couple

the thermal model with the models of multiphase mass transport and electrochem-

ical kinetics. In a similar vein, Kumaresan et al. applied Gu and Wang’s model

to simulate the behaviors of LiCoO2/meso-carbon micro-beads (MCMB) pouch cells

discharging at different temperatures [61].

Even though physics-based models enable a detailed prediction of the spatial

temperature distribution, they are not easy to be implemented in control applica-

tions because of computational cost. Thus, much effort has been invested into the

development of reduced-order models for prismatic and cylindrical cells with a bal-

ance between accuracy and computational cost. In [62], a one-plus-one-dimensional

(1+1-D) modeling approach was proposed to solve the thermal dynamics in a pris-

matic battery; this model was an an extension of the solution to the 1-D spatial heat

transfer problem. Muratori et al. developed a reduced-order model for a cylindrical

battery to predict battery temperatures at core and surface [63]. For model reduc-

tion, a balanced truncation method was used to approximate the analytical solution

to a heat transfer problem with uniform heat generation in a cylindrical battery.

This reduced-order model was validated against a three-dimensional Finite Element

Method (FEM). However, this approach has a drawback that an extra calculation for

model reduction is required when cooling condition changes. In addition, the states

in the reduced-order system do not carry any physical meaning in the original system.

Park and Jaura developed a two-state thermal model using lumped parameters

such as thermal capacitance and resistance, and incorporated the lumped-parameter

thermal model into an equivalent-circuit battery model [64]. Forgez et al. adopted a

simplified heat generation equation for a lumped-parameter thermal model and exper-

imentally demonstrated a significant difference between core and surface temperatures

in a cylindrical battery cell [65]. Lin et al. developed an adaptive observer to estimate

unmeasurable core temperatures and battery state-of-health via a lumped-parameter

thermal model [66]. This lumped-parameter thermal model is appropriate to design a

battery management system (BMS) since low computational power is required. Nev-

ertheless, the assumption that the heat is generated at the core of the battery cell

may lead to an overestimation of the core temperature.

Therefore, in this dissertation, a new modeling approach is proposed in Chapter II

to derive a reduced-order thermal model for a cylindrical battery by applying poly-

nomial approximation to solve the convective heat transfer problem governed by a

partial differential equation.
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1.3 Contributions

The contributions in this dissertation and relevant publications are summarized

as follows.

In Chapter II, a computationally efficient thermal model for a cylindrical battery

is developed. For model reduction, the solution of the convective heat transfer prob-

lem is approximated by polynomials. The proposed thermal model with identified

thermal properties is shown to accurately predict the core and surface temperatures

alongside volume-averaged temperature and volume-averaged temperature gradient

of a cylindrical Li-ion battery.

Y. Kim, J. B. Siegel, and A. G. Stefanopoulou, “A computationally efficient

thermal model of cylindrical battery cells for the estimation of radially distributed

temperatures,” in Proceedings of the American Control Conference, (Washing-

ton, DC, USA), pp. 698-703, Jun 17-19, 2013.

In Chapter III, a method to estimate the radial temperature distribution inside

a cylindrical Li-ion battery under unknown cooling conditions is proposed. The pro-

posed method is shown with experimental data to accurately provide estimates of the

core temperature and convection coefficient under uncertain operating conditions.

Y. Kim, S. Mohan, J. B. Siegel, A. G. Stefanopoulou, and Y. Ding, “The

Estimation of Radial Temperature Distribution in Cylindrical Battery Cells un-

der Unknown Cooling Conditions,” IEEE Conference on Decision and Control,

(Firenze, Italy), Dec 10-13, 2013

Y. Kim, S. Mohan, J. B. Siegel, A. G. Stefanopoulou, and Y. Ding, “The

Estimation of Temperature Distribution in Cylindrical Battery Cells under Un-

known Cooling Conditions,” Control Systems Technology, IEEE Transactions

on, accepted with minor revisions

In Chapter IV, a real-time implementable method is proposed to compute power

capability accounting for thermal and electrical constraints. The proposed method is

based on the time scale separation of the electrical and thermal dynamics.

Y. Kim, S. Mohan, J. B. Siegel, and A. G. Stefanopoulou, “Maximum Power

Estimation of Lithium-ion Batteries Accounting for Thermal and Electrical

Constraints,” in ASME Dynamic Systems Control Conference, (Palo Alto, CA,

USA), Oct 22-24, 2013
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T. Ersal, Y. Kim, J. Broderick, T. Guo, A. Sadrpour, A. Stefanopoulou, J.

Siegel, D. Tilbury, E. Atkins, H. Peng, J. Jin and G. Ulsoy, “Keeping Ground

Robots on the Move through Better Battery and Mission Management,” ASME

Dynamic Systems and Control Magazine, submitted

In Chapter V, the proposed battery thermal model and estimation algorithms

from the previous chapters are integrated into a power management system for a se-

ries hybrid electric vehicle. An algorithm for sequential estimation of coupled model

parameters and states is developed. For the electrical system, parameter grouping

based on sensitivity is utilized to formulate the state-parameter estimation prob-

lem. The estimated states and parameters of the battery are used to compute the

maximum allowable power of the battery. The results of the model-in-the-loop simu-

lation reveal that the power management system can effectively determine power flow

among hybrid powertrain components without violating operational constraints with

information about battery state-of-charge, internal resistance, and power capability.

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter II describes the reduced-order

thermal model for a cylindrical battery. The developed model is used for the design

of an adaptive estimator in Chapter III. Chapter IV develops a computationally

efficient method to predict the power capability of a Li-ion battery accounting for

thermal and electrical constraints. A procedure to measure the entropy change of a

Li-ion battery and to identify thermal properties is presented. Chapter V discusses a

case study – applying the developed battery state-parameter estimation algorithms

to a series hybrid electric vehicle. Finally, Chapter VI summarizes the main results of

this dissertation, its original contributions, and possible future research directions.
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CHAPTER II

Development of a Computationally Efficient

Thermal Model of Cylindrical Battery Cells

2.1 Introduction

This chapter presents a computationally efficient thermal model of a cylindrical

Li-ion battery for real-time applications. Such a model can be used for thermal

management of the battery system in electrified vehicles. The thermal properties are

modeled by volume averaged lumped values under the assumption of a homogeneous

and isotropic volume. A polynomial approximation is then used to estimate the

radial temperature distribution that arises from heat generation inside the cell during

normal operation. Unlike previous control oriented models which use discretization

of the heat equation, this model formulation uses two states to represent the average

value of temperature and its gradient. The model is parameterized and validated

using experimental data from a 2.3 Ah 26650 Lithium-Iron-Phosphate (LiFePO4 or

LFP) battery cell.

This chapter is organized as follows. Section 2.2 presents the convective heat

transfer problem for a cylindrical battery cell. The two-state thermal model using

polynomial approximation is addressed. The frequency responses of the transfer func-

tion of the proposed model are compared to those of the analytical solution and the

numerical solution, showing the accuracy of the proposed model. Then, the lumped

thermal properties of the battery, namely the thermal conductivity, the specific heat

capacity and the convection coefficient are experimentally identified in Section 2.3.

Finally, conclusions are drawn in Section 2.4.
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Figure 2.1: (a) Schematic for a A123 26650 cylindrical battery, (b) parabolic temper-
ature profile under uniform heat generation

2.2 Heat Transfer Problem in Cylindrical Batteries

This section considers the radially distributed one dimensional (1-D) thermal be-

havior of a cylindrical battery cell with convective heat transfer boundary condition

as illustrated in Fig. 2.1(a) [67]. A cylindrical Li-ion battery, a so-called jelly-roll,

is fabricated by rolling a stack of cathode/separator/anode layers. The individual

layered sheets are thin, therefore, lumped parameters are used so that material prop-

erties such as the thermal conductivity kt, density ρ, and specific heat capacity cp are

assumed to be constant in a homogeneous and isotropic body. For spiral wound cur-

rent collectors with multiple connections to the battery tab, it is reasonable to assume

uniform heat generation along the radial direction as illustrated in Fig. 2.1(b) [68].

The thermal conductivity is one or two orders of magnitude higher in the axial direc-

tion than in the radial direction [69]. Therefore, the temperature distribution in the

axial direction will be more uniform. The equation that governs the 1-D temperature

distribution T (r, t) is

ρcp
∂T (r, t)

∂t
= kt

∂2T (r, t)

∂r2
+
kt
r

∂T (r, t)

∂r
+
q̇(t)

Vb

, (2.1)
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and boundary conditions (BCs) are given by

∂T (r, t)

∂r

∣∣∣
r=0

= 0, (2.2a)

∂T (r, t)

∂r

∣∣∣
r=R

= − h

kt
(T (R, t)− T∞(t)), (2.2b)

where t represents the time. The radius of the battery is R, q̇ is the heat generation

inside the battery, and Vb is the volume of battery. The ambient temperature for

convection is denoted by T∞. The boundary condition in Eq. (2.2a) represents the

symmetric structure of the battery about the core. The other boundary condition

shown in Eq. (2.2b) indicates convective heat transfer at the battery surface.

In the following subsections, several approaches to solving PDE (2.2) are pre-

sented. Then, a computationally efficient reduced-order model is developed. Specif-

ically, analytical and numerical solutions can be considered as references to be com-

pared to the proposed method.

2.2.1 Analytical Solution

An analytical solution of PDE (2.2) can be obtained by applying a Laplace Trans-

form as suggested in [62]. In the complex domain, the PDE system is converted to

an ODE system under the zero initial conditions as following:

d2Θ(r, s)

dr2
+

1

r

dΘ(r, s)

dr
− s

α
Θ(r, s) = −Q(s)

ktVb

, (2.3a)

dΘ(r, s)

dr

∣∣∣
r=0

= 0, (2.3b)

dΘ(r, s)

dr

∣∣∣
r=R

= − h
kt

(Θ(R, s)−Θ∞(s)) , (2.3c)

where s is the frequency variable in the complex domain and the thermal diffusivity

is defined by α = kt/ρcp. The variables Θ, Θ∞ and Q are the transformed battery

temperature, ambient temperature, and heat generation rate, respectively.

The homogeneous problem associated with equation (2.3a) is Bessel’s equation.

The only solution consistent with BC (2.3b) is

Θ(r, s) = CJ0(ζr) +
Q(s)

ktVbζ2
, (2.4)

where J0 is the 0th order Bessel function of the first kind. The coefficient C is
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determined using Eq. (2.3c):

C =

− h
kt

(
Q(s)

ktVbζ2
+ Θ∞(s)

)
h

kt
J0(ζR)− ζJ1(ζR)

, (2.5)

where ζ2 = s/α.

Specifically, transfer functions Ha, the frequency responses of the battery at the

core and surface to the inputs of heat generation rate and ambient temperature, are

given by [
Θ(0, s)

Θ(R, s)

]
=

[
Ha

11 Ha
12

Ha
21 Ha

22

][
Q(s)

Θ∞(s)

]
(2.6)

where

Ha
11 =

h

kt

(
−1 + J0

(
R

√
s

α

))
−
√
s

α
J1

(
R

√
s

α

)
h

kt
J0

(
R

√
s

α

)
−
√
s

α
J1

(
R

√
s

α

) α

ktVbs
(2.7a)

Ha
12 =

h

kt
h

kt
J0

(
R

√
s

α

)
−
√
s

α
J1

(
R

√
s

α

) (2.7b)

Ha
21 =

−
√
s

α
J1

(
R

√
s

α

)
h

kt
J0

(
R

√
s

α

)
−
√
s

α
J1

(
R

√
s

α

) α

ktVbs
(2.7c)

Ha
22 =

h

kt
J0

(
R

√
s

α

)
h

kt
J0

(
R

√
s

α

)
−
√
s

α
J1

(
R

√
s

α

) (2.7d)

It is noted that these transfer functions are not algebraic but transcendental. There-

fore, a model reduction technique is required to extract a finite number of states

to predict thermal behaviors of the battery in time domain. A balanced truncation

method is applied for model reduction in [62] where Muratori et al. showed the ac-

curacy of the model in comparison with results from the numerical method, namely

Finite Element Method. Nevertheless, this model has two drawbacks that make it
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difficult to be used in real-time application: (1) extra calculation for model reduc-

tion is required when cooling condition changes, (2) the states of the reduced-order

model do not have physical meanings. This analytical solution is used to validate the

proposed reduced-order model presented in Section 2.2.3.

2.2.2 Numerical Solution: Finite Difference Method

The PDE (2.2) with its initial conditions can be also numerically solved to predict

the temperature distribution in the battery using the finite difference method. By

dividing the radius of the cylindrical battery in N intervals (or, N+1 nodes) with the

incremental size of ∆r = R/N , the first and the second partial derivatives in the PDE

at ith node can be approximated with the finite difference equations as following:

∂Ti
∂r

=
Ti+1 − Ti−1

2∆r
, (2.8a)

∂2Ti
∂r2

=
Ti−1 − Ti + Ti+1

∆r2
, (2.8b)

where i ∈ {1, 2, . . . , N − 1}.
By substituting Eq. (2.8) into the PDE (2.2), the heat transfer problem at ith

node can be expressed by

dTi
dt

=
α

(∆r)2

(2i− 1)Ti−1 − 4iTi + (2i+ 1)Ti+1

2i
+

α

ktVb

q̇. (2.9)

Using symmetric and convective boundary conditions, temperatures at the core

(i = 0) and the surface (i = N) are described by

T0 =T1, (2.10a)

TN =
ktTN−1 + h∆rT∞

kt + h∆r
. (2.10b)

Finally, a set of ordinary differential equations to predict the temperature distri-

bution in the battery is generated using Eqs. (2.9) and (2.10) as given by

ϑ̇ =Anϑ+Bnu (2.11a)

yn =Cnϑ+Dnu (2.11b)

where ϑ = [T1 T2 . . . TN−1]T , u = [q̇ T∞]T and yn = [T0 TN ]T are states, inputs and

outputs, respectively.
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System matrices are defined as following:

An = ξ1



−3

2

3

2
0 . . . . . . 0

3

4
−2

5

4
0 . . .

...

...
. . . . . . . . . . . . 0

... . . . 0
2N − 5

2(N − 2)
−2

2N − 3

2(N − 2)

0 . . . . . . 0
2N − 3

2(N − 1)
−2 +

2N − 1

2(N − 1)
ξ1


, (2.12a)

Bn = ξ2

 1 . . . . . . 1

0 . . . 0
2N − 1

2(N − 1)

ξ4

ξ2

T , (2.12b)

Cn =

[
1 0 . . . 0

0 . . . 0 ξ3

]
, (2.12c)

Dn =

[
0 . . . . . . 0

0 . . . 0 ξ4

]T
, (2.12d)

where ξ1 =
α

(∆r)2
, ξ2 =

α

ktVb
, ξ3 =

kt
kt + h∆r

and ξ4 =
h∆r

kt + h∆r
.

Therefore, transfer functions Hn, frequency responses of the battery core and its

surface to inputs from the numerical solution, can be obtained by

Hn(s) = Cn(sI − An)−1Bn +Dn. (2.13)

where the variable I is the identity matrix.

For a sufficiently large number of discretization N , it is expected that frequency

responses from the numerical method converge to analytical solutions’

lim
N→∞

Hn
ij(s) ≈ Ha

ij(s), (2.14)

where i, j ∈ {1, 2}.
Unlike the reduced-order model obtained from the analytical solution, no extra

calculation are required and the influence of change in parameters can be predicted

since system matrices are computed using physical parameters. Nevertheless, a large

number of states makes this model challenging to be implemented in real-time ap-

plication. These drawbacks can be resolved by the computationally efficient model

proposed in the following section.
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2.2.3 Model Reduction via Polynomial Approximation

With evenly distributed heat generation, the temperature distribution along r-

direction of the battery is assumed to satisfy the following polynomial approximation

proposed in [38]

T (r, t) = a(t) + b(t)
( r
R

)2

+ d(t)
( r
R

)4

, (2.15)

where a(t), b(t), and d(t) are time-varying coefficients. To satisfy the symmetric

boundary condition at the core of the battery, Eq. (2.15) contains only even powers

of r. Thus, the temperatures at the core and the surface of the battery can be

expressed as

Tc = a(t), (2.16a)

Ts = a(t) + b(t) + d(t), (2.16b)

where subscripts c and s denote core and surface, respectively.

The volume-averaged temperature T̄ and temperature gradient γ̄ are introduced

as follows:

T̄ =
2

R2

R∫
0

rTdr, (2.17a)

γ̄ =
2

R2

R∫
0

r

(
∂T

∂r

)
dr. (2.17b)

These volume-averaged values are used as the states unlike existing approaches in

[64], [65], and [66].

By substituting Eq. (2.15) into Eq. (2.17), T̄ and γ̄ can be expressed in terms of

coefficients as

T̄ (t) = a(t) +
b(t)

2
+
d(t)

4
, (2.18a)

γ̄(t) =
4b(t)

3R
+

8d(t)

5R
. (2.18b)

By rearranging Eqs. (2.16) and (2.18), time-varying coefficients a(t), b(t), and

20



d(t) can be written as

a(t) = 4Ts − 3T̄ − 15R

8
γ̄, (2.19a)

b(t) = − 18Ts + 18T̄ +
15R

2
γ̄, (2.19b)

d(t) = 15Ts − 15T̄ − 45R

8
γ̄. (2.19c)

The temperature distribution can be expressed as a function of Ts, T̄ , and γ̄ using

Eqs. (2.19) in Eq. (2.15),

T (r, t) = 4Ts − 3T̄ − 15R

8
γ̄ +

[
−18Ts + 18T̄ +

15R

2
γ̄

]( r
R

)2

+

[
15Ts − 15T̄ − 45R

8
γ̄

]( r
R

)4

. (2.20)

By substituting Eq. (2.20) into the following volume-averaged equations,

R∫
0

(
ρcp

∂T (r, t)

∂t
− kt

∂2T (r, t)

∂r2
− kt
r

∂T (r, t)

∂r
− q̇(t)

Vb

)
dr = 0, (2.21a)

R∫
0

∂

∂r

(
ρcp

∂T (r, t)

∂t
− kt

∂2T (r, t)

∂r2
− kt
r

∂T (r, t)

∂r
− q̇(t)

Vb

)
dr = 0, (2.21b)

PDE (2.1) can be converted into two ODEs expressed as

dT̄

dt
+

48α

R2
T̄ − 48α

R2
Ts +

15α

R
γ̄ − α

ktVb

q̇ = 0, (2.22a)

dγ̄

dt
+

320α

R3
T̄ − 320α

R3
Ts +

120α

R2
γ̄ = 0. (2.22b)

Using boundary condition (2.2b), the surface temperature Ts can be rewritten as

Ts =
24kt

24kt +Rh
T̄ +

15ktR

48kt + 2Rh
γ̄ +

Rh

24kt +Rh
T∞. (2.23)

Finally, a two-state thermal model can be given by the following form:

dx

dt
= Ax+Bu, (2.24a)

y = Cx+Du, (2.24b)
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where x = [T̄ γ̄]T , u = [q̇ T∞]T and y = [Tc Ts]
T are states, inputs and outputs

respectively. System matrices A, B, C, and D are defined as follows:

A =


−48αh

R(24kt +Rh)

−15αh

24kt +Rh
−320αh

R2(24kt +Rh)

−120α(4kt +Rh)

R2(24kt +Rh)

, (2.25a)

B =


α

ktVb

48αh

R(24kt +Rh)

0
320αh

R2(24kt +Rh)

, (2.25b)

C =

 24kt − 3Rh

24kt +Rh
−120Rkt + 15R2h

8(24kt +Rh)
24kt

24kt +Rh

15Rkt
48kt + 2Rh

, (2.25c)

D =

 0
4Rh

24kt +Rh

0
Rh

24kt +Rh

. (2.25d)

This state-space representation is used for the parametrization in Section 2.3 and the

estimation of the core temperature and convection coefficient using Kalman Filters

in Chapter III.

2.2.4 Frequency Domain Analysis

The frequency response functions of the reduced-order model, Hp(s) = D+C(sI−
A)−1B, are compared to those of the analytical solution and the finite difference

method with N=30, i.e. Eqs. (2.6) and (2.13), respectively. Parameters used to

generate the plots in Fig. 2.2 are adopted from [62] and are summarized in Table 2.1.

The heat transfer coefficient of h=5W/m2/K is chosen since this value is typical of

natural convection condition [70].

Figure 2.2 shows that the effects of heat generation on the core and the surface

temperatures, denoted by Hp
11(s) and Hp

21(s) respectively, can be accurately predicted

over the whole range of frequency. On the other hand, the responses of the core and

the surface temperatures excited by the ambient temperature, Hp
12(s) and Hp

22(s), are

nearly identical to the analytical solution for frequencies below 10−2 Hz. In general,

the temperature of cooling media does not change rapidly. Thus, the prediction of

temperature distribution using the proposed approach can be considered sufficiently

accurate.

22



10
-6

10
-4

10
-2

10
0
10

1
-100

-50

0

50

M
a
g
n
it
u
d
e
 (
d
B
)

 

 

AS

PA

FD

10
-6

10
-4

10
-2

-50

-25

0

10

M
a
g
n
it
u
d
e
 (
d
B
)

10
-6

10
-4

10
-2

10
0
10

1
-100

-50

0

50

Frequency (Hz)

M
a
g
n
it
u
d
e
 (
d
B
)

10
-6

10
-4

10
-2

-40

-25

-10

0

10

Frequency (Hz)

M
a
g
n
it
u
d
e
 (
d
B
)

H11(s) H12(s)

H21(s) H22(s)

(a)

10
-6

10
-4

10
-2

10
0
10

1
-100

-80

-60

-40

-20

0

P
h
a
s
e
 (
d
e
g
)

 

 

AS

PA

FD

10
-6

10
-4

10
-2

-300

-200

-100

0

P
h
a
s
e
 (
d
e
g
)

10
-6

10
-4

10
-2

10
0
10

1
-100

-80

-60

-40

-20

0

P
h
a
s
e
 (
d
e
g
)

Frequency (Hz)

10
-6

10
-4

10
-2

-80

-60

-40

-20

0

Frequency (Hz)

P
h
a
s
e
 (
d
e
g
)

H11(s)
H12(s)

H21(s)
H22(s)

(b)

Figure 2.2: Comparison of frequency response functions obtained by analytical so-
lution (AS), polynomial approximation (PA), and finite difference method (FD): (a)
magnitude, (b) phase
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Table 2.1: Parameters of the battery [62]

Parameter Symbol Value Unit

Density ρ 1824 kg/m3

Specific heat coeff. cp 825 J/kg/K
Thermal conductivity kt 0.488 W/m/K

Convection coeff. h 5 W/m2/K
Radius R 12.93e-3 m
Height L 65.15e-3 m
Volume Vb 3.4219e-5 m3

2.2.5 Heat Generation Calculation

Heat generation q̇ is the main input to the battery thermal model. It needs to

be accurately calculated from measurement data, such as current and voltage during

operation. From the first law of thermodynamics, the energy balance equation is

written as

dH

dt
= q̇sur − IbVt, (2.26)

where H is the enthalpy, q̇sur is the heat added from surroundings, Ib is the current,

and Vt is the terminal voltage. The term IbVt denotes the rate of electrical work.

In [53], Bernardi et al. proposed a simplified energy balance equation considering

enthalpy change associated with electrochemical reactions. Under assumptions such

as isothermal body, constant system volume and pressure, and neglecting heat gen-

eration due to enthalpy-of-mixing and phase-change, the energy balance equation is

expressed as

Mcp
dT

dt
= q̇ + q̇sur, (2.27a)

q̇ = Ib(Voc − T
∂Voc

∂T
)− IbVt, (2.27b)

where Voc represents the open-circuit voltage (OCV). The OCV is a function of the

battery state-of-charge (SOC) and temperature. As shown in Fig 2.3, the OCV at

room temperature, i.e. 25◦C, is experimentally obtained by averaging the measured

terminal voltages during charging and discharging a battery with C/201 current rate

1A 1C current corresponds to the magnitude of current that discharges/charges the battery
completely in one hour.
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Figure 2.3: Open Circuit Voltage of a 2.3 Ah 26650 LFP battery approximately
obtained by averaging terminal voltages during charging and discharging a battery
with C/20 rate at room temperature

under a Constant Current Constant Voltage (CCCV) charging protocol. The OCV

is then calculated at the estimated SOC value by integrating measured current with

respect to time as

˙SOC = − Ib

3600Cb

, (2.28)

where Cb is the battery capacity in Ah. The sign convention is such that positive

current denotes battery discharging.

The term IbT
∂Voc

∂T
is the reversible heat generation and can be calculated simply

from the entropy of reaction [71]. In this study, this reversible heat generation is

neglected for simplicity. This simplification is warranted since the typical SOC range

of HEV operation is narrow in which ∂Voc

∂T
of the battery is insignificant as shown

in [65] for this chemistry. In addition, the reversible heat generation would have zero

mean value when the battery is operating in charge-sustaining mode, typical of HEV

operation; the OCV becomes a function of battery SOC only.
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Figure 2.4: Data set during Urban-Assault Cycle used for parameter ID: (a) current
and voltage, (b) heat generation rate, (c) ambient temperature

2.3 Parameter Identification

In this section, the value of the lumped parameters in Eq. (2.24) for a 2.3 Ah

26650 LFP battery by A123 are identified through experimentation using the proposed

model. Figure 2.4 shows the current, the voltage, the calculated heat generation rate

and the ambient temperature profiles over the Urban-Assault Cycle (UAC) in [66]

that is used for the parametrization. It is noted that this cycle used for simulating

military ground vehicles has significantly high power demands. The parameterized

model is then validated using measurement data over a different HEV driving cycle.

2.3.1 Identifying Thermal Properties

Parameter identification is important for accurately predicting the temperature

distribution inside a battery. Since density is measurable, only three parameters,

namely kt, cp, and h are considered for parameter identification, i.e. θ = [kt, cp, h]T .

To study the feasibility of accurately estimating the parameters, as a first step,

identifiability analysis is performed. Parameters in a model are structurally identi-

fiable if and only if a unique set of parameters for the model is determined using

perfect noise-free data [72]. In this study, the linearization approach proposed by
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Ben-Zvi [73] is used for its computational efficiency compared to other methods such

as Taylor series expansion [74] and Generating series [75].

The transfer function of the reduced-order model, Hp(s), is defined as follows:

Hp(s) =

[
Hp

11(s) Hp
12(s)

Hp
21(s) Hp

22(s)

]
. (2.29)

Each transfer function is expressed in the following fractional form:

Hp
11(s) ,

Tc(s)

Q(s)
=

κ4s+ κ5

κ1s2 + κ2s+ κ3

, (2.30a)

Hp
21(s) ,

Ts(s)

Q(s)
=

κ6s+ κ7

κ1s2 + κ2s+ κ3

, (2.30b)

Hp
12(s) ,

Tc(s)

T∞(s)
=
κ8s

2 + κ9s+ κ10

κ1s2 + κ2s+ κ3

, (2.30c)

Hp
22(s) ,

Ts(s)

Q∞(s)
=
κ11s

2 + κ12s+ κ10

κ1s2 + κ2s+ κ3

, (2.30d)

where

κ1 = VbktR
3(hR + 24kt), (2.31a)

κ2 = 24VbαR(7hR + 20kt), (2.31b)

κ3 = 960Vbα
2kth, (2.31c)

κ4 = 3αR3(8kt − hR), (2.31d)

κ5 = 240α2R(hR + 2kt), (2.31e)

κ6 = 24αktR
3, (2.31f)

κ7 = 480α2ktR, (2.31g)

κ8 = 4VbαkthR
4, (2.31h)

κ9 = − 72VbαkthR
2, (2.31i)

κ10 = 960Vbα
2kth, (2.31j)

κ11 = VbkthR
4, (2.31k)

κ12 = 168VbαkthR
2. (2.31l)

Define a vector of coefficients, Φ, as follows:

Φ(θ) = [κ1(θ) κ2(θ) · · ·κ12(θ)]. (2.32)
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Figure 2.5: Experimental setup for temperature measurement

The rank of the Jacobian of Φ with respect to parameter θ is used to determine

if all the elements of θ are identifiable. If and only if the Jacobian of Φ is full rank,

then all elements of θ are said to be identifiable. The rank of ∂Φ(θ)
∂θ

is found be to

three which is the same as dim(θ). Therefore, it can be concluded that parameters

of the thermal model are structurally identifiable.

Having established identifiability, experiments similar to [66] are conducted to

identify parameters. An experimental set-up is shown in Fig. 2.5. Measured signals

such as the current, the terminal voltage, the surface and the core temperatures of the

battery along with the ambient temperature are used for the parameter identification.

Thermocouples used for temperature measurements are T-type whose accuracy is the

maximum of 0.5◦C or 0.4% according to technical information from the manufacturer,

OMEGA. Specifically, convection coefficient h is controlled by the fan speed based on

Pulse Width Modulation (PWM) control and ambient temperature inside the thermal

chamber.

Let the error between the measured temperatures and model outputs at each time

step k in vector form be

e(k, θ) = [Tc,p(k, θ) Ts,p(k, θ)]T − [Tc,m(k) Ts,m(k)]T , (2.33)

where subscripts p and m denote model prediction and measurement, respectively.

The battery is allowed to rest at ambient temperature to equilibrate; that is, x(0) =

[T∞ 0]T .

Parameters are identified by minimizing the Euclidean norm of the difference
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Table 2.2: Identified thermal properties

Parameter Symbol Value Reference

Density ρ 2047* 2118 [76]
Specific heat capacity cp 1109.2 1004.9–1102.6 [65,66]
Thermal conductivity kt 0.610 0.488–0.69 [62,76]
Convection coefficient. h 58.6 65.99 [66]

* calculated using measured mass and volume

between the measured and simulated temperatures as given by

θ∗ = argmin
θ

Nf∑
k=1

||e(k, θ)||2, (2.34)

where Nf is the number of measurement points. The minimization problem is solved

by using the fmincon function in MATLAB. The parameters in Table 2.1 are used as

initial guesses for the identification.

Table 2.2 presents the identified thermal properties for the 26650 battery. These

identified values of the parameters are close to the values reported in the literature.

The identified specific heat capacity cp is five percent larger than the mean value

determined in [65] where cp was determined by measuring transient responses of the

battery under current pulses at different rates. Forgez et al. in [65] suggested that

the deviation in identified value of cp might be caused by measurement uncertainty

in temperature and the temperature dependency of the heat capacity. The identified

thermal conductivity kt is within the range of values presented in literature [62,76].

Despite using similar experimental data and setup, the identified convection coef-

ficient is 11% smaller than the coefficient calculated by using thermal resistance and

battery surface area in [66]. This difference between our identified value and the one

in [66] may be due to the two different model structures. Lin et al. in [66] considered

two different materials, namely one for the core and the other for the surface, whereas

we assume the battery is a homogeneous and isotropic body. In order to accurately

determine the convection coefficient, the temperature measurements of a pure metal

during thermal relaxation can be used. For instance, the specific heat capacity of

copper at 25◦C is known to be 385 J/kg/K. For more detailed description about the

experiment, the interested reader is referred to [77].

Figure 2.6 shows the measured and simulated temperatures at the core and the
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Figure 2.6: Comparison between measurement and simulation: (a) core and surface
temperatures, (b) errors

surface of the battery. The error between the measurements and simulated temper-

ature is less than the sensor accuracy of 0.5◦C. Using Eq. (2.20), the temperature

distribution inside the battery can be predicted as presented in Fig. 2.7(a).

Figure 2.7(b) shows the volume-averaged temperature and its gradient of the

battery respectively. There is no significant difference between the volume-averaged

temperature and the linear average of the core and the surface temperatures, i.e.

(Ts+Tc)/2. Existing approaches in [64,65,78] have the capability of predicting the core

temperature and have shown the efficacy of their proposed methods on the prediction

of temperature inside the battery under consideration in this work. However, the

phenomena may differ in the case of a battery with larger radius [79]. The volume-

averaged temperature gradient is different from the linear temperature gradient, i.e.

(Ts − Tc)/R. In particular, the volume-averaged temperature gradient is 1.36 times

greater than linear temperature gradient under the UAC test. Since non-uniform

temperature distribution can lead to accelerated capacity losses of inner core [79], the

volume-averaged temperature gradient is an important metric to describe severity of

temperature inhomogeneity inside the battery.
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Figure 2.7: (a) Expected temperature distribution along the normalized radius (r/R)
using polynomial approximation, (b) battery temperature (top) and temperature gra-
dient (bottom)
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Figure 2.8: Data set during Escort-convoy Cycle used for model validation: (a) current
and voltage, (b) heat generation rate, (c) ambient temperature

2.3.2 Model Validation

To validate the performance of the proposed model with the identified parameters,

the battery was tested under a different HEV drive cycle, the Escort Convoy Cycle

(ECC) [66]. The current and voltage profiles for this cycle are illustrated in Fig.

2.8. Figure 2.9 shows that there are slight differences between the measured and

simulated temperatures; in particular, the root-mean-square errors (RMSEs) of the

core and the surface temperatures are 0.4◦C and 0.3◦C, respectively. These differences

may be explained with the assumption of radially uniform heat generation and high

conductivity in the axial direction. Additionally, the entropy change of the LFP

battery is not properly considered in the heat generation formulation (2.27b), which

might introduce error in the calculation of heat generation rate. Nevertheless, since

the comparison of temperatures shows good agreement and reasonably small RMSEs,

it can be concluded that the proposed model with identified thermal properties is

sufficiently accurate for thermal management during HEV drive cycles.
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Figure 2.9: Comparison between measurement and simulation: (a) core and surface
temperatures, (b) errors

2.4 Conclusion

In this chapter, a radially distributed 1-D thermal modeling approach for a cylin-

drical battery is proposed. Polynomial approximation is applied to obtain a reduced-

order model. Frequency domain analysis shows that the proposed model provides

sufficiently accurate prediction of the core and the surface temperatures with a rea-

sonable assumption that the temperature of cooling media does not change rapidly.

The proposed model is used to identify thermal properties and convective coef-

ficient for a 2.3 Ah 26650 LFP battery using a set of measured data: the current,

the voltage, the core and the surface temperatures along with the ambient temper-

ature over the UAC test. The identified parameters are found to be close to the

values in literature. The proposed thermal model can accurately predict the core

and the surface temperatures along with the volume-averaged temperature and the

volume-averaged temperature gradient of a cylindrical Li-ion battery. Particularly,

the volume-averaged temperature gradient captures the imbalance of temperature

distribution which is useful for controlling battery cooling system.
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CHAPTER III

The Estimation of Temperature Distribution in

Cylindrical Battery Cells under Unknown Cooling

Conditions

3.1 Introduction

The performance of Li-ion batteries is highly affected by operation temperature.

The battery temperature depends on the convection coefficient which in turn is influ-

enced by the flow rate of the cooling system. This flow rate can be actively controlled

by variable speed motors and pumps. However, the performance of the cooling sys-

tem can degrade generally due to various reasons such as dust on fan blades, partial

blockage in pipes, motor/pump ageing, and motor/pump failure. Even though such

degradation or failure can be detected by a fault detection system via pressure and

temperature sensors, the battery management system still needs to identify the con-

vection coefficient in real-time for an accurate estimation of the core temperature.

This chapter presents a model-based approach for estimating the temperature

distribution inside cylindrical batteries under unknown convective cooling conditions.

The reduced order thermal model developed in Chapter II is used. Two state and

parameter estimation methods, namely a Dual Kalman Filter and a joint Extended

Kalman Filter, are then applied for the identification of the convection coefficient

and the estimation of the temperature distribution within the battery. Experimental

results show that the proposed Kalman Filter-based estimation methods can provide

an accurate prediction of core temperature under unknown cooling conditions.

This chapter is organized as follows: Section 3.2 presents the reduced order ther-

mal model for a cylindrical battery with convective cooling. The sensitivity of param-

eters on prediction temperature is numerically analyzed in Section 3.3. In Section 3.4,

temperature estimators applying a Dual Kalman filter and a Joint Extended Kalman
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Filter by using the proposed model are developed for estimating the core temper-

ature and identifying the convection coefficient. Section 3.5 presents and discusses

experimental results and conclusions are drawn in Section 3.6.

3.2 Reduced-Order Thermal Model

Two-state thermal model for a cylindrical battery with convective cooling devel-

oped in Chapter II is adopted and reproduced below for convenience:

dx

dt
= Ax+Bu, (3.1a)

y = Cx+Du, (3.1b)

where x = [T̄ γ̄]T , u = [q̇ T∞]T and y = [Tc Ts]
T are states, inputs and outputs

respectively. The states are given by:

T̄ =
2

R2

R∫
0

rTdr, (3.2a)

γ̄ =
2

R2

R∫
0

r

(
∂T

∂r

)
dr, (3.2b)

where R is the radius of the battery.

System matrices A, B, C, and D are defined as follows:

A =


−48αh

R(24kt +Rh)

−15αh

24kt +Rh
−320αh

R2(24kt +Rh)

−120α(4kt +Rh)

R2(24kt +Rh)

, (3.3a)

B =


α

ktVb

48αh

R(24kt +Rh)

0
320αh

R2(24kt +Rh)

, (3.3b)

C =

 24kt − 3Rh

24kt +Rh
−120Rkt + 15R2h

8(24kt +Rh)
24kt

24kt +Rh

15Rkt
48kt + 2Rh

, (3.3c)

D =

 0
4Rh

24kt +Rh

0
Rh

24kt +Rh

, (3.3d)

35



Table 3.1: Parameters of the battery

Parameter Symbol Value Unit

Density ρ 2047 kg/m3

Specific heat capacity cp 1109.2 J/kg/K
Thermal conductivity kt 0.610 W/m/K

Radius R 12.93e-3 m
Volume Vb 3.4219e-5 m3

where kt and h represent thermal conductivity of the battery and convection co-

efficient, respectively. The thermal diffusivity is defined by α = kt/ρcp where ρ is

volume-averaged density of the battery. The volume of the battery is denoted by Vb.

Parameters of a cylindrical battery under consideration are summarized in Table 3.1.

This state-space representation is used for sensitivity analysis of parameters on

prediction temperature in Section 3.3 and the estimation of the core temperature and

convection coefficient using Kalman Filters such as a Dual Kalman Filter and a Joint

Extended Kalman Filter in Section 3.4

3.3 Parameter Sensitivity Analysis

Parameters of a model may not be practically identifiable or estimable since in-

formation available in the experimental data is insufficient. Parameter inestimability

is attributed to two reasons: (1) the output predicted by the model is not sensi-

tive to parameter variations, (2) the influence of one parameter on the output is not

distinguishable from the influence of other parameters.

Parameter estimability must be assessed to measure whether or which parameters

among thermal conductivity kt, specific heat capacity cp, and convection coefficient h

are estimable with given noisy data such as current and voltage. Sensitivity analysis

is a good method for this assessment. In particular, two approaches are considered,

namely One-Factor-At-A-Time (OFAT) [80] and the Fisher Information Matrix (FIM)

based approach [81].

First, to investigate the impact of variations in parameters on the performance

of temperature prediction, each parameter is varied from the known value at a time

while holding the other parameters fixed. Current and terminal voltage over the

Urban Assault Cycle (UAC) are used as inputs to the thermal model. Figure 3.1

shows that parameters such as thermal conductivity kt and specific heat capacity cp
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Figure 3.1: The effects of parameter variation to temperature prediction at: (a) core,
(b) surface; the convection coefficient has the most significant influence on tempera-
ture prediction.

have more influence on the prediction of core temperature than surface temperature.

This result corresponds to the fact that the generated heat inside the battery cell

is transferred through conduction. On the other hand, the convection coefficient

has the most significant influence on the overall prediction of the core and surface

temperature. In particular, the prediction of surface temperature is most sensitive

to the variation of convection coefficient, which can be explained given the fact that

the convection coefficient is directly related to the following convective boundary

condition,

∂T (r, t)

∂r

∣∣∣
r=R

= − h
kt

(T (R, t)− T∞(t)), (3.4)

where T∞ is ambient temperature.

Despite simplicity to check for the impact of parameter variations to model pre-

diction, the OFAT is not able to assess parameter interactions or correlations. To

account for these effects, the FIM-based method is additionally used to determine

which parameters are estimable using the surface temperature.
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Let a parameter vector be

p = [kt cp h]T . (3.5)

Sensitivity matrix Ψ for specific time periods (t1, t2, . . . , tf ) is calculated by stacking

the partial derivative of output with respect to parameter ∂yi/∂pj (i = 1, 2 and

j = 1, 2, 3) as below

Ψ =



(
p̂1

y(t1)

)
∂y

∂p1

∣∣∣
t1

(
p̂2

y(t1)

)
∂y

∂p2

∣∣∣
t1

(
p̂3

y(t1)

)
∂y

∂p3

∣∣∣
t1(

p̂1

y(t2)

)
∂y

∂p1

∣∣∣
t2

(
p̂2

y(t2)

)
∂y

∂p2

∣∣∣
t2

(
p̂3

y(t2)

)
∂y

∂p3

∣∣∣
t2(

p̂1

y(t3)

)
∂y

∂p1

∣∣∣
t3

(
p̂2

y(t3)

)
∂y

∂p2

∣∣∣
t3

(
p̂3

y(t3)

)
∂y

∂p3

∣∣∣
t3

...(
p̂1

y(tf )

)
∂y

∂p1

∣∣∣
tf

(
p̂2

y(tf )

)
∂y

∂p2

∣∣∣
tf

(
p̂3

y(tf )

)
∂y

∂p3

∣∣∣
tf


, (3.6)

while solving the following equations along with Eq. (3.1):

d

dt

(
∂x

∂p

)
=
∂A

∂p
x+

∂B

∂p
u+ A

∂x

∂p
, (3.7a)

∂y

∂p
=
∂C

∂p
x+

∂D

∂p
u+ C

∂x

∂p
. (3.7b)

As suggested in [72], ∂yi/∂pj at time ti is normalized using the nominal values of

parameters p̂ and output values y at ti. Then, the FIM is computed by

FIM = ΨTΨ (3.8)

The FIM and correlation of Ψ provide very useful information about the estimation

problem. The rank of the FIM presents the number of estimable parameters. A highly

ill-conditioned FIM indicates that estimation of all parameter is almost infeasible.

In particular, the largest element of an eigenvector corresponding to the smallest

eigenvalue indicates the least estimable parameter. Moreover, the inverse of FIM

means the covariance of parameter estimates.

Using the same input data, eigenvalues Λ and eigenvectors Γ of the FIM and the

inverse of the FIM for two cases (case1: Ts only, case2: Ts and Tc) are computed
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respectively as follows:

Λcase1 =

0.26 0 0

0 11.02 0

0 0 848.52

 , (3.9a)

Λcase2 =

59.23 0 0

0 78.00 0

0 0 1550.28

 , (3.9b)

Γcase1 =

0.9559 −0.2934 −0.0136

0.2852 0.9381 −0.1963

0.0704 0.1838 0.9804

 , (3.9c)

Γcase2 =

−0.9005 0.4059 0.1560

0.3849 0.9109 −0.1487

0.2025 0.0739 0.9765

 . (3.9d)

FIM−1
case1 =

3.465 1.006 0.25

1.006 0.388 0.091

0.25 0.091 0.023

 , (3.9e)

FIM−1
case2 =

 0.016 −0.001 −0.003

−0.001 0.013 0.002

−0.003 0.002 0.001

 . (3.9f)

It is apparent that kt is the most difficult parameter to be estimated, followed by

cp and h, respectively. The parameter covariance indicates that the estimation of

kt from the surface temperature measurement only is almost infeasible whereas h

is estimable under the same condition. Since the core and surface temperatures

are important information to characterize heat conduction inside the battery, the

estimability of kt and cp is dramatically improved with two measurement data as

indicated by parameter covariance. From the FIM-based sensitivity results, it can

be concluded that convection coefficient is estimable from the surface temperature

measurement under realistic operating conditions.

According to Maleki et al., Forgez et al., and Onda et al., the specific heat capacity

and thermal conductivity are weakly dependent on temperature [65,82,83]; therefore,

the assumption of constant parameters can be justified. On the other hand, the con-

vection coefficient is highly dependent on fan speed or fluid velocity as expressed by

empirical correlations provided by Zukauskas [84]. Consequently, the accurate iden-

tification of convection coefficient is important for better prediction of temperature
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inside the battery. This importance as well as the sensitivity analysis justify the on-

line identification of the convection coefficient for better estimation of temperature

as detailed in Section 3.4.

3.4 Estimation of Temperature and Convection Coefficient

As discussed in Section 3.3, the estimation of temperature inside the battery cell

requires accurate knowledge of the convection coefficient which depends on cooling

condition. To identify the convection coefficient on-line, two estimation methods are

applied for better estimation of temperature distribution inside the battery cell: (1)

a Dual Kalman filter (DKF) [85] and (2) a Joint Extended Kalman Filter (JEKF).

The other thermal parameters such as thermal conductivity and specific heat capacity

are constant since these parameters have less influence on temperature and do not

change significantly over time. In the following sections, the implementation of these

algorithms and their estimation performance are presented.

3.4.1 A Dual Kalman Filter : a combination of Kalman and Extended

Kalman Filters

Assuming the input u(t) is constant over each sampling interval ∆t, a parameter

varying (PV) discrete-time model at time step k can be obtained by using the Euler

Method as

xk+1 = Ā(θk)xk + B̄(θk)uk + wk, (3.10a)

yk = C(θk)xk +D(θk)uk + vk, (3.10b)

θk+1 = θk + rk, (3.10c)

where xk = [T̄k γ̄k]
T , y = Ts,k, θk = hk, and uk = [q̇k T∞,k]

T . System matrices

Ā ≈ I +A∆t and B̄ = B∆t are obtained from matrices (3.3) where I is the identity

matrix. Noise signals wk, vk and rk, are independent, zero-mean, Gaussian processes

of covariance matrices Σw, Σv, and Σr, respectively.

The schematic of a DKF is illustrated in Fig. 3.2. At time step k, the KF estimates

the state using the current model estimate θ̂+
k−1, whereas the EKF estimates the

parameter using the current state estimate x̂+
k−1. The design of the DKF estimator

is given as the following update processes.
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Figure 3.2: Schematic of a Dual Kalman Filter

Time update for the parameter filter:

θ̂−k = θ̂+
k−1, (3.11a)

P−θ,k = P+
θ,k−1 + Σr. (3.11b)

Time update for the state filter:

x̂−k = Āk−1x̂
+
k−1 + B̄k−1uk−1 (3.12a)

P−x,k = Āk−1P
+
x,k−1Ā

T
k−1 + Σw. (3.12b)

Measurement update for the state filter:

Kk = P−x,kC
x
k
T
[
Cx
kP
−
x,kC

x
k
T + Σv

]−1
, (3.13a)

x̂+
k = x̂−k +Kk

[
yk − C(θ̂−k )x̂−k −D(θ̂−k )uk

]
(3.13b)

P+
x,k = [I −KkC

x
k ]P−x,k. (3.13c)

Measurement update for the parameter filter:

Lk = P−θ,kC
θ
k

T
[
Cθ
kP
−
θ,kC

θ
k

T
+ Σv

]−1

, (3.14a)

θ̂+
k = θ̂−k + Lk

[
yk − C(θ̂−k )x̂−k −D(θ̂−k )uk

]
(3.14b)

P+
θ,k =

[
I − LkCθ

k

]
P−θ,k, (3.14c)
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Figure 3.3: Schematic of a Joint Extended Kalman Filter

where superscripts − and + denote the a priori and a posteriori values respectively.

The matrices Āk−1, Cx
k and Cθ

k are calculated according to

Āk−1 = Ā(θk)|θk=θ̂−k
, (3.15a)

Cx
k =

∂yk
∂xk

∣∣∣
xk=x̂−k ,θk=θ̂−k

, (3.15b)

Cθ
k =

dyk
dθk

∣∣∣
xk=x̂−k ,θk=θ̂−k

. (3.15c)

The identified states x̂ and parameter θ̂, computed from the above DKF algorithm,

are used to estimate the core temperature in the battery from Eqs. (3.10). It is noted

that since the thermal system is linear, the DKF becomes a Kalman filter (KF) when

the parameter of convection coefficient is known or given.

3.4.2 A Joint Extended Kalman Filter

An alternative approach to estimate states and parameter is applying a Joint

Extended Kalman Filter. States xk and parameter θk are concatenated into an aug-

mented state vector xa,k = [xk θk]
T . As illustrated in Fig. 3.3, the augmented states

can be simultaneously estimated through an Extended Kalman Filter, the result of

the application of a Kalman Filter to a linearized nonlinear system.

The augmented system can be expressed as follows:

xa,k+1 = Āaxa,k + B̄auk + wk, (3.16a)

yk = Caxa,k +Dauk + vk, (3.16b)
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where the augmented system matrices are defined by

Āa =

[
Ā(θk) 0

0 1

]
, (3.17a)

B̄a =

[
B̄(θk)

0

]
, (3.17b)

Ca =
[
C(θk) 0

]
, (3.17c)

Da =D(θk). (3.17d)

The augmented system is nonlinear even though Eqs. (3.16) are expressed in a

form of linear state-space representation, which needs ones to apply an Extended

Kalman Filter in the estimator design.

The design of the Joint EKF estimator is given as the following update processes.

Time update for the state filter:

x̂−a,k = Āa,k−1x̂
+
a,k−1 + B̄a,k−1uk−1 (3.18a)

P−k = Āa,k−1P
+
k−1Ā

T
a,k−1 + Σw. (3.18b)

Measurement update for the state filter:

Kk = P−k C
x
a,k

T
[
Cx
a,kP

−
k C

x
a,k

T + Σv

]−1
, (3.19a)

x̂+
a,k = x̂−a,k +Kk

[
yk − Cax̂−a,k −Dauk

]
(3.19b)

P+
k =

[
I −KkC

x
a,k

]
P−k . (3.19c)

The matrices Āa,k−1 and Cx
a,k are calculated according to

Āa,k−1 =

 Ā(θ̂+
k−1)

∂Ā(θ̂+
k−1)

∂θk
x̂+
k−1 +

∂B̄(θ̂+
k−1)

∂θk
uk−1

0 1

, (3.20a)

Cx
a,k =

[
C(θ̂+

k−1)
∂C(θ̂+

k−1)

∂θk
x̂+
k−1 +

∂D(θ̂+
k−1)

∂θk
uk−1

]
. (3.20b)

Finally, the identified augmented states x̂a, obtained from the above JEKF algo-

rithm, are used to estimate the core temperature in the battery from Eqs. (3.16).

In this framework, the statistics of noise signals are defined as before. However, the

noise signal wk and its covariance matrix Σw need to be redefined to account for

disturbances affecting the parameter dynamics.
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Figure 3.4: Fan schedule for forced-air convective cooling

3.5 Experimental Results

In this section, the performances of the proposed temperature estimators using the

DKF and the JEKF are compared with that of the baseline KF estimator without

parameter identification. Following an experimental set-up shown in Chapter II,

we draw a current and measure voltage and temperature at the core and surface

of the battery while controlling ambient temperature in the thermal chamber. The

surface temperature is used for the estimators and the core temperature is measured

to verify the estimation accuracy. The experiment is performed using the Escort-

Convoy Cycle (ECC) to verify the state and parameter estimation. Three different

forced convective cooling conditions (stage I, stage II, and stage III) are demonstrated

by using different PWM signals driving the fan as shown in Fig. 3.4. To investigate

the influence of change in the initial parameter on the temperature estimation, the

parameter is provided to each estimator as following:

• In stage I, the off-line predetermined convection coefficient is provided to the KF

and is used for the DKF and JEKF as initial values: θ̃ = θ∗ and θ̂(0) = θ̆(0) = θ∗

• In stage II, the off-line predetermined convection coefficient is provided to the
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Table 3.2: Tuning parameters for the DKF and JEKF

Parameter DKF JEKF

Σw diag(β1
2, β1

2) diag(β1
2, β1

2, β2
2)

Σv σ2 σ2

Σr β2
2 ×

P (0) diag(1,1) diag(1,1,0.05)
S(0) 0.05 ×

β1 0.0005 0.0005
β2 0.007 0.006

KF only: θ̃ = θ∗

• In stage III, two times larger convection coefficient compared to the known value

is provided to the KF: θ̃ = 2θ∗

where the parameter θ̃ denotes a fixed value for the KF. The parameters θ̂ and θ̆

represent identified values for the DKF and JEKF, respectively whereas θ∗ presents

the predetermined parameter value. Other thermal properties such as the thermal

conductivity and the specific heat capacity are assumed constant with values provided

in Table 3.1.

It is assumed that the initial temperature distribution inside the battery is uniform

at 30◦C and convection coefficient is 56.2W/m2/K, i.e. x̂(0) = [30 0]T and θ̂(0) =

56.2, respectively. The covariance matrix for the state Σw = β1
2I describes the process

noise where β1 > 0 is a parameter for tuning based on the model inaccuracy. The

noise covariance Σv = σ2 is determined from the standard deviation of temperature

signal σ = 0.05◦C. The covariance matrix for the parameter Σr = β2
2 influences the

performance of noise filtering and the rate of parameter convergence. Ultimately, the

initial condition of the error covariance matrix and the tuning parameter for the DKF

and JEKF are chosen through repeated simulations as provided in Table 3.2. It is

noted that the initial conditions and tuning parameters for the DKF and JEKF are

the same as those of the KF.

The results for the parameter and state estimation are shown in Fig. 3.5 and Fig.

3.6–3.8, respectively. The performances of temperature estimation in terms of the

root-mean-square-error (RMSE) are summarized in Table 3.3. Figure 3.6 shows that

all closed loop estimators can accurately predict temperature inside the battery as

evidenced by small RMSEs for core temperature estimation, i.e., 0.18◦C. As seen from
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Figure 3.5: Comparison of parameter estimation performance among KF, DKF and
JEKF estimators: (a) convection coefficient, (b) errors

Fig. 3.5, on-line (real-time) identified parameters are close to the off-line determined

value without large deviations. The deviation is small due to two factors: (1) a correct

initial guess for parameter and (2) a relatively small initial parameter covariance.

Consequently, performances of the DKF and JEKF estimators are comparable to that

of KF estimator. As discussed in Section 3.3, thermal properties can vary with respect

to operating temperature. Therefore, it is expected that better performance could be

achieved by using temperature-dependent parameters for thermal conductivity and

specific heat capacity.

Table 3.3: Comparison of temperature estimation among KF, DKF and JEKF: RM-
SEs of the core and surface temperatures

Method KF DKF JEKF

Location Core Surface Core Surface Core Surf.

Stage I 0.18 0.07 0.18 0.07 0.18 0.07
Stage II 0.24 0.08 0.25 0.08 0.25 0.08
Stage III 1.58 0.15 0.45 0.11 0.40 0.11
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Figure 3.7 illustrates the performance of temperature estimation by the closed-

loop estimators in stage II when there are sudden changes in the cooling condition.

The KF can accurately estimate the core temperature with information about the

change in parameter values. Since the DKF and JEKF are capable of compensating

for inaccuracy in the parameter of the system, the DKF and JEKF provide reasonably

accurate estimates for the core temperature in comparison to the core temperature

predicted by the KF estimator. The RMSEs for core temperature estimation by the

DKF and JEKF are 0.25◦C which is very close to the RMSE by the KF, indicating

that the errors during initial time periods before parameters converge to the true

value are insignificant (Fig. 3.5).

As seen from Fig. 3.8, the KF estimator overestimates the core temperature when

the incorrect parameter value is used for the convection coefficient. In other words,

the reliable estimation of core temperature with the KF is only possible when accurate

parameter values are available. Thus, it can be concluded that the DKF and JEKF

estimators outperform the KF estimator due to the capability of parameter identifi-

cation. The RMSEs for core temperature estimation in stage III can be substantially

reduced from 1.58◦C to 0.45◦C and 0.40◦C by the DKF and JEKF respectively.

It is worth noting that the DKF and JEKF can be augmented with other existing

battery management strategies to improve the system robustness without cost in-

crease. For instance, to detect partial blockage in a cooling system, typically, a mass

flow or pressure sensor is required. The DKF and JEKF could augment the existing

techniques to provide redundancy during sensor fault. The proposed algorithm en-

ables the identification of the convection coefficient by using sensors which are already

instrumented at the battery. The identified parameter can be also used for monitor-

ing the malfunction or degradation of the cooling system. Under the assumption that

the relationship between the convection coefficient and fan speed or PWM signal is

known, the malfunction of the cooling system can be detected by comparing the iden-

tified parameter with the known value. When the difference between the identified

and predetermined values |θ̂ − θ∗| is bounded and small, it can be considered that

there is no fault in the cooling system. On the other hand, |θ̂ − θ∗| � ε where ε is a

pretuned threshold, could be a sign of cooling fault. In particular, |(θ̂− θ∗)/θ∗| could

be interpreted as the severity of degradation of the cooling system.
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Figure 3.6: Comparison of state estimation performance among KF, DKF and JEKF
estimators during stage I: (a) core temperature, (b) surface temperature
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Figure 3.7: Comparison of state estimation performance among KF, DKF and JEKF
estimators during stage II: (a) core temperature, (b) surface temperature
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Figure 3.8: Comparison of state estimation performance among KF, DKF and JEKF
estimators during stage III: (a) core temperature, (b) surface temperature
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3.6 Conclusion

In this chapter, a method to estimate the temperature distribution in cylindri-

cal batteries under unknown cooling condition is proposed. First, a reduced-order

thermal model using a polynomial approximation presented in Chapter II is used

to estimate a radial temperature profile. The numerical analysis on parameter sen-

sitivity supports the use of constant parameters for thermal conductivity and heat

capacity and the importance of identifying the convection coefficient on-line. Then,

a Dual Kalman Filter and a Joint Extended Kalman Filter are applied to estimate

the temperature inside the battery and convection coefficient by the cooling fan. The

proposed method requires no knowledge of the convective cooling conditions. The

results show that the proposed DKF and JEKF estimators can provide reasonably

accurate estimates of core temperature and convection coefficient by using current,

voltage, battery surface and ambient temperatures. In addition, faulty operation

of the cooling system could be detected by monitoring the difference between the

identified and off-line predetermined values.
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CHAPTER IV

Power Capability Estimation of Lithium-ion

Batteries Based on Time Scale Separation

4.1 Introduction

Enforcement of constraints on the maximum deliverable power is essential to pro-

tect Li-ion batteries from over-charge/discharge and overheating. This chapter de-

velops an algorithm to address the often overlooked temperature constraint in deter-

mining power capability of battery systems. Knowledge of power capability provides

dynamic constraints on currents and affords an additional control authority on the

temperature of batteries. Power capability is estimated by using a lumped electro-

thermal model for a cylindrical cell that has been validated over a wide range of

operating conditions. Based on the time scale separation, a real-time implementable

method is proposed to determine power capability of a Li-ion battery accounting

for thermal and electrical constraints. Current limits and hence power capability

are determined by a model-inversion technique, termed Algebraic Propagation (AP).

Simulations are performed using realistic depleting currents to demonstrate the effec-

tiveness of the proposed method.

This chapter is organized as follows. Section 4.2 presents a thermal model1 incor-

porating information on entropy change in addition to Joule heating and convection

phenomena. Then, a simple equivalent-circuit electrical model is presented in Section

4.3 for the electrical dynamics of the battery. In Section 4.4, a model-based maximum

power estimation method is proposed to determine the maximum current/power ca-

pability over a fixed horizon considering both thermal and electrical constraints inde-

1In this chapter, a singe-state thermal model is considered based on the investigation of thermal
properties. However, Chapter V addresses power capability estimation for a two-state thermal
model.
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Figure 4.1: (a) Schematic for an e-Moli ICR18650J cylindrical battery, (b) parabolic
temperature profile under uniform heat generation

pendently. Simulation results are discussed in Section 4.5 and conclusions are drawn

in Section 4.6.

4.2 Battery Thermal Model

A cylindrical Li-ion battery, e-Moli ICR18650J 2.3 Ah, is considered in this study.

This battery is fabricated by rolling a stack of layered thin sheets comprised of a

Lithium Cobalt Oxide (LiCoO2) cathode, a separator, and a graphitic anode in a

manner similar to the schematic in Fig. 4.1(a). Uniform heat generation along the

radial direction as illustrated in 4.1(b) is assumed, which is a standard assumption

[68, 86]. Lumped parameters are used so that material properties such as thermal

conductivity, density and specific heat capacity are assumed to be constant in a

homogeneous and isotropic body. Since the thermal conductivity is one or two orders

of magnitude higher in the axial direction than in the radial direction, the temperature

distribution in the axial direction will be more uniform [69, 87]. The Biot number2

(Bi) of the battery with natural convection is calculated to be small (Bi � 0.1),

suggesting that the heat transfer at the surface is much smaller than the internal

heat transfer by conduction. Hence, no significant temperature gradient inside the

2The Biot number is a ratio of heat convected via surroundings to heat conducted in a material:
Bi = hl/kt where l and kt are thickness and thermal conductivity respectively.
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battery is expected.

Under the above assumptions, the energy balance equation in the battery can be

described by one bulk temperature T [83]:

Mcp
dT

dt
= q̇gen + q̇rev + q̇rej, (4.1a)

q̇gen = I2
bRe, (4.1b)

q̇rev = − IbT
∆S

nF
, (4.1c)

q̇rej = Abh(T∞ − T ), (4.1d)

where M and Ab are the mass and area of the Li-ion battery respectively; q̇gen, q̇ref,

and q̇rej represent joule heating, entropic heat generation, and heat transfer through

convection, respectively. The variable n is the charge number pertaining to the re-

action (n=1 for a Li-ion battery) and F is the Faraday constant, 96485.3365 C/mol.

The internal resistance Re lumps ohmic, activation, diffusion polarization resistances.

Heat of mixing is not considered since its contribution to the total heat generation is

small [54]. In the chosen sign convention, a positive current discharges the battery.

The energy balance equation is described in the state space representation:

ẋT = αxT + βxTu+ γu2 + η (4.2)

where the state and input of the system are xT = T and u = Ib, respectively. The

parameters are defined by .

α = − Abh

Mcp
, (4.3a)

β =
−1

Mcp

∆S

nF
, (4.3b)

γ =
Re

Mcp
, (4.3c)

η =
AbhT∞
Mcp

. (4.3d)

This nonlinear thermal dynamic model is used to predict the temporal evolution of

temperature and to formulate a current limiting strategy in Section 4.4.
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Table 4.1: List of publications where the entropy change of Li-ion batteries are pro-
vided

Author Temperature Profile Test Duration
(year) [◦C] [hours]

Hong et al. (1998) [89] 27-30-35-39-50 25
Takano et al. (2002) [88] 50-10-50 24
Onda et al. (2006) [83] 40-10-20-30-40 33

Viswanathan et al. (2010) [90] 35-25-15-35 Not specified∗

Forgez et al. (2010) [65] 26-16-21-36-26 20
Jalkanen et al. (2013) [91] 20-0-10-20-30-40-20 12

* voltage was measured after temperature equalization.

4.2.1 Entropy Change Measurement

The contribution of the entropy change ∆S to the total heat generation in a

LiCoO2/LiC6 battery is significant at low current rates [54, 88]. Therefore, it is im-

portant to determine the entropy change of the battery for predicting the temperature

of a battery accurately. The entropy change can be identified by using the change in

the open circuit voltage, Voc, as a function of temperature according to Eq. (4.4)

∆S = nF
∂Voc

∂T
. (4.4)

Two methods can be considered to measure the entropy change of Li-ion batteries:

1. measuring terminal voltages with very low charge and discharge current rates

such as C/20, C/40 and C/100 at different temperatures

2. measuring terminal voltage without current while changing temperature at dif-

ferent battery SOCs

Battery charge and discharge operations at very high or low temperature may affect

operations at other temperatures. Thus, the second method has been widely used for

the entropy change measurement with considerations of repeatability and/or repro-

ducibility. Table 4.1 illustrates temperature profiles and test duration3 for the second

method in literature [65,83,88–91].

3Initial time periods to fully charge or discharge a battery is not accounted for.
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Figure 4.2: Experimental design and measured entropy change of the battery: (a)
ambient temperature profile (top) and current profile (bottom), (b) comparison with
literature values [83,88,90](top) and measured and simulated open circuit voltage at
70% SOC (bottom)
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Figure 4.2(a) illustrates the experimental set-up in this study for characterizing

entropy change. The battery is fully charged at a rate of C/20 at 25◦C using a Con-

stant Current Constant Voltage (CCCV) protocol with a cutoff current rate of C/100.

The temperature in the thermal chamber is controlled as shown in Fig. 4.2(a). The

zig-zag manner of changing temperature is designed to minimize negative influences

by long thermal excursion at higher or lower temperatures than room temperature

of 25◦C. The battery is allowed to rest for three hours at each temperature to equili-

brate. To change the SOC of the battery by 10%, a current at a rate of 1C is applied

to the battery for six minutes at 25◦C that is followed by two hours of rest for charge

equilibrium.

Figure 4.2(b) shows the entropy change of the LiCoO2/LiC6 battery in this study

and compares the values from the literature [83, 88, 90]. The entropy change of the

battery in this study within the SOC range of 60% to 80% is estimated differently

compared to values in other studies. Clearly some batteries in these studies show an

endothermic behavior while the others display an exothermic process during battery

discharge. In particular, the battery in this study does not have endothermic process,

leading to a higher total heat generation during battery discharge than batteries

in [83, 88, 90]. Figure 4.2(b) also compares measured and predicted open circuit

voltages of the battery at 70% SOC, providing that the measured entropy change of

the battery is reasonably accurate.

4.2.2 Identifying Thermal Properties

To predict the temperature of the battery, thermal parameters, namely heat ca-

pacity cp and convection coefficient h are to be identified. Parameter identification

is performed as follows – a current profile such as the one presented in Fig. 4.3(a)

is applied to the battery placed in a temperature controlled chamber, and its surface

temperature, terminal voltage and current are measured as shown in Fig. 4.3(a)–(c).

The time constant of the thermal system α is approximated from the relaxation data

following the initial constant current phase. Imposing the relation between h and cp

in Eq. (4.3) as an equality constraint, the parameterization is formulated in the form

of optimization problem by using data collected during discharge operation as follows

min
cp

J = ||T̂ (cp)− T || (4.5a)

subject to hAb + αMcp = 0, (4.5b)
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Figure 4.3: Measurement data used for thermal parametrization: (a) current, (b)
voltage, (c) temperature

where T and T̂ are measured and predicted temperatures, respectively. It is noted

that heat generation is calculated from measurement data such as current and voltage

using Bernardi’s simplified form in [53], as discussed in Chapter II.

The optimization problem is implemented and solved in MATLAB using the built-

in function fmincon [92]. The heat capacity of SONY 18650 batteries, which have sim-

ilar chemistries to the e-Moli ICR 18650 batteries under consideration, can be found

in open literature [69]. Even though the chemistry and dimension of these batteries

are the same, the values for heat capacity cp lie between 836 and 1280 J/kg/K. In this

study, cp=1000 J/kg/K is chosen as an initial value to the optimization problem. The

identified parameters cp and h are 1248 J/kg/K and 42.9 W/m2/K respectively. As

demonstrated in Fig. 4.3(c), the parameterized thermal model can provide accurate

prediction of the temperature during battery operation.

4.2.3 Model Validation

To validate the performance of the parameterized model, the battery was tested

under a different cycle (Fig. 4.4(a)). This cycle consists of repeated current pro-

files obtained from a mobile robot during a certain segment of movement provided

in [93]. The corresponding battery SOC is illustrated in Fig. 4.4(b). The battery
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Figure 4.4: Validation of the thermal model using repeated robot operations: (a)
current, (b) SOC, (c) temperature, (d) temperature error

was discharged from 100% to 10%. Figure 4.4(c) shows comparison among measured

temperature and predicted temperatures with and without considerations of entropic

heat generation. When entropic heat is considered in the calculation of the total heat

generation, the error is bounded within ± 0.5◦C. As shown early in Fig. 4.2(b), the

change in entropy of the reaction is smaller at high SOC than at low SOC. Therefore,

as the battery is discharged, the contribution of entropy change becomes very evident.

In particular, the RMSE of the predicted temperatures with and without considera-

tions of entropic heat generation are 0.1◦C and 0.6◦C, respectively (Fig. 4.2(b)(d)).

The error between the measurements and predicted temperature with considerations

of entropy change is considerably less than the sensor accuracy of 0.5◦C. Thermocou-

ples used for temperature measurements are T-type whose accuracy is the maximum

of 0.5◦C or 0.4% according to technical information from the manufacturer, OMEGA.

Consequently, it can be concluded that the parameterized model is sufficiently accu-

rate for the development of battery power management strategies.
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Figure 4.5: An equivalent-circuit model: OCV-R-RC-RC

4.3 Electrical Model

In control applications, an equivalent-circuit model, as illustrated in Fig. 4.5,

is favored owing to its simplicity and has been shown to be reasonably capable of

emulating the dynamics of a battery [49, 51, 94]. In this study, the equivalent-circuit

model is used and the electrical system is described by

˙SOC = − Ib

3600Cb

, (4.6a)

V̇i = − 1

RiCi
Vi +

1

Ci
Ib, i ∈ {1, 2}, (4.6b)

Vt = Voc(SOC)−RsIb −
2∑
i=1

Vi, (4.6c)

where Cb represents the estimated capacity of the battery.

Parameters Rs, R1, R2, C1 and C2 are identified using pulse tests described in

[49,94]. As these parameters are functions of temperature and SOC, a two dimensional

look-up table is used to schedule the model parameters [49]. Figures 4.6(b) and (c)

present a comparison between measured and simulated battery terminal voltages

using the current profile employed in Fig. 4.3. The electrical submodel is validated

independently using measured temperatures as shown in Fig. 4.6(a). It is observed

that the error in the simulated voltage is less than 5% of the total variation in terminal

voltage.
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4.4 Power Capability Estimation Method

In this section, a computationally simple but effective method to estimate power

capability is described. In estimating power capability, the following factors are con-

sidered

• The thermal and electrical dynamics of a Li-ion battery are intrinsically coupled.

• The internal resistance and the rate of change in the internal resistance decrease

with increasing temperatures (Fig. 4.7).

• For a galvanostatic operation (or a constant current operation), any arbitrary

increase in battery temperatures will cause reduced internal losses, and subse-

quently generate less heat.

• Over a reasonably short horizon, the temperature increase can be assumed to

be bounded and similar arguments can be made for the change in the electrical

quantity, SOC.

The above statements are valid insofar as the temperature of the battery does

not exceed the threshold temperature at which thermal runaway is initiated [49, 95].

Since thermal dynamics are much slower than electrical dynamics, it follows that
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Figure 4.8: Simulated SOC and temperature changes under 2C discharge rate for ten
seconds: (a) current, (b) ∆SOC = SOC− SOCo, (c) ∆T = T − To

over a short horizon, in estimating power capability, considering electrical and thermal

constraints independently yield conservative estimates. As a consequence, the thermal

and electrical constraint problems are addressed separately.

To test the validity of last statement, a simulation study is conducted. The electro-

thermal model is discharged at 2C rate, which is the manufacturer specified limit,

for 10 seconds as illustrated in Fig. 4.8(a). Ambient temperature and convection

coefficient are set to 25◦C and 6W/m2/K respectively. Note that two different initial

SOC values are considered since the entropy change of the battery is six times larger

at SOC of 0.2 than at SOC of 1. Figure 4.8(b) and (c) show that the maximum

values of changes in SOC and temperature are 0.0056 and 0.6◦C, respectively. In

particular, 0.6◦C change in temperature corresponds to 0.2% change in a unit of K.

Therefore, it can be concluded that the assumptions of constant temperature and

SOC are reasonable. This valid argument will benefit us to handle the nonlinearity

in the expression of heat generation rate.

To solve each constraint problem, the Algebraic Propagation (AP) method is

utilized. The AP method, based on iteration and inversion of a dynamic model,

allows ones to estimate the maximal value of input ensuring that no constraints are

violated.
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Consider a linear discrete-time model whose dynamics are described by the fol-

lowing set of difference equations

xk+1 = Axk +Buk +G, (4.7a)

yk = Cxk +Duk +H (4.7b)

where system matrices, which are denoted by A, B, C, D, G and H, are obtained

through linearization and discretization processes around the operating point (xo, uo)

at each sampling time. Following this notation, the linearized system matrices of the

electrical and thermal models are denoted with superscripts or subscripts of E and T ,

respectively. For example, the discrete state transition matrix of the thermal model

is denoted by AT .

For a constant input u, the state x and output y after N future steps are written

as

xk+N = ANxk +
N−1∑
i=0

AiBu+
N−1∑
i=0

AiG, (4.8a)

yk+N = Cxk+N +Du+H. (4.8b)

Therefore, at any instant k, the maximum permissible input that does not violate a

constraint ȳ on the output y in N future steps is determined by

u =

(N−1∑
i=0

CAiB +D

)−1(
ȳ − CANxk −

N−1∑
i=0

CAiG−H
)

(4.9)

Since the power capability is determined by using information on current limits

and terminal voltage as addressed in [25–30], Eq. (4.9) will be used to determine the

maximum current accounting for thermal and electrical constraints in the following

sections.

64



0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

5

10

C
u
rr
e
n
t 
(A
)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1
S
O
C
 (
-)

0 500 1000 1500 2000 2500 3000 3500 4000 4500

40

60

80

100

T
e
m
p
e
ra
tu
re
 (
o
C
)

Time (sec)

Constant Current (4A)
Temperature-constrained 

Current

87 ̊ C

Tmax = 45 ̊ C

(a)

(b)

(c)
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4.4.1 Active Thermal Constraints

The thermal dynamics in discrete-time domain with a sampling period ∆t can be

captured by the following equation:

xT,k+1 = ATxT,k + vk, (4.10a)

yT,k = xT,k, (4.10b)

where AT = 1 + α∆t. The virtual input, v, is defined as

vk = ∆t(βkxT,kuk + γku
2
k + ηk). (4.11)

Then, the maximum of the virtual input, vk, described by considering the maximum

operating temperature, T , is obtained from the following equation.

vk =

(
N−1∑
i=0

CTA
i
T

)−1 (
T − CTANT xT,k

)
. (4.12)
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When the maximal value of current is less than 2C and the prediction period

is less than 10 seconds, the SOC and temperature of the battery do not change

significantly over the prediction horizon as shown in Section 4.4. Thus, it is reasonable

to assume that the entropy change and internal resistance are constant over the

prediction horizon, that is, βj|kxT,j|k ≈ βkxT,k and γj|k ≈ γk for j = k, k+1, . . . , k+N .

Moreover, ambient temperature is assumed not to change rapidly and hence to be

constant, i.e. ηj|k ≈ ηk for j = k, k + 1, . . . , k + N . These assumptions make it easy

to handle the nonlinearity in the expression of heat generation rate using a quadratic

term γku
2
k and a bilinear term ukxT,k.

By substituting Eq. (4.12) into Eq. (4.11), the maximum permissible currents

during battery discharge and charge are determined respectively by following equa-

tions

IT,dch
b,max,k =

−βk +

√
β

2

k − 4γk(ηk − vk/∆t)
2γk

, (4.13a)

IT,chg
b,min,k =

−βk −
√
β

2

k − 4γk(ηk − vk/∆t)
2γk

, (4.13b)

where βk = βkxT,k. Superscripts dch and chg present battery discharge and charge,

respectively.

To investigate the efficacy of Eqs. (4.13a) and (4.13b) in controlling temperature,

a simulation study is conducted. In the simulation, the sampling frequency is set

at 10 Hz with a 100 sample prediction horizon. Figures 4.9(a)–(c) show the current

drawn from the battery, the corresponding SOC and battery temperature profiles. It

is noted that the battery temperature increases up to 87◦C without limiting current

rate. On the other hand, the battery temperature remains well around the designated

maximal operating temperature of 45◦C when current is limited. Due to temperature-

constrained current, as shown in Fig. 4.9(c), the completion time increases from 2133

seconds to 4687 seconds.
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4.4.2 Active Electrical Constraints

The electrical dynamics in discrete-time domain can be expressed as

xE,k+1 = AExE,k +BEuk, (4.14a)

yE,k = CExE,k +DEuk +HE, (4.14b)

where the state and output are defined as xE = [SOC V1 V2]T and yE = [SOC V ]T ,

respectively.

System matrices AE, BE, CE, DE and HE are calculated by

AE =


1 0 0

0 e
−∆t
R1C1 0

0 0 e
−∆t
R2C2

 , (4.15a)

BE =


− ∆t

3600Cb

R1

(
1− e

−∆t
R1C1

)
R2

(
1− e

−∆t
R2C2

)
 , (4.15b)

CE =

 1 0 0
∂Voc

∂SOC

∣∣∣∣
SOCo

−1 −1

 , (4.15c)

DE =

[
0

−Rs

]
, (4.15d)

HE =

 0

Voc(SOCo)− ∂Voc

∂SOC

∣∣∣∣
SOCo

SOCo

 , (4.15e)

where SOCo is the battery SOC at previous sampling time (k − 1) about which the

system is linearized.

By applying Eq. (4.9), the maximum permissible current accounting for electrical

constraints such as SOC and voltage limits, SOC and V , is determined respectively

by using Eqs. (4.16a) and (4.16b),

IE,SOC
b,max,k =

(
N−1∑
i=0

CE1A
i
EBE +DE1

)−1 (
SOC− CE1A

N
ExE,k −HE1

)
, (4.16a)

IE,Vb,max,k =

(
N−1∑
i=0

CE2A
i
EBE +DE2

)−1 (
V − CE2A

N
ExE,k −HE2

)
, (4.16b)
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where subscripts 1 and 2 denote the row indices of system matrices corresponding to

SOC and terminal voltage respectively. The overall maximum permissible current is

determined by comparing Eqs. (4.13) and (4.16).

4.4.3 Power Capability Estimation

The power capability accounting for all constraints is estimated by the product

of the maximum allowable current and terminal voltage. Maximum discharge and

charge currents accounting for all constraints are calculated with

Idch
b,max,k = min{IE,SOCmin

b,max,k , IE,Vmin

b,max,k, I
T,dch
b,max,k}, (4.17a)

Ichg
b,min,k = max{IE,SOCmax

b,min,k , IE,Vmax

b,min,k , I
T,chg
b,min,k}. (4.17b)

It is noteworthy that Eqs. (4.17a) and (4.17b) can be considered as general solutions

that can be made specific to the load governor/regulator problem by choosing an

appropriate prediction horizon and sampling frequency.

Therefore, the maximum power capability of the battery {Pb,max,k, Pb,min,k} is

obtained as follows

Pb,max,k = Idch
b,max,k · V dch

k+N |k, (4.18a)

Pb,min,k = Ichg
b,min,k · V

chg
k+N |k, (4.18b)

where the terminal voltage after N future sample steps V q
k+N |k is calculated with

V dch
k+N |k = Voc

(
SOCk −

Idch
b,max,kN∆t

3600Cb

)
− Idch

b,max,kRs

−
2∑
i=1

(
e
−N∆t
RiCi Vi,k + Idch

b,max,kRi

(
1− e

−N∆t
RiCi

))
, (4.19a)

V chg
k+N |k = Voc

(
SOCk −

Ichg
b,min,kN∆t

3600Cb

)
− Ichg

b,min,kRs

−
2∑
i=1

(
e
−N∆t
RiCi Vi,k + Ichg

b,min,kRi

(
1− e

−N∆t
RiCi

))
. (4.19b)

4.5 Simulation Results

In this section, we investigate the performance of the proposed model-based

method to estimate power capability through a battery simulation with a predic-
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Figure 4.10: Performance of power capability estimation method during repeated
operations at 30◦C ambient temperature and natural convection (6 W/m2/K): (a)
current, (b) power, (c) voltage, (d) temperature, (e) SOC

tion horizon of 10 seconds and a 10 Hz sampling frequency. Figure 4.10(a) illustrates

repeated discharge duty cycles provided in [93]. Figures 4.10(b)–(e) show the esti-

mated power capabilities and actual power drawn from the battery, corresponding

terminal voltage, battery temperature and SOC profiles, respectively. The ambient

temperature is assumed to be 30◦C and natural convection is considered (6 W/m2/K).

The electrical and thermal constraints are shown in Fig. 4.10(c)–(e).

69



It is noted that all constraints are inactive initially, that is, the battery voltage,

temperature and SOC do not exceed Vmin, Tmax, and SOCmin respectively. Hence,

the battery can provide the power requested up to 4705 second until the voltage

constraint is violated. As the power is drawn from the battery, the battery SOC is

reduced as seen from Fig. 4.10(e). Due to the corresponding decrease in open circuit

voltage and voltage drop caused by internal resistances, the power is limited by the

voltage-constrained power capability so that the terminal voltage is higher than the

minimum limit of 3.2 V as shown in Fig. 4.10(c) from 4705 to 5740 second.

As the battery temperature approaches to the maximum temperature limit, the

power capability is determined by the maximum temperature limit. Hence, as illus-

trated in 4.10(d), the battery temperature remains below 45◦C until SOC constraint

becomes active. This performance highlights that the proposed method is capable

of estimating power capability accounting for thermal and electrical constraints and

thus safe and reliable operation of the battery is achievable.

4.6 Conclusion

In this chapter a method to estimate battery power limits accounting for both

electrical and thermal constraints is presented. The method relies on an electro-

thermal model for the electrical and thermal dynamic behaviors. Further, a method

to parameterize the lumped thermal model that includes entopic heat generation as

well as joule heating is presented and discussed. Under the assumptions of short

prediction horizons, the power capability estimation problem is broken into a current

limiting problem under two weakly coupled constraints – thermal and electrical. A

computationally efficient algorithm is proposed that is able to exploit the time scale

separation of the electrical and thermal dynamics.
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CHAPTER V

Case Study : a Series Hybrid Electric Vehicle

5.1 Introduction

The primary task of a supervisory controller or power management system (PMS)

is to determine the power flow among hybrid powertrain components to minimize

fuel consumption and emissions. Li-ion batteries have become one of the most criti-

cal components in hybrid electric vehicles due to their high specific power and energy

density. The performance and longevity of these batteries rely on constraining their

operation such that voltage and temperature are regulated within prescribed inter-

vals. In particular, power capability of Li-ion batteries is considerably reduced at

low state-of-charge and temperature, whereas battery degradation is accelerated at

high temperature [19,96,97]. Therefore, the PMS must be aware of constraints of the

system not only to ensure reliable and safe operation, but also to maximize resource

utilization.

This chapter considers a battery power management strategy for hybrid electric

vehicles by including the radial temperature distribution inside a cylindrical battery

and a convective cooling condition along with electrical dynamics. To provide ac-

curate information about the battery to the PMS, state-parameter estimators are

developed by applying Filtering algorithms, namely a Dual Extended Kalman Filter

and Dual Kalman Filter for electrical and thermal dynamics respectively. Model-

in-the-loop simulations are conducted using a series hybrid electric vehicle (SHEV)

simulator to demonstrate the effectiveness of the proposed method.

This chapter is organized as follows: Section 5.2 addresses the formulation of a

Model Predictive Control based power management strategy in the SHEV. Section

5.3 presents an estimation algorithm to determine power capability accounting for

electrical and thermal constraints of the battery. Development of state-parameter
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estimators for electrical and thermal dynamics is also described. Section 5.4 presents

and discusses simulation results, and conclusions are drawn in Section 5.5.

5.2 Power Management System

5.2.1 Background

Diesel engines are the preferred engine technology in heavy-duty commercial and

military applications due to their high performance in terms of fuel economy, torque

at low speed, and power density [98]. However, their soot emissions lead to envi-

ronmental concerns in commercial applications, as well as survivability concerns in

military applications due to visual signature. Aggressive transients worsen soot emis-

sions [99] due to a turbocharger lag which corresponds to the slow air-path dynamics

of a diesel engine with a time constant of a few seconds [100].

One approach to reduce soot emissions is to leverage the hybrid powertrain tech-

nology. Hybrid technology has been successfully deployed on some passenger vehicles,

improving fuel economy and reducing tailpipe emissions [101], [102], and vehicles with

diesel engines can benefit from hybridization, as well [103].

Among the various topologies for vehicle hybridization, such as series [104, 105],

parallel [106], [107], and power-split [108], [109], this study focuses on a series hy-

brid electric architecture with a military context in mind. The series hybrid electric

technology is considered in military vehicles due to stringent requirements for silent

watch, increased mobility, enhanced functionality for on-board power, improved ex-

port power capabilities, and the potential for minimal visual signature. The series

configuration offers greater flexibility in vehicle design such as the V-shaped hull to

maximize crew survivability during blast events [110].

Within the context of series hybrid electric vehicles (SHEV), different power man-

agement strategies have been developed to successfully alleviate the tradeoff between

fuel economy and soot emissions. For example, Filipi and Kim [104] proposed a

modulated battery state-of-charge (SOC) control using a Proportional-Integral (PI)

feedback control. Konev et al. [111] and Kim et al. [112] used low-pass filtering for

splitting the power demand. Even though these methods result in smooth engine

operations, the engine power rate is not strictly considered as a constraint for en-

gine operations. A power constraint was explicitly handled in [9] where a smooth

engine operation was achieved by applying a Model Predictive Control (MPC) while

accounting for an input constraint of the maximum engine-generator power rate. The

results in [9] also show the comparison between the MPC-based power management
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Figure 5.1: Schematic of power and battery management systems in a SHEV simula-
tion framework

strategy and Dynamic Programming in terms of fuel economy. However, the influence

of smooth engine operations on emissions reduction has not been investigated.

Thus, in this study, to achieve a reduction in soot, the maximum engine-generator

power rate is allowed to vary based on the engine-generator power. Empirical knowl-

edge of the operation of a turbocharged diesel engine suggests that the allowable

power rate decreases as the engine power increases. The design of the power rate

map is discussed in Appendix A.

The SHEV configuration under consideration consists of an engine, a generator,

in-hub motors, a battery, a power bus, and the vehicle as illustrated in Fig. 5.1. The

SHEV is simulated in a forward looking scheme, where the driver determines control

commands to follow a desired speed profile. The engine drives the generator, con-

verting mechanical power into electrical power which is then used to power electric

motors and/or to charge the battery. Electrical power flow among the generator, bat-

tery, and electric motors is managed by a power management system (PMS) through

the power bus. A hybridized Mine Resistant Ambush Protected All-Terrain Vehicle

(M-ATV) is the target vehicle for control design and its specifications are summarized
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Table 5.1: Mine Resistant Ambush Protected All-Terrain Vehicle (M-ATV) Specifi-
cations

Parameter Symbol Value Unit

Weight Mveh 15554 kg
Frontal Area Aveh 5.72 m2

Diesel Engine Power Pe 261 kW
Generator Power Pg 236 kW
Battery Capacity Cb 9.27 kWh

Motor Power Pm 380 kW

in Table 5.1. Detailed models for the SHEV are given in Appendix B.

5.2.2 MPC-based Power Management

For power management in the SHEV, Model Predictive Control (MPC) is used

to split the power demand between the engine-generator unit and the battery. MPC

is an attractive control method with advantages such as generating a suboptimal

solution in a causal manner and taking into account input and state constraints over

a finite horizon. In MPC, an optimal control sequence is computed at each time

step by solving an on-line optimization problem over a finite future time horizon by

utilizing a receding horizon approach. Then, the first element of the optimal sequence

is applied to the system as a control input, and this procedure is repeated at each

time step.

The supervisory control design focuses on distributing the power demand between

the battery and the engine-generator and hence a simplified modeling approach is

considered for the powertrain. To model the battery, a simple equivalent-circuit

model with a single state is considered. As discussed in [30] and [9], the single-state

equivalent-circuit model is capable of capturing the SOC dynamics of the battery, the

most relevant dynamics, for the supervisory control design. Thus, the SOC dynamic

behavior of the battery is simplified by the following equation:

dx(t)

dt
= − Ib

3600Cb

(5.1a)

Ib = −
Voc −

√
V 2

oc − 4Rsu(t)

2Rs

, (5.1b)

where (·) stands for power management system level. The variable x = SOC is the
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Figure 5.2: Quasi-static engine maps: (a) a steady state fuel rate as a function of
engine-generator power, and (b) brake specific fuel consumption bsfc of the engine-
generator unit superimposed by optimal operation line

state of the battery system, u = Pb is the battery power, Ib is the battery current

and Cb is the battery capacity in a unit of Ah. Variables Voc and Rs are open circuit

voltage (OCV) and internal resistance, respectively. Note that the battery SOC and

internal resistance are provided by the battery management system (BMS).

To model the engine-generator, a quasi-static nonlinear map representing the re-

lationship between power Pg and fuel rate ṁf is used as shown in Fig. 5.2. The

engine-generator power v = Pg is calculated by

v(t) = Pd(t)− u(t), (5.2)
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explaining how the power demand generated by the driver Pd(t) is satisfied by the

sum of the battery power u(t) and engine-generator power v(t). The outputs of the

model are

y = [x ṁ0.5
f ]T , (5.3)

where the square root of fuel rate of the engine generator ṁ0.5
f is used since the MPC

problem is formulated as a Quadratic Programming (QP) problem similarly to [9]

(Appendix C). The fuel rate is a function of the engine-generator power (Fig. 5.2).

In summary, the nonlinear powertrain model is described in the state-space rep-

resentation as following:

ẋ(t) = ϕ(x(t), u(t)), (5.4a)

y(t) = ψ(x(t), v(t)), (5.4b)

where x ∈ R1, u ∈ R1, v ∈ R1, y ∈ R2.

A linear discrete-time MPC control strategy is used for power management in this

thesis. Since the system is nonlinear, linearization and discretization processes are

required to formulate a linear MPC problem. By computing the Jacobian matrices

from the nonlinear system (5.4), an approximate linear continuous-time model can

be obtained as

ẋ(t) = Ax(t) +Bu(t) +G1, (5.5a)

y(t) = Cx(t) +Hv(t) +G2, (5.5b)

System matrices are calculated by

A =
∂ϕ

∂x

∣∣∣∣
(xo,uo,vo)

, (5.6a)

B =
∂ϕ

∂u

∣∣∣∣
(xo,uo,vo)

, (5.6b)

C =
∂ψ

∂x

∣∣∣∣
(xo,uo,vo)

, (5.6c)

H =
∂ψ

∂v

∣∣∣∣
(xo,uo,vo)

, (5.6d)

G1 = ϕ(xo, uo, vo)− (Axo +Buo), (5.6e)

G2 = ψ(xo, uo, vo)− (Cxo +Hvo). (5.6f)
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where xo, uo, and vo are the values at previous sampling time t− 1.

Assuming the input u(t) is constant over each sampling interval, a linear discrete-

time model can be obtained as

xk+1 = Adxk +Bduk +G1d, (5.7a)

y
k

= Cxk +Hvk +G2, (5.7b)

where Ad ≈ 1 + A∆t, Bd = B∆t, G1d = G1∆t, and ∆t is the sampling period in

power management system.

For the purposes of MPC, the cost function J to be minimized and constraints

are defined as

Jk =

k+Np∑
i=k

(y
i|k − y

ref)T

[
η1 0

0 η2

]
(y
i|k − y

ref)

+ ∆vTi|kη3∆vi|k + uTi|kη4ui|k (5.8a)

s.t. Pb,min ≤ ui|k ≤ Pb,max, i = 1, 2, . . . , Nc (5.8b)

Pg,min ≤ vi|k ≤ Pg,max, , i = 1, 2, . . . , Nc (5.8c)

∆Pg,min ≤ ∆vi|k ≤ ∆Pg,max, i = 1, 2, . . . , Nc (5.8d)

SOCmin ≤ y1

i|k ≤ SOCmax, i = 1, 2, . . . , Np (5.8e)

where Np and Nc are lengths of the prediction and control horizons, respectively.

The parameter ηj (j = 1, . . . , 4) represents a weighting factor for the balance between

battery SOC regulation and fuel economy improvement. These weighting factors

are tuned through repeated simulations until the fuel economy improvements are

diminished. The variables Pg,min and Pg,max are minimum and maximum engine-

generator power, respectively. The minimum and maximum power rates of the engine-

generator ∆Pg,min and ∆Pg,max are obtained through a design optimization process

presented in Appendix A. The maximum discharging and charging power limits of

the battery Pb,max and Pb,min are provided by the battery management system and

will be presented in Section 5.3. Parameters and constraints are provided in Table

5.2 and Fig. 5.3.

Equation (5.8) is rewritten as a QP problem:

min
∆U

J =
1

2
∆UTΨ1∆U + Ψ2

T∆U (5.9a)

s.t. Γ1∆U ≤ Γ2, (5.9b)
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Table 5.2: Parameter and Constraint Values for MPC

Parameter Symbol Value

Weighting Factor

η1 4.17
η2 1
η3 2.5e-5
η4 1.25e-6

Horizon Length
Nc 15
Np 40

State Reference
yref

1
0.5

yref
2

0

Engine Constraint

Pg,min 0 kW
Pg,max 236 kW

∆Pg,min -60 kW/s
∆Pg,max a function of Pg shown in Fig. 5.3
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Figure 5.3: Power rate constraint map of the engine-generator; the maximum allow-
able power rate varies depending on the engine-generator power.

where ∆U =
[
∆uk|k, . . . ,∆uk+Nc−1|k

]T
is the change in the input vector. The lengths

of horizon for control Nc and prediction Np are tuned based on the computation time

so that the time of solving the optimization problem is less than the time step of
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0.2 seconds to allow real-time simulations with the hardware in the loop. Matrices

Ψ1, Ψ2, Γ1, and Γ2 are obtained by substituting Eqs. (5.2) and (5.7) into Eq.

(5.8)(Appendix C).

Power demand Pd,k over the prediction horizon is assumed constant,

Pd,k+i|k = Pd,k|k, i = 1, . . . , Np. (5.10)

Even though this assumption may not be accurate, unsteady power demands can be

properly handled due to the fact that only the first element of the control action

sequence over the prediction horizon is used. Approaches to predict future power

demand such as an exponential decay, stochastic and perfect predictions and their

influence on the fuel economy are not considered in this thesis, but can be found

in [113] and [114].

After solving Eq. (5.9), the first element of optimal sequence ∆uopt
k|k is used for

splitting power demand; that is, the optimal engine-generator power vopt
k is calculated

by

vopt
k = Pd,k − uk−1 −∆uopt

k|k . (5.11)

In the following section, information about the battery, namely SOC, internal

resistance and the maximum available battery power, is estimated for the PMS to

solve the power distribution problem (5.8).

5.3 Battery Power Management Strategy

Battery state1 needs to be accurately estimated to ensure efficient and robust

operation of the battery. Thus, in this section, adaptive estimators are developed

to sequentially identify SOC, internal resistance and core temperature of the battery

along with the convection coefficient. Then, these states and parameters are used to

determine power capability of the battery. The battery SOC, internal resistance and

power capability are provided to the power management system. As a first step, all

batteries in the battery pack are assumed to be identical.

1Battery states in the context of this chapter are different from states of a dynamic system but
refer to information describing 1) how much energy is stored in a battery; 2) how high power can
be drawn from or provided to a battery.
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5.3.1 Control-Oriented Battery Model

Electrical dynamics of the battery is captured by an equivalent-circuit model sim-

ilar to the one used in the PMS. However, a two-state model (OCV-R-RC) as shown

in Fig. 5.4 is considered to accurately predict terminal voltage. As suggested in [51],

this two-state model is reasonably accurate for voltage prediction in application to

electrified vehicles. The electrical dynamics in discrete-time domain is given by[
SOCk+1

V1,k+1

]
= AE

[
SOCk

V1,k

]
+BEIb,k (5.12a)

Vt,k = Voc(SOCk)− V1,k −RsIb,k (5.12b)

where Vt is the terminal voltage of the battery and ∆t is the sampling period in

battery management system. The subscript E denotes the electrical system. System

matrices AE and BE are expressed by

AE =

[
1 0

0 e
−∆t
R1C1

]
(5.13a)

BE =

 − 1

3600Cb
R1

(
1− e

−∆t
R1C1

)
 (5.13b)

where polarization resistance and polarization capacitance are denoted by R1 and C1,

respectively.

To predict core and surface temperatures of the battery, Tc and Ts respectively,

the reduced-order model developed in Chapter II is adopted and reproduced below
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for convenience: [
T̄k+1

γ̄k+1

]
= AT

[
T̄k

γ̄k

]
+BT

[
q̇k

T∞,k

]
(5.14a)[

Tc,k

Ts,k

]
= CT

[
T̄k

γ̄k

]
+DTT∞,k (5.14b)

where T̄ and γ̄ represent the averaged temperature and temperature-gradient. The

subscript T denotes the thermal system. Ambient temperature and the rate of heat

generation are denoted by T∞ and q̇ respectively. Matrices of the thermal system are

given by

AT =


hr2 + 24ktr − 48αh∆t

r(24kt + rh)

−15αh∆t

24kt + rh
−320αh∆t

r2(24kt + rh)

hr3 + 24ktr
2 − 120α∆t(rh+ 4kt)

r2(24kt + rh)

 (5.15a)

BT ,
[
BE1 BE2

]
=


α∆t

ktVb

48αh∆t

r(24kt + rh)

0
320αh∆t

r2(24kt + rh)

 (5.15b)

CT ,

[
CT1

CT2

]
=

24kt − 3rh

24kt + rh
−120rkt + 15r2h

8(24kt + rh)
24kt

24kt + rh

15rkt
48kt + 2rh

 (5.15c)

DT ,

[
DT1

DT2

]
=

 4rh

24kt + rh
rh

24kt + rh

 (5.15d)

where r, kt and α are the radius, thermal conductivity and thermal diffusivity of the

battery respectively.

The heat generation rate q̇k is defined as

q̇k = I2
b,kRs +

V 2
1,k

R1

− Ib,kT̄k
∆Sk
F

, (5.16)

where F is the Faraday constant, 96485.3365 C/mol. By following the test procedure

described in Chapter IV, the entropy change of the battery ∆S is measured as shown

in Fig. 5.5.
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Figure 5.5: Measured entropy change of the battery and its comparison with literature
values [65,91]

5.3.2 Sequential State-Parameter Estimation

The schematic of battery state-parameter estimation is illustrated in Fig. 5.6.

Since the heat generation rate is critical to estimate state and parameter of the bat-

tery thermal system, state and parameter of the electrical system are estimated prior

to those of the thermal system. As seen from Eq. (5.16), the averaged temperature

of the battery is required to calculate the entropic heat generation; however, the av-

eraged temperature is not measurable but estimable. Thus, an estimated value at

previous time step T̄k−1 is used instead. Due to slow dynamics of the thermal sys-

tem, it is reasonable to assume that the difference between two consecutive averaged

temperatures is negligible, i.e. T̄k ≈ T̄k−1.

For state-parameter estimation of the electrical and thermal system, a variant of

Kalman Filter is applied. States, parameters, inputs and outputs of the electrical

and thermal systems are summarized in Table 5.3. The Dual Kalman Filter (DKF)

based estimator developed in Chapter III is adopted for the thermal system whereas

a Dual Extended Kalman Filter (DEKF) is applied to the electrical system.

Even though the efficacy of the DEKF-based estimator to determine states (SOC

and polarization voltage) and parameters (resistances and capacitances) of the elec-

trical dynamics has been shown in literature [25, 115], sensitivity of the states and
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Figure 5.6: Schematic of state-parameter estimation for electrical and thermal systems

parameters to voltage prediction has not been fully considered for the estimation prob-

lem. Therefore, a grouping approach for state-parameter estimation is investigated

based on sensitivity analysis.

Similarly to Chapter III, sensitivity of the states and parameters is analyzed by

investigating the partial derivative of output with respect to the individual state and

parameter through a simulation using a HEV current profile over a military driving

mission, Urban Assault Cycle (UAC) [116]. The sensitivity of terminal voltage to

each of the electrical state and parameter can be expressed using Eq. 5.12 as follows:

∂Vt,k

∂SOC
=
∂Voc(SOCk)

∂SOC
, (5.17a)

∂Vt,k

∂V1

= − 1, (5.17b)

∂Vt,k

∂Rs

= − Ib,k, (5.17c)

∂Vt,k

∂R1

= − e
∆t

R1C1
∆t

R2
1C1

V1,k−1 −
(

1− e
∆t

R1C1 −R1e
∆t

R1C1
∆t

R2
1C1

)
Ib,k−1, (5.17d)

∂Vt,k

∂C1

= − e
∆t

R1C1
∆t

R1C2
1

V1,k−1 +R1e
∆t

R1C1
∆t

R1C2
1

Ib,k−1. (5.17e)
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It is assumed that the states and parameters of the electrical system are known

perfectly: (1) the initial battery SOC is known, (2) the battery SOC based on the

integration of the current is accurate, and (3) parameters obtained from off-line iden-

tification process are accurate. As seen from Fig. 5.7, the internal resistance Rs is

the most estimable followed by the polarization voltage V1 and SOC. This result

corresponds to Eq. (5.12b) where the thermal voltage Vt is computed from SOC (or

Voc(SOC)), V1 and RsIb. For the battery of interest to us, LiFePO4/graphite, Voc–

SOC curve is flat in the middle SOC range from 0.2 to 0.9 (Fig. 2.3); thus, SOC is

relatively difficult to be identified.

Based on these results, the states and parameters are divided into two groups as

follows:

Ω1 =: {SOC, V1, Rs}, (5.18a)

Ω2 =: {R1, C1} (5.18b)

The internal resistance Rs,k is augmented with SOCk and V1,k as the parameters

in Ω1; on the other hand, the polarization resistance R1,k and capacitance C1,k are

considered as the parameters in Ω2. This grouping approach benefits from decoupling

parameter interactions between two groups, allowing the ease of tuning the DEKF
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[117]. It is noted that the parameters in Ω1 can be considered as the states of the

augmented system similarly to a Joint Extended Kalman Filter presented in Chapter

III. Therefore, system matrices for the electrical dynamics need to be redefined as

ĀE =

[
AE 0

0 1

]
, (5.19a)

B̄E =

[
BE

0

]
. (5.19b)

In general, a nonlinear dynamics can be expressed as follows:

xk+1 = f(xk, uk, θk) + wk, (5.20a)

yk = g(xk, uk, θk) + vk, (5.20b)

θk+1 = θk + rk, (5.20c)

where xk, uk, θk and yk are state (or parameter in Ω1), input, parameter (or parameter

in Ω2) and output, respectively; wk, vk and rk are independent, zero-mean, Gaussian

noise processes of covariance matrices Σw, Σv and Σr, respectively. Then, the DEKF

estimator is given as the following update processes.

Time update for the parameter (or parameter in Ω2) filter:

θ̂−k = θ̂+
k−1, (5.21a)

P−θ,k = P+
θ,k−1 + Σr. (5.21b)

Time update for the state (or parameter in Ω1) filter:

x̂−k = f(x̂+
k−1, uk−1, θ̂

−
k ), (5.22a)

P−x,k = Āk−1P
+
x,k−1Ā

T
k−1 + Σw. (5.22b)

Measurement update for the state filter:

Kk = P−x,kC
x
k
T
[
Cx
kP
−
x,kC

x
k
T + Σv

]−1
, (5.23a)

x̂+
k = x̂−k +Kk

[
yk − g(x̂−k , uk, θ̂

−
k )
]

(5.23b)

P+
x,k = [I −KkC

x
k ]P−x,k. (5.23c)
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Table 5.3: State, parameter, input and output of electrical and thermal systems for
state-parameter estimation

Electrical Thermal

Parameter in Ω1/State θΩ1,k = [SOCk V1,k Rs,k ]T xT,k = [T̄k γ̄k]
T

Parameter in Ω2/Parameter θΩ2,k = [R1,k C1,k]
T θT,k = hk

Input uE,k = Ib,k uT,k = [q̇k T∞,k]
T

Output yE,k = Vt,k yT,k = [Ts,k]
T

Measurement update for the parameter filter:

Lk = P−θ,kC
θ
k

T
[
Cθ
kP
−
θ,kC

θ
k

T
+ Σv

]−1

, (5.24a)

θ̂+
k = θ̂−k + Lk

[
yk − g(x̂−k , uk, θ̂

−
k )
]

(5.24b)

P+
θ,k =

[
I − LkCθ

k

]
P−θ,k, (5.24c)

where superscripts − and + denote the a priori and a posteriori values respectively.

The matrices Āk−1, Cx
k and Cθ

k are calculated according to

Āk−1 =
∂f(xk−1, uk−1, θ̂

−
k )

∂xk−1

∣∣∣
xk−1=x̂+

k−1

, (5.25a)

Cx
k =

∂g(xk, uk, θ̂
−
k )

∂xk

∣∣∣
xk=x̂−k

, (5.25b)

Cθ
k =

dg(x̂−k , uk−1, θk)

dθk

∣∣∣
θk=θ̂−k

. (5.25c)

Table 5.3 summarizes parameters in Ω1 and Ω2 (or states and parameters) along-

side inputs and outputs of the electrical and thermal systems for the state-parameter

estimation.

5.3.3 Power Capability Estimation

To calculate power capability of the battery, the Algebraic Propagation (AP)

method developed in Chapter IV is applied with estimated states and parameters from

the sate-parameter estimators as illustrated in Fig. 5.8. The AP method computes a

constant input which leads to that none of constraints are violated in N future steps.

Similar to state-parameter estimation, power capability is also sequentially computed.

To apply the AP method to the electrical system, the output of the system (5.12b)
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needs to be linearized as described in Chapter IV and is expressed by:[
ˆSOCk+1

V̂1,k+1

]
= AE(R̂1,k, Ĉ1,k)

[
ˆSOCk

V̂1,k

]
−BE(R̂1,k, Ĉ1,k)Ib,k (5.26a)[

ˆSOCk

V̂t,k

]
= CE

[
ˆSOCk

V̂1,k

]
−DEIb,k + FE (5.26b)

where matrices CE, DE and FE are obtained by

CE ,

[
CE1

CE2

]
=

 1 0
∂Voc(SOC)

∂SOC

∣∣∣
SOC= ˆSOCk

−1

 (5.27a)

DE ,

[
DE1

DE2

]
=

[
0

R̂s,k

]
(5.27b)

FE ,

[
FE1

FE2

]
=

 0

Vt,k −
∂Voc(SOC)

∂SOC

∣∣∣
SOC= ˆSOCk

ˆSOCk

 (5.27c)

The maximum permissible currents accounting for electrical constraints such as
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SOC and voltage limits, SOCmin, SOCmax, Vmin, and Vmax, are determined respectively

as following:

ÎE,SOCmin

b,max,k =

(
N−1∑
i=0

CE1A
i
EBE +DE1

)−1(
SOCmin − CE1A

N
E

[
ˆSOCk

V̂1,k

]
− FE1

)
(5.28a)

ÎE,SOCmax

b,min,k =

(
N−1∑
i=0

CE1A
i
EBE +DE1

)−1(
SOCmax − CE1A

N
E

[
ˆSOCk

V̂1,k

]
− FE1

)
(5.28b)

ÎE,Vmin

b,max,k =

(
N−1∑
i=0

CE2A
i
EBE +DE2

)−1(
Vmin − CE2A

N
E

[
ˆSOCk

V̂1,k

]
− FE2

)
(5.28c)

ÎE,Vmax

b,min,k =

(
N−1∑
i=0

CE2A
i
EBE +DE2

)−1(
Vmax − CE2A

N
E

[
ˆSOCk

V̂1,k

]
− FE2

)
(5.28d)

For the battery thermal system, the representation in Eq. (5.14) is modified for

time scale separation as the following equations:[
ˆ̄Tk+1

γ̂k+1

]
= AT (ĥk)

[
ˆ̄Tk

γ̂k

]
+BT1(ĥk)µk + ξ1,k, (5.29a)

T̂c,k = CT1(ĥk)

[
ˆ̄Tk

γ̂k

]
+ ξ2,k, (5.29b)

where

µk = I2
b,kR̂s,k − Ib,k

ˆ̄Tk
∆Ŝk
F

, (5.30a)

ξ1,k =BT1(ĥk)

 V̂
2

1,k

R̂1,k

T∞,k

 (5.30b)

ξ2,k =DT1(hk)T∞,k. (5.30c)

When the prediction period is short, the SOC and temperature of the battery

do not change significantly over the prediction horizon; time scale separation can be

utilized as presented in Chapter IV. Thus, it is reasonable to assume that the en-

tropy change and internal resistance are constant over the prediction horizon, that

is, Rs,j|k ≈ Rs,k and ∆Sj|k ≈ ∆Sk for j = k, k + 1, . . . , k + N . This approximation
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is conservative since internal resistance decreases with respect to increasing temper-

atures. In addition, ambient temperature and convection coefficient are assumed not

to change rapidly and hence to be constant, i.e. T∞,j|k ≈ T∞,k and hj|k ≈ hk for

j = k, k + 1, . . . , k + N . Lastly, a conservative value of heat generation by polariza-

tion voltage over the prediction horizon is obtained through model iteration using the

maximum permissible current at previous sampling time k −N∆t.

ξ̄1,k = max{ξ1,k, ξ1,k+N}. (5.31)

These approximations make it easy to handle the nonlinearity in the expression of

heat generation rate using a quadratic term I2
b,k and a bilinear term Ib,kT̄k.

Then, the maximum of the input µqmax,k, q ∈ {dch, chg}, which is described by

considering the maximum core temperature Tc,max, is determined as

µdch
max,k =

(N−1∑
i=0

CTA
i
TBT

)−1(
Tc,max − CTANT

[
ˆ̄Tk

γ̂k

]
−

N−1∑
i=0

CTA
i
T ξ̄

dch
1,k − ξ2,k

)
, (5.32a)

µchg
max,k =

(N−1∑
i=0

CTA
i
TBT

)−1(
Tc,max − CTANT

[
ˆ̄Tk

γ̂k

]
−

N−1∑
i=0

CTA
i
T ξ̄

chg
1,k − ξ2,k

)
, (5.32b)

where superscripts dch and chg represent battery discharge and charge, respectively.

By substituting Eqs. (5.32) into Eq. (5.30a), the maximum permissible currents

during battery discharge and charge are determined respectively by the following

equations

ÎT,dch
b,max,k =

ˆ̄Tk∆Ŝk
F

+

√√√√( ˆ̄Tk∆Ŝk
F

)2

+ 4R̂s,kµdch
max,k

2R̂s,k

, (5.33a)

ÎT,chg
b,min,k =

ˆ̄Tk∆Ŝk
F

−

√√√√( ˆ̄Tk∆Ŝk
F

)2

+ 4R̂s,kµ
chg
max,k

2R̂s,k

. (5.33b)

Maximum discharge and charge currents accounting for all constraints are calcu-

lated with

Îdch
b,max,k = min{ÎE,SOCmin

b,max,k , ÎE,Vmin

b,max,k, Î
T,dch
b,max,k} (5.34a)

Îchg
b,min,k = max{ÎE,SOCmax

b,min,k , ÎE,Vmax

b,min,k , Î
T,chg
b,min,k} (5.34b)
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Finally, the power capability {P̂b,max,k, P̂b,min,k} is estimated by the product of

the maximum allowable current and terminal voltage after N future sample steps

expressed as

P̂b,max,k = Îdch
b,max,k · V̂ dch

k+N |k, (5.35a)

P̂b,min,k = Îchg
b,min,k · V̂

chg
k+N |k, (5.35b)

where the predicted terminal voltage V q
k+N |k, q ∈ {dch, chg} is calculated with

V̂ dch
k+N |k = Voc

(
ˆSOCk −

Îdch
b,max,kN∆t

3600Cb

)
− Îdch

b,max,kR̂s,k

− e
−N∆t

R̂1,kĈ1,k V̂1,k − Îdch
b,max,kR̂1,k

(
1− e

−N∆t

R̂1,kĈ1,k

)
, (5.36a)

V̂ chg
k+N |k = Voc

(
ˆSOCk −

Îchg
b,min,kN∆t

3600Cb

)
− Îchg

b,min,kR̂s,k

− e
−N∆t

R̂1,kĈ1,k V̂1,k − Îchg
b,min,kR̂1,k

(
1− e

−N∆t

R̂1,kĈ1,k

)
. (5.36b)

As described in Section 5.2, the maximum power capability is provided to the power

management system.

5.4 Model-in-the-loop Simulation Results

The purpose of this section is to investigate the performance of the BMS and its

influences on the PMS. The military SHEV is simulated in the co-simulation frame-

work in which the battery electro-thermal model and the on-line adaptive estimators

are fully integrated to the vehicle model. The military vehicle mission profile, Urban

Assault Cycle (UAC) shown in Fig. 5.9, is used as an input to the SHEV simula-

tor. The UAC cycle has frequent high acceleration and deceleration events, typical

of military driving conditions [40].

The battery current and terminal voltage, which are inputs to the DEKF-based

estimator for the electrical system, are shown in Fig. 5.10. To simulate realistic noise

conditions, measured current and voltage are contaminated with artificial Gaussian

noises, i.e. σI=0.003 and σV =0.001; the tuning parameters of the DEKF are specified

as shown in Table 5.4.

The results of state-parameter estimation for the electrical system are shown in

Fig. 5.11(a)–(c), showing that the DEKF can simultaneously estimate SOC, polariza-
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Figure 5.9: A military vehicle mission profile: Urban Assault Cycle

Table 5.4: Tuning parameters of adaptive estimators for electrical and thermal sys-
tems

Parameter Electrical system Thermal system

Σw diag(6e-3,2e-2,8e-6) diag(2.5e-7,2.5e-7)
Σv 1 2.5e-4
Σr diag(2.5e8,4e-1) 9e-4
P (0) diag(1,1,1) diag(1,1)
S(0) diag(1e-1,1e-1) 1e-2

tion voltage and internal resistance. The true2 battery SOC, denoted by SOCCC, is

measured by using Coulomb Counting (CC). Slow convergence of the battery SOC is

the result of estimator tuning based on sensitivity analysis discussed in Section 5.3.2.

On the other hand, the polarization voltage and internal resistance are estimated

with relatively fast convergence rate. It is noted that the battery plant is modeled

by using an OCV-R-RC-RC equivalent-circuit model; therefore, the true polarization

voltage is the sum of two polarization voltages in the plant model. It is also noted

that polarization resistance and capacitance are not shown since the order of the

2The term true stands for a response from the plant model in the SHEV simulator.
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Figure 5.12: Performance of the DEKF-based estimator for the electrical system: (a)
heat generation rate, (b) error

battery model in the estimation algorithm is different from that of the plant model.

Instead, the effectiveness of the parameter estimation is evaluated by investigating

the accuracy of the polarization voltage and heat generation rate. Figure 5.12 shows

the comparison between the true heat generation rate and the estimated value; the

root-mean-square-error (RMSE) of the heat generation rate is 0.001 W which is less

than 0.2 percent of the averaged heat generation rate over the UAC. The heat gen-

eration rate needs to be accurately estimated since the estimated value is used as an

input to the state-parameter estimation in the thermal system.

Figure 5.13 shows the battery surface temperature and ambient temperature

which are used as inputs to the DKF-based estimator for the thermal system. Sim-

ilar to the DEKF, Gaussian noises are artificially added to the measured data, i.e.

σTs=σT∞=0.016. Details of tuning parameters of the DKF are also shown in Table

5.4. To simulate malfunction of the cooling system, the convection coefficient is de-

liberately changed from 20 to 3 W/m2/K at t=300 s. This malfunction condition is

simulated to assess not only the performance of the DKF but also the effectiveness

of the power capability estimation. As seen from Fig. 5.14, the DKF is capable of

providing accurate estimates of the states and parameter of the thermal system. It

is noted that, as presented in Section 5.3.2, a one step-delayed averaged temperature
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Figure 5.13: Input data to the DKF over the UAC: (a) surface temperature; (b)
ambient temperature
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is used to estimate the heat generation rate.

The results of power capability estimation are shown in Fig. 5.15(a)–(e), which de-

pict battery power, terminal voltage and core temperature. As shown in Fig. 5.15(a),

the maximum battery power is limited by electrical-constrained power capability when

the battery core temperature is lower than the target value of Tc,max = 45◦C. It can be

seen that battery SOC and terminal voltage do not violate constraints (Fig. 5.15(c)

and (d)). However, as the core temperature increases, thermal-constrained power ca-

pability becomes active and hence the battery power are effectively regulated between

the maximum and minimum power limits. To highlight this performance, specific time

periods from 930 to 110 seconds are shown in Fig. 5.15(b). Consequently, the core

temperature does not exceed the maximum temperature as illustrated in Fig. 5.15(e).

Evidenced by the results from the model-in-the-loop simulation, it can be con-

cluded that the developed estimation algorithms including states, parameters, and

power capability are capable of providing accurate information about the battery.

Thus, the safe and reliable operation of the power management system as well as the

battery can be achieved.

5.5 Conclusion

This chapter has demonstrated the application of state-parameter estimation al-

gorithms developed in Chapters III and IV to a series hybrid electric vehicle. First,

a model predictive control (MPC) based power management strategy is developed

to determine power flows among hybrid powertrain components. Since the power

management system requires operational limits of the battery, adaptive estimators

capable of identifying the thermal and electrical states and parameters in an on-line

manner are developed. For the electrical system, a parameter grouping approach is

used based on parameter sensitivity analysis suggesting that battery SOC, polariza-

tion voltage, and internal resistance can be considered as one group. Moreover, the

order of sequential estimation (electrical–thermal) is proposed and reasoned for better

state-parameter estimation. Then, the algorithm to compute power capability of the

battery is developed based on the simple method proposed in Chapter IV using the

information provided by the adaptive estimators. The results of the model-in-the-

loop simulation show that the proposed estimation algorithms can provide accurate

information of the battery to the power management system and hence the safe and

robust operation of the series hybrid electric vehicle can be achieved.
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CHAPTER VI

Conclusion

6.1 Summary of Contributions

The contributions in this dissertation are summarized as follows.

In Chapter II, a radially distributed 1-D thermal modeling approach for a cylin-

drical battery is proposed. Polynomial approximation is applied to obtain a reduced-

order model. Frequency domain analysis shows that the proposed model provides

sufficiently accurate prediction of the core and the surface temperatures. The pro-

posed model is used to identify thermal properties and convective coefficient for a

2.3 Ah 26650 LFP battery. The proposed thermal model is found to accurately pre-

dict the core and surface temperatures alongside volume-averaged temperature and

volume-averaged temperature gradient of a cylindrical Li-ion battery.

In Chapter III, a method to estimate the temperature distribution in cylindri-

cal batteries under unknown cooling conditions is proposed. First, a reduced-order

thermal model developed in Chapter II is used to estimate the radial temperature dis-

tribution. Numerical analysis on parameter sensitivity supports the use of constant

parameters for thermal conductivity and heat capacity and the importance of iden-

tifying the convection coefficient on-line. Filtering methods are applied to estimate

the temperature inside the battery and convection coefficient. The proposed method

establishes an on-line estimate of convection coefficient for accurate estimating the

core temperature.

In Chapter IV, a method to estimate battery power limits accounting for both

electrical and thermal constraints is presented. The method relies on an electro-

thermal model for the electrical and thermal dynamic behaviors. Further, a method

to parameterize the lumped thermal model that includes entopic heat generation as

well as joule heating is presented and discussed. Under the assumptions of short
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prediction horizons, a computationally efficient algorithm is proposed to estimate

power capability of Li-ion batteries by utilizing time scale separation.

In Chapter V, the proposed battery thermal model and estimation algorithms

from the previous chapters are integrated into a power management system for a

series hybrid electric vehicle. An algorithm for sequential estimation of coupled model

parameters and states is developed. For the electrical system, parameter grouping

based on sensitivity is utilized to formulate the state-parameter estimation problem.

The estimated states and parameters of the battery are used to predict the maximum

allowable power of the battery which is required by the power management system.

The results of the model-in-the-loop simulation reveal that the power management

system can effectively determine power flow among hybrid powertrain components

without violating operational constraints with information of the battery such as

SOC, internal resistance, and power capability.

6.2 Possible Future Extensions

This dissertation proposes a novel approach to estimate power capability (or bat-

tery state-of-power) accounting for thermal and electrical constraints. The proposed

approach is found to be effective to provide accurate information about battery core

temperature, cooling condition, state-of-charge and internal resistance as well. Nev-

ertheless, to advance the presented work, the following can be considered as oppor-

tunities for future research.

6.2.1 Battery warm-up strategy for cold start

Li-ion batteries are well known to suffer from poor performance at low temper-

atures: the discharge capacity and available power of the Li-ion batteries are sub-

stantially deteriorated below -20◦C [118–121]. The poor performance at low temper-

atures is attributed to reduced conductivity and diffusivity of electrode and elec-

trolyte [120, 122] and increased charge-transfer resistance at the solid-electrolyte-

interface (SEI) [119]. For a given design of Li-ion batteries, heating with current

drawn from the battery can be a viable solution to exploit the thermal dynamics

of the battery by generating heat inside a battery cell [123]. Despite its feasibility,

an optimal control to the battery warm-up problem has to be detailed to properly

account for objectives (e.g. warm-up duration, efficiency, and battery state-of-health)

and constraints (temperature, terminal voltage, and current). Pontryagin’s Minimum

Principle (PMP) and Dynamic Programming(DP) can be applied to solve this optimal
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warm-up problem. Moreover, the state-parameter estimators presented in Chapters

III and V can be augmented to the controller to provide accurate information about

the battery.

6.2.2 Mechanical Stress as a Power Capability Constraint

The health of Li-ion batteries is typically judged by monitoring internal resistance

and capacity [66, 124–130]. The performance degradation of a battery may not be

the result of a single mechanism but of several complicated mechanisms as studied in

literature [124,131,132]. In particular, Lithium de/intercalation into electrodes results

in its expanding/contracting and eventually particles cracking or becoming electrically

disconnected from the current collector leading to power capability loss [133–135].

Since the mechanical stress at the electrode level is not easy to measure, Cannarella

and Arnold in [136] studied a stack level mechanical stress and its influence on capacity

fade. This volumetric change or bulk mechanical stress is measurable by using load

sensors and hence a monitoring system may be implementable on HEVs to provide

additional information about the state-of-health and state-of-power of the battery.

Thus, development of such a model to capture the relationship among bulk mechanical

stress, battery state-of-charge (SOC) and temperature can be used to improve the

estimation of power capability of Li-ion batteries presented in Chapter IV.

6.2.3 Powertrain-in-the-loop Validation

Experimental validation is required to investigate interaction among hybrid pow-

ertrain components under power and battery management strategies addressed in

Chapter V. A networked hardware-in-the-loop simulation of this vehicle system can

be considered to enable a system integration despite the fact that the components

reside in different geographic locations [8, 137–140]. For example, the engine and

battery are the hardware components located in two different locations, and the re-

maining components of the vehicle system (i.e., generator, motors, vehicle dynamics,

and driver) are mathematically modeled and simulated in a third location. The

overview of the networked system architecture is illustrated in Fig. 6.1.
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APPENDIX A

Development of a Power Rate Constraint Map for

a Diesel-powered Series Hybrid Electric Vehicle

A.1 Introduction

In this appendix, a methodology to design the maximum allowable power rate

map, the power rate constraint map, for an engine-generator of an SHEV is proposed

for reducing soot emissions. To develop this constraint map, a three-step discrete

optimization process is used by sequentially combining Genetic Algorithm (GA) and

Exhaustive Search (ES). GA results are used to narrow down the design space. Then,

ES finds the optimal solution within the search region reduced by GA. A quasi-static

map for soot emissions similar to [11] and [52] is considered as a first step to evaluate

the benefits of including the power rate constraint map in an Model Predictive Control

(MPC) based power management for soot emissions reduction. This constraint map

is then evaluated experimentally using an engine-in-the-loop simulation setup where

a Navistar 6.4L V8 diesel engine is supplemented by a 9.27 kWh battery. Moreover,

the implementation of the resulting MPC on battery life is assessed using a weighted

Ah-processed model [141].

This appendix is organized as follows. Section A investigates the effect of the

engine-generator power rate on fuel economy and soot emissions. Then, the three-

step discrete optimization process to obtain the power rate constraint map is described

in Section A. Experimental setup and results are presented and discussed in Section

A, and conclusions are drawn in Section A.
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Figure A.1: Comparison of acceleration and deceleration of the urban assault cycle
(UAC) and the heavy-duty urban dynamometer driving schedule (HD-UDDS)

A.2 Effect of maximum engine-generator power rate

The purpose of this section is to investigate the effect of the engine-generator

power rate on the fuel economy and soot emissions. A military vehicle driving mis-

sion, Urban Assault Cycle (UAC), is used; this cycle with a whole distance of 8.80

km (5.46 mile) is aggressive compared to a federal driving cycle such as the Urban

Dynamometer Driving Schedule for Heavy-Duty Vehicles (HD-UDDS) as shown in

Fig. A.1. The UAC cycle has frequent high acceleration and deceleration events,

typical of military driving conditions [40].

For the purpose of accounting for the remaining battery SOC, two consecutive

driving cycles are considered, and the fuel economy is calculated by

fuel economy =
1

Ns

Ns∑
k=1

∫ tk+tcycle

tk
vveh dt∫ tk+tcycle

tk
ṁf dt

, (A.1)

where tcycle is the total time of the given driving cycle, vveh is the velocity of the

vehicle and Ns is the total number of tk’s that satisfy the SOC sustainability condition:

tk ∈ {ξ : SOC (ξ) = SOC (ξ + tcycle)} and ξ ∈ R1. Parameters for the MPC problem

are tuned manually for the best fuel economy and summarized in Table A.1 along

with the constraint values.

To predict the trends in soot emissions and subsequently help with the control

design, a quasi-static map is considered. Note that more than 50% of all soot emis-

sions could be generated during transients such as tip-in operations [142] and hence a

quasi-static map cannot accurately predict the magnitude of the soot emissions dur-

ing aggressive transients. Nevertheless, for the purposes of designing a supervisory

103



Table A.1: Parameter and Constraint Values for MPC

MPC Parameter Value Constraint Value

w1 4.17 Vmin 2.0 V
w2 1 Vmax 3.6 V
w3 2.5e-5 Pg,min 0 kW
w4 1.25e-6 Pg,max 236 kW
Nc 15 ∆Pg,min -60 kW/s
Np 40 ∆Pg,max 30 kW/s
y1,ref 0.5 SOCmin 0.3
y2,ref 0 SOCmax 0.7

controller, quasi-static maps have been shown to be useful due to their ability to

capture the basic trends [11,52]. More relevantly, the quasi-static soot emissions map

used in this work has been previously found adequate to capture the basic trends in

soot emissions even during transients [143]. Therefore, it is used in this study to help

with the control design and avoid ad-hoc experimental tuning, with the understand-

ing that the resulting control design may not yield the optimal performance and a

dynamic soot emissions model such as [143] would ultimately be needed to achieve

the best performance. Fuel economy and total soot emission over the UAC are 3.278

km/l (7.71 mpg) and 0.0316 g/km, respectively, which are used as the baseline values

for the simulation-based results.

In order to investigate the effect of the engine-generator power rate on the fuel

economy and soot emissions, different maximum power rates ∆Ptextg,max are simu-

lated. The minimum power rate ∆Pg,min is considered to be a fixed parameter since

soot emissions are zero during braking due to fuel cut-off and the slow decrease of

power leads to multiple power conversions, resulting in a decrease of the total effi-

ciency of the system as explained in [112].

As it can be seen from Fig. A.2, a decrease in the maximum power rate of the

engine-generator helps reduce the soot emissions but it decreases fuel economy as a

tradeoff. Specifically, considering a reduction of less than 0.5% in fuel economy as a

reasonable compromise, limiting the maximum power rate to 19.3 kW/s could reduce

soot emissions by 1.9%.

This example is useful to demonstrate the tradeoff between soot emissions and

fuel economy; however, it also raises the question of whether a constant maximum

power rate is the best way to address this tradeoff. This question is addressed in the
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Figure A.2: The effect of a decrease in maximum engine-generator power rate on fuel
economy and soot emissions

next section. Specifically, it is shown that better smoke results can be obtained if

the maximum power rate is not constant but variable; i.e. the rate depends on the

engine-generator power level.

A.3 Maximum Power Rate Optimization

This section describes the offline process of optimizing maximum power rate

∆Pg,max as a function of the engine-generator power. The goal is to optimize the

maximum power rate of the engine-generator as a function of power level, which min-

imizes the total soot emission over a driving cycle. Thus, the discrete optimization

problem is formulated by

min
∆Pg,max(d)

J =
1

Ns

Ns∑
k=1

tk+tcycle∫
tk

ṁsoot dt,

s.t. α ≥ α∗

d = h (Pg) ∈ {d1, d2, . . . , dl1} , di ⊂ R≥0, i = 1, 2, . . . , l1

∆Pg,max(d) ∈ {β1, β2, . . . , βl2} , βj ∈ R>0, j = 1, 2, . . . , l2 (A.2)

where ṁsoot is the soot emissions rate and α is the fuel economy defined in Eq.

(A.1). The minimum allowed fuel economy α∗ is set to 3.265 km/l (7.68 mpg); i.e.,

fuel economy is allowed to be reduced from 3.278 km/l (7.71 mpg) to 3.265 km/l

(7.68 mpg) by 0.4%. The reference fuel economy is obtained from the MPC-based

power management without the optimized power rate constraint map. The function

h is a discrete mapping from the engine-generator power Pg to di, partitions of power

capability of the engine-generator; e.g., d1 = [0 25) and d2 = [25 50). In each partition
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Table A.2: Input Parameters of Genetic Algorithm

Parameter Value

Number of population 30
Number of generation 50

Probability of crossover 0.8
Probability of mutation 0.01

di, the maximum power rate ∆Pg,max is set to βj, and lower and upper bounds of βj

are defined by considering vehicle requirements and engine soot generation. Integer

variables l1 and l2 denote the number of design variables (i.e., the power rates for

different di’s) and the size of design space (i.e., the discrete set of values the power

rates can assume), respectively.

With respect to solving this discrete optimization problem, algorithms such as

Genetic Algorithm and Simulated Annealing are good for searching the global opti-

mum; thus, those algorithms have been applied to optimize the design and control

strategy of HEVs [144–149]. However, a large number of iterations are required to

guarantee the global optimality, which is a challenge in this study, since each iteration

takes several minutes in vehicle simulation. To overcome this drawback, a three-step

discrete optimization process is conducted as follows:

1. Find candidate solutions using Genetic Algorithm.

2. Redefine the lower and upper bound for each variable.

3. Determine the optimal solution using Exhaustive Search in the bounded range.

Figure A.3 and Table A.2 show parameters for the optimization problem (A.2)

and parameters for GA, respectively. It is noted that the total number of every

possible case in the initial design space (gray shaded area in Fig. A.3) is 88, which

is impractical to apply ES. However, the search region is significantly reduced by

using GA results as shown in blue-shaded area in Fig. A.3. Thus, only 648 cases,

0.004% of every possible case, need to be explored by ES. Then, the optimal power

rate constraint map, which is the blue colored line in Fig. A.3, is obtained from ES

results and compared to seven power rate constraint maps resulting in the least soot

emissions over the UAC cycle. All of the power rate constraint maps enforce the

power rate of the engine-generator to be decreased with power above 75 kW. This

result means that these solutions behave effectively as a low-pass filter incorporating
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Figure A.3: Optimal solutions from ES to adjust the maximum power rate of the
engine-generator depending on power level

load-leveling as used in [112]. Figure A.4 summarizes the reduction in soot emission

and the compromise in fuel economy from the model-based simulation. The total

soot emission could be successfully reduced by 4.0 % with the optimal power rate

constraint map without significantly compromising fuel economy; fuel economy is

reduced by 0.4% only. This is two times the reduction in soot emissions that was

obtained with a constant maximum engine power rate constraint in Section A.

The results reported thus far are simulation-based and are obtained using a quasi-

static map for soot emissions. While the quasi-static map is useful for design purposes,

it is reasonable to expect the actual reduction in soot emissions to be higher than what

is predicted by the quasi-static map, because it has been reported that more than 50%

of soot emissions are generated during transients [142]. Therefore, to better assess

the extent that the power rate constraint map can reduce soot emissions, this map is

experimentally evaluated in an engine-in-the-loop simulation framework described in

the following section.
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Figure A.4: Simulation-based comparison of solutions from ES with reference: (a)
fuel economy and (b) reduction in soot emissions

A.4 Experimental Results

For experimental evaluation, a networked engine-in-the-loop simulation [137–139]

of the vehicle system is considered, where the engine is the hardware component

and the remaining components of the vehicle system (i.e., generator, battery, motors,

vehicle dynamics, and driver) are mathematically modeled as described in Appendix

B. The overview of the networked system architecture is illustrated in Fig. A.5.

A.4.1 Engine-in-the-loop setup

The hardware component of interest for this work is a Navistar 6.4L V8 diesel

engine with 260 kW rated power at 3000 rpm and a rated torque of 880 Nm at 2000

rpm. It is intended for a variety of medium-duty truck applications covering the

range between classes IIB and VII, and features technologies such as high pressure

common rail fuel injection, twin sequential turbochargers, and exhaust gas recircula-

tion. A high-fidelity AC electric dynamometer couples the physical engine with the

simulation models in real-time and operates in speed control mode. The setup can

be connected to Simulink for integration with mathematical models, allowing for a

real-time hardware-in-the-loop simulation. This connection is achieved through an

EMCON 400 flexible test bed with an ISAC 400 extension.

Transient soot emissions are measured with a Differential Mobility Spectrometer

(DMS) 500 manufactured by Cambustion Ltd. in the form of temporally resolved

particulate concentrations. The DMS500 offers measurement of different particle
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Figure A.5: The overview of the engine-in-the-loop vehicle system simulation archi-
tecture used in this case study. The engine model used for MPC development is
replaced with an actual engine.

sizes by identifying the mobility of particles with a sampling frequency of 10 Hz and

a response time of 200 ms. Therefore, the DMS 500 makes it possible to analyze the

time evolution of the soot emissions.

A.4.2 Experimental results and discussion

The MPC-based power management strategy with the power rate constraint map

is implemented in the SHEV model and evaluated via the engine-in-the-loop test

setup. The constraint map obtained from the simulation-based design is directly uti-

lized in the experiments without any further tuning. Since the electrometer detectors

are sensitive and show drift when the detectors are exposed to high concentrations

for long time period (e.g. four minutes), only the middle part of the UAC, the most
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map over UAC: (a) vehicle speed, (b) battery power, (c) engine-generator power, (d)
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aggressive part, is used for the measurement of soot emissions. Fuel consumption

is measured over the entire UAC. It was found that the total numbers of SOC sus-

tainability satisfaction, Ns’s, for the baseline and optimal solution are 70 and 250,

respectively.

To highlight the performance of the strategy, specific time periods from 100 to

200 seconds are shown in Fig. A.6. As seen from Fig. A.6(a), there is no difference

in vehicle speed with and without the power rate constraint map, implying that the

vehicle performance in this drive cycle is not deteriorating when the map is introduced.

The responses of the battery and the engine-generator are influenced by the power rate

constraint map as shown in Fig. A.6(b) and A.6(c). Above the power level of 75 kW,

the map enforces the engine-generator to provide power gradually; i.e., over 75 kW,

the maximum power rate becomes an active constraint. Figure A.6(f) shows that soot

emissions are dramatically reduced whenever the power rate is limited: 75% of peak

value of soot emissions can be reduced by smooth engine-generator operations. When

the engine-generator power rate is limited, soot emissions are implicitly controlled

within an upper bound which is around 77 mg/m3 – the minimum concentration at

which soot emissions are visible [104].

The benefit of the power rate constraint map is observed not only during aggres-

sive increase of power demand, but also during the near idle regions following the

peak demands. In the high power demand regions, since the engine-generator power

is increased slowly, the remainder of the power demand needs to be satisfied by the

battery, resulting in lower battery SOCs as shown in Fig. A.6(b) and A.6(e). Con-

sequently, the engine-generator has to charge the battery for SOC regulation when

vehicle power demand is not high, avoiding high soot emissions near the engine idling

condition as seen from Fig. A.6(g).

As a result of the power rate constraint map, the total soot emission is reduced

by 44.5% without significantly compromising fuel economy: fuel economy is reduced

from 3.150 km/l (7.41 mpg) to 3.142 km/l (7.39 mpg) by 0.3% only. Results for the

fuel economy and total soot emission obtained in simulations and experiments are

compared and summarized in Fig. A.7(a) and (b). As expected, the soot emissions

reduction performance observed in the experiments exceeds the prediction of the

simulations, because the quasi-static soot emissions map used in the simulations does

not fully capture the magnitude of soot emissions during transients. These results

could lead to additional benefits that are beyond the scope of this study. For example,

a reduction in engine-out soot emissions could positively affect the design and control
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Figure A.7: Comparison of percentage improvement in performance from simulations
and experiments using the power rate constraint map: (a) fuel economy, (b) soot
emissions, and (c) effective Ah-processed; soot emissions in experiments are measured
for 240 seconds in the middle part of military cycle since the electrometer detectors
show drift when they are exposed to high concentrations for long time period.
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Figure A.8: Histogram of current of the battery cell: using the power rate constraint
map leads to a increase in the occurrence of current rates between 15 and 25 A/cell
as a tradeoff.

of the Diesel Particulate Filter in the aftertreatment system.

This significant reduction in soot emissions with only a minor compromise in fuel

economy is not achieved without a cost. Figure A.8 highlights the cost in terms of the

battery usage. Since the battery provides propulsion power when the engine power

is actively limited by the power rate constraint map, the occurrence of current rates

between 15 A/cell and 25 A/cell increases, which could translate to an increase in

battery degradation as a tradeoff.

To estimate the additional battery degradation over the driving cycle due to the

power rate constraint map, the effective Ah-processed model in [141] is used. This

approach is based on the fatigue analysis under the assumption of linear cumulative
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damage. The effective accumulated Ah-processed is calculated by

Aheff =

tf∫
0

κ(Tb, SOC)|Ib|dt, (A.3)

where the severity factor κ is a nonlinear function of operating temperature Tb and

SOC. The severity factor collapses in our case to a constant due to the narrow op-

erating range of the battery SOC and assumed perfect battery cooling. As shown

in Fig. A.7(c), the effective accumulated Ah-processed increases from 3.51 Ah to

3.71 Ah by 5.5% by using the optimized power rate constraint map. This increase in

Ah-processed could lead to a corresponding decrease in battery life.

A.5 Conclusion

An MPC-based power management strategy is developed to reduce soot emissions

in a diesel SHEV with a minimal compromise in fuel economy. This objective is

achieved through an optimized constraint map for adjusting the maximum allowable

power rate of the engine-generator unit. A quadratic programming was used to solve

the MPC problem for splitting power demand between the engine-generator unit and

the battery. To obtain the power rate constraint map for minimal soot emissions, a

three-step discrete optimization process has been conducted by sequentially utilizing

Genetic Algorithm and Exhaustive Search.

The engine performance with respect to soot emissions and fuel economy using the

power rate constraint map has been experimentally evaluated. Experimental results

show that the regulated engine operation using the proposed power rate constraint

map results in reduced soot emissions. Quantitatively, the total soot emission is

reduced by 44.5% while fuel economy is compromised by only 0.3%. Battery statistics

show that optimized MPC-based power management strategy increases the medium-

level current operations as a tradeoff. Specifically, the Ah-processed increases by

5.5%, and a corresponding decrease could be expected in the battery capacity.

As a first step to consider fuel economy and soot emissions simultaneously in

an MPC-based supervisory control framework, this work utilized a quasi-static soot

emissions map. A transient soot emissions model could improve the performance even

further. Therefore, developing such a model and evaluating its performance within

the methodology presented in this paper is an important direction for future research.

In addition, the influence of the power demand prediction on the performance will be

investigated.

113



APPENDIX B

Series Hybrid Electric Vehicle Modeling

This appendix presents the SHEV system model.

Figures B.1 and B.2 show the engine torque and soot emission maps obtained

from a Navistar 6.4L V8 diesel engine [143]. The engine torque map is augmented

by a PI fuel controller sub-model generating the engine rack position (ζ(t) ∈ [0, 1]),

given by

ζ(t) = kP∆τe + kI

∫
∆τedt, (B.1)

where ∆τe is the error between the desired and actual engine torque; kP and kI are

proportional and integral gains, respectively. To represent the effect of turbocharger

lag on transient response during rapid increases of engine rack positions, the fuel

mass is filtered by a first-order filter. The engine-generator unit is assumed to be

fully warmed up so that the effects of temperature are ignored. Figure B.3 illustrates

the efficiency of the generator in [150].

Figure B.4 shows the efficiency of the motor ηm is expressed as a function of

motor torque τm and motor speed ωm. Maximum output torque of the motor τm,max is

governed between the continuous torque τm,cont and the peak torque τm,peak accounting

for the heat index γ as follows:

τm,max = τm,cont + (1− γ)τm,peak, (B.2)

dγ

dt
= − 0.3

180

(
τm

τm,cont

− 1

)
, γ(0) = 0.3, (B.3)

where τm,cont and τm,peak are a function of the motor speed ωm. The heat index γ em-

ulates the change in the torque limit based on operating temperature as introduced
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Figure B.1: Engine torque map as a function of speed and fuel rate
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Table B.1: Battery cell and pack specifications

Parameter Value Unit

Nominal Voltage 3.3 V
Minimum Voltage 3.3 V
Maximum Voltage 3.3 V
Nominal Capacity 2.3 Ah

Number of Cells in Series 130 -
Number of Cells in Parallel 10 -

in Powertrain Systems Analysis Toolkit (PSAT) developed by Argonne National Lab-

oratory [150].

A 9.27 kWh (281 Ah) lithium ion battery pack with Lithium-Iron-Phosphate

(LiFePO4 or LFP) cells by A123 is considered and the battery is modeled using an

OCV-R-RC-RC equivalent-circuit approach. The open circuit voltage Voc, internal

resistances (Rs, R1, and R2) and capacitances (C1 and C2) during discharging and

charging are determined using the parameter identification technique presented in

[49]. The specifications for the LFP battery are summarized in Table B.1.

Terminal voltage Vt of the battery is calculated by using

Vt = Voc − V1 − V2 − IbRs, (B.4)

where V1 and V2 are polarization voltages across the capacitances C1 and C2, respec-

tively, and calculated based on the following dynamic equations:

dVi
dt

=
1

Ci

(
I − Vi

Ri

)
, i = 1, 2. (B.5)

The sign convention is such that positive current denotes battery discharging.

A point-mass representation is used for the vehicle. The longitudinal dynamics of

the vehicle is calculated through the equation

Mveh
dvveh

dt
= Fprop − Fbrk − Frr − Fwr, (B.6)
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where Mveh is the mass of the vehicle, respectively, Fprop is the propulsion force, Fbrk

is the braking force, and Frr is the rolling resistance force expressed by

Frr = frMvehag, (B.7)

where fr is the rolling resistance, ag is the gravitational acceleration. The wind

resistance force Fwr is calculated by using

Fwr =
1

2
ρairCdAvehv

2
veh, (B.8)

where ρair is the air density, Cd is the drag coefficient, and Aveh is the frontal area of

the vehicle. The road grade is not considered in the driving cycles in this study.

The driver model, which takes the desired and actual vehicle velocities as inputs

and provides propulsion or braking power demands, is adopted from [137] and is a PI

controller.
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APPENDIX C

Formulation of Model Predictive Control

C.1 The choice of L1 norm cost function

Let the sum of fueling rate ṁf over the finite horizon Ns to be

Λ =
Ns∑
i=1

ṁf (i). (C.1)

Then, the sum of the squares of fueling rate can be expressed by

Ns∑
i=1

ṁf (i)
2 =

Λ2

Ns

+Nsσ
2, (C.2)

where σ is the standard deviation of fueling rate over the finite horizon. The variance

is included as a penalty term in Eq. (C.2), resulting in that the minimization problem

(C.2) finds an optimal solution minimizing not only the sum of fueling rate but also

the variation of fueling rate. Thus, the output ṁ0.5
f is used in this study since the

total fuel consumption is of interest in power management.
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C.2 Matrix-vector form for Model Predictive Control

Equation (5.7) is iterated in order to predict outputs over the future horizon as it

follows: 
x̂k+1|k

...

x̂k+Np|k

 = Axk + B∆U + B1 + G1,


ŷ
k|k
...

ŷ
k+Np|k

 = C


x̂k|k

...

x̂k+Np|k

+ H


v̂k|k

...

v̂k+Np|k

+ G2 (C.3a)

where

A =


Ad
...

A
Np

d

 , (C.4a)

B =


I · · · 0
...

. . .
...∑Np−1

i=0 Aid · · ·
∑Np−Nc

i=0 Aid

Bd, (C.4b)

B1 =


I
...∑Np−1

i=0 Aid

Bduk−1, (C.4c)

G1 =


I
...∑Np−1

i=0 Aid

G1, (C.4d)

C = diag
[
C · · · C

]
︸ ︷︷ ︸

(Np+1)×dimC

, (C.4e)

H = diag
[
H · · · H

]
︸ ︷︷ ︸

(Np+1)×dimH

, (C.4f)

G2 =
[
GT

2 · · · GT
2

]T
︸ ︷︷ ︸

(Np+1)×dimGT
2

. (C.4g)
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The sequences of the engine-generator are given by
v̂k|k

...

v̂k+Np|k

 = Pd − u0 −K1∆U (C.5)

with

Pd =
[
Pd,k|k · · · Pd,k+Np|k

]T
, (C.6a)

u0 =
[
uk−1 · · · uk−1

]T
︸ ︷︷ ︸

(Np+1)×1

, (C.6b)

K1 =



1 0 · · · 0
...

. . .
...

...

1 1 1 1
...

...
...

...

1 · · · · · · 1


(Np+1)×Nc

. (C.6c)

The outputs over the prediction horizon Y = [y
k|k, · · · , yk+Np|k

]T can be expressed

by

Y = C1xk + Φ1∆U + Φ2 (C.7)

where

C1 = C

[
I

A

]
, (C.8a)

Φ1 = C

[
0

B

]
−K1, (C.8b)

Φ2 =

[
0

B1

]
+ H +

[
0

G1

]
+ G2. (C.8c)
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Finally, matrices for the Quadratic Programming, Eq. (5.9) are expressed as

following:

Ψ1 = 2(Φ1
TW1Φ1 + K1

TW2K1 +W3), (C.9a)

Ψ2 = 2
(
xTo C1

T + Φ2

)
W1Φ1

− 2
(

(K1
TK1)

−1
K1(Pd − uo − vo)

)T
W2 + 2uoW3K1, (C.9b)

Γ1 =
[
K2

T −K2
T K2

T −K2
T IT −IT −BT BT

]T
, (C.9c)

Γ2 =



Pb,max − uo

−Pb,min + uo

Pd − uo

Pg,max −Pd + uo

K2
−1(uo + vo −Pd) + ∆Pg,max

K2
−1(Pd − uo − vo)−∆Pg,min

Axo + B1 + G1 −Y1,min

−Axo −B1 −G1 + Y1,max


, (C.9d)

where

K2 =


1 0 · · · 0
...

. . .
...

...

1 1 1 1


Nc×Nc

, (C.10)

Pb,max =
[
Pb,max · · · Pb,max

]T
, (C.11)

Pb,min =
[
Pb,min · · · Pb,min

]T
, (C.12)

∆Pg,max =
[

∆Pg,max · · · ∆Pg,max

]T
, (C.13)

∆Pg,min =
[

∆Pg,min · · · ∆Pg,min

]T
, (C.14)

Y1,min =
[

SOCmin · · · SOCmin

]T
, (C.15)

Y1,max =
[

SOCmax · · · SOCmax

]T
. (C.16)
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[130] U. Tröltzsch, O. Kanoun, and H.-R. Tränkler, “Characterizing aging effects of
lithium ion batteries by impedance spectroscopy,” Electrochimica Acta, vol. 51,
no. 8-9, pp. 1664–1672, 2006.

134



[131] J. Li, E. Murphy, J. Winnick, and P. Kohl, “Studies on the cycle life of com-
mercial lithium ion batteries during rapid charge–discharge cycling,” Journal
of Power Sources, vol. 102, no. 1-2, pp. 294–301, 2001.

[132] D. Abraham, E. Reynolds, E. Sammann, A. Jansen, and D. Dees, “Aging
characteristics of high-power lithium-ion cells with LiNi0.8Co0.15Al0.05O2 and
Li4/3Ti5/3O4 electrodes,” Electrochimica Acta, vol. 51, no. 3, pp. 502–510, 2005.

[133] R. Kostecki and F. McLarnon, “Microprobe study of the effect of li intercalation
on the structure of graphite,” Journal of Power Sources, vol. 119-121, no. 0,
pp. 550–554, 2003.

[134] J. Christensen and J. Newman, “Stress generation and fracture in lithium inser-
tion materials,” Journal of Solid State Electrochemistry, vol. 10, no. 5, pp. 293–
319, 2006.

[135] J. Cho, Y. J. Kim, T.-J. Kim, and B. Park, “Zero-strain intercalation cathode
for rechargeable li-ion cell,” Angewandte Chemie, vol. 113, no. 18, pp. 3471–
3473, 2001.

[136] J. Cannarella and C. B. Arnold, “Stress evolution and capacity fade in con-
strained lithium-ion pouch cells,” Journal of Power Sources, vol. 245, no. 0,
pp. 745–751, 2014.

[137] T. Ersal, M. Brudnak, A. Salvi, J. L. Stein, Z. Filipi, and H. K. Fathy, “De-
velopment and model-based transparency analysis of an internet-distributed
hardware-in-the-loop simulation platform,” Mechatronics, vol. 21, no. 1, pp. 22–
29, 2011.

[138] T. Ersal, M. Brudnak, J. L. Stein, and H. K. Fathy, “Statistical transparency
analysis in internet-distributed hardware-in-the-loop simulation,” Mechatron-
ics, IEEE/ASME Transactions on, vol. 17, no. 2, pp. 228–238, 2012.

[139] T. Ersal, R. B. Gillespie, M. Brudnak, J. L. Stein, and H. Fathy, “Effect of
coupling point selection on distortion in internet-distributed hardware-in-the-
loop simulation,” International Journal of Vehicle Design, vol. 60, 2012.

[140] Y. Kim, A. Salvi, A. G. Stefanopoulou, and T. Ersal, “Reducing soot emissions
in a diesel series hybrid electric vehicle using a power rate constraint map,”
Vehicular Technology, IEEE Transactions on, submitted.

[141] S. Onori, P. Spagnol, V. Marano, Y. Guezennec, and G. Rizzoni, “A new life
estimation method for lithiumion batteries in plugin hybrid electric vehicles
applications,” International Journal of Power Electronics, vol. 4, no. 3, pp. 302–
319, 2012.

[142] J. R. Hagena, Z. S. Filipi, and D. N. Assanis, “Transient diesel emissions:
Analysis of engine operation during a tip-in,” in SAE 2006-01-1151, 2006.

135



[143] R. Johri, A. Salvi, and Z. Filipi, “Real-time transient soot and NOx virtual
sensors for diesel engine using neuro-fuzzy model tree and orthogonal least
squares,” Journal of Engineering for Gas Turbines and Power, vol. 134, no. 9,
2012.

[144] Y. Zhu, Y. Chen, G. Tian, H. Wu, and Q. Chen, “A four-step method to
design an energy management strategy for hybrid vehicles,” in Proceedings of
the American Control Conference, vol. 1, pp. 156–161, Jun 30-Jul 2 2004.

[145] M. Montazeri-Gh, A. Poursamad, and B. Ghalichi, “Application of genetic al-
gorithm for optimization of control strategy in parallel hybrid electric vehicles,”
Journal of the Franklin Institute, vol. 343, no. 4-5, pp. 420–435, 2006.

[146] V. Paladini, T. Donateo, A. de Risi, and D. Laforgia, “Super-capacitors fuel-cell
hybrid electric vehicle optimization and control strategy development,” Energy
Conversion and Management, vol. 48, no. 11, pp. 3001–3008, 2007.

[147] Z. Wang, B. Huang, Y. Xu, and W. Li, “Optimization of series hybrid electric ve-
hicle operational parameters by simulated annealing algorithm,” in Proceedings
of the IEEE International Conference on Control and Automation, pp. 1536–
1541, May 30-Jun 1 2007.

[148] J. Ryu, Y. Park, and M. Sunwoo, “Electric powertrain modeling of a fuel cell hy-
brid electric vehicle and development of a power distribution algorithm based on
driving mode recognition,” Journal of Power Sources, vol. 195, no. 17, pp. 5735–
5748, 2010.

[149] L. Fang, S. Qin, G. Xu, T. Li, and K. Zhu, “Simultaneous optimization for
hybrid electric vehicle parameters based on multi-objective genetic algorithms,”
Energies, vol. 4, no. 3, pp. 532–544, 2011.

[150] Argonne National Laboratory, “Powertrain systems analysis toolkit.” http:

//www.transportaion.anl.gov/software/PSAT, 2002. [Online; accessed 19-
Nov-2013].

136

http://www.transportaion.anl.gov/software/PSAT
http://www.transportaion.anl.gov/software/PSAT

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Motivation
	Battery Models in Literature
	Electrochemical Model
	Equivalent-Circuit Model
	Thermal Coupling

	Contributions
	Dissertation Organization

	Development of a Computationally Efficient Thermal Model of Cylindrical Battery Cells
	Introduction
	Heat Transfer Problem in Cylindrical Batteries
	Analytical Solution
	Numerical Solution: Finite Difference Method
	Model Reduction via Polynomial Approximation
	Frequency Domain Analysis
	Heat Generation Calculation

	Parameter Identification
	Identifying Thermal Properties
	Model Validation

	Conclusion

	The Estimation of Temperature Distribution in Cylindrical Battery Cells under Unknown Cooling Conditions
	Introduction
	Reduced-Order Thermal Model
	Parameter Sensitivity Analysis
	Estimation of Temperature and Convection Coefficient
	A Dual Kalman Filter : a combination of Kalman and Extended Kalman Filters
	A Joint Extended Kalman Filter

	Experimental Results
	Conclusion

	Power Capability Estimation of Lithium-ion Batteries Based on Time Scale Separation
	Introduction
	Battery Thermal Model
	Entropy Change Measurement
	Identifying Thermal Properties
	Model Validation

	Electrical Model
	Power Capability Estimation Method
	Active Thermal Constraints
	Active Electrical Constraints
	Power Capability Estimation

	Simulation Results
	Conclusion

	Case Study : a Series Hybrid Electric Vehicle
	Introduction
	Power Management System
	Background
	MPC-based Power Management

	Battery Power Management Strategy
	Control-Oriented Battery Model
	Sequential State-Parameter Estimation
	Power Capability Estimation

	Model-in-the-loop Simulation Results
	Conclusion

	Conclusion
	Summary of Contributions
	Possible Future Extensions
	Battery warm-up strategy for cold start
	Mechanical Stress as a Power Capability Constraint
	Powertrain-in-the-loop Validation


	APPENDICES
	BIBLIOGRAPHY

